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Abstract
To a large extent, research in plasma physics is concerned with the description and anal-
ysis of energy and momentum transfer between different scales and different kinds of
waves. In the numerical modelling of such phenomena it appears to be crucial to describe
the transfer processes preserving the underlying conservation laws in order to prevent
physically spurious solutions.
In this work, special numerical methods, so called variational integrators, are developed
for several models of plasma physics. Special attention is given to conservation properties
like conservation of energy and momentum.
By design, variational integrators are applicable to all systems that have a Lagrangian
formulation. Usually, equations of motion are derived by Hamilton’s action principle
and then discretised. In the application of the variational integrator theory, the order
of these steps is reversed. At first, the Lagrangian and the accompanying variational
principle are discretised, such that discrete equations of motion can be obtained directly
by applying the discrete variational principle to the discrete Lagrangian. The advantage
of this approach is that the resulting discretisation automatically retains the conservation
properties of the continuous system.
Following an overview of the geometric formulation of classical mechanics and field theory,
which forms the basis of the variational integrator theory, variational integrators are
introduced in a framework adapted to problems from plasma physics. The applicability
of variational integrators is explored for several important models of plasma physics:
particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system)
and fluid theory (magnetohydrodynamics).
These systems, with the exception of guiding centre dynamics, do not possess a Lagran-
gian formulation to which the variational integrator methodology is directly applicable.
Therefore the theory is extended by linking it to Ibragimov’s theory of integrating factors
and adjoint equations. It allows us to find a Lagrangian for all ordinary and partial differ-
ential equations and systems thereof, for which the number of variables equals the number
of equations. Consequently, the applicability of the variational integrators is extended to
a much larger family of systems as envisaged in the original theory. The theory allows for
the application of Noether’s theorem to analyse the conservation properties of the system,
both at the continuous and the discrete level.
In numerical examples, the conservation properties of the derived schemes are analysed.
In case of guiding centre dynamics, momentum in the toroidal direction of a tokamak is
preserved exactly. The particle energy exhibits an error, but the absolute value of this
error stays constant during the entire simulation. Therefore numerical dissipation is ab-
sent. In case of the kinetic theory, the total number of particles, total linear momentum
and total energy are preserved exactly, i.e., up to machine accuracy. In case of magneto-
hydrodynamics, the total energy, cross helicity and the divergence of the magnetic field
are preserved up to machine precision.
These conservation properties not only make the numerical schemes more stable than
those obtained by traditional discretisation methods, but they also reduce unphysical be-
haviour like spurious loss of energy or momentum, thereby increasing the trustworthiness
of numerical simulations.
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Zusammenfassung
Weite Teile der theoretischen Plasmaphysik beschäftigen sich mit der Beschreibung und
Untersuchung des Transfers von Energie und Impuls zwischen verschiedenen Skalen und
verschiedenen Arten von Wellen. In der numerischen Modellierung dieser Phänomene er-
scheint es entscheidend, die den Transferprozessen zugrunde liegenden Erhaltungsgesetze
zu bewahren, um unphysikalische Lösungen zu unterbinden.
In der vorliegenden Arbeit werden spezielle numerische Verfahren, sogenannte Variation-
sintegratoren, für verschiedene Modelle der Plasmaphysik entwickelt. Ein besonderer
Augenmerk liegt dabei auf der Erhaltung physikalischer Größen wie Impuls und Energie.
Prinzipiell sind Variationsintegratoren auf alle Systeme anwendbar, die eine Lagrangesche
Formulierung aufweisen. Die grundlegende Idee ist, dass man nicht, wie üblich, mit
Hilfe des Hamiltonschen Variationsprinzips Bewegungsgleichungen ableitet und diese dann
diskretisiert sondern die Abfolge dieser Schritte umkehrt. Man diskretisiert die Lagrange-
Funktion und das Variationsprinzip und leitet damit direkt diskrete Bewegungsgleichun-
gen ab. Diese Vorgehensweise hat den Vorteil, dass man Diskretisierungen erhält, die
automatisch die Erhaltungseigenschaften des kontinuierlichen Systems bewahren.
Im Folgenden wird zuerst die Theorie der Variationsintegratoren entwickelt. Da diese
auf einer geometrischen Formulierung der klassischen Mechanik und Feldtheorie beruht,
werden deren Grundlagen ebenfalls dargestellt. Anschließend wird die Anwendbarkeit
der Variationsintegratoren auf verschiedene Systeme der Plasmaphysik untersucht: auf
Teilchendynamik (Guiding Centre Dynamik), die kinetische Theorie (das Vlasov-Poisson-
System) und die Fluiddynamik (Magnetohydrodynamik).
Da diese Systeme, mit Ausnahme der Guiding Centre Dynamik, keine passende La-
grangesche Formulierung aufweisen, wird die Theorie der Variationsintegratoren durch
Kopplung mit Ibragimovs Theorie der integrierenden Faktoren und adjungierten Gle-
ichungen erweitert. Diese erlaubt es, eine Lagrange-Funktion für alle gewöhnlichen und
partiellen Differentialgleichungen und Differentialgleichungssysteme zu finden, bei denen
die Anzahl der Variablen der Anzahl der Gleichungen entspricht. Dadurch ist es möglich,
die Anwendbarkeit der Variationsintegratoren auf eine viel größere Familie von Systemen
zu erweitern, als dies in der ursprünglichen Theorie vorgesehen ist. Die Theorie ermöglicht
die Anwendung des Noether-Theorems zur Untersuchung der Erhaltungseigenschaften des
Systems, sowohl im Kontinuierlichen wie auch im Diskreten.
In numerischen Beispielen werden die Erhaltungseigenschaften der Variationsintegratoren
untersucht. Im Falle der Guiding Centre Dynamik ist der Impuls in toroidaler Richtung
im Tokamak exakt erhalten. Die Energie weist einen Fehler auf, dessen Absolutwert
vom gewählten Zeitschritt abhängt, aber im Laufe einer Simulation konstant bleibt, d.h.
es tritt keine numerische Dissipation auf. Im Falle der kinetischen Theorie werden die
Gesamtzahl der Teilchen, der Gesamtimpuls und die Gesamtenergie exakt erhalten (d.h.
bis auf Maschinengenauigkeit). Im Falle der Magnetohydrodynamik wird ebenfalls die
Gesamtenergie und zusätzlich die Kreuzhelizität und die Divergenz des Magnetfeldes exakt
erhalten.
Diese Erhaltungseigenschaften führen zu Verfahren mit verbesserter numerischer Stabil-
ität im Vergleich zu Diskretisierungen durch traditionelle Verfahren. Mindestens ebenso
wichtig ist aber, dass sie unphysikalisches Verhalten wie die numerische Dissipation von
Energie oder Impuls reduzieren und dadurch die Glaubwürdigkeit numerischer Ergebnisse
erhöhen.
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int(U) interior of U
cl(U) closure of U
∂U boundary of U



xi

Local deviations from this list cannot be excluded. Some letters are defined twice, such
as ϕ for the toroidal angle as well as for a general section. However, the current meaning
should always be clear from the context in which the symbol is used. Some symbols with
varying meaning (like for general scalars, scalar fields, vector fields, differential forms,
etc.) are not listed here or may overlap with notation defined here.

Coordinates indices i, j, k run from 1 to n, indices µ, ν, σ run from 0 to n, where n is the
dimension of the space. Indices a, b correspond the components of fields or sections.

Throughout the whole thesis, all maps are assumed to be smooth, while all manifolds are
assumed to be smooth as well as oriented.
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1. Introduction
Plasma physics is one of the most challenging fields in classical physics. Not only does it
describe systems that consist of a vast number of particles, but these particles are charged
and interact through the mean field they generate, leading to a collective behaviour and
a tremendous complexity of the dynamics. This complexity repeatedly provides us with
new imponderabilities, not anticipated before. To investigate the complicated behaviour
inherent to any plasma system, pure theory is not sufficient. Too great is the complexity
of nowadays’ problems to solve them by pen and paper alone. Therefore computer simu-
lations have become an essential part of plasma physics research, and have been for some
time already.
With ever more powerful computers becoming available, ever larger simulations become
feasible. Larger simulations in terms of the simulation domain but also in terms of the
simulation time. Consider for example simulations of the entire plasma of ITER, a new
experimental device under construction in France, which has a volume of about 840 m3.
And think of simulations of an entire plasma discharge, which in the case of ITER might
last up to 400 seconds, almost an eternity on the timescales of important plasma processes
like small scale turbulence.
To be able to do such long simulations and still obtain accurate results, standard discreti-
sation methods do not suffice. Most often they are based on the minimisation of local
errors, but do not limit global error growth, thereby accumulating errors in each and every
timestep, eventually leading to unphysical solutions.
Another example is turbulence, one of the large standing problems in classical physics and
an ubiquitous topic in plasma physics. Its description involves the analysis of energy and
momentum transfer processes between different scales and different kinds of waves. In the
numerical modelling of such phenomena it appears to be crucial to describe these transfer
processes while preserving the underlying conservation laws in order to prevent physically
spurious solutions. It cannot be expected to describe an energy cascade correctly, if energy
is numerically created or dissipated.
Lastly, consider magnetic reconnection, a problem that will be dealt with in some more
detail later on. It describes how magnetic field lines open up and reconnect in certain
physical situations, resulting in a change of the topology of the magnetic field. Even
under ideal conditions, that do not feature reconnection processes (i.e., the magnetic field
line topology is fixed), most numerical schemes find reconnection events due to numerical
dissipation. If such methods are used to model real reconnection processes, one can never
be absolutely certain to which extent the results are due to physical effects and to which
extent they are just numerical artefacts.

1.1. Geometric Discretisation
To overcome these problems, the global structure of the equations, namely their geometry,
has to be taken into account in the course of discretisation. Following Christiansen et al.
[31], a geometric structure is a global property, that can be defined independently of
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particular coordinate representations of the differential equations at hand (see also Budd
and Piggott [22]). Examples for such structures encompass topology, like magnetic field
line topology, conservation laws and symmetries, such as conservation of energy which
arises through the invariance of a system under infinitesimal time translations, constraints
like the divergence of the magnetic field which has to vanish, or identities like those from
vector calculus and their generalisations from differential geometry.
The preservation of such geometric properties on the discrete level can have crucial influ-
ence on the quality of a simulation. It affects stability and global error growth, reduces
numerical artefacts, like spurious loss of energy or momentum, and thereby reduces the
likelihood of inaccurate and unphysical behaviour. In difficult cases, simulations often
only become possible by using geometric discretisation methods. This is especially true
for long time simulations, where the unlimited growth of global errors, like in the energy
of the system, can lead to numerical instabilities or at least physically wrong results.

1.2. Symplecticity
A geometric concept that plays an important role throughout this work is symplecticity.
For a one-dimensional Hamiltonian system, the symplectic structure amounts to a skew-
symmetric matrix that is a measure for phasespace area. Computing the product of
this matrix with two phasespace vectors yields the area of the parallelogram spanned by
the two vectors. For autonomous Hamiltonian systems, this area is always preserved.
Consequently the Hamiltonian flow is called symplectic. Maintaining this preservation of
area on the discrete level has important consequences for the resulting integrators like
very good energy behaviour (for more details see Sanz-Serna and Calvo [111], Leimkuhler
and Reich [73] and Hairer et al. [52]).
In more than one dimension, the conserved quantity is the sum of the areas of the paral-
lelograms that result by projecting the two phasespace vectors to the coordinate axes. As
a consequence, phasespace volume is preserved under symplectic maps leading to other
conservation laws like conservation of the total number of particles in a system. In the
framework of partial differential equations, the concept of symplecticity is generalised to
multisymplecticity. Simply put, a multisymplectic map is symplectic with respect to both
space and time.
It is noteworthy that a symplectic structure can also be defined on the Lagrangian side,
indicating that the class of systems endowed with a symplectic structure is larger than
the class of Hamiltonian systems. A fact that was already known to Lagrange and the
details of which will be explained in chapter two.

1.3. Variational Integrators
One special geometric discretisation method is represented by variational integrators.
They can be applied to any equation or system of equations that can be derived by
means of a variational principle. The general idea is simple. It can be described as
discretising the theory instead of discretising the equations. Part of the development of
variational integrators was therefore the development of discrete counterparts of classical
mechanics and classical field theory. Although those are not complete counterparts, they
are sufficient to derive geometric integration schemes and analyse their properties with
respect to the observance of conservation laws.
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In order to derive variational integrators one first has to discretise the basic constituents of
the variational principle, the Lagrangian and the action integral. One has to approximate
the particle positions or fields and their derivatives and select a quadrature rule. Then
a discrete variational principle is applied to the resulting discrete action, directly leading
to discrete equations of motion (Euler-Lagrange equations). There are several advantages
of this method compared with a direct discretisation of the continuous Euler-Lagrange
equations. The obtained integrators preserve a discrete analogue of the symplectic or
multisymplectic form (for finite or infinite dimensional systems, respectively). This implies
conservation of phasespace volume and a very good energy behaviour. In general, the
energy is not preserved exactly, but it exhibits an oscillating behaviour about a fixed value.
Consequently, the energy is not constant. But what is important is that the energy is not
dissipated or growing unphysically, instead its error is bounded. Furthermore, variational
integrators conserve discrete momenta, that is conserved quantities corresponding to a
symmetry of the system, practically exactly (up to machine precision).
Quite often, one can recover existing methods that are well known for their good conserva-
tive properties via a discrete variational principle. The Newmark scheme, Störmer–Verlet,
or symplectic Runge-Kutta methods are examples.

1.4. Outline and Contributions
In chapter two, an introduction to the geometric formulation of classical mechanics and
classical field theory is given, together with an overview of the most important differential
geometric tools. The theory of variational principles is reviewed in a geometric setting.
While the material presented in this section is not original, the presentation is detailed
and self-contained. It should be accessible to non-specialists, applied mathematicians and
theoretical physicists alike.
The theory of Ibragimov is presented. It allows us to find a variational formulation for
certain systems that naturally do not have such a formulation. Furthermore, the Noether
theorem can be applied in this framework to study symmetries and link them with conser-
vation laws. The combination of Ibragimov’s theory with the discrete variational principle
is a very important result of this work, as it allows to derive variational integrators for a
much larger class of systems than had been foreseen in the original theory.
In chapter three, the basic theory and methodology of variational integrators is presented,
both for finite dimensional systems (e.g., particle mechanics) and infinite dimensional
systems (e.g., field theories). Proofs for the discrete conservation properties are given
or at least sketched, including a discrete version of Noether’s theorem. The chapter is
closed by an example, namely the advection equation. Ibragimov’s theory is used to
construct a Lagrangian and consecutively a variational integrator is derived. Both the
continuous and the discrete Noether theorem are applied to obtain conservation laws for
that equation. Again, the general theory of variational integrators is not original and
largely influenced by Marsden and coworkers [84, 65, 83, 76], but the presentation is
adapted to our framework. As opposed to this, the application of variational integrators
to Ibragimov’s extended Lagrangians is proposed here for the first time. Its role for this
work is crucial, since for most plasma physics problems a natural variational formulation
in terms of Eulerian coordinates has not yet been found.
Chapters four to six explore the applicability of variational integrators to different systems
which are important in plasma physics. Three classes of problems are distinguished:
particle dynamics, kinetic theory, and plasma fluid theory.



4 1. Introduction

In chapter four, several variational integrators are derived for the motion of particles in
a non-uniform magnetic field. Specifically, the motion of centres of the helical trajectory
of a particle (guiding centre) is considered, extending previous work in several aspects:
different discretisations of the Lagrangian are explored and dynamics in higher dimensions
is considered. We find that the variational integrators obtained here show excellent long-
time behaviour, describing particle orbits correctly after millions of characteristic times
and hundreds of millions of timesteps, while for standard methods like a fourth order
Runge-Kutta scheme large deviations from the correct orbit are observed. The chapter
concludes with the sketch of a possible application of the derived integrators in particle-
in-cell codes. Here, it is possible to employ a variational principle for the combined
system of particles and fields, leading to schemes that consistently respect the conservation
properties of the complete system.
In chapter five, variational integrators for the Vlasov-Poisson system in one-dimension are
derived. This is a typical test bed for kinetic problems, e.g., it has recently been employed
to test the conservation properties of new schemes such as discontinuous Galerkin meth-
ods [11, 12, 10, 53, 29, 30]. Considering a one dimensional problem (one space plus one
velocity coordinate) reduces the computational burden, while retaining the qualitative
physical behaviour, including phase-mixing and collective effects. One of the integrators
for this system shows extraordinary conservation properties, preserving the total parti-
cle number, the total energy, total linear momentum and the L2 norm exactly, i.e., up
to machine accuracy. Problems only arise if the grid resolution is insufficient to resolve
small scale structures in the distribution function. To treat such cases, a velocity space
collision operator is introduced. It dissipates the L2 norm and removes subgrid modes,
while retaining the conservation of the total particle number, energy and momentum.
Furthermore, a linear integrator is derived, which is computationally less demanding but
keeps the conservation properties intact, albeit with less accuracy. Energy for example is
not preserved to machine precision, but oscillating about some fixed value, as is typical
for symplectic integrators. Still, no numerical dissipation is present. The derived inte-
grators are then applied to different standard benchmark cases like Landau damping, the
twostream instability and the Jeans instability.
In chapter six, a variational discretisation of magnetohydrodynamics is obtained. The
resulting integrator has similarly astonishing properties as the one for the Vlasov-Poisson
system, namely exact conservation of the total energy and cross helicity. Here, a staggered
grid approach has to be taken to avoid unphysical oscillations in the velocity and pressure
fields, a typical problem in incompressible fluid dynamics. The integrator is applied to
a range of quite different examples like Alfvén waves, which appear to travel virtually
forever through the computational domain, the passive advection of a magnetic loop by
the velocity field, the emergence of current sheaths in the turbulent setting of a Orszag-
Tang vortex, and several current sheath models as they are used in reconnection studies.
In the appendix, semi-discretisation strategies based on variational integrators or closely
related methods are sketched. In appendix A, a variational-spectral method for the vor-
ticity equation and for the Vlasov-Poisson system is derived. Here, the spatial dimensions
are transformed into Fourier space and only time or time and velocity are treated vari-
ationally. In appendix B, discretisations of Poisson brackets and various generalisations
thereof are considered. Here, only phasespace is discretised but not time. The deriva-
tions of these discretisations share many similarities with the derivation of variational
integrators. Therefore it is not surprising that the resulting schemes are found to be
similar.
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2. Geometric Mechanics and Field
Theory

“Physicists have had a long-lasting love affair with the idea of generating physical laws by
setting the derivative of some functional to zero. This is called an action principle. The
most famous action principle is Hamilton’s principle, which produces Lagrange’s equations
of mechanics upon variation.” - Philip Morrison [89]

In this chapter, a short overview of the geometric formulation of classical mechanics and
field theory is given. It is important to understand some of the geometric underpinnings
of the treated systems to appreciate the presented geometric discretisation methods that
aim at preserving exactly these structures. Unfortunately, the geometric point of view
is seldom treated in lectures on classical mechanics at university, nor are they common
knowledge in the plasma physics community. The elegance and beauty of the geometric
formulation will certainly appeal to the reader yet unfamiliar with it.
We begin with the presentation of the geometric setting, i.e., some basic notions about
manifolds, differential forms and fibre bundles. Hereafter, the formulation of Lagrangian
mechanics and field theory is presented, at first in an analytic and then in a geometric
way, applying the utilities introduced in the first section. In this context, the theory
of Ibragimov is reviewed. It allows us to find a Lagrangian for any ordinary or partial
differential equation or any system of differential equations where the number of equations
equals the number of dependent variables, which is usually the case in physical systems.
Hence it allows us to find extended Lagrangian formulations for systems that do not posses
a classical Lagrangian as it is often the case in plasma physics.
Some emphasis is put on Noether’s theorem, which connects symmetries and conservation
laws. Beginning with an analytic description of point transformations and one-parameter
groups, the Noether theorem is presented for particles, fields and extended Lagrangian
formulations according to Ibragimov. Hereafter, a geometric formulation of Noether’s
theorem is developed using the notion of momentum maps.
This treatment restrains itself mostly to the Lagrangian side, nevertheless connections
with Hamiltonian mechanics and field theory are drawn to compare some results with
discretisation methods developed on that side and to outline some alternative strategies.
Central to these ideas are various kinds of brackets, namely the classical Poisson brackets
and their generalisations in form of Nambu, Lie-Poisson and Dirac brackets.
If the reader is interested in more detailed treatments he can find some recommendations
below. There are lots of classical as well as modern introductions to differential geometry
and exterior calculus. The more recent ones include Lovett [79], Torres del Castillo [130]
and Epstein [37] on the physics oriented side and Lee [72] and Tu [131] on the math
oriented side. Some classics are Schutz [116], Burke [23] and Abraham et al. [2]. A short
and nevertheless comprehensive overview of differential forms are the lecture notes by
Sjamaar [119] which are freely available on the internet. Good introductions can quite
often also be found in general relativity textbooks, e.g., Ryder [105], Hobson et al. [54]
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and Carroll [24].
A basic introduction to the geometric formulation of classical mechanics is Jose and
Saletan [61]. More advanced treatments are Holm et al. [57] and Marsden and Ratiu
[82]. Some classics that are still very useful today are Arnold [8], Abraham and Marsden
[1], Sudarshan and Mukunda [125] and Saletan and Cromer [107]. Freely available lectures
by Holm [55], Marsden [81] and Ratiu [104] can be found on the internet. Two review
papers that focus on problems related to fluid dynamics but also have an introductory
character are Morrison [89] and Salmon [108].
The theory of jet bundles is introduced in the monographs of Krasil’shchik and Vino-
gradov [66], Olver [95] and Saunders [113]. Its application to classical mechanics and field
theories is explained in Gotay et al. [49], Marsden et al. [84], Aldaya and De Azcarraga
[3], Echeverria-Enríquez et al. [35, 36], Giachetta et al. [47, 45, 46], Sardanashvily [112]
and references therein. The survey articles by Saunders [114] and Krupka [67] are also
instructive.
This chapter is largely influenced by all of the aforementioned references. It makes no
claim of originality, except for presenting the material in a mostly self-contained and
coherent way. However, the following presentation, especially the sections after the ge-
ometric introduction, should be easier accessible, as the level of detail and explanation
often surpasses that of the original works which are quite challenging at times.

