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Abstract—Energy harvesting communication devices, which
are able to convert different forms of ambient energy to electrical
energy and use it for communications, have emerged as an
alternative to the conventional devices powered by fixed utilities
or batteries, due to their potential to be deployed in less accessible
environments and to operate for longer time without any human
intervention. As the energy input to such systems is in general
non-constant, new resource management principles and resource
allocation algorithms need to be developed. In this work, we
evaluate the performance limit of energy harvesting transmitters
in terms of throughput when only discrete modulation levels
and coding rates are applicable, assuming perfect knowledge of
energy arrivals and constant channel state during the time slot of
interest. In addition, we employ a detailed circuit power model
to account for the energy consumption within the transmitter
circuitry. A throughput-maximizing energy expenditure trajec-
tory can be obtained with the construction algorithm we propose
which utilizes the Pareto boundary of the system on the power-
rate graph, and it corresponds to an optimal adaptive modulation
and coding strategy that the transmitter should employ.

I. INTRODUCTION

With the development of energy harvesting technology,

communication devices with energy harvesting ability have

become feasible, which motivates a lot of research activities

recently concerning their utilization in point-to-point commu-

nications or in networks, e.g., [1][2][3]. These devices find

especially important applications in wireless sensor networks

due to the extended lifetime they can offer. However, for the

typical communication range in a wireless sensor network

which is rather short, the transmit power required to achieve

a sufficiently good receive signal-to-noise ratio (SNR) is not

significantly larger than the analog/digital processing power

of the transmitting node [4][5]. This means, to evaluate the

performance of a short-range communication system with

energy harvesting nodes, an accurate energy consumption

model of the nodes, which includes not only radiated energy

but also circuit energy consumption, has to be considered.

Apart from that, new design challenges are posed in the

pursuit of efficient energy usage of an energy harvesting node,

as the energy sources are usually not controllable and the

energy that becomes available at the node can be unsteady

and even unpredictable. All these considerations call for the

establishment of a suitable optimization framework for energy

harvesting nodes, within which effective energy allocation

algorithms with low complexity can be developed.

We focus on an energy harvesting transmitter which aims at

maximizing its throughput over a limited time slot, and try to

find the optimal mode of operation (MOP) it should employ

which changes over time depending on the energy arrivals

and the energy storage capacity of the node. This optimization

framework was proposed in [6][7]. We integrate the important

circuit power model into the framework and study its effect

on the optimal MOP. We have followed the information the-

oretic approach in our previous works [8][9] and employed a

continuous power model for the transmitter. Now we consider

discrete MQAM modulations and coding rates instead, and it

turns out that once we determine the energy-efficient MOPs of

the system, the optimization algorithm we developed in [8][9]

can be modified in a straightforward fashion to produce the

optimal or a near-optimal solution in the new scenario.

The rest of the paper is organized as follows: in Section II,

the system model is introduced from the aspects of wireless

channel, circuit power, uncoded/coded data transmission, and

energy harvesting and expenditure. The throughput maximiza-

tion problem is formally given in the end. In Section III,

we first review the optimal transmission strategy with the

continuous power model and the critical slope based opti-

mization algorithm. Then we define and determine the energy-

efficient MOPs for both uncoded and coded transmissions,

which are crucial in the application and modification of the

existing algorithm. The construction procedure of an optimal

or near-optimal energy expenditure trajectory is described

in Section IV, where several smoothing schemes are also

discussed. Simulation results are shown in Section V before

we draw conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We investigate the exploitation of energy during the time

slot [ 0, T ] by an energy harvesting transmitter, which has

enough data to deliver to a receiver d meters apart. The

notations and values of the system parameters are summarized

in Table I, where fc represents the carrier frequency and B
stands for the bandwidth used for transmission. The symbol

duration Ts is approximated by 1/B. Other parameters in

Table I will be explained later in this section.

A. Channel Model

The wireless channel between the transmitter and the re-

ceiver is assumed invariant during [ 0, T ] and we consider only
the path loss for the radio propagation effect. Let ptx be the



transmit power and prx be the corresponding receive power.

Assuming that the distance d between the transmitter and the

receiver is also constant in [ 0, T ], we write the signal-to-noise
ratio (SNR) at the receiver as [4][10]

γ =
prx

N0B
=

ptx

MlG1dκN0B
,

where N0

2 is the noise power spectrum density, κ is the path

loss exponent, and G1 is the the power gain factor at the

reference distance of 1 meter which is dependent on the

antenna patterns and the wavelength of the transmitted signal.

