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1 Introduction

Following Itd’s seminal paper [26], stochastic integration theory w.r.t. semimartingales was
brought to maturity during the 1970s and 1980s. One of the fundamental results in this area is
the Bichteler-Dellacherie theorem, which shows the equivalence between the class of semimartin-
gales and the class of finite L°-random measures. As a consequence, semimartingales constitute
the largest class of integrators that allow for stochastic integrals of predictable integrands satis-
fying the dominated convergence theorem. The natural analogue to semimartingale integrals in
a space-time setting are integrals of the form

H(t, ) M(dt, dz), (1.1)
RxE

where F is some space and M is an L°-random measure on R x E. The construction of such
integrals is discussed in [15] in its full generality, so the theory is complete from this point of
view.

However, whether H is integrable w.r.t. M or not, depends on whether

hII(l) sup {]E H/SdM‘ A 1] S| < |rH|, S is a simple integrand} =0 (1.2)
r—

or not, a property which is hard to check. Thus, the aim of this paper is to characterize (1.2)
in terms of equivalent conditions, which can be verified in concrete situations. In the purely
temporal case, this subject is addressed in [12]. The result there is obtained by using the local
semimartingale characteristics corresponding to a random measure. Our approach parallels this
method, but it turns out that the notion of characteristics in the space-time setting is much
more complex. We will show that, if M has different times of discontinuity (cf. Definition 3.1
below), we can associate a characteristic triplet to it consisting of strict random measures (cf.
Definition 2.1(3)) that are jointly o-additive in space and time. Moreover, we will determine
the characteristics of stochastic integral processes, which is more involved than in the temporal
case, since a concept is needed to merge space and time appropriately. Having achieved this step,
integrability conditions in the same fashion as in [12, 46] can be given for space-time integrals.
We will also compare our results to those of [46], [51] and [27].
Applications of our theoretical results will be chosen from the class of ambit processes

Y(t,z) := / h(t,s;xz,y)o(s,y) M(ds,dy), teR,ze R, (1.3)
RxR4

which have been suggested for modelling physical space-time phenomena like turbulence, see
e.g. [9]. In the case, where 0 =1 and M is a Lévy basis (see Remark 4.4), such multiparameter
integrals have already been investigated by many authors: for instance, [17, 36, 47] discuss path
properties of the resulting process Y, while [23, 40] address the extremal behaviour of Y'; mixing
conditions are examined in [25].

As a broad model class, the applications of ambit processes go far beyond turbulence mod-
elling. For example, [43] describes the movement of relativistic quantum particles by equations of
the form (1.3). Moreover, solutions to stochastic partial differential equations driven by random
noise are often of the form (1.3), cf. [9, 51] and Section 5.2. Furthermore, stochastic processes like
forward contracts in bond and electricity markets based on a Heath-Jarrow-Morten approach
also rely on a spatial structure, cf. [10, 2]. Other applications include brain imaging [30] and
tumor growth [5, 29].
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The concept of an ambit process has also been successfully invoked to define superpositions
of stochastic processes like Ornstein-Uhlenbeck processes or, more generally, continuous-time
ARMA (CARMA) processes. In these models, only integrals of deterministic integrands w.r.t.
Lévy bases are involved, so the integration theory of [46] is sufficient. Our integrability conditions,
however, allow for a volatility modulation of the noise, which generates a greater model flexibility.
Moreover, in [13] ambit processes have been used to define superpositions of continuous-time
GARCH (COGARCH) processes. In its simplest case superposition leads to multi-factor models,
economically and statistically necessary extensions of the one-factor models; cf. [28]. As we shall
see, the supCOGARCH model again needs the integrability criteria we have developed since for
this model the volatility ¢ and the random measure M are not independent.

Our paper is organized as follows. Section 2 introduces the notation and gives a summary
on the concept of a random measure and its stochastic integration theory. Section 3 derives a
canonical decomposition for random measures as known for semimartingales and calculates the
characteristic triplet of stochastic integral processes. Section 4 presents integrability conditions
in terms of the characteristics from Section 3. Section 5 is dedicated to examples to highlight
our results.

2 Preliminaries

Let (2, F, (Fi)ter, P) be a stochastic basis satisfying the usual assumptions of completeness
and right-continuity. Denote the base space by Q := Q x R and the optional (resp. predictable)
o-field on Q by O (resp. P). Furthermore, fix some Lusin space E, equipped with its Borel
o-field €. Using the abbreviations Q ;= QxR x E and O := O ®& (resp. P :=P ®E), we call a
function H: Q — R optional (resp. predictable) if it is O-measurable (resp. ﬁ—measurable).
We will often use the symbols © and P (resp. O and P) also for the collection of optional and
predictable functions from Q (resp. Q) to R. We refer to [27, Chap. I and II] for all notions not
explicitly explained.

Some further notational conventions: we write A; := AN (2 x (—oo,t]) for A € P, and
Ay = AN (Q x (—00,t] x E) for A € P. By(R?%) denotes the collection of bounded Borel sets in
RY. Next, if p1 is a signed measure and X a finite variation process, we write |u| and | X| for the
variation of p and the variation process of X, respectively. Finally, we equip LP = LP(Q, F, P),
p € [0,00), with the topology induced by

X[l == EIXP)P, p= 1, X, =EIXP], 0<p<1, [Xllo:=E[X|A1]

for X € LP. Among several definitions of a random measure in the literature, the following
two are the most frequent ones: in essence, a random measure is either a random variable whose
realizations are measures on some measurable space (e.g. [27, 31]) or it is a o-additive set function
with values in the space LP (e.g. [15, 33, 39, 46, 51]). Our terminology is as follows:

Definition 2.1 Let (O)ren be a sequence of sets in P with Oy, 1+ Q. Set P := Up2, 75|Ok’
which is the collection of all sets A € P such that A C Oy, for some k € N.
(1) An LP-random measure on R x E is a mapping M : Py; — LP satisfying:

(a) M(0) =0 aus.,

(b) For every sequence (4;)ien of pairwise disjoint sets in Py with |J°, A; € Pas we have

i=1 i=1
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(c) For all A € Py with A C € for some t € R, the random variable M(A) is Fi-
measurable.

(d) For all A € P, t € R and F € Fp, we have

M(AN(F x (t,00) x E)) =1pM(AN(Q x (t,00) x E)) as.

(2) If p = 0, we only say random measure; if Oy, can be chosen as (2 for all k € N, M is
called a finite random measure; and finally, if E consists of only one point, M is called a
null-spatial random measure.

(3) A strict random measure is a signed transition kernel p(w,dt,dz) from (2, F) to (R x
E,B(R) ® &) with the following properties:

(a) There is a strictly positive function V' € P such that Jox g V(& 2) |p|(dt,dz) € L
(b) For O-measurable functions W such that W/V is bounded, the process

W o g := / W(s,z) p(ds,dz), teR,
(—oo,t]xXE

is optional.

Remark 2.2

(1) If we can choose Oy = Q2 x O}, with O}, T R x E, one popular choice for (F;)¢cr is the natural
filtration (FM),cr of M which is the smallest filtration satisfying the usual assumptions
such that for all t € R we have M (2 x B) € FM if B C ((—o0,t] x E)NO,, with some k € N.

