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Abstract

The present thesis investigates several fundamental problems in Computational Con-
vexity, i.e. it studies algorithmic questions on convex sets in unbounded dimensions.
Throughout, a particular focus is put on the question how the dimension influences the
complexity and approximability of these problems.

To found our work geometrically, we use symmetry coefficients of convex bodies to
sharpen classic geometric inequalities and formulate them in a dimension independent
way. We employ the theory of Fixed Parameter Tractability to assess the influence of
the dimension on the complexity of various geometric optimization problems. Whenever
possible, we give variants of Helly-type theorems (sometimes approximative or local),
which contribute to the algorithmic solutions of the considered problems.





Zusammenfassung

Die vorliegende Dissertation untersucht eine Reihe grundlegender Probleme des Ge-
biets der Computational Convexity, d.h. des Studiums algorithmischer Fragen auf konve-
xen Mengen in unbeschränkter Dimension. Besonderes Augenmerk liegt dabei stets auf
der Frage, welchen Einfluss die Dimension auf die Komplexität bzw. die Approximier-
barkeit dieser Probleme hat. Obwohl die betrachteten Probleme auf den ersten Blick
sehr ähnlich erscheinen, zeigt sich in den einzelnen Kapiteln, dass dieser Einfluss die
verschiedensten Ausprägungen annehmen kann.

In einem ersten Schritt zeigen wir, dass viele bekannte geometrische Ungleichun-
gen verschärft werden können, indem sie auf Symmetriewerte der beteiligten konvexen
Körper gestützt werden. Anders als die Originale machen unsere Verallgemeinerungen
deutlich, dass die in diesen Ungleichungen auftretenden Koeffizienten nicht zwangsläufig
von der Dimension abhängen. Vielmehr geht die Dimension lediglich als obere Schranke
für die größtmögliche Asymmetrie eines Körpers in die Ungleichungen ein.

Wir verwenden die Theorie der Fixed Parameter Tractability, um die Komplexität
des exakten Lösens und der Approximation des Normmaximierungsproblems mit spe-
ziellem Hinblick auf die Dimension zu untersuchen. Die zentrale Rolle dieses Problems
in der Computational Convexity ermöglicht es dann, Aussagen über die Komplexität
einiger grundlegender Radienberechnungsprobleme und des Problems der Berechnung
des Hausdorffabstandes zu treffen, auf denen die nachfolgenden Kapitel aufbauen.

Das Konzept der Core-Sets zeigt, dass die Komplexität der Approximation des euklidi-
schen Umkugelradius vollständig unabhängig von der Dimension ist. Wir zeigen scharfe
geometrische Ungleichungen zwischen verschiedenen Radien, die scharfe Schranken an
die Größe von Core-Sets (sowohl im euklidischen Fall als auch in einem ganz allgemeinen
Set-up) implizieren.

Für das Problem, einen konvexen Körper homothetisch so zu transformieren, dass er
den Hausdorffabstand zu einem anderen Körper minimiert, charakterisieren wir Opti-
mallösungen und geben einen polynomiellen Algorithmus, der dieses Problem für Poly-
tope in Eckendarstellung in unbeschränkter Dimension löst.

Schließlich geben wir eine Art
”
lokale Helly-Typ Aussage“ für das Problem, einen klein-

sten einschließenden Zylinder im Raum zu berechnen. Da andere übliche Ansätze für die-
ses Problem beweisbar nicht funktionieren können, zeigt unsere Aussage Möglichkeiten
auf, doch verwertbare strukturelle Eigenschaft dieses Problems auszumachen.
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Chapter 1

Introduction

The present thesis investigates several basic problems from the area of Computational
Convexity. Its results can be seen as an attempt to identify structures in these problems
that allow an efficient solution (or approximation) or to show that no such structure
exists. The problems under consideration can all be classified as geometric optimization
problems in a finite dimensional real vector space. Throughout the individual chapters,
the thesis puts a special focus on the question how the dimension of that space influences
the complexity of the problem. The obtained results show that this influence can lie in
a very broad range: There are problems, the hardness of which is directly linked to
the dimension; there are others, where the running time of an approximation algorithm
does not depend on the dimension at all; and there is a group of problems somewhere
in between, where the hardness of the problem is sensitive to the dimension but also to
other parameters of the problem.

After a quick overview of the thesis, this introductory chapter will first illustrate the
field of Computational Convexity, highlight some central questions in the field and show
how the present thesis can contribute to the answers of these questions. After introducing
the notation that is used throughout the thesis, we close this introduction with thanks
to the people that contributed to the completion of this thesis.

1.1 Overview and Organization of the Thesis

Besides this introductory chapter, the thesis consists of five chapters, which are de-
signed in the style of scientific papers. All chapters try to be as self-contained as possible,
so that they can in principle be read in arbitrary order.
Each chapter also contains a short introduction which presents the respective problem
of interest and gives references to background material and related work. Moreover,
the introduction of each chapter states the main results of the chapter, which are then
elaborated in the subsequent sections. Where necessary the introductions also explain
special notation adapted to the particular needs in a chapter. Our general notation,
however, is explained in Section 1.3.

1



2 Chapter 1. Introduction

In a first step, we show that many well-known geometric inequalities can be sharpened
by basing them on symmetry coefficients of convex bodies. Unlike the original theorems,
our generalizations demonstrate that the parameters of these inequalities do not intrin-
sically depend on the dimension. Instead, the dimension only enters these inequalities
as a worst case upper bound on the asymmetry of a body.

We employ the theory of Fixed Parameter Tractability to revisit the computational
complexity and the complexity of approximation of Norm Maximization with a special
focus on the dependence on the dimension. The central role of this problem in Com-
putational Convexity then allows us to deduce corollaries on the complexity of several
basic radii computation problems and the problem of computing the Hausdorff distance,
which are of interest in later chapters.

The concept of core-sets shows that the complexity of approximating the Euclidean
circumradius does not depend on the dimension at all. We derive tight geometric in-
equalities between certain radii that are turned into tight bounds on the size of these
core-sets in the Euclidean and in a very general setting.

For the problem of homothetically transforming a convex body in order to minimize
its Hausdorff distance to another one, we characterize optimal solutions and give a
polynomial time algorithm that solves the problem for vertex-presented polytopes in
unbounded dimension.

Finally, we give a “local Helly-type theorem” for the problem of computing a smallest
enclosing cylinder in three-space. The result is quite specific but constitutes a first
step towards an exploitable structure theorem of a problem for which other common
approaches have been shown to fail.

1.2 Computational Convexity

As the name already indicates, the field of Computational Convexity is concerned with
the study of computational and algorithmic problems on convex sets. The problems of
interest are often to evaluate some functional on a convex set in a finite dimensional
real vector space. An important aspect in the study of these problems is the fact that
they are considered in arbitrary (unbounded) dimension rather than in spaces of a (low)
a-priori fixed dimension. This leads to a close interplay of Computational Convexity
with Mathematical Programming, where the number of variables of a problem is usually
not fixed in advance: On the one hand, it allows for the analysis of problems that arise in
those fields; on the other hand, methods from Mathematical Programming are also often
basic building blocks for efficient algorithms in Computational Convexity. Moreover, the
focus on problems in unbounded dimension distinguishes Computational Convexity from
the area of Computational Geometry, which usually investigates algorithmic versions of
geometric problems in the plane or in three-space.
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In general, the methods that are applied can usually be located somewhere around the
intersection of Convex Geometry, Mathematical Programming and Discrete Mathematics
as well as Complexity Theory. For complexity questions, usually the binary (Turing
machine) model is applied.

For a rough overview, the following Section 1.2.1 highlights some classic and basic
problems in Computational Convexity and shows at which points the present thesis can
contribute to the field. We refer to [88, 89, 90] for more complete surveys on Computa-
tional Convexity and to [75, 92, 150, 162] for comprehensive background material.

1.2.1 Classic Problems

The Volume of a Polytope
As a first example to illustrate the basic questions in Computational Convexity, we

mention the problem of computing the volume of a convex compact set P ⊆ Rd. There
is no doubt that the volume of P is a basic and important quantity associated with P .
It is very intuitive and comes with a whole theory behind it, which one is familiarized
with already during the first courses of calculus. However, it is not quite obvious how
to actually compute the volume of P even if P is a polytope. Hence, typical questions
that arise in this context are the following:

1. For a polytope P , is there a formula or an algorithm to compute its volume?

2. What is a suitable way to present a polytope P for this purpose? Is it convenient
to work with a presentation as convex hull of finitely many points or is it preferable
to deal with the intersection of finitely many halfspaces?

3. Is there an efficient algorithm for polytopes in high dimensions?

The answers that have been given to these questions in the literature are:

1. A possible approach is to dissect P into simplices, the volume of which can easily
be computed, and to add up these volumes. If a polytope P is presented as
intersection of halfspaces, there is a closed formula for its volume [127], but it
involves summation over all vertices.

2. Seemingly, no particular presentation of P is more suitable than the others [90].

3. The running time of none of the above algorithms depends polynomially on the
dimension. In fact, volume computation is #P-hard for the above-mentioned pre-
sentations of P [63].

Hence, it turns out that the seemingly innocent problem of computing the volume of
a polytope is (not unfeasible but) intractable for general polytopes in high dimensions
under standard complexity theoretic assumptions.
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Linear Programming
Although the theory around Linear Programming is an independent field for itself, it

has to be mentioned in the present context nevertheless. First of all, the problem of
computing the maximum of a linear function over a polytope presented as intersection
of halfspaces is probably the most basic problem in Computational Convexity. The
question whether this maximum can be computed efficiently in arbitrary dimension and
the theory developed around it can be seen as the initial motivation for asking, what
other functionals can be computed efficiently on arbitrary dimensional polytopes or
convex bodies.

Especially the fact that many practical problems can be formulated as linear programs
with a problem dependent and possibly large number of variables makes it desirable
to consider the problem and its relatives in Computational Convexity in unbounded
dimension. Since Linear Programming has been shown to be solvable in polynomial
time in this setting, it may also serve as a basic tool for showing the tractability of other
more complex problems:

Consider for A ∈ Qn×d, b ∈ Qn, c ∈ Qd the linear program

max cTx
s.t. Ax ≤ b. (1.1)

If L denotes the coding length of A, b, c, then [118] shows that (1.1) can be solved
in O(n3.5L2). This result is at the heart of many tractability proofs. The algorithms
for Hausdorff matching in Chapter 5 also rely on solving linear programs (or the more
general second order cone programs).

On the other hand, concerning Linear Programming in fixed dimension, [132] shows

that (1.1) can be solved in time O(22dn). Thus, if d is considered as a constant, Linear
Programming can be solved in linear time. Using this result, we show in Theorem 3.2.12
that the NP-hard problem of maximizing the 1-norm over a halfspace presented polytope
is fixed parameter tractable. In addition, we also obtain an FPT approximation algo-
rithm for general norm maximization (Theorem 3.1.3), again by solving suitable linear
programs.

Radii of Convex Bodies
A problem that has received a lot of attention is the computation of inner and outer

radii of convex bodies. Especially the circumradius, inradius, diameter and width of a
convex body have a long tradition in convex geometry. The references ranging from [30]
and [67] over [59] to [34], [103] and [102], radii have been used in order to approximate
“complicated” sets by simpler ones of appropriate size or to bound other geometric
functionals in terms of radii.

There are several ways to embed these four prominent radii into larger series of inner and
outer radii of convex bodies and, in this thesis, we will encounter different generalizations
at different places. The ones that we are mainly concerned with may also serve as an
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introductory example1.

Definition 1.2.1 (Outer radii)
For P ⊆ Rd compact and C ⊆ Rd a closed convex set, we let

R(P,C) := inf{ρ ≥ 0 : P ⊆ c+ ρC, c ∈ Rd}

be the classic circumradius of P with respect to C. For k ∈ N, let Ldk denote the set of
all k-dimensional linear subspaces of Rd and define

R
π
k(P,C) := sup

F∈Ldd−k
R(P,C + F ) (1.2)

Rπk(P,C) := inf
F∈Ldd−k

R(P,C + F ) (1.3)

R
σ
k(P,C) := sup

F∈Ldk
sup
c∈Rd

R(P ∩ (c+ F ), C) (1.4)

Rσk(P,C) := inf
F∈Ldk

sup
c∈Rd

R(P ∩ (c+ F ), C). (1.5)

Choosing C = {x ∈ Rd : ‖x‖2 ≤ 1}, we obtain the Euclidean circumradius of P via
R(P,C) = R

π
d (P,C) = Rπd (P,C) = R

σ
d(P,C) = Rσd(P,C), half the width of P equals

Rπ1 (P,C), half the diameter is R
π
1 (P,C) = R

σ
1 (P,C) and the inradius can be recovered

via R(C,P )−1. These relations are also illustrated in Figure 1.1.

P

c+ F
Rπ

1 (P )

R
π
1 (P,C) = R

σ
1 (P,C)

P P

R(C,P )−1

R(P,C)

c+ F

F

Figure 1.1: Some special radii. Left: A set P ⊆ R2 with its biggest contained ball of
radius R(C,P )−1 and circumball of radius R(P,C). Middle: P ⊆ R2 contained in the
slab c+ F +Rπ1 (P,C)C. Right: P ⊆ R2 together with the one-dimensional section and
projection of biggest radius.

Using some radius of a set to simplify calculations immediately rises the question if
and how efficiently the radii of the set can be computed. It is this question that we

1We refer to page 15 for an explanation of the notation.
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mainly focus on in this thesis. For special polytopes such as simplices, boxes and cross-
polytopes, there exist explicit formulae for many radii [35, 68], but in general, it turns
out that the presentation of the polytope plays a crucial role for the tractability of radii
computation tasks, see [87] and below.

This thesis touches the field of radii of convex bodies at several points:

Basically, the combinatorial properties that make some of the radii computation tasks
hard are already present in the problem of maximizing a norm over a polytope presented
as intersection of halfspaces. In fact, the NP-hardness proofs for the radii problems rely
on the fact of this problem being hard. Since, on the other hand, all these problems
are solvable in polynomial time in fixed dimension, Chapter 3 investigates the fixed-
parameter-complexity of norm maximization with respect to the dimension. In Theo-
rems 3.1.2 and 3.1.3, we answer the question, to which degree the hardness of computing
or approximating the norm maximum over a halfspace presented polytope depends on
the dimension. By the well established identities from [86], these results carry over to
the radii computation problems and are given in Corollaries 3.4.3 and 3.4.6.

As was observed in [67] and [86], Helly’s Theorem plays an important role for the prob-
lem of computing R(P,C). The results of Chapter 4 are basically approximative Helly-
type theorems that are formulated in terms of inequalities between the radii R

π
k(P,C)

for different values of k. These inequalities between radii can now be translated into
sharp bounds on the sizes of so called ε-core-sets, a concept which attracted a lot of
interest in recent years: In Euclidean spaces the size of these core-sets does not depend
on the dimension of the space (e.g. [17, 18, 19, 55]), which allows approximation of
the Euclidean circumradius independently of the dimension, and which in turn leads to
efficient approximation algorithms for other, harder problems (e.g. [19]). We are able
to give sharp bounds on the size of core-sets in the Euclidean (Theorem 4.1.3) and a
more general setting (Theorem 4.1.2) and show that the dimension independence does
not carry over from Euclidean to arbitrary normed spaces (Theorem 4.1.2).

However, the same approach fails for the computation of Rπd−1(P ). Already [58] pre-
sented a counterexample showing that there is no comparable Helly-property that would
make applicable the same techniques as above. A major obstruction on the way to such
a property is the non-convexity of the objective function in the optimization problem
for the computation of Rπd−1(P ). Hence, a possible approach to overcome this is char-
acterizing local optima of the objective function instead of global ones. We follow this
approach in Chapter 6, where a first step in this direction is made and a bound on the
pinning number (i.e. a local Helly-number) of intersecting balls (Theorem 6.1.1) and
ovaloids (Theorem 6.4.5) in R3 is given.

The Hausdorff distance
As a last example for the type of problems that are considered in this thesis, we
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mention another indispensable tool in Convex Geometry: the Hausdorff distance of two
convex bodies. Let ‖ · ‖ be a norm on Rd.

Definition 1.2.2 (Hausdorff distance)
For a non-empty, compact and convex set K ⊆ Rd, let

d(·,K) : Rd → R
x 7→ d(x,K) = min {‖x− y‖ : y ∈ K}

be the distance mapping of K induced by ‖ · ‖.
For two compact convex sets K,L ⊆ Rd, the Hausdorff distance between K and L is

δ(K,L) := max
{

max
x∈K

d(x, L),max
x∈L

d(x,K)
}

(1.6)

and measures the maximum distance of a point in K or L to the other body as illustrated
in Figure 1.2.

P

δ(K,P )

K

Figure 1.2: The Hausdorff distance of a convex body K ⊆ R2 and a polytope P ⊆ R2.

Together with the volume of the symmetric difference of two bodies, the Hausdorff
distance is one of the commonly used metrics on the cone of convex bodies that appears
whenever the similarity of two convex bodies has to be measured. It is a natural way to
express results in the theory of approximations of convex bodies by polytopes and vice
versa [93], [150, Section 3.3]. Also the functional itself is very well studied [150, Section
1.8]. In addition, the Hausdorff distance also arises as a natural measure of similarity in
shape fitting tasks [10]. Here, also more general matching problems, where one body is
allowed to undergo a transformation from a certain family, are considered. For the case of
homothetic transformations, Helly-type properties of the Hausdorff distance are shown
in [14]. However, the attention in Computational Geometry has focused on the case
of two-dimensional polygons and finite point sets in two or three dimensions, which is
surveyed in [10]. Polynomial-time algorithms computing the Hausdorff distance between
collections of simplices in fixed dimension are presented in [9].

In the context of the present thesis, a natural question is to ask for the complexity
of computing the Hausdorff distance of polytopes in arbitrary dimension. To the best
of our knowledge, this question has not been answered before and we close this gap in
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Theorems 5.2.13 and 5.2.16 building on the results on norm maximization from Chap-
ter 3. Guided by the insights of those theorems, we consider the optimization problem,
where a vertex-presented polytope is allowed to be transformed by a homothetic map-
ping in order to minimize its Hausdorff distance to another vertex-presented polytope.
Using the techniques developed in Chapter 4, we characterize optimal solutions in The-
orem 5.3.8. We also give an algorithm to solve this matching problem and variants of it
in Section 5.3.3. The theoretical running times of our algorithm are comparable to the
ones in low dimension cited above and the only ones which also depend polynomially on
the dimension.

1.2.2 Applications in Practice

The problems presented in the previous section are interesting mathematical problems
that deserve to be investigated in their own right. Additionally, the obtained insights
– in particular the ones on the algorithmic side – may be helpful for the solution of
many applied problems. The present subsection is intended to support this claim by
presenting some applications that are closely related to this thesis: During the time of
this thesis, the author has been working actively in the mentioned application areas by
contributing to third party projects, supervising students or co-authoring papers in the
respective area. The selection is by no means exhaustive; we rather refer to the list of
references at the end of this section for further possible applications.

Shape Fitting
The task of quantifying how much two given object resemble each other arises in many

application areas, such as pattern recognition, computer vision, computer graphics, etc.
Often the task is not only to evaluate the resemblance of two shapes but to transform
one shape such that it becomes as close as possible to another one. We give two examples
that show how methods from Computational Convexity can be applied for these shape
fitting problems:

The paper [37] investigates a problem that arises in operation planning in medical
surgery and explores the applicability of approximation by affine subspaces, i.e. radii
computations, for shape matching problems. In order to facilitate automation of the
planning process of a limb lengthening surgery, the data obtained by a computerized
tomography scan of the patient’s leg has to be processed to a compact and tractable de-
scription. Since the relevant parts of the (deformed) femur basically resemble a cylinder,
[37] suggests to use the union of two cylinders instead of the whole bone data. Hence,
once the bone data is split into the appropriate parts, the task amounts to computing
the outer 2-radius (in the sense of Equation (1.3) in Definition 1.2.1) of the respective
part of the bone together with an optimal axis. Figure 1.3 shows a major part of a femur
diaphysis and its best approximating 2-cylinder.
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Figure 1.3: A femur part and its best approximating cylinder. Left: 3341 points in
3-space segmented from a CT of a femur. Right: A best approximating 2-cylinder that
replaces the femur in computations.

It has already been claimed above that the Hausdorff distance is a natural objective
function in shape fitting tasks. In order to support this claim, we mention a few of the
possible applications.

In [112], the Hausdorff distance and variants of it are investigated in order to detect ob-
jects from one image in another one. The paper [114] develops a face detection algorithm
based on the Hausdorff distance as the underlying similarity measure which is used to
compare the region around the eyes in images to a geometric description thereof. In the
application in Computer Vision in [148], a model set that is to be detected in an image
is allowed to be affinely transformed before being matched to some part of the image.

The basic idea behind all these approaches is to define some model set and then find a
suitable transformation of that model that minimizes the Hausdorff distance between the
transformed model and some object segmented in the (image) data. In all three cases, the
authors report good results and especially highlight the fact that the Hausdorff distance
is very robust concerning changes in illumination, contrast and other image properties.

The particular application of Hausdorff Matching that we are aiming at in Section 5.3.3
can be interpreted as a shape fitting approach for tomographic reconstruction with prior
knowledge and is explained in the next paragraph.

Tomographic Reconstruction by Shape Fitting
In the field of Geometric Tomography, one is concerned with the problem of recon-

structing convex sets from tomographic data, e.g. from X-rays (i.e. Radon transforms)
or simply projections or sections of the set. The textbook [71] gives a comprehensive
overview of the field. Here, we focus on two specific problems at the intersection of
Geometric Tomography and Computational Convexity.
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As mentioned in the paragraph about Shape Fitting, Section 5.3.3 shows, that if strong
prior knowledge about the objects that are to be reconstructed is assumed, shape fitting
methods can also be used for tomographic reconstruction. In particular, we will show
how the methods for Hausdorff matching developed in Chapter 5 can be applied to the
task of “reconstructing” a femur from only two projections.
This approach is again motivated by the planning procedure for the limb lengthening
surgery considered in [37] and described above. Since for the actual planning procedure
the CT data of the femur of the patient is processed to a cylinder with the essential
features of the bone, one might as well think of replacing the whole CT scan by fewer
ordinary radiographs and extract the relevant information from these images. The ben-
efits of this approach are self-explanatory: The patient benefits from a lower radiation
dose and the two radiographs taken during the initial examination of the patient can be
reused for the planning procedure, saving time and money thereby.
A possible way to construct a model of the patient’s femur is as follows. In a first step,
we provide a geometric description of a model femur (or of parts of it) which we extract
from the CT data of a plastic femur with standard parameters [25]. In order to recover
essential parameters of the femur of a specific patient, we segment the bones in each ra-
diograph and solve the following matching problem: Find a transformation of the model
femur such that the sum of Hausdorff distances of the bone regions in the radiographs
to the projections of the transformed model is minimized. In our application, these
radiographs are taken in two a-priori fixed directions which leads to the optimization
problem (5.28) in Section 5.3.3.
Since we are working with polytopes instead of curved bones, we are, strictly speaking,
matching the convex hull of the model femur to the convex hull of the segmented bones
in the radiographs. However, applying the optimal transformation for the convex hull
to the model femur itself seems to yield good approximations of the femur of the patient
in practice (cf. Section 5.3.3, in particular Figure 5.3).

Another possibility of providing a 3D model of the patient’s femur is to build it directly
from geometric primitives that are suitably adjusted according to parameters that can
be determined from the two radiographs. Using a standard set of parameters as listed
in e.g. [137, 139], this approach is explored in [108]. Figure 1.4 shows a typical result of
a femur model together with its projection into the original radiograph.

Tomographic Reconstruction by Quadratic Programming
Another method from Geometric Tomography that can be subsumed in Computational

Convexity in the broadest sense is the following algorithm introduced in [73]. The task
of this algorithm is to reconstruct an approximating polytope to a convex body K ⊆ Rd
from which noisy measurements of its support function

h(K, ·) : Rd → R;u 7→ max{uTx : x ∈ K}

are available. In cooperation with an interdisciplinary team of material scientists and
mathematicians, we applied this algorithm to the task of reconstructing a nanowire from
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Figure 1.4: Femur reconstruction with geometric primitives. Left: The geometric model
of the femora of a patient consisting of cylinders, balls, and truncated cones. Right. Its
projection into an X-Ray image of the lower extremities of the respective patient. Both
images are taken from [108].

electron microscopy data. We also compared its performance, along with other geomet-
ric algorithms, to conventional tomography algorithms such as SIRT [117, Chapter 7],
different discrete variants of ART [106, Chapter 11], or filtered backprojection [106,
Chapter 8]. For the present purpose, we sketch our main results in the following; for a
complete assessment, however, we refer to the publications [7] and [141].

Nanowires, small wires that are tens of nanometers in diameter and micrometers in
length, are promising building blocks for future electronic and optical devices; see [129,
135]. They are typically grown from a substrate and much research effort is being focused
on understanding and controlling their growth mechanisms [62]. Electron tomography,
as in various materials science applications, is rapidly developing into a powerful 3D
imaging tool for studying these effects at the nanoscale [22, 134].
With current technology, however, the tomographic data acquisition time for 140 projec-
tions of a single nanowire is about 2 hours when performed manually. This is currently a
bottleneck preventing many in-situ experiments on short time scales and the imaging of
multiple nanowires. Hence, methods that require considerably fewer projection images
are of particular interest.

The cross-sections in horizontal (i.e. perpendicular to the growth direction) slices of
the nanowire in our application are all convex. In fact, most of the cross-sections are
close to regular hexagons [157]. This allows us to reconstruct the whole nanowire by
reconstructing one 2D slice after the other from the support function values obtained
from the microscopy images.
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The support function values in the two directions perpendicular to the projection direc-
tion can be easily determined from the data, because they correspond to the minimal
and maximal coordinates of the pixels in the data that recorded non-zero intensities,
cf. Figure 1.5. As data is available for several tilt angles, we collect support function
measurements for different directions. These serve as input to the algorithm.
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Figure 1.5: Nanowire data: (a) bright-field electron microscopy image of the InAs
nanowire specimen used for tomography; (b,c) aligned images taken from the tilt se-
ries of the wire at angles of 10◦ and 40◦, respectively (slice 220 is indicated by the white
line; the tilt axis is in the vertical direction through the center of the image); (d,e) mea-
sured projections of slice 220 (non-linear projection intensities) shown in red and ideal
projections of slice 220 (linear projection intensities) shown in black, at angles of 10◦

and 40◦, respectively. (The ideal projections were estimated from our reconstructions.
For further details, we refer to [7].)

Unfiltered backprojection (U-FBP) U-FBP is probably the most basic geometric
method to reconstruct a convex set K from measurements of its support function. The
idea is to “backproject” the slab between two hyperplanes where K is known to be
contained in, and to return the intersection of all these slabs. The returned object is
necessarily a polyhedron.

Modified Prince-Willsky (MPW) Since the measurements in our application can
be very noisy which may lead to inconsistencies in the data (cf. Figure 1.6), we apply the
more sophisticated modified Prince-Willsky algorithm from [73], which is a modification
of the algorithm in [143].

The MPW algorithm is designed to cope with noise in the measurements of the support
function. More precisely, for (Gaussian) noise affected measurements h1, . . . , hn of the
support function of K in a finite number of directions u1, . . . , un, the MPW algorithm
solves a constrained least-squares problem to obtain values y1, . . . , yn, which are the
support function values of a best-approximating polyhedron P ∗. The set P ∗ itself is
then obtained as intersection of halfspaces P ∗ =

⋂n
i=1{x ∈ Rd : uTi x ≤ yi}, for instance
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Figure 1.6: Inconsistent support function measurements. Left: A convex set K and
three exact measurements of its support function. Middle: A wrong support function
measurement leads to inconsistent data. Right: A wrong support function measurement
cuts away a big part of K.

via U-FBP.

With mild restrictions, the output of the algorithm converges as the number of shadows,
affected by Gaussian noise of fixed variance, approaches infinity [74].

Figure 1.7 shows that the quality of the reconstruction of MPW is comparable to
the ones obtained by standard tomography algorithms. Further, it appears superior in
settings where the reconstruction has to be performed from very few, very noisy images.
A detailed assessment of the results is, however, beyond the scope of this thesis and we
refer to [141] and [7] for further details.

Figure 1.7: Reconstruction of the nanowire using different algorithms. Top-to-bottom
and frontal views are shown in the first and second row, respectively. BART is the
algorithm introduced in [105]; DART in [24]; for GKXR see [72]; 2n-GON reconstructs
a near-regular 2n-gon in every cross section and is introduced in [7].

Clustering via k-center
Besides the direct applications that have already been mentioned, an additional com-

binatorial layer can be added to almost all of the above problems. For instance, a bent



14 Chapter 1. Introduction

bone is probably better approximated by the union of two (or more) cylinders than by
one; the Hausdorff distance could also serve as a similarity measure between unions of
polytopes; etc. In these cases the task is not only to evaluate a geometric functional on
a single convex set but an additional assignment problem has to be solved in order to
determine which functional has to be evaluated for which set.
We make this precise for the well-studied example of the so called k-center problem,
which is the combinatorial extension of the outer radii of finite point sets as introduced
in Definition 1.2.1.

Problem 1.2.3 (k-center)
Let (Cd)d∈N be a family of convex compact sets with Cd ⊆ Rd, k ∈ N and j ∈ {1, . . . , d}.
The following problem is called k-center problem and illustrated in Figure 1.8.

Input. A finite point set P := {p1, . . . , pn} ⊆ Rd in arbitrary dimension d.
Task: Find an assignment I : {1, . . . , n} → {1, . . . , k} that minimizes

max
v=1,...,k

Rπj ({pi : I(i) = v}, Cd).

Figure 1.8: The k-center problem. Left: A 2-dimensional input point set. Right: An
optimal solution for the 3-center problem with j = 2 in the Euclidean norm. The
assignment to three clusters is indicated by the three different colors.

Because of the additional combinatorial difficulties, it is not surprising that the k-
center problem and similar problems tend to become hard very quickly (see e.g. [49, 133]).
This complexity is also made perceptible for a non-mathematical audience in the Java
applet developed in [61], which is now available at http://www-m9.ma.tum.de/Allge-
meines/KCenterSpielUeberblick. The reason why these problems are nevertheless ex-
tensively studied is their apparent application in areas that involve the clustering of
data. Hence, applications range from data mining, pattern recognition, preprocessing
for the creation of efficient data structures as examples in high dimensional spaces to

http://www-m9.ma.tum.de/Allgemeines/KCenterSpielUeberblick
http://www-m9.ma.tum.de/Allgemeines/KCenterSpielUeberblick
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problems like facility location or shape fitting with unions of convex sets in low dimen-
sional spaces [3, 41, 98, 144, 158]. Of course, once a solution of Problem 1.2.3 is at hand,
it can also be used for classification tasks by classifying a new point as belonging to its
nearest cluster.
The paper [41] proposes different solution techniques for the case j = 1 of Problem 1.2.3;
[2] is mainly concerned with the cases where j < d and the data is spread around several
affine subspaces in a high dimensional space. Both papers contain an extensive list of
pointers to problems where this clustering technique has been applied successfully. For
applications of clustering in general, we refer to the broad references in the introduction
of [32].
For the actual solution of the k-center problem, the concept of ε-core-sets allows to derive
a very effective polynomial time approximation scheme via a Branch&Bound technique
[19, 41]. The present thesis contributes to this study by giving sharp bounds on the size
of ε-core-sets in Chapter 4.

We close this section by pointing again to [88, 89, 90, 125], where many other successful
applications of methods from Computational Convexity are described.

1.3 General Notation and Background

Before going into details in the following chapters, we fix some general notations that
we will make use of throughout the thesis. Notations that only appear locally in certain
sections are explained within the respective section. Additionally, the table on page 131
gives a list of all notations used and pointers to the pages where they are introduced.

The symbols N,Z,Q and R are used to denote the set of positive integers, integers,
rational numbers and real numbers, respectively.
For a positive integer n ∈ N, we will abbreviate [n] := {1, . . . , n}.
Throughout this thesis, we are working in d-dimensional real space Rd and for A ⊆ Rd
we write lin(A), aff(A), conv(A), pos(A), int(A), relint(A), and bd(A) for the linear,
affine, convex or positive hull and the interior, relative interior and the boundary of A,
respectively.
For a set A ⊆ Rd, its dimension is dim(A) := dim(aff(A)). Furthermore, for any two
sets A,B ⊂ Rd and ρ ∈ R, let ρA := {ρa : a ∈ A} and A+ B := {a+ b : a ∈ A, b ∈ B}
the ρ-dilatation of A and the Minkowski sum of A and B, respectively. We abbreviate
A + (−B) by A − B and A + {c} by A + c. A set K ⊆ Rd is called 0-symmetric if
−K = K. If there is a c ∈ Rd such that −(c + K) = c + K we call K symmetric. At
several points, we will make use of the identity A+A = 2A for A ⊆ Rd convex.
A set C ⊂ Rd which is non-empty, convex and compact will be called a convex body or
body for short. The set of all convex bodies in Rd will be denoted by Cd. The set of all
polytopes in Rd is denoted by Pd. For k ∈ [d], a k-simplex is the convex hull of k + 1
affinely independent points. For x, y ∈ Rd, we write [x, y] = {λx+ (1− λ)y : λ ∈ [0, 1]}
for the line segment joining x and y. If a polytope P ∈ Pd is described as a bounded
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intersection of halfspaces, we say that P is in H-presentation. If P is given as the
convex hull of finitely many points, we call this a V-presentation of P . For a convex set
C ⊆ Rd, ext(C) and rec(C) denote the set of extreme points and the recession cone of
K, respectively.

Furthermore, Ldk and Adk denote the family of all k-dimensional linear and affine sub-
spaces of Rd, respectively, and A|F is used for the orthogonal projection of A onto F for
F ∈ Adk.
For 1 ≤ p <∞, the p-norm of a point x = (x1, . . . , xd)

T ∈ Rd is defined as

‖x‖p :=

(
d∑

i=1

|xi|p
) 1

p

for p =∞, we let ‖x‖∞ := max{|xi| : i ∈ [d]}.
For p ∈ [1,∞], we write Bdp := {x ∈ Rd : ‖x‖p ≤ 1} for the unit ball of ‖ · ‖p and

Sd−1
p := {x ∈ Rd : ‖x‖p = 1} for the unit sphere in Rd.

For two vectors x, y ∈ Rd, we use the notation xT y :=
∑d

i=1 xiyi for the standard
scalar/inner/dot product of x and y and by

H≤(a, β) := {x ∈ Rd : aTx ≤ β}

we denote the half-space induced by a ∈ Rd and β ∈ R, bounded by the hyperplane
H=(a, β) := {x ∈ Rd : aTx = β}. For a vector a ∈ Rd and a convex set K ⊆ Rd, we
write

h(K, a) := sup{aTx : x ∈ K}

for the support function of K in direction a.

For a convex body C ∈ Cd, we write C◦ := {a ∈ Rd : aTx ≤ 1 ∀x ∈ C} for its polar.

If X is a finite set and k ∈ N, then
(
X
k

)
:= {Y ⊆ X : |Y | = k} denotes the set of all

subsets of X of cardinality k.

The standard basis in Rd is denoted by {ei : i ∈ [d]}; the all-ones vector by 1 :=
(1, . . . , 1)T ∈ Rd.

In general, we use lower case latin letters for vectors, and upper case latin letters for
sets or sometimes matrices. Lower case greek letters are usually used for real scalars
whereas the letters n,m, k, d are usually positive integers. We implicitly assume this
throughout the thesis in statements such as “Let p1, . . . , pn ∈ Rd”.

Throughout the thesis, the term “Theorem” indicates the major results of a chapter.
“Lemmas” are used to prepare the proof of the main theorems or give additional side
notes. The term “Proposition” is employed for a theorem which is stated within this
thesis but which has been proved elsewhere.
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We denote by P (and NP, respectively) the classes of decision problems that are
solvable (verifiable, respectively) in polynomial time. For an account on complexity
theory, we refer to [75]. We write FPT for the class of fixed-parameter-tractable problems
and W[1] for the problems of the first level of the W-hierarchy in the theory of Fixed
Parameter Tractability. For an introduction to Fixed Parameter Tractability, we refer
to the textbooks [70, 138].