Shadowing, interference, other background noise, and internal

hardware loss are compensated with the link margin Ml.

B. Circuit Power Model

At any time instance, the transmitter works in one of the

following three modes: the active mode in which signals are

transmitted, the sleep mode in which no signal is transmitted,

and the transient mode during which the switching between

the active mode and the sleep mode happens. In this work

we consider only the circuitry power of the active mode, and

neglect the power consumption during the transient and sleep

phase which is comparatively small. The circuit power model

adopted here is based on the formulation in [4], where the total

power consumption p of the transmitter in active mode consists
of 3 parts as given by p = ptx+pamp+pct = (1+α)ptx+pct.

Besides the transmit power ptx, an important part of the total

power consumption comes from the power amplifier given as

pamp = α · ptx, where α = ξ
η − 1 with η the drain efficiency

of the amplifier and ξ = 3 ·
√

M−1√
M+1

the peak-to-average ratio

which depends on the MQAM constellation size. The power

consumptions of the DAC, the transmit filters, the mixer, and

the frequency synthesizer are included as a whole in pct and

they constitute the constant part in p.

C. Data Transmission Model

Now we investigate the relation between the receive SNR

and the instantaneous data rate, which could further lead us to

the link between the energy consumption at the transmitter and

the achievable throughput. The transmission mode employed

by the energy harvesting node is referred to as the mode

of operation (MOP), and it includes different parameters for

uncoded and coded transmissions.

1) Uncoded MQAM: An upper bound on the uncoded bit

error probability for MQAM is given by [4]

πb ≤ 4

log2 M

(
1 − 1√

M

)
e−

3
M−1 · γ

2 ,

from which the minimum receive SNR to achieve a target BER

π
(rq)
b can be computed. When the target BER is predefined and

fixed, the required transmit power depends completely on the

distance d and the constellation size M . Therefore, the MOP

in the uncoded case corresponds to the single parameter M .

We define the data rate in bit/sec as r = log2 M
Ts

.

2) Coded MQAM: In the coded scenario where forward

error-correction codes are employed to control errors, we apply

the noisy channel coding theorem [11] to obtain an upper

bound on the codeword error probability. Let the modulation

alphabet and coding rate be denoted with A = {a1, . . . , aM}
and R respectively. The cutoff rate of the channel with SNR

γ and MQAM can be expressed as

R0(γ, M) = log2 M−log2

[
1 +

2

M

M−1∑
m=1

M∑
l=m+1

e−
1
4 |al−am|2γ

]
.

The noisy channel coding theorem states that there always

exists a block code with block length l and binary code rate

R log2 M ≤ R0(γ, M) in bits per channel use, such that with
maximum likelihood decoding the error probability π̃ of a

codeword satisfies π̃ ≤ 2−l(R0(γ,M)−R log2 M).

In order to apply this upper bound to the extensively used

turbo decoded convolutional code, quantitative investigations

have been done in [12] and an expression for the equivalent

block length is derived based on link level simulations as

neq = βc lnL, where the parameter βc is used to adapt this

model to the specifics of the employed turbo code, and L is the

coded packet length. Consequently, the transmission of L bits

is equivalent to the sequential transmission of L/neq blocks

of length neq and has an error probability of

π = 1−(1− π̃)
L

neq ≤ 1−
(
1 − 2−neq(R0(γ,M)−R log2 M)

) L
neq

.

At the transmitter side, the processing power of the channel

encoder is usually small enough to be neglected, hence the

same power consumption model is applied to both the uncoded

and coded transmissions. We assume that each data packet

contains Lo bits of control overhead which are encoded to-

gether with the information bits. To this end, the transmission

of a packet of L bits, which has been coded with code rate R,
modulated with MQAM and has an error probability π, results
in a data rate given by

r =
(1 − π) log2 M

Ts

(
R − Lo

L

)
.

It can be observed that the data rate is dependent on the code

rate, the constellation size, the transmit power, and also the

length of the packet. All these parameters are included in

one MOP for coded transmissions. For numerical simulations

we have chosen 8 candidate Modulation and Coding Schemes

(MCS) which are listed in Table II.