(2) If u is a positive transition kernel in Definition 2.1(3), p is an optional P-o-finite random
measure in the sense of [27, Chap. II], where also the predictable compensator of a strict
random measure is defined. Obviously, a strict random measure is a random measure. For
more details on that, see also [15, Ex. 5 and 6]. O

Stochastic integration theory in space-time w.r.t. LP-random measures is discussed in [15],
see also [14]. The special case of L*-integration theory is also discussed in [21, 51]. Let us recall
the details involved: a simple integrand is a function 2 — R of the form

T
S::ZailAi, reN,a; € R, A; € Py, (2.1)
i=1

for which the stochastic integral w.r.t. M is canonically defined as
T
/SdM = aM(A). (2:2)
i=1

Now consider the collection S& of positive functions @ — R which are the pointwise supremum

of simple integrands and define the Daniell mean || - ||]]\3/[7p: R [0, 00| by

o |K|5, = sup H/SdM ,if K € 8], and
T SeSmlSI<K P
o HHHI]\%}, = inf HK||]]?/[7P for arbitrary functions H: Q — R.

KeS!, |H|<K
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An arbitrary function H: Q — R is called integrable w.r.t. M if there is a sequence of simple
integrands (Sp)nen such that ||H — Sn||]]?4’p — 0 as n — oo. Then the stochastic integral of H
w.r.t. M defined by

/HdM = H(t,x) M(dt,dz) := lim [ S, dM (2.3)
RxE n—oo
exists in LP and does not depend on the choice of (S, )nen. The collection of integrable functions

is denoted by L'?(M) and can be characterized as follows [14, Thm. 3.4.10 and 3.2.24]:

Theorem 2.3. Let F1P(M) be the collection of functions H with HTHHRLP — 0 asr — 0. If we
identify two functions coinciding up to a set whose indicator function has Daniell mean 0, then

LYP(M) = Pn FY2(M). (2.4)

Moreover, the following dominated convergence theorem holds: Let (Hy,)nen be a sequence in
LYP(M) converging pointwise to some limit H. If there exists some function F € FYP(M) with
|Hy| < F for each n € N, both H and H,, are integrable with ||H — HnH?/[,p — 0 asn — oo and

n—o0

/ HdM = lim | HydM in L. (DCT)

Given a predictable function H € P, we can obviously define a new random measure H.M
in the following way:

K e LY(H.M):= KH ¢ LY(M), /Kd(H.M) = /KH dM. (2.5)

rJ;his i{ldeed defines a random measure provided there exists a sequence (Ok)keN C P with
Op T Qand 15 € LYO(H.M) for all k& € N. But this construction does not extend the class

L(M) of integrable functions w.r.t. M. However, as shown in [15, §3], L'*(M) can indeed be
extended further in the following way. Given an LP-random measure M, fix some P-measurable
function H such that:

There exists a predictable process K: Q — R, K > 0, such that KH € L'?(M). (2.6)

lyow set O = {K > k7!} for k € N,_ which obviously defines predictable sets increasing to
Q, and then Py := {A € P: A C Oy for some k € N}. Then we define a new null-spatial
LP-random measure by

H-M: Py — LP,(H - M)(A) := /1AHdM.

The following is known from [15], see also [12, Thm. 2.4]:
(1) If H € LY»(M), H - M is a finite LP-random measure and [1d(H - M) = [ HdM.

(2) If G: Q — Ris a predictable process, we have G € L'"?(H - M) if and only if |[rGH||as, — 0
as r — 0, where for every P-measurable function we set

[Hl[ppi= sup (2.7)
F: Q—R predictable,

|FI<1,FHeLY?(M)

’/FHdM

p

In this case we have [Gd(H - M) = [ GHdM.
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Therefore, it is reasonable to extend the set of integrable functions w.r.t. M from L?(M) to

r—0

IP(M) = {H € P: H satisfies (2.6) and ||rH|pr, —> 0} (2.8)

by setting
/HdM =(H -M)(Q), HelL’(M).

We remark that in the null-spatial case L'Y(M) = L°(M). But in general, the inclusion
LY?(M) C LP(M) is strict, see [15, §3b] and Example 4.7 below.

Let us also remark that [20] introduces a stochastic integral for a Gaussian random measure
where the integrands are allowed to be distribution-valued. It is still an open question whether
it is possible to extend this to the general setting of LP-random measures, in particular if p < 2;
we do not pursue this direction in the present paper.

In the sequel we will frequently use the following fact [12, Ex. 4.1]: If M is a finite random
measure, the process (M (Qt))teR has a cadlag modification, which is then a semimartingale up to
infinity w.r.t. to the underlying filtration (see [12, Section 3| for a definition). This semimartingale
will be also be denoted by M = (M;);cr.

3 Predictable characteristics of random measures
Let us introduce three important subclasses of random measures:

Definition 3.1 Let M be a random measure where Oy = O, x Ej, with O 1 Q and Ej, 1 E.
Set Ey = Uzozl g‘Ek

(1) M has different times of discontinuity if for all k¥ € N and disjoint sets Uy, Us € &y the
semimartingales 1o, xu, - M, © = 1,2, a.s. never jump at the same time.

(2) M is called orthogonal if for all pairs of disjoint sets Uy, Uz € &y and k € N we have
[(1Ok><U1 - M)°, (]‘OkXU2 - M)°] = 0.

(3) M has no fixed time of discontinuity if for all U € &y, £ € N and ¢ € R we have
A(loyxv - M)y =0 ass.

In the next theorem we prove a canonical decomposition for random measures with different
times of discontinuity generalizing the results of [27] and [12]. Without this extra assumption on
the random measure, only non-explicit results such as [15, Thm. 4.21] or results for p > 2 as in [35,
Thm. 1] are known. We also remark that the integrability conditions in Theorem 4.1 will be stated
in terms of this decomposition. Some notation beforehand: we write By(R) for the collection of
Borel sets on R which are bounded away from 0. Furthermore, if X is a semimartingale up
to infinity, we write B(X) for its first characteristic, [X] for its quadratic variation, X¢ for
its continuous part (all of them starting at —oo with 0), uX for its jump measure and v
for its predictable compensator. Finally, if U € £, M|y denotes the random measure given by

M|y (A) = M(AN (Q x U)) for A € Pyy.
Theorem 3.2. Let M have different times of discontinuity.
(1) The mappings

B(A) :==B(14- M), M(A):=(1a-M)S, A€ Py,

(oo}
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are random measures, the mapping
C(A;B) :==[(1a-M),(1p- M)%)se, A€ Py,

is a random bimeasure (i.e. a random measure in both arquments when the other one is

fized) and
A V) = MR < V), v(A, V) =M MR V), AecPy,VebBy(R), (3.1)

can be extended to random measures on Py @ By(R). Moreover, (B, C,v) can be chosen as
predictable strict random (bi-)measures and form the characteristic triplet of M.

(2) Let A € Py and T be a truncation function (i.e. a bounded function with T(y) =y in a
neighbourhood of 0). Then 14(t,x)(y —7(y)) (resp. 1a(t,z)7(y)) is integrable w.r.t. p (resp.
w—v), and we have

MMFBMHWNM+AERMWMWJ@MWAWM+

+/ La(t,2)7(y) (1 — v)(dt, de, dy), (3.2)
RxExR

(3) There are a positive predictable strict random measure A(w,dt,dz), a P-measurable function
b(w,t,z) and a transition kernel K(w,t,z,dy) from (2,P) to (R,B(R)) such that for a.e.
w e N

B(w,dt,dz) = b(w, t,x) A(w,dt,dz), v(w,dt,dz,dy) = K(w,t,z,dy) A(w,dt,dz).

For the proof of Theorem 3.2 let us recall the semimartingale topology of [22] on the space
SM of semimartingales up to infinity, which is induced by

/ H,dX;|| , X eSM.

0

[ X|lsm = sup
\H|<1,HEP

The following results are known:
Lemma 3.3.