For comprehensive background material, we refer to [150] for the general theory of
convex bodies, to [96, 162] for polytopes in particular, to [147] for Convex Analysis,
to [92] for the Algorithmic Theory of Convex Bodies and to [56, 57] for an account on
Linear Programming.
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Borgwardt, René Brandenberg, Julia Ehrenmüller, Viviana Ghiglione, Wolfgang Riedl,
Michael Ritter, Felix Schmiedl, and Tobias Windisch for proofreading the manuscript of
this thesis and improving it with many valuable comments.

Last but by no means least, I would like to express my gratefulness towards my adviser
Peter Gritzmann. I am very thankful for the advice and insights that he shared with
me and for the freedom that he accorded me in many aspects. I am very glad that I was
able to write my dissertation in his group and benefit from his experience in scientific
questions and beyond.



Chapter 2

Symmetry Coefficients in
Geometric Inequalities

Many classical geometric inequalities on functionals of convex bodies depend on the
dimension of the ambient space. In this first chapter, we show that this dimension de-
pendence may often be replaced (totally or partially) by different symmetry measures
of the convex body. Since these coefficients are bounded by the dimension but possibly
smaller, our inequalities sharpen the original ones. Since they can often be computed effi-
ciently, the improved bounds may also be used to obtain better bounds in approximation
algorithms.

This chapter is joint work with René Brandenberg and a joint paper presenting the
obtained results is currently in preparation [39].

2.1 Introduction

Since Jung’s famous inequality [116] in 1901, geometric inequalities relating different
radii of convex bodies form a central area of research in convex geometry. Starting with
[30], in many classic treatises on convexity, significant parts are devoted to geometric
inequalities among radii (e.g. [33], [59, Section 6], [66, Chapter 6], [97, Section 4.1.3]). In
a broader context concerning the relevance of geometric inequalities, also the textbooks
[47] and [150] should be mentioned here.

Interesting and beautiful results of their own, geometric inequalities also serve as indis-
pensable tools for many results in convex geometry itself as well as in other application
areas. It is therefore not surprising that results such as Jung’s Inequality or John’s The-
orem [115] still are frequently cited in a broad variety of papers. Thus, even more than a
century after Jung’s seminal inequality, the area of geometric inequalities in general and
especially among radii is still a prosperous field of research (see [36, 83, 100, 107, 142, 151]
for inequalities among radii of convex bodies and [26, 44, 104] for inequalities involving
radii and other geometric functionals).

19
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The kind of inequalities to be considered in the following usually bound a geometric
functional (e.g. a certain radius) of a convex body in terms of another one. The statement
of the theorem then usually consists of two parts: a general bound on the ratio of these
two functionals that holds true for arbitrary convex bodies and an additional statement
that the bound can be improved (sometimes to a trivial bound) if the body under
investigation is symmetric. In this paper, we propose to use measures of symmetry to
strengthen geometric inequalities for convex bodies that are not symmetric but possibly
far from the worst case bound in the original theorem.
In particular, we prove sharpened versions of a classic inequality between in- and cir-
cumradius (e.g. [69, p. 28]), and of the famous theorems of Jung [116], Steinhagen [153],
Bohnenblust [28], Leichtweiß [128], and John [115].

The symmetry measures that we use for this purpose are variants of Minkowski’s
measure of asymmetry and have the desirable advantage that they are computable for
polytopes via Linear Programming (see Lemmas 2.3.5 and 2.3.9). Hence, the improve-
ment from basing these inequalities on symmetry coefficients is not only of theoretical
interest but also allows better bounds in practical applications as in core set algorithms
(cf. Chapter 4) or e.g. in [65, 121].
As a first note on the role of the dimension in the present context, we point out that
our inequalities show, that in many cases the ratio between two functionals is bound
solely to the symmetry coefficients and not intrinsically dependent on the dimension.
The dimension dependence, which is known from the original theorems, only enters the
inequalities as a worst case bound on the symmetry coefficient.

This chapter is organized as follows. Section 2.2 starts with the definition of the
different radii that appear in the course of this chapter along with some basic properties.
Then, Section 2.3 introduces two variants of symmetry measures that we use in the
subsequent sections. The remainder of the chapter is organized in groups around the
individual theorems in the section headings that are generalized.

2.2 Radii Definitions and Preliminaries

2.2.1 Radii Definitions

We start this section by defining the circumradius of a closed convex set K ⊆ Rd
with respect to some gauge body C ⊆ Rd. The circumradius appears at many points
throughout this chapter and also serves for the definition of other radii and symmetry
coefficients. Note that in all the following definitions C is not necessarily assumed to be
symmetric.

Definition 2.2.1 (C-radius)
Let K,C ⊆ Rd non-empty, closed and convex. We denote by R(K,C) the least dilatation
factor ρ ≥ 0 such that a translate of ρC contains K, and call it the C-radius of K
(cf. Figure 2.1). In mathematical terms,
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R(K,C) := inf{ρ ≥ 0 : ∃c ∈ Rd s.t. K ⊆ c+ ρC}. (2.1)

C

0 0

K

c+R(K,C)C

K

Figure 2.1: The C-radius of a convex body K ⊆ R2. Left: The convex body K and an
unbounded closed convex set C. Right: A minimally scaled copy of C is translated such
that it contains K.

If C = Bd2 is the Euclidean ball, R(K,Bd2) is the common Euclidean circumradius of K.
If C is 0-symmetric R(K,C) measures the circumradius of K with respect to the norm
‖·‖C induced by the gauge body C. Since Definition 2.2.1 allows unbounded convex sets
K and C, one has to be careful with the cases where the infimum in (2.1) is not attained.
We treat these cases in the following lemma. Note that by definition R(K,C) is invariant
under translations of K and C. Hence, we may assume 0 ∈ relint(K)∩ relint(C) without
loss of generality, wherever it simplifies the notation.

Lemma 2.2.2
Let K,C ⊆ Rd non-empty, convex and closed with 0 ∈ relint(K) ∩ relint(C). Then,

a) R(K,C) <∞ if and only if K ⊆ lin(C) and rec(K) ⊆ rec(C),

b) R(K,C) = 0 if and only if R(K, rec(C)) <∞, and

c) if R(K,C) 6∈ {0,∞}, there exists a center c ∈ Rd such that K ⊆ c+R(K,C)C.

Proof.
Let K1 := conv(ext(K)) and C1 := conv(ext(C)) such that K and C can be expressed
as K = K1 + rec(K) and C = C1 + rec(C), respectively.

a) If R(K,C) < ∞, there exist c ∈ Rd, ρ ≥ 0 such that K ⊆ c + ρC. This implies the
right hand side in a). If, on the other hand, K ⊆ lin(C) and rec(K) ⊆ rec(C), we
immediately obtain K1 ⊆ lin(C) and since K1 is bounded and 0 ∈ relint(C), there
exists ρ > 0 such that K1 ⊆ ρC. Moreover, since rec(K) ⊆ rec(C) = ρ rec(C), we
obtain K = K1 + rec(K) ⊆ ρC.
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b) Assume that R(K,C) = 0. Then, by a), rec(K) ⊆ rec(C). If R(K, rec(C)) = ∞,
then a) implies the existence of a point x ∈ K such that x 6∈ lin(rec(C)). Now,
assume without loss of generality that C1 ⊆ Bd2. Thus, c+ ρC = c+ ρC1 + rec(C) ⊆
c+ ρBd2 + lin(rec(C)) for all c ∈ Rd and ρ > 0. Denote the Euclidean distance of x to
lin(rec(C)) by ρ̄ > 0. Since x, 0 ∈ K, we conclude that K ⊆ c + ρC is possible only
if ρ ≥ ρ̄

2 > 0, which contradicts the assumption.

If, on the other hand, there exist c ∈ Rd and ρ∗ ≥ 0 such that K ⊆ c + ρ∗rec(C),
then K ⊆ c+ ρ rec(C) ⊆ c+ ρC for all ρ > 0 and therefore R(K,C) = 0.

c) If R(K,C) ∈ (0,∞), Part a) and b) imply rec(K) ⊆ rec(C) and K1 6⊆ lin(rec(C)).
Hence, there exists ρ > 0 such that R(K,C) = R(K1, C) = R(K1, C ∩ ρBd2) and
therefore by the Blaschke selection theorem [150, Theorem 1.8.6] some c ∈ Rd such
that K1 ⊆ c+R(K,C)(C ∩ ρ2Bd2) ⊆ c+R(K,C)C. Because of rec(K) ⊆ rec(C), this
implies K ⊆ c+R(K,C)C.

�

As an immediate corollary of Lemma 2.2.2, we obtain the following if K and C are
bounded.

Corollary 2.2.3
Let K,C ∈ Cd with 0 ∈ relint(K) ∩ relint(C). Then,

a) R(K,C) <∞ if and only if K ⊆ lin(C),

b) R(K,C) = 0 if and only if K is a singleton, and

c) if R(K,C) 6=∞, there exists a center c ∈ Rd such that K ⊆ c+R(K,C)C.

In the same way as the circumradius, we introduce the inradius of a convex set K
with respect to a gauge body C.

Definition 2.2.4 (C-inradius)
Let K,C ⊆ Rd non-empty, closed and convex. The C-inradius r(K,C) of K is the
greatest scaling factor ρ ≥ 0, such that a translate of ρC is contained inK (cf. Figure 2.2).
In other words,

r(K,C) := sup{ρ ≥ 0 : ∃c ∈ Rd s.t. c+ ρC ⊆ K}. (2.2)

Strictly speaking, there is no need to introduce r(K,C), since it can easily be expressed
as

r(K,C) = R(C,K)−1, (2.3)

using the conventions ∞−1 = 0 and 0−1 = ∞ (cf. e.g. [97, Section 4.1.2]). Neverthe-
less, we keep the notation, as the little r, reminiscent of inradius, will emphasize the
resemblance with the theorems being generalized.
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0 0

KK
C

c+ r(K,C)C

Figure 2.2: The C-inradius of a convex body K ⊆ R2. Left: The convex body K and a
line segment C ⊆ R2. Right: A maximally scaled copy of C is translated such that it is
contained in K.

Whereas the definitions of in- and circumradius are canonical even for asymmetric C,
there seem to be at least two natural generalizations of the diameter of K with respect
to a non-symmetric C. The first possibility is given in Definition 2.2.5 and uses the
maximal C-radius of two-point-subsets of K. In the line of the general definition of core
radii in Definition 4.2.1, we denote this radius by R1(K,C).

Definition 2.2.5 (C-diameter)
Let K,C ⊆ Rd non-empty, closed and convex. We define

R1(K,C) := sup
{
R
(
[x, y], C

)
: x, y ∈ K

}

as the C-radius of the “longest” segment in K and

D(K,C) := 2R1(K,C)

as the C-diameter of K (cf. Figure 2.3).

0 0
y

x

K

C

c+R1(K,C)C

Figure 2.3: The C-diameter of a convex body K. Left: K,C ⊆ R2. Right: The indicated
segment [x, y] has maximal C-radius among all line segments contained in K.
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A second way of introducing a diameter with respect to a non-symmetric C is via
the (possibly asymmetric) distance measure induced by C. Although Leichtweiß already
uses this definition under the name Minkowski diameter in [128], we prefer to speak of
asymmetric diameter to emphasize its asymmetric nature, which is in contrast to the
properties of R1(K,C) shown in Lemma 2.2.10.

Definition 2.2.6 (Asymmetric diameter)
Let C ∈ Cd0 and denote by

‖ · ‖C : Rd → [0,∞); x 7→ ‖x‖C := min{λ ≥ 0 : x ∈ λC}

the (possibly asymmetric) norm/gauge functional induced by C. For K ⊆ Rd non-empty,
closed and convex, we define

AD(K,C) := sup{‖x− y‖C : x, y ∈ K}

as the asymmetric diameter of K with respect to C (cf. Figure 2.4).

0 0
y

x

K

C

x+AD(K,C)C

Figure 2.4: The asymmetric C-diameter of convex body K ⊆ R2. Left: The convex
body K and the gauge body C ⊆ R2. Right: The indicated segment [x, y] has maximal
length with respect to the “norm” induced by C.

Comparing the two diameter definitions, we remark that AD(K,C) is strongly de-
pendent on the position of C with respect to the origin (note the assumption C ∈ Cd0
in Definition 2.2.6), whereas D(K,C) is invariant under translations of C. Moreover,
in view of Theorem 2.4.1 and Corollary 2.4.6, Definition 2.2.5 seems more advantageous
for our purposes. However, if C is 0-symmetric, we have AD(K,C) = D(K,C).

Analogously to the diameter, we define the width for a closed and convex set K ⊆ Rd
with respect to a general gauge body C ⊆ Rd in two ways. The idea of the first definition
is to measure the ratio of distances of two parallel hyperplanes that sandwich K and C,
respectively (cf. Figure 2.5).
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Definition 2.2.7 (C-width)
Let K,C ⊆ Rd non-empty, closed and convex. If h(K −K, a) = ∞ or h(C − C, a) = 0
for all a ∈ Rd \ {0}, we define r1(K,C) := ∞. If h(C − C, a) = ∞ or h(K −K, a) = 0
for all a ∈ Rd \ {0}, let r1(K,C) := 0. Otherwise, we define

r1(K,C) := inf

{
h(K −K, a)

h(C − C, a)
: a ∈ Rd \ {0}

}
. (2.4)

and denote by
w(K,C) := 2r1(K,C)

the C-width of K.

C

0 0

KK
a

Figure 2.5: The symmetric C-width of K. Left: K,C ⊆ R2. Right: The symmetric
C-width of K is attained for a direction a, for which the ratio h(K −K, a)/h(C −C, a)
is minimal.

As for the diameter, the width of K with respect to C may also be defined as follows.

Definition 2.2.8 (Asymmetric width)
For K ⊆ Rd non-empty, closed and convex, and C ∈ Cd0 , define

aw(K,C) := min{h(K −K, a) : a ∈ bd(C◦)}.

Again, in case C is symmetric, w(K,C) = aw(K,C) is the width of K in the usual
sense. To avoid confusion, we explicitly remark that the width of K is sometimes also
called the minimal width or minimal breadth in the literature.

Remark 2.2.9 (Pathological cases)
Note that, by the definitions of the radii and Lemma 2.2.2, we immediately obtain:
whenever one of the four radii introduced above is 0 or∞ all of them are. More precisely:

{
R(K,C), R1(K,C), r(C,K), r1(C,K)

}
∩ {0,∞} 6= ∅

=⇒ R(K,C) = R1(K,C) = r(C,K)−1 = r1(C,K)−1.
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Our first lemma shows that both the C-width and the C-diameter remain unaffected
if the arguments are symmetrized. This allows us to establish a useful identity relating
R1(K,C) to r1(C,K).

Lemma 2.2.10 (Invariance under symmetrization)
Let K,C ⊆ Rd non-empty, closed and convex. The following three identities hold

a) r1(K,C) = r1

(
1

2
(K −K),

1

2
(C − C)

)
,

b) R1(K,C) = R1

(
1

2
(K −K),

1

2
(C − C)

)
, and

c) r1(K,C) = R1(C,K)−1 (or equivalently, D(K,C)w(C,K) = 4).

Proof.
First, observe that for K ⊆ Rd, we have

K −K =
1

2
(K −K)− 1

2
(K −K). (2.5)

Using Identity (2.5), a) follows immediately from the definition of the C-width via Equa-
tion (2.4).
For the proof of b), let A ∈ {K,C} and p, q ∈ A. Then, p − 1

2(p + q) = 1
2(p − q) ∈

1
2(A− A) and q − 1

2(p + q) = 1
2(q − p) ∈ 1

2(A− A). Thus, with A = K, we obtain that
R1(K,C) ≤ R1(1

2(K −K), C) and, with A = C, that R1(K,C) ≥ R1(K, 1
2(C − C)).

On the other hand, let p = 1
2(xp− yp), q = 1

2(xq − yq) ∈ 1
2(A−A) with xp, xq, yp, yq ∈ A.

Then p+ 1
2(yp+yq) = 1

2(xp+yq) ∈ A and q+ 1
2(yp+yq) = 1

2(xq+yp) ∈ A. Hence it follows
R1(1

2(K−K), C) ≤ R1(K,C) from using A = K and R1(K, 1
2(C−C)) ≥ R1(K,C) from

using A = C.
For Part c), we use the well known identities R1(K,C) = R(K,C) and r1(K,C) =
r(K,C) for symmetric K and C (e.g. [86, (1.3)]) and obtain

R1(K,C)
b)
= R1

(
1
2(K −K), 1

2(C − C)
)

= R
(

1
2(K −K), 1

2(C − C)
)

(2.3)
= r

(
1
2(C − C), 1

2(K −K)
)−1

= r1

(
1
2(C − C), 1

2(K −K)
)−1 a)

= r1(C,K)−1.

�

Finally, the following lemma gives an alternative way to express AD(K,C), which will
be useful in the sequel.

Lemma 2.2.11 (Alternative formulation of AD(K,C))
Let K ⊆ Rd non-empty, closed and convex, and C ∈ Cd0 . Then,

AD(K,C) = sup{h(K −K, a) : a ∈ C◦}.
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Proof.
For x ∈ Rd, ‖x‖C = max{aTx : a ∈ C◦}. Hence,

AD(K,C) = sup{aT (p− q) : a ∈ C◦, p, q ∈ K} = sup{h(K −K, a) : a ∈ C◦}.

�

2.2.2 Some Specific Radii

We conclude this section of preparing lemmas by computing some radii of certain
convex bodies that will serve to show the sharpness of several inequalities in the sequel.

Lemma 2.2.12 (Partial difference bodies of simplices)
Let S ⊆ Rd be a d-simplex and α, β ∈ [0, 1]. Define C := S−αS, K := −S+βS. Then,

R(K,C) =
d+ β

1 + dα
and R1(K,C) =

β + 1

α+ 1
. (2.6)

Proof.
Since R(K,C) and R1(K,C) are invariant under translations of K and C, we may assume
that there exist x1, . . . , xd+1, a1, . . . , ad+1 ∈ Rd such that

S = conv{x1, . . . , xd+1} =
d+1⋂

i=1

H≤(ai, 1),

where the ai are numbered such that

aTi xj =

{
1 if i 6= j

−d if i = j

for all i, j ∈ [d+ 1].
In a first step, we prove −S+βS ⊆ d+β

1+dα(S−αS), which implies R(−S+βS, S−αS) ≤
d+β
1+dα . For this purpose let i, j ∈ [d + 1] with i 6= j such that −xi + βxj is a vertex of
−S + βS. Showing that there exists p ∈ S such that

− xi + βxj =
d+ β

1 + dα
p− α(d+ β)

1 + dα
xi, (2.7)

implies that −xi + βxj ∈ d+β
1+dα(S − αS). Rearranging (2.7) yields that we need

p =
1 + dα

d+ β
(−xi + βxj) + αxi.

However, with this expression, it is straightforward to verify that, aTi p = 1 and aTk p < 1
for all k ∈ [d+ 1] \ {i} and therefore that p ∈ S.
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On the other hand, we have R(−S + βS, S) = d+ β and h(S − αS, ai) = 1 + dα for all
i ∈ [d+ 1], which implies R(−S + βS, S − αS) ≥ d+β

1+dα .
Now consider the diameter: Since K −K = (1 +β)(S−S) and C −C = (1 +α)(S−S),
Lemma 2.2.10b) yields

R1(K,C) = R1 ((1 + β)(S − S), (1 + α)(S − S)) =
1 + β

1 + α
.

�

Lemma 2.2.13 (Regular simplex intersected with a ball)
Let T ⊆ Bd2 be a regular simplex with all its vertices on the Euclidean unit sphere,
ρ ∈

[
1
d , 1
]
, and K := T ∩ ρBd2. Then,

R(−K,K) = dρ, r(K,Bd2) =
1

d
, and r1(K,Bd2) = min

{
r1(T,Bd2), ρ+

1

d

}
.

If further C = T ∩ ρ2Bd2 with ρ2 ≤ ρ. Then,

R(K,C) =
ρ

ρ2
and R(C,K) = 1.

Proof.
As ρ ≥ 1

d and r(T,Bd2) = 1
d ,

−K ⊆ ρBd2 ⊆ dρT ∩ dρ2Bd2 = dρK.

Again, since r(T,Bd2) = 1
d , this scaling is best possible. Hence, R(−K,K) = dρ.

Further, since ρ ≥ 1
d , r(K,Bd2) = r(T,Bd2) = 1

d . And, if r1(K,Bd2) < r1(T,Bd2), then,
because of ρ ≥ 1

d , the width of K is attained between a pair of hyperplanes supporting
T in a point x in the relative interior of a facet of T and −ρx, respectively. Hence,

r1(K,Bd2) = min

{
r1(T,Bd2), ρ+

1

d

}
.

For the second statement, we immediately obtain R(K,C) = R(ρBd2, ρ2Bd2) = ρ
ρ2

by the
definition of K and C. And finally, since ρ2 ≤ ρ, C ⊆ K and C touches all facets of
T . Since these are also facets of K, we obtain R(C,K) = 1 by Corollary 4.2.4 and
Theorem 4.2.3. �

Lemma 2.2.14 (Convex hull of a regular simplex and a ball)
Let T ⊆ Bd2 be a regular simplex with all its vertices on the Euclidean unit sphere,
ρ ∈

[
1
d , 1
]

and K := conv
(
T ∪ ρBd2

)
. Then,

R(−K,K) =
1

ρ
, R(K,Bd2) = 1 and R1(K,Bd2) = max

{
R1(T,Bd2),

1 + ρ

2

}
.
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Proof.
We have 1

ρK = conv
(

1
ρT ∪ Bd2

)
. Since −T ⊆ Bd2 and ρ ≤ 1, it follows that −K ⊆ 1

ρK.

Optimality of this inclusion is easily verifiable by Theorem 4.2.3, since ext(T ) ⊆ Sd−1
2 .

This shows R(−K,K) = 1
ρ . Further, by definition of K we have R(K,Bd2) = 1.

If R1(K,Bd2) > R1(T,Bd2), then, because of ρ ≤ 1, the diameter of K is attained between
a vertex x of T and −ρx. Hence,

R1(K,Bd2) = max

{
R1(T,Bd2),

1 + ρ

2

}
.

�

2.3 Asymmetry Measures

There is a rich variety of measurements for the asymmetry of a convex body; see
[95, in particular Section 6] for an overview. It is already claimed in [95] that the one
which has received most interest is Minkowski’s measure of symmetry. Its reciprocal
measures the extent to which K needs to be scaled in order to contain a translate of −K
(cf. [150, Notes for Section 3.1]), which in our terminology, is the K-radius of −K. For
short, we call the latter value, which is large for “very asymmetric” sets, the Minkowski
asymmetry.

Definition 2.3.1 (Minkowski asymmetry)
Let K ⊆ Rd non-empty, closed and convex. We denote by

s(K) := R(−K,K) (2.8)

the Minkowski asymmetry of K.
Further, if c ∈ Rd is such that −(K − c) ⊆ s(K)(K − c), we call c a Minkowski center of
K, and if 0 is a Minkowski center of K, we say that the body K is Minkowski centered
(cf. Figure 2.6).

In all three examples in Figure 2.6, the Minkowski center of Ki is contained in Ki,
i = 1, 2, 3, a property which is also true in general as the following lemma shows.

Lemma 2.3.2 (Minkowski center is inside K)
Let K ⊆ Rd non-empty, closed and convex, and c ∈ Rd a Minkowski center of K. Then,

c ∈ relint(K).

Proof.
Without loss of generality we may assume int(K) 6= ∅ and c = 0. For a contradiction
suppose 0 /∈ int(K). Then there exists a ∈ Rd \ {0} such that aTx ≤ 0 for all x ∈ K.
Since −K ⊆ s(K)K, we obtain aTx = 0 for all x ∈ K, which contradicts int(K) 6= ∅. �
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K1

K2 K3c1
c2 c3

Figure 2.6: Planar examples with different Minkowski asymmetry. Left: K1 is sym-
metric, s(K1) = 1 and its Minkowski center is c1. Middle: K2 with s(K2) = 3/2 and
Minkowski center c2. Right: A 2-simplex K3 with s(K3) = 2 and Minkowski center
c3. The suitable homothetics of −K2 and −K3 containing K2 and K3, respectively, are
indicated in dotted gray.

For unbounded K, the following statement can easily be obtained from Lemma 2.2.2.

Remark 2.3.3 (Asymmetry for unbounded convex sets)
R(−K,K) = 0 if and only if K is an affine subspace, and R(−K,K) = ∞ if and
only if rec(K) is not a linear subspace. The latter means that cylinders K = K1 + F ,
with F a linear subspace and K1 ⊆ F⊥ a non-singleton compact convex set, are the
only unbounded sets with Minkowski asymmetry different from 0 and ∞ and for them
s(K) = s(K1).

Because of Remark 2.3.3, we henceforth assume K ∈ Cd. In this case, the following
proposition from [95] states the well-known bounds on s(K). With the tools developed
in Chapter 4, we also give a transparent proof of this fact in Corollary 4.2.7.

Proposition 2.3.4 (Bounds on the Minkowski asymmetry and the set of centers)
For K ∈ Cd,

1 ≤ s(K) ≤ d,
with s(K) = 1 if and only if K is symmetric, and s(K) = d if and only if K is a
d-simplex.

In contrast to the three examples in Figure 2.6, for an arbitrary K ∈ Cd, it can happen
that the Minkowski center is not unique and even that the set of centers is of dimension
up to d− 2 as indicated by Figure 2.7 and proved in [122].

Next, we turn to the computability of the Minkowski asymmetry.

Lemma 2.3.5 (Computability)
Let P ∈ Cd be a rational polytope given in H- or V-presentation Then s(P ) and a
Minkowski center c ∈ Rd such that −(P − c) ⊆ s(P )(P − c) can be computed in polyno-
mial time.
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-K

2K

Figure 2.7: Since K is a prism with triangular base area, we enforce s(K) ≥ 2 by
Proposition 2.3.4. However, in direction of the third coordinate the dilatation is twice
as much as needed and therefore the Minkowski center of K is not unique.

Proof.
Using (2.1), the computation of s(P ) = R(−P, P ) requires the solution of the following
optimization problem:

min ρ
s.t. −P ⊆ c+ ρP

c ∈ Rd
ρ ≥ 0.

(2.9)

By Proposition 2.3.4, and Lemma 2.2.2c), there exists a solution (c∗, ρ∗) ∈ Rd × [1, d] of
(2.9). By definition, s(P ) = ρ∗ and we have that c = − 1

s(P )+1c
∗ is a Minkowski center

of P , as

−
(
P +

1

s(P ) + 1
c∗
)
⊆ c∗ + s(P )P − 1

s(P ) + 1
c∗ = s(P )

(
P +

1

s(P ) + 1
c∗
)
.

Now, the proof of [87, Theorem 3.4] demonstrates that the computation of R(K,C)
amounts to solving a Linear Program if K and C are both given in H-presentation or
both given in V-presentation. Throughout [87], it is assumed that C is 0-symmetric and
fixed in advance, i.e. not considered as part of the input. However, this is not needed
for the formulation as Linear Program and the complexity of the Linear Program is
polynomial in the coding length of C, too. See e.g. [42, Section 2.1.2], where this is
made explicit for the case where K is given in V-presentation. Hence, in both cases,
s(P ) = R(−P, P ) and a respective Minkowski center can be computed in polynomial
time. �

Note that Lemma 2.3.5 can also be used to decide whether a polytope K in H- or
V-presentation is symmetric and to compute its center of symmetry if K is symmetric.
This yields an alternative proof for [87, Theorem 2.2].

In the following, we consider centered versions of asymmetry of a convex body K, i.e.
we are interested in the minimal dilatation factor needed to cover −(K−c0) with a copy
of K − c0 for some fixed c0 ∈ Rd depending on K, but not free to be chosen for the
optimal covering. The choice of c0 that we focus on here is the center of the maximum
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volume inscribed K. Measuring the symmetry of K around this center nicely interacts
with John’s Theorem [115]: on the one hand, the classic formulation of John’s Theorem
can be used to bound this centered asymmetry of a body (as in Corollary 2.3.8). On the
other hand, we will use the centered asymmetry in Theorem 2.7.1 to strengthen John’s
Theorem itself. Because of its importance in this context, we give an explicit statement
of John’s Theorem in Proposition 2.3.6 and refer to [20, 21, 94] for the best readable
proofs.
When talking about John’s Theorem, we usually assume that K is full dimensional, i.e.
without loss of generality K ∈ Cd0 . One may use the usual identification aff(K) ∼= Rdim(K)

to extend the results to lower-dimensional bodies.

Proposition 2.3.6 (John’s Theorem)
For every K ∈ Cd0 , there exists a unique ellipsoid of maximal volume contained in K.
This ellipsoid is Bd2 if and only if

(1) Bd2 ⊆ K, and

(2) for some k ∈
{
d+ 1, . . . , d(d+3)

2

}
, there are points p1, . . . , pk ∈ bd(K) ∩ Sd−1

2 and

scalars λ1, . . . , λk > 0 such that

0 =
k∑

i=1

λipi and I =
k∑

i=1

λipip
T
i . (2.10)

Moreover, if Bd2 is the ellipsoid of maximal volume contained in K, then K ⊆ dBd2 in
general, and K ⊆

√
dBd2, if K is 0-symmetric.

Definition 2.3.7 (John asymmetry)
Let K ∈ Cd0 , A ∈ Rd×d and b ∈ Rd such that ϕ : Rd → Rd;x 7→ Ax + b is the unique
affine transformation that brings K into John position (i.e. Bd2 is the ellipsoid of maximal
volume contained in AK + b). We define

s0(K) := min{ρ ≥ 0 : −(K −A−1b) ⊆ ρ(K −A−1b)}

as the asymmetry of K around the center of its maximum volume inscribed ellipsoid and
call it the John asymmetry of K.

As already mentioned, one may use John’s Theorem to obtain the same bounds on
s0(K) as on s(K) (cf. [95, p. 248]).

Corollary 2.3.8 (Bounds on the John asymmetry)
Let K ∈ Cd0 . Then,

1 ≤ s0(K) ≤ d
with equality if and only if K is symmetric in the first case and if and only if K is a
d-simplex in the latter case.
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As for the Minkowski asymmetry, the John asymmetry is computable for suitably
presented polytopes.

Lemma 2.3.9 (Computability of the John asymmetry)
If P ⊆ Rd is a polytope in H-presentation, s0(P ) can be approximated to any accuracy
in polynomial time.

Proof.
First, we mention that aff(P ) is efficiently computable for both presentations of P .
Hence, we may assume without loss of generality that P is full-dimensional. In [120],
it is shown that for a polytope P ⊆ Rd in H-presentation, the center of the ellipsoid
of maximal volume contained in P can be approximated to any accuracy in polynomial
time. An approximation of this center at hand, call it cP , we can compute min{ρ ≥ 0 :
−(P − cP ) ⊆ ρ(P − cP )} via Linear Programming analogously to the Linear Program in
the proof of Lemma 2.3.5. �

Of course, there are also other natural choices how the asymmetry of K can be mea-
sured. One particular choice is mentioned in the following remark, an extensive list of
others may be found in [95].

Remark 2.3.10 (Loewner asymmetry)
One could also measure the asymmetry of a body K around its Loewner center, i.e. the
center of the volume minimal enclosing ellipsoid of K. With the same arguments as for
the John center, the values of this asymmetry measure are also contained in the interval
[1, d]. Moreover, for a V-presented polytope P ⊆ Rd, this center can be approximated to
any accuracy in polynomial time [120] and therefore the asymmetry around the Loewner
center can be approximated efficiently for V-polytopes by the same argument as in the
proof of Lemma 2.3.9.

2.4 The Inequalities of Bohnenblust and Leichtweiß

The present section gives generalizations of the Inequalities of Bohnenblust [28] and
Leichtweiß [128] and shows that these generalizations are actually one and the same
inequality unifying the two old theorems.
First, we prove a version of Bohnenblust’s Inequality for general convex bodies with the
ratio of the C-radius and C-diameter bounded in terms of the Minkowski asymmetry of
K and C.

A note on pathological cases. For all the geometric inequalities that follow, we
assume K,C ∈ Cd. As a consequence of Proposition 2.3.4, all the right hand sides in the
inequalities are therefore well defined. In view of Remark 2.2.9, the only pathological
cases that can appear on the left hand side are of the form 0/0 or ∞/∞. Presuming
both ratios to be 1, we tacitly ignore these cases in the remainder.
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Theorem 2.4.1 (Generalizing Bohnenblust’s Inequality)
Let K,C ∈ Cd. Then,

R(K,C)

R1(K,C)
≤ (s(C) + 1)s(K)

s(K) + 1
(2.11)

and for every σK , σC ∈ [1, d], there exist bodies K and C with s(K) = σK , s(C) = σC
such that (2.11) is sharp for K and C.

Proof.
Suppose without loss of generality that R1(K,C) = 1. Then, Corollary 2.2.3 ensures
that for all p1, p2 ∈ K, there is a c ∈ Rd, such that p1, p2 ∈ c+ C; explicitly, p1 = c+ v
and p2 = c + w with v, w ∈ C. Hence p1 − p2 = v − w ∈ C − C for all p1, p2 ∈ K and
thus K −K ⊆ C − C. Using Proposition 2.3.4, there exist cK , cC ∈ Rd, such that

cK +
(

1 + 1
s(K)

)
K = K + cK + 1

s(K)K ⊆ K −K

⊆ C − C ⊆ C + cC + s(C)C = cC + (1 + s(C))C

and therefore
R(K,C)

R1(K,C)
≤ s(C) + 1

1 + 1/s(K)
=

(s(C) + 1)s(K)

s(K) + 1
.

For the sharpness of the inequality, let S ⊆ Rd be a simplex, α := σC−d
1−σCd and β := σK−d

1−σKd ,

C := S − αS and K := −S + βS. By Lemma 2.2.12, R(K,C) = d+β
1+dα , s(C) = σC ,

s(K) = σK and R1(K,C) = 1+β
1+α . Together, we obtain

R(K,C)

R1(K,C)
=

(d+ β)(α+ 1)

(1 + dα)(β + 1)
=

(s(C) + 1)s(K)

s(K) + 1
.

�

Remark 2.4.2 (Bohnenblust’s Inequality with John asymmetry)
Since s(K) ≤ s0(K) and s(C) ≤ s0(C), a version of Theorem 2.4.1 with s(K), s(C)
replaced by s0(K), s0(C) would be weaker but still valid and still strengthening Bohnen-
blust’s original inequality. As one may easily deduce from Proposition 2.3.6, it stays
sharp for the families of K and C as given in the proof above.

Note that the statement of Theorem 2.4.1 is different from the version proved by
Leichtweiß in [128]. In his proof of Bohnenblust’s Inequality, Leichtweiß shows an in-
equality relating R(K,C) and the asymmetric diameter AD(K,C) from Definition 2.2.6
instead of the symmetric C-diameter from Definition 2.2.5. Leichtweiß remarks that the
inequality can be generalized to non-symmetric containers and that even the convexity
of C can be relaxed to starshapedness. The idea of his proof is as elementary as the
proof of Theorem 2.4.1 and we repeat it here in contemporary notation with the slight
improvement that the dimension is replaced by s(K). Note, however, that the inequality
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is independent of the Minkowski asymmetry of C but strongly dependent on the position
of C via the dependence of AD(K,C) on the position of C with respect to the origin.
We also refer to [59, Section 6], where Bohnenblust’s Inequality is discussed for both
versions of the diameter definition.

The first observations in Leichtweiß’s proof is the following lemma, which, in the
context of symmetry measures, might be of independent interest and which we therefore
repeat with the constant d replaced by s(K).