2.1. Geometric Foundations
This section tries to give a short overview of the geometric foundations underlying the
theory presented below. All of the geometric tools that are used later on should be
covered, the only exception being basic Lie group theory.

2.1.1. Smooth Manifolds
Probably the simplest definition of a manifold M is a set of points that can be labelled
by coordinates. Locally, manifolds look like the Euclidean space. Globally, however, they
might have a much more complicated structure. Therefore it is often not possible to define
a global coordinate system on a manifold (think of a circle or a sphere) and one has to
find coordinate patches (charts) that together cover the whole manifold. A chart (local
coordinate system) is a pair (U , φ), where U is an open subset ofM and φ is a one-to-one
map from U onto some open subset of Rn

φ(p) = (x1(p), x2(p), ..., xn(p)), p ∈ U . (2.1)

Hence, a chart labels each point p in U by n real numbers. If more than one chart is
necessary to cover the whole manifold, most likely some points will lie in the domain
of more than one chart. In that case we demand that there exists a transition map as
follows. If (U1, φ1) and (U2, φ2) are two coordinate patches overlapping in U = U1 ∪ U2,
we request that ψ = φ2 ○ φ−1

1 is smooth. In that case, the charts φ1 and φ2 are said to be
compatible. The set of compatible charts that covers all of a manifold is called an atlas.
Consider as an example the configuration space Q of a mechanical system. The definition
of a coordinate chart on Q amounts to a choice of generalised coordinates. Fortunately, for
the cases considered in this work, it is always possible to find a global coordinate patch,
thereby avoiding the subtleties arising from having more than one coordinate patch.



2.1. Geometric Foundations 7

Most manifolds in mathematical physics are smooth manifolds, continuous and infinitely
often differentiable. We will always assume that this is the case. Furthermore, we shall
assume that all of the considered manifolds are orientable.
In the remainder of this section we will consider some intrinsic objects and operations
that can be defined on manifolds and will be used in the subsequent treatment.

2.1.2. Vector Fields
On trivial manifolds, i.e., such manifolds that can be identified with a linear vector space
like Rn, the definition of vector fields is straight forward. Indeed, it is customary to
identify points p of the space with the corresponding vector x = (x1, ..., xn), leading to the
usual notion of vectors. General manifolds, however, are not necessarily linear, so vectors
cannot be defined by the usual means. The simplest geometric way to describe a vector
V at a point p on a nontrivial manifold is intuitively as the tangent to a parametrised
curve c(t) inM, satisfying c(0) = p.

Tangent Vectors

A parametrised curve c(t) inM is a smooth map from some interval I ⊆ R to the manifold
M

c ∶ I →M. (2.2)

If coordinates onM are denoted (xµ), this can be explicitly written as

c ∶ t↦ xµ(t). (2.3)

Without loss of generality assume that I contains the point 0 ∈ R and that c(0) = p.
Consider the directional derivative of a function f ∶M→ R along the curve c, that is

Vp(f) =
d

dt
[f ○ c(t)]∣

t=0
. (2.4)

For the trivial case,M = Rn, this corresponds to

Vp(f) =
dxµ

dt

∂f

∂xµ
with dxµ

dt
≡ V µ

p . (2.5)

V µ
p are the components of the tangent vector of c(t) at t = 0. In the general case, this is

used as a definition. As (2.5) is fully general and independent of f , the vector Vp can be
written as

Vp = V
µ
p ∂µ where ∂µ ≡

∂

∂xµ
. (2.6)

Vectors on a manifold therefore correspond to first order differential operators. ∂µ are the
local basis in which the vector components are expressed.
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Tangent Bundle

The tangent vector Vp is an element of the local tangent space TpM, where TpM is the
set of all tangent vectors (i.e., all possible directional derivatives) toM at p and has the
same dimension as M. That means, TpM can be obtained by considering the tangents
to all possible curves passing through that point. Coordinates xµ onM induce a basis ∂µ
on TpM. Therefore (∂µ) build a natural coordinate system on TpM. One possible way of
obtaining TpM is to consider all possible curves c through p and evaluate (2.6) for each
single one.
An important consequence of vectors at different points p of the manifold being elements
of different vector spaces TpM is that they cannot be added or subtracted. This is only
possible for vectors at the same point p, i.e., vectors which are elements of the same
tangent space TpM.
Collecting all the TpM, for each point p ∈M, into one single object (which is a disjoint
union) yields the tangent bundle

TM = ⋃
p∈M

TpM. (2.7)

It is the set of all tangent vectors at all points ofM and has the structure of a differentiable
manifold. More details on the tangent bundle will be presented in section 2.1.4 on fibre
bundles.
A vector field V on a manifold M is a function that assigns a vector Vp ∈ TpM to each
point p ∈ M. Consequently, all vector fields V on M lie in TM. A vector field V is
therefore a smooth, linear map

V ∶M→ TM. (2.8)

The tangent space TpM at each point p ∈M is a real vector space. Therefore two vector
fields V and W may be added or multiplied by a scalar field f ∶M→ R as follows

(V +W )(p) = V (p) +W (p), (fV )(p) = f(p)V (p), p ∈M. (2.9)

In the physics literature, the V µ are usually referred to as contravariant components of
the vector field V .

2.1.3. Integral Curves and Flows
We will now study a topic that is essential in the geometric formulation of the action
principle and the study of symmetries. It is based on the observation that vector fields
induce, at least locally, a family of transformations of the manifold onto itself.
A one-parameter family of transformations is a differentiable map

ϕ ∶M × R→M (2.10)

that depends on a real parameter. Therefore they are called one-parameter-groups of
transformations. They map points ofM onto different points ofM

ϕ ∶ p↦ ϕ(p, t) with p ∈M, t ∈ R, (2.11)

such that

ϕ(p,0) = p and ϕ(ϕ(p, s), t) = ϕ(p, s + t) for all p ∈M, s, t ∈ R. (2.12)
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Thus, upon defining ϕt(p) ≡ ϕ(p, t) we can write

ϕs+t(p) = ϕs ○ ϕt = ϕt ○ ϕs and ϕ0 = id . (2.13)

As

ϕt ○ ϕ−t = ϕ−t ○ ϕt = ϕ0 = id (2.14)

each map ϕt has an inverse ϕ−1
t = ϕ−t that is also differentiable. Therefore, each ϕt is a

diffeomorphism ofM onto itself, and the set of transformations {ϕt ∣ t ∈ R} is a group of
diffeomorphisms ofM onto itself.
Each one-parameter-group of transformations ϕ on M determines a family of curves in
M (referred to as the orbits of the group). The map

ϕp ∶ R→M (2.15)

given by

ϕp(t) = ϕ(p, t) (2.16)

is a differentiable curve in M for each p ∈M. The vector field tangent to these curves
generated by the one-parameter-group of transformations

V =
d

dt
ϕt ∣

t=0
(2.17)

is called the infinitesimal generator of ϕ. Since ϕp(0) = ϕ(p,0) = p the tangent vector to
the curve ϕp belongs to TpM. The curves ϕp are integral curves of V .

2.1.4. Fibre Bundles
Reconsider the construction of the tangent bundle TM of a manifold M from section
2.1.2. TM was built by attaching to each point p ∈M the tangent vector space TpM at
that point (2.7). The resulting object is generally referred to as a fibre bundle with the
vector spaces TpM being the fibres that are attached to each point p of the base space
M. See figure 2.1 for a pictorial view of the tangent bundle of the circle S1.

Fig. 2.1.: Left: Tangent bundle of the circle S1. Each of the blue lines attached
to a point of the circle depicts a fibre of the tangent bundle TS1. Right: To avoid
spurious intersections, the same tangent bundle TS1 is drawn with the fibres parallel
to each other. Now the circle is depicted in the horizontal plane and the fibres TpS1

are vertical lines.
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In general, a fibre bundle is characterised by four quantities, the base space X , the total
space Y , a typical fibre F and a projection π. Fibre bundles are particular manifolds with
the property of being decomposable into fibres. The points of a single fibre are related
to one another while points of different fibres are not. This is formalised by defining a
projection map.

Projections

Consider a fibre bundle Y over X , a point x in the base space X , and the fibre Yx ≅ F
at that point. The natural (or canonical) projection π maps each element y of Yx to the
point x, the fibre is attached to, i.e.,

πX ∶ Y → X (2.18)

or in coordinates

πX ∶ (x, y)↦ x. (2.19)

To avoid confusion, e.g., if more than one projection appears in a treatment, we sometimes
also write πXY to denote both the source and the target space explicitly.

Sections

A section ϕ of a fibre bundle Y over X is a map that assigns to each point x in the base
manifold a point in the fibre bundle

ϕ ∶ X → Y such that πXY ○ ϕ = idX , (2.20)

or in coordinates

ϕ ∶ x↦ (x, y). (2.21)

Sections ϕ ∶ X → Y are also denoted as ϕ ∈ Γ(πXY), where Γ(πXY) denotes the set of all
sections in the fibre bundle Y over X , characterised by the projection πXY . Similarly, the
fibre bundle itself is often just denoted as πXY . If the model space F for fibres is a linear
space, then Γ(πXY) has a natural linear space structure as well.
In this framework, vector fields are sections of TM. Later on, we will introduce jet
bundles that are very practical when dealing with field theories. These are fibre bundles
defined over spacetime that contain fields and their derivatives up to a given order.

Fig. 2.2.: A section in the tangent bundle TR of the real line.
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Vertical Lifts

Some fibre bundles πXY , e.g., tangent bundles or jet bundles, have a natural way of lifting
a curve in X by a section y. The tangent lift

Tf ∶ TM→ TN (2.22)

of a function

f ∶M→ N (2.23)

is defined by

Vp ↦Df Vp. (2.24)

The lift of a curve c(t) in X to the tangent bundle TX is given as

Tc(t) ∶ t↦ (xµ(t),
dxµ

dt
(t)). (2.25)

Obviously, not every curve in the tangent bundle is the lift of a curve in the base space.
Those curves that are lifted ones are called holonomic. If ϕt is a one-parameter group of
diffeomorphisms on the basespace X , then Tϕt will be a one-parameter group of diffeo-
morphisms on the tangent bundle TX . Thus, if V is the infinitesimal generator of ϕt, its
tangent lift to T(TX ) is given as

TV =
d

dt
Tϕt ∣

t=0
(2.26)

in coordinates

TV ∶ (xµ, V µ)↦ ((xµ,
dxµ

dt
),(

dxµ

dt
,
d2xµ

dt2
)). (2.27)

The space of such vector fields over TX plays an important role in the next section on
Lagrangian dynamics.

2.1.5. Differential Forms
“Very loosely speaking, differential forms are whatever appears under an integral sign.”

- Loring Tu [131]

Somewhat less loosely speaking, they allow us to define integrands over manifolds, thereby
providing a natural way to integrate over curved spaces. Just as vector fields, they are
intrinsic objects associated to any manifold, and in fact their simplest instance, differ-
ential one-forms, are the dual concept to vector fields (which are first order differential
operators).
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Differential One-Forms

A differential one-form α (hereafter just referred to as one-form) on a manifoldM assigns
an element of the dual space T∗

pM of the tangent space TpM to each point p ∈M. It is
therefore a smooth, linear map

α ∶M→ T∗M. (2.28)
Each such one-form takes values in the cotangent space T∗

pM at that point, where T∗
pM

contains all dual vectors (covariant vectors) at that point p and has the same dimension
as M. Collecting all the T∗

pM for each point p ∈ M into one single object gives the
cotangent bundle

T∗M = ⋃
p∈M

T∗
pM, (2.29)

such that the one-form α is a section of T∗M. That way, T∗M is also the dual to TM.
The space T∗

pM is a vector space, such that two forms α and β of the same order may be
added or multiplied by a scalar field f ∶M→ R

(α + β)(p) = α(p) + β(p), (fβ)(p) = f(p)β(p), p ∈M. (2.30)
The simplest geometric way to describe a one-form α is as the differential of a function f
onM. Assign to each point p of the curve local coordinates xµ(t) and a scalar function
f(xµ) onM. The differential of the function f at p is

df =
∂f

∂xµ
dxµ. (2.31)

The first expression corresponds to the components of the gradient of f , and (dxµ) forms
a local basis, dual to the basis (∂µ) on TM. However, not all one-forms are differentials
of a function. In general, one-forms are written as

α = αµ dx
µ, (2.32)

where (dxµ) is the aforementioned basis on T∗M, defined by letting a basis one-form act
on a basis vector, i.e.,

dxµ(∂ν) =
∂xµ

∂xν
= δµν , (2.33)

such that the result of a general one-form α acting on a general vector v is given by
α(v) = αµ v

ν δµν = αµ v
µ. (2.34)

A one-form α is a linear functional, such that it acts on a linear combination of vectors
v,w ∈ TM with scalars a, b ∈ R as

α(av + bw) = aα(v) + bα(w). (2.35)
In the physics literature, the αµ are usually referred to as covariant components of the
covector field α. Strictly speaking, one-forms can only be identified with covector fields if
the underlying manifold is endowed with a metric, which defines a canonical isomorphism
of T∗

pM and TpM, thus identifying vectors and there duals. In physical applications this
is indeed most often the case. To change between vectors and one-forms, the ♭ and ♯

operators can be defined like
V ♭ = Vidx

i and α♯ = α
i ∂i. (2.36)

The flat operator ♭ returns the one-form corresponding to a vector field, and the sharp
operator ♯ returns the vector field corresponding to a one-form. Therefore, the action is
the same as in music, but with respect to indices instead of notes.
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Higher Order Differential Forms

A differential two-form ω is a function

ω ∶M→ Ω2(M) (2.37)

where Ω2(M) is the space of two-forms onM. It is generally written1

ω =
1
2 ωµν dx

µ ∧ dxν . (2.38)

where ∧ denotes the wedge product, which is defined in the next paragraph. Two-forms
are antisymmetric, such that

ωµν = −ωνµ. (2.39)

A similar result as (2.35) holds also for a two-form ω, which is a bilinear functional, acting
on vectors v,w, z ∈ TM with scalars a, b ∈ R as

ω(av + bw, z) = aω(v, z) + bω(w, z) and ω(v, aw + bz) = aω(v,w) + bω(v, z). (2.40)

Differential n-forms (differential forms of order n) are completely covariant, totally anti-
symmetric tensors. A n-form θ is a function

θ ∶M→ Ωn(M), (2.41)

where Ωn(M) is the space of n forms on M. As a consequence of the antisymmetry
property (2.39), the highest order forms that can exist on a manifoldM of dimension m
are of order m. The generalisation of (2.40) to higher order forms is straight forward.

Examples: Differential Forms in a Three-Dimensional Manifold

1-Form:

A = Aµ dx
µ = A1 dx

1 +A2 dx
2 +A3 dx

3 (2.42)

2-Form:

F =
1
2 Fµν dx

µ ∧ dxν = F12 dx
1 ∧ dx2 + F23 dx

2 ∧ dx3 + F31 dx
3 ∧ dx1 (2.43)

3-Form:

Ω =
1
3! Ωµνσ dx

µ ∧ dxν ∧ dxσ = Ω123 dx
1 ∧ dx2 ∧ dx3 (2.44)

1 The factor of 1/2 originates from the fact that in the sum over indices all contributions are taken into
account twice. Whether it is written or not depends on notational convention.
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Wedge Product

The wedge product takes a p-form ξ and a q-form η and returns a (p + q)-form

ξ ∧ η (v1, v2, ..., vp+q) =
1

(p + q)! ∑
σ∈Sp+q

sgn(σ) ξ(vσ1 , vσ2 , ..., vσp) η(vσp+1 , vσp+2 , ..., vσp+q),

(2.45)

where (σ1, ..., σp, σp+1, ..., σp+q) is an element of Sp+q, the group of all permutations of the
numbers {1,2, ..., p + q}, and sgn(σ) is the sign of the permutation, i.e.,

sgn(σ) =
⎧⎪⎪
⎨
⎪⎪⎩

1 odd permutation,
0 even permutation,

(2.46)

such that

ξ ∧ η = (−1)pq η ∧ ξ. (2.47)

It is associative,

(α ∧ β) ∧ γ = α ∧ (β ∧ γ), (2.48)

and bilinear,

(aα + bβ) ∧ γ = a (α ∧ γ) + b (β ∧ γ),

α ∧ (bβ + c γ) = b (α ∧ β) + c (α ∧ γ),
(2.49)

but in general not commutative. Due to the antisymmetry property (2.39), the wedge
product of a basis form with itself vanishes,

dxµ ∧ dxµ = 0. (2.50)

For that reason there can be no forms of higher order than the dimensionality of the space
they are defined on.

Examples: Wedge Products of Differential Forms

Consider the examples from above, again defined on a three-dimensional manifold,

A = A1 dx
1 +A2 dx

2 +A3 dx
3, (2.51a)

F = F12 dx
1 ∧ dx2 + F23 dx

2 ∧ dx3 + F31 dx
3 ∧ dx1, (2.51b)

Ω = Ω123 dx
1 ∧ dx2 ∧ dx3. (2.51c)

The wedge product of A with itself is

A ∧A = A1A2 dx
1 ∧ dx2 +A2A3 dx

2 ∧ dx3 +A3A1 dx
3 ∧ dx1

+A2A1 dx
2 ∧ dx1 +A3A2 dx

3 ∧ dx2 +A1A3 dx
1 ∧ dx3 = 0, (2.52)

which is obvious as for one-forms A ∧A = −A ∧A (2.47). The wedge product of A and
F is

A ∧ F = (A1F23 +A2F31 +A3F12)dx
1 ∧ dx2 ∧ dx3. (2.53)
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Let us try to compute the wedge product of Ω with the basis forms dxµ, that is

Ω ∧ dx1 = Ω123 dx
1 ∧ dx2 ∧ dx3 ∧ dx1 = Ω123 dx

1 ∧ dx1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

∧dx2 ∧ dx3 = 0, (2.54a)

Ω ∧ dx2 = Ω123 dx
1 ∧ dx2 ∧ dx3 ∧ dx2 = −Ω123 dx

1 ∧ dx2 ∧ dx2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

∧dx3 = 0, (2.54b)

Ω ∧ dx3 = Ω123 dx
1 ∧ dx2 ∧ dx3 ∧ dx3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0. (2.54c)

We see that all of these vanish, which is no surprise as Ω is a form of maximum order.

Interior Product

One-forms α are linear functionals that map vector fields to functions

α ∶ TM→ R. (2.55)

In general, n-forms θ are n-linear functionals, mapping n vector fields to functions

θ ∶⊗
n

TM→ R. (2.56)

The interior product of a vector field v and a one-form α is defined as their contraction,
denoted

ıvα = v α = ⟨α, v⟩ . (2.57)

The interior product ıv of some n-form θ and a vector field v yields a (n − 1)-form ıvθ,

ıvθ( . . . . . .
´¹¹¹¹¹¸¹¹¹¹¹¶
n slots

) = θ(

n slots
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
v, . . . . . .

´¹¹¹¹¹¸¹¹¹¹¹¶
n − 1 slots

). (2.58)

It can therefore be regarded as a map

ıv ∶ Ωn(M)→ Ωn−1(M) (2.59)

or component-wise

ıv ∶ θ
j1 j2... jp ↦ θk j2... jp v

k. (2.60)

The interior product of a vector field v and a scalar function f is zero by definition. ıv is
an anti-derivation: for a p-form ξ and a q-form η

ıv(ξ ∧ η) = (ıvξ) ∧ η + (−1)p ξ ∧ (ıvη). (2.61)

For example, for v = vσ∂σ and the two-form dxµ ∧ dxν , we have

ıv(dx
µ ∧ dxν) = (ıvdx

µ)dxν − dxµ (ıvdx
ν) = vµ dxν − vν dxµ. (2.62)
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Exterior Derivative

The exterior derivative d maps n-forms into (n + 1)-forms

d ∶ Ωn(M)→ Ωn+1(M), (2.63)

thus taking functions (which are considered zero-forms) to one-forms, one-forms to two-
forms, and so on. It is axiomatically defined as follows. If f ∶ M → R is a function
(zero-form), than df is the ordinary differential

df(v) = vf = vµ∂µf, (2.64)

equivalently

df = (∂µf)dx
µ. (2.65)

d is an anti-derivation, i.e., if ξ is a p-form and η a q-form, than

d(ξ ∧ η) = dξ ∧ η + (−1)p ξ ∧ dη. (2.66)

When applied twice, the exterior derivative vanishes, i.e., d2
= 0 or d(dα) = 0 for any

n-form θ. The exterior derivative d is linear, such that for every a ∈ R

d(aα) = adα and d(α + β) = dα + dβ. (2.67)

The vanishing of the exterior derivative when applied twice, d2
= 0, leads to the notion of

closed and exact forms. A n-form θ is closed if dθ = 0. A n-form θ is exact if θ = dη for a
(n−1)-form η. An exact form is always closed, but a closed form is not necessarily exact.