(1) Let (X™)peny € SM and (B™,C™,v"™) denote the semimartingale characteristics of X™. If
X" — 0 in SM, then each of the following semimartingale sequences converges to 0 in SM
as well: Bn: Xc7n7 Cn) [Xn]} (y - T(y)) * lu’n and T(y) * ('un - Vn)'

(2) If W(w,t,y) is a positive bounded predictable function, then W x u™ — 0 in probability if
and only if W xv™ — 0 in probability. Similarly, W s u™ < oo a.s. if and only if W xv™ < 00
a.s.

(8) The collection of predictable finite variation processes is closed under the semimartingale
topology.

For the first part of this lemma, see [12, Thm. 4.10] and [22, p. 276]. The second part is
taken from [12, Lemmas 4.8 and 4.12]. The third assertion is proved in [38, Thm. IV.7].

Proof of Theorem 3.2. Let k& € N and consider the set function (S,U) — B(S x U) from the
semiring H := P|o, X &|g, to LY. Obviously, it is finitely additive in each component: for fixed
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U, additivity in time holds by the definition of B, while for fixed S, additivity in space is due
to the assumption of different times of discontinuity. By a straightforward induction argument
this implies that B is also finitely additive jointly in space and time. Next, let

N
R(H) = { U Cn: N € N,C,, € H pairwise disjoint}
n=1

denote the ring generated by H. Setting B(UN_, C,,) := 2N B(C,,) one obtains a well-defined
extension of B to R(#), which is consistent with the original definition of B and still finitely
additive. Furthermore, since R(#) contains Oy, X Ej, we can further extend B to a measure on
o(H) = 75|O~k using [34, Thm. B.1.1]. We only have to show the implication

(Ap)nen € R(H) with limsup A, =@ = lim B(4,) =0 in L°. (3.3)

n—o0 n—00

In fact, under the assumption on the left-hand side of (3.3), 14, - M — 0 in SM:

114, - Mllsm = sup /Hd(lAn'M> = sup /HlAndM
|H|<1,HEP 0 |HI<1,HeP 0
< s | [san] =L lR =0
SeSm,|S1<14, 0

by (DCT) with 1o, x, as dominating function. Using Lemma 3.3(1), Equation (3.3) follows.

This extension still coincides with the definition of B in Theorem 3.2: From the construction
given in the proof of [34, Thm. B.1.1], we know that given A € 75‘@19’ there is a sequence of sets
(An)nen in R(H) with limsup((A\ 4,) U (A, \ 4)) = 0 and B(A,) — B(A) in L as n — oc.
As above we obtain 14, - M — 14 - M in SM, which implies the assertion. And of course, B is
unique and B(A) does not depend on the choice of k € N with A C Oy.

Finally, we prove that B corresponds to a predictable strict random measure. By [15,
Thm. 4.10] it suffices to show that for H € L'Y(B) the semimartingale H - B is predictable
and has finite variation on bounded intervals. If H € Sy, this follows from linearity and the fact
that the first characteristic of a semimartingale up to infinity is a predictable finite variation
process. In the general case choose a sequence (Sp)npeny € Sy with S, — H pointwise and
|Sn| < H for allm € N. As n — oo, we have S,,- B — H - B in SM by (DCT). By Lemma 3.3(3)
we conclude that also H - B is a predictable finite variation process.

For C' we fix one argument and apply the same procedure to the other argument; for M€
we refer to [15, Thm. 4.13]. Let us proceed to p and v, where in both cases we first fix some
V € By(R) with inf{|z|: z € V} > € > 0 and € < 1. In order to apply the same construction
scheme as for B, only the proof of (3.3) is different for y and v. To this end, let (Ay)nen be as
on the left-hand side of (3.3), that is, 14, - M — 0 in SM. Now define 7(y) = (yAe) V (—¢) and
choose K > 1 such that |7(y)| < K(y? A1) for |y| > e. Then

1y (y), - 1a, -M - ~ la, M
|p(An,V)|O:‘ YD )l ™| < v @lew)] |
()] 0 0

< K2 D e | < K, Ml 0

where the last step follows from Lemma 3.3(1). Part (2) of the same lemma yields that also
v(An, V) — 0in L? as n — oo. Consequently, [15, Thm. 4.12] shows that u(-, V) and v(-, V) can
be chosen as positive strict random measures. Observing that u(A,-) (resp. v(4,-)) is clearly
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also a positive (and predictable) strict random measure for given A € Py, p (resp. v) can be
extended to a positive (and predictable) strict random measure on the product Py; @ By(R) (see
[46, Prop. 2.4]). Of course, v is the predictable compensator of p.

The integrability of 14 (¢, z)(y — 7(y)) (resp. 1a(t,z)7(y)) w.r.t. u (resp. p—v) is an obvious
consequence of (3.1) and the corresponding statements in the null-spatial case. The canonical
decomposition of M follows since both sides of (3.2) are random measures coinciding on H.

Finally, part (3) of Theorem 3.2 can be proved analogously to [27, Prop. I1.2.9]. O

Remark 3.4 If M is additionally orthogonal, we have C(A; B) = C(A N B; AN B) for all
A, B € Pys. Consequently, we may identify C' with C(A) := [(14- M) for A € Pys. Of course,
C can then be chosen as a predictable strict random measure. O

Next we calculate the characteristics introduced in Theorem 3.2 in two concrete situations:
first, for the random measure of a stochastic integral process, and second, for a random mea-
sure under an absolutely continuous change of measure. Although the results in both cases are
comparable with the purely temporal setting, the first task turns out to be the more difficult
one. Moreover, the characteristics for stochastic integral processes are of particular importance
for our integrability conditions in Section 4.

Beforehand, we need some bimeasure theory: it is well-known that bimeasures cannot be
extended to measures on the product o-field in general and that integration theory w.r.t. bimea-
sures differs from integration theory w.r.t. measures. Following [18], let two measurable spaces
(4, F;), i = 1,2, and a bimeasure 3: F; X Fo — R be given. We call a pair (f1, f2) of F;-
measurable functions f;, i = 1,2, strictly g-integrable if

(1) f1 (resp. f2) is integrable w.r.t. 5(+; B) for all B € Fy (resp. S(4;-) for all A € Fy),

(2) fo is integrable w.r.t. the measure B — le fi(w1) B(dwy; B) and fi is integrable w.r.t. the
measure A — [o, fa(ws) B(A; dwo),

(3) for all A € Fy and B € F, the following integrals are equal:

/Afl(wl) (/B fz(wz)ﬁ(dwl;dw2)> :/Bf2(w2) (Af1(w1)5(dw1;dw2)>. (3.4)

The strict S-integral of (fi; f2) on (A; B), denoted by f(A;B)(fl; f2)dp, is then defined as the
common value (3.4).

The next theorem determines the characteristics of stochastic integral processes, which is
[27, Prop. IX.5.3] in the null-spatial case.