Lemma 2.4.3 (Symmetry coefficients and the support function)
Let K ∈ Cd be Minkowski centered and a ∈ Rd. Then,

h(K,−a) ≤ s(K)h(K, a)

and therefore
h(K −K, a) ≤ (1 + s(K))h(K, a).

Proof.
Since K is Minkowski centered, we have

h(K,−a) = max{aTx : x ∈ (−K)} ≤ max{aTx : x ∈ s(K)K} = s(K)h(K, a).

This immediately yields the second statement via

h(K −K, a) = h(K, a) + h(K,−a) ≤ (1 + s(K))h(K, a).

�

This lemma at hand, we easily obtain the following version of Bohnenblust’s Inequality.

Lemma 2.4.4 (Bohnenblust’s Inequality, Leichtweiß’s version)
Let K ∈ Cd and C ∈ Cd0 . Then,

R(K,C)

AD(K,C)
≤ s(K)

s(K) + 1
.

Proof.
We can assume without loss of generality that K is Minkowski centered. Let a ∈ C◦
and x, y ∈ K be such that a ∈ N(K,x) and −a ∈ N(K, y). Then, by Lemma 2.4.3,
aT x
−aT y ≤ s(K), which via aT x−aT y

aT x
≥ 1

s(K) + 1 yields

h(K, a) = aTx ≤ s(K)

s(K) + 1
aT (x− y) ≤ s(K)

s(K) + 1
AD(K,C), (2.12)

where the second inequality follows from Lemma 2.2.11. Since (2.12) is true for all

a ∈ C◦, we obtain K ⊆ s(K)
s(K)+1AD(K,C)C. �
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Leichtweiß observed in [128], that his own inequality relating the width in the inradius

of a body K directly follows from h(K, a) ≥ h(K−K,a)
d+1 for a ∈ Rd. Replacing this

inequality by Lemma 2.4.3, his original inequality can be stated as follows.

Proposition 2.4.5 (Leichtweiß’s Inequality, original version)
For K ∈ Cd and C ∈ Cd0 , we have

aw(K,C)

r(K,C)
≤ s(K) + 1.

In contrast to Proposition 2.4.5, the use of the symmetric diameter and width defi-
nitions reveals that Leichtweiß’s Inequality no longer needs a separate proof, but is the
direct dual to Bohnenblust’s Inequality as demonstrated in the following corollary.

Corollary 2.4.6 (Generalizing Leichtweiß’s Inequality)
For K,C ∈ Cd, we have

r1(K,C)

r(K,C)
≤ (s(K) + 1)s(C)

s(C) + 1
(2.13)

and for every σK , σC ∈ [1, d], there exist bodies K and C with s(K) = σK , s(C) = σC
such that (2.13) is sharp for K and C.

Proof.
The claim follows readily from Theorem 2.4.1 using r(K,C) = R(C,K)−1 (Equation (2.3))
and r1(K,C) = R1(C,K)−1 (Lemma 2.2.10). For the statement about the sharpness of
(2.13), we switch the roles of K and C used in the proof of the sharpness of (2.11). �

2.5 The Inequalities of Jung and Steinhagen

In the important special case where C = Bd2, stronger formulations of the original
inequalities of Bohnenblust and Leichtweiß are known in the form of Jung’s [116] and
Steinhagen’s [153] Inequalities. However, for a body K ∈ Cd with s(K) < d, the bounds
of Theorems 2.4.1 and Corollary 2.4.6 become smaller for certain values of s(K) and can
therefore be used to improve Jung’s and Steinhagen’s Inequalities. The two following
theorems show that, building on symmetry coefficients, this is already the best one can
obtain.

Theorem 2.5.1 (Strengthening Jung’s Inequality)
Let K ∈ Cd. Then,

R(K,Bd2)

R1(K,Bd2)
≤ min

{√
2d

d+ 1
,

2s(K)

s(K) + 1

}
. (2.14)

This bound is best possible in the sense that for every value of σ ∈ [1, d], there is a
K ∈ Cd such that s(K) = σ and (2.14) is sharp for K.
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Proof.
The inequality in (2.14) follows directly from Jung’s original inequality in conjunction
with Theorem 2.4.1. For the statement about the sharpness, let σ ∈ [1, d], T ⊆ Bd2 a
regular simplex with all its vertices on the Euclidean unit sphere, and

K := conv

(
T ∪ 1

σ
Bd2
)
.

Then, by Lemma 2.2.14, s(K) = σ, R(K,Bd2) = 1, and

R1(K,Bd2) = max

{
R1(T,Bd2),

σ + 1

2σ

}
.

Since R1(T,Bd2) =
√

d+1
2d by Jung’s Theorem, K fulfills (2.14) with equality. �

Theorem 2.5.2 (Strengthening Steinhagen’s Inequality)
Let K ∈ Cd. Then,

r1(K,Bd2)

r(K,Bd2)
≤





min
{ √

d, s(K) + 1
}

if d is odd

min
{

d+1√
d+2

, s(K) + 1
}

if d is even.
(2.15)

This bound is best possible in the sense that for every value of σ ∈ [1, d], there is a
K ∈ Cd such that s(K) = σ and (2.15) is sharp for K.

Proof.
The inequality in (2.15) follows directly from Steinhagen’s original theorem in conjunc-
tion with Corollary 2.4.6. In order to show that the bound is best possible, let σ ∈ [1, d]
and

K := T ∩ σ
d
Bd2.

Then σ
d ∈

[
1
d , 1
]

and, by Lemma 2.2.13,

s(K) = σ, r(K,Bd2) =
1

d
and r1(K,Bd2) = min

{
r1(T,Bd2),

σ + 1

d

}
.

Thus, K fulfills (2.15) with equality. �

2.6 An Inequality between the In- and Circumradius

In this section we present a generalization of a classical inequality, stating that the
Euclidean circumradius of a simplex is at least d times larger than its inradius. We refer
to [69, p. 28] for historical comments on the original authorship of the inequality itself
and different proofs thereof. Theorem 2.6.1 generalizes this inequality by lower bounding
the ratio of R(K,C) and r(K,C) in terms of s(K) and s(C) for arbitrary K,C ∈ Cd.
The original inequality can be recovered from Theorem 2.6.1 by choosing C = Bd2 and
restricting K to simplices.
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Theorem 2.6.1 (Ratio of in- and circumradius)
Let K,C ∈ Cd. Then,

R(K,C)

r(K,C)
≥ max

{
s(K)

s(C)
,
s(C)

s(K)

}
. (2.16)

This bound is best possible in the sense that for every σK , σC ∈ [1, d], there exist K, C
such that s(K) = σK , s(C) = σC , and K and C fulfill (2.16) with equality.

Proof.
Since, by (2.3),

R(K,C)

r(K,C)
= R(K,C)R(C,K) =

R(C,K)

r(C,K)
,

it suffices to show R(K,C)R(C,K) ≥ s(K)
s(C) and we may assume without loss of generality

that C is Minkowski centered.
Because of Lemma 2.2.2, there exist ci ∈ Rd, i = 1, 2, such that c1 +K ⊆ R(K,C)C and
−C ⊆ c2 +R(C,K)(−K). Hence,

c1 +K ⊆ R(K,C)s(C)(−C) ⊆ R(K,C)s(C)c2 +R(K,C)s(C)R(C,K)(−K)

and thus R(K,C)s(C)R(C,K) ≥ s(K) by definition of s(K).
For the sharpness of (2.16), let σK , σC ∈ [1, d], T ⊆ Bd2 a regular simplex with all its
vertices on the Euclidean unit sphere and let

K := T ∩ σK
d

Bd2 and C := T ∩ σC
d
Bd2.

By Lemma 2.2.13, s(K) = σK and s(C) = σC . Since the roles of K and C are in-
terchangeable, we can assume without loss of generality that σK ≥ σC . Then, by
Lemma 2.2.13, R(K,C) = σK

σC
and R(C,K) = 1. Hence, we obtain

R(K,C)R(C,K) =
s(K)

s(C)
= max

{
s(K)

s(C)
,
s(C)

s(K)

}
.

�

Remark 2.6.2
Let again T ⊆ Bd2 be a regular simplex with all its vertices on the Euclidean unit sphere
and σ ∈ [1, d]. With the help of Lemma 2.2.14, it is easy to verify that also the body
K := conv(σ−1Bd2 ∪ T ) has s(K) = σ and fulfills (2.16) with equality.

Remark 2.6.3
Combining Theorem 2.4.1, Corollary 2.4.6 and Theorem 2.6.1, we obtain the following
chain of inequalities for K,C ∈ Cd, with C symmetric. For the sake of shortness the
arguments (K,C) as in R(K,C) and (K) in s(K) are omitted.

2r ≤ w ≤ (1 + s)r ≤ r +R ≤ s+ 1

s
R ≤ D ≤ 2R (2.17)
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From (2.17), one easily sees that in every normed space all three generalized inequali-
ties (2.11), (2.13), (2.16) are sharp for any set of constant width. However, since s(K) =
d is attained only for d-simplices, the equality chain w = (1 + d)r = r +R = d+1

d R = D
can only hold true if there is a d-simplex K of constant width. This means that, in this
case, the unit ball of that space must be a dilatation of K −K, see [50]. The fact that,
in Euclidean spaces of dimension at least 2, simplices cannot be of constant width also
retrospectively explains the two cases in (2.14) and (2.15).

Furthermore, the inequality

w(K,Bd2)

R(K,Bd2)
≤





2
√

1
d , if d is odd

2(d+1)

d
√
d+2

, if d is even.

by Alexander [6] (independently found in [91]), relating the width and circumradius of
simplices in Euclidean space is an immediate consequence of (2.17). Allowing sets K of
arbitrary Minkowski asymmetry, we obtain two new inequalities by combining (2.16),
and (2.14) or (2.15), respectively:

Corollary 2.6.4 (Generalizing and Dualizing Alexander’s Inequality)
Let K,C ∈ Cd, C symmetric. Then,

a)
r1(K,Bd2)

R(K,Bd2)
≤





min
{ √

d
s(K) , 1 + 1

s(K)

}
if d is odd

min
{

d+1
s(K)

√
d+2

, 1 + 1
s(K)

}
if d is even, and

b)
r(K,Bd2)

R1(K,Bd2)
≤ min

{ √
2d

s(K)
√
d+ 1

,
2

s(K) + 1

}
.

The two inequalities are sharp exactly for the sets for which the corresponding inequal-
ities (2.14) or (2.15) are sharp.

2.7 John’s Theorem

We now leave the field of radii behind and turn to the probably most famous con-
tainment problem under affinity: computing ellipsoids of maximal volume contained in
convex bodies. In particular the second part of Proposition 2.3.6, which states that Bd2
being the ellipsoid of maximal volume in K ensures that K ⊆ dBd2, is an indispensable
tool when it comes to approximations of convex bodies by simpler geometric objects.
We strengthen this part of the theorem by introducing the John asymmetry coefficient
in Ball’s proof [20] of John’s theorem. For a historical account on John’s Theorem and
its importance, we refer to [101].

Theorem 2.7.1 (Strengthening John’s Theorem)
Let K ∈ Cd0 such that Bd2 is the ellipsoid of maximal volume enclosed in K. Then,

K ⊆
√
s0(K)dBd2.
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Proof.
If Bd2 is the ellipsoid of maximal volume enclosed in K, by John’s Theorem (Proposi-
tion 2.3.6), for some k ∈ {d + 1, . . . , d+3

2 }, there exist u1, . . . , uk ∈ bd(K) ∩ Sd−1
2 and

λ1, . . . , λk > 0 which satisfy

k∑

i=1

λiui = 0 and

k∑

i=1

λiuiu
T
i = I. (2.18)

First, observe that, because of (2.18),
∑k

i=1 λi = trace(I) = d and that − 1
s0(K)K ⊆ K ⊆

C := {x ∈ Rd : uTi x ≤ 1 ∀i ∈ [k]}, which means

uTi

(
− 1

s0(K)
x

)
≤ 1

and therefore
−s0(K) ≤ uTi x ≤ 1

for all x ∈ K and all i ∈ [k]. Together with λi > 0 for i ∈ [k] and the identities in (2.18),
this yields for every x ∈ K

0 ≤
k∑

i=1

λi(1− uTi x)(s0(K) + uTi x)

=
k∑

i=1

λi
(
s0(K) + uTi x− s0(K)uTi x− (uTi x)2

)

=

(
k∑

i=1

λi

)
s0(K) + (1− s0(K))

(
k∑

i=1

λiui

)T
x− ‖x‖22

= ds0(K)− ‖x‖22.

Thus, ‖x‖2 ≤
√
s0(K)d. �

Note that replacing the John asymmetry by the Loewner asymmetry as suggested in
Remark 2.3.10, one can easily derive the same results as above for the latter one.

If a polytope P ⊆ Rd is given inH-presentation, it is shown in [120] that the ellipsoid of
maximal volume inscribed to P can be approximated to arbitrary accuracy in polynomial
time. (See also [155] and the extensive list of references therein.)
It is not known, on the other hand, whether the same is true for the minimum volume
enclosing ellipsoid of P . In fact, it is conjectured in [120] that approximation to arbitrary
accuracy of the minimum volume enclosing ellipsoid of an H-presented polytope is NP-
hard.
An approximation with a multiplicative error factor of at most (1 + ε)d, however, is
readily provided by combining the algorithm mentioned above and John’s Theorem.
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Depending on the input polytope P , the strengthened inequality in Theorem 2.7.1 allows
to improve this bound to (1 + ε)

√
s0(P )d, where the coefficient s0(P ) can be computed

(approximated) via Linear Programming once (an approximation of) the center of the
ellipsoid of maximum volume contained in P is known. Taking into account the hardness
of approximating the circumradius of anH-presented polytope even around a fixed center
(cf. [45] and the results in Chapter 3), the improvement of the bound by the computation
of s0(P ) is quasi at no cost.

As a second application, we mention that the the strengthening in Theorem 2.7.1 can
also be used to improve the bound that John’s Theorem implies on the Banach-Mazur
distance of two convex bodies.

Corollary 2.7.2 (A bound on the Banach-Mazur distance)
Let K,L ∈ Cd0 . If

δ(K,L) := min{ρ ≥ 0 : K ⊆ AL+ b ⊆ ρK + c, A ∈ Rd×d, b, c ∈ Rd}

denotes the Banach-Mazur distance of K and L, then

δ(K,L) ≤
√
s0(K)s0(L)d.

As stated in [76, Section 7.2], apart from the bound from John’s Theorem the “ques-
tion of the maximal distance between non-symmetric bodies is open”. Corollary 2.7.2
provides at least some partial improvement in this direction.

2.8 Asymmetry and Polarity

Finally, this last section gives bounds on the product of outer radii of K with inner
radii of K◦. More precisely, we are interested in the following type of radii, which are
similar to the ones in Definition 1.2.1.

Definition 2.8.1 (Successive inner and outer radii)
For K,C ∈ Cd, let

Rj(K,C) := inf
F∈Ldd−j

R(K,C + F )

the j-th outer radius of K with respect to C and

rj(K,C) := sup
F∈Ldj

r(K,C ∩ F )

the j-th inner radius of K with respect to C.

Note that these series of radii are different from the series investigated in Chapter 4
which inspired the nomenclature in the previous sections. In contrast to the radii consid-
ered above, for the series Rj(K,C), rj(K,C), we can for instance recover the Euclidean

width of K via 2R1(K,Bd2) and the Euclidean diameter via 2r1(K,Bd2).
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It is shown in [86] that, for K and C symmetric, the identity

Rj(K,C)rj(K
◦, C◦) = 1 (2.19)

holds for all j ∈ [d], and [99] shows that for C = Bd2 and possibly non-symmetric K at
least the inequality

Rj(K,Bd2)rj(K
◦,Bd2) ≥ 1 (2.20)

remains valid. For arbitrary bodies K and C, Theorem 2.8.5 gives lower and upper
bounds on the product Rj(K,C)rj(K

◦, C◦). Compared to (2.20), the bounds of The-
orem 2.8.5 seem somewhat weaker and some of them are indeed provably not tight.
Nonetheless, they complement the results above and specialize to (2.19) if K and C are
restricted to be symmetric.

We start by collecting some results about the Minkowski asymmetry of the polar of
a body and centered inballs and circumcylinders, which make the same technique as for
(2.19) applicable for the proof of Theorem 2.8.5.

Remark 2.8.2 (Minkowski asymmetry of the polar)
For K ∈ Cd Minkowski centered, we have s(K◦) = s(K).

Proof.
Let ρ > 0. Then −K ⊆ ρK ⇔ (−K)◦ ⊇ 1

ρK
◦ ⇔ ρK◦ ⊇ −K◦. �

Lemma 2.8.3 (Centered inballs and circumcylinders)
Let K,C ∈ Cd be Minkowski centered. Then the following two inclusions hold:

a) K ⊆ (s(C) + 1)s(K)

s(K) + 1
R(K,C)C,

b)
s(C) + 1

(s(K) + 1)s(C)
r(K,C)C ⊆ K.

Proof.

a) By definition of R(K,C), s(K), s(C), and the assumptions that K and C are
Minkowski centered, there exists c ∈ Rd such that

K ⊆ c+R(K,C)C and (2.21)

1

s(K)
K ⊆ −K ⊆ −c+R(K,C)(−C) ⊆ −c+R(K,C)s(C)C. (2.22)

Adding (2.21) and (2.22) yields

s(K) + 1

s(K)
K ⊆ R(K,C)(1 + s(C))C,

which is equivalent to the claimed inclusion.

b) The claim follows from a) by changing the roles ofK and C, and r(K,C) = R(C,K)−1.

�
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The above inclusions imply lower and upper bounds on the productRj(K,C)rj(K
◦, C◦).

In the Euclidean case, we can improve the lower bound by using a result from [99]. The
following proposition can be extracted from [99, Lemma 2.1].

Proposition 2.8.4
Let c ∈ Rd, ρ ≥ 0 and B := c + ρBd2 such that 0 ∈ int(B). Then, rd(B

◦,Bd2) ≥ 1
ρ and

rd(B
◦,Bd2) = 1

ρ if and only if c = 0.

Putting together both parts from Lemmas 2.8.3, we obtain the following inequalities.
The theorem assumes both bodies to be Minkowski centered. This assumption is without
loss of generality for the value of R(K,C). However, the value R(K◦, C◦) is heavily
dependent on this positioning of K and C since polarization is always performed with
respect to the origin. However, the Minkowski center seems a natural generalization of
the center of symmetry which is used as polarization center for 0-symmetric bodies.

Theorem 2.8.5 (Radii of the polar)
Let K,C ∈ Cd be Minkowski centered. Then,

Rj(K,C)rj(K
◦, C◦) ∈

[
s(K) + 1

(s(C) + 1)s(K)
,
(s(K) + 1)s(C)

s(C) + 1

]
.

In the Euclidean case , the lower bound can be improved to

Rj(K,Bd2)rj(K
◦,Bd2) ≥ 1.

Proof.
Let c ∈ Rd and F ∈ Ldd−j be such that K ⊆ c+F+Rj(K,C)C. Then, by Lemma 2.8.3a),

K ⊆ F + (s(C)+1)s(K)
s(K)+1 Rj(K,C)C and thus

K◦ ⊇ F ◦ ∩ s(K) + 1

(s(C) + 1)s(K)
Rj(K,C)−1C◦.

As F ◦ = F⊥ ∈ Ldj , we obtain Rj(K,C)rj(K
◦, C◦) ≥ s(K)+1

(s(C)+1)s(K) .

If C = Bd2, we may use K ⊆ F + c+Rj(K,Bd2)Bd2 and

(F + c+Rj(K,Bd2)Bd2)◦ = F⊥ ∩ (c+Rj(K,Bd2)Bd2)◦

to obtain F⊥∩(c+Rj(K,Bd2)Bd2)◦ ⊆ K◦. As rd

((
c+Rj(K,Bd2)Bd2

)◦
,Bd2
)
≥ Rj(K,Bd2)−1

by Proposition 2.8.4 and F⊥ ∈ Ldj , we obtain

rj(K
◦,Bd2) ≥ rj(K◦ ∩ F⊥,Bd2) ≥ Rj(K,Bd2)−1.
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On the other hand, if c ∈ Rd and F ∈ Ldj are such that K◦ ⊇ c + rj(K
◦, C◦)(C◦ ∩ F ),

then by Lemma 2.8.3 b) K◦ ⊇ s(C◦)+1
(s(K◦)+1)s(C◦)rj(K

◦, C◦)(C◦ ∩ F ) and by Remark 2.8.2,

K ⊆ F ◦ +
(s(K) + 1)s(C)

s(C) + 1
Rj(K

◦, C◦)C.

Again, F ◦ = F⊥ ∈ Ld−jj yields Rj(K,C)rj(K
◦, C◦) ≤ (s(K)+1)s(C)

s(C)+1 .
�



Chapter 3

Fixed Parameter Complexity of
Norm Maximization

The problem of maximizing the p-th power of a p-norm over a halfspace-presented
polytope in Rd is a convex maximization problem which plays a fundamental role in
computational convexity. It has been shown in [130] that this problem is NP-hard for all
values p ∈ N, if the dimension d of the ambient space is part of the input. In this chapter,
we use the theory of parametrized complexity to analyze how heavily the hardness of
norm maximization relies on the parameter d.

More precisely, we show that for p = 1 the problem is fixed parameter tractable but that
for all p ∈ N \ {1} norm maximization is W[1]-hard.

Concerning approximation algorithms for norm maximization, we show that for fixed
accuracy, there is a straightforward approximation algorithm for norm maximization in
FPT running time, but there is no FPT approximation algorithm, the running time of
which depends polynomially on the accuracy.

As with the NP-hardness of norm maximization, the W[1]-hardness immediately carries
over to various radius computation tasks in Computational Convexity.

This chapter is joint work with Christian Knauer and Daniel Werner and we hereby
gratefully acknowledge that this work has been initiated during the 10th INRIA-McGill
workshop on Computational Geometry. A joint paper with the obtained results is cur-
rently in preparation [124].

3.1 Introduction and Preliminaries

The problem of computing geometric functionals of polytopes arises in many appli-
cations in mathematical programming, operations research, statistics, physics, chem-
istry or medicine (see e.g. [90] for an overview). Hence, the question how efficiently
these functionals can be computed or approximated has been studied extensively, e.g. in
[27, 45, 85, 87, 130].

45
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Of particular interest is the problem of maximizing (the p-th power of) a p-norm over a
polytope. Despite its simple formulation, this problem already exhibits the combinato-
rial properties which are responsible for hardness or tractability of the computation of
many important geometric functionals. As for most computational problems on poly-
topes, the presentation of the input polytope is crucial for the computational complexity
of norm maximization: If the input polytope is presented as the convex hull of finitely
many points, norm maximization is solvable in polynomial time by the trivial algorithm
of computing and comparing the norm of all these points. The situation changes dra-
matically when the input polytope is presented as the intersection of halfspaces. The
present chapter is concerned with the investigation of the parametrized complexity of
this problem.

For p ∈ N ∪ {∞}, a precise formulation of the norm maximization problem that we
consider is as follows:

Problem 3.1.1 (Normmaxp)

Input: d ∈ N, γ ∈ Q, rational H-presentation of a symmetric polytope P ⊆ Rd
Parameter: d
Question: Is max{‖x‖pp : x ∈ P} ≥ γ?

Here, a rational H-presentation of a polytope is a presentation as intersection of finitely
many halfspaces which are defined by inequalities that have only rational coefficients.

As shown in [130], for p = ∞ (with the understanding that ‖x‖∞∞ = ‖x‖∞), Norm-
max∞ is solvable in polynomial time via Linear Programming. For all p ∈ N, on the
other hand, Normmaxp is NP-complete. (When speaking of NP-hardness of parame-
terized problems, we mean the same decision problem, simply ignoring the parameter.)
Moreover, in [27], it is shown that NP-hardness persists for all p ∈ N even when the
instances are restricted to full-dimensional parallelotopes presented as a Minkowski sum
of d linearly independent line segments. Moreover, by [45], there is no polynomial time
approximation algorithm for norm maximization for any constant performance ratio,
unless P = NP.

It is important to note that, as usual in the realm of computational convexity, the
dimension d is part of the input and the hardness of Normmaxp relies heavily on this
fact, especially for the very restricted instances in [27]. Indeed, if d is a constant, the
obvious brute force algorithm of converting the presentation of P yields a polynomial
time algorithm with running time O(nd), where n denotes the number of halfspaces
in the presentation of P . However, this algorithm quickly becomes impractical as n
grows, even for moderate values of d. The main purpose of this chapter is to close the
gap between NP-hardness for unbounded dimension and a theoretically polynomial, yet
impractical algorithm for fixed dimension.

A suitable tool that allows us to analyze how strongly the hardness of Normmaxp
depends on the parameter d is the theory of Fixed Parameter Tractability. For an
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introduction to Fixed Parameter Tractability, we refer to the textbooks [70, 138]. This
theory has already been applied successfully to show the intractability of several problems
in Computational Geometry even in low dimensions, see e.g. [48, 49, 77, 78, 79, 123].

Our analysis of Normmaxp shows that, although Normmaxp is NP-hard for all p ∈
N, the hardness has a different flavor for different types of norms: Whereas hardness
of Normmax1 only comes with the growth of the dimension, Normmaxp has to be
considered intractable already in small dimensions for all other values of p.
More precisely, we prove the following theorem:

Theorem 3.1.2 (Fixed-parameter complexity of Normmax)
Normmax1 is in FPT, whereas Normmaxp is W[1]-hard for all p ∈ N \ {1}.

The presented reduction also shows that in the hard cases no no(d) algorithm for Nor-
mmaxp exists, unless the Exponential Time Hypothesis1 is false. Thus, the brute force
algorithm for Normmaxp mentioned above already has the best achievable complexity,
if p ∈ N \ {1}.

In this case, one can also ask how strongly the inapproximability result of [45] relies
on the fact that Normmaxp is a problem in unbounded dimension. For this purpose,
call an algorithm that produces an x̄ ∈ P such that, for some β ∈ N,

‖x̄‖pp ≥
(
β − 1

β

)p
max{‖x‖pp : x ∈ P}

a β-approximation-algorithm for Normmaxp. The proof of the fact that Normmax1 is
in FPT then suggests the following: Replace the unit ball of the p-norm by a suitable
symmetric polytope which approximates it sufficiently well and use the maximum of
this polytopal norm as an approximation for the maximum of the p-norm. As polytopal
norms can be maximized by solving a linear program for every facet of the unit ball and
linear programs can be solved in TLP (d, n) := O(22dn) (see [132]), which is polynomial
in n for fixed d, this yields an FPT-time approximation algorithm for fixed accuracy β.

Theorem 3.1.3 (Approximation complexity of Normmax)
Let p ∈ N \ {1}. For every fixed β ∈ N, there is a β-approximation-algorithm for
Normmaxp which runs in time O(βdTLP (d, n)). Conversely, there is no scheme of β-
approximation-algorithms for Normmaxp with running time O(f(d)q(β, d, n)) with a
polynomial q and an arbitrary computable function f .

Hence, although the problem is not in APX, approximation of Normmaxp is possible
for moderate values of β and d. On the other hand, approximation tends to become
costly as soon as the dimension or the desired accuracy grows.

1The Exponential Time Hypothesis conjectures that n-variable 3-CNFSAT cannot be solved in 2o(n)-
time; cf. [113].
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Finally, analogously to the NP-hardness of Normmaxp, the W[1]-hardness of Nor-
mmaxp implies the intractability of various problems in Computational Convexity as
immediate corollaries. In Section 3.4, we show that for the respective values of p, the
problems Circumradiusp-H, Diameterp-H, Inradiusp-V and Widthp-V (all param-
eterized by the dimension) are W[1]-hard.

This chapter is organized as follows. In Section 3.2, we will analyze the parameterized
complexity of Normmaxp, i.e. we prove Theorem 3.1.2 and prepare some technical
lemmas, which we will also use in Section 3.3 where we prove Theorem 3.1.3. Finally, in
Section 3.4, we prove the corollaries for the mentioned radius computation tasks.

3.2 Fixed Parameter Complexity of Norm Maximization

3.2.1 Intractability

We will first prove the hardness result for Normmaxp for p ≥ 2 via an FPT reduction
of the W[1]-complete problem Clique to Normmaxp. The formal parametrized decision
problem of Clique is given in Problem 3.2.1; a proof of its W[1]-completeness can be
found e.g. in [70, Theorem 6.1].

Problem 3.2.1 (Clique)

Input: n, k ∈ N, E ⊆
(

[n]
2

)

Parameter: k
Question: Does G = ([n], E) contain a clique of size k?

Moreover, it is shown in [51] that Clique cannot be solved in time no(k), unless the
Exponential Time Hypothesis fails.

In order to show the hardness result, we will first show how to construct a polytope
P for a graph G = ([n], E) with the property that

max{‖x‖pp : x ∈ P} = k ⇐⇒ G contains a clique of size k.

This “reduction” will be laid out as if irrational numbers were computable with infinite
precision. The second part of this section will then show that the numbers can be
rounded to a sufficiently rough grid in order to make the reduction suitable for the
Turing machine model.

The construction.
Let (n, k,E) be an instance of Clique and p ∈ [1,∞). Throughout this chapter, we

assume without loss of generality that n is an even number. (If not, we add an isolated
vertex to the graph.)
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We choose d := 2k and consider

R2k = R2 × R2 × . . .× R2

i.e. we will think of a vector x ∈ R2k as k two-dimensional vectors stacked upon each
other. Therefore, it will be convenient to use the following notation.

Notation 3.2.2
By indexing a vector x ∈ R2k, we refer to the k two-dimensional vectors x1, . . . , xk ∈ R2

such that x = (xT1 , . . . , x
T
k )T . Further, for a ∈ R2 and β ∈ R, we let

H i
≤(a, β) := {x ∈ R2k : aTxi ≤ β}.

In order to construct an H-presentation of a polytope P ⊆ B2
p×B2

p× · · · ×B2
p, we will

first construct a 2-dimensional polytope P1 ⊆ B2
p as our basic building block by placing

vertices on the unit sphere S1
p (compare Figure 3.1):

For v ∈ [n2 ], let

p′v :=

(
1

0

)
+

2(v − 1)

n

(−1

1

)
and {pv} :=

(
p′v + [0,∞)

(
1

1

))
∩ S1

p; (3.1)

for v ∈ [n] \ [n2 ] let

p′v :=

(
0

1

)
+

2v − (n+ 2)

n

(−1

−1

)
and {pv} :=

(
p′v + [0,∞)

(−1

1

))
∩ S1

p. (3.2)

For v ∈ [2n] \ [n], let
pv := −pv−n

and
P1 := conv{p1, . . . , p2n} =

⋂

v∈[2n]

H≤(av, βv) ⊆ R2. (3.3)

Note that P1 is 0-symmetric by construction and that the required H-presentation of P1

in (3.3) can be computed in time O(n log(n)), see e.g. [60]. For notational convenience,
we also define

p2n+1 := p1 and p−1 := p2n.

Lemma 3.2.3 (Distance between the pv)
Let P1 := conv{p1, . . . , p2n} be the polytope defined in Equation (3.3) and v ∈ [2n]. The
distance between two neighboring points on S1

p satisfies

‖pv − pv+1‖2 ∈
[

2
√

2

n
,

4

n

]
.
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p′1 = p1

p4

p′4

p9 = −p1
p16

S12

S11
P1

Figure 3.1: Construction of P1 in the case p = 2, n = 8.

Proof.
Let Π : R2 → B2

1 denote the projection onto B2
1. By the definitions in (3.1) and (3.2), we

have Π(pv) = p′v. Since Π is contracting, the equidistant placement of p′1, . . . , p
′
n yields

‖pv − pv+1‖2 ≥ ‖p′v − p′v+1‖2 = 2
√

2
n for all v ∈ [2n].

For the other bound, assume that v ≤ n
4 . (The other cases can be handled with the same

arguments.) By elementary properties of B2
p, we have eT1 pv+1 ≤ eT1 pv and 1T pv+1 ≥ 1T pv

and thus pv+1 ∈ [q1, q2] with q1, q2 defined as in Figure 3.2.

pv

q1

q2
pv+1

p′v+1 + [0,∞)
(
1
1

)

S1p
e1

Figure 3.2: The situation in the proof of Lemma 3.2.3.

Inspection of the triangle conv{pv, q1, q2} shows that it is equilateral with a right angle
at q1. Thus, ‖pv − pv+1‖2 ≤ ‖pv − q2‖2 =

√
2‖pv − q1‖22 = 4

n . �

Using Notation 3.2.2, we define a polytope P2 ⊆ R2k via

P2 :=
⋂

i∈[k]

⋂

v∈[2n]

H i
≤(av, βv) ⊆ R2k.

Observe that P2 is 0-symmetric by construction and that any vertex x of P2 is of the
form x = (pv1 , . . . , pvk)T for suitable v1, . . . , vk ∈ [2n].
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As for any x = (xT1 , . . . , x
T
k )T ∈ R2k the identity

‖x‖pp =
k∑

i=1

‖xi‖pp

holds, and as for p ∈ N \ {1} the unit sphere {x ∈ R2 : ‖x‖pp = 1} contains no straight
line segments, it follows that for x ∈ P2,

‖x‖pp ≥ k ⇐⇒ x =




pv1
...
pvk


 for some v1, . . . , vk ∈ [2n].

For v ∈ [2n], let xv, yv ∈ R be the coordinates of pv = (xv, yv)
T and define

qv :=

(
sgn(xv)|xv|p−1

sgn(yv)|yv|p−1

)
. (3.4)

Noting that for all x ∈ P1 and v ∈ [2n], qTv x = 1 if and only if x = pv, we define

ε := 1−max{qTu pv : u, v ∈ [2n], u 6= v} > 0 (3.5)

and for u, v ∈ [n] and i, j ∈ [k],

Eijuv := {x ∈ R2k : ε− 2 ≤ qTu xi + qTv xj ≤ 2− ε}

and
F ijuv := {x ∈ R2k : ε− 2 ≤ qTu xi − qTv xj ≤ 2− ε}.

Thus, if x is a vertex of P2 with xi = ±pu and xj = ±pv for some u, v ∈ [n], then

x 6∈ Eijuv ∩ F ijuv, i.e. if u, v ∈ [n] and {u, v} 6∈ E the constraints of Eijuv ∩ F ijuv make sure
that P does not contain a vertex with xi = ±pu and xj = ±pv.

Finally, to encode the Clique instance, we let N :=
(

[n]
2

)
\ E, define

P := P2 ∩
⋂

{u,v}∈N
i,j∈[k],i 6=j

(Eijuv ∩ F ijuv) ∩
⋂

v∈[n]
i,j∈[k],i 6=j

(Eijvv ∩ F ijvv),

and obtain the following lemma.

Lemma 3.2.4 (Reduction with infinite precision)
Let (n, k,E) be an instance of Clique, p ∈ [1,∞) and P ⊆ R2k the polytope obtained
by the construction above. Then,

max{‖x‖pp : x ∈ P} = k ⇐⇒ G = ([n], E) contains a clique of size k.
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Analysis of the constructed polytope.
We will now investigate how much we can perturb the (possibly irrational) polytope

P in order to make it suitable for an FPT-reduction without loosing its ability to decide
between Yes- and No-instances of Clique. For this purpose, we define the constant

U :=
1

n2pk2
. (3.6)

In the following, we show that rounding the vertices p1, . . . , p2n of our initial polytope
P1 ⊆ R2 to the grid U

2 Z
2 preserves all important features of our reduction. Since the

parameter p is a constant in Normmaxp, all the necessary computations can be carried
out with a precision of O(log(nk)) bits. Since we only need a polynomial number of
computations, the whole reduction can be carried out in polynomial time.

Lemma 3.2.5
Let P1 = conv{p1, . . . , p2n} ⊆ R2 with p1, . . . , p2n ∈ S1

p be the polytope from Equation

(3.3). For ε := 1 −max{qTu pv : u, v ∈ [2n], u 6= v} with qu defined as in Equation (3.4),
we have

ε ≥ 2p−1

pnp
.