Example: Electromagnetic Field

The natural description of the magnetic potential A is as a one-form

A = A1 dx
1 +A2 dx

2 +A3 dx
3. (2.68)

The exterior derivative of A,

dA = (
∂A2

∂x1 −
∂A1

∂x2 )dx1 ∧ dx2 + (
∂A1

∂x3 −
∂A3

∂x1 )dx3 ∧ dx1 + (
∂A3

∂x2 −
∂A2

∂x3 )dx2 ∧ dx3

=
1
2
(∂µAν − ∂νAµ)dx

µ ∧ dxν (2.69)

≡
1
2 Fµν dx

µ ∧ dxν , (2.70)

yields the magnetic field tensor

F = F12 dx
1 ∧ dx2 + F23 dx

2 ∧ dx3 + F31 dx
3 ∧ dx1. (2.71)

Interestingly, dA looks like a curl, and indeed, the components of F correspond to the
components of the magnetic field B = ∇×A,

F =
⎛
⎜
⎝

0 B3 −B2
−B3 0 B1
B2 −B1 0

⎞
⎟
⎠
. (2.72)
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Therefore the natural representation of the magnetic field is a two-form. The exterior
derivative of F ,

dF = (
∂F23

∂x1 +
∂F31

∂x2 +
∂F12

∂x3 )dx1 ∧ dx2 ∧ dx3, (2.73)

does of course vanish as dF = d2A = 0. Interestingly, dF looks like a divergence and
indeed, it corresponds to ∇ ⋅B = 0.

These examples show that on a three-dimensional manifold, the exterior derivative cor-
responds to the operators from vector calculus. The exterior derivative of a zero-form
corresponds to the gradient, the exterior derivative of a one-form corresponds to the curl,
and the exterior derivative of a two-form corresponds to the divergence. On manifolds
of dimension other than three, the exterior derivative provides a generalisation of these
operators.

2.1.6. Pullback
In all considerations of this subsection, ϕ is regarded as a diffeomorphism

ϕ ∶M→ N . (2.74)

The pullback of ϕ allows us to pull back geometric objects from the target manifold N to
the source manifoldM. This includes functions, vector fields and differential forms. The
pullback of a scalar field f ∶ N → R by ϕ is given by composition

ϕ∗f = f ○ ϕ. (2.75)

The result is a scalar field ϕ∗f ∶M → R. The pullback of a n-form ω ∈ Ωn(N ) by ϕ is a
n-form ϕ∗ω ∈ Ωn(M), defined point-wise by

(ϕ∗ω)
p
(v1, ..., vn) = ωϕ(p)(Dϕ(p) ⋅ v1, ...,Dϕ(p) ⋅ vn), p ∈ N . (2.76)

While ϕ∗ω is acting on vectors vi ∈ TpM, ω is acting on vectors Dϕ(p) ⋅ vi ∈ Tϕ(p)N . The
following diagram should help to clarify this.

TM TN

M N
∈ ∈

ϕ∗ω ω

Tϕ

ϕ

The pullback of a wedge product is the wedge product of the pullback

ϕ∗(α ∧ β) = (ϕ∗α) ∧ (ϕ∗β). (2.77)

The pullback of an exterior derivative is the exterior derivative of the pullback

ϕ∗(dω) = d(ϕ∗ω) (2.78)

where ω is any differential form.
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2.1.7. Lie Derivative
As already pointed out, on a manifold M it is generally not possible to add or subtract
vectors at different points p ∈M, as those live in different vector spaces. This causes a
problem as for differentiation in the usual sense, one needs to do exactly that. Neverthe-
less, there are ways to define derivatives on manifolds. Otherwise, they would not be fun
to deal with. The arguably most important derivative on manifolds is the Lie derivative.
It describes how a geometric object (a function, a vector, a form) changes when it is
dragged along some vector field X. It will be defined below in two different approaches
that have been shown to be equivalent [57, 82].

Algebraic Definition

The Lie derivative £X along a vector field X ≡ Xµ∂µ is defined through its action on a
scalar function f ,

£Xf ≡Xf =Xµ f,µ, (2.79)

a vector field Y ≡ Y ν∂ν ,

£XY ≡XY − Y X = (Xµ(∂µY
ν) − Y µ(∂µX

ν))∂ν , (2.80)

where in the second identity, the products XY and Y X are viewed as composition of dif-
ferential operators. The Lie derivative of anything else is defined through the requirement
that it is a derivative, i.e., that it fulfils Leibniz’ rule. The Lie derivative of differential
forms can be obtained by following this rule. The result is a very beautiful relation called
Cartan’s magic formula or infinitesimal homotopy relation

£Xω = d (ıXω) + ıX (dω) (Cartan’s Magic Formula). (2.81)

Dynamical Definition

An alternative definition of the Lie derivative along a vector field X with flow ϕt is given
by

£Xℵ =
d

dt
ϕ∗tℵ∣

t=0
, (2.82)

where ℵ can now be a scalar function, a vector field or a differential form. So this
definition, referred to as dynamical definition of the Lie derivative, is formally the same
for all geometric entities (see for example Marsden and Ratiu [82] or Holm et al. [57]).

Properties

The Lie derivative does not change the tensorial character of the object it is acting on,
e.g., a scalar stays a scalar, a vector stays a vector, a one-form stays a one-form, and so
on. It commutes with the exterior derivative,

£Xdω = d (£Xω) , (2.83)
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and if ϕ ∶M→ N is a diffeomorphism, the pullback of the Lie derivative by ϕ is

ϕ∗£Xω = £ϕ∗X(ϕ∗ω). (2.84)

Now we should be well equipped to approach the geometric formulation of Lagrangian
dynamics.

2.2. Lagrangian Dynamics
At the age of 19, Lagrange found a solution to the long-standing isoperimetric problem2,3.
As it turned out, more important than the answer to this special problem was Lagrange’s
solution method, which lead to what we now call the Euler-Lagrange equations

∂L

∂q
−
d

dt

∂L

∂q̇
= 0, (2.85)

where L(q, q̇) is the Lagrangian function, which often corresponds to the kinetic energy
minus the potential energy, q are generalised coordinates and q̇ generalised velocities. The
great advantage of this formulation is that it is completely covariant. It does not depend
on a specific coordinate representation.
Some years later, at the age of 18, Hamilton found that these equations can be derived
by the principle of stationary action4. It states that, considering all possible trajectories
q(t) a system could follow to get from state a to state b, the following integral, called the
action,

A[q] =

b

∫
a

L(q(t), q̇(t))dt, (2.86)

is stationary for the actual physical trajectory q(t). This means that the variation of A,

δA[q] = δ

b

∫
a

L(q(t), q̇(t))dt, (2.87)

vanishes for the trajectory q(t) that is actually taken by the system, i.e., the trajectory
q(t) that fulfils the Euler-Lagrange equations (2.85).
Starting from this description, the generalisation of classical mechanics to field theories
is mostly straight forward. The Lagrangian generalises from a function of position q
and velocity q̇ to a function of the coordinates xµ (independent variables; most often
spacetime), the fields ϕa(x) (dependent variables) and their derivatives with respect to the

2 Historical notes according to Holm [55].
3 The isoperimetric problem asks, among all closed surfaces of a given fixed perimeter in the plane,
which curve maximises the area that it encloses? Lagrange sent his solution to this problem to Euler
in 1755.

4 Quite often Hamilton’s principle is called “principle of least action”, which is misleading. In fact, the
action does not need to take a minimum but just a critical point. For the derivation of the equations of
motion, it doesn’t make a difference if the critical point is a minimum, a maximum or a saddle point.
Admittedly, most often it is indeed a minimum, but there are counter-examples as well (e.g., under
certain conditions the action of the harmonic oscillator takes neither a minimum nor a maximum).
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coordinates. The envisaged applications are all first order theories, i.e., their Lagrangians
depend only on first order derivatives of the fields, ϕaµ = ∂ϕa/∂xµ, and are thus of the form

L = L(xµ, ϕa(x), ϕaµ(x)). (2.88)

In classical field theory, the Lagrangian density L is often preferred over the Lagrangian
function L, as it allows for more general notation. The connection between the two,

L = Lω, (2.89)

is drawn by the volume form ω of the base space (e.g., ω = dt∧dx∧dy∧dz for spacetime).
Finally, the action becomes an integral not only over time but over the whole base space
X ,

A = ∫
X

L(xµ, ϕa, ϕaµ). (2.90)

In the case of spacetime this is

A = ∫
X

L(xµ, ϕa, ϕaµ)dt dxdy dz. (2.91)

In this section, a thorough derivation of the Euler-Lagrange equations based on Hamilton’s
action principle is presented. At first from an analytic point of view, utilising the notion of
one-parameter families of transformations, thereby staying close to what is usually taught
at university classes in classical mechanics. This is followed by a presentation from a
geometric point of view, namely on tangent and cotangent bundles, which is a much more
natural description of the problem. After a short comment on the phasespace Lagrangian,
a popular object in the description of reduced kinetic theories in plasma physics, the
theory on jet bundles is outlined. It allows to unify the theory for finite dimensional and
infinite dimensional systems in one single framework and has many advantages over the
tangent bundle theory. Nevertheless, we also include the tangent bundle theory, which
has the two-fold purpose of a gentle introduction to abstract formalism and a useful tool
for problems where the full fledged framework of jet bundles is not needed (e.g., in large
parts of our treatment of particle dynamics). Finally, it is shown how to find what we call
extended Lagrangians for systems that do not posses a classical Lagrangian, as it is often
the case in plasma physics. The geometric point of view as it is stressed in this section
is essential in the derivation of the variational integrators and the analysis of symmetries
and conservation properties.

2.2.1. Hamilton’s Action Principle
Hamilton’s action principle answers the following question: of all possible paths q(t) a
system could choose to go from q(t1) to q(t2), which is the one it actually picks?5

Inserting a given path q(t) into the Lagrangian L(q(t), q̇(t)), it becomes a function of time
only. This time dependency is different for all the possible q(t), such that the integral

t2

∫
t1

L(q(t), q̇(t))dt (2.92)

5 The following derivation follows along the lines of Saletan and Cromer [107] and Jose and Saletan [61].
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q1 q2

q(t) varied curves

Fig. 2.3.: Variations of the trajectory q(t).

takes different values for different paths q(t). Hamilton’s principle states that this integral
takes a critical point for the physical path.
To make calculations tractable let us not consider all possible paths from q(t1) to q(t2)
but a family in which each path is determined by a parameter ε. This family shall contain
the actual, physical path for ε = 0. Each path is a function of time, labelled by ε,

qε(t) ≡ q(t, ε) with fixed ε. (2.93)

The function qε(t) shall be differentiable for both, t at fixed ε and ε at fixed t, such that
mixed partial derivatives can be exchanged

∂2qε
∂t ∂ε

=
∂2qε
∂ε∂t

. (2.94)

All paths shall start at q(t1) and end at q(t2), such that

qε(t1) = q0(t1) = q(t1) ≡ q1

qε(t2) = q0(t2) = q(t2) ≡ q2
(2.95)

or
∂qε
∂ε

(t1) =
∂qε
∂ε

(t2) = 0. (2.96)

One example of such a family, often considered exclusively in classical mechanics text-
books, is

qε(t) = q(t) + ε δq. (2.97)

This, however, requires that q(t) takes values in a linear space, an assumption that gen-
erally cannot be made in the geometric framework on manifolds. Therefore we consider
more general transformations of the form (2.93). The action integral is given by

A[qε] =

t2

∫
t1

L(qε(t), q̇ε(t))dt, (2.98)

and has different values for different ε. Hamilton’s principle of stationary action states
that for each one-parameter family qε that fulfils the above conditions (2.94 - 2.96), q is
a critical point of the action iff



22 2. Geometric Mechanics and Field Theory

d

dε
A[qε]∣

ε=0
= [

d

dε

t2

∫
t1

L(qε(t), q̇ε(t))dt]∣
ε=0

= 0 (Hamilton’s Action Principle).

(2.99)

This means that the time integral of the Lagrangian becomes stationary for the actual,
physical motion. As t1 and t2 are arbitrary, this is a general statement of Newton’s second
law. The integration limits are fixed, so that the derivative can be moved into the integral,
such that

d

dε
A[qε]∣

ε=0
=

t2

∫
t1

dL

dε
(qε(t), q̇ε(t))∣

ε=0
dt =

t2

∫
t1

[
∂L

∂q

∂qε
∂ε

+
∂L

∂q̇

∂q̇ε
∂ε

]∣
ε=0
dt. (2.100)

The derivative q̇ε ≡ dqε/dt is the generalised velocity along a particular trajectory that is
labelled by a specific value of ε. This time derivative is taken for fixed ε, so it should better
be denoted ∂qε/∂t. However, the important point is that the derivatives with respect to
time t and with respect to ε can be exchanged as in (2.94) such that integration by parts
can be performed

d

dε
A[qε]∣

ε=0
=

t2

∫
t1

[
∂L

∂q

∂qε
∂ε

+
∂L

∂q̇

∂

∂t

∂qε
∂ε

]∣
ε=0
dt (2.101)

=

t2

∫
t1

[
∂L

∂q
−
d

dt

∂L

∂q̇
]
∂qε
∂ε

∣
ε=0
dt +

t2

∫
t1

d

dt
[
∂L

∂q̇

∂qε
∂ε

]∣
ε=0
dt. (2.102)

The second integral vanished according to (2.96),

[
∂L

∂q̇

∂qε
∂ε

]∣

t2

t1

= 0, (2.103)

such that the first integral has to vanish as well. At that, it has to vanish for each and
every path. And as the ∂qε/∂ε are arbitrary functions of time (only restricted in that
they have to vanish at the endpoints), the expression in square brackets has to vanish6.
Of course, this expression corresponds to the Euler-Lagrange equations

∂L

∂q
(q, q̇) −

d

dt

∂L

∂q̇
(q, q̇) = 0 (Euler-Lagrange Equations). (2.104)

The usual notation is retained by defining

δ ≡
d

dε
∣
ε=0

(2.105)

and calling δ an infinitesimal variation. The previous derivation summarises

δA =

t2

∫
t1

δL(q(t), q̇(t))dt =

t2

∫
t1

[
∂L

∂q
δq +

∂L

∂q̇
δq̇]dt =

t2

∫
t1

[
∂L

∂q
−
d

dt

∂L

∂q̇
] δq dt = 0. (2.106)

6 For a deeper discussion of this point see Jose and Saletan [61], section 3.1, or Gelfand and Fomin [44].
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By the above arguments it is clear that the variation of the time derivative of q equals
the time derivative of the variation of q, i.e.,

δq̇ =
d

dt
δq, (2.107)

an important point that is often obfuscated by oversimplification.

Hamilton’s Action Principle for Fields

In the infinite dimensional case (field theory), the Lagrangian can in principle depend on
the fields, their derivatives, and also the coordinates. The latter is however not the case
in the envisaged applications, hence for simplicity it is not considered here. The theory
on jet bundles includes this case without further complications.
With the restriction to Lagrangians that are only functions of the fields and their first
derivatives, the derivation of Hamilton’s action principle is not any more complicated than
in the finite dimensional case (particle mechanics). Without loss of generality, consider as
base space X only time plus one spatial dimension (t, x) and a theory of just one scalar
field ϕ(t, x). The Lagrangian density is thus a function

L = L(ϕ(t, x), ϕt(t, x), ϕx(t, x)) (2.108)

and the action is given by

A[ϕ] = ∫
X

L(ϕ,ϕt, ϕx) = ∫
X

L(ϕ,ϕt, ϕx)dt dx. (2.109)

For instructive reasons, all considerations in this section will be taken with respect to the
Lagrangian function L. Consider a family of variations ϕε of ϕ that is defined by

ϕε(t, x) = ϕ(t, x, ε) with ϕ0 = ϕ(t, x). (2.110)

The variation of the action can be expressed as

d

dε
A[ϕε]∣

ε=0
=
d

dε
[∫
X

L(ϕε(t, x), ϕεt(t, x), ϕ
ε
x(t, x))dt dx]∣

ε=0
(2.111)

and Hamilton’s principle of stationary action states that ϕ is a critical point of the action
iff (2.111) vanishes for all variations ϕε of ϕ. The differentiation is carried out under the
integral to give

d

dε
A[ϕε]∣

ε=0
= ∫
X

[
dL

dε
(ϕε, ϕεt, ϕ

ε
x)]∣

ε=0
dt dx (2.112)

= ∫
X

[
∂L

∂ϕ

∂ϕε

∂ε
+
∂L

∂ϕt

∂ϕεt
∂ε

+
∂L

∂ϕx

∂ϕεx
∂ε

]∣
ε=0
dt dx. (2.113)

The second and third term are integrated by parts with respect to t and x, respectively,

d

dε
A[ϕε]∣

ε=0
= ∫
X

[
∂L

∂ϕ
−
∂

∂t

∂L

∂ϕt
−
∂

∂x

∂L

∂ϕx
]
∂ϕε

∂ε
∣
ε=0
dt dx, (2.114)
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where it is assumed that the fields vanish at infinity such that the boundary terms vanish.
Except for this restriction, the functions ∂εϕε are arbitrary, such that the variation of the
action vanishes, iff the expression in square brackets vanishes, which is what now leads to
the Euler-Lagrange field equations in one spatial dimension,

∂L

∂ϕ
−
∂

∂t

∂L

∂ϕt
−
∂

∂x

∂L

∂ϕx
= 0 (Euler-Lagrange Field Equations). (2.115)

As expected, there were no surprises and the derivation was very similar to the one of
the finite dimensional case, presented in section 2.2.1. The usual notation is retained by
identifying

δϕ =
d

dε
ϕε∣

ε=0
(2.116)

such that the variation of the action reads

δA[ϕ] = ∫
X

δL(ϕε, ϕεt, ϕ
ε
x)dt dx (2.117)

and the usual manipulations amount to

δA[ϕ] = ∫
X

[
∂L

∂ϕ
δϕ +

∂L

∂ϕt
δϕt +

∂L

∂ϕx
δϕx]dt dx = ∫

X

[
∂L

∂ϕ
−
∂

∂t

∂L

∂ϕt
−
∂

∂x

∂L

∂ϕx
] δϕdt dx

(2.118)

with the term in square brackets corresponding to the Euler-Lagrange field equations
(2.115).

2.2.2. Dynamics on the Tangent Bundle
In introductory textbooks on classical mechanics, the Lagrangian is often defined as a
function on the configuration space Q with coordinates q, which for example might be the
three-dimensional euclidean space E3. In that setting, the velocities q̇ and accelerations q̈
correspond to the first and second time derivative of q, and if q is a vector in E3, they are
as well. The Euler-Lagrange equations are second order differential equations.
This setting, however, does not seem natural. The Lagrangian is defined with respect to
q and its first time derivative q̇. So, strictly speaking, L is not a function on Q but on a
larger space.
Let us take a step back and ask what determines the state of a system. It is not just
the position q of all its constituents, but also their respective velocities q̇. So the state
of a system corresponds to a point in a state space labelled by (q, q̇)7. When the system
evolves in time, both q and q̇ change, consequently the evolution of both, q and q̇, has to be
computed, not just the evolution of the coordinates q. It is therefore natural to define the
Lagrangian on exactly this space of states. This point of view has many advantages. The
obvious one is that the Euler-Lagrange equations become first order differential equations
for q and q̇. The consequence of this first order nature of the equations is a separation
of the trajectories in state space. There is only one trajectory passing through each
point in state space, allowing for the construction of phase portraits. These are visual

7 This state space is also called velocity phasespace in analogy to the phasespace in Hamiltonian dynamics.



2.2. Lagrangian Dynamics 25

solutions of the dynamical equations and often useful in the analysis of a dynamical
systems’ behaviour.
In the next step, these ideas are translated into the geometric language of manifolds.
The configuration space is regarded as a smooth manifold, still denoted Q and called the
configuration manifold, with points labelled by q. The velocity phasespace corresponds
to the tangent bundle TQ of that configuration manifold Q, called the velocity phase
manifold, with elements labelled by (q, v)8. The Lagrangian therefore comes naturally as
a map

L ∶ TQ→ R. (2.119)

The advantage of this point of view might not be apparent if one just thinks in term of
Euclidean spaces. It will become clearer considering a particle whose motion is constrained
to the two-dimensional surface of a sphere S2. The velocity vector of a particle moving in
E3 is also a vector in E3. In S2, however, the velocity vector of a particle is tangent to the
sphere. It is not contained in the sphere, but reaches out into the E3 in which the sphere
is embedded. So to describe the particle motion on S2, one has to consider an embedding
space. It is not possible to do that only by means of S2 alone. In this example, there might
not be much of an issue, but in other dynamical systems the embedding space might not
be so easily found and if it can be found might not have any physical meaning.9
Of course, TQ is also a space embedding Q, but in contrast to S2 and E3, there is an
intrinsic relation between Q and TQ, given by the tangent lift as discussed in section
2.1.4, i.e., the tangent bundle TQ is obtained from Q by attaching to each point q ∈ Q the
tangent space TqQ at that point. The linear space TqQ contains all possible velocities at
q, which are of course tangent to Q at that point.
The Lagrangian maps points (q, v) of TQ to the real numbers R. The resulting values
are completely independent from the coordinates on TQ. That way, the description
of the dynamics is intrinsic, independent on any particular choice of coordinate systems.
Restricting the Lagrangian to solutions of the Euler-Lagrange equations (2.85), it becomes
a function of (q, q̇), as before. In the applications considered later on, it will always be
possible to find a global coordinate system for the configuration manifoldQ and its tangent
bundle TQ. This allows to circumvent the issues arising in the case, when the path q(t)
and its deformations qε(t) are not located in a single coordinate patch10.

Hamilton’s Action Principle on the Tangent Bundle

In this section, a derivation of Hamilton’s action principle in a geometric framework is
presented11. Consider the space of paths C(Q) that connect two points in Q,

C(Q) = {c ∶ I → Q ∣ I ⊂ R smooth and bounded}. (2.120)

8 At this point, a comment is in order. In the literature, points of TQ are often labelled (q, q̇). This
notation implies that all curves in TQ are the tangent lift of some curve q(t) in Q. That is of course
not the case! The previous statement is only true for physical trajectories, i.e., solutions (q, q̇) of the
Euler-Lagrange equations (2.85). But there exist much more curves in TQ for which v ≠ q̇.