D. Energy Harvesting and Expenditure

An energy harvesting node gathers energy from the envi-

ronment and stores them in its storage medium. Although the

arrival of energy is often a random process and is not fully

predictable, we assume here that the energy arrival in time slot

[ 0, T ] is completely known in advance at the transmitter, so

as to evaluate the performance limit of the system.

We utilize the cumulative model to describe the energy

arrival as well as the energy expenditure of the transmitter.

Let the nondecreasing functions A(t) and W (t) represent the



Table I
SYSTEM PARAMETERS

fc = 2.5 GHz B = 10 kHz
N0
2

= −174 dBm/Hz

κ = 3.5 η = 0.35 Ts ≈ 1/B = 0.1 ms
Pct = 98.2 mW Ml = 30 dB G1 = 40 dB

π
(rq)
b = 10

−3 βc = 32 Lo = 32 bits

Table II
MODULATION AND CODING SCHEMES (MCS)

Index Modulation Type Code Rate R R log2 M

1 BPSK 1/2 0.5

2 4-QAM 1/2 1

3 4-QAM 3/4 1.5

4 16-QAM 1/2 2

5 16-QAM 3/4 3

6 64-QAM 2/3 4

7 64-QAM 3/4 4.5

8 64-QAM 5/6 5

Table III
SIMULATION PARAMETERS

Parameter set index Emax in Joule Maximal energy per arrival

P.I 40 0.6× Emax

P.II 100 0.6× Emax

P.III 40 0.4× Emax

P.IV 100 0.4× Emax

total amount of energy that is available by time t and the

total energy consumption of the node by time t, respectively.
Due to causality, W (t) ≤ A(t) must be satisfied, ∀t ∈ [ 0, T ].
Moreover, physical limitations on the energy storage that the

node is equipped with give rise to a function D(t) which

represents the minimal amount of energy that has to be

consumed by time t in order to avoid energy loss caused by

storage overflow. Let Emax be the maximum amount of energy

that the node can store. Assuming Emax is constant, we have

D(t) = max(0, A(t) − Emax), ∀t ∈ [ 0, T ]. No continuity

requirement is imposed on A(t) or D(t), which means that

our algorithms can be applied to both continuous and discrete

energy arrival situations. Yet at a point of discontinuity on

A(t), let us denote it with t0, we assume that A(t+0 )−A(t−0 ) <
Emax, i.e., there is no energy overflow caused by a very large

instantaneous energy input. This guarantees D(t) < A(t),
∀t ∈ (0, T ).

In order to maximize the throughput over [ 0, T ], all avail-
able energy should be used for data transmission and energy

overflow should be avoided as much as possible, given that the

data rate is an increasing function of the power consumption.

With the continuous power model and no transmit power

constraint, energy overflows can be avoided altogether. This

means, W (t) ≥ D(t) has to be satisfied for W (t) to be

optimal. Since the energy consumption function W (t) is

bounded by A(t) from above and by D(t) from beneath, we

refer to the functions A(t) and D(t) as the boundary curves.

However, as the transmitter is now limited by the highest

modulation order or the highest MCS available, it becomes

incapable of storing and using all the energy it would be able

to harvest. In such an occasion, part of the function A(t) has to
be decreased according to the time instance that the overflow

happens as well as amount of energy that has been missed,

which in turn causes decrement in D(t). As a result of this

adjustment, W (t) is still bounded in between A(t) and D(t).

E. Throughput Maximization

The energy harvesting transmitter aims at maximizing the

total throughput achieved from time 0 to T by properly

adapting its MOP. The adaptation is based on the knowledge

of the energy arrival process and the energy storage capacity

of the node, and it should not violate the causality constraint.

Such a design goal can be mathematically expressed by

max I =

∫ T

0

r(t)dt

s.t. W (t) =

∫ t

0

p(τ)dτ ≤ A(t), (1)

W (0) = 0,

where the optimization is on the MOP as a function of

time defined over [ 0, T ], and the dependencies of r and

p on the MOP have been given previously. The condition

W (t) ≥ D(t) is only necessary for optimality and is therefore
not explicitly included in (1). We refer to the optimal MOP

function for (1) as the optimal transmission strategy and

denote the corresponding state function with W ∗, which is

also called the optimal energy expenditure trajectory. Notice

that we drop the time index t in functions from now on.