Theorem 3.5. Let M be a random measure with different times of discontinuity and H € P

satisfy (2.6) with some K > 0. Then the null-spatial random measure H - M has characteristics
(BHM CHM ) H-MY gigen, by

BT (4) = (H'B)(A)+/ La@)[r(H(t, x)y) — H(t, 2)7(y)]v(dt, dz, dy),  (3.5)

RxExR
CHM(A) = / K;2d </ (HK; HK) dC) : (3.6)
R (AtXE;AtXE)
W(t,y)« 5™ =W (t, H(t,z)y) v (3.7)

for all A € Py.py and P @ B(R)-measurable functions W such that W (t,y) x vHM ezists.
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Moreover, if in addition M is orthogonal, then
CcHMdt) = / H%(t,2) C(dt, dx). (3.8)
E

Proof. The second part of this theorem is clear as soon as we have proved the first part.
Since characteristics are defined locally, we may assume that H € L“*(M). We first consider
the continuous part C7M: to this end, let (H,),en be a sequence of simple integrands with
|H,| < |H]| for all n € N and H,, — H pointwise. Since for simple integrands the claim follows
directly from the definition of C' and the bimeasure integral, we would like to use the (DCT) and
Lemma 3.3(1) on the one hand and the dominated convergence theorem for bimeasure integrals
(see [18, Cor. 2.9]) on the other hand to obtain the result. In order to do so, we only have to
show that (H; H) is strictly C-integrable, which means by the symmetry of C' the following two
points: first, that H is integrable w.r.t. the measure A — C(A4;B) = [(14- M)°, (15 - M )% for
all B € Py, and second, that H is integrable w.r.t. the measure A — [ H(t,z)dC(A;dt,dz) =
[(La- M), (H - M) oo

Let G be 1p or H. From [35], Theorem 2 and its Corollary, we know that there exists a
probability measure Q equivalent to P such that M is an L?(Q)-random measure with G, H €
LY2(M; Q). Since the bounded sets in L(P) are exactly the bounded sets in L°(Q), convergence
in ||- H?Lo; p is equivalent to convergence in ||- H]]?LO;Q. Similarly, stochastic integrals and predictable
quadratic covariation remain unchanged under @ (cf. [14, Prop. 3.6.20] and [27, Thm. II1.3.13)).
Consequently, if we write y(A) :=[1a - M, G- M€ for A € P, it suffices to show that

sup H/Sdfy
SESAI,‘S‘§|TH|

Indeed, using Fefferman’s inequality (cf. [14, Thm. 4.2.7]), we can find a constant R > 0, which
only depends on G, such that

—0 asr—0.

= swp |5 M) (G- M)

]
LO(Q)  SeSn,|SI<|rH]| OOHLO(Q)

sup 1S M) (G MYl oy SR sup Bg[[(S - M)a]

SeS,|S|L|rH| SESn,|SILS|rH|

=R swp (- M)&llz@) = RIFH|Rpe g — 0
SeSuIS|<|rH]

as 7 — 0, which finishes the proof for CHM .
For BHM and vH#M | we first take some D € P ® By(R) and claim that

1p(s,y) « pBM =1p(s, H(s, z)y) * p. (3.9)

This identity immediately extends to finite linear combinations of such indicators and thus,
by (DCT), also to all functions W (w,t,y) for which W % "M exists. By the definition of the
predictable compensator, this statement also passes to the case where y is replaced by v.

In order to prove (3.9), first observe that the jump process of the semimartingale H - M up
to infinity is given by A(H - M), = (H - M)(Q2 x {t} x E). Furthermore, we can assume that
D does not contain any points in € x {0}. Hence, in the case where H = 14 with A € Par, we
have for all t € R

1

* N{IM = 1D(Say) * :u‘tA.M = ]-D(Say)lA(Sax) * Ut = 1D(87 1A(8,.’E)y) * -

1D(S, y)

Now a similar calculation yields that (3.9) remains true for all functions H € Sys. Finally, let
H ¢ LYY(M). By decomposing H = H* — H~ into its positive and negative part, we may
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assume that H > 0 and choose a sequence (H,,),en of simple functions with H,, T H as n — oo.
As we have already seen in the proof of Theorem 3.2, we have 1p (s, y)*ufr M — 1p(s,y)*putM
in SM. On the other hand, if D is of the form R x (a,b] with R € P and (a,b] C (0,00) or of
the form R X [a,b) with [a,b) C (—00,0), then 1p(w,s, Hy(w,s,x)y) — 1p(w, s, H(w,s,x)y) as
n — oo for every (w,s,z,y) € Q x R, which shows that (3.9) holds up to indistinguishability.
For general D, use Dynkin’s m-A-lemma [16, Thm. 3.2].

Finally, we compute BY M The results up to now yield that for all t € R,

(H-M)e = (y—7() = p ™ = (H - B)e + (H - M)y + H(s,2)(y = 7(y)) * pe+
+ H(s, x)m(y)  (p—v)e — [H(s, x)y — 7(H (s, 2)y)] * pe-

By definition, B¥*M is the finite variation part in the canonical decomposition of this special
semimartingale, which exactly equals H - B + [7(H (t,x)y) — H(t,z)7(y)] * v. O

Finally, we show a Girsanov-type theorem comparable to [27, Thm. III.3.24] for semimartin-
gales. First, let us introduce some notation. We consider another probability measure P’ on
(Q, F, (Fi)ter) such that P/ := P'|z, is absolutely continuous w.r.t. P, := P|z, for all t € R.
Then denote by Z the unique P-martingale such that Z > 0 identically and Z; is a version of
the Radon-Nikodym derivative dP}/dP; for all t € R, cf. [27, Thm. IIL.3.4].

Now let M be a random measure with different times of discontinuity under the probability
measure P with characteristics (B, C, v) w.r.t. the truncation function 7. We modify the sequence
(Or)ken of Definition 2.1(1) by setting O} := O, N (Q x (—k, k] x E) for k € N and P}, :=
Urey 75’02' Next, we denote the jump measure of M by p and set Mi(W) = Ep[W % uoo] for
all non-negative F ® B(R) ® £ ® B(R)-measurable functions W. Furthermore, for every such W,
there exists an M 5 -a.e. unique P ® B(R)-measurable function M 5 (W|P @ B(R)) such that

P _ afPasP > 5
M, (WU) =M, (M, (W|P®B(R))U) for all P ® B(R)-measurable U > 0.
Finally, we set

Y(t,:t,y) : Mf(Z/Z—l{Z7>O}’7‘5®B(R))(tvx7y)7 teR,z e B,y eR,
C%(A):=[(Z"12)°,(14- M), AcP).

In the last line, the stochastic integral process Z~! - Z is meant to start at to, where to € R is
chosen such that (14 - M)® =0 on (—oo,tg]. Then C%#(A) is well-defined by [27, Prop. 111.3.5a]
and does not depend on the choice of ty. Moreover, as in Theorem 3.2, one shows that C? can
be chosen as a positive predictable strict random measure.

The following theorem extends [27, Thm. I11.3.24] to the space-time framework.

Theorem 3.6. Under P', M is also a random measure with different times of discontinuity

(w.r.t. (O))ken). Its P'-characteristics (B',C’, V') w.r.t. T are versions of
B'(dt,dx) := B(dt,dz) + CZ(dt,dz) + 7(y)(Y (t,z,y) — 1) v(dt,dz, dy),

C'(dt,dx) := C(dt,dx),
V(dt,dz,dy) =Y (t,z,y) v(dt,dz, dy).

Proof. Since each set in P}, is F;-measurable for some ¢ € R, properties (a), (b) and (d) of
Definition 2.1(1) still hold under P’. Since (c) does not depend on the underlying probability
measure, M is also a random measure under P. To show that M still has different times of
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discontinuity under P’, it suffices to notice the following: using the notation of Definition 3.1,
the event that 1o, 7, - M and 1o, xv, - M have a common jump in R is the union over n € N of the
events that they have a common jump in (—oo, n]. Since these latter events are F,-measurable,
their P’-probability is 0, as desired. Finally, the characteristics under P’ can be derived, up to
obvious changes, exactly as in [27, Thm. I11.3.24]. O

4 An integrability criterion

The canonical decomposition of M in Theorem 3.2 together with Theorem 3.5 enables us to
reformulate (2.8) in terms of conditions only depending on the characteristics of M. This result
extends the null-spatial case as found in [27, Thm. I11.6.30], [19, Thm. 4.5], [12, Thm. 4.5] or
[34, Thm. 9.4.1]. It also generalizes the results of [46, Thm. 2.7] to predictable integrands and
also to random measures which are not necessarily Lévy bases. Our proof mimics the approach
in [12, Thm. 4.5] and takes care of the additional spatial structure.