9 See Jose and Saletan [61], section 2.4, for a more detailed discussion. This example is taken from
there.

10 For a discussion of these issues see Holm et al. [57], section 4.1.
11 The following derivation follows along the lines of Marsden and Ratiu [82] and Marsden and West

[83]. For proofs of some of the statements have a look at [82], section 8.1.
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Fixing two points q1 and q2 in Q as well as an interval [t1, t2], the path space from q1 to
q2 is defined as

C(q1, q2, [t1, t2]) = {c ∶ [t1, t2]→ Q ∣ c(t1) = q1, c(t2) = q2} ⊂ C(Q). (2.121)

Elements c of C(q1, q2, [t1, t2]) are maps that relate points q in configuration space Q to
points t in the time interval [t1, t2], whereby the first and last points, c(t1) and c(t2), take
fixed values, q1 and q2, respectively. Consequently, the action can be written as a map
A ∶ C(q1, q2, [t1, t2])→ R assigning real values to each path c,

A[c] =

t2

∫
t1

L(c(t), ċ(t))dt. (2.122)

If L is the Lagrangian on TQ, and c is a path c ∶ [t1, t2] → Q that connects q1 = c(t1)
with q2 = c(t2), Hamilton’s principle of stationary action states that c obeys the Euler-
Lagrange equations (2.85), iff c is a critical point of the function A ∶ C(q1, q2, [t1, t2])→ R,
that is A is stationary for c or δA[c] = 0. Stationarity of A[c] means that A[c] does not
change under infinitesimal variations of the path c. Such infinitesimal variations of c live
in the tangent space TcC(q1, q2, [t1, t2]) of C(q1, q2, [t1, t2]) at c. The tangent vector to
some path cε ∈ C(q1, q2, [t1, t2]) is given by

V (t) =
d

dε
cε(t)∣

ε=0
. (2.123)

For each fixed t, cε is a curve in Q through the point c(t), such that V (t) is a tangent
vector to Q based at c(t), i.e., V (t) ∈ Tc(t)Q and thus πQ○V = c, where πQ is the canonical
projection πQ ∶ TQ → Q. From the restrictions cε(t1) = q1 and cε(t2) = q2 follows that
V (t1) = 0 and V (t2) = 0, but otherwise V is an arbitrary function. To summarise, the
infinitesimal variation of a path c ∶ [t1, t2]→ Q, is the set of maps

V ∶ [t1, t2]→ TQ for which πQ ○ V = c and V (t1) = V (t2) = 0. (2.124)

V is called an infinitesimal variation of the path c with fixed endpoints and naturally
denoted V = δc. With the chain rule one obtains

δA[c] =
d

dε
A[cε]∣

ε=0
=
∂A

∂c
[c] ⋅

dcε
dε

∣
ε=0

= dA[c] ⋅ V, (2.125)

where dA[c] and V = dcε/dε∣ε=0 are regarded as elements of the cotangent and tangent
spaces T∗

cC and TcC on the manifold C, respectively. Therefore the variation of the action
can be formulated as

dA[c] ⋅ V =
d

dε
[

t2

∫
t1

L(cε(t), ċε(t))dt]∣
ε=0
, (2.126)

where L is a function of the tangent lift of cε. Computation of the derivative under the
integral,

dA[c] ⋅ V =

t2

∫
t1

d

dε
[L(cε(t), ċε(t))]∣

ε=0
dt =

t2

∫
t1

[
∂L

∂q
⋅
dcε
dε

∣
ε=0

+
∂L

∂v
⋅
dċε
dε

∣
ε=0

]dt, (2.127)
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leads to

dA[c] ⋅ V =

t2

∫
t1

[
∂L

∂q
⋅ V +

∂L

∂v
⋅ V̇ ]dt =

t2

∫
t1

dL(c(t), ċ(t)) ⋅TV (t)dt, (2.128)

with (V, V̇ ) the coordinates of the tangent lift of V ,

TV ∶ (q, V )↦ ((q, q̇), (V, V̇ )). (2.129)

The second term can be integrated by parts, leading to

dA[c] ⋅ V =

t2

∫
t1

[
∂L

∂q
−
d

dt

∂L

∂v
] ⋅ V dt + [

∂L

∂v
⋅ V ]

t2

t1

, (2.130)

where the second term vanishes as V vanishes on both ends of the trajectory (2.124), such
that

dA[c] ⋅ V =

t2

∫
t1

[
∂L

∂q
−
d

dt

∂L

∂v
] ⋅ V dt =

t2

∫
t1

DELL(c̈(t)) ⋅ V (t)dt, (2.131)

where

DELL(c) ∶ Q̈→ T∗Q (2.132)

is an one-form valued function, defining the Euler-Lagrange operator, and Q̈ is a subman-
ifold of T(TQ), such that

Q̈ = {w ∈ T(TQ) ∣ TπQ(w) = πTQ(w)} ⊂ T(TQ). (2.133)

In other words, Q̈ is the set of second derivatives c̈(0) of curves c ∶ I → Q, which are of
the form ((q, q̇), (q̇, q̈)) ∈ T(TQ). The requirement δA[c] = 0 is equivalent to dA[c] ⋅V = 0
for all V ∈ TcC(q1, q2, [t1, t2]) as well as to the Euler-Lagrange equations (2.85), that now
are rewritten DELL(c(t)) = 0, as V is arbitrary, except for it has to vanish at the end
points of the trajectory. The covariance of the Euler-Lagrange equation, first observed in
the original work of Lagrange, is obtained here as a natural consequence of the geometric
framework.

Phasespace Lagrangian

In plasma physics, there exists another notation that enjoys a certain prevalence, namely
that of the phasespace Lagrangian [77]. In this formulation, the Lagrangian is not defined
as a function on the tangent bundle TQ of the configuration space Q, but instead the
tangent bundle takes the role of the configuration space, such that the Lagrangian is
defined on T(TQ).
In practice, the tangent bundle structure of the configuration space Z ≅ TQ is neglected,
and the Lagrangian is defined as a function on TZ ≅ T(TQ). Everything else then follows
in a straight forward way.
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2.2.3. Dynamics on the Jet Bundle
Another view is offered by employing jet bundle theory.12 Rewriting the theory in this
framework might at first sight seem to unnecessarily complicate things, but its great ad-
vantage is that it offers a concise notation that readily generalises to the case of field
theories. That way, jet bundle theory offers a general formulation of the variational prob-
lem that applies to finite as well as infinite dimensional systems. Besides, this formulation
is fully covariant, the analysis of symmetries with Noether’s theorem is simpler, and it
resembles the discrete setting quite nicely.
The idea of a jet is to combine the independent variables (coordinates), the dependent
variables (trajectories, fields) and their partial derivatives up to a given order in one sin-
gle geometric object. Jets provide a coordinate-free description of differential equations,
which is especially useful in the theory of partial differential equations, where they allow
us to represent an infinite-dimensional space of maps by sections of a finite dimensional
space of jets, thereby avoiding the intricacies of infinite dimensional manifolds.

Consider a function ϕ(x). It establishes a correspondence between each value x ∈ X and
another value ϕ(x) ∈ F . This second value ϕ(x) can be considered as a point in the fibre
F above x. So it seems natural to construct a fibre bundle Y over the base manifold X
with fibres corresponding to F . In other words, Y is obtained by attaching a fibre F to
each point x ∈ X , such that the fibres of Y contain all possible values of functions ϕ(x),
which can therefore be considered as sections ϕ in the bundle Y ,

ϕ ∶ X → Y with πXY ○ ϕ = idX , (2.134)

where πXY is the canonical projection

πXY ∶ Y → X . (2.135)

If (xµ, ya) are coordinates on Y , a section ϕ is a map x ↦ (xµ, ϕa(x)), where we denote
by ϕa the vertical components of ϕ, i.e., the fibre coordinates of ϕ(x). In this setting,
the equivalent to the tangent bundle is the first jet bundle J1Y , which contains the first
order partial derivatives of each section ϕ ∈ Y . In the same way, the kth jet bundle JkY
of Y is the space that contains the partial derivatives of each section ϕ ∈ Y up to order k.
However, in what follows only the first order jet bundle J1Y is needed, so all considerations
are restricted to that case.
Coordinates on J1Y are (xµ, ya, vaµ), where xµ are the coordinates of the base manifold X ,
ya are the values of fields at x, and vaµ are all possible values of the partial derivative of
ya with respect to xµ. J1Y has two natural projections. It can be viewed as a fibre bundle
over X with the source projection

πX ,J1Y ∶ J1Y → X (2.136)

as well as a fibre bundle over Y with the target projection

πY,J1Y ∶ J1Y → Y . (2.137)

12 The derivations of this section follow along the lines of Gotay et al. [49], Marsden et al. [84, 85],
Kouranbaeva and Shkoller [65], Kouranbaeva [64] and West [135].
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Y

J1Y

X

πYJ1Y

πX J1Y

πXY

The first point of view is especially important. Consider a section ϕ ∶ X → Y of πXY . Its
tangent map Txϕ at x ∈ X is represented by the matrix ∂ϕa(x)/∂xµ = ϕaµ(x) and thus
can be identified with an element of J1

ϕ(x)
Y . The map x ↦ Txϕ is therefore a section of

πX ,J1Y , i.e., a section of J1Y regarded as a bundle over X . This section, denoted j1ϕ, is
called the first jet prolongation13 (also canonical prolongation) of a section ϕ(x),

j1ϕ ∶ X → J1Y in coordinates j1ϕ ∶ x↦ (xµ, ϕa(x), ϕaµ(x)). (2.138)

Such sections j1ϕ of J1Y that correspond to the canonical prolongation14 of a section
ϕ ∈ Y are called holonomic. For them vaµ can be identified with ϕaµ = ∂ϕa/∂xµ.

In this setting, a section j1ϕ of πX ,J1Y generalises the notion of a trajectory and a field.
The Lagrangian density L is a n-form on the jet bundle J1Y ,

L ∶ J1Y → Ωn(X ), (2.139)

where Ωn(X ) denotes the n-forms on X . The Lagrangian L is a function on the jet bundle
J1Y ,

L ∶ J1Y → R. (2.140)

The connection between the two is drawn by the volume form ω of the base manifold X ,

L = Lω. (2.141)

Here, n is the dimension of the base space X and ω = dx1 ∧ dx2 ∧ ... ∧ dxn, e.g., for X
corresponding to spacetime we have ω = dt ∧ dx ∧ dy ∧ dz.

Hamilton’s Action Principle on the Jet Bundle

In the framework of jet bundles, the action is given as the integral of the pullback of the
Lagrangian density L with the first jet prolongation j1ϕ of a section ϕ ∶ X → Y

A[ϕ] = ∫
X

(j1ϕ)∗L. (2.142)

13 The jet prolongation can be seen as producing a coordinate-free Taylor expansion to first (in general
kth) order, as the jet bundle J1Y contains all functions that have the same Taylor series up to the
first term.

14 Not all sections of J1Y are prolongations of a section ϕ ∈ Y.
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As L = Lω and L is a smooth function, the following expressions are equivalent

(j1ϕ)∗L = L(j1ϕ)ω. (2.143)

Writing the action (2.142) with respect to the last expression and in coordinates

A[ϕ] = ∫
X

L(j1ϕ)ω = ∫
X

L(xµ, ϕa, ϕaµ)ω (2.144)

establishes a correspondence between (2.142) and previous formulation (2.122). Hamil-
ton’s principle states that ϕ is a critical point of the action iff

d

dε
A[ϕε]∣

ε=0
=
d

dε
[∫
X

(j1ϕε)
∗L]∣

ε=0
= 0 (2.145)

for all variations ϕε of ϕ. These variations are defined as a composition of the trajectory
ϕ and the vertical transformation ηε of the underlying fibre bundle, namely,

ϕε = ηε ○ ϕ = ηε(ϕ) (2.146)

such that the variational vector field V ∶ X → TY is defined as

V =
d

dε
(ηε ○ ϕ)∣

ε=0
=
dηε
dε

(ϕ)∣
ε=0
, (2.147)

or explicitly

V ∶ x↦ ((x,ϕa(x)), (0, V a
η )) (2.148)

where Vη is the generating vector field of the transformation ηε with components

V a
η =

d

dε
ηaε ∣

ε=0
, (2.149)

ηaε being the ya component of ηε. For the moment, we are considering only vertical
transformations as that is sufficient for the derivation of the Euler-Lagrange equations,
but the Euler-Lagrange equations are also obtained for general variations, not necessarily
of the form ηε ○ ϕ.
The flow map ηε can be interpreted as dragging the path ϕ along Vη through the configu-
ration space. From now on we drop the η index on the field components of the generating
vector field. As we do not consider transformations in the coordinates this is no origin of
confusion. The jet prolongation of V to J1Y is given by

j1V =
d

dε
j1(ηε ○ ϕ)∣

ε=0
(2.150)

or in coordinates

j1V ∶ x↦ ((xµ, ϕa(x), ϕaν(x)), (0, V a, V a
ν + V

a
b ϕ

b
ν)). (2.151)

With this and

j1ϕε = j
1(ηε ○ ϕ) = j

1ηε ○ j
1ϕ (2.152)
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such that

(j1ϕε)
∗L = (j1ϕ)∗(j1ηε)

∗L (2.153)

the action principle (2.145) can be rewritten as

d

dε
A[ϕε]∣

ε=0
=
d

dε
[∫
X

(j1ϕ)∗(j1ηε)
∗L]∣

ε=0
= 0. (2.154)

With the dynamical definition of the Lie derivative (2.82),

£j1V L =
d

dε
[(j1ηε)

∗L]∣
ε=0
, and dA ⋅ V =

d

dε
A[ϕε]∣

ε=0
, (2.155)

(2.154) becomes a beautiful, general, geometric formulation of Hamilton’s action principle

dA[ϕ] ⋅ V = ∫
X

(j1ϕ)∗(£j1V L) = 0 (Hamilton’s Action Principle). (2.156)

This form of the action principle has several advantages. First and most importantly, this
equation is the very same for particles as well as for fields. Second, it makes explicit the
use of the jet prolongation of the trajectory ϕ to j1ϕ and the variational vector field V
to j1V , whereas in the tangent bundle formulation, the tangent lift of ϕ and V is not
explicit in the notation.
Last but not least, it is not too difficult to generalise from variations in the configuration
space to variations in the full jet space. Thereby not only considering vertical variations,
but general variations that might have both horizontal and vertical components.
Coming back to the derivation of the Euler-Lagrange equations, Cartan’s magic formula

£j1V L = ij1V dL + d(ij1V L) (2.157)

needs to be employed to give

dA[ϕ] ⋅ V = ∫
X

(j1ϕ)∗(ij1V dL) + ∫
X

d((j1ϕ)∗(ij1V L)) = 0 (2.158)

where in the second integral we used that the pullback and the exterior derivative com-
mute. The second integral vanishes due to Stokes’ theorem and the assumption that the
variations of ϕ vanish at the boundary ∂X . Therefore, what is left is just

dA[ϕ] ⋅ V = ∫
X

(j1ϕ)∗(ij1V dL) = 0. (2.159)

This expression will be the basis for deriving the actual Euler-Lagrange equations in the
jet bundle framework for both, particle mechanics and field theory, below.

Classical Mechanics on Jet Bundles

In classical mechanics, the base manifold is just time, X = R, with coordinates t. Y is
a fibre bundle over time, with the fibres Yt corresponding to the configuration space Q,
elements labelled by q and coordinates (t, q), i.e., time and the generalised coordinates.
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The fibres J1
(t,q)
Y of the first jet bundle J1Y contain the time derivatives of all sections

c ∶ X → Y . Its coordinates are (t, q, v). The jet prolongation is given in coordinates by

j1c ∶ (t, c)↦ (t, c, ċ). (2.160)

Observe that J1Y can be identified with (is isomorphic to) R×TQ, sections of Y correspond
to trajectories q(t) in Q, sections of J1Y to trajectories (q(t), v(t)) in TQ, and that the jet
prolongation is analogous to the tangent lift, such that holonomic sections j1c of J1Y are
solutions (q(t), q̇(t)) of the Euler-Lagrange equations. In classical mechanics the volume
form is just ω = dt. This implies that the Lagrangian is a function

L ∶ J1Y → R. (2.161)

The coordinate expression of L is

L = L(q, v)dt, (2.162)

where we are considering a time-independent Lagrangian L. Starting from (2.159), com-
pute the exterior derivative, contract with j1V and do the usual partial integration

dA[c] ⋅ V = ∫
X

[
∂L

∂q
(j1c) ⋅ V +

∂L

∂v
(j1c) ⋅ V̇ ]dt = ∫

X

[
∂L

∂q
(j1c) −

d

dt

∂L

∂v
(j1c)] ⋅ V dt = 0.

(2.163)

The usual arguments then again yield the Euler-Lagrange equations

∂L

∂q
(j1c) −

d

dt

∂L

∂v
(j1c) = 0. (2.164)

Note that in the jet bundle framework, the case of an explicit time dependency of the
Lagrangian is automatically included.

Field Theory on Jet Bundles

In field theory, the base manifold X is usually identified with spacetime. Its points
are denoted x and its coordinates are (t, x, y, z) abbreviated as xν . Y is thus a fibre
bundle over spacetime with coordinates (xν , ya), where ya are the different fields or field
components of the theory, and the first jet bundle J1Y has coordinates (xν , ya, vaν). Hence,
the Lagrangian density is a function L(xν , ya, vaν).
Considering a field theory of a (possibly vector valued) field ϕ(x) ∶ X → Y , defined over
spacetime, one can directly start from the action principle as formulated in equation
(2.156)

dA[ϕ] ⋅ V = ∫
X

(j1ϕ)∗(£j1V L) = 0, (2.165)

as all considerations that lead to this equation were completely general. All the hard work
of section 2.2.3 is paying off now. The coordinate expressions of ϕ and V and their jet
prolongations j1ϕ and j1V are

ϕ ∶ x↦ (xµ, ϕa), j1ϕ ∶ x↦ (xµ, ϕa, ϕaµ), (2.166a)
V ∶ x↦ ((xµ, ϕa), (0, V a)), j1V ∶ x↦ ((xµ, ϕa, ϕaµ), (0, V a, V a

µ )). (2.166b)
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Inserting this into (2.165) and making the exterior derivative, the contraction and the
pullback explicit gives

dA[ϕ] ⋅ V = ∫
X

[
∂L

∂ya
(j1ϕ)V a +

∂L

∂vaν
(j1ϕ)V a

ν ]ω (2.167)

= ∫
X

[
∂L

∂ya
(j1ϕ) −

∂

∂xν
∂L

∂vaν
(j1ϕ)]V a ω (2.168)

which leads to the Euler-Lagrange field equations for a theory of a field ϕ on spacetime

∂L

∂ya
(j1ϕ) −

∂

∂xν
∂L

∂vaν
(j1ϕ) = 0 (Euler-Lagrange Field Equations). (2.169)

2.2.4. Variational Route to the Cartan Form
In this section we want to describe a variational derivation of the Cartan form, one of the
two fundamental geometric structures of classical mechanics and classical field theories
(the other one being the (multi)symplectic form, covered in the next section).
In most treatments, the Cartan form and the multisymplectic form are constructed by
using the Legendre transformation to pull back the canonical forms from the Hamiltonian
side (cotangent bundle) to the Lagrangian side (tangent bundle). However, it has been
shown by Marsden et al. [84] that the Cartan form arises naturally in the boundary term
of the variation of the action in Hamilton’s action principle, thus allowing to obtain these
structures while staying on the Lagrangian side, entirely. The advantage of this approach
is the possibility of a geometric treatment of theories for which a Hamiltonian cannot be
defined. This is especially important in the light of extended Lagrangians as they will be
introduced in section 2.2.7.
After a short look at the Cartan one-form in the tangent bundle setting, which is restricted
to autonomous systems of classical mechanics15, we will generalise the derivation to jet
bundles and obtain an expression of the Cartan form that is valid for autonomous as well
as non-autonomous systems of classical mechanics and also field theories.

Lagrangian One- and Two-Form

Besides leading to the equations of motion, the variational principle provides a direct and
natural way to derive the fundamental geometric structures of classical mechanics16. For
this derivation, the boundary conditions δq(t1) = δq(t2) = 0 are removed, while the time
interval is kept fixed. Thus the variational principle reads

dA[q(t)] ⋅ δq(t) =
t2

∫
t1

[
∂L

∂q
−
d

dt

∂L

∂v
] ⋅ δq dt + [

∂L

∂v
⋅ δq]

t2

t1

(2.170)

15 It is possible to derive the Cartan one-form for non-autonomous systems of classical mechanics in the
tangent bundle framework (see Marsden and West [83], section 4.2), but it is not much clearer than
the more general derivation on jet bundles.

16 The following derivation follows along the lines of Marsden et al. [84], section 2, and Marsden and
Ratiu [82], section 8.2.
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where the variations δq do not vanish at the boundary point, so that the last term on
the right hand side does not vanish. This last term corresponds to a linear pairing of the
function ∂L/∂v, which is a function of (q, q̇), with the tangent vector δq. This term can
be regarded as a one-form on TQ 17, referred to as the Lagrangian one-form or Cartan
one-form,

ΘL =
∂L

∂v
dq. (2.171)

This means that the Lagrangian one-form ΘL is the boundary term of the functional
derivative of the action, if the boundary is varied. The negative of the exterior derivative of
the Lagrangian one-form gives the Lagrangian two-form, also referred to as the symplectic
two-form

ΩL ≡ −dΘL, (2.172)

given in coordinates by

ΩL =
∂2L

∂qi ∂vj
dqi ∧ dqj +

∂2L

∂vi ∂vj
dvi ∧ dqj. (2.173)

For details on the connection between the Lagrangian one-form ΘL on TQ and the canon-
ical one-form Θ on T∗Q as well as between the Lagrangian two-form ΩL on TQ and the
canonical symplectic two-form Ω on T∗Q the reader is referred to Marsden and Ratiu [82].