Proof.
Let x := (x1, x2)T ∈ S1

p and y := (y1, y2)T ∈ S1
1 with x, y ≥ 0, ‖x − e1‖2 ≥ 2

√
2

n , and

‖y − e1‖2 ≥ 2
√

2
n . Since B2

1 ⊆ B2
p, x2 ≥ y2 ≥ 2

n . Combining this inequality with x ∈ S1
p

yields

x1 = (1− xp2)
1
p ≤

(
1−

(
2

n

)p) 1
p

≤ 1− 2p

pnp
, (3.7)

where the last inequality follows by bounding the concave function x 7→ x
1
p from above

by a linear approximation at x = 1.
Now, let u, v ∈ [2n] with u 6= v. Then,

qTu pv = qTu pu + qTu (pv − pu) = 1 + cos(qu, pv − pu) ‖qu‖2 ‖pv − pu‖2. (3.8)

Since the points of lowest curvature on S1
p are ±e1 and ±e2, and since e1 = p1 = q1, we

obtain cos(qu, pv − pu) ≤ cos(e1, p2 − e1), which in turn can be bounded by

cos(e1, p2 − e1) ≤ x1 − 1

‖p2 − e1‖2
with x1 = eT1 x for the point x ∈ Sp1 defined above. Further, qu ∈ S1

p
p−1

implies ‖qu‖2 ≥
√

2
2 ,

and ‖pv − pu‖2 ≥ 2
√

2
n by Lemma 3.2.3. Using (3.7), we can continue Equation (3.8) to

qTu pv ≤ 1− 2p

pnp‖p2 − e1‖
·
√

2

2
· 2
√

2

n
≤ 1− 2p−1

pnp
,

where the last inequality follows again from Lemma 3.2.3. �
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For v ∈ [n], let p̄v be the rounding of pv to the grid U
2 Z

2 and define p̄v = −p̄v−n for
v ∈ [2n] \ [n] and further

P̄1 := conv{p̄1, . . . , p̄2n}. (3.9)

For p̄v = (x̄v, ȳv)
T ∈ R2, define

q̄v :=

(
sgn(x̄v) |x̄v|p−1

sgn(ȳv) |ȳv|p−1

)
.

By choice of our grid, we get

‖pv − p̄v‖p′ ≤ U ∀p′ ≥ 1. (3.10)

Moreover, if q ∈ [1,∞) is such that 1
p + 1

q = 1, then ‖qv‖q = 1 for all v ∈ [2n] and since

x 7→ xp−1 is Lipschitz continuous on [−1, 1] with Lipschitz constant L = p−1, we obtain

‖qv − q̄v‖1 ≤ (p− 1)U. (3.11)

First, we show that the points p̄1, . . . , p̄2n are still in convex position, which is binned
into a separate lemma for later use in Chapter 5.

Lemma 3.2.6
Let P̄1 = conv{p̄1, . . . , p̄2n} ⊆ R2 the polytope from (3.9). Then, ext(P̄1) = {p̄1, . . . , p̄2n}
and the coding length of an H-presentation of P̄1 is polynomially bounded in the coding
length of p̄1, . . . , p̄2n.

Proof.
For v ∈ [2n], we have qTv p̄v ≥ 1−‖qv‖2U ≥ 1−‖qv‖qU = 1−U , since p ≥ 2 and therefore
q ≤ 2. For u ∈ [2n] \ {v}, we get qTv p̄u ≤ 1 − ε + U . Since 1 − ε + U < 1 − U , the
hyperplane H=(qv, 1 − ε + U) separates p̄v from conv({p̄1, . . . , p̄2n} \ {p̄v}) and hence
p̄v ∈ ext(P̄1).

Assume now that P̄1 := {x ∈ R2 : āTv x ≤ 1 ∀v ∈ [2n]} is an H-presentation of P̄1.
Applying Cramer’s Rule, we see that, for all v ∈ [2n], the entries of āv are quotients
of polynomials in p̄1, . . . , p̄2n and so the coding length of the H-presentation of P̄1 is
bounded by a polynomial in the coding length of p̄1, . . . , p̄2n. �

Since the coding length of P̄1 is polynomially bounded, we also get that the coding
length of

P̄2 :=
⋂

i∈[k]

⋂

v∈[2n]

H i
≤(āv, β̄v) ⊆ R2k.

is polynomially bounded.
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Now, let ε̄ := 1 − max{q̄Tu p̄v : u, v ∈ [2n], u 6= v}. By expanding the expression

q̄Tu p̄v =
(
qu + (q̄u − qu)

)T (
pv + (p̄v − pv)

)
and using (3.10) and (3.11), we obtain

ε̄ ≥ ε− 3pU > 0. (3.12)

Finally, define
Ēijuv := {x ∈ R2k : ε̄− 2 ≤ p̄Tuxi + p̄Tv xj ≤ 2− ε̄},

and
F̄ ijuv := {x ∈ R2k : ε̄− 2 ≤ p̄Tuxi−, p̄Tv xj ≤ 2− ε̄},

and, for N :=
(

[n]
2

)
\ E, let

P̄ := P̄2 ∩
⋂

{u,v}∈N
i,j∈[k],i 6=j

(Ēijuv ∩ F̄ ijuv) ∩
⋂

v∈[n]
i,j∈[k],i 6=j

(Ēijvv ∩ F̄ ijvv). (3.13)

The following two lemmas will now prepare the proof that we can still reduce Clique
to norm maximization over P̄ . To be able to state them in a concise way, we introduce
the following notation.

Notation 3.2.7
Let P̄ ⊆ R2k be the polytope from Equation (3.13) and x = (xT1 , . . . , x

T
k )T ∈ P̄ . By

letting
mi(x) ∈ arg max{q̄Tv xi : v ∈ [2n]},

we can refer to the index of a vertex which is “closest” to x in the sense that q̄Tmi(x)x ≥ q̄Tv x
for all v ∈ [2n]. This is illustrated in Figure 3.3.

p1

x1
p8 x2

Figure 3.3: Illustration of Notation 3.2.7. The figure shows a point x = (xT1 , x
T
2 )T ∈ R4

with m1(x) = 1 and m2(x) = 8.

First, we show that if P̄ contains a point which is “close” (in the sense specified in
Notation 3.2.7) to a clique vertex, then P̄ contains the clique vertex itself.

Lemma 3.2.8
Let P̄ ⊆ R2k be the polytope constructed above in Equation (3.13). If there exists x̄ ∈ P̄
such that q̄Tmi(x̄)x̄ > 1− ε̄

2 for all i ∈ [k], then (p̄Tm1(x̄), . . . , p̄
T
mk(x̄))

T ∈ P̄ .
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Proof.
Since q̄Tmi(x̄)x̄i > 1 − ε̄

2 for all i ∈ [k], for no pair (i, j) ∈ [k]2 the inequalities q̄Tmi(x̄)xi +

q̄Tmj(x̄)xj ≤ 2 − ε̄ can be present in the description of P̄ . Since, by definition of ε̄, we

have q̄Tv p̄mi(x̄) ≤ 1− ε̄ for all v ∈ [2n] \ {mi(x̄)} and i ∈ [k], we can conclude that

(p̄Tm1(x̄), . . . , p̄
T
mk(x̄))

T ∈ P̄ .

�

In view of Lemma 3.2.8, it remains to show that the norm of a vertex which is “far”
from a clique vertex is sufficiently small:

Lemma 3.2.9
Let v ∈ [2n] and Q := conv{0, p̄v, p̄v+1} ∩H≤(q̄v, 1− ε̄

2) ∩H≤(q̄v+1, 1− ε̄
2). Then, for n

sufficiently large,

max{‖x‖pp : x ∈ Q} ≤ 1− 2p−3

pnp
.

Proof.
Let Q′ := conv {0, e1, p̄2} ∩H≤

(
e1, 1− ε̄

2

)
∩H≤

(
q̄2, 1− ε̄

2

)
. Since e1 is a point of lowest

curvature on the boundary of B2
p, we have max{‖x‖pp : x ∈ Q} ≤ max{‖x‖pp : x ∈ Q′} =

‖x∗‖pp, where x∗ fulfills eT1 x
∗ = 1 − ε̄

2 and x∗ = λe1 + (1 − λ)p̄2 for some λ ∈ [0, 1].
From the first property, we can deduce λ = 1 − ε̄

2 , which implies eT2 x
∗ = ε̄

2e
T
2 p̄2. By

Lemma 3.2.3, eT2 p̄2 ≤ 2
n + U . Putting things together, we obtain

‖x∗‖ ≤
(

1− ε̄

2

)p
+

(
ε̄

2

(
2

n
+ U

))p
≤
(

1− ε̄

2

)
+

(
ε̄

2

(
2

n
+ U

))p
. (3.14)

By Lemma 3.2.5 and Equation (3.12), ε̄ ≥ 2p−1

pnp − 3pU . By the choice of U and the
assumption that n is sufficiently large, we can therefore continue (3.14) and obtain

(
1− ε̄

2

)
+

(
ε̄

2

(
2

n
+ U

))p
≤ 1− 2p−3

pnp
.

�

Hardness part of Theorem 3.1.2.
The following lemma shows that it is sufficient to carry out the reduction described

by Lemma 3.2.4 with finite precision as described in this subsection. It completes the
proof of the hardness part of Theorem 3.1.2. For notational convenience, we use the
clique number ω(G) to denote the size of the biggest clique in a graph G = ([n], E).
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Lemma 3.2.10 (Reduction with finite precision)
Let (n, k,E) be an instance of Clique, G = ([n], E) and P̄ ⊆ R2k the polytope with
rounded coordinates constructed above in (3.13). Then,

ω(G) ≥ k ⇐⇒ max{‖x‖pp : x ∈ P̄} ≥ k(1− U)p (3.15)

and

ω(G) < k ⇐⇒ max{‖x‖pp : x ∈ P̄} ≤ (k − 1)(1 + U)p + 1− 2p−3

pnp
. (3.16)

Proof.
Since (k− 1)(1 +U)p + 1− 2p−3

pnp < k(1−U)p, if suffices to show the “forward” direction
in both (3.15) and (3.16).

If ω(G) ≥ k and {v1, . . . , vk} ⊆ [n] is the vertex set of a k-clique in G, then P̄ contains
the vertex x∗ = (p̄Tv1 , . . . , p̄

T
vk

)T and ‖x∗‖pp ≥ k(1− U)p by (3.10).

Assume now that ω(G) < k and let x∗ ∈ P̄ be a vertex of maximal norm in P̄ . If
q̄Tmi(x∗)x

∗ > 1 − ε̄
2 for all i ∈ [k], Lemma 3.2.8 would imply that (p̄Tm1(x∗), . . . , p̄

T
mk(x∗))

T

is a vertex of P̄ and therefore contradict ω(G) < k. Hence, there is some i ∈ [k] such
that q̄Tmi(x∗)x

∗ ≤ 1 − ε̄
2 . By adding a constant number of vertices to G, we can assume

that n is sufficiently large and apply Lemma 3.2.9 in order to obtain ‖x∗i ‖pp ≤ 1− 2p−3

pnp .

As ‖x∗j‖pp ≤ (1 + U)p for all j ∈ [k] \ {i}, the right hand side of (3.16) follows. �

The construction of the polytope P (or P̄ ) relies on the fact that, for p ≥ 2, the
boundary of the unit ball of a p-norm contains no straight line segment. This is not the
case for p = 1 and we show in the next subsection that Normmax1 is indeed in FPT.

3.2.2 Tractability

This subsection completes the proof of Theorem 3.1.2 by showing that Normmax1 is
fixed parameter tractable.

The statement of Theorem 3.2.12 is slightly more general than needed for Theorem 3.1.2
but will be of use in Section 3.3. The result for Normmax1 can be obtained from
Theorem 3.2.12 by choosing ϕd : Rd → R;x 7→ ‖x‖1 in Problem 3.2.11.

Problem 3.2.11 (Max-Φ)
Suppose that for each d ∈ N, ϕd : Rd → R is positive homogeneous of degree 1 and let
Φ := (ϕd)d∈N. The problem Max-Φ is defined as follows:

Input: d ∈ N, γ ∈ Q, rational H-presentation of a polytope P ⊆ Rd
Parameter: d
Question: Is max{ϕd(x) : x ∈ P} ≥ γ?
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Theorem 3.2.12 (Tractability of Max-Φ)
For each d ∈ N, let ϕd : Rd → R be positive homogeneous of degree 1 and Φ :=
(ϕd)d∈N. Suppose that, for d ∈ N, the set Bd := {x ∈ Rd : ϕd(x) ≤ 1} is a full-
dimensional polytope, a rational H-presentation of which can be computed in time f(d)
for a computable function f : N → N. Then, Max-Φ is in FPT and can be solved in
time O(f(d)TLP (d, n)).

Proof.
Let Bd =

⋂m
i=1H≤(ai, 1) be an H-presentation of Bd. Then, m ∈ O(f(d)). Because of

the homogeneity of ϕd, {x ∈ Rd : ϕd(x) ≤ λ} = λBd and ϕd(x) = maxi∈[m] a
T
i x. Hence,

max{ϕd(x) : x ∈ P} = max
i∈[m]

max{aTi x : x ∈ P}.

Thus, Max-Φ can be decided by the following algorithm:

(1) Compute an H-presentation of Bd in time f(d).
(2) Solve m linear programs max{aTi x : x ∈ P} in time TLP (d, n).
(3) Compare the biggest objective value to γ.

As TLP (d, n) ∈ O(22dn), the above algorithm has FPT running time O(f(d)22dn). �

We can also establish fixed parameter tractability for the two problems [−1, 1]-Parmaxp
and [0, 1]-Parmaxp as considered in [27].

Problem 3.2.13 ([0, 1]-Parmaxp)

Input: d ∈ N, γ ∈ Q, v1, . . . , vn ∈ Qd linearly independent
Parameter: d

Question: Is max{‖x‖pp : x ∈∑d
i=1[0, 1]vi} ≥ γ?

Problem 3.2.14 ([−1, 1]-Parmaxp)

Input: d ∈ N, γ ∈ Q, v1, . . . , vn ∈ Qd linearly independent
Parameter: d

Question: Is max{‖x‖pp : x ∈∑d
i=1[−1, 1]vi} ≥ γ?

In [27], it was shown that Problem 3.2.13 and 3.2.14 are both NP-hard, so that the NP-
hardness of Normmaxp persists even on very restricted instances. However, the follow-
ing theorem shows that these problems are fixed parameter tractable, when parametrized
by the dimension. So in this case, the hardness of Parmaxp is really a phenomenon of
high dimensions.

Theorem 3.2.15 (Tractability of Parmaxp)
For all p ∈ N, Problems 3.2.13 and 3.2.14 are in FPT.
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Proof.
We only consider Problem 3.2.13; the argument for Problem 3.2.14 is exactly the same.
The vertices of the polytope P :=

∑d
i=1[0, 1]vi are all of the form

∑d
i=1 λivi for some

vector λ = (λ1, . . . , λd)
T ∈ {0, 1}d. As the the maximum of ‖ · ‖pp is attained at a vertex

of P , it suffices to compute the norm of all 2d possible choices of λ ∈ {0, 1}d. This clearly
is an FPT-algorithm for Problem 3.2.13. �

3.3 Approximation

3.3.1 FPT-Approximation for Fixed Accuracy

In [45], it is shown that, for all p ∈ N, Normmaxp is not contained in APX (i.e. there
is no polynomial time approximation algorithm with a fixed performance guarantee). As
norm maximization with a polytopal unit ball is in FPT, we can give a straightforward
approximation algorithm that has FPT running time for any fixed accuracy by replacing
the unit ball Bdp by an approximating polytope. The following proposition concerning
the complexity of such a polytope can be obtained from [46, Lemmas 3.7 and 3.8].

Proposition 3.3.1 (Approximation of balls by polytopes)
Let p ∈ N and β ∈ N be fixed. There is a symmetric polytope B ⊆ Rd with a rational
H-presentation and at most O(βd) facets such that

Bdp ⊆ B ⊆
β

β − 1
Bdp, (3.17)

and B can be computed in time O(βd).

Lemma 3.3.2 (FPT-Approximation algorithm for fixed accuracy)
Let p ∈ N and β ∈ N be fixed. There is an algorithm which for every H-presented
polytope P ⊆ Rd runs in time O(βdTLP (d, n)) and produces an x̄ ∈ P such that

‖x̄‖pp ≥
(
β − 1

β

)p
max{‖x‖pp : x ∈ P}.

Proof.
The following algorithm has the desired properties:

(1) Compute an H-presentation of a symmetric polytope B ⊆ Rd with the properties of
Proposition 3.3.1 and let ‖ · ‖B : Rd → R;x 7→ ‖x‖B := min{λ ≥ 0 : x ∈ λB}

(2) Choose x̄ ∈ arg max{‖x‖B : x ∈ P}.
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It follows from Proposition 3.3.1 that step (1) can be accomplished in time O(βd). As the
number of facets of B is in O(βd), it follows from Theorem 3.2.12 that the maximization
of ‖ · ‖B over P can be done in time O(βdTLP (d, n)).
In order to show the performance ratio of the above algorithm, observe that Prop-
erty (3.17) of B implies that β−1

β ‖x‖p ≤ ‖x‖B ≤ ‖x‖p for all x ∈ Rd. Hence, if

x∗ ∈ arg max{‖x‖pp : x ∈ P}, we get

‖x̄‖pp ≥ ‖x̄‖pB ≥ ‖x∗‖
p
B ≥

(
β − 1

β

)p
‖x∗‖pp =

(
β − 1

β

)p
max{‖x‖pp : x ∈ P}.

�

3.3.2 No FPT-approximation for Variable Accuracy

Finally, we will show that the straightforward approximation of the previous subsec-
tion is already best possible in the sense that there is no algorithm with polynomial
dependence on the approximation quality and exponential dependence only on the di-
mension. Hence, combined with Lemma 3.3.2, Lemma 3.3.3 completes the proof of
Theorem 3.1.3. In fact, the basis for this has already been established in Lemma 3.2.10
and we can give the result right away.

Lemma 3.3.3 (No polynomial dependence on β)
Let f : N → R be a computable function and q : R3 → R a polynomial function. If
W[1]6=FPT, there is no algorithm which for every H-presented polytope P ⊆ Rd runs in
time O(f(d)q(β, d, n)) and produces an x̄ ∈ P such that

‖x̄‖pp ≥
(
β − 1

β

)p
max{‖x‖pp : x ∈ P}.

Proof.
Let (n, k,E) be an instance of the W[1]-hard problem Clique and P̄ ⊆ R2k the polytope
constructed in Equation (3.13). By Lemma 3.2.10, it can be decided if G = ([n], E) has
a clique of size k by determining, whether

either max{‖x‖pp : x ∈ P̄} ≥ k(1− U)p

or max{‖x‖pp : x ∈ P̄} ≤ (k − 1)(1 + U)p + 1− 2p−3

pnp
(3.18)

Assume that an algorithm with the claimed properties exists and call it A. One easily
checks that there is a suitable constant C > 0 such that it suffices to choose β ≥ pnpk

C in
order to fulfill

(
β

β − 1

)p(
(k − 1)(1 + U)p + 1− 2p−3

pnp

)
< k(1− U)p.

Hence, we can run the following algorithm A′ in order to decide (3.18):
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1) Choose β :=
⌈
pnpk
C

⌉
.

2) Run A on the polytope P̄ and obtain an approximate normmaximal vertex x̄ ∈ P̄ .

3) If ‖x̄‖pp > (k − 1)(1 + U)p + 1− 2p−3

pnp , decide max{‖x‖pp : x ∈ P̄} ≥ k(1− U)p.

Else, decide max{‖x‖pp : x ∈ P} ≤ (k − 1)(1 + U)p + 1− 2p−3

pnp .

By the properties of A, the running time of the algorithm A′ is O(f(d)q(npk, d, n)) and
by Lemma 3.2.10 and the choice of β, A′ decides (3.18) correctly. A′ is thus an FPT
algorithm for Clique. Unless FPT=W[1], this is a contradiction to the fact that Clique
is W[1]-hard. �

3.4 Some Implications

As stated in the introduction of this chapter, norm maximization over polytopes plays
a fundamental role in Computational Convexity. This section gives corollaries concerning
the hardness of determining four important geometric functionals on polytopes.
If P ⊆ Rd is a polytope, we denote by R(P,Bdp) (r(P,Bdp), respectively) the circumradius
(inradius) of P with respect to the p-norm, as introduced in Definitions 2.2.1 and 2.2.4.
Further, as introduced in Defintion 2.8.1, we write R1(P,Bdp) (r1(P,Bdp)) for half of the
width (diameter) of P , i.e. half the radius of a smallest slab containing P (half the length
of the longest line segment contained in P ).
For p ∈ N ∪ {∞}, we consider the following problems:

Problem 3.4.1 (Circumdadiusp-H)

Input: d ∈ N, γ ∈ Q, rational H-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is R(P,Bdp)p ≥ γ?

Problem 3.4.2 (Diameterp-H)

Input: d ∈ N, γ ∈ Q, rational H-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is r1(P,Bdp)p ≥ γ?

It has been shown in [87] that Problems 3.4.1 and 3.4.2 are solvable in polynomial time
if p =∞ and, by using an identity for symmetric polytopes from [86], that both problems
are NP-hard when p ∈ N. Using the same identity, we can establish (in-)tractability for
both problems when parameterized by the dimension:

Corollary 3.4.3 (Circumradius & Diameter)
For p = 1, Problems 3.4.1 and 3.4.2 are in FPT. For p ∈ N \ {1}, both problems are
W[1]-hard.



3.4. Some Implications 61

Proof.
As shown in [86, (1.3)], for a 0-symmetric polytope P ⊆ Rd, we have

R(P,Bdp)p = r1(P,Bdp)p = max{‖x‖pp : x ∈ P}.

Thus tractability or hardness of Problems 3.4.1 and 3.4.2 follow from Theorem 3.1.2. �

Additionally, let q ∈ [1,∞] be such that 1/p+ 1/q = 1 (with 1/∞ = 0).

Problem 3.4.4 (Inradiusp-V)

Input: d ∈ N, γ ∈ Q, rational V-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is r(P,Bdq)p ≤ γ?

Problem 3.4.5 (Widthp-V)

Input: d ∈ N, γ ∈ Q, rational V-presentation of a 0-symmetric polytope P ⊆ Rd
Parameter: d
Question: Is R1(P,Bdq)p ≤ γ?

As for the previous two problems, the question of NP-hardness of Inradiusp-V and
Widthp-V has been studied in [87]. It is shown that Problems 3.4.4 and 3.4.5 are
solvable in polynomial time if p = 1 and by using an identity for symmetric polytopes
from [86] that both problems are NP-hard when p ∈ N. Here again, we can use the
same identity to establish (in-)tractability for both problems when parameterized by the
dimension:

Corollary 3.4.6 (Inradius & Width)
For p = 1, Problems 3.4.4 and 3.4.5 are in FPT. For p ∈ N \ {1}, both problems are
W[1]-hard.

Proof.
It is shown in [86] and follows from Theorem 2.8.5 of this thesis that if P ⊆ Rd is a
0-symmetric polytope and P ◦ is its polar the identities

Rj(P,Bdq)rj(P ◦,Bdp) = 1

hold for all j ∈ [d]. As anH-presentation of P ◦ is readily translated into a V-presentation
of P , tractability or hardness of Problems 3.4.4 and 3.4.5 follow from Corollary 3.4.3. �

The reductions of Corollaries 3.4.3 and 3.4.6 also show that the algorithm in the proof
of Lemma 3.3.2 can be used to compute the respective radii of a symmetric polytope
P ⊆ Rd in the respective presentation. Lemma 3.3.3, in turn, shows that in these cases
the given running time is also best possible.
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Chapter 4

Core-Sets for Containment under
Homothetics

This chapter deals with the containment problem under homothetics which has the
minimal enclosing ball (MEB) problem as a prominent representative. We connect the
problem to results in classic convex geometry and introduce a new series of radii, which
we call core-radii. For the MEB problem, these radii have already been considered
from a different point of view and sharp inequalities between them are known. In this
chapter, sharp inequalities between core-radii for general containment under homothetics
are obtained.

Moreover, the presented inequalities are used to derive sharp upper bounds on the size
of core-sets for containment under homothetics. In the MEB case, this yields a tight
(dimension independent) bound for the size of such core-sets. In the general case, we
show that there are core-sets of size linear in the dimension and that this bound stays
sharp even if the container is required to be symmetric.

This chapter is joint work with René Brandenberg. Preliminary results already appear
in [125]. Its main results have been published in [40] at the 27th Annual Symposium
on Computational Geometry in June 2011 and in [38] in a special issue of Discrete &
Computational Geometry on the occasion of this symposium.

4.1 Introduction

Many well-known problems in computational geometry can be classified as some type
of optimal containment problem, where the objective is to find an extremal represen-
tative C∗ of a given class of convex bodies, such that C∗ contains a given point set P
(or vice versa). These problems arise in many different applications, e.g. facility loca-
tion, shape fitting and packing problems, clustering, pattern recognition or statistical
data reduction. Typical representatives are the minimal enclosing ball (MEB) problem,
smallest enclosing cylinders, slabs, boxes, or ellipsoids; see [86] for a survey. Also the

63
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well-known k-center problem (cf. Page 14 in Section 1.2.2), where P is to be covered by
k homothetic copies of a given container C, has to be mentioned in this context.
Because of its simple description and the multitude of both theoretical and practical
applications there is vast literature concerning the MEB problem. In recent years, a
main focus has been on so called core-sets, i.e. small subsets S of P requiring balls of
(almost) the same radius to be enclosed as P itself. For the Euclidean MEB problem
algorithms constructing core-sets of sizes only depending on the approximation quality
but neither on the number of points to be enclosed nor the dimension have been developed
in [17, 19, 55, 161]. This yields not only another fully polynomial time approximation
scheme (FPTAS) for MEB, but also a polynomial time approximation scheme (PTAS)
for the harder Euclidean k-center problem which also works very well in practice [41].
However, all variants of core-set algorithms for MEB are based on the so called half-
space lemma [17, 82] or equivalent optimality conditions, a property characterizing the
Euclidean ball [86], thus not allowing immediate generalization to the superordinate
Containment under Homothetics that we consider here:

Problem 4.1.1
For P ⊆ Rd non-empty and compact and C ⊆ Rd a full-dimensional compact convex
set (called container) the minimal containment problem under homothetics is to find the
least dilatation factor ρ ≥ 0, such that a translate of ρC contains P . In other words, we
are looking for a solution to the following optimization problem (cf. also Figure 4.1):

min ρ
s.t. P ⊆ c+ ρC

c ∈ Rd
ρ ≥ 0.

(4.1)

The assumption that C be full-dimensional ensures that Problem 4.1.1 has a feasible
solution for every P ; cf. also Lemma 2.2.2, which shows that in this case the minimum
in (4.1) is attained for every P and C. As in Chapter 2, we write R(P,C) for the optimal
value of (4.1) and call it the C-radius of P . Hence, if C is a Euclidean ball and P is
finite this specializes to the MEB problem. If C is 0-symmetric this is the problem of
computing the outer radius of P with respect to the norm ‖ · ‖C induced by the gauge
body C as already considered e.g. in [30].

Besides direct applications Problem 4.1.1 is often the basis for solving much harder
containment problems (e.g. containment under similarities), which already gives a reason
for an intensive search for good (approximation) algorithms. Compared to the approach
in [149], approximation via core-sets has the additional advantage that it may be turned
into a PTAS for the k-center problem as demonstrated in [19]. Whereas there is a rich
literature on the Euclidean MEB problem (and its core-sets) that exhibit many nice
properties, only little is known about the general case and how much of the Euclidean
properties carry over to Problem 4.1.1. (For an overview of possible solution strategies
depending on given container classes, we refer to [42].)
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C

0

P

1

c∗ + ρ∗C

P

c∗

ρ∗

Figure 4.1: Left: Possible input for Problem 4.1.1. Right: An optimal solution for the
input on the left.

For P and C as in Problem 4.1.1, we call a subset S ⊆ P an ε-core-set for some ε ≥ 0
if

R(P,C) ≤ (1 + ε)R(S,C).

Answering the questions for the size of core-sets for Problem 4.1.1, we prove the following
result:

Theorem 4.1.2 (No sublinear core-sets for containment under homothetics)
For every non-empty, compact set P ⊆ Rd, every container C ⊆ Rd, and ε ≥ 0 there

exists an ε-core-set of P of size at most
⌈

d
1+ε

⌉
+ 1. Moreover, for any ε < 1 there exists

a body P ⊆ Rd and a 0-symmetric container C such that no smaller subset of P suffices.

In order to prove the positive part of Theorem 4.1.2, we will state several new geometric
identities and inequalities between radii of convex sets, which connect Problem 4.1.1 to
results in classic convex geometry. The negative part of the theorem (i.e. that the bound
cannot be improved even for 0-symmetric containers) then follows by proving that these
inequalities (and so the resulting bounds on core-set sizes) are best possible.

Moreover, the connection between core-sets and a series of radii from convex geometry
will enable us to give a sharp upper bound for the size of core-sets for the MEB problem:

Theorem 4.1.3 (Size of ε-core-sets for MEB)
Let P ⊆ Rd be compact and ε > 0. If C = Bd2, then there exists an ε-core-set of P of
size at most ⌈

1

2ε+ ε2

⌉
+ 1,

and this is the best possible d-independent bound.
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In the following section, we will shortly explain notational particularities of this chap-
ter, state the basic definitions and collect the tools that we need in order to prove
Theorems 4.1.2 and 4.1.3. Section 4.3 then proves the mentioned radius identities that
will lead to Theorem 4.1.3. Finally, Section 4.4 is dedicated to the derivation of Theo-
rem 4.1.2.

4.2 Geometric Foundations

Recall that Cd denotes the set of convex bodies in Rd, i.e. non-empty, compact and
convex sets in Rd. In this chapter we will call a convex body C ∈ Cd with the property
that 0 ∈ int(C) a container . The set of all containers in Rd will therefore be Cd0 .1

For a fixed container C ∈ Cd0 , we denote by cP a possible center for P , i.e. a point such
that P ⊆ cP +R(P,C)C. Notice, that for general C, the center cP might not be unique.
Additionally, we denote by T d ∈ Cd some regular d-simplex. This simplex will play
an important role in many of the inequalities that we derive. We do not specify its
orientation or edge length since the obtained results hold for all possible choices of these
values.

4.2.1 Core-Sets and Core-Radii

As already pointed out in the introduction the concept of ε-core-sets has proved very
useful for the special case of the Euclidean MEB problem. Here, we introduce two
slightly different definitions for the more general Problem 4.1.1: core-sets and center-
conform core-sets together with a series of radii closely connected to them. The explicit
distinction between the two types of core-sets is intended to help to overcome possible
confusion founded in the use of the term core-set for both variants in earlier publications.

Definition 4.2.1 (Core-radii and ε-core-sets)
For P ⊆ Rd, C ∈ Cd0 , and k ∈ [d], we call

Rk(P,C) := max{R(S,C) : S ⊆ P, |S| ≤ k + 1}

the k-th core-radius of P .
Let ε ≥ 0. A subset S ⊆ P such that

R(S,C) ≤ R(P,C) ≤ (1 + ε)R(S,C) (4.2)

will be called an ε-core-set of P (with respect to C).
An ε-core-set S ⊆ P which has the additional property, that there exists a center cS of
S, such that

P ⊆ cS + (1 + ε)R(S,C)C, (4.3)

1Usually, we consider Problem 4.1.1 as being parametrized by the container and having varying sets
P ∈ Cd as input. By Lemma 2.2.2, it would suffice for the feasibility of Problem 4.1.1 to impose the
condition that P be contained in some affine subspace parallel to aff(C). As this condition is rather
technical and yields no further insight, we restrict to full-dimensional containers; and, as the problem is
invariant under translation of the container, we simply assume that 0 ∈ int(C) for convenience.
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will be called a center-conform ε-core-set of P (with respect to C).
All three notions are illustrated in Figure 4.2.

P

R1(P,C)
R2(P,C)

(1 + ε)R(S,C)

P

R(S,C) cS

P

R(S,C)

(1 + ε)R(S,C)cS

Figure 4.2: Illustration of Core-Radii and Core-Sets. Left: The red filled and the blue
empty points define R1(P,C) and R2(P,C), respectively. Middle (Right): For some
ε > 0, the red filled point set S forms a (center-conform) ε-core-set of P of size 3. (In
all three cases C = B2

2.)

By definition, every center-conform ε-core-set is also an ε-core-set. It will be shown in
Lemma 4.2.6 that an ε-core-set is a center-conform ε′-core-set for an ε′ slightly greater
than ε, if C = Bd2.
Surely, if one is only interested in an approximation of R(P,C) the knowledge of a good
core-set suffices. A center-conform core-set S carries the additional information of a
center cS of S that can be used to cover P . However, if the center of S is not unique, it
may not be possible to actually determine which of the centers of S is suitable, when S
is the only information about P to be considered.
We present lower bounds on the sizes of core-sets (these are also lower bounds on the
size of center-conform core-sets), and we note that most existing positive results (via
construction algorithms) already hold for center-conform core-sets. When searching for
lower bounds, we use the fact that there exist ε-core-sets of size at most k+1 if and only
if the ratio R(P,C)/Rk(P,C) is less than or equal to 1 + ε. This allows us to transfer
the size-of-core-sets problem to bounding the ratio between the core-radii of P .

As already observed e.g. in [67] and [86], the reason for restricting the core-radii
to k ≤ d follows directly from Helly’s Theorem (see e.g. [59]). We need a slightly
more general statement here, which we prove in the following lemma for completeness.
However, the main part of the proof is parallel to the ones in [67] and [86] for balls.
Figure 4.3 also illustrates the situation.

Lemma 4.2.2 (0-core-sets)
Let P ∈ Cd, C ∈ Cd0 and dim(P ) ≤ k ≤ d. Then Rk(P,C) = R(P,C), i.e. there exist
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(center-conform) 0-core-sets of size at most dim(P ) + 1 for all P and C.
Furthermore, for k ≤ dim(P ), there always exists a simplex S ⊆ P such that dim(S) = k
and R(S,C) = Rk(P,C).

Proof.
Clearly, Rk(P,C) ≤ R(P,C). To show Rk(P,C) ≥ R(P,C) for k ≥ dim(P ), observe
that by definition of Rk(P,C), every S ⊆ P with |S| ≤ k + 1 can be covered by a copy
of Rk(P,C)C. This means

⋂
p∈S(p − Rk(P,C)C) 6= ∅ for all such S. Now, as the sets

p − Rk(P,C)C are compact, Helly’s Theorem applied within aff(P ) yields
⋂
p∈P (p −

Rk(P,C)C) 6= ∅. Thus the whole set P can be covered by a single copy of Rk(P,C)C.
Moreover, by applying Helly’s Theorem within aff(S) one may always assume that the
finite set S with R(S,C) = Rk(P,C) is affinely independent. Hence, if |S| ≤ k ≤ dim(P )
one may complete S to the vertex set of a k-dimensional simplex within P . �

P

p1

p2

p3

p1 − ρC

p3 − ρC

p2 − ρC

c
P

p1

p2

p3c

c + ρC

Figure 4.3: The duality argument that makes Helly’s Theorem applicable for Contain-
ment under Homothetics:

⋂
p∈S(p− ρC) 6= ∅ ⇔ R(S,C) ≤ ρ.

4.2.2 Optimality Conditions

A characterization of optimal solutions for the MEB case of Problem 4.1.1 can already
be found in [30]. A corollary, known as “half-space lemma”, proved very useful in the
construction of fast algorithms for MEB (see, e.g. [17, 19, 82]). However, to our knowl-
edge, the literature does not contain any explicit optimality conditions for Problem 4.1.1
in its general form.
For brevity, P is said to be optimally contained in C, if P ⊆ C but there is no c ∈ Rd
and ρ < 1 such that P ⊆ c+ ρC.