III. OPTIMAL TRANSMISSION STRATEGY AND EFFICIENT

MODES OF OPERATIONS

In our previous works [8][9] we have studied the throughput

maximization problem at an energy harvesting transmitter with

generic circuit power and data rate functions. To be more

specific, we used the power consumption model p = g(ptx) in
the active mode where the function g is restricted to be convex

or linear, and the data rate model r = f(ptx) where the func-
tion f is strictly concave. Besides, f and g are both assumed

to be nonnegative and monotonically increasing. Under these

circumstances, a construction algorithm for finding W ∗ was

designed and verified based on the method proposed in [13]. In

the following we first review the key idea of the construction

algorithm, and then discuss how the solution structure could

be applied to the MOP optimization we are dealing with now.

A. Critical Slope based Construction Algorithm

When the power consumption function g is continuous on

[ 0,+∞), the existence and uniqueness of W ∗ can be shown

and the optimality criterion that along the optimal trajectory

W ∗ there do not exist any two points between which the

part of W ∗ can be replaced with a straight line segment is

established [9]. Consider a time instance t0 ∈ [ 0, T ) and

let (t0, α0) satisfy D(t0) ≤ α0 ≤ A(t0). Straight lines

of nonnegative slopes starting from this point, denoted by

L(t0,α0), can be distinguished by whether they intersect with

A or D first. Let SA(t0, α0) and SD(t0, α0) denote the sets

of slopes which lead L(t0,α0) to intersect with A and D
first, respectively. Since A > D, ∀t ∈ (0, T ), the relation



inf SA(t0, α0) = supSD(t0, α0) holds and we define this

value as the critical slope at the respective point and denote

it with β(t0, α0). The construction of W ∗ then proceeds in

a simple recursive fashion: starting from (0, 0), W ∗ takes

the straight line segment with the critical slope at its current

end point until it intersects with the boundary curve A or

D. The next iteration begins then with the intersection point.

Theorem was established in [13] proving the optimality of the

constructed trajectory. We refer to the construction algorithm

described above as the basic algorithm.

The positive constant part of circuit power may cause the

function g to be discontinuous at ptx = 0, for the circuit

power in sleep mode is assumed trivial. This leads to a

positive energy-efficient transmit power ptx0 below which the

transmitter should not operate in active mode in order to

maximize the throughput. To this end, the basic algorithm

needs to be modified that in each iteration of the construction,

the critical slope β at the current end point of W ∗ is compared
with p0 = g(ptx0

) to determine whether a sleeping period

should take place. If β > p0, W ∗ follows the straight line

segment with slope β; otherwise, the transmitter is turned into
sleep mode until it has to be activated, i.e., to be able to employ

the constant transmit power ptx0 to reach the next intersection

point, or to avoid energy overflow. Accordingly, this algorithm

is named as the modified algorithm. The optimal trajectory in

this scenario is not unique, but all optimums are equivalent

in the sense that they lead to the same maximal throughput,

and they differ only in the manner of time-sharing between

the sleep mode and active mode in which ptx0
is employed.

Since there is a one-to-one mapping between transmit power

and the total power consumption, we can also view the

achieved rate r as a function of the total power consumption

p, namely r = h(p). With optimal control theory e.g. [14],

we find that the concavity of h plays the key role in the

existence of W ∗ and whether our construction algorithm is

still applicable. In fact, f being strictly concave and g being

convex over [ 0,+∞) guarantees that h is strictly concave on

[ 0,+∞), and the basic algorithm gives us the unique optimal

W ∗ in this case. When g is discontinuous at ptx = 0, h is not

a concave function but via the time-sharing of power p = 0
and p = p0, the power-rate curve has been convexified so that

the modified algorithm would give us one of the optimal W ∗.

B. Energy-Efficient Modes of Operations

With the insights provided by studies on the continuous

power case, we now aim at obtaining a concave dependency

between r and p based on the discrete power-rate pairs

representing all candidate MOPs. A given MOP is called

energy-efficient if there is no other MOP that produces higher

data rate but consumes less power. The Pareto boundary of

the system is obtained by connecting the (p, r) points of all

energy-efficient MOPs with straight lines, meaning that the

points on these line segments are achieved via time-sharing of

the two adjacent MOPs. The resulting curve defines the data

rate r as a concave function of the power consumption p, but
not strictly concave due to the linear parts.