Cartan Form and Multisymplectic Form

To derive the Cartan form in a general setting that applies to classical mechanics as well
as to field theories, the action principle on the jet bundle has to be generalised a bit
further18. Before, only vertical variations of the action were considered, thereby implic-
itly restricting the treatment to Lagrangians, that are not explicitly time dependent in
the case of particles, or do not explicitly depend on the coordinates in the case of fields,
respectively. But in order to obtain the correct Cartan form in the general case also hori-
zontal variations need to be considered. Whereas the Euler-Lagrange equations obtained
by considering vertical or arbitrary variations are the same, the Cartan form is missing
one term if only vertical variations are accounted for.

Allowing also for horizontal variations brings some complications. A transformation η
acting on a section ϕ ∶ UX → Y , defined over a bounded domain UX ⊂ X ,

η ∶ (x,ϕ(x))↦ (ηX (x), ηY(x,ϕ(x))) (2.174)

changes not only the section ϕ to η ○ ϕ but also the base space from UX to ηX (UX ). We
explain now how to get around this issue.
Consider a smooth manifold U with smooth closed boundary ∂U . U shall be a parametri-
sation of the space UX ⊂ X on which the physical sections are defined. This is similar to
17 One could be tempted to regard ∂L/∂q̇ as a one-form on Q as it only has a component in dq. The

same way δq could be regarded as a tangent vector on Q. However, ∂L/∂q̇ is a function of (q, q̇) and
therefore clearly a function on TQ. δq can also be replaced with a more general vector δq̂ ∈ T(TQ)

that has non-vanishing components (δq, δv).
18 The following derivation follows along the lines of Marsden et al. [84, 85], Kouranbaeva and Shkoller

[65], Kouranbaeva [64], chapter 4, and West [135], chapter 5,.
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the previous case, where a space of curves C(Q) was defined (2.120), such that elements of
C(Q) correspond to parametrisations of the physical trajectories. Thus, in total analogy
we define the set of smooth maps

C(Y) = {φ ∶ U → Y ∣ πXY ○ φ ∶ U → X is an embedding} (2.175)

in coordinates

φ ∶ u↦ (xµ(u), φa(u)) with x(u) an embedding, (2.176)

and φa(u) are the fibre coordinates of φ(u). Points in X and U are denoted x and u,
respectively, and their coordinates are denoted xµ and uµ, respectively. For each φ ∈ C(Y)
define

φX ≡ πXY ○ φ and UX ≡ πXY ○ φ(U) such that φX ∶ U → UX (2.177)

in coordinates

φX ∶ u↦ xµ(u). (2.178)

Since φX is assumed to be an embedding, UX is a submanifold of X that has a smooth
closed boundary, just like U . It is the physical space on which the fields and trajectories,
i.e., the physical sections, are defined. Closed boundaries are necessary as the term we
are interested in of the variational principle, the one that yields the Cartan form, is the
boundary term that arises from the partial integration.
The map φX is a diffeomorphism between U and UX . It maps between the physical space
and its parametrisation, such that the composition

ϕ = φ ○ φ−1
X (2.179)

corresponds to a parametrisation of the sections that are physical fields or trajectories.
These physical sections, defined on UX , can be seen as sections of the fibre bundle repre-
sented by πUX ,Y . These are maps

ϕ ∶ UX → Y with πUX ,Y ○ ϕ = πXY ○ ϕ = id (2.180)

in coordinates

ϕ ∶ x↦ (xµ, ϕa(x)). (2.181)

The fields that are varied in the action principle are the φ. Horizontal variations of the ϕ
would change the base space UX on which the fields are defined. However, a transformation
Y → Y acts naturally on the space C, mapping C into itself, even though UX is not mapped
into itself.

Y

X UX U

φ−1
X

φX

πUXY ϕ

πXY φ
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To clarify some of the previous statements, consider the analogous derivation on tangent
bundles from section 2.2.2. We defined C(Q) as the space of trajectories that connect two
points in Q. These trajectories c ∈ C(Q) were considered as maps

c ∶ I → Q with I ⊂ R smooth and bounded. (2.182)

In the jet bundle framework they correspond to elements of C(Y)

c ∶ U → Y . (2.183)

In the general case, the parameter space U does not have just one dimension but as many
as the base space X . So the correspondence of the previous and the current notation is

I ↔ U , Q↔ Y , C(Q)↔ C(Y), c↔ φ, q↔ ϕ.

Going back to the general theory, the tangent space to C at a point φ is the set TφC

defined as

TφC(Y) = {V ∶ U → TY ∣ πY,TY ○ V = φ}. (2.184)

The elements V of TφC are called variations of the sections φ and have coordinate expres-
sions

V ∶ u↦ ((xµ(u), ϕa(u)), (V µ(u), V a(u))), (2.185)

where the V µ correspond to horizontal variations and the V a to vertical variations. To
each vector field V on TφC belongs a vector field VX on X , given by projection

VX ≡ TπXY ○ V. (2.186)

The projectors can be explicitly written as

πY,TY ∶ ((x
µ, ya), (V µ, V a))↦ (xµ, ya), (2.187)

TπXY ∶ ((xµ, ya), (V µ, V a))↦ (xµ, V µ), (2.188)

such that VX has the coordinate expression

VX ∶ u↦ (xµ(u), V µ(u)). (2.189)

The definition (2.184) of TφC can also be seen by considering the variation of a path in
C(Y),

φε ∶ u↦ (xµ(ε, u), φa(ε, u)). (2.190)

The derivatives of this expression and its projection to X are

dφε

dε
∣
ε=0

= (V µ(u), V a(u)), (2.191)

which coincides with V (u) in Tφ(u)Y , and

dφε
X

dε
∣
ε=0

=
d

dε
[πXY ○ φ

ε]∣
ε=0

= TπXYV = VX . (2.192)
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To aid understanding some of these relations are depicted in the diagram below.

TY TX

U Y X

TπXY

V

φ πXY

πY,TY πX ,TX

Let us rephrase the action principle from the last section in this notation. The action
functional

A ∶ C(Y)→ R (2.193)

is expressed as

A[φ] = ∫
UX

(j1ϕ)∗L = ∫
UX

L(j1ϕ) = ∫
UX

L(j1(φ ○ φ−1
X )). (2.194)

As the action A[φ] depends on φ only through ϕ, for any diffeomorphism γ ∶ U → U

A[φ ○ γ] = A[φ]. (2.195)

As a consequence, the Euler-Lagrange equations only determine ϕ uniquely, not φ. How-
ever, as ϕ corresponds to the physical fields or trajectories, that is all we need. Hamilton’s
principle states that a section φ of C(Y) solves the Euler-Lagrange equations, iff the action
is critical,

dA[φ] ⋅ V = 0, (2.196)

for all variations V ∈ TφC(Y) which are zero on the boundary ∂U of U . To derive the
Cartan form, the last restriction has to be removed. The above expression corresponds to

dA[φ] ⋅ V =
d

dε
A[φε]∣

ε=0
= 0. (2.197)

A variation φε of a section φ is induced by a transformation ηε
Y
on the configuration space

ηεY ∶ Y → Y with η0
Y = id (2.198)

through

φε = ηεY ○ φ. (2.199)

We impose the condition that ηε
Y
covers a diffeomorphism

ηεX ∶ X → X . (2.200)

In coordinates

ηεY ∶ (x, y)↦ (ηµ
X
(x), ηaY(x, y)). (2.201)



38 2. Geometric Mechanics and Field Theory

The diffeomorphism on the base space X is obtained through the projection

ηεX = πXY ○ η
ε
Y . (2.202)

The following diagram should help clarify these relations.

Y Y

UX ηε
X
(UX )

ηε
Y

ηε
X

ϕ ϕε

We see now why it is necessary to introduce a parameter space U . A physical section
ϕ = φ ○φ−1

X
is a section of πUX ,Y . But the transformation ηε ○φ induces a section ϕε = ηε

Y
○

(φ○φ−1
X
)○(ηε

X
)−1 of πηX (UX ),Y , i.e., the base space itself changes under the transformation.

This becomes more evident by looking at the coordinate expressions

φ ∶ u↦ (xµ(u), φa(u)), φε ∶ u↦ (xµ(u), ηaY(x(u), φ(u))), (2.203a)

ϕ ∶ x↦ (xµ, φa(x)), ϕε ∶ x̃↦ (x̃µ, ηaY(x,ϕ(x))), (2.203b)

where x̃ ∈ ηX (UX ) and x = (ηε
X
)−1(x̃) ∈ UX . If we consider not variations of the physical

sections ϕ ∶ UX → Y but variations of the sections φ ∶ U → Y , the point u in the base space
U stays fixed.
Applying the transformation (2.198) to the action (2.194), the variation (2.197) becomes

dA[φ] ⋅ V =
d

dε
A[ηεY ○ φ]∣

ε=0
=
d

dε ∫

ηεX (UX )

L(j1ϕε)∣
ε=0

= ∫
UX

d

dε
(ηεX )

∗
L(j1ϕε)∣

ε=0
. (2.204)

Application of the chain rule yields

dA[φ] ⋅ V = ∫
UX

d

dε
[(ηεX )

∗
L(j1ϕ0)]∣

ε=0
+ ∫
UX

d

dε
[(η0

X )
∗
L(j1ϕε)]∣

ε=0
. (2.205)

In the first integral, apply the dynamical definition of the Lie derivative as before in
(2.155), and in the second integral realise that η0

X
is just the identity

dA[φ] ⋅ V = ∫
UX

£VXL(j
1ϕ) + ∫

UX

d

dε
[L(j1ϕε)]∣

ε=0
. (2.206)

Use Cartan’s magic formula (2.81) in the first integral, and rewrite the second integral by
making use of the identity

d

dε
[L(j1ϕε)]∣

ε=0
=
d

dε
[L(j1ϕε)]∣

ε=0
ω = (ıj1VϕdL(j1ϕ))ω, (2.207)
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such that

dA[φ] ⋅ V = ∫
UX

ıVXdL(j1ϕ) + ∫
UX

d(ıVXL(j
1ϕ)) + ∫

UX

(ıj1VϕdL(j1ϕ))ω. (2.208)

The first integral vanishes as L = Lω and therefore

dL(j1ϕ) = dL(j1ϕ) ∧ ω +L(j1ϕ)dω = Lµ(j
1ϕ)dxµ ∧ ω +L(j1ϕ)dω = 0, (2.209)

but ω = dx1 ∧ ... ∧ dxn is a form of maximum order on the base space, such that dω = 0
and dxµ∧ω = 0 for all µ. By Stokes’ theorem, the second integral can be transformed into
a surface integral, with the result that

dA[φ] ⋅ V = ∫

∂UX

ıVXL(j
1ϕ) + ∫

UX

(ıj1VϕdL(j1ϕ))ω. (2.210)

Now we have to compute the vector field Vϕ corresponding to the transformation of the
physical section ϕ

Vϕ =
d

dε
ϕε∣

ε=0
=
d

dε
[ηεY ○ (φ ○ φ

−1
X ) ○ (ηεX )

−1]∣
ε=0
, (2.211)

and its jet prolongation j1Vϕ. Applying the chain rule, we get

Vϕ =
d

dε
[ηεY ○ (φ ○ φ

−1
X ) ○ (η0

X )
−1]∣

ε=0
+
d

dε
[η0
Y ○ (φ ○ φ

−1
X ) ○ (ηεX )

−1]∣
ε=0
. (2.212)

In the first term we use (2.191) and in the second term we use the fact that d/dε(ηε
X
)−1∣ε=0 =

−VX 19, such that

Vϕ = V ○ φ−1
X −T(φ ○ φ−1

X ) ○ VX . (2.213)

The tangent lift of the vector field VX is simply

T(φ ○ φ−1
X ) ○ VX = ((xν , ϕa(x)), (V ν , ϕaµV

µ)) (2.214)

such that

Vϕ = (0, δϕa) = (0, V a − ϕaµV
µ). (2.215)

19 This can be seen by the group property of the transformation

η−ε
X

= (ηε
X
)
−1

→ −VX =
d

dε
η−ε
X

∣
ε=0

=
d

dε
(ηε
X
)
−1

∣
ε=0

or by a simple calculation as follows

ηε
X
○ (ηε

X
)
−1

= ηX (ε, η−1
X (ε, x)) = id

such that
d

dε
[ηε
X
○ (ηε

X
)
−1

]∣
ε=0

=
d

dε
[ηε
X
○ (η0

X
)
−1

]∣
ε=0

+
d

dε
[η0
X
○ (ηε

X
)
−1

]∣
ε=0

= 0.

η0
X
= id and (η0

X
)−1 = id−1

= id as well, such that

d

dε
[ηε
X
○ (ηε

X
)
−1

]∣
ε=0

=
d

dε
[ηε
X
]∣
ε=0

+T id ○ d
dε

[(ηε
X
)
−1

]∣
ε=0

= VX +
d

dε
(ηε
X
)
−1

∣
ε=0

= 0,

where the tangent lift of the identity is the identity on the tangent space.
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This is just the vertical component of the vector field V from (2.185)20. The jet prolon-
gation of Vϕ along j1ϕ is

j1Vϕ = (0, δϕa, δϕaν) = (0, V a − ϕaµV
µ, ∂ν(V

a − ϕaµV
µ)). (2.216)

With that we compute the action (2.210) as

dA[φ] ⋅ V = ∫
UX

[
∂L

∂ya
(j1ϕ) δϕa +

∂L

∂vaµ
(j1ϕ) δϕaµ]ω + ∫

∂UX

L(j1ϕ)V µ ωµ (2.217)

where ωµ = ∂µ ω. Integrate by parts the second term of the first integral

dA[φ] ⋅ V = ∫
UX

[
∂L

∂ya
(j1ϕ) −

∂

∂xµ
(
∂L

∂vaµ
(j1ϕ))] δϕa ω

+ ∫

∂UX

[L(j1ϕ)V µ +
∂L

∂vaµ
(j1ϕ)V a −

∂L

∂vaµ
(j1ϕ)ϕaνV

ν]ωµ. (2.218)

To bring this expression into a coordinate-free form, consider a general vector field W =

(W ν ,W a,W a
ν ). Its contraction with dya ∧ ω is given by

ıW (dya ∧ ω) =W a ω − (−1)pν W ν dya ∧ ων (2.219)

where pν is the number of permutations in the computation of ων = ∂ν ω (the additional
minus results from the permutation with dya). The pullback of this relation with j1ϕ is

(j1ϕ)∗ıW (dya ∧ ω) =W a(j1ϕ)ω − (−1)pν W ν ϕaν dx
ν ∧ ων = (W a(j1ϕ) −W ν ϕaν)ω.

(2.220)

Applying this result to the variation of the action (2.218), we find

(j1ϕ)∗ıj1V (dy
a ∧ ω) = δϕa ω. (2.221)

Further, consider the expression

ıW (dya ∧ ων) =W
aων − (−1)pµW µ dya ∧ ωνµ. (2.222)

With

dxσ ∧ ωνµ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 σ ≠ µ, ν

ων µ = σ

−ωµ ν = σ

(2.223)

the pullback of (2.222) with j1ϕ is

(j1ϕ)∗ıW (dya ∧ ωµ) =W
aωµ − (−1)pν W ν ϕaσ dx

σ ∧ ωµν

=W aωµ −W
νϕaνωµ + ϕ

a
µW

νωµ. (2.224)
20 Any vector V ∈ TφC can be decomposed into a horizontal and a vertical component V = V h + V v,

where V h = Tϕ ○ VX and V v = V − V h.
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Applying this result to the variation of the action (2.218), we find

(j1ϕ)∗ıV (dy
a ∧ ωµ) = V

aωµ − V
σϕaν dx

ν ∧ ωµσ = V
aωµ − V

σϕaν (ωµδ
ν
σ − ωσδ

ν
µ)

= V aωµ − V
νϕaν ωµ + V

νϕaµ ων . (2.225)

A final but simple computation shows

(j1ϕ)∗ıj1V ω = V µ ωµ. (2.226)

Therefore, the variation of the action (2.218) can be written as

dA[φ] ⋅ V = ∫
UX

(j1ϕ)∗ıj1V [
∂L

∂ya
−

∂

∂xµ
∂L

∂vaµ
]dya ∧ ω

+ ∫

∂UX

(j1ϕ)∗ıj1V [
∂L

∂vaµ
dya ∧ ωµ + (L −

∂L

∂vaµ
ϕaµ)ω]. (2.227)

In the first integral we find the Euler-Lagrange equations as we derived them before by
considering only vertical variations (2.169). The expression in square brackets in the
second integral is the looked for Cartan form

ΘL =
∂L

∂vaµ
dya ∧ ωµ + (L −

∂L

∂vaµ
ϕaµ)ω (Cartan Form). (2.228)

In the case of particle mechanics, this is a one-form, otherwise it is a form of the order of
the base manifold. The symplectic form is defined as the exterior derivative of the Cartan
form

ΩL = −dΘL = dy
a ∧ d( ∂L

∂vaµ
) ∧ ωµ − d(L − ∂L

∂vaµ
ϕaµ) ∧ ω (Multisymplectic Form).

(2.229)

Both, the Cartan and the symplectic form, are defined on the first jet bundle, i.e., ΘL ∈ Ω1
and ΩL ∈ Ω2. Using these expressions, the variation of the action (2.227) can be written
as

dA[φ] ⋅ V = ∫
UX

(j1ϕ)∗(ıj1V ΩL) + ∫

∂UX

(j1ϕ)∗(ıj1V ΘL). (2.230)

This will be the starting point to prove the preservation of the multisymplectic form
along the Lagrangian flow in section (2.2.6). The expressions (2.228) and (2.229) are
more general than the ones we derived previously, (2.171) and (2.172), in that they lift
the restriction to a time-independent Lagrangian and describe field theories as well.

2.2.5. Preservation of the Symplectic Form
In this and the next section we want to prove the conservation of the symplectic and
multisymplectic forms under Lagrangian flows. At first we do so on the tangent bundle,
thereby restricting ourselves to the case of particle dynamics. The approach is then
generalised to the framework of jet bundles, whereby we obtain a general proof that is
valid for both particle and field systems.
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Euler-Lagrange Map and Lagrangian Vector Fields

This section mostly aims at making the literature more easily accessible. It is not strictly
necessary to understand the subsequent treatment.

Define the submanifold Q̈ of T(TQ) to be

Q̈ ≡ {w ∈ T(TQ) ∣ TπQw = πTQw} ⊂ T(TQ). (2.231)

This states that Q̈ contains those elements of T(TQ) for which the two projections πTQ
and TπQ coincide.

TQ T(TQ)

Q

πQ

πTQ

TπQ

To see what that means, write both expressions in coordinates

πTQ ∶ ((q, v), (q̇, v̇))↦ (q, v), (2.232a)
TπQ ∶ ((q, v), (q̇, v̇))↦ (q, q̇). (2.232b)

Requiring that both projections are equivalent therefore means singling out those elements
of T(TQ) for which v = q̇ and therefore also v̇ = q̈. These correspond to curves q(t) ∈ Q
which are tangent lifted twice, first to TQ, then to T(TQ). In other words, elements
w ∈ Q̈ are those elements of T(TQ) that have the coordinate expression

w = ((q, q̇), (q̇, q̈)). (2.233)

An alternative definition of the second order submanifold Q̈ is therefore

Q̈ ≡ {
d2q

dt2
(0) ∈ T(TQ) ∣ q(t) a curve in Q} ⊂ T(TQ). (2.234)

Given a Lagrangian L, there exists a map on Q̈

DELL ∶ Q̈→ T∗Q (2.235)

referred to as the the Euler-Lagrange map. It defines a one-form in the dual space T∗Q

of TQ with coordinate expression

DELL =
∂L

∂q
−
d

dt

∂L

∂v
. (2.236)

It is a function on Q̈ ⊂ T(TQ) as

DELL =
∂L

∂q
(q, q̇) −

∂2L

∂v ∂q
(q, q̇) ⋅ q̇ −

∂2L

∂v ∂v
(q, q̇) ⋅ q̈. (2.237)
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With that, the variational principle (2.170) can be written

dA[q(t)] ⋅ δq(t) =
t2

∫
t1

DELL(q̈) ⋅ δq dt + [ΘL(q̇) ⋅ δq̂]

t2

t1

(2.238)

where q̈ refers to an element of Q̈ and thus has coordinates ((q, q̇), (q̇, q̈)). Similarly, q̇
refers to an element of TQ with coordinates (q, q̇). The variation δq̂ is defined as

δq̂ ≡
d

dε
∣
ε=0

d

dt
∣
t=0
qε(t) (2.239)

or in coordinates

δq̂(t) = ((q(t), q̇(t)), (δq(t), δq̇(t))). (2.240)

This Euler-Lagrange map can now be used to define the Lagrangian vector field

XL ∶ TQ→ Q̈ (2.241)

as a second order vector field on TQ satisfying

DELL ○XL = 0. (2.242)

The flow of XL is called the Lagrangian flow

F t
L ∶ TQ→ TQ. (2.243)

By construction q ∈ C(Q) is a solution of the Euler-Lagrange equations iff (q, q̇) is an
integral curve of XL. In the next section, the Lagrangian flow FL will be defined without
referring to the Euler-Lagrange map but by using coordinate expressions instead. The
advantage is a somewhat easier treatment.