Theorem 4.2.3 (Optimality condition for Problem 4.1.1)
Let P ∈ Cd and C ∈ Cd0 . Then P is optimally contained in C if and only if

(i) P ⊆ C and
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(ii) for some 2 ≤ k ≤ d + 1, there exist p1, . . . , pk ∈ P and hyperplanes H=(ai, 1)
supporting P and C in pi, i = 1, . . . , k such that 0 ∈ conv{a1, . . . , ak}.

The theorem stays valid even if one allows C to be unbounded.

P
C

a1

a2

a3

p1

p2

p3

Figure 4.4: The necessary and sufficient conditions from Theorem 4.2.3: Condition (ii)
is fulfilled by the three points p1, p2, p3 and the three hyperplanes with outer normals
a1, a2, a3, all highlighted in dashed red. Note that (in general) conv{p1, . . . , pk} is opti-
mally contained in

⋂k
i=1H≤(ai, 1).

Proof.
Let C ∈ Cd0 be given as C =

⋂
a∈N H≤(a, 1) where N = bd(C◦) is the set of outer

normals of C.
First, assume (i) and (ii) hold. By (i), R(P,C) ≤ 1. Now suppose R(P,C) < 1. Then
there exists c ∈ Rd and 0 < ρ < 1 such that c+P ⊆ ρC. From (ii) follows P ∩bd(C) 6= ∅
and therefore c 6= 0. Moreover, as c + P ⊆ ρC, it follows supa∈N a

T (c + pi) ≤ ρ and
in particular, aTi (c + pi) ≤ ρ < 1 for all i. Now, as 0 ∈ conv{a1, . . . , ak}, there exist
λi ≥ 0 with

∑
i λi = 1 such that

∑
i λiai = 0 and

∑
i λia

T
i (c + pi) < 1. Using aTi pi = 1

one obtains
∑

i λia
T
i c < 0, an obvious contradiction. Thus, conditions (i) and (ii) imply

optimality.
Now, let P be optimally contained in C. The following part of the proof is illustrated in
Figure 4.5. As C is compact, we can apply Lemma 4.2.2 which yields k ≤ d + 1 points
pi ∈ P ∩ bd(C) for i = 1, . . . , k such that

R(conv{p1, . . . , pk}, C) = 1. (4.4)

Let A = {a ∈ N : ∃i ∈ [k] s.t. aT pi = 1}. Since P ⊆ C, for a ∈ A, we have that aT p ≤ 1
for all p ∈ P , and aT pi = 1 for at least one i by definition of A. We will show that
0 ∈ conv(A). The statement that there exists a set of at most d+ 1 outer normals with
0 in their convex hull then follows from Carathéodory’s Theorem (see [59]). Assume,
for a contradiction, that 0 6∈ conv(A). Then 0 can be strictly separated from conv(A),
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i.e. there exists y ∈ Rd with aT y ≥ 1 for all a ∈ A. Now, for A′ = {a ∈ N : aT y ≤ 0}
there exists ε > 0 such that (A′ + εBd2) ∩ A = ∅, i.e. aT pi < 1 − ε for all a ∈ A′ and
therefore

aT (pi −
ε

‖a‖‖y‖y) = aT pi + ε
−aT y
‖a‖‖y‖ < 1.

Moreover, if a ∈ N \A′ then

aT (pi −
ε

‖a‖‖y‖y) = aT pi − ε
aT y

‖a‖‖y‖ < 1.

As 0 ∈ int(C), we know that N ⊆ C◦ is bounded and therefore there exists α > 0
such that ‖a‖ ≤ α for all a ∈ N . Thus, altogether, pi − ε

α‖y‖y ∈ int(C) for all i, which

contradicts (4.4). Finally, observe that the last statement about a possibly unbounded

P

C

0y P − ε
α‖y‖y

C

Figure 4.5: The idea of the proof of Theorem 4.2.3: If the outer normals in the points
where P touches C do not contain the origin in their convex hull, the separation theorem
yield a direction y ∈ Rd\{0} such that P − λy ⊆ int(C) for a sufficiently small λ ≥ 0.

C can be obtained from the one for bounded containers by considering a new container
C ′ = C ∩ C ′′ where C ′′ ∈ Cd0 such that P ⊆ C ′′ and P ∩ bd(C ′′) = ∅. �

Remark. Besides the direct geometric proof of Theorem 4.2.3 as stated above, it is
also possible to derive the result from the Karush-Kuhn-Tucker conditions (see e.g. [147,
Corollary 28.3.1]) in convex optimization in conjunction with Lemma 4.2.2; see also [125,
p. 19].

As we assume that C has non-empty interior, “P optimally contained in C” implicitly
implies |P | > 1. So, in case P = {p}, Theorem 4.2.3 is not applicable and we note for
completeness, that in this case, P is optimally contained in p+ 0 · C.

Corollary 4.2.4
Let P ∈ Cd and C a polytope in Rd. If P ⊆ C and P touches every facet of C, then P
is optimally contained in C.
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Proof.
If C is a polytope with facets Fi = C ∩ H=(ai, 1), i = 1, . . . ,m, it is well known [30]
that, with the choice λi = vold−1(Fi), one has

∑m
i=1 λiai = 0. �

Corollary 4.2.5 (Optimality condition for the MEB problem / Half-space lemma)
Let P ∈ Cd. If P ⊆ Bd2, then the following are equivalent:

(i) R(P,Bd2) = 1.

(ii) For some k ≤ d+1, there exist p1, . . . , pk ∈ P∩bd(Bd2) such that 0 ∈ conv{p1, . . . , pk}.

(iii) 0 can not be strictly separated from P ∩ bd(Bd2).

(iv) P ∩ bd(Bd2) ∩H 6= ∅ for every half-space H containing the origin in its boundary.
(Half-space lemma)

4.2.3 Side Notes

Lemma 4.2.6 (Center-conformity for MEB)
If P ∈ Cd, ε > 0 and S ⊆ P is an ε-core-set of P with respect to Bd2, then S is also a
center-conform (ε+

√
2ε+ ε2)-core-set of P .

Proof.
Let p ∈ P such that maxx∈P ‖cS − x‖2 = ‖cS − p‖2. Further let H be a hyperplane
perpendicular to aff{cS , cP } passing through cS . Denote by H− the halfspace which
is bounded by H and does not contain cP . Then by Corollary 4.2.5, there is a point
q ∈ S ∩H− at distance R(S,Bd2) of cS . Hence

‖cP − cS‖22 ≤ ‖cP − q‖22 − ‖q − cS‖22 ≤ R(P,Bd2)2 −R(S,Bd2)2 ≤ (2ε+ ε2)R(S,Bd2)2

and

‖cS−p‖ ≤ ‖cS−cP ‖+‖cp−p‖ ≤
√

2ε+ ε2R(S,Bd2)+R(P,Bd2) = (1+ε+
√

2ε+ ε2)R(S,Bd2).

�

We recall that choosing P = −C yields the symmetry measure s(C) from Defini-
tion 2.3.1 on which we built our results in Chapter 2. As observed in Chapter 2, the
Minkowski asymmetry s(C)

s(C) = R(−C,C) (4.5)

can also be expressed as a special case of containment under homothetics.
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As a further corollary of Theorem 4.2.3, we now present a very transparent proof
(due to [43]) of Proposition 2.3.4, which states the well-known fact that the Minkowski
asymmetry of a body C is bounded from above by dim(C). We will make use of the
sharpness condition of Proposition 2.3.4/Corollary 4.2.7 to show the sharpness of the
inequality in Theorem 4.4.1.

Corollary 4.2.7 (Maximal asymmetry)
For every C ∈ Cd, the inequalities 1 ≤ s(C) ≤ dim(C) hold, with equality, if C is
0-symmetric in the first and if C is a d-simplex in the latter case.

Proof.
Clearly, the Minkowski asymmetry is bounded from below by 1 and s(C) = 1 if C = −C.
For the upper bound we suppose (without loss of generality) that C is full-dimensional.
Then Lemma 4.2.2 yields a d-simplex S ⊆ C such that s(C) = R(−C,C) = R(−S,C) ≤
R(−S, S) = s(S). Thus, it suffices to show s(S) = dim(S) for every simplex S. Sup-
pose S = conv{x1, . . . , xd+1} ⊆ Rd is a d-simplex, without loss of generality such that∑d+1

i=1 xi = 0. For all i ∈ [d + 1], the center of the facet Fj = d · conv{xi, i 6= j} of dS
is cj =

∑
i 6=j xi = −xj . Hence −S ⊆ dS and −S touches every facet of dS, showing the

optimality of the containment by Corollary 4.2.4. �

Remark. In [95] also the “only if” direction for the sharpness of the bounds in Corol-
lary 4.2.7 is shown.

Finally, note that Lemma 4.2.2 can also be seen as a result bounding the combinatorial
dimension of Problem 4.1.1 interpreted as a Generalized Linear Program (GLP). As it
is not our main focus here, we simply mention the connection and refer to [131, 152] for
a treatise on GLPs and to [13] for their relation to Helly-type theorems.

4.3 Radii Identities and Small Core-Sets

4.3.1 Identities between Different Radii

In this section, we show the identity of the core-radii from Definition 4.2.1 to two
series of intersection- and cylinder/projection-radii in convex geometry, similar to the
ones defined in [100] and to the more often considered ones in [86] and [145]. This
identity will help us to use a set of known geometric inequalities on these radii to obtain
bounds on core-set sizes.

Definition 4.3.1 (Intersection- and cylinder-radii)
For P ∈ Cd, C ∈ Cd0 and k ∈ [d], let

Rσk (P,C) := max{R(P ∩ E,C) : E ∈ Adk} (4.6)
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and

Rπk (P,C) := max{R(P,C + F ) : F ∈ Ldd−k} (4.7)

It follows from Blaschke’s Selection Theorem [150], that the maxima in (4.6) and (4.7)
exist.

Remark 4.3.2 (Cylinder-radii in Euclidean spaces)
When dealing with the Euclidean unit ball Bd2, the observation that, for F ∈ Ldd−k,
R(P,Bd2+F ) = R(P |F⊥,Bd2) shows that the cylinder-radii can be interpreted as projection-
radii, i.e.

Rπk (P,Bd2) = max{R(P |E,Bd2) : E ∈ Ldk} .

The following theorem states the identity of these series of radii. To the best of
our knowledge, even the equality between the intersection- and projection-radii in the
Euclidean case has not been shown before.

Theorem 4.3.3 (Identity of intersection-, cylinder- and core-radii)
Let P ∈ Cd, C ∈ Cd0 and k ∈ [d]. Then,

Rk(P,C) = Rσk (P,C) = Rπk (P,C).

Proof.
We show Rk(P,C) ≤ Rσk (P,C) ≤ Rπk (P,C) ≤ Rk(P,C).
First, Rk(P,C) ≤ Rσk (P,C): By definition of the core-radii, there exists S ⊆ P with
|S| = k + 1 and R(S,C) = Rk(P,C). Since dim(aff(S)) ≤ k, one obtains

Rk(P,C) = R(S,C) ≤ R(P ∩ aff(S), C) ≤ Rσk (P,C).

Now, Rσk (P,C) ≤ Rπk (P,C): Let E ∈ Ldk such that Rσk (P,C) = R(P ∩ E,C). As
dim(P ∩ E) ≤ k, Lemma 4.2.2 and Theorem 4.2.3 show that, for m ≤ k + 1, there are
points p1, . . . , pm ∈ P ∩E and hyperplanes H=(a1, 1), . . . ,H=(am, 1) such that H=(ai, 1)
supports C in pi and 0 ∈ conv{a1, . . . , am}. As 0 ∈ conv{a1, . . . , am}, we get that
dim{a1, . . . , am}⊥ ≥ d− k and we may choose F ∈ Lkd−k such that F ⊆ {a1, . . . , am}⊥.
Again by Theorem 4.2.3, if follows that

Rσk (P,C) = R(P ∩ E,C) = R(P ∩ E,C + F ) ≤ R(P,C + F ) ≤ Rπk (P,C).

Finally, Rπk (P,C) ≤ Rk(P,C): Let F ∈ Ldd−k such that Rπk (P,C) = R(P,C + F ) and
suppose without loss of generality that P is optimally contained in C + F (i.e. the
optimal radius and center are ρ∗ = 1 and c∗ = 0, respectively). Then it follows from the
statement for unbounded containers in Theorem 4.2.3 that there exist m ≤ d+ 1 points
p1, . . . , pm ∈ P and hyperplanes H=(ai, 1), i = 1, . . . ,m such that H=(ai, 1) supports
C + F in pi and 0 ∈ conv{a1, . . . , am}. Since every direction in F is an unbounded
direction in C + F , one obtains ai ∈ F⊥ for all i ∈ [m]. Now, by Carathéodory’s
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Theorem, there exists a subset I ⊆ [m] with |I| ≤ dim(F⊥) + 1 = k + 1 such that
0 ∈ conv{ai : i ∈ I}. Applying again Theorem 4.2.3,

Rπk (P,C) = R(P,C+F ) = R(conv{pi : i ∈ I}, C+F ) ≤ R(conv{pi : i ∈ I}, C) ≤ Rk(P,C).

�

4.3.2 Dimension Independence for Special Container Classes

The most evident (non-trivial) example for a restricted class of containers allowing
small core-sets may be parallelotopes. E.g. in [29, Chapter 25], the following proposition
is shown:

Proposition 4.3.4 (Core-radii for parallelotopes)
The identity

R1(P,C) = R(P,C)

holds true for all P ∈ Cd if and only if C ∈ Cd0 is a parallelotope.

In terms of core-sets, this means that there is a 0-core-set of size two for all P ∈ Cd,
if C is a parallelotope and that these are the only containers with this property.

Surely, a more important restricted class of containers is the class of ellipsoids. In
[100], geometric inequalities are derived which relate the radii of Definition 4.3.1 within
each series. Using Theorem 4.3.3, these inequalities can be presented in a unified way
in terms of core-radii:

Proposition 4.3.5 (Henk’s Inequality)
Let P ∈ Cd and k, l ∈ N where l ≤ k ≤ d. Then

Rk(P,Bd2)

Rl(P,Bd2)
≤
√
k(l + 1)

l(k + 1)
(4.8)

with equality if P = T d.

Remark. Because of the affine invariance of (4.8) one may replace Bd2 by any d-
dimensional ellipsoid.

This inequality can now directly be turned into a sharp bound on the size of ε-core-sets
for the MEB problem and Theorem 4.1.3 follows:
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Proof of Theorem 4.1.3
Let ε > 0, k =

⌈
1

2ε+ε2

⌉
, and S ⊆ P such that R(S,Bd2) = Rk(P,Bd2). Then |S| ≤ k + 1

and by Proposition 4.3.5 and Lemma 4.2.2:

R(P,Bd2) ≤
√
d(k + 1)

k(d+ 1)
·R(S,Bd2)

where k is chosen such that
√

d(k+1)
k(d+1) ≤ 1 + ε independently of d ∈ N.

Now, we show the sharpness of the bound: Let d ∈ N such that d
d+1 > (1 + ε)2 k

k+1 and

choose P = T d. Now, for k < 1
2ε+ε2

if S′ ⊆ P consists of no more than k+ 1 points then

R(P,Bd2) =

√
d(k + 1)

k(d+ 1)
Rk(T

d,Bd2) > (1 + ε)Rk(T
d,Bd2) ≥ (1 + ε)R(S′,Bd2).

Hence S′ is not an ε-core-set of P . �

Remark. Jung’s well-known inequality (see [116] and the sharpened version in The-
orem 2.5.1), relating the diameter and the outer radius of P , can be obtained from
Proposition 4.3.5 just by choosing k = d and l = 1. As Proposition 4.3.5, it can be
turned into a core-set result saying that, for the Euclidean ball in every dimension, a
diametral pair of points in P is already a (

√
2− 1)-core-set.

A very easy and intuitive algorithm to actually find ε-core-sets of a finite set P was
first introduced in [19]. Roughly speaking, it starts with a subset S ⊆ P of two (good)
points and computes (or approximates) the minimum enclosing ball BS for S. Whenever
a dilatation by (1+ε) of BS centered at cS does not cover the whole set P , an uncovered
point is added to S and the process is iterated. The analysis in [19] shows that this
algorithm produces ε-core-sets of size O(1/ε2), and, by construction, these are even
center-conform.

In [18], the existence of center-conform ε-core-sets of size 1/ε and the sharpness of this
bound are shown. Theorem 4.1.3 now complements this result and gives a tight upper
bound on the size of (general) core-sets, which is roughly half the center-conform bound.

4.4 No Sublinear ε-Core-Sets

In this section, several geometric inequalities between core-radii are collected and then
used to derive positive and negative results on possible ε-core-set sizes. We recall that,
because of Lemma 4.2.2, we already know the existence of 0-core-sets of size d+1, i.e. not
depending on the size of P (nor C) and only linearly depending on d.
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4.4.1 General (non-symmetric) Containers

Theorem 4.4.1 (Inequality relating core-radii)
Let P ∈ Cd, C ∈ Cd0 and k, l ∈ N such that l ≤ k ≤ d. Then

Rk(P,C)

Rl(P,C)
≤ k

l

with equality if P = −C = T d.

Proof.
It suffices to show

Rk(P,C)

Rk−1(P,C)
≤ k

k − 1
. (4.9)

as for l < k−1 the claim follows by repeatedly applying (4.9). Without loss of generality
one may assume the existence of a k-simplex S = conv{x1, . . . , xk+1} ⊆ P satisfying
R(S,C) = Rk(P,C), as (4.9) is certainly fulfilled if Rk(P,C) = Rk−1(P,C). Moreover,
it can also be supposed that

∑k+1
i=1 xi = 0 and Rk−1(S,C) = 1. Now, let Sj = conv{xi :

i 6= j}, j = 1, . . . , k + 1 denote the facets of S.
Since

∑k+1
i=1 xi = 0, it follows −1/k · xj = 1/k

∑
i 6=j xi ∈ conv{xi : i 6= j} = Sj for all j

and surely xj ∈ Si for all i, j, i 6= j.
Since Rk−1(S,C) = 1, there exist translation vectors cj ∈ Rd such that Sj ⊆ cj + C for
all j ∈ [k + 1] which implies

(
k − 1

k

)
xj ∈

k+1∑

i=1

Si ⊆
k+1∑

i=1

ci + (k + 1)C

for all j and thus R(S,C) ≤ (k + 1)/(k − 1
k ). However, since Rk−1(S,C) = 1 we obtain

Rk(P,C) = R(S,C) ≤ k

k − 1
Rk−1(S,C) ≤ k

k − 1
Rk−1(P,C)

proving (4.9).
The sharpness of the inequality for −P = C = T d follows directly from showing
Rk(T

d,−T d) = k for k ∈ [d]:
Since every k-face F of T d can be covered by the k-face of −T d parallel to F and since
these k-faces are regular k-simplices, it follows from Corollary 4.2.7 that R(F,−F ) = k
and, thus, Rk(T

d,−T d) ≤ k for all k ∈ [d].
Finally, for every face F of −T d, it is true that −T d|aff(F ) = F . Thus, if Sk ⊆ T d is a k-
face of T d and Sk ⊆ c+ρ(−T d) for some c ∈ Rd and ρ ≥ 0, then Sk|aff(c+ρ(−Sk)) ⊆ (c+
ρ(−Sk)). However, aff(c+ ρ(−Sk)) is parallel to Sk, and therefore the above projection
is just a translation, which means there exists c′ ∈ Rd such that Sk ⊆ c′+ρ(−Sk). Using
Corollary 4.2.7 again, it follows that ρ ≥ k. �

Corollary 4.4.2 (No sublinear core-sets for general containers)
For every P ∈ Cd, C ∈ Cd0 and ε ≥ 0, there exists an ε-core-set of P of size at most⌈

d
1+ε

⌉
+ 1 and for P = −C = T d no smaller subset of P will suffice.
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Proof.
The case ε = 0 equates to Lemma 4.2.2. So, let ε > 0 and k =

⌈
d

1+ε

⌉
. If S ⊆ P such

that R(S,C) = Rk(P,C) then |S| ≤ k + 1 and by Theorem 4.4.1:

R(P,C) = Rd(P,C) ≤ d

k
Rk(P,C) =

d

k
R(S,C).

By the choice of k, d/k ≤ 1 + ε.

In order to show the sharpness of the bound, choose P = T d and C = −T d. Now,
for k < d

1+ε , if S′ ⊆ P consists of no more than k + 1 points, then it follows from the
sharpness condition in Theorem 4.4.1, that

R(T d,−T d) =
d

k
Rk(T

d,−T d) > (1 + ε)Rk(T
d,−T d) ≥ (1 + ε)R(S′,−T d).

Hence S′ is no ε-core-set of P . �

Remarks.

(1) Note that, by Lemma 4.2.2, the minimal size of a 0-core-set depends linearly on d
and Corollary 4.4.2 now shows that allowing ε > 0 does not improve this situation.
Thus, Corollary 4.4.2 already proves Theorem 4.1.2 for general containers.

(2) Additionally, we mention that, whenever C is a polytope presented as C = {x ∈
Rd : aTk x ≤ 1 ∀k ∈ [m]} and P = conv{p1, . . . , pn}, Problem 4.1.1 can be rewritten
as a Linear Program [42, 87], with the help of which a 0-core-set of P of at most
d+ 1 points can be computed in polynomial time.

Remark 4.4.3 (Center-conformity)
Choosing P = −C = T d, every subset S of d vertices of P yields R(S,C) = d− 1 with a
unique center cS . But to cover P by cS+ρC, we need ρ ≥ 2d

d−1R(S,C). So, for ε ∈ (0, 1),
a center-conform ε-core-set may need to be of size d+ 1.

Moreover, as much as we understood it, [140, Theorem 5] asserts (in particular) that
for every ε > 0 there is a subset S ⊆ T d of size O(1/ε2) such that every point in T d has
Euclidean distance at most ε to cS +R(S,−T d)(−T d). Again, taking any subset S ⊆ T d
of d vertices and the fact that the distance of the remaining vertex to cS + (d− 1)(−T d)
is strictly greater than 1/

√
2, shows that this theorem cannot be true for ε < 1/

√
2.

4.4.2 Symmetric Containers/Normed Spaces

As mentioned several times, every 0-symmetric container C ∈ Cd0 induces a norm ‖·‖C
and vice versa. We will always talk about symmetric containers here, but one may as
well reformulate all results in terms of Minkowski spaces.
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The results in section 4.3.2 may motivate the hope that symmetry of the container
is the key for positive results on dimension-independence. Indeed, in [28], Bohnen-
blust proved an equivalent to Jung’s Inequality (see the remark after the proof of The-
orem 4.1.3) for general normed spaces. Taking into account the Minkowski asymmetry
s(C) of a possibly asymmetric container C, we showed a generalized version of this
inequality in Theorem 2.4.1; adapted to our purposes here and expressed in terms of
core-radii, it reads as follows:

Proposition 4.4.4 (Generalized Bohnenblust)
Let P ∈ Cd, C ∈ Cd0 . Then

R(P,C)

R1(P,C)
≤ (1 + s(C))d

d+ 1

with equality, if P = T d = −C or P = T d and C = T d − T d.

One might hope that, for the class of symmetric containers, Bohnenblust’s Inequality
can be generalized in the same way as Henk’s Inequality generalizes Jung’s in the Eu-
clidean case (giving a bound on the core-radii ratio as in (4.10) at the end of this section).
This inequality would be tight for P = T d and C = T d−T d. However, the remainder of
this section will show that the bound on the ratio of core-radii with symmetric containers
does not improve the general bound from Theorem 4.4.1.

Lemma 4.4.5
With Cd = T d ∩ (−T d),

Rk(T
d, Cd) =





d+1
2 if k ≤ d+1

2

k if k ≥ d+1
2 .

Proof.
Let T d = conv{x1, . . . , xd+1} for suitable x1, . . . , xd+1 ∈ Rd. Independently of which
coordinates we choose for x1, . . . , xd+1, we can index the normals a1, . . . , ad+1 ∈ Rd of a
halfspace presentation of T d such that T d =

⋂d+1
i=1 H≤(ai, 1) and

aTj xi =

{
1 if j 6= i
−d if j = i

for i, j ∈ [d+ 1]

Let k ∈ [d + 1] and consider an arbitrary k-face F of T d, without loss of generality,
F = conv{x1, . . . , xk+1}.
For k ≤ d+1

2 , let

γ = −(k − 1)(d+ 1)

2(d− k)
and c =

1

k + 1

(
k+1∑

l=1

xl + γ

d+1∑

l=k+2

xl

)
.
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Then γ ≥ −d+1
2 and for i ∈ [k + 1] and j ∈ [d+ 1]

aTj (xi − c) =





γ if j > k + 1

d+1
2 if j ≤ k + 1, j 6= i

−d+1
2 if j = i .

Hence F − c ⊆ d+1
2 Cd. Moreover, these equalities show that T d − c touches the facets

of d+1
2 Cd induced by the hyperplanes H=(ai, (d + 1)/2), H=(ai,−(d + 1)/2) for i =

1, . . . , k + 1 and therefore it follows by Theorem 4.2.3 that Rk(T
d, Cd) = (d+ 1)/2.

For k ≥ d+1
2 , let c =

∑k+1
i=1 xi. Then 1− k + d ≤ k and for i ∈ [k + 1] and j ∈ [d+ 1]

aTj (xi − c) =





−k if j > k + 1
1− k + d if j ≤ k + 1, j 6= i
−k if j = i

showing F − c ⊆ kCd. Here again, the equalities show that T d − c touches every facet
of −kT d and Rk(T

d, Cd) = k follows by Theorem 4.2.3. �

Theorem 4.4.6 (Inequality relating core-radii for 0-symmetric containers)
Let k, l ∈ N such that l ≤ k ≤ d, P ∈ Cd and C ∈ Cd0 a 0-symmetric container. Then

Rk(P,C)

Rl(P,C)
≤





2k
k+1 for l ≤ k+1

2

k
l for l ≥ k+1

2 .

Moreover, let T k be a k-simplex embedded in the first k coordinates of Rd and Ck =
(T k ∩ (−T k)) + ({0}k × [−1, 1]d−k). Then

Rk(T
k, Ck)

Rl(T k, Ck)
=





2k
k+1 for l ≤ k+1

2

k
l for l ≥ k+1

2 .

Proof.
Let S ⊆ P be a k-simplex such that Rk(P,C) = R(S,C) and assume without loss of
generality that R(S,C) = k. By Bohnenblust’s Inequality, we get that R1(S,C) ≥ (k +
1)/2 and thus Rl(P,C) ≥ R1(P,C) ≥ (k + 1)/2. Thus Rk(P,C)/Rl(P,C) ≤ 2k/(k + 1).
On the other hand

Rk(P,C)

Rl(P,C)
≤ k

l

by Theorem 4.4.1. Together this yields

Rk(P,C)

Rl(P,C)
≤ min

{
2k

k + 1
,
k

l

}
,

which splits into the two cases claimed above. The second statement follows from
Lemma 4.4.5 and the observation that the computation of R(T k, Ck) is in fact the
k-dimensional containment problem of containing T k in T k ∩ (−T k). �
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With Theorem 4.4.6 at hand, Theorem 4.1.2 follows as a simple corollary:

Proof of Theorem 4.1.2
For k = d and l ≥ (d+ 1)/2 the inequalities in Theorem 4.4.1 and 4.4.6 coincide. Hence
the proof of Corollary 4.4.2 can simply be copied up to the additional condition that
ε < 1 and the change from C = T d to C = T d ∩ (−T d) to show that the bound is best
possible. �

On the other hand diametral pairs of points in P are 1-core-sets for every 0-symmetric
container C as Bohnenblust’s result already shows. Theorem 4.4.6 then shows that no
choice of up to b(d − 3)/2c points to add to the core-set improves the approximation
quality.

Remark. Theorem 4.1.2 also implies the non-existence of sublinear center-conform ε-
core-sets for ε < 1. On the other hand, we know from Lemma 4.2.2 that there are linear
ones, even if ε = 0.

Theorem 4.1.2 shows that the class of symmetric containers is too large for an extension
of Bohnenblust’s Inequality to other core-radii than R1. A question that remains open is,
whether there is a sensible class of containers C ⊆ Cd0 such that the following inequality
holds for 1 ≤ l ≤ k ≤ d:

Rk(P,C)

Rl(P,C)
≤ k(l + 1)

l(k + 1)
(4.10)

If true, (4.10) would yield dimension independent ε-core-sets for all ε > 0 in the same way
as shown for the MEB problem in the proof of Theorem 4.1.3. In the remainder of this
section, we elaborate this idea and show that the phenomenon of dimension independent
core-sets is not restricted to Euclidean balls. In fact, the container does not even have
to be symmetric in order to allow dimension independent core-sets. However, the result
below is sill quite weak since the containers for which we establish this property all
converge to the Euclidean ball as d tends to infinity.

Lemma 4.4.7 (Proposition 4.3.5 applied to almost-balls)

Let P ∈ Cd, C ∈ Cd0 such that for λ ∈
[√

d2−1
d2

, 1

]
the inclusions λBd2 ⊆ C ⊆ Bd2 hold. If

k, l ∈ N and l ≤ k ≤ d, then,
Rk(P,C)

Rl(P,C)
≤ k(l + 1)

l(k + 1)
.

Proof.
As in Theorem 4.4.1, it suffices to show

Rk(P,C)

Rk−1(P,C)
≤ k2

k2 − 1
. (4.11)
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as for l < k−1 the claim follows by repeatedly applying (4.11). Without loss of generality,
we may assume the existence of a k-simplex S = conv{x1, . . . , xk+1} ⊆ P satisfying
R(S,C) = Rk(P,C), as (4.11) is certainly fulfilled if Rk(P,C) = Rk−1(P,C).

By Proposition 4.3.5, we get R(S,Bd2) ≤
√

d2

d2−1
R̄d−1(S,Bd2). Hence, there is a c ∈ Rd

such that

S ⊆ c+
√

d2

d2−1
Rd−1(S,Bd2)Bd2

⊆ c+
√

d2

d2−1
Rd−1(P,Bd2)Bd2

⊆ c+
√

d2

d2−1
Rd−1(P,Bd2) 1

λC

⊆ c+
√

d2

d2−1
Rd−1(P,C) 1

λC

⊆ c+ d2

d2−1
Rd−1(P,C)C,

where the last inclusion follows from λ ≥
√

k2

k2−1
. Thus, Rk(P,C) = R(T,C) ≤

k2

k2−1
Rk−1(P,C). �

Theorem 4.4.8 (Dimension independent core-sets for almost-balls)

Let P ∈ Cd, C ∈ Cd0 such that for λ ∈
[√

d2−1
d2

, 1

]
the inclusions λBd2 ⊆ C ⊆ Bd2 hold and

ε > 0. There exists an ε-core-set S ⊆ P of size

⌈
1

ε

⌉
+ 1.

Proof.
Let k :=

⌈
1
ε

⌉
and S ⊆ P such that R(S,C) = Rk(P,C) and |S| ≤ k+1. By Lemmas 4.4.7

and 4.2.2,

R(P,C) ≤ d(k + 1)

k(d+ 1)
·R(S,C),

where k is chosen such that d(k+1)
k(d+1) ≤ 1 + ε independently of d ∈ N. �

We close this chapter by summarizing the different inequalities between core-radii in
Table 4.1.
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C = Bd2
R(P,Bd2)

R1(P,Bd2)
≤
√

2d

d+ 1

Rk(P,Bd2)

Rl(P,Bd2)
≤
√
k(l + 1)

l(k + 1)

Jung’s Inequality Henk’s Inequality

C ∈ Cd0
R(P,C)

R1(P,C)
≤ 2d

d+ 1

Rk(P,C)

Rl(P,C)
≤





2k
k+1 for l ≤ k+1

2

k
l for l ≥ k+1

2

0-symm. Bohnenblust’s Inequality Theorem 4.4.6

C ∈ Cd0
R(P,C)

R1(P,C)
≤ d Rk(P,C)

Rl(P,C)
≤ k

l

Theorem 4.4.1

Table 4.1: Synopsis of inequalities between core-radii as collected in this chapter.



Chapter 5

Hausdorff Matching

Whereas the previous chapters were concerned with the problem of computing func-
tionals of a single polytope, the present chapter will investigate different similarity mea-
sures of two polytopes based on the Hausdorff distance of two compact sets in Rd.
We study the computational complexity of determining the Hausdorff distance of two
polytopes and a more general matching problem. Here, one polytope is allowed to be
homothetically transformed in order to minimize its Hausdorff distance to the other one.
For the matching problem, we characterize optimality, deduce a Helly-type theorem and
give polynomial time algorithms. We also demonstrate that a variant of our matching
algorithm can be applied for a particular tomographic reconstruction problem.

5.1 Introduction

The problem of comparing two geometric objects and evaluating their similarity or
dissimilarity arises naturally in many applications such as shape fitting, pattern recogni-
tion or computer vision. A suitable means that has been widely applied to evaluate the
resemblance of two compact sets is the Hausdorff distance, see e.g. [112, 114, 148] or the
survey [10]. Consequently, there is an extensive amount of mathematical literature that
is concerned with the question of how to compute the Hausdorff distance of geometric
objects such as finite point sets or triangulations [8, 9, 16]. Not only the static evalua-
tion problem, but also problems where one object is allowed to undergo a transformation
from a certain class in order to match the other one are of particular interest, see e.g.
[4, 8, 14, 54].

The geometric objects that are considered in the papers mentioned above are usually
finite point sets or finite unions of simple geometric objects such as line segments or
simplices and are usually considered in (low) fixed dimension. The tables in [160, Chapter
3] give a detailed list of problems that have been considered, together with the respective
references and show that the term “in low fixed dimension” can be replaced by “in the
plane” in most cases. For higher dimensions, the problem of exact point pattern matching
has been investigated in [11], while [160] considers the task of minimizing the Hausdorff
distance of two sets of points or simplices under translations. Apart from that, very

83
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little seems to be known.

In this chapter, we investigate the problem of evaluating the Hausdorff distance and
the matching problem under homothetics for polytopes in arbitrary dimension. More
precisely, we are interested in the following two problems, where Rd is equipped with an
arbitrary but fixed norm.

Problem 5.1.1 (Hausdorff evaluation)
For two polytopes P,Q ⊆ Rd in arbitrary dimension, compute their Hausdorff distance
δ(P,Q).

Problem 5.1.2 (Hausdorff matching)
For two polytopes P,Q ⊆ Rd in arbitrary dimension, compute δH(P,Q), i.e. the minimal
Hausdorff distance of a homothetic transformation of P to Q. In other words,

δH(P,Q) = min δ(αP + c,Q)
s.t c ∈ Rd

α > 0.
(5.1)

Of course, the computational complexity of these problems depends on the presenta-
tion of the polytopes P and Q. We show that if both polytopes are in V-presentation,
both problems can be solved efficiently in arbitrary dimension for most important norms
(Theorem 5.2.13 and Section 5.3.3). If, on the other hand, at least one polytope is given
in H-presentation, already the evaluation problem has to be considered intractable in
low dimensions (Theorem 5.2.16).

Hence, the class of V-polytopes represents a first step towards a large class of geometric
objects for which the matching problem can be solved efficiently in arbitrary dimension.
Moreover, in view of the running times of our algorithms in Section 5.3.3, replacing dense
finite point clouds in high dimensions by their respective convex hulls might also be an
interesting approximation in many practical applications (cf. Remark 5.2.4).

This chapter is organized as follows. In Section 5.2, we state basic properties of
the Hausdorff distance that will be useful throughout this chapter and investigate the
evaluation problem. In Section 5.3, we study the matching problem, for which we prove
an optimality condition and a Helly-type theorem, and give (approximation) algorithms.

5.2 Computing the Hausdorff Distance of Two Polytopes

5.2.1 Problem Statement and General Properties

Throughout this chapter, we work in (Rd, ‖ · ‖), where ‖ · ‖ is an arbitrary norm on
Rd. Besides our standard notation Bdp for the unit ball of the p-norm, we will employ

B := {x ∈ Rd : ‖x‖ ≤ 1} if the norm is not explicitly specified.
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For a convex function f : C → R on some convex set C ⊆ Rd and x ∈ C, we write ∂f(x)
for the subdifferential of f in x and, if f is continuously differentiable in x, we denote
by ∇f(x) the gradient of f in x.