In the uncoded case, we consider 4 MQAM schemes with

M = 2, 4, 16, 64 which lead to 5 possible MOPs including the

sleep mode. From Figure 1 we see that which MOP is energy-

efficient depends on the distance d between the transmitter and

the receiver. Lower modulation orders are in general inefficient

with small d as pct is the dominant part in p, rendering
the sleep mode a more attractive operation option. For d as

large as 100 meters approximately, all modulation orders under

consideration are energy-efficient.
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Figure 1. Pareto boundaries of power-rate pairs for uncoded transmission

The coded case is more complicated in that the packet length

and packet error probability (PEP) also come into play. Given

the number of symbols Ns in the coded packet, different MOPs

can be obtained by varying the PEP. Energy-efficient MOPs are

typically found with PEPs between 0.01 and 0.001. The Pareto
boundary in this case is no longer the concatenation of several

line segments between isolated energy-efficient MOPs, but

rather contains several bending parts with continuous MOPs

resulting from the continuously changing PEPs, as shown in

Figure 2. Each bending part corresponds to the usage of one

candidate MCS, and adjacent bending parts are connected with

straight lines. We refer to the boundary points of bending

parts as the corner points, which are involved in producing

the required power consumption between two bending parts

via time-sharing. Due to the fixed-length control overhead in

each packet, Pareto boundaries of shorter packets lie below

those of longer packets. With packet lengths much larger than

Lo, the Pareto boundaries almost coincide, as can be seen in

Figure 2(b). The power consumptions at the corresponding

corner points decrease slightly with increasing Ns, but the

decrement is small enough to be neglected. This means, we can

assume that the energy-efficient MOPs obtained with different

Ns have the same power consumption values but differ only

in the achieved data rates. To this end, it suffices to find

the power consumption values of energy-efficient MOPs for

one relatively large Ns, record and use them for determining

the involved MCS and for generating any required power



consumption by time-sharing, no matter how long the packet

actually is. The construction algorithm discussed in the next

section is based on this assumption.
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Figure 2. Pareto boundaries of power-rate pairs for coded transmission

IV. CONSTRUCTION OF OPTIMAL AND NEAR-OPTIMAL

ENERGY EXPENDITURE TRAJECTORIES

As mentioned earlier, given the boundary curves A and D,

we can construct a trajectory with the basic algorithm which

contains segments of the critical slopes. Such a trajectory is

denoted with Wb, and it is optimal if transmit power can be

adapted continuously, and the rate and circuit power functions

satisfy certain conditions. We give an example of the curves

A, D, Wb and other trajectories we construct in this section

in Figure 3, where in Figure 3(a) the basic trajectory Wb with

the designed boundary curves A and D is illustrated.

In the uncoded case, the Pareto boundary we have obtained

indicates how each critical slope, which corresponds to the

optimal power consumption at the time, should be achieved

with the energy-efficient MOPs. To be more specific, for each

segment of Wb with critical slope β, we find the power

consumptions p1 and p2 of the adjacent energy-efficient MOPs

on the Pareto boundary, and replace the part of Wb with line

segments of slopes p1 and p2. The trajectory resulting from

the replacement should not violate the boundary curves A and

D. When the time period between two energy arrivals is much

longer than the symbol duration, such a replacement is always

possible. In fact, there are infinitely many valid replacements,

each leading to an optimal trajectory W ∗. One example is

shown in Figure 3(b).

A similar idea is applied to the coded case: critical slopes

between two corner points on the Pareto boundary are achieved

with time-sharing, while critical slopes that fall within a

bending part can be directly achieved with one MOP. In the

former case a reconstruction of the segment of Wb is required,

where the number of symbols used by each MOP needs to be

determined. Unlike with uncoded transmission, the specific

time-sharing manner will have an effect on the achieved data

rate now. Generally speaking, the number of switches between

the two involved MOPs should be made as small as possible.

To this end, in our algorithm we employ each MOP as long

as possible, until the boundary curve A or D requires a mode

change. Although such a strategy is not always optimal, it is

simple enough and gives good performance, while the optimal
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(a) Basic trajectory
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(b) Optimal trajectory in the
uncoded case
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the coded case
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Figure 3. Exemplary energy boundary curves and constructed trajectories

time shares are very hard to compute. However, there are two

special situations to be cared about. First, the rate/power ratio,

i.e., the bit per Joule value of the lower MOP, must be higher

than that of the higher MOP in order to be energy efficient.