Theorem 4.1. Let M be a random measure with different times of discontinuity whose charac-
teristics w.r.t. some truncation function T are given by Theorem 3.2. Furthermore, let H € P
satisfy (2.6). Then H € L°(M) if and only if each of the following conditions is satisfied a.s.:

/RXE

[T(H(t,z)y) — H(t,x)1(y)] K(t,x, dy)‘ A(dt,dz) < oo, (4.1)

H(t, 2)b(t,z) + /

R

/K d (/ (HK; HK) dC) < 00, (4.2)
((—00,t] X B;(—00,t] x )

/ / (LA (H(t,2)y)?) K(t,z,dy) A(dt,dz) < <. (4.3)
RxE

If M is additionally orthogonal, the spaces L°(M) and LY°(M) are equal and condition (4.2) is
equivalent to

H%(t,2) C(dt,dz) < oc. (4.4)
RxFE

The following lemma is a straightforward extension of [46, Lemma 2.8]. We omit its proof:

Lemma 4.2. Fort e R, x € E and a € R define

U(t,x,a) = sup U(t,z,ca).
—1<e<1

U(t,z,a) :=

ab(t,x) + /R (T(ay) — aT(y)) K(t,z,dy)|,

Then there exists a constant & > 0 such that

U(t,z,a) < U(t,z,a) + /@/ (1A (ay)2) K(t,z,dy).
R
Proof of Theorem 4.1. We first prove that H € LY(M) implies (4.1)-(4.3). Since H - M is a
semimartingale up to infinity, B7"™(R) and C"™(R) exist. Thus, Theorem 3.5 gives the first
two conditions. For the last condition observe that (1 A y?) * vZM < oo as. is equivalent to
(1 Ay?) * pllM < 0o a.s., which obviously holds since H - M is a semimartingale up to infinity.
This completes the first direction of the proof.
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For the converse statement, we define D := {G € P: |G| < 1,GH € L*°(M)}. By (2.8) we
have to show that the set { [ GHdM: G € D} is bounded in L° (i.e. bounded in probability)
whenever H satisfies (4.1)-(4.3). By Theorem 3.5,

/GH dM = /GH dAMC + 7(GHy) * (1t — V) oo + (GHy — 7(GHY)) * jise + BETM(R).

We consider each part of this formula separately and show that each of the sets

{BCHEM(R): G € D}, (4.5)

{[ GHdM*®: G € D}, (4.6)

{T1(GHy) * (L — V)00 : G € D}, (4.7)
{(GHy — 71(GHY)) * oo : G € D} (4.8)

is bounded in probability.
If G € D and k > 0 denotes the constant in Lemma 4.2, (4.1) and (4.3) imply

/ Ut 2, GH (L, 7)) A(dt, dz) < / O (t, 2, GH (L, 7)) A(dt, de)
RxFE RxFE

< Ul(t,z, H(t,z)) A(dt,dz)
RxE

< / U(t,xz,H(t,x)) A(dt,dx) + li/ / (LA (H(t,z)y)) K(t, z,dy) A(dt,dz) < oo
RxE RxE JR
a.s., which shows that (4.5) is bounded in probability.

Next consider (4.6) and fix some G € D for a moment. Using Lenglart’s inequality [27,
Lemma 1.3.30a], we have for all ¢, n > 0

PH/GHdMC

> e} <P [sup](GH MO ()| > €
teR

=P [Sup (GH - M®)(Q)]* > 62} < 6% + P[[GH - M%), > 1]
teR
— L L P[GPK 2. [KH - Moo > 1] < L+ P[K2-[KH - M > 1.
€ €

Now (4.2) allows us to make the quantity on the left-hand side arbitrarily small, independently
of G € D, by first choosing 1 > 0 and then € > 0 large enough.

For (4.7), we use the abbreviation W (t,z,y) = 7(G+H (t,x)y). Lenglart’s inequality again
yields

P[W # (11— v)o| = ] < P |sup |[W s (u — v),* = | < ]

teR Sa2t P{(Wx(p—v))eo >n] (49)

for every €, n > 0. Furthermore, by Theorem 3.5 and [27, Prop. I1.2.17] we have

(W (1= v))oo = (r(y) * (uH =) o < 7(y)? % vee,

which is finite by (4.3) yielding the boundedness of (4.7).
Next choose r, € > 0 such that f(y) := r|y|l{y> satisfies [y — 7(y)| < f(y) for all y € R.
Obviously, f is symmetric and increasing on R so that

|(GHy — 7(GHy)) * pio| < f(GHY) * pioo < f(HY) * fico.
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Now the third condition and Lemma 3.3(2) imply that

> AN ga@an g < AAY) s« pli™ = (1A (H(t,2)y)?) * proo < 00
teR

a.s. such that {|A(H - M)| > €} only happens for finitely many time points. Hence

FUHY) * poo = f(y) + pE™ =1 " |AH - M)y 1 agrar), e < 0
teR

a.s., which implies that the set in (4.8) is also bounded in probability.
Finally, in the case where M is also orthogonal, we show that (4.1),(4.4) and (4.3) imply
H € LY(M). By Theorem 2.3 and the fact that for predictable functions H

= sup H/GH dM
0 GeP,|GI<1,GHeLY“O(M)

we have to show that the set { [GHdM: G € D'} is bounded in L%, where D’ consists of all
functions G € P with |G| <1 and GH € L'*(M). Obviously, the previously considered set
D is a subset of D'. Intending to verify (4.5)-(4.8) with G taken from D’, we observe that all
calculations remain valid except those for (4.6). For (4.6) we argument as follows: for all €, n > 0,
Lenglart’s inequality implies

)

1HB =  sup H [san
0

SeSn,|S|L|H]|

PH/GHdMC

> } <p [i’éﬁ (GH - MY () = 62}

572+PWGH.Mmm2n}:Z+P[ G2(t,x)H*(t,x) C(dt, dzx) > 1
€ € RxE

<1 .p

. ]{%uaﬁcxdudx)274.

|: RxE

This finishes the proof of Theorem 4.1. O

The remaining part of this section illustrates Theorem 4.1 by a series of remarks, examples
and useful extensions.

Remark 4.3 If M has summable jumps, which means that each of the semimartingales
(M(Q¢ N Op))icr, k € N, has summable jumps over finite intervals, it is often convenient to
construct the characteristics w.r.t. 7 = 0, which is not a proper truncation function. Then one
would like to use 7 =0 in (4.1) and replace (4.3) by

/ / (LA|H(t,z)y|) K(t, z,dy) A(dt,dz) < co. (4.10)
RxE JR

We show that (4.1) with 7 = 0, (4.2) and (4.10) are together sufficient conditions for H € L°(M).
First note that we can choose &£ = 0 in Lemma 4.2(2) since 7 is identical 0 and therefore U = U.
So the calculations done for (4.5) remain valid. Moreover, (4.6) does not depend on 7 and the
boundedness of (4.7) becomes trivial. For (4.8) observe that

IGHy| * pos < [Hyl| * pioo = |yl pfE™ = yl1gy1<1y * p5M + [yllgy sy + 2. (411)
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Now (4.10) implies by Lemma 3.3(2) that a.s.,

Y11 yi<ay * ™ 4 Lyysay + plo™ = /R E/R (LA[H(t,2)y|) K (t,z,dy) A(dt,dz) < oo.
X

As a result, on the right-hand side of (4.11), the first summand converges a.s. and the second
one is in fact just a finite sum a.s.

The converse statement is not true, already in the null-spatial case: let (N¢):>0 be a standard
Poisson process and N, = N, — t, t > 0, its compensation. Set H; := (1 +1¢)~! for ¢ > 0. Then
H € L°(N) as one can see from (4.1)-(4.3) with the proper truncation function 7(y) = Ylyy<1y;
but [ Hy dt = oo violating both (4.1) with 7 = 0 and (4.10).