Lagrangian Flows and Preservation of the Symplectic Form

Denote the vector field on TQ that solves the Euler-Lagrange equations by XL. Its flow,
referred to as the Lagrangian flow, is a map

F s
L ∶ TQ→ TQ, (2.244)

taking initial values (q0, q̇0) to points of the corresponding phasespace trajectory at time
s, that is

F s
L ∶ (q0, q̇0)↦ (q(s), q̇(s)), (2.245)

such that
∂L

∂q
((q(s), q̇(s)) −

d

ds

∂L

∂q̇
((q(s), q̇(s)) = 0. (2.246)

The Lagrangian vector field is accordingly defined as

XL(q0, v0) =
d

ds
F s
L(q0, v0)∣

s=0
. (2.247)
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Restrict the action A to the subspace CL ⊂ C(Q) of solutions of the Euler-Lagrange
equations. Elements q ∈ CL are integral curves of XL, and therefore uniquely determined
by the initial condition vq = (q(0), q̇(0)) ∈ TQ. Consequently, CL may be identified with
the space of initial conditions, i.e., CL is isomorphic to TQ.
Associate to vq the integral curve s↦ F s

L(vq) with s ∈ [0, t]

q(s) = πQ(F
s
L(vq)) with F s

L(vq) = (q(s), q̇(s)). (2.248)

The restricted action At corresponds to the value of A on that curve. It defines a map

At ∶ TQ→ R (2.249)

by

At[vq] = A[q] with q ∈ CL and (q(0), q̇(0)) = vq. (2.250)

or explicitly

At[vq] =

t

∫
0

L(q(s), q̇(s))ds =

t

∫
0

L(F s
L(vq))ds (2.251)

Calculating the variation of the restricted action, the first term in (2.170) vanishes, as A
is restricted to solutions of the Euler-Lagrange equations

dA[q] ⋅ δq = [
∂L

∂q̇
(q, q̇) ⋅ δq̂]

t

0
with q ∈ CL. (2.252)

As At is considered a real-valued function on TQ, this becomes

dAt[vq] ⋅wvq = ΘL(F
t
L(vq)) ⋅

d

dε
F t
L(v

ε
q)∣

ε=0
−ΘL(vq) ⋅wvq (2.253)

with vεq an arbitrary curve in TQ, namely

vεq ∶ R→ TQ such that v0
q = vq and wvq =

d

dε
vεq∣

ε=0
. (2.254)

Since wvq is arbitrary, (2.253) is equivalent to

dAt = (F t
L)

∗ΘL −ΘL. (2.255)

Taking the exterior derivative

0 = d2
At = d(F t

L)
∗ΘL −ΘL = −(F

t
L)

∗ΩL +ΩL. (2.256)

leads to the conservation of the symplectic form ΩL along the Lagrangian flow XL

(F t
L)

∗ΩL = ΩL. (2.257)

These results can be considered the Lagrangian equivalent of the well-known conservation
of the symplectic form by Hamiltonian flows [82, 8, 49].
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2.2.6. Preservation of the Multisymplectic Form
In this section we want to show that the multisymplectic form ΩL from (2.229) is preserved
under the Lagrangian flow, a generalisation of the results from the previous section.
Therefore we recall equation (2.230) for the variation of the action, that is

dA[φ] ⋅ V = ∫
UX

(j1ϕ)∗(ıj1V ΩL) + ∫

∂UX

(j1ϕ)∗(ıj1V ΘL). (2.258)

The action A takes an extremum for φ ∈ C(Y) if the first integral vanishes. The cor-
responding integrand vanishes not only for vector fields j1V , corresponding to vertical
transformations, but for general vector fields W on J1Y , that can be tangent to any j1ϕ.
As a consequence, φ is an extremum of the action, if the variation of the action (2.258)
vanishes for all vectorsW ∈ T(J1Y). Such φ are solutions of the Euler-Lagrange equations
(2.169).
We define CL to be the restriction of C(Y), defined in (2.175), to solutions of the Euler-
Lagrange equations, i.e.,

CL = {φ ∈ C(Y) ∣ (j1ϕ)∗[W ΩL] = 0 for all W ∈ T(J1Y)}, (2.259)

such that ϕa is an element of CL if

∂L

∂ya
(j1ϕ) −

∂

∂xµ
(
∂L

∂vaµ
(j1ϕ)) = 0 in UX . (2.260)

A vector field V ∈ TCL is called a first variation. Its flow maps solutions φ of the Euler-
Lagrange equations to other solutions of the Euler-Lagrange equations, such that sections
φ ∈ CL are integral curves of V .
If we restrict the variation of the action to CL, the first integral in (2.258) becomes zero.
Computing the exterior derivative of (2.258) and restricting it to two first variations
V,W ∈ TCL, gives

0 = d2
A[φ] ⋅ V ⋅W = ∫

∂UX

(j1ϕ)∗(V W dΘL). (2.261)

This states that the multisymplectic form ΩL is conserved

∫

∂UX

(j1ϕ)∗(V W ΩL) = 0 (Multisymplectic Form Formula). (2.262)

A detailed proof of this expression is omitted but can be found in Marsden et al. [84].

2.2.7. Extended Lagrangians
In the variational treatment of field theoretic problems from plasma physics one faces
the problem that most systems do not have a natural Lagrangian formulation. Similarly,
even so most systems are Hamiltonian, they do not feature a canonical Hamiltonian for-
mulation with respect to canonical conjugate variables, but only a so called noncanonical
formulation. Therefore it is not possible to write a canonical Lagrangian for these systems.
However, to apply the variational integrator formalism, a Lagrangian is indispensable.
Salvation is brought by Ibragimov and his theory of integrating factors and adjoint equa-
tions [58, 59]. The basic idea is to extend the system by doubling the number of dependent



46 2. Geometric Mechanics and Field Theory

variables. This enables to write down a Lagrangian that is the product of the original
equations and the added auxiliary variables, such that the variation with respect to those
new variables results in the original equations.
In the following, we summarise the important definitions and statements of Ibragimov
[58].

Integrating Factors

Integrating factors provide means to solve differential equations. Any first order differen-
tial equation of the form

a(x, y)
dy

dx
+ b(x, y) = 0 (2.263)

can also be written in differential form, i.e.,

a(x, y)dy + b(x, y)dx = 0. (2.264)

This equations is said to be exact if its left hand side is the differential of some function
α(x, y)

a(x, y)dy + b(x, y)dx = dα(x, y). (2.265)

In general, (2.264) is not exact, but it can become exact upon multiplying by an appro-
priate function µ(x, y)

µ(x, y) (a(x, y)dy + b(x, y)dx) = dα(x, y). (2.266)

This function µ(x, y) is called an integrating factor for (2.264). As
∂α

∂x
= µb and ∂α

∂y
= µa (2.267)

the integrability condition for (2.267), αxy = αyx, yields an equation for determining the
integrating factor

∂(µa)

∂x
=
∂(µb)

∂y
. (2.268)

In general, for an ordinary differential equation of order s,

a(x, y, y′, y, ..., y(s−1)) y(s) + b(x, y, y′, ..., y(s−1)) = 0, (2.269)

a differential function µ(x, y, y′, y, ..., y(s−1)) is an integrating factor, if the multiplica-
tion by µ converts the left hand side of (2.269) into a total derivative of some function
α(x, y, y′, y, ..., y(s−1)),

µay(s) + µb =Dx(α). (2.270)

Together, equations (2.269) and (2.270) imply Dx(α) = 0, such that

α(x, y, y′, y, ..., y(s−1)) = const, (2.271)

thereby reducing the order of the differential equation to solve. The integrating factor for
(2.269) is determined by

δ

δy
(µay(s) + µb) = 0 (2.272)

where δ/δy is the variational derivative.
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Adjoint Equations

Consider a first order linear partial differential equation for a scalar field u(x)

D[u] = aµ(x)uµ + b(x)u = f(x). (2.273)

The first order linear differential operator D, corresponding to this equation is

D[u] = aµ(x)∂µ + b(x). (2.274)

The adjoint operator to D is a first-order linear differential operator D∗ such that

vD[u] − uD∗[v] = div C(x) (2.275)

for all functions u and v and some vector field C(x). The adjoint operator is uniquely
determined

D∗[v] = −∂µ(a
µv) + bv. (2.276)

It defines the adjoint equation to (2.273) by

D∗[v] = −∂µ(a
µv) + bv = 0. (2.277)

If D[u] = D∗[u] for any function u, the operator D is called self-adjoint.

All of these statements and definitions generalise straight forwardly to systems ofm partial
differential equations of arbitrary order s,

Fa(x,u, ..., u(s)) = 0, a = 1, ...,m. (2.278)

Fa(x,u, ..., us) are differential functions with n independent variables xµ and m dependent
variables ua. The system of adjoint equations to (2.278) is defined by

F ∗
a (x,u, v, ..., u(s), v(s)) =

δ(vbFb)

δua
= 0, a = 1, ...,m, (2.279)

where v = va(x) are m new dependent variables, referred to as auxiliary variables. If the
system obtained by substituting v = u in the adjoint equations (2.279),

F ∗
a (x,u, u, ..., u(s), u(s)) = 0, (2.280)

is identical with the original system (2.278), the system is called self-adjoint.

Extended Lagrangians

The extended system of differential equations, composed of the system of m partial dif-
ferential equations of order s,

Fa(x,u, ..., u(s)) = 0, (2.281)

together with its adjoint equations,

F ∗
a (x,u, v, ..., u(s), v(s)) ≡

δ(vbFb)

δua
= 0, (2.282)
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has a Lagrangian given by

L = vaFa. (2.283)

Obviously, the variation with respect to the auxiliary variables va, in this context also
referred to as Ibragimov multipliers, yields the original equations (2.281),

δL

δva
= Fa(x,u, ..., u(s)). (2.284)

Similarly, the variation with respect to the original variables ua yields the adjoint equations
(2.282),

δL

δua
= F ∗

a (x,u, v, ..., u(s), v(s)). (2.285)

The definition of the adjoint equations (2.279) suggested this result already.

Symmetries and Conserved Quantities

Here, we do not want to anticipate results from the next section, but a short comment
seems appropriate. The original application Ibragimov had in mind for this method
was the analysis of symmetries and conservation laws by applying Noether’s theorem to
systems without classical Lagrangian. However, an analysis of (2.283) will obviously lead
to symmetries of the extended system of equations that are not necessarily symmetries of
the original system. Therefore it is required to apply some appropriate restriction.
If the operator at hand is self-adjoint, the identification of the auxiliary variables v with
the original variables u identifies the conserved flux of the extended system with the
conserved flux of the original system at once. Most often, however, this is not the case.
Ibragimov therefore defines the concept of quasi-self-adjointness [60], but for us a simpler
idea suffices.
The symmetries of the extended system can be reduced to symmetries of the original
system, if the auxiliary variables can be expressed with respect to the original variables
and their derivatives, i.e.,

va = va(x,u, ..., u(s)). (2.286)

The adjoint equation (2.279) thereby becomes

F ∗
a (x,u, v(x,u, ..., u(s)), ..., u(s), v(s)(x,u, ..., u(s))) = 0 (2.287)

and thus a function of x and u only. If it is possible to select the relation (2.286) such
that (2.287) is automatically respected when u solves (2.281), then a conservation law for
the extended system amounts to a physical conservation law.

Multisymplectic Form

The proof of preservation of the multisymplectic form along the Lagrangian flow from
section 2.2.6 can be applied directly to extended Lagrangians. An open question is if the
multisymplectic structure of the extended system can be restricted to the physical system,
similar to the restriction of conservation laws of the extended system to conservation laws
of the physical system.
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It is however not clear if this is in general possible as the physical system is not necessarily
Lagrangian and therefore might not even have a compatible multisymplectic structure.
But in some cases, such as Hamiltonian systems like the Vlasov-Poisson system or ideal
magnetohydrodynamics, the original system certainly has a multisymplectic structure,
such that the development of a restriction method, that establishes a relation between
the multisymplectic forms of the extended and the original system, appears worthwhile.

2.3. Noether Theorem
The Noether theorem [94, 63, 93] is one of the deepest and most influential insights of
mathematical physics. It states that each continuous symmetry of a Lagrangian corre-
sponds to a conservation law of the associated Euler-Lagrange equations and vice versa.

2.3.1. Point Transformations and One Parameter Groups
Consider an infinitesimal transformation on Q which is of the form

q(t)→ qε(t) = ξ(q(t), ε) = ξε(q(t)) with ξ0 = id such that q0(t) = q(t). (2.288)

If the functional dependency of qε on the two parameters t and ε is of importance, we
also write qε(t) = q(t, ε). The transformation ξ maps each point q ∈ Q to a new point
qε ∈ Q and is therefore called a point transformation. It maps each trajectory q(t) ∈ C(Q)

to a new trajectory qε(t) ∈ C(Q). But what we are looking for are transformations of the
Lagrangian and therefore transformations on TQ. Thus we need the tangent lift of ξε
which is defined as

Tξε ∶ (qε)↦ (qε, q̇ε) with q̇ε(t) =
∂

∂t
q(t, ε). (2.289)

It maps each point q̇ ∈ TqQ to a new point q̇ε ∈ TqεQ. Hence a transformation ξε on Q
induces a transformation Tξε on TQ.
We shall always assume that ξε corresponds to a continuous family of transformations,
such that the trajectories qε(t) are continuous in both, t and ε, and the transformation
ξε(q) constitutes a one-parameter group of curves.
Instead of specifying the transformation (2.288) directly, it can also be defined by its
generating vector field

X(q, t) ≡
∂qε(t)

∂ε
∣
ε=0

with X =X i ∂

∂qi
, (2.290)

sometimes referred to as the infinitesimal symmetry direction.

2.3.2. Noether Theorem for Particle Systems
A Lagrangian has a symmetry if it is invariant under a point transformation qε(t) = ξ(q, ε),
that is

L(qε(t), q̇ε(t)) = L(q(t), q̇(t)) for all ε. (2.291)
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This is equivalent to

d

dε
∣
ε=0
L(qε(t), q̇ε(t)) = 0 (2.292)

or explicitly

d

dε
∣
ε=0
L(qε, q̇ε) =

∂L

∂q
(q, q̇) ⋅X +

∂L

∂v
(q, q̇) ⋅ Ẋ = 0. (2.293)

If q(t) solves the Euler-Lagrange equations (2.85), the first term on the right-hand side
of (2.293) can be rewritten, such that the symmetry condition becomes

[
d

dt

∂L

∂v
(q, q̇)] ⋅X +

∂L

∂v
(q, q̇) ⋅ Ẋ = 0. (2.294)

This is a total time derivative and in fact a conservation law
d

dt
[
∂L

∂v
(q, q̇) ⋅X(q, t)] = 0. (2.295)

It states that solutions q of the Euler-Lagrange equations preserve ∂L/∂v in direction X.

Example: Point Particle

Consider a simple transformation that amounts to a time-independent translation

qε(t) = q(t) + εX, q̇ε(t) = q̇(t). (2.296)

The corresponding transformed Lagrangian is

L(qε(t), q̇ε(t)) =
m

2
(q̇(t))

2
= L(q, q̇) (2.297)

which is obviously the same as the untransformed Lagrangian. The symmetry condition
is therefore trivially fulfilled

∂

∂ε
∣
ε=0
L(qε(t), q̇ε(t)) = 0 (2.298)

and the corresponding conservation law

d

dt
[
∂L

∂q̇
(q, q̇) ⋅X] =

d

dt
[mq̇ ⋅X] = 0 (2.299)

states that momentum is preserved in direction of X.

2.3.3. Noether Theorem for Field Theories
Now we want to generalise the Noether theorem for finite dimensional systems to infinite
dimensional systems. Still we restrict to vertical transformations, i.e., transformations on
the configuration space alone, as that will be sufficient for the following treatment.
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The transformation of a (possibly vector valued) field y is described by a one-parameter
group of transformations

ηε(x, y) = (x, yε) such that η0(x, y) = (x, y). (2.300)

or in coordinates

η ∶ (x, y)↦ (xν , ηa(x, y, ε)). (2.301)

The infinitesimal generator of the transformation η is

X(x, y) =
dη

dε
∣
ε=0

=Xa ∂

∂ya
with components Xa(x, y) =

dηa

dε
∣
ε=0
, (2.302)

and its first jet prolongation is given by

j1X(x, y, v) =Xa ∂

∂ya
+
∂Xa

∂yb
∂yb

∂xν
∂

∂vaν
. (2.303)

The Lagrangian has a symmetry if it is invariant under this transformation

L(xν , ηa(x, y), ηaν(x, y, v)) = L(x
ν , ya, vaν) for all ε. (2.304)

This is equivalent to

j1X(L) =
d

dε
∣
ε=0
L(xν , ηa(x, y), ηaν(x, y, v)) = 0 (2.305)

or explicitly

j1X(L) =
∂L

∂ya
(x, y, v) ⋅Xa +

∂L

∂vaν
(x, y, v) ⋅Xa

ν = 0. (2.306)

If y(x) solves the Euler-Lagrange field equations (2.169), we can replace the first term on
right-hand-side and obtain

j1X(L) = [
∂

∂xν
(
∂L

∂vaν
)] ⋅Xa +

∂L

∂vaν
⋅ [

∂

∂xν
Xa] = 0. (2.307)

We immediately see that this is a divergence

j1X(L) =
∂

∂xν
[
∂L

∂vaν
⋅Xa] = 0. (2.308)

The term in square brackets is called Noether field. Integration in the spatial dimensions
yields a conservation law for solutions of the discrete Euler-Lagrange field equations,

d

dt ∫
∂L

∂vat
⋅Xa dx = 0, (2.309)

assuming that the boundary terms vanish.



52 2. Geometric Mechanics and Field Theory

2.3.4. Noether Theorem for Extended Lagrangians
Consider the generator of a transformation of the configuration bundle for a field u as in
(2.302),

X(x,u) =Xu ∂

∂u
. (2.310)

To be applied to the Lagrangian of an extended system of equations (2.283), this generator
has to be extended to the auxiliary variable v by a certain function Xv as

Y (x,u, v) =Xu ∂

∂u
+Xv ∂

∂v
. (2.311)

Everything else follows by applying the theory of the last section to the extended La-
grangian, considered as describing a theory of two fields (u, v). Only in the last step of
integrating the Noether field, one has to find a relation between the auxiliary field v and
the original field u, i.e., one has to find a functional expression for v in terms of u and its
derivatives like in (2.286).
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3. Variational Integrators
The seminal work in the development of a discrete equivalent of classical mechanics was
presented by Veselov [132, 133]. His method, based on a discrete variational principle,
leads to symplectic integration schemes that automatically preserve constants of motion.
A comprehensive review of discrete mechanics can be found in Marsden and West [83].
This includes also a more thorough account on the historical development. The theory
was extended to partial differential equations in form of first order Lagrangian theories by
Marsden et al. [84] and soon also to second order Lagrangian theories by Kouranbaeva and
Shkoller [65, 64]. Another extension was that of asynchronous variational integrators by
Lew et al. [76], where each point in the spatial grid has its own timestep. This way, exact
local energy conservation can be achieved in addition to an often observed speedup in
runtime. In more recent developments, the variational integrator method was applied to
Maxwell’s equations by Stern et al. [123, 124] and fluid problems by Pavlov et al. [99, 98]
and Gawlik et al. [43].
This chapter gives an overview of the theory of variational integrators for finite-dimensional
as well as for infinite-dimensional systems. It follows mostly along the lines of Marsden
and West [83], Marsden et al. [84], Kouranbaeva and Shkoller [65], and Kouranbaeva [64].

3.1. Discrete Particle Dynamics
The derivation of the discrete theory follows along the lines of the derivation of the
continuous theory. The starting point is the discretisation of the action integral and the
Lagrangian. There is some degree of freedom in the choice of the discrete quadrature
rule as well as in the approximation of the generalised coordinates q and the generalised
velocities q̇. Everything else follows in a straight forward way, so that these choices are
determining the respective form of the discrete Lagrangian as well as the resulting discrete
equations of motion.
Time will be discretised uniformly, i.e., the timestep h is constant, qk denotes the gener-
alised coordinates at timepoint k, and q̇k the generalised velocities at timepoint k. The
discrete Lagrangian approximates the time integral of the continuous Lagrangian between
two consecutive points in time, k and k + 1

Ld(qk, qk+1) ≈

tk+1

∫
tk

L(q, q̇)dt. (3.1)

Its exact expression is determined by the quadrature rule used to approximate the integral.
Here, we assume that the quadrature rule depends only on (qk, qk+1). The discrete action
thus becomes merely a sum over the time index of discrete Lagrangians

Ad =
N−1
∑
k=0

Ld(qk, qk+1). (3.2)
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q0 qN

{qk} varied discrete curves

Fig. 3.1.: Variations of the discrete trajectory {qk}
N
k=0.

The generalised velocities will usually be discretised by simple finite-difference expres-
sions1, i.e.

q̇ ≈
qk+1 − qk

h
for t ∈ [tk, tk+1]. (3.3)

The quadrature (3.1) is most often realised by either the trapezoidal rule

Ltr
d (qk, qk+1) =

h

2 L(qk,
qk+1 − qk

h
) +

h

2 L(qk+1,
qk+1 − qk

h
) (3.4)

or the midpoint rule

Lmp
d (qk, qk+1) = hL(

qk + qk+1

2 ,
qk+1 − qk

h
). (3.5)

The configuration manifold of the discrete theory is still Q, but the discrete state space
is Q ×Q instead of TQ, such that the discrete Lagrangian Ld is a function

Ld ∶ Q ×Q→ R. (3.6)

3.1.1. Discrete Action Principle
The discrete trajectories qd = {qk}Nk=0 are required to satisfy a discrete version of Hamilton’s
principle of least action

δAd[qd] = δ
N−1
∑
k=0

Ld(qk, qk+1) = 0. (3.7)

The variation of the action is

δAd[qd] =
N−1
∑
k=0

[D1Ld(qk, qk+1) ⋅ δqk +D2Ld(qk, qk+1) ⋅ δqk+1] (3.8)

where Di denotes the derivative with respect to to the ith argument. What follows
corresponds to a discrete integration by parts, i.e., a reordering of the summation. The

1 In the first term of the trapezoidal rule (3.4), this corresponds to a forward finite-difference, in the
second term to a backward finite-difference, and in the midpoint rule (3.5) to a centred finite-difference.