When the power-rate point of the lower MOP lies below the

line connecting the origin and the point representing the higher

MOP, which could happen because of the control overhead in

each packet, we see that using the lower MOP is not as good

as turning the transmitter into sleep mode. Second, when the

higher MOP produces a lower data rate than the lower MOP,

we could consider not using the higher MOP for the current

time share but employing the lower MOP the whole time. This

could improve the throughput and spare some energy as well,

which could be used in a following segment. The trajectory

constructed as described above is denoted with Wr and shown

in Figure 3(c).

An intuitive scheme to improve the throughput is to combine

consecutive intervals with completely common MCS and treat

them as one longer interval. Moreover, if consecutive intervals

share one MCS and it is employed at the boundary between

the intervals, a combination of packets could be done across

the intervals. The trajectory we obtain after these combination

operations is called the combined trajectory and denoted with

Wc. Accordingly, Wr is termed as the uncombined trajectory.

From Figure 3(d) we can observe that Wc is smoother than

Wr and incurs less number of packets.

V. SIMULATION RESULTS

For simulations we take the interval length T = 1000
seconds. The energy arrivals are at least 20 seconds away from
each other, and after 20 seconds some more inter-arrival time

following the negative exponential distribution with a mean

of 40 seconds is expected. The amount of energy in each

arrival is uniformly distributed from 0 to a certain percentage

of the energy storage capacity Emax. The parameters we vary



in the simulations are summarized in Table III, and for each

parameter set, 1000 realizations of the energy arrival during

[ 0, T ] are generated and applied to our construction algorithm.
We first compare the throughput achieved with the trans-

mission strategy given by the uncombined trajectory, denoted

with I(Wr), to the throughput achieved with the combined

trajectory, denoted as I(Wc), the results of which are depicted
in Figure 4. As can be expected, larger throughputs are

achieved with larger energy storage capacity and increased

amount of energy arrivals. The performance gap is smaller at

short distances due to the limitation in the highest MCS that is

available, i.e., the available energy might not be fully utilized

in those cases. The improvement offered by the combined

trajectory is rather trivial, not exceeding 1% on average

according to Figure 4(b). As combining adjacent packets with

identical MCS is not a complex task, it might still be worth

doing in some scenario, especially when the control overhead

in each packet is relatively long.
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Figure 4. Average throughput and algorithm comparisons

The average throughput achieved with uncoded and coded

transmissions are shown in Figure 5, with varied parameters

and as dependent on the distance d. For the coded case the

throughput of the combined trajectory is shown. It can be

observed that with the transmitter and receiver less than 30-40

meters apart, the performance of coded transmission is close

to or worse than that of uncoded transmission, which is also

suggested by Figure 1 and Figure 2. That means, at such short

distances, it is not worthwhile to transmit the redundancy in

order to reduce packet error probability. Coded transmission

becomes clearly favourable when the the transmitter and

receiver are further apart, e.g., for d ≥ 50 meters.
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Figure 5. Average achieved throughput in uncoded and coded scenarios

VI. CONCLUSION

The throughput maximization problem of an energy harvest-

ing transmitter is investigated in this work. We focus on the

scenario that the transmitter sends data over a single invariant

link, and it has a priori information about the energy arrivals

during the time slot of interest. Not only transmit power, but

also circuit power of various components in the RF circuitry

are considered in the total power consumption model of the

transmitting node. For each candidate mode of operation, the

total power required to employ it and the data rate it offers can

be computed. To this end, we characterise both uncoded and

coded transmissions of data by the respective Pareto bound-

aries, which are determined by the energy-efficient MOPs on

the power-rate graph. Consequently, the critical slope based

construction algorithm of the optimal energy expenditure

trajectory can be adapted to the discrete-MOP case with the

modification, that the critical slopes are now achieved with

proper time-sharing of energy-efficient MOPs as indicated by

the Pareto boundary. All algorithms proposed in the work

are verified and illustrated with numerical simulations, based

on which we also compare the utilization of uncoded and

coded transmissions with respect to the distance between the

transmitter and receiver.
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