However, if M is a positive (or negative) random measure, that is, M(A) is a positive (or
negative) random variable for all A € Py, then C' = 0 necessarily and (4.1) with 7 = 0 and
(4.10) also become necessary conditions for H € LY(M) = LYO(M); cf. [15, Ex. 5, p. 7, and
Thm. 4.12]. O

Next we compare our results and techniques to the standard literature:

Remark 4.4 (Lévy bases [46]) Lévy bases are originally called infinitely divisible inde-
pendently scattered random measures in [46]. They are the space-time analogues of processes
with independent increments and have attracted interest in several applications in the last few
years, see Section 5 for some examples. The precise definition is as follows: Assume that we
have O}, = Q x O}, in the notation of Definition 2.1, where (O} )ken is a sequence increasing to
R x E. Set S := Up2, B(RHd)]O;. Then a Lévy basis A is a random measure on R x E with
the following additional properties:

(1) If (Ap)nen is a sequence of pairwise disjoint sets in S, then (A(2 x A,,))nen are independent
random variables.

(2) Forall A e S, A(©2 x A) has an infinitely divisible distribution.

Note that we have altered the original definition of [46]: in order to perform stochastic
integration, we need to single out one coordinate to be time and introduce a filtration based
definition of the integrator A. For notational convenience, we will write A(A) instead of A(£2x A)
in the following. As shown in [46, Prop. 2.1 and Lemma 2.3], A induces a characteristic triplet
(B,C,v) w.r.t. some truncation function 7 via the Lévy-Khintchine formula:

. U2 i
E[eAA)] — exp (iuB(A) - oM+ /R (e — 1~ fur(y)) v(4, dy)) , AcSucR

It is natural to ask how this notion of characteristics compares with Theorem 3.2. Obviously,
A is an orthogonal random measure. In order that A has different times of discontinuity, it
suffices by independence to assume that A has no fixed times of discontinuity. In this case,
recalling the construction in the proof of Theorem 3.2 and using [49, Thm. 3.2] together with
[27, Thm. I1.4.15], one readily sees that the two different definitions of characteristics agree in the
natural filtration of A. In particular, the canonical decomposition of A determines its Lévy-Ito
decomposition as derived in [44].

Consequently, the integrability criteria obtained in Theorem 4.1 extend the corresponding
result of [46, Thm. 2.7] for deterministic functions (or, as used in [9], for integrands which are
independent of A) to allow for predictable integrands. |
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Remark 4.5 (Martingale measures [51]) In [51] a stochastic integration theory for pre-
dictable integrands is developed with so-called worthy martingale measures as integrators. The
concept of worthiness is needed since a martingale measure in Walsh’s sense does not guarantee
that it is a random measure in the sense of Definition 2.1. What is missing is, loosely speaking,
a joint o-additivity condition in space and time; see also the example in [51, pp. 305ff.]. The
worthiness of a martingale measure, i.e. the existence of a dominating (o-additive) measure,
turns it into a random measure.

In essence, the integration theory presented in [51] for worthy martingale measures is an L2-
theory similar to [21, 26], where the extension from simple to general integrands is governed by
a dominating measure. The latter also determines whether a predictable function is integrable
or not in terms of a square-integrability condition; see [51, p. 292]. We see the main advantages
of the L2-theory as follows: it does not require the martingale measure to have different times
of discontinuity, works with fairly easy integrability conditions and produces stochastic inte-
grals again belonging to L?. However, many interesting integrators (e.g. stable noises) are not
L?-random measures. Moreover, even if the integrator M is an L?-random measure, the class
LY(M) is usually considerably larger than the class L?(M). Thus, in comparison to [51], it is the
compensation of these two shortages of the L?-theory that constitutes the main advantage of our
integrability conditions in Theorem 4.1. We will come back to this point in Section 5.2, where it
is shown that in the study of stochastic PDEs, solutions often do not exist in the L?-sense but
in the L%-sense. O

Remark 4.6 ((Compensated) strict random measures [27]) Chapters I and IT of [27] are
an established reference for integration theory w.r.t. semimartingales. Moreover, they also cover
the integration theory w.r.t. strict random measures or compensated strict random measures as
follows: if M is a strict random measure, they define stochastic integrals w.r.t. M path-by-path.
More precisely, a measurable function H: Q — R is pathwise integrable w.r.t. M if for a.e. w € Q

/ H|(w,t,2) | M|(w, dt, dz) < oo. (4.12)
RxFE

If M := M — MP is the compensation of an integer-valued strict random measure M, we have
the following situation: let H € P and introduce an auxiliary process by

Hy(w) == /EH(w,t,x)]\;I(w, {t} x dz), (w,t) €, (4.13)

hereby setting Hy(w) := 400 whenever (4.13) diverges. Then H is integrable in the sense of [27,
Def. 11.1.27] if there exists a sequence of stopping times (7},)nen with T}, T +00 a.s. and

1/2
( > Flf) ]<oo. (4.14)

—Tn<t<Thn

E

How do these integrability conditions compare to those of Theorem 4.17 Obviously, pathwise
integrability w.r.t. M does not require the integrand to be predictable. Furthermore, if H is
predictable and (4.12) holds, then the pathwise integral coincides with the stochastic integral
H - M. Still, Theorem 4.1 provides a useful extension in some situations: first, there are examples
H € L°(M) which fail the condition (4.12) (see the example at the end of Remark 4.3). And
second, given some specific H, it may be difficult in general to determine whether (4.12) holds or
not (e.g., if M has no finite first moment). The characteristic triplet that is used in Theorem 4.1
is often easier to handle than |M|.
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As for M we have following situation: first, one should notice that (4.14) ensures integrabil-
ity on finite intervals, whereas Theorem 4.1 is concerned with global integrability on R. Second,
even on finite intervals, the conditions of Theorem 4.1 are more general than (4.14), see [15,
Prop. 3.10]. Finally, whereas (4.14) involves a localizing sequence of stopping times and moment
considerations, Theorem 4.1 relates integrability only to the integrand itself and the character-
istics of M, which is often more convenient. O

In order to illustrate condition (4.2) in Theorem 4.1, we now discuss the example of a
Gaussian random measure, which is white in time but coloured in space. Such random measures
are often encountered as the driving noise of stochastic PDEs, see [20] and references therein.

Example 4.7 Let (M(S2 x B))pgcp, r1+a) be a mean-zero Gaussian process whose covariance
functional for B, B’ € B, (R*4) is given by

C(B: B) = E[M(Q x B)M(Q x B)] = /R /B oy T (4.15)

where B(t) := {x € R?: (t,x) € B}. For the existence of such a process, it is well-known [21,
Thm. 11.3.1] that f: R? — [0,00) must be a symmetric and nonnegative definite function for
which the integral on the right-hand side of (4.15) exists. Under these conditions, C' defines a
deterministic bimeasure which is symmetric in B, B’ € By,(R'*).

For the further procedure let (F;):cr be the natural filtration of M and set

M(F x (s,t] xU) :==1pM(Q x (s,t] xU), F € Fs.
By [15, Thm. 2.25], M can be extended to a random measure on R x R? provided that
Sy, — 0 pointwise, [S,,| < |S| = /Sn dM -0 in L°
for all step functions S, and S over sets of the form F' x (s,t] x U with F € Fs, s <tand U €

By, (RY). Indeed, using obvious notation and observing that 1z is independent of M (2 x (s,t] x U)
for F' € F; since M is white in time, we have

E = > araEM(AD)M(AD)]

= ) aa}P[F}]PIF}Leb((s}, 7] N (s}, £]]) /U”Un fl@—a)d(z,2")

= / (5,,5,)dC =0
(R1+d;R1+d)

by dominated convergence [18, Cor. 2.9]. Here S,, arises from S,, by replacing a with a} P[F}"].