3.1. Discrete Particle Dynamics 55

k = 0 term is removed from the first part of the sum and the k = N − 1 term is removed
from the second part

δAd[qd] =D1Ld(q0, q1) ⋅ δq0 +
N−1
∑
k=1

D1Ld(qk, qk+1) ⋅ δqk

+
N−2
∑
k=0

D2Ld(qk, qk+1) ⋅ δqk+1 +D2Ld(qN−1, qN) ⋅ δqN . (3.9)

As the variations at the endpoints, δq0 and δqN , are kept fixed, the corresponding terms
vanish. At last, the summation range of the second sum is shifted upwards by one with
the arguments of the discrete Lagrangian adapted correspondingly

δAd[qd] =
N−1
∑
k=1

[D1Ld(qk, qk+1) +D2Ld(qk−1, qk)] ⋅ δqk. (3.10)

Hamilton’s principle of least action requires the variation of the discrete action δAd to
vanish for any choice of δqk. Consequently, the expression in the square brackets of (3.10)
has to vanish. This defines the

Discrete Euler-Lagrange Equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0 (3.11)

The discrete Euler-Lagrange equations (3.11) define an evolution map

FLd ∶ Q ×Q→ Q ×Q ∶ (qk−1, qk)↦ (qk, qk+1). (3.12)

Starting from two configurations, q0 ≈ q(t0) and q1 ≈ q(t1 = t0 +h), the successive solution
of the discrete Euler-Lagrange equations (3.11) for q2, q3, etc., up to qN , determines the
discrete trajectory {qk}Nk=0. Quite often, however, it is more practical to prescribe an
initial position and momentum instead of the configuration of the first two timesteps. We
therefore define the discrete momentum at timestep k as2

pk = −D1Ld(qk, qk+1) =D2Ld(qk−1, qk), (3.13)

such that the variational integrator (3.11) can be rewritten in

Position-Momentum Form

pk = −D1Ld(qk, qk+1) (3.14a)
pk+1 = D2Ld(qk, qk+1) (3.14b)

Given (qk, pk), the first equation can be solved for qk+1. This is generally a nonlinearly
implicit equation that has to be solved by some iterative technique like Newton’s method.
The second equation is an explicit function, so to obtain pk+1 we merely have to plug in
qk and qk+1. The corresponding Hamiltonian evolution map is

F̃Ld ∶ T∗Q→ T∗Q ∶ (qk, pk)↦ (qk+1, pk+1). (3.15)

2 The two expressions are equal by the discrete Euler-Lagrange equations (3.11).
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Thus, starting with an initial position q0 and an initial momentum p0, the repeated
solution of (3.14) gives the same discrete trajectory {qk}Nk=0 as (3.11). The position-
momentum form, as a one-step method, is usually easier to implement than the discrete
Euler-Lagrange equations (3.11). And for most problems, initial conditions are more
naturally prescribed via the position and momentum of the particle at a given point in
time, (q0, p0). If, however, only the position of the particle at two points in time, (q0, q1),
is known, the Euler-Lagrange equations (3.11) are the more natural way of describing the
dynamics.
This of course is just reflecting the difference in the Lagrangian and Hamiltonian point of
view. For n degrees of freedom, the variational principle leads to n differential equations
of second order. Hamilton’s equations, on the other hand, are 2n differential equations of
first order. Which form eventually is used largely depends on the problem at hand.

3.1.2. Discrete Tangent Space
The discrete path space is defined as

Cd(Q) = {cd ∶ {tk}
N
k=0 → Q} (3.24)

where

{tk}
N
k=0 = {tk = kh ∣ k = 0, ...,N} ⊂ R (3.25)

is an increasing sequence of times and h is the discrete timestep. Cd(Q) contains all
possible discrete trajectories cd in Q and is isomorphic to Q × ... ×Q (N + 1 copies)

Cd(Q) ≅ ⨉
N+1
Q. (3.26)

The subspace of Cd(Q) that contains all discrete trajectories with fixed endpoints q0 and
qN is defined as

Cd(q0, qN ,{tk}
N
k=0) = {cd ∶ {tk}

N
k=0 → Q ∣ c(t0) = q0, c(tN) = qN}. (3.27)

The discrete action map Ad ∶ Cd(q0, qN ,{tk}Nk=0)→ R is defined as

Ad[cd] =
N−1
∑
k=0

Ld(c(tk), c(tk+1)) =
N−1
∑
k=0

Ld(qk, qk+1) where qk = c(tk). (3.28)

The tangent space TcdCd(q0, qN ,{tk}Nk=0) to Cd(q0, qN ,{tk}Nk=0) at cd contains the variations
of cd. It is defined as the set of maps

vcd ∶ {tk}
N
k=0 → TQ such that πQ ○ vcd = cd and v(t0) = v(tN) = 0, (3.29)

where πQ is the canonical projection πQ ∶ TQ→ Q and local coordinates are given by

vcd = {(qk, vk)}
N
k=0. (3.30)

vcd is called a discrete variation of the discrete path cd and sometimes denoted vcd = δcd.
The variation of the discrete action can therefore be formulated as

dAd[cd] ⋅ vcd =
N−1
∑
k=0

[D1L(qk, qk+1) ⋅ vk +D2L(qk, qk+1) ⋅ vk+1]. (3.31)
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Example: Point Particle

Consider a particle with mass m, moving in some potential V . Its continuous Lagran-
gian is

L(q, q̇) =
1
2 mq̇

2 − V (q) (3.16)

Approximated by the trapezoidal rule, the discrete Lagrangian reads

Ltr
d (qk, qk+1) = h [

m

2 (
qk+1 − qk

h
)

2

−
V (qk) + V (qk+1)

2 ]. (3.17)

Applying the discrete Euler-Lagrange equations (3.11) to this expression results in
discrete equations of motion

m
qk+1 − 2 qk + qk−1

h2 = −∇V (qk) (3.18)

which clearly are a discrete version of Newton’s second law

mq̈ = −∇V = F. (3.19)

For comparison, consider also the midpoint approximation

Lmp
d (qk, qk+1) = h [

m

2 (
qk+1 − qk

h
)

2

− V (
qk + qk+1

2 )] (3.20)

which leads to

m
qk+1 − 2 qk + qk−1

h2 = −
1
2 [∇V (

qk−1 + qk
2 ) +∇V (

qk + qk+1

2 )] (3.21)

and thus a different discretisation of (3.19). The position-momentum form (3.14) of
the trapezoidal Lagrangian (3.17) can be written as

qk+1 − qk
h

=
1
m

[pk −
h

2 ∇V (qk)] (3.22a)

pk+1 − pk
h

= −
1
2 [∇V (qk) +∇V (qk+1)] (3.22b)

and the one of the midpoint Lagrangian (3.20) reads

qk+1 − qk
h

=
1
m

[pk −
h

2 ∇V (
qk + qk+1

2 )] (3.23a)

pk+1 − pk
h

= −∇V (
qk + qk+1

2 ). (3.23b)

This bears a close resemblance of Hamilton’s equations of motion, where the additional
term in the first equations can be interpreted as extrapolating the momentum pk to
tk+1/2. As already noted, it is not always so easy to solve (3.14a) for qk+1, but in general
this is an implicit equation.
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A reordering of the sum (discrete partial integration) leads to

dAd[cd] ⋅ vcd =
N−1
∑
k=1

[D1L(qk, qk+1) +D2L(qk−1, qk)] ⋅ vk

+D1L(q0, q1) ⋅ v0 +D2L(qN−1, qN) ⋅ vN . (3.32)

where the terms in the second line vanish as v0 = v(t0) = 0 as well as vN = v(tN) = 0 and
thus

dAd[cd] ⋅ vcd =
N−1
∑
k=1

[D1L(qk, qk+1) +D2L(qk−1, qk)] ⋅ vk. (3.33)

The arbitrariness of the vk once more yields the discrete Euler-Lagrange equations.

3.1.3. Discrete One- and Two-Form
As in the continuous case, the discrete one-form is obtained by computing the variation
of the action for varying endpoints

dAd[qd] ⋅ δqd =
N−1
∑
k=0

[D1Ld(qk, qk+1) ⋅ δqk +D2Ld(qk, qk+1) ⋅ δqk+1]

=
N−1
∑
k=1

[D1Ld(qk, qk+1) +D2Ld(qk−1, qk)] ⋅ δqk

+D1Ld(q0, q1) ⋅ δq0 +D2Ld(qN−1, qN) ⋅ δqN . (3.34)

The two latter terms originate from the variation at the boundaries. They form the
discrete counterpart of the Lagrangian one-form. However, there are two boundary terms
that define two distinct one-forms on Q ×Q

Θ−
Ld

(q0, q1) ⋅ (δq0, δq1) ≡ −D1Ld(q0, q1) ⋅ δq0,

Θ+
Ld

(qN−1, qN) ⋅ (δqN−1, δqN) ≡ D2Ld(qN−1, qN) ⋅ δqN .
(3.35)

In general, these one-forms are defined as

Θ−
Ld

(qk, qk+1) ≡ −D1L(qk, qk+1),

Θ+
Ld

(qk, qk+1) ≡ D2L(qk, qk+1).
(3.36)

As dLd = Θ+
Ld
−Θ−

Ld
and d2Ld = 0 one observes that

dΘ+
Ld

= dΘ−
Ld

(3.37)

such that the exterior derivative of both discrete one-forms defines the same discrete
Lagrangian two-form or discrete symplectic form

ΩLd = dΘ+
Ld

= dΘ−
Ld

=
∂2Ld

∂qk ∂qk+1
(qk, qk+1)dqk ∧ dqk+1 (no summation). (3.38)
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3.1.4. Preservation of the Discrete Symplectic Form
Consider the exterior derivative of the discrete action (3.2). Upon insertion of the discrete
Euler-Lagrange equations (3.11) it becomes

dAd =D1Ld(q0, q1) ⋅ dq0 +D2Ld(qN−1, qN) ⋅ dqN = Θ+
Ld

(qN−1, qN) −Θ−
Ld

(q0, q1). (3.39)

On the right hand side we find the just defined Lagrangian one-forms (3.36). Taking the
exterior derivative of (3.39) gives

Ωd(q0, q1) = Ωd(qN−1, qN), (3.40)

where qN−1 and qN are connected with q0 and q1 through the discrete Euler-Lagrange
equations (3.11). Therefore, (3.40) implies that the discrete symplectic structure Ωd is
preserved while the system advances from t = 0 to t = Nh according to the discrete
equations of motion (3.11). As the number of timesteps N is arbitrary, the discrete
symplectic form Ωd is preserved at all times of the simulation. Note that this does not
automatically imply that the continuous symplectic structure Ω is preserved under the
discrete map FLd .

3.1.5. Composition Methods
The composition of a one-step variational integrator F̃Ld with different step sizes is a
simple method of obtaining higher order schemes. We assume that the initial scheme F̃Ld
is symmetric, that is

F̃ h
Ld
○ F̃ −h

Ld
= id, (3.41)

as this simplifies the construction. Alternatively, efficient methods can also be built by
combining a non-symmetric method with its adjoint. The interested reader can find more
information on these issues in Marsden and West [83] and Hairer et al. [52]. If a numerical
method

F̃Ld ∶ T∗Q × R→ T∗Q (3.42)

is symmetric, it can be used to compose higher order methods by splitting up each timestep
into s substeps [52, 87, 83]

F̂ h
Ld

= F̃ γsh
Ld

○ ... ○ F̃ γih
Ld

○ ... ○ F̃ γ1h
Ld

(3.43)

where the careful selection of the γi is crucial for the performance of the resulting scheme.
In this section, we show that a variational integrator is self-adjoint and thereby symmetric
if its discrete Lagrangian is self-adjoint, a condition that is easily checked. We present
some fourth and sixth order composition methods that can be applied in most situations.
It is worth mentioning that the composition can already be implemented at the level of
the Lagrangian. We will outline this at the end of the section, and later on, when we come
to the discrete Noether theorem, the consequences for the discrete conservation laws are
described.
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Adjoint of a Method and Adjoint Lagrangians

In this subsection, we show that a variational integrator is symmetric if its Lagrangian is
self-adjoint. The adjoint F̃ ∗

Ld
of a method F̃Ld is defined as

(F̃ ∗
Ld

(h)) ○ (F̃Ld(−h)) = id . (3.44)

A method F̃Ld is self-adjoint if F̃ ∗
Ld

= F̃Ld , therefore a self-adjoint method is also symmetric.
We would like to establish a condition of the discrete Lagrangian that tells us if the
resulting method is self-adjoint or not. We therefore define the adjoint Lagrangian L∗d of
a discrete Lagrangian Ld as

L∗d(qk, qk+1, h) ≡ −Ld(qk+1, qk,−h). (3.45)

Hence the Lagrangian Ld is self-adjoint if

Ld(qk, qk+1, h) = −Ld(qk+1, qk,−h). (3.46)

We want to show that if a discrete Lagrangian is self-adjoint so is the resulting method.
We start by establishing that adjoint Lagrangians admit adjoint methods, i.e., if F̃Ld is the
Hamiltonian map resulting from Ld and F̃L∗

d
is the map resulting from L∗d then F̃ ∗

Ld
= F̃L∗

d
.

In position momentum-form (3.14), the map F̃Ld is defined as

F̃Ld ∶

⎧⎪⎪
⎨
⎪⎪⎩

pk = −D1Ld(qk, qk+1, h)

pk+1 = D2Ld(qk, qk+1, h)
. (3.47)

Its adjoint method F̃ ∗
Ld

(h) = (F̃Ld(−h))
−1 is the map

F̃ ∗
Ld
∶

⎧⎪⎪
⎨
⎪⎪⎩

pk = D2Ld(qk+1, qk,−h)

pk+1 = −D1Ld(qk+1, qk,−h)
. (3.48)

And the map F̃L∗
d
corresponding to the adjoint Lagrangian (3.45) is

F̃L∗
d
∶

⎧⎪⎪
⎨
⎪⎪⎩

pk = −D1L∗d(qk, qk+1, h)

pk+1 = D2L∗d(qk, qk+1, h)
. (3.49)

Computing the derivatives of the definition of the adjoint Lagrangian (3.45)

D1L
∗
d(qk, qk+1, h) = −D2Ld(qk+1, qk,−h)

−D2L
∗
d(qk, qk+1, h) = D1Ld(qk+1, qk,−h)

(3.50)

establishes the equality of (3.48) and (3.49), i.e., if two Lagrangians are adjoint so are
the resulting methods. Computing the derivatives of the definition of the self-adjoint
Lagrangian (3.46)

D1Ld(qk, qk+1, h) = −D2Ld(qk+1, qk,−h) (3.51)
−D2Ld(qk, qk+1, h) = D1Ld(qk+1, qk,−h) (3.52)

establishes the equality of (3.47) and (3.48), i.e., if the Lagrangian is self-adjoint so is the
resulting method. We have thereby obtained a condition for symmetry of a variational
integrator that can easily be checked.
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Fourth Order Composition Methods

If F̃Ld is a method of order r, a method F̂Ld of order r + 2 is obtained by the composition
[52]

F̂ h
Ld

= F̃ γh
Ld

○ F̃
(1−2γ)h
Ld

○ F̃ γh
Ld

with γ = (2 − 21/(r+1))−1. (3.53)

Hence, if F̃Ld is of second order, the resulting method F̂Ld will be of fourth order. Note
that symmetric methods are always of even order (for details see Marsden and West [83]).
A method of the same order but with generally smaller errors is obtained by considering
five steps

F̂ h
Ld

= F̃ γh
Ld

○ F̃ γh
Ld

○ F̃
(1−4γ)h
Ld

○ F̃ γh
Ld

○ F̃ γh
Ld

with γ = (4 − 41/(r+1))−1. (3.54)

Multiple application of these compositions yields methods of orders higher than four.

Sixth Order Composition Methods

Higher order compositions can also be constructed directly (see Hairer et al. [52], section
3.2). A sixth order method with seven substeps is given by

γ1 = γ7 = +0.78451361047755726381949763,
γ2 = γ6 = +0.23557321335935813368479318,
γ3 = γ5 = −1.17767998417887100694641568,

γ4 = +1.31518632068391121888424973,

(3.55)

but again smaller errors can be achieved by using nine steps

γ1 = γ9 = +0.39216144400731413927925056,
γ2 = γ8 = +0.33259913678935943859974864,
γ3 = γ7 = −0.70624617255763935980996482,
γ4 = γ6 = +0.08221359629355080023149045,

γ5 = +0.79854399093482996339895035.

(3.56)

The computational effort of these high order methods is quite large. Each step requires
the solution of a nonlinear system of equations. Given the outstanding performance
already second order variational integrators are able to deliver, the necessity for such
high order methods is probably rarely found. Nevertheless, if extremely high accuracy is
indispensable, these methods can be applied.

Composite Discrete Lagrangians

The composition schemes presented can all be derived as Euler-Lagrange equations from a
composite discrete Lagrangian. There are several equivalent possibilities of constructing
such a Lagrangian and the corresponding discrete Euler-Lagrange equations. We will
present only one, for details on the alternatives see Marsden and West [83], section 2.5.
The composite discrete Lagrangian of a method

F̂ h
Ld

= F̃ γsh
Ls
d
○ ... ○ F̃ γih

Li
d

○ ... ○ F̃ γ1h
L1
d

. (3.57)
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with s substeps can be written as

L̂d(q
0
k, q

1
k, ..., q

s
k) =

s

∑
i=1
Lid(q

i−1
k , qik, γih) (3.58)

where we identify qk = q0
k and qk+1 = qsk such that qsk = q0

k+1. The discrete action becomes

Ad({q
0
k, q

1
k, ..., q

s
k}
N−1
k=0 ) =

N−1
∑
k=0

L̂d(q
0
k, q

1
k, ..., q

s
k) (3.59)

and we obtain discrete Euler-Lagrange equations

D2L
s
d(q

s−1
k−1, q

s
k−1, γsh) +D1L

i
d(q

0
k, q

1
k, γ1h) = 0 (3.60)

⋮ (3.61)
D2L

i
d(q

i−1
k , qik, γih) +D1L

i+1
d (qik, q

i+1
k , γi+1h) = 0 (3.62)

⋮ (3.63)
D2L

s
d(q

s−1
k , qsk, γsh) +D1L

1
d(q

0
k+1, q

1
k+1, γ1h) = 0. (3.64)

The maps F̃ γih

Li
d

in the composition method (3.57) can therefore be written as

F̃ γih

Li
d

∶ (qi−1
k , pi−1

k )↦ (qik, p
i
k) (3.65)

with

pi−1
k = −D1L

i
d(q

i−1
k , qik, γih) (3.66a)

pik = D2L
i
d(q

i−1
k , qik, γih). (3.66b)

The existence of a composite Lagrangian L̂d corresponding to a composite method F̂Ld
is important in the analysis of conserved quantities. The discrete Noether theorem (next
section) has to be applied to the composite Lagrangian to determine the quantities that
are discretely conserved to the order of the composition method. It cannot be expected
that the errors of the conserved quantities of the discrete Lagrangians Lid, which are used
to build the composition scheme, scale with the order of the composition scheme.

3.1.6. Discrete Noether Theorem
The discrete Noether theorem, just as the continous Noether theorem, draws the connec-
tion between symmetries of a discrete Lagrangian and quantities that are conserved by
the discrete Euler-Lagrange equations or, equivalently, the discrete Lagrangian flow. The
continuous theory translates straight forwardly to the discrete case. Therefore, we repeat
just the important steps, translated to the discrete setting.

Discrete Noether Theorem for Particle Systems

Consider a one parameter group of discrete curves {qεk}
N
k=0 such that q0

k(qk) = qk. The
discrete Lagrangian Ld has a symmetry if it is invariant under this transformation

Ld(q
ε
k, q

ε
k+1) = Ld(qk, qk+1) for all ε and k. (3.67)
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The direction of such a symmetry is

Xk =
∂qεk
∂ε

∣
ε=0

(3.68)

such that

d

dε
Ld(q

ε
k, q

ε
k+1)∣

ε=0
=D1Ld(qk, qk+1) ⋅Xk +D2Ld(qk, qk+1) ⋅Xk+1. (3.69)

If {qk} solves the discrete Euler-Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0 (3.70)

we can replace the first term on the right hand side of (3.69) to get

0 = −D2Ld(qk−1, qk) ⋅Xk +D2Ld(qk, qk+1) ⋅Xk+1. (3.71)

This amounts to a discrete conservation law of the form

D2Ld(qk−1, qk) ⋅Xk =D2Ld(qk, qk+1) ⋅Xk+1 (Discrete Noether Theorem). (3.72)

It states that solutions {qk} of the discrete Euler-Lagrange equations preserve the com-
ponents of the momentum map pk =D2Ld(qk−1, qk) in direction Xk.

Example: Free Point Particle

Consider a transformation that amounts to an infinitesimal spatial translation

qεk = qk + εX. (3.73)

The discrete Lagrangian is invariant under this transformation

Ld(q
1,ε, q2ε) =

h

2 (
q2 + εX − q1 − εX

h
)

2

=
h

2 (
q2 − q1

h
)

2

= Ld(q
1, q2), (3.74)

such that the symmetry condition is trivially fulfilled

∂

∂ε
Ld(q

ε
k, q

ε
k+1)∣

ε=0
= 0. (3.75)

The discrete conservation law following from the symmetry of the Lagrangian under
spatial translation

(
qk − qk−1

h
) ⋅X = (

qk+1 − qk
h

) ⋅X (3.76)

amounts to the preservation of the discrete momentum in direction of X.
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Energy

In continuous particle dynamics, the conservation of energy follows from translational
symmetry of the Lagrangian with respect to time. In discrete particle dynamics, with a
fixed timestep h, it is not possible to consider infinitesimal translations with respect to
time. In the setting we described, it is therefore not possible to prove conservation of the
discrete energy by applying Noether’s theorem. Indeed, most often we find that energy
is not conserved exactly, but only approximately, in that the energy error is bounded by
some threshold value. This behaviour is typical for symplectic methods (see e.g. Hairer
et al. [52] and references therein).
Nevertheless, it is possible to achieve and prove exact energy conservation by making the
timestep h a dynamical variable. It is thereby determined by the variational principle,
such that energy is conserved exactly [62]. And in the Noether theorem, infinitesimal
transformations of time can be considered as well.
However, we do not follow this path. Still we are interested in the energy conserving prop-
erties of our variational integrators. We therefore “read” the expression for the discrete
energy from the Lagrangian. In the particle case, the Hamiltonian is an explicit part of
the Lagrangian, such that its discrete counterpart follows directly from the discretisation
of the Lagrangian.