We start by defining the functional of interest in this chapter which is based on the
distance function of convex bodies.

Definition 5.2.1 (Distance mapping)
For P ⊆ Rd non-empty and compact, define

d(·, P ) : Rd → [0,∞)
x 7→ d(x, P ) = min {‖x− p‖ : p ∈ P} (5.2)

the distance mapping of P induced by ‖ ·‖. (The minimum in (5.2) is attained, as P 6= ∅
is compact and ‖ · ‖ is continuous.)

Since it is the key for the tractability result in Theorem 5.2.13, we give an explicit
proof that the distance function of a convex body is convex.

Lemma 5.2.2 (Convexity of d(·, P ))
Let P ∈ Cd. Then, d(·, P ) is convex.

Proof.
Let x1, x2 ∈ Rd and λ ∈ [0, 1]. For i = 1, 2 let pi ∈ P be a point in P such that
d(xi, P ) = ‖xi−pi‖. We have d(λx1+(1−λ)x2, P ) ≤ ‖λx1+(1−λ)x2−(λp1+(1−λ)p2)‖
≤ λ‖x1 − p1‖ + (1 − λ)‖x2 − p2‖ = λd(x1, P ) + (1 − λ)d(x2, P ) by convexity of P and
‖ · ‖. �

Definition 5.2.3 (Hausdorff distance)
Let P,Q ⊆ Rd non-empty and compact. The Hausdorff distance induced by ‖·‖ between
P and Q is denoted by

δ(P,Q) := max{max
p∈P

d(p,Q),max
q∈Q

d(q, P )}. (5.3)

Since P,Q are non-empty and compact, and d(·, P ), d(·, Q) are continuous by Lemma 5.2.2,
the maximum in (5.3) is attained. It is easy to see that it can also be expressed by

δ(P,Q) = min{ρ ≥ 0 : P ⊆ Q+ ρB, Q ⊆ P + ρB}. (5.4)

As an immediate consequence of Lemma 5.2.2, we can bound the Hausdorff distance
of finite point clouds in terms of the Hausdorff distance of their respective convex hulls.
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Remark 5.2.4 (Relation to finite point sets)
Let p1, . . . , pn, q1, . . . , qm ∈ Rd, P := conv{p1, . . . , pn} and Q := conv{q1, . . . , qm}. Fur-

ther, let R := max
(
{d(x, {p1, . . . , pn}) : x ∈ bd(P )}∪{d(x, {q1, . . . , qm}) : x ∈ bd(Q)}

)
.

Then,

δ(P,Q) ≤ δ
(
{p1, . . . , pn}, {q1, . . . , qm}

)
≤ δ(P,Q) +R,

and both bounds are best possible.

Proof.
By Lemma 5.2.2, d(·, P ) and d(·, Q) are convex and hence maxx∈P d(x,Q) is attained
within {p1, . . . , pn} as well as maxx∈Q d(x, P ) is attained within {q1, . . . , qm}. As we
have {p1, . . . , pn} ⊆ P and {q1, . . . , qm} ⊆ Q, the first inequality follows. On the other
hand, for all i ∈ [n], there is an xi ∈ Q such that ‖pi − xi‖ ≤ δ(P,Q). By the definition
of R and the triangle inequality, we get d(pi, {q1, . . . , qm}) ≤ δ(P,Q) +R. Applying this
argument also to q1, . . . , qm yields the second inequality.

It is obvious that the first bound can be fulfilled with equality. By the definition of R,
the second bound cannot be improved, either, as the point sets {(0, 0)T , (0,−1)T , (0, 1)T }
and {(0,−1)T , (0, 1)T } in R2 show. �

Of course, the quality of this bound strongly depends on the “density” of the point
clouds under investigation, which is reflected in the value of R. If the point clouds are
rather coarse, the approximation via convex hulls may be of no interest. If, on the
other hand, the point clouds are dense samples from convex regions (such as pixels of a
segmented region in an image), it might be possible to bound R by a small constant.

Besides the two equivalent definitions of the Hausdorff distance in Definition 5.2.3,
there is also a third formulation based on the support functions of P and Q. This
formulation will be of great use for the hardness proof of Theorem 5.2.16 below. Since it
can also be used as an equivalent definition of the Hausdorff distance, we already state
it at this point. Before doing so, we fix some notation, which we make use of at several
points in this chapter.

Notation 5.2.5 (Tangential and normal cone)
Let P ∈ Cd and x ∈ P . We denote by

T (P, x) := cl{v ∈ Rd : ∃λ > 0 s.t. x+ λv ∈ P}

the tangential cone of P at x and by

N(P, x) := {a ∈ Rd : h(P, a) = aTx} = T (P, x)◦

the normal cone of P at x.

Here, h(P, a) denotes the support function of P in direction a.
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Lemma 5.2.6 (Hausdorff distance via support functions)
Let P,Q ∈ Cd. Then,

δ(P,Q) = max
u∈B◦

|h(P, u)− h(Q, u)|. (5.5)

Proof.
Let ρ := δ(P,Q) and u ∈ B◦. As P ⊆ Q+ ρB, it follows that h(P, u) ≤ h(Q+ ρB, u) =
h(Q, u) + h(ρB, u) ≤ h(Q, u) + ρ. In the same way, h(Q, u) ≤ h(P, u) + ρ. As u ∈ B◦
was arbitrary, this yields maxu∈B◦ |h(P, u)− h(Q, u)| ≤ ρ.
For the other inequality, let p∗ ∈ P and q∗ ∈ Q such that ρ = ‖p∗ − q∗‖. Let f(q) :=
‖q − p∗‖. As f(q∗) ≤ f(q) for all q ∈ Q, there exists

u′ ∈ ∂f(q∗) = {u ∈ B◦ : uT (q∗ − p∗) = f(q∗)}

such that −u′ ∈ N(Q, q∗). Thus, for u∗ = −u′,

ρ = f(q∗) = (u∗)T (p∗ − q∗) = (u∗)T p∗ −max
q∈Q

(u∗)T q ≤ h(P, u∗)− h(Q, u∗)

≤ |h(P, u∗)− h(Q, u∗)| ≤ max
u∈B◦

|h(P, u)− h(Q, u)|.

�

Remark. Due to the homogeneity of h(P, ·), h(Q, ·) and | · |, the maximum in (5.5) is
attained for some vector u∗ ∈ bd(B◦). But since the function f(u) := |h(P, u)−h(Q, u)|
is not convex in general, the maximization in (5.5) cannot be restricted to ext(B◦).

Before turning to the matching problem in Section 5.3, we first ask for the complexity
of computing the Hausdorff distance of two fixed sets. For the case of convex polygons
in the plane, this question has first been studied in [16]. The paper [8] investigates the
case of finite point sets or sets of line segments in the plane. Both papers settle the issue
by giving efficient algorithms that solve the respective problems. In [9], these algorithms
are extended in order to compute the Hausdorff distance between a union of n and one
of m simplices of dimension k in Rd in time O(nmk+2).
In the context of the present thesis, however, it is natural to ask for the computational
complexity of computing the Hausdorff distance of two polytopes in unbounded dimen-
sion. As with Normmaxp (Problem 3.1.1) and the radii computation tasks in Chapter 3,
we investigate the problem for a fixed p-norm and different presentations of the poly-
topes. Again, the problems are parameterized by the dimension, which allows a refined
analysis of the role of the dimension in the NP-hard cases.

For the statement of the following three problems, let p ∈ N ∪ {∞} be fixed.

Notation 5.2.7 (Specific norms)
When working in (Rd, ‖ · ‖p) for some p ∈ N ∪ {∞}, we write

δp(P,Q) = max{max
x∈P

dp(x,Q),max
q∈Q

dp(q, P )},
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where the subscript p explicitly indicates the norm with respect to which the Hausdorff
distance is measured.

Depending on the presentation of the input polytopes, we distinguish three different
decision problems for the problem of computing the Hausdorff distance of two polytopes.

Problem 5.2.8 (Hausdorffp-V-V)

Input: d ∈ N, n,m ∈ N, p1, . . . , pn, q1, . . . , qm ∈ Qd, ρ ∈ Q
Parameter: d

Question: Is δp

(
conv{p1, . . . , pn}, conv{q1, . . . , qm}

)p
≥ ρ?

Problem 5.2.9 (Hausdorffp-V-H)

Input: d ∈ N, n,m ∈ N, p1, . . . , pn, a1, . . . , am ∈ Qd, β1, . . . , βm ∈ Q, ρ ∈ Q
Parameter: d

Question: Is δp

(
conv{p1, . . . , pn},

m⋂
i=1

H≤(ai, βi)

)p
≥ ρ?

Problem 5.2.10 (Hausdorffp-H-H)

Input: d ∈ N, n,m ∈ N, a1, . . . , an, d1, . . . , dm ∈ Qd,
β1, . . . , βn, ε1, . . . , εm ∈ Q, ρ ∈ Q

Parameter: d

Question: Is δp

(
n⋂
i=1

H≤(ai, βi),
m⋂
i=1

H≤(di, εi)

)p
≥ ρ?

5.2.2 Tractability Results

In this subsection, we show that the Hausdorff distance of two polytopes in V-presentation
can in principle be computed efficiently (Lemma 5.2.11, Theorem 5.2.13). The restric-
tion “in principle” is due to the fact, that for p ∈ N \ {1, 2} the (power of the) distance
dp(x, P )p of a point x to a polytope P might not be rational and therefore not computable
in polynomial time.

Lemma 5.2.11 (Restriction to vertices)
In an arbitrary normed space (Rd, ‖·‖), letO be an oracle that on input x, p1, . . . , pn ∈ Qd

returns d(x, conv{p1, . . . , pn}). Then for any set of points p1, . . . , pn, q1, . . . , qm ∈ Qd,
δ(conv{p1, . . . , pn}, conv{q1, . . . , qm}) can be computed using at most m+n calls to O.

Proof.
Let P := conv{p1, . . . , pn} and Q := conv{q1, . . . , qm}. Since d(·, Q) is convex by
Lemma 5.2.2, maxx∈P d(x,Q) is attained at a vertex of P as well as maxx∈Q d(x, P )
is attained at a vertex of Q. Hence, δ(P,Q) = max

{
max{d(p,Q) : p ∈ P},max{d(q, P ) :

q ∈ Q}
}

can be computed by determining d(pi, Q) and d(qj , P ) for all i ∈ [n] and j ∈ [m]
via calls to O. �
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Lemma 5.2.12 (Computing d(·, P ))
If the unit ball B ⊆ Rd is a polytope given in V-presentation or in H-presentation, then
for any point x ∈ Qd and any rational polytope P ⊆ Rd in V- or H-presentation, the
distance d(x, P ) can be computed in polynomial time.
If B = Bd2, for any point x ∈ Qd and any rational polytope P ⊆ Rd in V- or H-
presentation, d(x, P )2 can be computed exactly in polynomial time.

Proof.
The cases where a V- or H-presentation of B is available can all be solved by Linear
Programming:
First, let B = {x ∈ Rd : uTj x ≤ 1 ∀j ∈ [m]}. If P = {x ∈ Rd : Ax ≤ b}, then

d(x, P ) = min t
s.t. t ≥ uTj (x− y) ∀j ∈ [m]

Ay ≤ b
y ∈ Rd
t ∈ R.

If P = conv{p1, . . . , pn}, then

d(x, P ) = min t
s.t. t ≥ uTj (x−∑n

i=1 λipi) ∀j ∈ [m]∑n
i=1 λi = 1

λi ≥ 0 ∀i ∈ [n]
t ∈ R.

Now, let B = conv{v1, . . . , vm}. If P = {x ∈ Rd : Ax ≤ b}, then

d(x, P ) = min α
s.t. x− y =

∑m
j=1 µjvj

Ay ≤ b∑m
j=1 µj = α

µj ≥ 0 ∀j ∈ [m]
y ∈ Rd
α ≥ 0.

If P = conv{p1, . . . , pn}, then

d(x, P ) = min α
s.t. x−∑n

i=1 λipi =
∑m

j=1 µjvj∑n
i=1 λi = 1∑m
j=1 µj = α

µj ≥ 0 ∀j ∈ [m]
λi ≥ 0 ∀i ∈ [n]
α ≥ 0.
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Finally, let B = Bd2. If P = {x ∈ Rd : Ax ≤ b}, then

d(x, P )2 = min (p− x)T (p− x)
s.t. Ap ≤ b.

p ∈ Rd.
(5.6)

If P = conv{p1, . . . , pn}, then

d(x, P )2 = min (p− x)T (p− x)
s.t. p =

∑n
i=1 λipi∑n

i=1 λi = 1
λi ≥ 0 ∀i ∈ [n].

(5.7)

By [126], the optimal solutions of (5.6) and (5.7) are rational and can be found in
polynomial time. �

Together, Lemmas 5.2.11 and 5.2.12 yield the following:

Theorem 5.2.13 (Tractability of Hausdorff-V-V)
Hausdorff1-V-V, Hausdorff2-V-V and Hausdorff∞-V-V are in P. More generally,
if a V- or H-presentation of the unit ball B can be computed in polynomial time, the
Hausdorff distance of two rational polytopes P,Q ⊆ Rd can be computed in polynomial
time.

Remark 5.2.14 (Direct approximation of δ2(P,Q))
For two rational V-polytopes P,Q ⊆ Rd, the Hausdorff distance δ2(P,Q) can also be
approximated to any accuracy in polynomial time by solving a Second Order Cone
Program (cf. the SOCP in Lemma 5.3.12 with α = 1 and c = 0).

Remark 5.2.15 (Approximation for Hausdorffp-V-V)
For p ∈ N and rational polytopes P = conv{p1, . . . , pn} ⊆ Rd andQ = conv{q1, . . . , qm} ⊆
Rd, the Hausdorff distance δp(P,Q) can be approximated to any accuracy in polynomial
time by combining Lemma 5.2.11 and the Ellipsoid Method [92] for the approximation
of d(pi, Q) and d(qj , P ) for i ∈ [n] and j ∈ [m].

5.2.3 Hardness Results

The main result of this section is Theorem 5.2.16, which states the hardness of Haus-
dorffp-H-H for p ∈ N. After the proof of Theorem 5.2.16, the section concludes with
remarks about the case p =∞, the complexity of Hausdorffp-V-H and an interesting
connection to the VertexEnumeration problem (Problem 5.2.22).

Theorem 5.2.16 (Hardness of Hausdorffp-H-H )
For p ∈ N, Hausdorffp-H-H is W[1]-hard, even if both H-polytopes are required to be
0-symmetric.
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The proof of Theorem 5.2.16 is given by Lemma 5.2.17 and Lemma 5.2.19, where the
key observation that enables the latter result is given in Lemma 5.2.18.

Lemma 5.2.17 (Reduction of Normmaxp)
For all p ∈ N ∪ {∞}, Normmaxp (Problem 3.1.1) can be reduced in polynomial and
FPT (with respect to the dimension) time to Hausdorffp-H-H.

Proof.
If (d, P, λ) is an instance of Normmaxp with an H-presented rational polytope P ⊆ Rd,
let Q := {x ∈ Rd : ±eTi x ≤ 0 ∀i ∈ [d]} = {0}. Then,

max{‖x‖pp : x ∈ P} ≥ λ⇔ δp(P,Q)p ≥ λ

�

Since Theorem 3.1.2 shows that Normmaxp is W[1]-hard for p ∈ N \ {1} on 0-
symmetric polytopes, the statement of Theorem 5.2.16 follows in all cases except p = 1.
Since Normmaxp is NP-hard for all p ∈ N (e.g. [27, 130]), the same reduction can be
used to show NP-hardness for all p ∈ N, too.

Even though Normmax1 is in FPT (Theorem 3.1.2), Hausdorff1-H-H is also W[1]-
hard, as the following shows. Together with Lemma 5.2.17, this completes the proof of
Theorem 5.2.16.

As in Chapter 3, we present an FPT reduction of Clique (Problem 3.2.1) to Haus-
dorff1-H-H. The reduction uses a similar technique as the one used for Theorem 3.1.2
and considers R2k as the direct product of k two-dimensional spaces. We start by inves-
tigating the Hausdorff distance induced by the 1-norm for polytopes that are products
of k two-dimensional polytopes.

Lemma 5.2.18 (Hausdorff distance of direct products)
For k ∈ N, let P1, . . . , Pk ⊆ R2 and Q1, . . . , Qk ⊆ R2 be polytopes with Qi ⊆ Pi for all
i ∈ [k] and further P := P1 × · · · × Pk ⊆ R2k and Q := Q1 × · · · ×Qk ⊆ R2k. Then,

δ1(P,Q) =
k∑

i=1

δ1(Pi, Qi).

Proof.
Since Qi ⊆ Pi for all i ∈ [k] and hence Q ⊆ P , we have h(Pi, u) ≥ h(Qi, u) for all i ∈ [k]
and u ∈ R2, and h(P, u) ≥ h(Q, u) for all u ∈ R2k. Decomposing a vector u ∈ R2k as
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u = (uT1 , . . . , u
T
k )T with u1, . . . , uk ∈ R2, we obtain by Lemma 5.2.6,

δ1(P,Q) = max
u∈B2k

∞

(h(P, u)− h(Q, u)) = max
u∈B2k

∞

k∑

i=1

(h(Pi, ui)− h(Qi, ui)) =

=
k∑

i=1

(
max
ui∈B2

∞
(h(Pi, ui)− h(Qi, ui))

)
=

k∑

i=1

δ1(Pi, Qi).

�

Lemma 5.2.19 (W[1]-Hardness of Hausdorff1-H-H)
Hausdorff1-H-H is W[1]-hard, even when restricted to 0-symmetric polytopes.

Proof.
Let (m, k,E) be an instance of Clique with m vertices, define n := 2m and let P̄1 =
conv{p̄1, . . . , p̄2n} ⊆ R2 be the polytope given in Equation (3.9) for p = 2, i.e. p̄1, . . . , p̄2n

are the roundings to a grid of evenly spread points on the Euclidean unit sphere. By
Lemma 3.2.6,

P1 := P̄ ◦1 = {x ∈ R2 : p̄Tv x ≤ 1 ∀v ∈ [2n]}
is an irredundant H-presentation of P1, the coding length of which is polynomial in m
and k. By relabeling and scaling, we can achieve that

P1 =
⋂

v∈[n]

(
H≤(av, βv) ∩H≤(cv, γv)

)
,

where the facets induced by av and cv alternate along the boundary of P1 (compare
Figure 5.1), ‖av‖∞ = ‖cv‖∞ = 1 and βv, γv > 0 for all v ∈ [n]. Observe that also the
sets {c1, . . . , cn} and {a1, . . . , an} are 0-symmetric.
Now, compute all vertices of P1 in timeO(n log(n)) (e.g. [60]), such that P1 = conv{p1, . . . , p2n}
and define, for v ∈ [n],

εv := γv −max{cTv pw : cTv pw 6= γv, w ∈ [2n]} > 0,

ε :=
1

10
min{εv : v ∈ [n]} > 0

and
Q1 := {x ∈ R2 : aTv x ≤ βv, cTv x ≤ γv − ε ∀v ∈ [n]}.

For any u ∈ bd(B2
∞), let p(u) ∈ P1 and q(u) ∈ Q1 be vertices of the two polytopes with

u ∈ N(P1, p(u)) = N(Q1, q(u)) = pos{cv, aw} for some v ∈ [n] and w ∈ {v−1, v}. Then,
we can express u = λcv + µaw with λ, µ ≥ 0. By adding isolated vertices to the graph,
we can assume without loss of generality that n ≥ 32. Hence, we have ‖cv − aw‖2 ≤ 1

4 ,
by Lemma 3.2.3. Since ‖cv‖∞ = 1, there exists e ∈ {±e1,±e2} such that eT cv = 1.
Since ‖cv − aw‖2 ≤ 1

4 and ‖aw‖∞ = 1, we can conclude that eTaw > 0. Thus,

1 ≥ eTu = λeT cv + µeTaw ≥ λ
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a1

c1
a2

c4
P1

0

Q1
cT1 x = γ1 − ε

Figure 5.1: Illustration of the two polytopes P1, Q1 ⊆ R2 from the reduction in the proof
of Lemma 5.2.19.

and equality holds if and only if λ = 1 and µ = 0.

Therefore,

h(P1, u)−h(Q1, u) = uT (p(u)−q(u)) = λcTv (p(u)−q(u))+µaTw(p(u)−q(u)) = λε ∈ [0, ε].

Hence,

δ1(P1, Q1) = max
u∈B2

∞
(h(P1, u)− h(Q1, u)) = ε, (5.8)

where the maximum in (5.8) is attained if and only if u ∈ {c1, . . . , cn}.
Using again Notation 3.2.2 from Chapter 3, let

P2 :=
⋂

i∈[k]

⋂

v∈[n]

(
H i
≤(av, βv) ∩H i

≤(cv, γv)
)
⊆ R2k

and

Q :=
⋂

i∈[k]

⋂

v∈[n]

(
H i
≤(av, βv) ∩H i

≤(cv, γv − ε)
)
⊆ R2k.

By Lemma 5.2.18 and (5.8), we obtain δ1(P2, Q) = kε.

For i, j ∈ [k] and v, w ∈ [m] define

Eijvw := {x ∈ R2k : −(γv + γw − ε) ≤ cTv xi + cTwxj ≤ γv + γw − ε},

F ijvw := {x ∈ R2k : −(γv + γw − ε) ≤ cTv xi − cTwxj ≤ γv + γw − ε}

and, for N :=
(

[m]
2

)
\ E, let

P := P2 ∩
⋂

{v,w}∈N
i,j∈[k],i6=j

(Eijvw ∩ F ijvw) ∩
⋂

v∈[m]
i,j∈[k],i 6=j

(Eijvv ∩ F ijvv)
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Now, by definition, P and Q are 0-symmetric and we claim that δ1(P,Q) = kε if
and only if G = ([m], E) has a clique of size k. Since Clique is W[1]-complete [70,
Theorem 6.1], this completes the hardness proof for Hausdorff1-H-H.
Assume δ1(P,Q) = kε. Since Q ⊆ P , there exists u∗ ∈ B2k

∞ such that h(P, u∗) =
h(Q, u∗) + kε. Since P ⊆ P2, we obtain via the sharpness condition in (5.8), that
u∗ = (cTv1 , . . . , c

T
vk

)T for some v1, . . . , vk ∈ [n]. Hence, there is a vector x∗ ∈ P such that

cTv1x
∗
1 = γv1 , . . . , cTvkx

∗
k = γvk .

If cvj = ±cvi for some i 6= j ∈ [k], this would imply cTvix
∗
i ±cTvix∗j = 2γvi which contradicts

x∗ ∈ P ⊆ Eijvivi ∩ F ijvivi . Hence, defining for i ∈ [k],

ui :=

{
vi if vi ≤ m
vi −m else

yields |{u1, . . . , uk}| = k. In the same way, cTvix
∗
i +cTvjx

∗
j = γi+γj implies that {ui, uj} ∈

E. Thus, {u1, . . . , uk} is the set of vertices of a clique of size k in G.
If on the other hand {v1, . . . , vk} ⊆ [m] is the vertex set of a k-clique, then u∗ :=
(cTv1 , . . . , c

T
vk

)T satisfies h(P, u∗) = h(Q, u∗) + kε and therefore δ1(P,Q) = kε. �

As an immediate corollary of Lemma 5.2.19, we obtain the hardness of computing the
Hausdorff distance of two H-polytopes in an arbitrary polytopal norm which is part of
the input. Hence, the approximation of the unit ball of a p-norm by a polytopal norm as
in Theorem 3.2.12 and Lemma 3.3.2 is not possible for the computation of the Hausdorff
distance of two H-presented polytopes.

Corollary 5.2.20 (W[1]-hardness for polytopal norms)
For 0-symmetric B ∈ Cd0 and P,Q ∈ Cd, let δB(P,Q) denote the Hausdorff distance
induced by the norm with unit ball B. Then the problems
Input: d ∈ N, ρ ∈ Q, P,Q ⊆ Rd rational polytopes in H-presentation,

polytopal unit ball B ⊆ Rd in H-presentation (V-presentation, resp.)
Parameter: d
Question: Is δB (P,Q) ≥ ρ?

are both W[1]-hard.

Proof.
Since we can construct an H- and V-presentation of Bd1 in FPT-time, we can reduce
Hausdorff1-H-H to either of the above problems. �

Concerning mixed presentations, we can use the same reduction as in Lemma 5.2.17
and obtain the following hardness result.

Theorem 5.2.21 (W[1]-Hardness of Hausdorffp-V-H)
For p ∈ N \ {1}, Hausdorffp-V-H is W[1]-hard.



5.3. Hausdorff Matching under Homothetics 95

Finally, we remark that, regardless the norm used to measure the Hausdorff distance,
Hausdorff-V-H is closely linked to the following vertex enumeration problem.

Problem 5.2.22 (VertexEnumeration)
Input: d ∈ N, n,m ∈ N, a1, . . . , am ∈ Qd, β1, . . . , βm ∈ Q, p1, . . . , pn ∈ Qd

Question: Is ext{x ∈ Rd : aTi x ≤ βi ∀i ∈ [m]} \ {p1, . . . , pn} 6= ∅?

Clearly, if Q := {x ∈ Rd : aTi x ≤ βi ∀i ∈ [m]} is bounded and P := conv{p1, . . . , pn},
then the question in VertexEnumeration is equivalent to the question, whether
δ(P,Q) > 0 in any norm.
In [119], VertexEnumeration is shown to be NP-hard for a general (possibly un-
bounded) polyhedron Q. The question for the complexity of the same decision problem
where Q is required to be bounded is open [119] and we refer to [154] for a recent account
on this topic and related results.

5.3 Hausdorff Matching under Homothetics

The remaining part of this chapter is concerned with the Hausdorff matching problem
under homothetics. As stated in the introduction, many variants of this problem have
received considerable attention which mainly turns around the matching problem for
finite point sets or sets of line segments in low dimensions. For an overview, we refer
to [10]. For the problem of matching two convex bodies in arbitrary dimension, we first
characterize optimal solutions in Theorem 5.3.8 in Section 5.3.1, which in turn implies
a Helly-type theorem in Section 5.3.2. We combine these results with the insights of the
previous section in order to derive polynomial time algorithms for different matching
problems in Section 5.3.3.

In order to avoid degeneracies, we assume both bodies to have an interior point (the
origin without loss of generality, i.e. P,Q ∈ Cd0). We state the problem and the results
only for the Euclidean norm since it is probably the case of most interest and it offers
some notational conveniences. Arbitrary norms can be handled with exactly the same
ideas at the expense of a slightly more bulky notation.

Problem 5.3.1 (Hausdorff matching under homothetics)
For P,Q ∈ Cd0 , find a scaled translate of P such that its Hausdorff distance to Q is
minimized. In other words, solve the problem

min δ2(αP + c,Q)
s.t. c ∈ Rd

α > 0.
(5.9)

The optimal value of (5.9) will be denoted by

δH(P,Q),
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where the subscript “H” indicates that the Hausdorff distance (in Euclidean norm) of
P and Q is measured up to homothetics.

A first glance at the objective function shows that the problem at hand is a convex op-
timization problem, so that (for a suitable presentation of the input) efficient algorithms
do not seem out of reach.

Lemma 5.3.2 (Convexity of the objective function)
Let P,Q ∈ Cd. The function

f : (0,∞)× Rd → [0,∞)
(α, c) 7→ δ(αP + c,Q)

is convex.

Proof.
Let α1, α2 ≥ 0 and c1, c2 ∈ Rd, λ ∈ [0, 1] and for brevity ρ1 := f(α1, c1), ρ2 := f(α2, c2).
We have

α1P + c1 ⊆ Q+ ρ1B ∧ Q ⊆ α1P + c1 + ρ1B (5.10)

and
α2P + c2 ⊆ Q+ ρ2B ∧ Q ⊆ α2P + c2 + ρ2B. (5.11)

By combining (5.10) and (5.11), we obtain (λα1 + (1 − λ)α2)P + λc1 + (1 − λ)c2 ⊆
Q+(λρ1 +(1−λ)ρ2)B and Q ⊆ (λα1 +(1−λ)α2)P +λc1 +(1−λ)c2 +(λρ1 +(1−λ)ρ2)B,
yielding f(λα1 + (1− λ)α2, λc1 + (1− λ)c2) ≤ λρ1 + (1− λ)ρ2. �

5.3.1 Optimality Criterion

The goal of this subsection is to give an optimality criterion for Problem 5.3.1 with
two arbitrary convex bodies in the spirit of John’s Theorem (Proposition 2.3.6) or The-
orem 4.2.3.
Let P,Q ∈ Cd0 . We say, that P is in optimal homothetic position with respect to Q if

δH(P,Q) = δ(P,Q). (5.12)

In preparation of Theorem 5.3.8, we first prove a series of technical lemmas that
provide required details such as normal cones of outer parallel bodies, several derivatives
and a statement about subgradients of certain convex functions. The first proposition
(see e.g. [150, Section 1.2]) allows us to express things in terms of projections on convex
bodies in the Euclidean case and alleviates the notation.

Proposition 5.3.3 (Projection onto convex bodies)
Let P ∈ Cd and x ∈ Rd. Then, there is a unique point ΠP (x) ∈ P such that {p ∈ P :
‖x− p‖2 = d(x, P )} = {ΠP (x)}. Further, for all p ∈ P , we have

(x−ΠP (x))T (p−ΠP (x)) ≤ 0 (5.13)
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and the mapping
ΠP : Rd 7→ P ; x 7→ ΠP (x)

is Lipschitz-continuous with constant L = 1.

Lemma 5.3.4 (Normal cone of outer parallel bodies)
Let P ∈ Cd and ρ > 0. For x ∈ bd(P + ρBd2), the normal cone of P + ρBd2 in x is given
by

N(P + ρBd2, x) = pos
{
x−ΠP (x)

}
.

If further ρ′ > 0, then

P + ρ′Bd2 =
⋂

x∈bd(P+ρBd2)

H≤
(
x−ΠP (x), (x−ΠP (x))TΠP (x) + ρρ′

)
.

Proof.
Since ΠP (x) + ρBd2 ⊆ P + ρBd2, we have

H≤(x−ΠP (x), 0) = T (ΠP (x) + ρBd2, x) ⊆ T (P + ρBd2, x). (5.14)

Since P + ρBd2 is convex and hence the tangential cone T (P + ρBd2, x) is at most a
half-space, we conclude that the inclusion in (5.14) is actually an equality and that

N(P + ρBd2, x) = T (ΠP (x) + ρBd2, x)◦ = pos{x−ΠP (x)}.

For ρ′ > 0, the above yields

P + ρ′Bd2 =
⋂

x′∈bd(P+ρ′Bd2)

H≤
(
x′ −ΠP (x′),

(
x′ −ΠP (x′)

)T
x′
)

=
⋂

x∈bd(P+ρBd2)

H≤
(
x−ΠP (x),

(
x−ΠP (x)

)T
(

ΠP (x) +
ρ′

ρ
(x−ΠP (x))

))

=
⋂

x∈bd(P+ρBd2)

H≤
(
x−ΠP (x),

(
x−ΠP (x)

)T
ΠP (x) + ρρ′

)
.

�

Lemma 5.3.5 (Differentiating d2(·, P ))
Let P ∈ Cd and define

gP : Rd → [0,∞); x 7→ d2(x, P ) = min{‖x− p‖2 : p ∈ P}.

The mapping gP is convex and, for x ∈ Rd \P , it is continuously differentiable in x with

∇gP (x) =
x−ΠP (x)

‖x−ΠP (x)‖2
.
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Proof.
By Lemma 5.2.2, gP is convex regardless of the norm. Since, for x ∈ Rd \P , the function
gP does not attain its minimum in x, we can apply Theorem 23.7 from [147] in order to
obtain

pos(∂gP (x)) = N(P + d2(x, P )Bd2, x).

Hence, by Lemma 5.3.4, ∂g(x) = {λ(x−ΠP (x))} for some λ > 0. Using the linearity of
‖ · ‖2 on rays emanating from the origin, we obtain λ = ‖x−ΠP (x)‖−1

2 .

As |∂g(x)| = 1 for all x ∈ Rn \ P , Theorem 25.1 and Corollary 25.5.1 in [147] yield that
g is continuously differentiable in x and that ∇gP (x) = ‖x−ΠP (x)‖2−1(x−ΠP (x)). �

Lemma 5.3.6 (Differentiating the objective)
Let P,Q ∈ Cd and define, for p ∈ P ,

fp : (0,∞)× Rd → [0,∞); (α, c) 7→ d2(αp+ c,Q)

and, for q ∈ Q,

fq : (0,∞)× Rd → [0,∞); (α, c) 7→ d2(q, αP + c).

Then fp and fq are convex.

Further, if p ∈ Rd \Q,

∇fp(1, 0) =
1

‖p−ΠQ(p)‖2

(
(p−ΠQ(p))T p
p−ΠQ(p)

)
(5.15)

and, if q ∈ Rd \ P ,

∇fq(1, 0) = − 1

‖q −ΠP (q)‖2

(
(q −ΠP (q))TΠP (q)

q −ΠP (q)

)
(5.16)

Proof.
First, observe that for x, y ∈ Rd and K,L ∈ Cd

d(x+ y,K + L) ≤ d(x,K) + d(y, L),

as ΠK(x) + ΠL(y) ∈ K + L. Now, for the convexity of fq for q ∈ Q, let α1, α2 > 0,
c1, c2 ∈ Rd and λ ∈ [0, 1]. We have

fq
(
λα1 + (1−λ)α2, λc1 + (1−λ)c2

)
= d
(
λq+ (1−λ)q, λ(α1P + c1) + (1−λ)(α2P + c2)

)

≤ d
(
λq, λ(α1P + c1)

)
+ d
(
(1− λ)q, (1− λ)(α2P + c2)

)
= λfq(α1, c1) + (1− λ)fq(α2, c2),

which shows the convexity of fq. For p ∈ P , the function fp is a composition of a linear
function and a convex function and hence convex.
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A direct application of the chain rule together with Lemma 5.3.5 yields (5.15). In order
to differentiate fq, we express fq(α, c) = d(q, αP + c) = αgP ( 1

α(q − c)) with gP defined
as in Lemma 5.3.5. Differentiating this expression yields

∂fq
∂c

(α, c) = −α∇gP
(

1

α
(q − c)

)

and
∂fq
∂α

(α, c) = gP

(
1

α
(q − c)

)
− 1

α
∇gP

(
1

α
(q − c)

)T
(q − c).

Plugging in α = 1 and c = 0 and using gP (q)2 = (q − ΠP (q))T (q − ΠP (q)), we obtain
(5.16). �

We remark that the convexity of fp and fq for all p ∈ P and q ∈ Q can be used as an
alternative proof for Lemma 5.3.2 using the definition as maximum of convex functions in
(5.3) instead of the containment formulation in (5.4). The next lemma now investigates
the subdifferential of such a supremum of uncountably many convex functions.

Lemma 5.3.7 (Subgradient of the supremum of convex functions)
Let I be a (possibly uncountable) index set and fi : Rd → R convex for i ∈ I. Let

f : Rd → R; f(x) := sup{fi(x) : i ∈ I}

and for x ∈ Rd define A(x) := {i ∈ I : fi(x) = f(x)}. Then, for all x ∈ Rd,

cl
(

conv
( ⋃

i∈A(x)

∂fi(x)
))
⊆ ∂f(x). (5.17)

Proof.
Let x ∈ Rd, i ∈ A(x) and a ∈ ∂fi(x). Let further ā :=

(
a
−1

)
and β := āT

(
x

f(x)

)
. Then,

H=(ā, β) supports epi(fi) and epi(fi) ⊆ H≤(ā, β) (cf. [147, Section 23]).