Having established that M is a random measure, let us derive its characteristics. Obviously,
B and v are identically 0. It is also easy to see that C is the second characteristic of M: it
is clear for sets of the form (s,t] x U, and extends to general sets in By, (R!'T¢) by dominated
convergence. Therefore, as shown in the proof of Theorem 3.5, L?(M) consists of those H € P
such that (H; H) is strictly C-integrable, or, equivalently,

/ / H|(,2)|H|(t,2) f(z — 2') d(w, o) dt < 00 as. (4.16)
R JRIxRd
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The class LO(M), however, is the set of all H € P such that a.s. the inner integral in (4.16) is
finite for a.e. t € R, and

/ / H(t,x)H(t,2')f(z —2")d(z,2")dt < o0 a.s. (4.17)
R JRIxRE

A (deterministic) function H € L°(M) which is not in LYO(M) is, for instance, given by
H(t,x) := th(z) where h is chosen such that

/ ha)h(a') (@ — o) d(z,2") = 0.
R4 xRd

One important example is a fractional correlation structure in space. In this case, we have
flzr, . xg) = [T4, |2 ?72, where H; € (1/2,1) is the Hurst index of the i-th coordinate.
Then L°(M) can be interpreted as the extension of the class |Ag| studied in [45] to several
parameters and stochastic integrands. However, in [45] as well as in [11], stochastic integrals are
constructed for even larger classes of integrands. These classes, denoted Ay or Ax, respectively,
are obtained as limits of simple functions under L?-norms (||-||,, and ||-||ay , respectively), which
are defined via fractional derivatives or Fourier transforms. In particular, the stochastic integrals
defined via these norms are no longer of Itd type, i.e. no dominated convergence theorem holds
for these stochastic integrands. Indeed, L':%(M) is the largest class of predictable integrands for
which a dominated convergence theorem holds (see Theorem 2.3), and L°(M) is its improper
extension to functions for which H - M is a finite measure. O

The investigation of multi-dimensional stochastic processes often involves stochastic inte-
grals where the integrand H is a matrix-valued predictable function and the integrator M =
(M"Y, ..., M%) is a d-dimensional random measure, that is, M?',..., M? are all random mea-
sures in the sense of Definition 2.1 w.r.t. the same underlying filtration and the same sequence
(Ok) keN- By considering each row of H separately, we can assume for the following that H is an
R?-valued predictable function. It is obvious that the construction of stochastic integrals requires
no more techniques than those presented in Section 2. In fact, replacing E by E? reduces the
multivariate case to the univariate one. However, there is a difference when we want to apply
the canonical decomposition as in Theorem 3.2 or the integrability conditions in Theorem 4.1:
in the multi-dimensional case, it is not reasonable to assume that M? and M/ for i # j have
different times of discontinuity. Instead, one would define d-dimensional characteristics (B, C,v)
for M, similar to [27, Chap. II] or [12, Section 2.2], and use these to characterize integrability.

In the next theorem we rephrase 4.1 for the multivariate setting. Since no novel arguments
are needed, we omit its proof. We will use the product notation in a self-explanatory way:
for instance, if z,y € R?, zy denotes their inner product; for A € Pys, 14 - M denotes the d-
dimensional semimartingale (14-M?, ..., 14-M%); H-M denotes 2?21 H'- M for H € LYO(M)
and is suitably extended to H € L%(M), cf. Section 2. Similarly, given a matrix 3 = (3% )‘ijl
of bimeasures from F; x F» — R and F;-measurable functions f; = (f1,..., f%) for i = 1,2, we
define

d

/ (flva)dﬁ: Z/ (f{’fg)dﬁwv AEJ:MBEJ:%
(A;B) i,5=1 (A;B)

whenever the right-hand side exists.

Assume that M has different times of discontinuity, which means that 1o, x, - M, i = 1,2,
a.s. never jump at the same time for all disjoint sets Uy, Us € £y and k € N. Given a truncation



Integrability conditions for space-time integrals 19

function 7: R? — R?, define for A, B € Py; and V € By(RY)
B(A) :=B(1a- M), (A, V):=p" MR V), v(A,V):=v""MR,V)
MC(A) = (14-M)°, CY(A;B):=[(14- M), (15 M?)s. (4.18)

As in Theorem 3.2 (B,C,v) can be extended to predictable strict random (bi-)measures and
give rise to the following canonical decomposition of M:

M(A) = B(A) + M®(A) +/R o La(t, z)(y — 7(y)) p(dt, dz, dy)+
+ / La(t, z)7(y) (u — v)(dt,dz,dy), A€ P (4.19)
Rx ExR4

Moreover, there exist a positive predictable strict random measure A(w, dt, gix)J a P-measurable
RY-valued function b(w,t,z) and a transition kernel K (w,t,,dy) from (Q,P) to (R?, B(R?))
such that for all w € €,

B(w,dt,dz) = b(w, t,z) A(w,dt,dz), v(w,dt,dz,dy) = K(w,t,z,dy) A(w,dt,dz).
The multi-dimensional version of Theorem 4.1 reads as follows:

Theorem 4.8. Let M be a d-dimensional random measure with different times of discontinuity
and H: Q — R be a predictable function such that there exists a strictly positive predictable
process K: Q — R with HK € LY°(M). Then H € L°(M) if and only if each of the following
conditions is satisfied a.s.:

/RXE H(t,x)b(t,x)+/

R4

/Kt_2d (/ (HK; HK) dC> < o0,
R ((—o0,t] X E;(—00,t] X E)

/ / (1A \H(t,x)y\Q) K(t,z,dy) A(dt,dz) < occ.
RxE JRd

[T(H(t,z)y) — H(t,x)1(y)] K(t,az,dy)‘ A(dt,dx) < oo,

5 Ambit processes

In this section we present various applications, where the integrability conditions of Theorem 4.1
are needed. Given a filtered probability space satisfying the usual assumptions, our examples
are processes of the following form:

Y(t,x):= /R y h(t,s;z,y) M(ds,dy), teR,zecR% (5.1)
X

where h: R xR x R? x R — R is a deterministic measurable function and M a random measure
with different times of discontinuity such that the integral in (5.1) exists in the sense of (2.3).
If the characteristics of M in the sense of Theorem 3.2 are known, (5.1) exists if and only if the
conditions of Theorem 4.1 are satisfied for each pair (¢,2) € R x R% We call processes of the
form (5.1) ambit processes although the original definition in [9] requires the random measure
to be a volatility modulated Lévy basis, i.e. M = o.A where A is a Lévy basis and o € P. As
already explained in the Introduction, this class of models is relevant in many different areas of
applications. In the following subsections, we discuss two applications where interesting choices
for h and M will be presented.
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5.1 Stochastic PDEs

The connection between stochastic PDEs and ambit processes is exemplified in [9] relying on
the integration theory of [46] or [51]. Let U be an open subset of R x R? with boundary oU, P a
polynomial in 14 d variables with constant coefficients and M a random measure with different
times of discontinuity. The goal is to find a solution Z to the stochastic PDE

P(@t,al,...,ad)Z(t,a;) :8t81...8dM(t,$), (t,l') e, (52)

subjected to some boundary conditions on OU, where 0;0; ...04M (t,x) is the formal derivative
of M, its noise. We want to apply the method of Green’s function to our random setting: first,
we find a solution Y to (5.2) with vanishing boundary conditions, then we find a solution Y’ to
the homogeneous version of (5.2) which satisfies the prescribed boundary conditions, and finally
we obtain a solution Z by the sum of Y and Y”. Since the problem of finding Y’ is the same as
in ordinary PDE theory, we concentrate on finding Y. However, since the noise of M does not
exist formally, there exists no solution Y” in the strong sense. One standard approach based on
[51, Section 3] is to interprete (5.2) in weak form and to define

Y(t,z) = /UG(t,s;x,y) M(ds,dy), (t,z)eU, (5.3)

as a solution, where G is the Green’s function for P in the domain U. Obviously, Y is then an
ambit process, where the integrand is determined by the partial differential operator and the
domain, and the integrator is the driving noise of the stochastic PDE. Therefore, Theorem 4.1
provides necessary and sufficient conditions for the existence of Y. Let us stress again that, in
contrast to [46] and [51], we need no distributional assumptions on M.

Finally, we want to come back to Remark 4.5 and explain why the L2-approach is too
stringent for stochastic PDEs. To this end, we consider the stochastic heat equation in R%:

Example 5.1 We take P(t,xz) =t — Zle z;, U = (0,00) x R and M = o.A where o is
a predictable function and A a Lévy basis with characteristics (0,3 dt dz,dtv(d€) dz), where
¥ > 0 and v is a symmetric Lévy measure. [51, Section 3| considers a similar equation with
v = 0. The Green’s function for P and U is the heat kernel

exp(—|z — y[*/(4(t — 5)))

Gt si@y) = (4r(t — s))42

Lio<s<ty, s:t>0,2,y € R,
Since for all (t,2) € U the kernel G(t,+z,-) € LP(U) if and only if p < 14 2/d, it is square-

integrable only for d = 1. Therefore, in the L?-approach function-valued solutions only exist for
d = 1. However, if ¥ = 0, a sufficient condition for (4.3) and thus the existence of (5.3) is

t
| [ctsaotrisdy<ccas, @oetv, [ jru@<s (69
0 JRrd [—1,1]
for some p € [0,2). For instance, if o is stationary in U with finite p-th moment, (5.4) becomes
/ I€|Pv(d€) < oo for some p < 1+ 2/d.
[_171]

In particular, we see that function-valued solutions exist in arbitrary dimensions, which cannot
be “detected” in the L?-framework, even for integrators which are L?-random measures. o
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The stochastic heat equation or similar equations driven by non-Gaussian noise have already
been studied in a series of papers, e.g. [1, 3, 41, 42, 48], partly also extending Walsh’s approach
beyond the L2-framework. Although they do not only consider the linear case (5.2), there are
always limitations in dimension (e.g. only d = 1) or noise type (e.g. only stable noise without
volatility modulation). Thus, in the linear case, Theorem 4.1 provides a unifying extension of
the corresponding results in the given references.

5.2 Superposition of stochastic volatility models

In this subsection we give examples of ambit processes, where the spatial component in the
stochastic integral has the meaning of a parameter space. First we discuss one possibility of
constructing a superposition of COGARCH processes, following [13]. The COGARCH model
of [32] itself is designed as a continuous-time version of the celebrated GARCH model and is
defined as follows: Let (L;)¢cr be a two-sided Lévy process with Lévy measure vz,. Given 3,7 > 0
the COGARCH model (V¥,G?) with parameter ¢ > 0 is given by the equations

dGf = \/VZ AL, GE =0, (5.5)
AVP = (B —nV?)dt + oV2 dS;, tER, (5.6)

where S := [L]? denotes the pure-jump part of the quadratic variation of L. By [32, Thm. 3.1],
(5.6) has a stationary solution if and only if

/]R log(1 4 ¢y*) vi(dy) < n. (5.7)

Let us denote the collection of all ¢ > 0 satisfying (5.7) by ®, which by (5.7) must be of the form
[0, Pmax) With some 0 < ppax < 00. Although the COGARCH model essentially reproduces the
same stylized features as the GARCH model, there are two unsatisfactory aspects:

(1) Right from the definition, the COGARCH shows a deterministic relationship between volatil-
ity and price jumps, an effect shared by many continuous-time stochastic volatility models
[28]. More precisely, we have

AV? = VP (AL)* = o(AGY)?, teR. (5.8)
A realistic stochastic volatility model should allow for different scale parameters .

(2) The autocovariance function of the COGARCH volatility is, when existent and ¢ > 0, always
of exponential type: Cov[V,”, Wih} = Ce % for h > 0, t € R and some constants C,a > 0.
A more flexible autocovariance structure is desirable.

In [13], three approaches to construct superpositions of COGARCH processes (supCOGA-
RCH) with different values of ¢ are suggested in order to obtain a stochastic volatility model
keeping the desirable features of the COGARCH but avoiding the two disadvantages mentioned
above. One of them is the following: With 8 and 7 remaining constant, take a Lévy basis A on
R x & with characteristics (bdt w(dp), X dt w(dy), dt vi(dy) 7(de)), where b € R, ¥ > 0, 7 is a
probability measure on ® and vy, the Lévy measure of the Lévy process given by

Li = AY((0,t] x ®), t>0, Ly:=—Al((-t,0]x®), t<0,

Furthermore, define another Lévy basis by A%(dt,dyp) := Iz y? p(dt, dy, dy), where p? is the
jump measure of A as in Theorem 3.2. Next define V¥ for each ¢ € ® as the COGARCH
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volatility process driven by L with parameter ¢. Motivated by (5.6), the supCOGARCH V is
now defined by the stochastic differential equation

AV, = (8 — 0¥ dt +/ SVE A(dt,dy), tER. (5.9)
[

As shown in [13, Prop. 3.15], (5.9) has a unique solution given by

t
Vi = b / / e M=)V ? A(ds,dp), teR, (5.10)
n —00 J O

such that V is an ambit process as in (5.1).
Here the integrability conditions of Section 4 come into play. Immediately from Theorem 4.1
and Remark 4.3 we obtain:

Corollary 5.2. The supCOGARCHV as in (5.10) exists if and only if
/ / / 1A (yQQDe_"SVS‘p) vr(dy) m(dg)ds < oo a.s. (5.11)
Ry Jo Jr,

In particular, the supCOGARCH (5.10) provides an example where the stochastic volatility
process (s, ) := V¥ is not independent of the underlying Lévy basis A. So the conditions
of [46, Thm. 2.7] are not applicable. For further properties of the supCOGARCH, in particular
regarding its jump behaviour, autocovariance structure etc., we refer to [13].

Finally, let us comment on superpositions of other stochastic volatility models:

Remark 5.3 The usage of Ornstein-Uhlenbeck processes in stochastic volatility modelling has
become popular through the Barndorff-Nielsen-Shephard model [6]. A natural extension is given
by the CARMA stochastic volatility model [50], which generates a more flexible autocovariance
structure. Another generalization of the BNS model is obtained via a superposition of OU
processes with different memory parameters leading to the class of supOU processes [4]. This
method does not only yield a more general second order structure but can also generate long-
memory processes; cf. [4, 24]. A similar technique was used in [7, 37] to construct supCARMA
processes, again leading to a possible long-range dependent process.

Note that in all these models the driving noise is assumed to have stationary independent
increments, which is certainly a model restriction. Therefore, [8] suggests a volatility modula-
tion of this noise to obtain a greater model flexibility. In this way, it is possible to generate a
volatility clustering effect, similar to the behaviour of the (sup) COGARCH. Without volatility
modulation, supOU or supCARMA processes are defined as stochastic integrals of deterministic
kernel functions w.r.t. a Lévy basis, so the approach of [46] is sufficient. Theorem 4.1 now enables
us to replace A by a volatility modulated Lévy basis 0.A with a possible dependence structure
between o and A. O
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