Since epi(f) =
⋂
i∈I epi(fi), we have epi(f) ⊆ H≤(ā, β); since i ∈ A(x), we also have

that H=(ā, β) supports epi(f) in
(

x
f(x)

)
. Thus, a ∈ ∂f(x). Since ∂f(x) is convex and

closed by [147, Theorem 23.4], the inclusion in (5.17) follows. �

We are now ready to prove an optimality criterion for Problem 5.3.1 for convex bodies
P,Q ∈ Cd0 . The conditions of Theorem 5.3.8 are also illustrated in Figure 5.2.

Theorem 5.3.8 (Optimality criterion for Hausdorff matching)
Let P,Q ∈ Cd0 . Then, P is in optimal homothetic position with respect to Q, if and only
if there are ρ ≥ 0 and R ⊆ P, S ⊆ Q with |R|+ |S| ≤ d+ 2 such that the following three
conditions hold:
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0

p1

p2

q1 q2

ΠQ(p1)

ΠQ(p2)

ΠP (q1) ΠP (q2)

P

Q

ρ

Figure 5.2: The conditions of Theorem 5.3.8. The blue polytope P ⊆ R2 is in optimal
position with respect to the red polytope Q ⊆ R2. Conditions (1) – (3) of Theorem 5.3.8
are verified with R = {p1, p2}, S = {q1, q2} and ρ as indicated.

(1) P ⊆ Q+ ρBd2 and Q ⊆ P + ρBd2

(2) d2(p,Q) = ρ ∀p ∈ R and d2(q, P ) = ρ ∀q ∈ S

(3) 0 ∈ conv

({(
(p−ΠQ(p))T p

p−ΠQ(p)

)
: p ∈ R

}
∪
{(

(ΠP (q)− q)TΠP (q)

ΠP (q)− q

)
: q ∈ S

})
.

Proof.
If P = Q, then conditions (1) – (3) are trivially necessary and sufficient with the choice
ρ = 0 and any R,S ⊆ P with |R|+ |S| ≤ d+ 2. We will henceforth assume that P 6= Q
and consequently ρ > 0.

We first show the sufficiency of the conditions: Assume that conditions (1) – (3) hold
for some ρ > 0, R ⊆ P and S ⊆ Q with |R|+ |S| ≤ d+ 2. Let

f : (0,∞)× Rd → [0,∞); (α, c) 7→ δ2(αP + c,Q),

and, as in Lemma 5.3.6, let fp(α, c) = d2(αp+c,Q) for p ∈ P , and fq(α, c) = d2(q, αP+c)
for q ∈ Q. Then, (1) and (2) imply

ρ = f(1, 0) = max
(
{fp(1, 0) : p ∈ P} ∪ {fq(1, 0) : q ∈ Q}

)

with (R ∪ S) ⊆ A((1, 0)) in the notation of Lemma 5.3.7. Hence, by Lemmas 5.3.6 and
5.3.7, condition (3) yields 0 ∈ ∂f(1, 0) which in turn implies that δ2(P,Q) ≤ δ2(αP+c,Q)
for all α > 0 and c ∈ Rd.
It remains to show that the conditions are also necessary. Although the procedure is
slightly more involved here, we will argue in the same way as in the respective part of
the proof of Theorem 4.2.3.
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Let P be in optimal position with respect to Q. Choose ρ := δ(P,Q) > 0 and define

R′ := {p ∈ P : d(p,Q) = ρ} ⊆ bd(Q+ρBd2) and S′ := {q ∈ Q : d(q, P ) = ρ} ⊆ bd(P+ρBd2).

We have R′ 6= ∅ and S′ 6= ∅, because one of these sets being empty would imply that P
is not optimally scaled.
For x ∈ Rd, define further

aQ(x) := x−ΠQ(x) and aP (x) := x−ΠP (x)

and let

A :=

{(
aQ(p)T p

aQ(p)

)
: p ∈ R′

}
B :=

{(
aP (q)TΠP (q)

aP (q)

)
: q ∈ S′

}
.

We show 0 ∈ conv(A∪ (−B)). That R′ and S′ can be reduced to subsets R ⊆ R′, S ⊆ S′
with |R|+ |S| ≤ d+ 2 then follows from Carathéodory’s Theorem (see e.g. [59]).
For a contradiction, assume that 0 6∈ conv(A∪ (−B)). Then, 0 can be strictly separated
from conv(A ∪ (−B)), i.e. there exists (η, yT )T ∈ Rd+1 such that

ηaQ(p)T p+ aQ(p)T y ≤ −1 ∀p ∈ R′ and ηaP (q)TΠP (q) + aP (q)T y ≥ 1 ∀q ∈ S′.
(5.18)

We will show that there exists λ > 0 such that δ((1 + λη)P + λy,Q) < δ(P,Q), which
contradicts the optimality of (1, 0).
For this purpose, let

Qρ := Q+ ρBd2 =
⋂

x∈bd(Qρ)

H≤(aQ(x), aQ(x)Tx),

where the second presentation is obtained via Lemma 5.3.4.
Define N :=

{
(x, p) ∈ bd(Qρ)× P : ηaQ(x)T p+ aQ(x)T y ≥ 0

}
and further

f : N → R; (x, p) 7→ aQ(x)Tx− aQ(x)T p

For (x, p) ∈ N , (5.18) yields
(
aQ(x)T p, aQ(x)T

)T
/∈ A, which implies p 6= x. Together

with p ∈ Q+ ρBd2 , this yields aQ(x)T p < aQ(x)Tx. Thus, for all (x, p) ∈ N , f(x, p) > 0.
Since f is continuous and N is compact, there exists ε1 > 0 such that

f(x, p) ≥ ε1 ∀(x, p) ∈ N (5.19)

Now, for (x, p) ∈
(
bd(Qρ)× P

)
\N and λ > 0, we have

aQ(x)T ((1 + λη)p+ λy) = aQ(x)T p︸ ︷︷ ︸
≤aQ(x)T x

+λ (ηaQ(x)T p+ aQ(x)T y)︸ ︷︷ ︸
<0

< aQ(x)Tx.

By (5.19) and the boundedness of Qρ and P , we can choose λ > 0 sufficiently small such
that for all (x, p) ∈ N

aQ(x)T ((1 + λη)p+ λy) = aQ(x)T p︸ ︷︷ ︸
≤aQ(x)T x−ε1

+λ(ηaQ(x)T p+ aQ(x)T y) < aQ(x)Tx.
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Thus,

(1 + λη)P + λy ⊆ int(Qρ) for all λ > 0 sufficiently small. (5.20)

Assume further that λ > 0 is sufficiently small such that λη > −1 and let

P +
ρ

1 + λη
Bd2 =

⋂

x∈bd(P+ρBd2)

H≤

(
aP (x), aP (x)TΠP (x) +

ρ2

1 + λη

)
,

where again the H-presentation is obtained via Lemma 5.3.4.

Define M :=
{
x ∈ bd(P + ρBd2) : ηaP (x)TΠP (x) + aP (x)T y ≤ 0

}
and further

g : M ×Q→ R; (x, q) 7→ aP (x)TΠP (x) + ρ2 − aP (x)T q.

For x ∈ M , (5.18) yields
(
aP (x)TΠP (x), aP (x)T

)T
/∈ B, which implies that there is no

q ∈ Q such that aP (x)T q = aP (x)TΠP (x) + ρ2. Together with Q ⊆ P + ρBd2, we obtain
g(x, q) > 0 for all x ∈ M and q ∈ Q. Since M × Q is compact and g continuous, there
exists ε2 > 0 such that g(x, q) ≥ ε2 for all x ∈M and q ∈ Q.

Hence, we can again choose λ > 0 sufficiently small such that for all x ∈M and q ∈ Q,
we have

aP (x)T q < aP (x)TΠP (x) + ρ2 + λ(ηaP (x)TΠP (x) + aP (x)T y) (5.21)

and (5.21) is also fulfilled for x ∈ bd(P +ρBd2)\M , λ > 0 and q ∈ Q. Rearranging (5.21)
shows that it is equivalent to

1

1 + λη
(Q− λy) ⊆ int

(
P +

ρ

1 + λη
Bd2
)
⇐⇒ Q ⊆ int

(
(1 + λη)P + λy + ρBd2

)
(5.22)

Together, (5.20) and (5.22) show that for λ > 0 sufficiently small, δ((1+λη)P +λy,Q) <
δ(P,Q), which is the desired contradiction.

�

5.3.2 Helly-Type Properties

As in Chapter 4, we investigate Helly-properties of the Hausdorff matching problems
as a first step towards algorithmic and approximation questions. For the case of V-
polytopes, this question has already received attention and it was shown in [14] that
Hausdorff matching with V-polytopes can be formulated as a convex program in order
to show that it is a Generalized Linear Program [131, 152] of combinatorial dimension
δ = d+ 2.

With Theorem 5.3.8 at hand, we can improve this result and state a generalized version
of this Helly-type theorem which holds true for arbitrary convex bodies.
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Corollary 5.3.9 (Helly-type theorem for Problem 5.3.1)
Let P,Q ∈ Cd0 and for R ⊆ P , S ⊆ Q, define

ρ(R,S) := min ρ
s.t. αp+ c ∈ Q+ ρBd2 ∀p ∈ R

q ∈ αP + c+ ρBd2 ∀q ∈ S
c ∈ Rd
α, ρ ≥ 0.

(5.23)

Then for any ρ∗ ≥ 0,

ρ(P,Q) ≤ ρ∗ ⇐⇒ ρ(R,S) ≤ ρ∗ ∀R ⊆ P, S ⊆ Q, |R|+ |S| ≤ d+ 2.

In addition to restricting the number of constraints, we can also state a Helly-type
theorem which restricts the number of vertices of a polytope that need to be considered:

Theorem 5.3.10 (0-core-sets for Problem 5.3.1)
Let P,Q ∈ Cd0 . There are subsets R ⊆ ext(P ) and S ⊆ ext(Q) such that |R| + |S| ≤
d(d+ 2) and

δH(conv(R), conv(S)) = δH(P,Q).

Proof.
Assume without loss of generality that δH(P,Q) = δ(P,Q). Corollary 5.3.9 implies that
there are subsets R′ ⊆ P and S′ ⊆ Q with |R′| + |S′| ≤ d + 2 such that in (5.23) only
the containment constraints for p ∈ R′ and q ∈ S′ are necessary.

For p ∈ R′, we have that Q ⊆ H≤(p−ΠQ(p), (p−ΠQ(p))TΠQ(p)) and ΠQ(p) ∈ H=(p−
ΠQ(p), (p − ΠQ(p))TΠQ(p)) by Proposition 5.3.3. Now, Carathéodory’s Theorem (see
e.g. [59]) applied to Q ∩ H=(p − ΠQ(p), (p − ΠQ(p))TΠQ(p)) yields the existence of
qp1 , . . . , q

p
d ∈ ext(Q ∩H=(p − ΠQ(p), (p − ΠQ(p))TΠQ(p))) ⊆ ext(Q) such that ΠQ(p) ∈

conv{qp1 , . . . , qpd}. Defining

S := S′ ∪
⋃

p∈R′
{qp1 , . . . , qpd}

assures that d(p, conv(S)) = d(p,Q) for all p ∈ R′. Applying the same argument to R′

shows that |R|+ |S| ≤ d(d+ 2). �

Remark. The restriction to extreme points in Theorem 5.3.10 aims at the algorithmic
application, where P and Q are specified as V-polytopes and ext(P ) and ext(Q) are
easily available. If one drops this restriction, the bound |S| + |R| ≤ d(d + 2) can be
improved to |S|+ |R| ≤ 2(d+ 2).
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5.3.3 Exact Algorithms and Approximations

The following two lemmas show that, in case the input polytopes are specified as V-
polytopes, Problem 5.3.1 can be formulated as a Linear or Second Order Cone Program
depending on the choice of the norm. These cases can thus be approximated to any
accuracy or even solved exactly in polynomial time.

Lemma 5.3.11
Let P := conv{p1, . . . , pn} ⊆ Rd and Q := conv{q1, . . . , qm} ⊆ Rd. If B = {x ∈ Rd :
uTk x ≤ 1, ∀k ∈ [r]}, then δH(P,Q) can be computed by solving the following Linear
Program:

min ρ

s.t. uTk (αpi + c−
m∑
j=1

λijqj) ≤ ρ ∀i ∈ [n]

uTk (qj −
n∑
i=1

µijpi − c) ≤ ρ ∀j ∈ [m]

m∑
j=1

λij = 1 ∀i ∈ [n]

n∑
i=1

µji = α ∀j ∈ [m]

λij , µji ≥ 0 ∀i ∈ [n], j ∈ [m].

(5.24)

Lemma 5.3.12
Let P := conv{p1, . . . , pn} ⊆ Rd and Q := conv{q1, . . . , qm} ⊆ Rd. If B = Bd2, then
δH(P,Q) can be approximated to any accuracy by solving the following SOCP:

min ρ

s.t. ‖αpi + c−
m∑
j=1

λijqj‖2 ≤ ρ ∀i ∈ [n]

‖qj −
n∑
i=1

µijpi − c‖2 ≤ ρ ∀j ∈ [m]

m∑
j=1

λij = 1 ∀i ∈ [n]

n∑
i=1

µji = α ∀j ∈ [m]

λij , µji ≥ 0 ∀i ∈ [n], j ∈ [m].

(5.25)

Theorems 5.2.16 and 5.2.21 show that simple evaluation of the Hausdorff distance is
W[1]-hard, if at least one H-presented polytope is involved. Nonetheless, we can at least
give a polynomial time approximation algorithm in these cases. This can be done via
the so-called “Reference Point Method” developed in [5]. The general framework in [5]
was devised to produce approximate solutions for the Hausdorff matching problem under
similarities for compact sets in Rd. However, since it requires the computation of the
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diameter of the involved sets, and diameter computation of H-polytopes is also W[1]-
hard (Corollary 3.4.3), we can not apply it directly. Hence, in the following, we describe
a version of Reference Point Matching which is specially tailored to our needs: It is only
formulated for matching under homothetics and replaces the diameter of a polytope by
the diameter of its bounding box. The performance guarantee of this version is slightly
worse but in the same order of magnitude as the one in [5].

The general idea of the algorithm is to replace the polytopes that are to be matched
by reference points of the polytopes and to compute a transformation that is only based
on the knowledge of these points (see [5] for a comprehensive study of the method). For
the present purpose, we choose two opposite vertices of the bounding boxes of the two
input polytopes P and Q.

Definition 5.3.13 (Reference points)
For P ∈ Cd0 , let

r(P ) := (h(P,−e1), . . . , h(P,−ed)) ∈ Rd, s(P ) := (h(P, e1), . . . , h(P, ed))
T ∈ Rd

the “lower left” and “upper right” corner of the bounding box of P and

D(P ) := ‖s(P )− r(P )‖2

the diameter of this box.

We first state some elementary properties of the interplay between the reference points
of P and Q and the Hausdorff distance δ2(P,Q).

Lemma 5.3.14 (Properties of the reference points)

a) Let P ∈ Cd0 and α1, α2 > 0. Then, δ2

(
α1(P − r(P )), α2(P − r(P ))

)
≤ |α1−α2|D(P ).

b) Let P,Q ∈ Cd0 . Then |D(P )−D(Q)| ≤ 2
√
dδ2(P,Q).

c) Let P,Q ∈ Cd0 . Then ‖r(P )− r(Q)‖2 ≤
√
dδ2(P,Q).

Proof.
a) Let without loss of generality r(P ) = 0, and p ∈ P . Then, d(α1p, α2P ) ≤ ‖α1p −

α2p‖2 ≤ |α1−α2|D(P ) and the same argument shows that also max{d(x, α1P ) : x ∈
α2P} ≤ |α1 − α2|D(P ).

b) By Lemma 5.2.6, for i ∈ [d], we have |h(P,±ei) − h(Q,±ei)| ≤ δ2(P,Q) and hence
|D(P )−D(Q)| ≤ 2

√
dδ2(P,Q).

c) The statement also follows from |h(P,−ei)− h(Q,−ei)| ≤ δ2(P,Q) for all i ∈ [d].

�
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If we compute a homothetic transformation which only relies on our two reference
points, we can give the following performance guarantee.

Lemma 5.3.15 (Approximation by reference points)
Let P,Q ∈ Cd0 and

ᾱ :=
D(Q)

D(P )
and c̄ := r(Q)− ᾱr(P )

Then,

δ2

(
ᾱP + c̄, Q

)
≤
(

3
√
d+ 1

)
δH(P,Q)

Proof.
Let α∗ > 0, c∗ ∈ Rd and ρ∗ ≥ 0 such that ρ∗ = δH(P,Q) = δ2(α∗P + c∗, Q). Then, by
Lemma 5.3.14c),

δ2

(
α∗P + c∗ + r(Q)− r(α∗P + c∗), Q

)
≤
(

1 +
√
d
)
ρ∗. (5.26)

Moreover, by using Lemma 5.3.14a) and b),

δ2

(
ᾱ(P − r(P )) + r(Q), α∗(P − r(P )) + r(Q)

)

≤ |α∗ − ᾱ|D(P ) = |α∗D(P + c∗)−D(Q)| ≤ 2
√
dρ∗.

(5.27)

By combining (5.26) and (5.27), we obtain

δ2(ᾱP + c̄, Q) ≤ δ2

(
ᾱ(P − r(P )) + r(Q), α∗(P − r(P )) + r(Q)

)

+ δ2

(
α∗P + c∗ + r(Q)− r(α∗P + c∗), Q

)

≤ (3
√
d+ 1)ρ∗.

�

We close this chapter by showing that the above algorithms can in principle also be
applied for special variants of tomographic reconstruction problems. This is motivated
by the application problem in Section 1.2.2 in the introduction, where for one of the
two convex bodies only two projections in fixed directions are accessible. We therefore
formulate the following variant of Problem 5.3.1.

Problem 5.3.16 (Hausdorff matching for projections)
Let P ∈ Cd0 , and v1, v2 ∈ Sd−1

2 two fixed directions. For i = 1, 2, let Qi ⊆ v⊥i be a convex
body and denote by

Πi : Rd → v⊥i

the orthogonal projection along direction vi onto v⊥i . The Hausdorff matching problem
for projections consists of finding a homothetic transformation of the body P such that
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its projections along v1 and v2 best fit Q1 and Q2. More precisely, the task is to solve
the following optimization problem

min max
i=1,2

δ2(Πi(αP + c), Qi)

s.t. c ∈ Rd
α > 0,

(5.28)

where the optimal solution of (5.28) will be denoted by δP (P,Q1, Q2).

Since the projection mappings Π1,Π2 are linear operators that are fixed in advance and
not subject to optimization, we immediately obtain the following lemma as an adaption
of Lemma 5.3.12.

Lemma 5.3.17 (Solving Problem 5.3.16 for V-polytopes)
Let P := conv{p1, . . . , pn} ⊆ Rd, and v1, v2 ∈ Sd−1

2 two fixed rational directions. Further,

for i = 1, 2, let Qi := conv{q(i)
1 , . . . , q

(i)
mi} ⊆ v⊥i polytopes in rational V-presentation, let

I ∈ Rd×d denote the d-dimensional identity matrix and Πi := (I − vivTi ) ∈ Rd×d. Then
δP (P,Q1, Q2) can be approximated to any accuracy by solving the following SOCP:

min ρ

s.t.
∥∥∥αΠ1pi + Π1c−

m1∑
j=1

λ
(1)
ij q

(1)
j

∥∥∥
2
≤ ρ ∀i ∈ [n]

∥∥∥αΠ2pi + Π2c−
m2∑
j=1

λ
(2)
ij q

(2)
j

∥∥∥
2
≤ ρ ∀i ∈ [n]

∥∥∥q(1)
j −

n∑
i=1

µ
(1)
ij Π1pi −Π1c

∥∥∥
2

≤ ρ ∀j ∈ [m1]

∥∥∥qj −
n∑
i=1

µ
(2)
ij Π2pi −Π2c

∥∥∥
2

≤ ρ ∀j ∈ [m2]

m1∑
j=1

λ
(1)
ij =

m2∑
j=1

λ
(2)
ij = 1 ∀i ∈ [n]

n∑
i=1

µ
(1)
ji = α ∀j ∈ [m1]

n∑
i=1

µ
(2)
ji = α ∀j ∈ [m2]

λ(1), λ(2)µ(1), µ(2) ≥ 0.

(5.29)

Remark 5.3.18 (Possible generalizations)
Of course, Problem 5.3.16 and the SOCP (5.29) can immediately be generalized to
cope with more than two projections, projections of lower dimensions, other polytopal
norms, or other objective functions such as the average of the Hausdorff distances in the
projections. However, we restrict the above presentation to the simplest case, since its
main purpose is to point out the general feasibility of this approach.
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Figure 5.3: Hausdorff matching for limb reconstruction. Left: 3D model leg presented
as a finite point cloud in R3. Middle: Two projections of the transformed leg with noise
added to each point. Right: The optimal solution of (5.29) applied to the model set and
projected into the input projections.

Concerning the application mentioned in the introduction, we refer to Figure 5.3: It
shows that, although the model set is not convex in this case, matching its convex hull
to the convex hulls of the two projections via (5.29) yields acceptable results.
Certainly, the assumption of a simple homothetic transformation is unrealistic for ra-
diographs of a (deformed) limb. However, Lemma 5.3.17 shows that for the presumably
more complicated problem of matching (parts of) a limb under affinities, the matching
problem under homothetics can serve as a subproblem for which an efficient algorithm
is available.



Chapter 6

Bounding the Pinning Number of
Intersecting Balls

In this chapter, we show that if a line ` is an isolated line transversal to a finite family
F of (possibly intersecting) balls in R3 and no two balls are externally tangent on ` then
there is a subfamily G ⊆ F of size at most 12 such that ` is an isolated line transversal
to G. We generalize this result to families of semi-algebraic ovaloids.
As already motivated in the introduction, the special interest for isolated line transver-
sals in the context of this thesis is due to the fact that statements about isolated line
transversals are statements about locally minimal cylinder axes: “A line ` is a transver-
sal to a family of balls of equal radius” can readily be translated to “` is the axis of a
cylinder of the same radius that encloses the centers of the balls”. If, in addition, ` is an
isolated line transversal, every slight perturbation of the axis ` needs a bigger cylinder
radius to enclose the centers. This application in mind, the important feature of our
result is, that it allows the balls (or ovaloids) to intersect so that it does not need the
centers to be somewhat dispersed when formulated as a result on cylinder axes of finite
point clouds.

This chapter is joint work with Xavier Goaoc and Sylvain Petitjean. Part of it was
achieved during the author’s stay at INRIA/LORIA supported by the INRIA Internship
Program. Preliminary results of Sections 6.2 and 6.3 already appear in [125]; the main
results of this chapter are published in [81] in a special issue of Discrete & Computational
Geometry on geometric transversals and Helly-type theorems.

6.1 Introduction

A straight line that intersects every member of a family F of convex compact subsets
of Rd is called a line transversal to F . A line transversal to a family F that cannot be
moved without missing some member of F is said to be pinned by F (we also say that
F is a pinning of that line). In other words, a line is pinned by F if it is an isolated
point of the space of line transversals to F .

109
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The study of sufficient conditions for the existence of a line transversal also plays an
important rule in geometric transversal theory. Of particular interest are again conditions
that can be stated in the elegant form of a Helly-type theorem as e.g. in Sections 4.2 and
5.3.2. One of the earliest examples is the following theorem proven by Danzer [58] in
1957: If every 5 members in a finite family of disjoint unit disks have a line transversal
then the whole family has a line transversal. Danzer conjectured that this statement
generalizes to families of disjoint unit balls in arbitrary dimension. This conjecture was
recently settled in the positive in [53], and one of the main ingredients in the proof is
the following pinning theorem [53, Proposition 13]: If a finite family F of disjoint unit
balls in Rd pins a line ` then some subset of F of size at most 2d − 1 pins `. This
pinning theorem can be understood as a Helly-type theorem for the existence of a line
transversal locally near a pinned line: if no other line than the pinned line exists locally,
this can be witnessed by 2d− 1 of the balls.

Pinning theorems seem more “robust” than Helly-type theorems for the existence of
a line transversal. For instance, Danzer’s theorem is best possible in the sense that it
becomes false if the disks are allowed to intersect or have arbitrary radii, whereas the
pinning theorem remains valid for disjoint balls of arbitrary radii in Rd [31]. Similarly,
polytopes in three dimensions have a pinning theorem under certain conditions [15] but
admit no global Helly-type theorem [111].

In this chapter, we show that the pinning theorem for disjoint balls also extends, in
the three-dimensional case, to families of intersecting balls, provided no two balls are
externally tangent on the line. More precisely, we prove:

Theorem 6.1.1 (Bounding the pinning number of intersecting balls)
Let F be a finite family of balls in R3 that pin a line `. If no two balls are externally
tangent in a point of `, then a subset of F of size at most 12 pins `.

While disjointness of the objects is crucial for global Helly-type theorems, its relevance
for the existence of a pinning theorem is not clear. On the one hand, whether disjointness
alone guarantees the existence of a pinning theorem for convex sets is a natural question,
and we do not know of any minimal pinning of a line by more than 6 pairwise disjoint
convex sets in R3 (see [53, Section 6]). On the other hand, Theorem 6.1.1 suggests that
disjointness may be relevant for pinning only insofar as it prevents certain singularities
from happening (a line tangent to two balls at their external tangency point is a singular
point of the space of their line transversals, cf. the remark at the end of Section 6.3) and,
in the polyhedral setting, such singularities can indeed lead to arbitrarily large minimal
families of (intersecting) convex polytopes pinning a line [15, Theorem 3].

The proof of the pinning theorem for disjoint balls is based on properties of the so-
called cones of directions, which have been studied since Vincensini’s original paper [156]
that initiated geometric transversal theory. The cone of directions of a family of objects
is the set of directions of its line transversals. The proof of the pinning theorem in [53]
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is based on the observation that for families of disjoint balls, this set is surprisingly
well-behaved [12, 31, 53, 110]: its connected components are strictly convex, and are in
one-to-one correspondence with the orders in which a line can intersect the family (the
geometric permutations of the family, see e.g. [80]). Interestingly, this approach fails to
extend to situations where the balls intersect outside of the immediate vicinity of the
pinned line: the cone of directions of a family of intersecting balls can be locally non-
convex at directions of transversals meeting the balls in distinct points (see e.g. Figure
2d in [31]). In some sense, the fact that the cone of directions be convex locally near a
particular direction somehow requires that the balls be globally disjoint.

Our proof of Theorem 6.1.1, on the other hand, uses essentially local arguments and
extends to solids bounded by ovaloids, a class of “locally sphere-like” surfaces (cf. The-
orem 6.4.5). Let us sketch our proof briefly. It is well-known that a family F pins a line
` if and only if the direction of ` is an isolated point of the cone of directions of F and
that the cone of directions of F is the intersection of the cones of directions of the triples
of balls in F (Lemma 6.2.2). We first prove that the cone of directions of three balls is
“nice” in the sense that it is a manifold with boundary, and that this boundary is smooth
except in directions of lines tangent to the three balls and passing through a point of
tangency of two of the balls (Lemma 6.2.7). This allows to recast the intersection of the(
n
3

)
cones of triples as a sandwich region defined by semi-algebraic functions in the plane,

and Theorem 6.1.1 follows. We then give a geometric interpretation of the “first-order
approximation” of the cone of directions at a smooth point (Lemma 6.4.3). A conse-
quence of that interpretation is that our smoothness condition extends to ovaloids: the
cone of directions of three ovaloids is smooth, except possibly at (points representing)
directions of lines tangent to the three ovaloids and passing through a point of tangency
of two of them (Lemma 6.4.4). The same argument on sandwich regions then yields a
pinning theorem for ovaloids of “bounded description complexity” (Theorem 6.4.5).

The main idea leading to our interpretation of the “first-order approximation” of the
cone of directions to three balls is to associate to a configuration of a ball and a line
tangent to that ball a particular halfplane, which we call a screen; this construction was
previously introduced in [52] to analyze the stability of pinning configurations.

For a more general discussion of geometric transversal theory, we refer to the classic
survey [59] and to the more recent [64], [84] and [159]. More specific discussions of
recent progress on line transversals can be found in the survey [109] for the case of
families of translated ovals in the plane and in [80] for the case of families of disjoint
balls in arbitrary dimension.

Preliminaries and notation.
In the present section, the space of directions in R3 is the sphere S2

2 and we assume
that lines are oriented. Given a direction u ∈ S2

2, we denote by u⊥ := {v ∈ S2
2 : uT v = 0}

the set of directions (in S2
2) orthogonal to u. In some cases it will be more convenient

to identify opposite directions, and to work in the real projective space P2 = P2(R) in
view of the identification P2 = S2

2/Z2.
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We call a set strictly convex if any supporting hyperplane intersects it in a single point
and that a convex set is smooth if through any boundary point there is a unique support-
ing hyperplane. We say that two smooth surfaces are internally tangent (resp. externally
tangent) at a point p if they are tangent at p and locally lie on the same side (resp. on
opposite sides) of their common tangent plane.

We use the term family to denote a finite unordered set; in particular, in a family of
balls we assume that the balls are pairwise distinct.

6.2 Cones of Directions

Let F be a family of convex sets in R3. The directions of line transversals to F make
up a subset K(F) ⊆ S2

2 called the cone of directions of F . Here, we extend properties
of the cone of directions previously known for disjoint balls [12, 31, 53, 110] to arbitrary
balls. Note that in these papers, which deal with disjoint objects, K(F) stands for the
directions of lines piercing the sets of F in a specific order ≺.

6.2.1 Arbitrary Families of Balls

We now assume that we are given an arbitrary family of balls F . The cone of directions
of F can be seen as the image of the set of line transversals to F under the projection
that maps a line to its direction. It is clear that the image of a connected component of
transversals in this projection is connected. We can prove a stronger result:

Lemma 6.2.1 (Connected components of K(F))
If F is a family of balls in Rd then there is a one-to-one correspondence between the
connected components of line transversals to F and the connected components of K(F).

Proof.
Let φ be the map associating to a line its direction. Let u ∈ K(F), and for Π := H=(u, 0),
let I :=

⋂n
i=1(Bi|Π). Since each member of F is convex, I is also convex and therefore

connected. Since the line transversals to F with direction u are exactly the lines with
direction u that intersect I, we get that φ−1(u) is connected. Now, let T1, . . . , Tk denote
the connected components of line transversals to F . Since φ is continuous, each φ(Ti) is
connected. Since φ−1(u) is connected for any u ∈ K(F), the φ(Ti) are pairwise disjoint.
Since each of them is closed, it implies that each φ(Ti) is a connected component of
K(F), and that each connected component of K(F) is the image of a single connected
component of line transversals to F . �

We now describe various properties of the boundary of K(F). In what follows, a line
is said to intersect a ball transversally if it intersects its interior. A line is an inner
special bitangent if it is tangent to two elements of F and lies in a common tangent
plane that separates them. In particular, two balls with intersecting interiors have no
inner special bitangent and the inner special bitangents to two externally tangent balls
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are the tangents through the point of tangency. A line is a tritangent if it is tangent to
three elements of F ; a tritangent is called strict if it is not at the same time an inner
special bitangent.

Lemma 6.2.2 (Basic properties)
Let F be a family of balls in R3. We have:

(i) K(F) =
⋂
X∈(F3)K(X).

(ii) We have u ∈ bdK(F) only if the projections of the members of F on a plane
orthogonal to u intersect with empty interior.

(iii) The boundary of K(F) consists of directions of tritangents and inner special bi-
tangents.

(iv) F pins a line ` if and only if the direction of ` is an isolated point of K(F).

Proof.
Let u be a direction and let Fu denote the family of the orthogonal projections of the
elements of F on a plane orthogonal to a direction u.
Helly’s theorem in the plane yields that Fu has non-empty intersection if and only if
every triple has non-empty intersection. Thus, u ∈ K(F) if and only if u ∈ ⋂X∈(F3)K(X),

which proves statement (i).
If the intersection of the elements in Fu has non-empty interior, then there exists a line
that intersects every member of F transversally. Since any sufficiently small perturbation
of that line remains a line transversal to F , u is in the interior of K(F). This proves
assertion (ii).
Let u ∈ bdK(F). Then there exists a triple X ∈

(F
3

)
such that u ∈ bdK(X). By (ii),

this implies that the orthogonal projections of the members of X on a plane orthogonal
to u intersect in a single point. This point is either on the boundary of the three
projections or an external tangency point of two of them. In the former case u is a
direction of tritangent and in the latter a direction of inner special bitangent. This
implies statement (iii).
Assume that u is the only point of K(F) in some open set R ⊆ P2. Property (ii)
implies that F has a unique line transversal ` with direction u. Thus, ` is the only
line transversal to F with direction in R. Since the set of all lines with direction in R
forms a neighborhood of `, it follows that F pins `. The reverse implication follows from
Lemma 6.2.1. �

Remark 6.2.3
The proofs of Lemmas 6.2.1 and 6.2.2 hold for general closed convex sets, with the
understanding that (a) a line is “tangent” to a convex set if it intersects the set and
lies in some supporting plane and (b) a line intersects a convex set transversally if it
intersects its relative interior but is not included in a plane containing the object. As
we shall see in the next section, there are cases where the necessary condition (ii) of
Lemma 6.2.2 is not sufficient.
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6.2.2 Arbitrary Triple of Balls

Let us now turn our attention to a triple T = {B0, B1, B2} of possibly intersecting
balls in R3. The main result of this section is Lemma 6.2.7, which shows that K(T ) has
a “nice” structure. The proof is split across several lemmas:

Lemma 6.2.4 characterizes what it means for a direction to be on the boundary of K(T );
Lemma 6.2.5 describes the topology of K(T ); and Lemma 6.2.6 shows that bdK(T ) is
“almost always” smooth.

We first characterize the directions of transversals of T appearing on the boundary
of K(T ) (extending [53, Lemma 9]) and those, among the directions of tritangents, that
appear on the boundary of the cone of directions (extending [31, Proposition 3]).

Lemma 6.2.4 (Characterization of bdK(T ))
The direction of a line transversal ` to T belongs to bdK(T ) if and only if the following
three conditions hold:

(i) The three balls have no point in common.

(ii) The line ` is not tangent to two externally tangent balls at their tangency point
while meeting the third ball in its interior.

(iii) There is no other line transversal to T parallel to `.

If ` is a (strict) tritangent then condition (iii) can be replaced in the above equivalence
by:

(iv) The line ` intersects the (interior of the) triangle formed by the centers of the balls.

Proof.
Let u ∈ S2

2 denote the direction of `. If the three balls have a point in common then
K(T ) = S2

2 has no boundary, so condition (i) is necessary. If ` is tangent to two externally
tangent balls at their point p of tangency and meets the interior of the third ball then
any line through p with direction sufficiently close to u is a transversal to T , and u ∈
intK(T ); condition (ii) is therefore necessary. If T has another line transversal parallel
to ` then the projections of the balls of T along u intersect with non-empty interior, and
Lemma 6.2.2 (ii) ensures that u ∈ intK(T ); condition (iii) is thus also necessary.

Before we show that the conditions are sufficient, let us first remark that for v close
enough to u, T has a line transversal with direction v if and only if T has a line transversal
with direction v close to `. Indeed, let Πv := H=(v, 0) denote the plane through the
origin with normal v. The set of transversals to T with direction v are precisely those
that meet Πv in a point of the intersection of the orthogonal projections of the balls on
Πv. Since the orthogonal projection of a fixed ball on Πv depends continuously on v, it
follows that for v close enough to u, T has a line transversal with direction v if and only
if T has a line transversal with direction v close to `.
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Now, assume that (i), (ii) and (iii) hold. First consider the case where ` is not tritangent
to T . Then, by Lemma 6.2.2 (iii) ` is an inner special bitangent to two of the balls and
condition (ii) implies that these balls meet ` in distinct points, and are thus disjoint.
The perturbation argument used in [53, Lemma 9] guarantees that there are directions v
arbitrarily close to u such that these two balls, and therefore T , have no line transversal
and therefore that u ∈ bdK(T ). In the case where ` is not tritangent, (i), (ii) and (iii)
are thus sufficient.
Consider now the case where ` is tritangent to T . If the balls meet ` in distinct points
then, again, the same perturbation argument ([53, Lemma 9]) guarantees that u ∈
bdK(T ). Condition (i) requires that at least two tangency points be distinct, so it
remains to consider the case where two balls, say B0 and B1, are tangent to ` at the
same point and the third ball is tangent at a different point. If B0 and B1 are externally
tangent, then there is a direction v in the plane of tangency of B0 and B1 and arbitrarily
close to u such that the line with direction v passing through the point of tangency of B0

and B1 misses B2; clearly, T has no transversal with such a direction v, and u ∈ bdK(T ).
If B0 and B1 intersect properly, their bounding spheres intersect in a circle Λ. Observe
that ` is tangent to Λ in its plane and that there is a direction v in this plane arbitrarily
close to u such that the tangent to Λ with direction v close to ` misses B2; clearly, T has
no transversal with such a direction v, and u ∈ bdK(T ). This proves that in the case
where ` is tritangent, conditions (i), (ii) and (iii) are also sufficient.
Property (iv) was observed for tritangents to triples of disjoint balls in [31, Proposition 3].
Their proof easily extends to intersecting balls. �

Figure 6.1: Possible topologies of the cone of directions of three balls. Left: Contractible
connected components, possibly reduced to a point. Right: A strip containing the S1

2

of directions in the plane of centers in its interior. Note that, in all cases, the figure is
symmetric with respect to the S1

2 of directions in the plane of centers.

Next, we describe the topology of the cone of directions (extending [31, Proposition 4]).

Lemma 6.2.5 (Possible topologies of K(T ))
Let C be a connected component of K(T ). The following holds:

(i) C is a single point if and only if there is a line with that direction that is pinned
by T .
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(ii) C is all of S2
2 if and only if the three balls have a point in common.

(iii) C is a strip that contains the S1
2 of directions of the plane of centers in its interior

if and only if the balls in T intersect pairwise but not triplewise. In that case, C
is the only connected component of K(T ).

(iv) In all other cases, C is contractible and is the closure of its interior.

Proof.
Let Π denote the plane containing the centers of the balls in T (or any such plane, if
the centers are aligned). Statement (i) follows from Lemma 6.2.2 (iv). If there is a point
common to the three balls in T then K(T ) = S2

2. If the intersection of the three balls is
empty then T has no line transversal with direction orthogonal to Π, and K(T ) 6= S2

2.
This proves statement (ii).

Π

`

Figure 6.2: Line transversals and mirror images. All lines between ` and its mirror image
with respect to Π also intersect the three balls.

As observed in [31, Proposition 4], all the lines between a line transversal ` to T and
its mirror image with respect to Π are also line transversals to T (cf. also Figure 6.2).
When the three balls have no point in common, T has no line transversal orthogonal to
Π and the set of line transversals to T can be retracted onto the set of line transversals
to T contained in Π. This induces a retraction from K(T ) onto the cone of directions of
the disks T ′ = {Bi ∩Π : i ∈ {0, 1, 2}}.
Now onto statement (iii). Observe that K(T ′) = S1

2 if and only if the disks, and hence the
balls, intersect pairwise. One direction follows from Helly’s theorem in one dimension,
the other from the observation that if two disks are disjoint, then T ′ has no transversal
in the direction orthogonal to the vector joining their centers.

We now show that, assuming every two balls in T intersect but the three balls have
empty intersection, K(T ) is a strip containing K(T ′) = S1

2 in its interior. Observe first
that under those assumptions no direction of bdK(T ) is parallel to Π. Indeed, assume
for a contradiction that u is such a direction and let ` be the (unique by Lemma 6.2.4)
line transversal to T with direction u. If ` is an inner special bitangent to two balls, these
balls must be tangent and ` must meet them in their point of tangency; the interior of
the third ball must intersect ` (otherwise, as ` is in the plane of centers, the third ball
would not intersect one of the first two), and u /∈ bdK(T ) by Lemma 6.2.4. If ` is not
an inner special bitangent to any pair in T then it is tangent to all three balls; in the
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plane Π, the three disks must be on the same side of `, and u is therefore clearly not on
bdK(T ).

Now, if every pair in T intersects with the three balls having empty intersection, then we
can retract K(T ) onto the S1

2 of directions parallel to Π, and no direction from this S1
2 lies

in bdK(T ); K(T ) is thus a strip that contains the S1
2 of directions of the plane of centers

in its interior. Conversely, if K(T ) has this geometry, then the cone of directions of T ′ is
a S1

2 (since the projection of any line transversal to T onto Π gives a line transversal to
T ′). It follows that the disks in T ′ intersect pairwise but not triplewise, and so do the
balls in T , proving (iii).

Finally, in all other cases, a connected component of K(T ′) is an interval, and (iv) follows.

�

The cone of directions of a triple of disjoint balls is strictly convex, but this property
fails for intersecting balls [31]. However, we can still show that the boundary of the cone
is “almost always” smooth.

Lemma 6.2.6 (Singular points on bdK(T ))
A direction u is a singular point of bdK(T ) if and only if the intersection of the three
balls is empty and there exists a line with direction u that is:

(i) pinned by the three balls, or

(ii) tangent to all three balls, meeting two of them in the same point in which they
are externally tangent.

Proof.
Let u be a point of bdK(T ). By Lemma 6.2.2 (ii) there exists a unique line transversal,
say `, to the three balls having direction u. We argue that if u is a singular point then
` must satisfy condition (i) or (ii).

By Lemma 6.2.2 (iii), the boundary of K(T ) consists of two types of arcs, arcs of direc-
tions of inner special bitangents to some pair {Bi, Bj} and arcs of directions of tritangents
to {B0, B1, B2}. The directions of inner special bitangents to two distinct balls is either
empty or a smooth conic (cf. [31]). Note that Lemma 6.2.2 (ii) implies that for directions
on the boundary of K(T ), two such arcs meet in a tritangent direction. Therefore, if u
is a singularity of bdK(T ) it must be a direction of tritangent.

Let ci and si denote the center and squared radius of Bi, respectively. The directions of
tritangents to {B0, B1, B2} make up an algebraic curve of degree 6 in P2, the direction-
sextic σB0B1B2(u) of these three balls. Letting eij = cj − ci and δij = eTijeij and writing,

for a given direction u ∈ P2,

q = q(u) = uTu and tij = tji = (eij × u)T (eij × u) = δijq − (eTiju)2,
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Figure 6.3: Two triples of balls (represented by their trace on their plane of centers)
and a planar depiction of their cone of directions. The direction-sextic is drawn in red,
conics of directions of inner special bitangents are drawn in blue and green; the orange
region is the cone of directions (a connected set in this example) and the horizontal axis
corresponds to directions in the plane of the centers of the balls. Observe that when
the balls intersect properly (left) the cone of directions is smooth as when the balls
are disjoint, whereas when some of the balls are tangent (right) the cone of directions
exhibits a singularity.

the direction-sextic of B0, B1, B2 rewrites as a Cayley determinant [31, Proposition 2]:

σB0B1B2(u) = det




0 1 1 1 1
1 0 qs0 qs1 qs2

1 qs0 0 t01 t02

1 qs1 t01 0 t12

1 qs2 t02 t12 0




= 0. (6.1)

Figure 6.3 illustrates typical situations.
We now assume that u lies on the boundary of K(T ) and is a singular point of the
direction-sextic, i.e. that the gradient of σB0B1B2 in u vanishes. To analyze the gradient
of the direction-sextic in a direction on bdK(T ), we proceed as in [31]. Consider the
projection along a direction u of the three balls and a tritangent ` with that direction;
by Lemma 6.2.4, u is on the boundary of the cone of directions if and only if the projection
of ` lies in the projection ∆ of the triangle of centers. We equip R3 with a coordinate
frame with axes x, y, z such that this projected triangle lies in the plane z = 0 (i.e.,
we consider tritangent lines having e3 = (0, 0, 1) as direction) and has its vertices at
c̃0 = (0, 0, 0), c̃1 = (a, 0, 0), c̃2 = (b, c, 0), with the understanding that there is a point p
inside,

p =
∑

pic̃i, with p0, p1, p2 ≥ 0,
∑

pi = 1.

Note that the squared distance from p to vertex c̃i is the squared radius of Bi, i.e.
si = (p − c̃i)

T (p − c̃i). Then, we use three real parameters x0, x1, x2 to describe the
possible positions of the three centers of B0, B1, B2:

c0 = c̃0 + x0e3, c1 = c̃1 + x1e3, c2 = c̃2 + x2e3,
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where we assume without loss of generality that x2 ≥ x1 ≥ x0. Substituting in (6.1) we
can express the direction-sextic σB0B1B2 and its derivatives in the direction e3 = (0, 0, 1)
as a function of x0, x1, x2 depending on the parameters a, b, c, p0, p1, p2. Denoting u =
(u0, u1, u2), the computation gives:

∂σ

∂u0
(0, 0, 1) = 16a2c2

[
ap1(x1p0 − x0p0 − x2p2 + x1p2)

−bp2(−x2p0 − x2p1 + x0p0 + x1p1)
]
,

∂σ

∂u1
(0, 0, 1) = −16a2c3p2

[
p0(x0 − x2) + p1(x1 − x2)

]
,

∂σ

∂u2
(0, 0, 1) = 0.

(6.2)

Note that the partial derivatives all vanish if a = 0 or c = 0. If a = 0 then the centers of
two balls coincide and these balls must have equal radii to allow for a common tangent,
a situation our assumptions rule out. If c = 0 then the three centers are aligned; by
symmetry of revolution around the line of the centers, the cone of directions is a circle,
and therefore smooth. We can also rule this case out, and assume from now on that
ac 6= 0.

First assume ∆ is degenerate, i.e. it collapses to a segment s. Then ` is a tritangent
line contained in a plane tangent to all three balls and is also contained in the plane of
centers P . Since ` hits s by Lemma 6.2.5 (iv), those centers must lie on both sides of
` in P , say ci on one side and cj , ck on the other. Since there are no strict tritangent
directions, either u is isolated in K(T ), in which case the three balls pin ` and we are
in case (i); or u is not isolated in which case ` is the intersection of the sets of inner
special bitangents to {Bi, Bj} and {Bi, Bk}. These two sets correspond, in the space of
directions, to two conics, one being internally tangent to the other at u. In other words,
K(T ) is not singular at u.

Now assume ∆ is non-degenerate. Suppose u is a strict tritangent direction, i.e. it is a
singular point of σ and the point p is strictly inside ∆ by Lemma 6.2.5 (iv). This implies

that the three derivatives above vanish and pi > 0, i = 0, 1, 2. From
(
∂σ
∂u1

)
(0, 0, 1) = 0

we conclude that x0 = x1 = x2. Geometrically, this means that the three balls intersect
in a common point and every line through this point is a transversal to the three balls.
Therefore K(T ) = P2 which has no singular point, a contradiction.

Thus, u must also be a direction of inner special bitangent and exactly one pi is zero (if
two of them vanish, p is a vertex of ∆, i.e. ` goes through the center of one ball, implying
that this ball has radius 0, which we rule out). Let j and k denote the other two indices;
notice then that ` is an inner special bitangent to Bj and Bk. We then obtain from the
vanishing of the partial derivatives above that xj = xk. Thus, Bj and Bk meet ` in the
same point, and are externally tangent at that point; we are then in case (ii).

Altogether, we have that if u is a singularity then ` satisfies condition (i) or (ii). Con-
versely, if ` satisfies (i) then K(T ) is, locally around u, reduced to a point and u is a
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singularity. If ` satisfies (ii), then the gradient of σ in u vanishes and u is therefore a
singularity. �

As a consequence, we obtain that the cone of directions of three balls has a nice
structure.

Lemma 6.2.7 (Topology of K(T ))
If T is a triple of balls, no two externally tangent, then every connected component of
K(T ) is either a single point, S2

2 or a semi-algebraic 2-manifold with a smooth boundary.

Proof.
As observed in [1], the set of line transversals to a family of semi-algebraic objects of
“bounded description complexity” (i.e. semi-algebraic sets defined using a bounded num-
ber of polynomial equalities and inequalities of bounded degrees), seen as a 4-dimensional
subset of line space, is a semi-algebraic set. For T a triple of balls, the set of transversals
to T is therefore a semi-algebraic set, and so is its projection K(T ) onto the space of
directions. The fact that each connected component is a single point or a 2-manifold
with boundary (except when K(T ) = S2

2) follows from Lemma 6.2.5. The fact that the
boundary is smooth when K(T ) is not reduced to a single point and no two balls are
externally tangent follows from Lemma 6.2.6. �

6.3 Pinning Theorem for Intersecting Balls

We can now prove Theorem 6.1.1, which states that if n balls in R3 pin a line and no
two balls are externally tangent on the line, then a subset of at most 12 of these balls
pins that line.

Proof of Theorem 6.1.1
Let F be a finite family of balls in R3 that pins a line `, no two balls being externally
tangent on `. Assume no triple of balls of F already pins `, as otherwise the statement
is trivially true. Let u denote the direction of `. By Lemma 6.2.2 (iv), u is an isolated
point of K(F), and it suffices to find a subfamily Y ⊆ F of size at most 12 such that u
is an isolated point of K(Y ) to prove the statement.

By Lemma 6.2.2 (i), K(F) is the intersection of the cones K(T ) for all triples T ⊆ F and
dropping any triple T such that u ∈ intK(T ) keeps u isolated in the intersection. Thus,
if we denote by N the set of triples T ⊆ F such that u is on the boundary of K(T ), we
have that u is an isolated point of

⋂
T∈N K(T ).

By Lemma 6.2.7, for every T ∈ N there exists an arbitrarily small neighborhood UT of
u such that K(T ) ∩ U is homeomorphic to a halfplane. Let U denote a neighborhood
of u such that U ∩ K(T ) is homeomorphic to a halfplane for all T ∈ N . Let aT denote
the normal to bdK(T ) in u that points outward of K(T ), and consider an orthogonal
coordinate system (u, x, y) in U such that aTT y 6= 0 for all T ∈ N . We split N into two
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subsets:

N+ = {T ∈ N : aTT y > 0} and N− = {T ∈ N : aTT y < 0}.
By the semi-algebraic implicit function theorem [23, p. 97], for U small enough bdK(T )
can be written in the form y = fT (x), where fT is a semi-algebraic function. Since
K(T ) ∩ U is homeomorphic to a halfplane, it follows that in U , K(T ) can be written as
{(x, y) : y ≤ fT (x)} if T ∈ N+ and as {(x, y) : y ≥ fT (x)} if T ∈ N−.

Now, observe that in U ,
⋂
T∈N K(T ) is exactly the set of points that are below all curves

in {fT : T ∈ N+} and above all curves in {fT : T ∈ N−}. Since the functions fT are
semi-algebraic, near u they either coincide or there is a neighborhood of u in which they
only meet in u. It follows that there exists ε > 0 and four subsets A,B ∈ N+ and
C,D ∈ N− such that on the interval [−ε, 0], all functions in {fT : T ∈ N+} are above
fA and all functions in {fT : T ∈ N−} are below fC , and similarly on [0, ε] all functions
in {fT : T ∈ N+} are above fB and all functions in {fT : T ∈ N−} are below fD. As a
consequence,

K(A) ∩ K(B) ∩ K(C) ∩ K(D) ∩ U = {u}
and Y := A ∪B ∪ C ∪D is a subset of F of size at most 12 that pins `. �

Remark 6.3.1
It is not clear whether the condition that no two balls be externally tangent on the line
is really needed for the pinning theorem to hold. However, we do note that these config-
urations are indeed particular, in the sense that the space of oriented line transversals to
two externally tangent balls is singular at any line through their tangency point. Indeed,
the set of lines through the tangency point is 2-dimensional, and removing that set from
the set of lines intersecting the two balls creates two connected components, each being
4-dimensional.

Remark 6.3.2
Extending the proof of Theorem 6.1.1 to pinnings in higher dimension seems difficult.
First, generalizing Lemma 6.2.2 (i), one would have to work with cones of directions
of d balls in Rd and identifying the singularities of such cones may not be an easy
task. Second, and more importantly, our proof exploits the fact that in the plane, a
lower/upper envelope of semi-algebraic functions is defined, near one of its vertices, by
a constant number of the functions (2 in this case). Already in dimension 3 this is not
true for general semi-algebraic sets (consider the lower envelope of several copies of the
paraboloid z = x2 + 2y2, rotated around the z axis, in the neighborhood of (0, 0, 0)),
and it is not clear why it would be true for cones of directions.

6.4 Extension to Ovaloids

An ovaloid is a smooth closed surface in R3 with strictly positive Gauss curvature
everywhere. According to a classical theorem of Hadamard, ovaloids are topologically
spheres (cf. [136, Chap. 4 & 6]). More precisely, Hadamard’s theorem asserts that an
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ovaloid is the boundary of a bounded, open, strictly convex set. By abuse of language,
we use the term ovaloid both for the surface and for the bounded solid it encloses.
In this section, we extend our pinning theorems to families of ovaloids of bounded de-
scription complexity. A key idea is to represent a first-order approximation of the cone of
directions of three balls in a given direction as the cone of directions of three well-chosen
parallel halfplanes. Our proof is split across several lemmas:
Lemma 6.4.1 extends our characterization of the boundary of the cone of directions
from triples of balls to triples of ovaloids; Lemma 6.4.2 describes the cone of directions
of three parallel halfplanes; Lemma 6.4.3 shows that the first-order approximation of the
cone of directions of three balls in a neighborhood of a given boundary direction can be
represented by the cone of directions of three well-chosen halfplanes; Lemma 6.4.4 then
extends our sufficient condition for the smoothness of the cone of directions to triples of
ovaloids, and our pinning theorem for ovaloids (Theorem 6.4.5) follows.

6.4.1 Boundary of the Cone of Directions of three Ovaloids

An ovaloid has positive Gauss curvature everywhere. Its second fundamental form
relative to the inward normal is positive definite at every point. It follows that its
principal curvatures κ1 and κ2 are strictly positive everywhere. Assume κ1 is the largest
of the two principal curvatures. As is well known, any ball internally tangent to a smooth
convex surface at p of radius less than the principal radius of curvature 1/κ1(p) is inside
the surface locally around p. Actually, picking a radius “small enough” will ensure that
the ball is not just locally but globally inside the ovaloid1. Similarly, any ball internally
tangent at p of radius more than the principal radius of curvature 1/κ2(p) is outside
the surface locally around p and picking a radius large enough will ensure the ovaloid
is globally inside the ball. One can therefore “sandwich” an ovaloid at any of its points
between two balls. Note that this is not true for all smooth, strictly convex sets: for
instance the set defined by f ≤ 0 where f = x4 + y4 + z4 − 1 is smooth and strictly
convex but the two principal curvatures of the zero-set of f at all extreme points along
the x, y and z axes vanish.
This “sandwich” property allows to extend the characterization of the boundary of the
cone of directions of Lemma 6.2.4 to ovaloids:

Lemma 6.4.1 (Characterization of bdK(T ))
Let T be a triple of ovaloids. The direction of a line transversal ` to T belongs to bdK(T )
if and only if the following three conditions hold:

(i) The three ovaloids have no point in common.

(ii) The line ` is not tangent to two externally tangent ovaloids at their tangency point
while meeting the third ovaloid in its interior.

(iii) There is no other line transversal to T parallel to `.

1We do not need to be more precise here, but note that, by Blaschke’s Rolling Theorem (cf. [146]),
any ball of radius less than the infimum of 1/κ1(p) can roll along the surface of the ovaloid while always
staying inside.
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Proof.
The three conditions are clearly necessary, so we prove the converse. Let u denote the
direction of `. By (iii), the orthogonal projections of the ovaloids on a plane orthogonal
to u intersect in a single point, so ` is either an inner special bitangent or a tritangent.
In the former case, the same argument as in Lemma 6.2.4 shows that u ∈ bdK(T ) if
(i) and (iii) hold. In the latter case, let T+ denote a triple of balls, where each ball is
tangent to an ovaloid of T at its tangency point with ` and contains that ovaloid. Now,
observe that u ∈ bdK(T+) by Lemma 6.2.4 and that K(T ) ⊆ K(T+). It follows that u
is in the boundary of K(T ), and the statement follows. �

6.4.2 Screens

We associate to a pair (`, B) of a line ` intersecting a ball B an object, which we call
a screen, as follows. If ` meets the interior of B then the screen of (`, B) is the plane
orthogonal to ` that passes through the center of B. If ` is tangent to B, we let t denote
that tangency point and v the outward normal to B at t, and define the screen of (`, B)
as the (closed) halfplane

S`(B) := {x ∈ R3 : uT (x− t) = 0 and vT (x− t) ≤ 0},

that is the intersection of the plane perpendicular to ` through t with the (closed)
halfspace “tangent” to B at t and containing B (cf. Figure 6.4). When a screen is a
halfplane, we call its boundary line in its affine hull its boundary.

B

`

c

S`(B)

t
v

Figure 6.4: Illustration of the screen S`(B) defined by a line ` tangent to a ball B.

To simplify the presentation, we assume here that a line parallel to a halfplane intersects
it at infinity (and thus u⊥ is in the cone of directions of any triple of screens lying in
planes orthogonal to u). Note that this convention has no effect on pinning problems.

Lemma 6.4.2 (Balls and screens)
Let T be a triple of balls, ` a line transversal to T with direction u and S the triple of
screens defined by ` and the balls of T . Let Γ denote the great circle of directions of
transversals to the boundaries of the screens in S. The following holds:
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(i) If T pins ` then K(S) = Γ.

(ii) If u ∈ bdK(T ) and T does not pin ` then K(S) is the union of A∩B and its sym-
metric, where A and B are closed hemispheres bounded by Γ and u⊥ respectively.

(iii) If u ∈ intK(T ) then K(S) = S2
2.

Proof.
If T pins ` then T consists of three balls tangent to ` with a common tangent plane Π
and whose positions with respect to Π alternate. Thus, the screens of S are bounded by
lines contained in Π and their positions with respect to Π also alternate. Since the set
of directions contained in Π is exactly Γ, statement (i) follows.

We now assume that T does not pin ` and that u ∈ bdK(T ). By Lemma 6.2.2 (iii), ` is
an inner special bitangent to two of the balls or is tangent to all three balls in T . Let
S1, S2 and S3 be the three screens in S.

We first consider the case where ` is an inner special bitangent to the first two balls.
Then, the boundaries of S1 and S2 are parallel and span a plane Π that contains `.
Moreover, Π separates S1 and S2. Since T does not pin `, S3 is a plane, a halfplane
whose boundary intersects Π in a single point, or a halfplane whose boundary is contained
in Π and that lies on the same side as S2 with respect to Π. In each of these cases, it can
easily be checked that K(S) = K({S1, S2}). Consider a direction v. If a direction v is
orthogonal to u then by our convention v is in K(S). If v makes a positive dot product
with u then v ∈ K({S1, S2}) if and only if v is parallel to Π or crosses it from the side of
S1 to that of S2. If v makes a negative dot product with u them we are in the symmetric
case, and the result follows. The case where ` is an inner special bitangent to another
pair is handled similarly.

Now, assume that ` is tangent to all three balls in T but is not an inner special bitangent
to any two of them. In particular, this implies that no two screens in S have parallel
boundaries. The orthogonal projections of the Si’s on a plane orthogonal to u intersect
in a single point. Now, if we consider a direction v moving on Γ starting in u, the
orthogonal projections of the Si’s on a plane orthogonal to v change continuously, and
the boundaries of these three halfplanes keep intersecting in a point. The intersection
thus remains a single point unless two of the projected halfplanes become equal or
opposite; this cannot happen, as it requires the boundaries of the corresponding screens
to be parallel. Thus, the intersection of the projections of the screens in S along any
direction of Γ is a single point. Conversely, the intersection of the projections of the
screens in S along any direction not in Γ∪u⊥ is either empty or has non-empty interior.
Thus, the boundary of K(S) consists of Γ∪u⊥. A perturbation argument similar to [53,
Lemma 9] shows that K(S) is, locally, on one side of Γ, and statement (ii) follows.

If u ∈ intK(T ) then for any direction v the projections of the screens in S along v
intersect with non-empty interior. Statement (iii) follows. �
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6.4.3 First-order Approximation of Cones of Directions

The tangential cone Tp(X) of a closed non-empty set X ⊆ Rd at a point p of its
boundary is the set of all directions d such that d = limk→∞ λk(pk − p), where λk >
0, pk ∈ X for each k and pk → p. From the above definition, it is clear that d belongs
to the tangential cone if there is a sequence (pk)k∈N of points in X converging to p such
that the direction of the chords pk − p converges to d. In particular, if bdX is smooth
at p then Tp(X) is a closed halfspace whose outward normal is the outward normal of
X at p.

K(F)
S2K̃(F

)

Figure 6.5: The cone of directions on the sphere and as a solid cone in R3.

The next lemma gives a simple local geometric interpretation of the tangential cone of
a cone of directions of three balls as a cone of directions of at most three attached screens.
Since cones of directions live in S2

2, where defining the tangential cone is awkward, we
first pull these objects back to R3 by defining K̃(F) as the solid cone in R3 formed by all
rays originating from the origin 0 and with directions in K(F) (cf. Figure 6.5). Notice
that a direction u is on the boundary of K(F) if and only if the ray 0 + R+u is on the
boundary of K̃(F), and that K(F) is smooth at u if and only if K̃(F) is smooth at any
point of the ray 0 + R+u, except the origin.

Lemma 6.4.3 (Screens and linear approximation of K(T ))
Let T be a triple of balls in R3, u a smooth point of bdK(T ) and ` the line transversal
to T with direction u. Let S be the set of screens defined by ` and the balls of T . Let p
be any point in 0 +R+u other than 0. Then locally near p, K̃(S) coincides with TpK̃(T ),
the tangential cone of K̃(T ) at p.

Proof.
Since u is on the boundary of K(T ), Lemma 6.2.2 (ii) implies that T has a unique line
transversal with direction u, which we denote by `. We equip R3 with a frame such
that ` is the z-axis and let L denote the set of lines not orthogonal to `. The map ψ
that associates to x = (x1, x2, x3, x4) ∈ R4 the line through the points (x1, x2, 0) and
(x3, x4, 1) is an homeomorphism from R4 to L, that is, it defines a proper parametrization
of L and ψ(0, . . . , 0) = `.
Let s be a screen defined by `. If s is a plane then any line in L intersects it. Otherwise,
let δ denote the boundary of s. Let p and p′ be two points on δ. The condition that
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a line ˜̀(x) = ψ(x1, x2, x3, x4) intersects s amounts to evaluating the orientation of a
tetrahedron formed by two points from ˜̀(x) and two points from δ. Since δ is orthogonal
to the z axis, the z coordinates of p and p′ are equal and this orientation test recasts as
a sign condition on the 4× 4 determinant

∣∣∣∣∣∣∣∣

xp′ − xp xp x1 x3

yp′ − yp yp x2 x4

0 zp 0 1
0 1 1 1

∣∣∣∣∣∣∣∣

which is linear in x1, . . . , x4. Thus, if L is the set of lines in L that intersect a screen
defined by `, ψ−1(L) is thus a halfspace in R4 or all of R4. In other words, ψ−1 maps
the set of line transversals to any screen defined by ` to R4 or one of its halfspaces.

Now, let p be a point in 0 + R+u other than 0. Let S denote the set of screens defined
by (`, B) where B is a ball of T tangent to `. By Lemma 6.2.2 (iii), |S| ≤ 3. Since
u ∈ bdK(T ), Lemma 6.4.2 (ii) implies that K(S) is, near u, bounded by a great circle.
It follows that K̃(S) coincides with a halfspace near p. Since bdK(T ) is smooth at u,
the tangential cone to K̃(T ) at p is also a halfspace. To prove the statement, it suffices
to show that in a neighborhood of p, the interior of K̃(S) is contained in TpK̃(T ).

Let v be a direction in the interior of K(S). By Lemma 6.4.2 (ii), the relative interiors of
the screens of S have a line transversal γ. Consider the family of lines ¯̀(t) = ψ(tψ−1(γ))
that interpolates linearly (in our parametrization of lines) between ` and γ. Let s be
a screen in S, b the corresponding ball in T and let Π denote the plane perpendicular
to ` that contains s. We note that the trace of ¯̀(t) on Π forms a line passing through
b ∩ `. Since Π intersects B in a disk tangent to the halfplane s in b ∩ `, it follows that
there exists εs > 0 such that for any t ∈ [0, εs] the line ¯̀(t) intersects b. If b is a ball
in T to which ` is not tangent, the same holds trivially. Thus, there exists ε > 0 such
that if 0 ≤ t < ε then ¯̀(t) is a line transversal to T . The set of directions of the lines
{¯̀(t) : t ≥ 0} forms, in S2

2, a great circle arc with endpoints u and v. It follows that
0 + R+v belongs to the tangential cone of K̃(T ) at p. �

6.4.4 Pinning Theorem for Ovaloids

The proof of Theorem 6.1.1 uses one property of cones of triples of balls that may not
hold, in general, for cones of triples of ovaloids: that if the boundaries of two such cones
of directions intersect in a direction u, there is a neighborhood of u in which the curves
either coincide or intersect only at u. In other words, we use the property that the lower
(or upper) envelope of boundaries of cones of directions near one of its vertices is defined
by at most 2 curves2. To ensure that a similar property holds here, we now assume we
deal with semi-algebraic ovaloids with bounded description complexity.

We first extend the smoothness condition of Lemma 6.2.6 to cones of directions of oval-
oids, in view of Lemma 6.4.3.

2The constant 2 is not crucial: any constant bound k would imply a pinning theorem with constant
6k.
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Lemma 6.4.4 (Singular points of bdK(T ))
Let T be a triple of semi-algebraic ovaloids in R3. A direction u is a singular point of
bdK(T ) only if the intersection of the three solid ovaloids is empty and there exists a
line with direction u that is

(i) pinned by T , or

(ii) tangent to all three ovaloids, meeting two of them in the same point in which they
are externally tangent.

Proof.
We prove the statement by contraposition. Let u be a direction of bdK(T ), ` the line
transversal to T with direction u and let p be a point distinct from 0 on the ray 0+R+u.
For each ovaloid C ∈ T we consider a ball B−(C) contained in (resp. B+(C) containing)
C such that if ` is tangent to C then C and B−(C) (resp. B+(C)) are internally tangent
at C ∩ `, and if ` intersects the interior of C then ` also intersects the interior of B−(C)
(resp. B+(C)). We let T− := {B−(C) : C ∈ T} and T+ := {B+(C) : C ∈ T}. Observe
that ` and T− define the same triple of screens as ` and T+; we call S that triple of
screens.
We now make two observations. First, note that u belongs to bdK(T−) and bdK(T+),
and thus p belongs to bdK̃(T−) and bdK̃(T+). Second, the inclusions B−(C) ⊆ C ⊆
B+(C) imply that K(T−) ⊆ K(T ) ⊆ K(T+), and similarly K̃(T−) ⊆ K̃(T ) ⊆ K̃(T+). As
a consequence, TpK̃(T−) ⊆ TpK̃(T ) ⊆ TpK̃(T+).
Now, by Lemma 6.4.3, we have that near p the tangential cones TpK̃(T−) and TpK̃(T+)
both agree with K̃(S). By Lemma 6.4.2, we have that near p the cone K̃(S) is a halfspace.
Altogether, we get that near p, the tangential cone TpK̃(T ) is a halfspace. Since K(T )
(and therefore K̃(T )) is semi-algebraic, this implies that p is a smooth point of bdK̃(T ).
Therefore u is a smooth point of bdK(T ). �

We are now ready to prove our extension of Theorem 6.1.1 to semi-algebraic ovaloids:

Theorem 6.4.5 (Pinning theorem for semi-algebraic ovaloids)
Let F be a finite family of semi-algebraic ovaloids in R3 that pin a line `. If no two
members of F are externally tangent on ` then there is a subfamily of F of size at most
12 that pins `.

Proof.
Assume that no triple of F pins `, as otherwise the statement is trivially true. Let u
denote the direction of `. As noted in Section 6.2.2, Lemma 6.2.1 and Lemma 6.2.2 (ii)
immediately extend to ovaloids. It follows that a family F of ovaloids pins a line ` if
and only if the direction of ` is an isolated point of K(F) =

⋂
T∈(F3)K(T ). Now, for

every triple T ⊆ F such that u is on the boundary of K(F) Lemma 6.4.4 ensures that
bdK(T ) is smooth at u. We can then, as in the proof of Theorem 6.1.1, recast K(F)
near u as the region above the lower envelope and below the upper envelope of a family
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of semi-algebraic functions. Locally, these upper and lower envelopes are defined by two
curves each, and the statement follows. �
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r1(K,C), 25

s(K), 29, 71

s(P ), 105

s0(K), 32

xT y, 16

‖ · ‖p, 16

A|F , 16

0-symmetric, 15

A
affine hull, 15

asymmetric diameter, 24

asymmetric width, 25

B
Banach-Mazur distance, 41

body, 15

Bohnenblust’s Inequality, 34, 78

boundary, 15

C
C-diameter, 23

C-inradius, 22

C-radius, 20, 64

C-width, 25

center-conform, 67

Circumdadiusp-H, 60

circumradius, 5, 20, 60, 64

clique number, 55

Computational Convexity, 2

cone of directions, 110

container, 66

Containment under Homothetics, 64

convex body, 15

convex hull, 15

core-radius, 66

core-set, 66

D
Diameterp-H, 60

diameter, 5, 23, 60

dilatation, 15

dimension, 15

dot product, 16

E
extreme point, 16

F
FPT, 17

H
H-presentation, 16

Half-space Lemma, 71

halfspace, 16

Hausdorff distance, 7, 85

Hausdorff matching, 95

Hausdorffp-H-H, 88

Hausdorffp-V-H, 88

Hausdorffp-V-V, 88

Henk’s Inequality, 74

homothetic transformation, 64, 95

hyperplane, 16

I
inner product, 16

inner radii, 41

Inradiusp-V, 61

inradius, 5, 22, 60

interior, 15

J
John asymmetry, 32

John’s Theorem, 32

Jung’s Inequality, 36, 75

K
k-center, 14

L
Leichtweiß’s Inequality, 36

linear hull, 15

linear program, 4

M
Minkowski asymmetry, 29, 71

Minkowski center, 29

Minkowski centered, 29

Minkowski sum, 15
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N
nearest point mapping, 85

normal cone, 86

Normmaxp, 46

O
optimal homothetic position, 96

optimally contained, 68

outer radii, 41

outer radius, 5

ovaloid, 121

P
p-norm, 16

pinned transversal, 109

pinning, 109

polar body, 16

positive hull, 15

projection onto a convex body, 96

R
radii of convex bodies, 5

recession cone, 16

reference point, 105

relative interior, 15

S
scalar product, 16

screen, 123

shape fitting, 8

sphere, 16

standard basis, 16

Steinhagen’s Inequality, 37

subdifferential, 85

successive radii, 41

support function, 16, 86

symmetric, 15

T
tangential cone, 86, 125

transversal, 109

U
unit ball, 16, 84

V
V-presentation, 16

W
W[1], 17
width, 5, 25, 60
Widthp-V, 61
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[153] P. Steinhagen. Über die größte Kugel in einer konvexen Punktmenge. Abhand-
lungen aus dem Mathematischen Seminar der Universität Hamburg, 1(1):15–26,
1922.

[154] H. R. Tiwary. Complexity of some polyhedral enumeration problems. Dissertation,
Universität des Saarlandes, 2008.

[155] M. J. Todd and E. A. Yıldırım. On Khachiyan’s algorithm for the compu-
tation of minimum-volume enclosing ellipsoids. Discrete Applied Mathematics,
155(13):1731–1744, 2007.

[156] P. Vincensini. Figures convexes et variétés linéaires de l’espace euclidien à n di-
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