Discrete Noether Theorem for Composite Lagrangians

As already pointed out in section 3.1.5, special care has to be taken in the case of composite
discrete Lagrangians (3.58)

L̂d(q
0
k, q

1
k, ..., q

s
k) =

s

∑
i=1
Lid(q

i−1
k , qik, γih). (3.77)

L̂d might have different discrete expressions of the conserved momenta than the Lid. And
it might even have different conservational properties, i.e., not all conserved momenta of
L̂d might be conserved by the Lid or vice versa. Therefore the discrete Noether theorem
(3.72) has to be applied to L̂d.
Similarly, the discrete expression for the energy is different for L̂d and the Lid. To clarify
this, let us look at an example. Consider the midpoint Lagrangian (3.5)

Lmp
d (qk, qk+1) = hL(

qk + qk+1

2 ,
qk+1 − qk

h
), (3.78)

and the fourth order, three step composition method (3.53),

F̂ h
Ld

= F̃ γh
Ld

○ F̃
(1−2γ)h
Ld

○ F̃ γh
Ld

with γ = (2 − 21/(r+1))−1. (3.79)

The discrete Hamiltonian corresponds to

Hd = hH(
qk + qk+1

2 ,
qk+1 − qk

h
), (3.80)

such that the discrete Hamiltonian of the composite Lagrangian is

Ĥd = h [γ H(
q0
k + q

1
k

2 ,
q1
k − q

0
k

h
) + (1 − 2γ)H(

q1
k + q

2
k

2 ,
q2
k − q

1
k

h
) + γ H(

q2
k + q

3
k

2 ,
q3
k − q

2
k

h
)],

(3.81)
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where q0
k = qk and q3

k = qk+1. Only the error of this composite Hamiltonian will scale with
the order r of the scheme. That might at first seem surprising, as symplectic methods
are supposed to conserve a direct discretisation of the continuous Hamiltonian to at least
order r, i.e.,

H(qn, pn) =H(q0, p0) +O(hr) (3.82)

for exponentially long time intervals kh ≤ eh0/2h with some constant h0. However, in the
proof of this relation (see Hairer et al. [52] and references therein) it is assumed that the
discrete flow map F̂Ld preserves the continuous symplectic form Ω. But we have only
proved that the discrete symplectic form Ωd is preserved. We can therefore not assume
that this result translates directly. What we can always assume (for conservative systems)
is that there exists a discrete energy that is preserved to the the order of the scheme, and
in the case of the composition schemes this is an expression analogous to (3.81).

3.2. Discrete Field Theory
The derivation of the discrete field theory is a straight forward generalisation of the
derivation for particle dynamics. The only difference is that the basic physical quantity
is not the Lagrangian, defined on a one-dimensional “grid” of time, but the Lagrangian
density, defined over a multidimensional grid of spacetime or phasespacetime.
Again, the starting point is the discretisation of the action integral and the Lagrangian
density. The discrete Lagrangian density approximates the (phase)spacetime integral of
the continuous Lagrangian density over one cell of the (phase)spacetime grid, e.g. with
one spatial dimension this is

Ld(ϕi,k, ϕi+1,k, ϕi,k+1, ϕi+1,k+1) ≈

tk+1

∫
tk

xi+1

∫
xi

L(ϕ,ϕt, ϕx) (3.83)

with the corresponding action being a sum over the whole grid

Ad =
Nt−1
∑
k=0

Nx−1
∑
i=0
Ld(ϕi,k, ϕi+1,k, ϕi,k+1, ϕi+1,k+1). (3.84)

To make manipulations more tractable, the discrete Lagrangian density is rewritten in
a slightly more abstract way, namely in terms of cells rather than grid points. Let us
consider a cell determined by its vertices (ϕ1, ϕ2, ϕ3, ϕ4), like it is depicted in Fig. 3.2.
For now, the horizontal axis shall be space, denoted by x, and the vertical axis shall be
time, denoted by t.
Here, only a midpoint rule is considered, but the application of other quadrature rules is
straight forward. The fields ϕ are thus approximated by

ϕ(t, x) ≈
1
4
(ϕ1 + ϕ2 + ϕ3 + ϕ4). (3.85)

For the approximation of the derivatives, there are in principle two possibilities for each
coordinate, e.g. an x derivative can be defined as (ϕ2 − ϕ1)/hx as well as (ϕ3 − ϕ4)/hx.
Again, a midpoint-like averaging over the two possibilities is employed, such that

ϕt(t, x) ≈
1
2(
ϕ4 − ϕ1

ht
+
ϕ3 − ϕ2

ht
), ϕx(t, x) ≈

1
2(
ϕ2 − ϕ1

hx
+
ϕ3 − ϕ4

hx
). (3.86)
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Applying this to (3.83), the resulting discrete Lagrangian density reads

Ld(ϕ
1, ϕ2, ϕ3, ϕ4) ≈ ht hxL(

ϕ1 + ϕ2 + ϕ3 + ϕ4

4 ,
ϕ4 − ϕ1

2ht
+
ϕ3 − ϕ2

2ht
,
ϕ2 − ϕ1

2hx
+
ϕ3 − ϕ4

2hx
)

(3.87)
and the discrete action becomes

Ad[ϕd] = ∑
grid

boxes

Ld(ϕ
1, ϕ2, ϕ3, ϕ4) (3.88)

where ϕd = {{ϕi,k}
Nx−1
i=0 }Nt−1

k=0 is the discrete field. The application of Hamilton’s principle

d

dε
Ad[ϕ

ε
d]∣

ε=0
=
d

dε
∑
grid

boxes

Ld(ϕ
1,ε, ϕ2,ε, ϕ3,ε, ϕ4,ε)∣

ε=0
(3.89)

leads to discrete Euler-Lagrange field equations (DELFEQs) just as it lead to Euler-
Lagrange equations in the continuous case. With

δAd ≡
d

dε
Ad[ϕ

ε
d]∣

ε=0
and δϕi,k ≡

d

dε
ϕεi,k∣

ε=0
(3.90)

the variation of the action can be written as

δAd = ∑
grid

boxes

∂Ld
∂ϕa

(ϕ1, ϕ2, ϕ3, ϕ4) ⋅ δϕa (1 ≤ a ≤ 4). (3.91)

As the variation of the action has to vanish for each δϕi,k on the spacetime grid, it is
sufficient to consider the contributions of δAd that are multiplied by the variation of ϕ at
a given grid point (i, k)

δAd = ... +
∂Ld
∂ϕ1 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) ⋅ δϕi,k + ...

... +
∂Ld
∂ϕ2 (ϕi−1,k, ϕi,k, ϕi,k+1, ϕi−1,k+1) ⋅ δϕi,k + ...

... +
∂Ld
∂ϕ3 (ϕi−1,k−1, ϕi,k−1, ϕi,k, ϕi−1,k) ⋅ δϕi,k + ...

... +
∂Ld
∂ϕ4 (ϕi,k−1, ϕi+1,k−1, ϕi+1,k, ϕi,k) ⋅ δϕi,k + ... = 0.

(3.92)

ϕ1 ϕ2

ϕ3ϕ4

Fig. 3.2.: Basic element of a two-dimensional spacetime grid.
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ϕ(i− 1, k − 1)

ϕ(i− 1, k)

ϕ(i− 1, k + 1)

ϕ(i, k − 1)

ϕ(i, k)

ϕ(i, k + 1)

ϕ(i+ 1, k − 1)

ϕ(i+ 1, k)

ϕ(i+ 1, k + 1)

Fig. 3.3.: Contributions of a specific grid point (i, k) to the variation of the discrete
action.

In total there are four such contributions, originating from the Lagrangian densities Ld
of the four squares that touch the point (i, k) as is depicted in Fig. 3.3. The sum of the
factors of δϕik corresponds to the

Discrete Euler-Lagrange Field Equations

0 = ∂Ld
∂ϕ1 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) +

∂Ld
∂ϕ2 (ϕi−1,k, ϕi,k, ϕi,k+1, ϕi−1,k+1)

+
∂Ld
∂ϕ3 (ϕi−1,k−1, ϕi,k−1, ϕi,k, ϕi−1,k) +

∂Ld
∂ϕ4 (ϕi,k−1, ϕi+1,k−1, ϕi+1,k, ϕi,k). (3.93)

Example: Wave Equation

The continuous Lagrangian density for the wave equations is

L(ut(x, t), ux(x, t)) =
1
2 (

∂u(x, t)

∂t
)

2

−
1
2 (

∂u(x, t)

∂x
)

2

. (3.94)

A discretisation with the midpoint rule (3.86) leads to the discrete Lagrangian density

Ld(u
1, u2, u3, u4) =

1
2 (

u4 − u1

2ht
+
u3 − u2

2ht
)

2

−
1
2 (

u2 − u1

2hx
+
u3 − u4

2hx
)

2

. (3.95)

The four contributions to the discrete Euler-Lagrange field equations (3.93) are

∂Ld
∂u1 (ui,k, ui+1,k, ui+1,k+1, ui,k+1) = −

ui,k+1 − ui,k
4h2

t

−
ui+1,k+1 − ui+1,k

4h2
t

+
ui+1,k − ui,k

4h2
x

+
ui+1,k+1 − ui,k+1

4h2
x

, (3.96a)
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∂Ld
∂u2 (ui−1,k, ui,k, ui,k+1, ui−1,k+1) = −

ui−1,k+1 − ui−1,k

4h2
t

−
ui,k+1 − ui,k

4h2
t

−
ui,k − ui−1,k

4h2
x

−
ui,k+1 − ui−1,k+1

4h2
x

, (3.96b)

∂Ld
∂u3 (ui−1,k−1, ui,k−1, ui,k, ui−1,k) = +

ui−1,k − ui−1,k−1

4h2
t

+
ui,k − ui,k−1

4h2
t

−
ui,k−1 − ui−1,k−1

4h2
x

−
ui,k − ui−1,k

4h2
x

, (3.96c)

∂Ld
∂u4 (ui,k−1, ui+1,k−1, ui+1,k, ui,k) = +

ui,k − ui,k−1

4h2
t

+
ui+1,k − ui+1,k−1

4h2
t

+
ui+1,k−1 − ui,k−1

4h2
x

+
ui+1,k − ui,k

4h2
x

. (3.96d)

Summing up all these terms, the discrete wave equation is obtained

ui−1,k+1 − 2ui−1,k + ui−1,k−1

4h2
t

+ 2 ui,k+1 − 2ui,k + ui,k−1

4h2
t

+
ui+1,k+1 − 2ui+1,k + ui+1,k−1

4h2
t

=

=
ui+1,k+1 − 2ui,k+1 + ui−1,k+1

4h2
x

+ 2 ui+1,k − 2ui,k + ui−1,k

4h2
x

+
ui+1,k−1 − 2ui,k−1 + ui−1,k−1

4h2
x

.

(3.97)

This clearly is a discrete version of the continuous wave equation

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2 ,

with the following stencil

1
4h2

t

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2 1
−2 −4 −2

1 2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u =
1

4h2
x

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −2 1
2 −4 2
1 −2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u. (3.98)

We observe that the derivative with respect to one direction is averaged in the other
direction, i.e., the time derivative is averaged over three neighbouring points in space,
and the spatial derivative is averaged over three neighbouring points in time. This
averaging of derivatives is a common feature often found in variational integrators of
field theories. It appears to be one of the decisive features that account for the superior
performance of variational integrators.
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3.2.1. Discrete Jet Space
The discrete phasespace, on which the Lagrangian density is defined, is the discrete first
jet bundle J1Y

Ld ∶ J1Y → R. (3.99)

To understand its structure, some considerations are in order. The discrete spacetime of
dimension two is the grid of points

X = Z ×Z = {(i, k)} ≅ {(ihx, kht) ∣ i, k ∈ Z}. (3.100)

It corresponds to a grid with elements xi,j in continuous spacetime. The discrete fibre
bundle over X is

Y = X ×F . (3.101)

where F is a smooth manifold. Elements of Y over the point (i, k) are denoted by yi,k
and the projection πXY is given by

πXY(yi,k) = (i, k). (3.102)

A square ◻ on X is an ordered quadruplet

◻ = ((i, k), (i + 1, k), (i + 1, k + 1), (i, k + 1)), (3.103)

defining a grid cell, c.f. figure 3.2. The first component of ◻, denoted ◻1, is the first
vertex of the square, with equivalent definitions for the other three vertices

◻1 = (i, k), ◻2 = (i + 1, k), ◻3 = (i + 1, k + 1), ◻4 = (i, k + 1). (3.104)

A section ϕ of Y is a map

ϕ ∶ U ⊆ X → Y (3.105)

such that

πXY ○ ϕ = idU (3.106)

and the ϕa with a ∈ {1,2,3,4} of figure 3.2 correspond to

ϕ1 = ϕ(◻1) = ϕ◻1 , ϕ2 = ϕ(◻2) = ϕ◻2 , ϕ3 = ϕ(◻3) = ϕ◻3 , ϕ4 = ϕ(◻4) = ϕ◻4 . (3.107)

The set of squares on X is denoted X ◻. The first jet bundle of Y is given by

J1Y ≡ {(◻, (yi,k, yi+1,k, yi+1,k+1, yi,k+1)) ∣ ◻ ∈ X ◻, (i, k) = ◻1, yi,k, yi+1,k, yi+1,k+1, yi,k+1 ∈ F}

≡ X ◻ ×F4. (3.108)

The first jet prolongation of a section ϕ on Y is the map

j1ϕ ∶ X ◻ ↦ J1Y (3.109)

defined by

j1ϕ(◻) ≡ (◻, ϕ(◻1), ϕ(◻2), ϕ(◻3), ϕ(◻4)). (3.110)
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The first jet is defined to include first order derivatives, that at the discrete level are
functions of ◻ and ϕ(◻a). The restriction of a vector field V on Y to the fibre Yi,k is
denoted Vi,k, and similarly for vector fields on J1Y . The first jet prolongation of a vector
field V on Y is the vector field j1V on J1Y , defined by

j1V (◻) ≡ (◻, V◻1(y◻1), V◻2(y◻2), V◻3(y◻3), V◻4(y◻4)), (3.111)

for any square ◻.
A point (i, k) ∈ X is touched by a square, if it is a vertex of that square. A point
(i, k) ∈ U ⊆ X is an interior point of U , if U contains all four squares of X that touch
(i, k). The interior intU of U is the collection of all interior points of U . The closure clU
of U is the union of all squares touching interior points of U . A point (i, k) is a boundary
point of U if it is a point in both, U and clU , which is not an interior point. The boundary
∂U of U is the set of boundary points of U , such that

∂U ≡ (U ∩ clU) / intU . (3.112)

Discrete Action Principle

The Lagrangian density on a given square is a function

L◻ ∶ F
4 → R (3.113)

defined as

L◻(y
1, y2, y3, y4) ≡ Ld(◻, y

1, y2, y3, y4). (3.114)

Thus, the discrete Lagrangian density Ld can be regarded as the choice of a function
L◻ on each square ◻ of X . The variables on the domain of L◻ are denoted y1, y2, y3, y4,
independently of the actual ◻.
If C(Y) is the set of sections of Y on a subset U ⊆ X , the discrete action Ad is a real-valued
function on C(Y), defined by

Ad[ϕ] = ∑
◻

◻⊆U

Ld ○ j
1ϕ(◻). (3.115)

The variations ϕε of a section ϕ ∈ C(Y) are described by a vertical map ηε and its gen-
erating vector field V ∈ TϕC(Y). The map ϕε corresponds to a one-parameter family of
sections

ϕε(i, k) ≡ (ηε ○ ϕ)(i, k) ≡ ηεik(ϕ(i, k)), (3.116)

where ηεik is the flow of Vik on Yik. The action principle is to seek those sections ϕ for
which

dAd =
d

dε
Ad[ϕ

ε]∣
ε=0

= 0 (3.117)

for all vector fields V on C(Y). By focusing upon a fixed (i, k) ∈ int(U) and the same
arguments as in the previous section, c.f. equations (3.91) and (3.92), we find the discrete
Euler-Lagrange field equations for all (i, k) ∈ int(U)

∑
a

(i,k)=◻a

∂L◻
∂ya

(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4) = 0 (Discrete Euler-Lagrange Equations). (3.118)
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3.2.2. Discrete Cartan Form
Allowing for nonzero variations on the boundary ∂U will lead us to the discrete Cartan
form. In that case, the vector field V does not necessarily vanish on ∂U .
For each point (i, k) of the boundary ∂U , find the squares in U that touch (i, k). There is
at least one such square since (i, k) ∈ cl(U), but not four such squares since (i, k) ∉ int(U).
For each of the touching squares, (i, k) occurs at the a’th vertex for at most three values
of a = {1,2,3,4}, such that the expressions

∂Ld
∂y1 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1)Vik(ϕik), (3.119a)

∂Ld
∂y2 (ϕi−1,k, ϕi,k, ϕi,k+1, ϕi−1,k+1)Vik(ϕik), (3.119b)

∂Ld
∂y3 (ϕi−1,k−1, ϕi,k−1, ϕi,k, ϕi−1,k)Vik(ϕik), (3.119c)

∂Ld
∂y4 (ϕi,k−1, ϕi+1,k−1, ϕi+1,k, ϕi,k)Vik(ϕik), (3.119d)

give at most three contributions. The total contribution to dAd from the boundary is the
sum of all such terms. In discrete particle mechanics, we found two one-forms. The above
list suggests that there are four Cartan forms, which we define to be

Θ1
Ld

(ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) ⋅ (vyi,k , vyi+1,k , vyi+1,k+1 , vyi,k+1) =

=
∂Ld
∂y1 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) ⋅ (vyij ,0,0,0), (3.120a)

Θ2
Ld

(ϕi−1,k, ϕi,k, ϕi,k+1, ϕi−1,k+1) ⋅ (vyi−1,k , vyi,k , vyi,k+1 , vyi−1,k+1) =

=
∂Ld
∂y2 (ϕi−1,k, ϕi,k, ϕi,k+1, ϕi−1,k+1) ⋅ (0, vyij ,0,0), (3.120b)

Θ3
Ld

(ϕi−1,k−1, ϕi,k−1, ϕi,k, ϕi−1,k) ⋅ (vyi−1,k−1 , vyi,k−1 , vyi,k , vyi−1,k) =

=
∂Ld
∂y3 (ϕi−1,k−1, ϕi,k−1, ϕi,k, ϕi−1,k) ⋅ (0,0, vyij ,0), (3.120c)

Θ4
Ld

(ϕi,k−1, ϕi+1,k−1, ϕi+1,k, ϕi,k) ⋅ (vyi,k−1 , vyi+1,k−1 , vyi+1,k , vyi,k) =

=
∂Ld
∂y4 (ϕi,k−1, ϕi+1,k−1, ϕi+1,k, ϕi,k) ⋅ (0,0,0, vyij). (3.120d)

This quadruple (Θ1
Ld
,Θ2

Ld
,Θ3

Ld
,Θ4

Ld
) is regarded as the discrete counterpart of the Cartan

form ΘL from (2.228). For a vector field V from TC(Y), the expressions from the list
become

[(j1ϕ)∗(ıj1V Θa
Ld

)](◻) =

= Θa
Ld

(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4) ⋅ (V◻1(y◻1), V◻2(y◻2), V◻3(y◻3), V◻4(y◻4)). (3.121)

We collect all the contributions from the boundary into one single object θLd(ϕ) ⋅V , where
θLd is the one-form on the space of sections C(Y), defined by

θLd(ϕ) ⋅ V ≡ ∑
◻

◻∩∂U≠∅

( ∑
a

◻a∈∂U

[(j1ϕ)∗(ıj1V Θa
Ld

)](◻)). (3.122)
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Here we sum over all squares ◻ that touch the boundary, and all vertices ◻a of those
squares that are elements of the boundary. With this, the variation of the discrete action
(3.117) can be written as

dAd ⋅ V = ∑
◻

◻∩intU≠∅

( ∑
a

◻a∈intU

[(j1ϕ)∗(ıj1V Θa
Ld

)](◻))

+ ∑
◻

◻∩∂U≠∅

( ∑
a

◻a∈∂U

[(j1ϕ)∗(ıj1V Θa
Ld

)](◻)) (3.123)

= ∑
◻

◻∩intU≠∅

dL◻ ⋅ V + θLd(ϕ) ⋅ V = 0, (3.124)

which is similar to the continuous result (2.230).

3.2.3. Discrete Multisymplectic Form
The four Cartan forms (3.120) correspond to the exterior derivative of the discrete La-
grangian

dL◻ = ∑
a

◻⊆U

∂L◻
∂ya

(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4)dy◻a = ∑
a

◻⊆U

Θa
Ld

(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4), (3.125)

such that upon defining the discrete multisymplectic form as the exterior derivative of the
discrete Cartan form,

Ωa
Ld

= −dΘa
Ld
, (3.126)

due to d2
L = 0 we get

∑
a

◻⊆U

Ωa
Ld

(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4) = Ω1
Ld

(◻) +Ω2
Ld

(◻) +Ω3
Ld

(◻) +Ω4
Ld

(◻) = 0. (3.127)

For a square ◻ in X , define the projection

π◻ ∶ C(Y)→ J1Y (3.128)

in analogy to the jet prolongation (3.109,3.110) by

π◻(ϕ) ≡ (◻, ϕ(◻1), ϕ(◻2), ϕ(◻3), ϕ(◻4)), (3.129)

such that the forms π∗◻Θa
L are computed as

(π∗◻Θa
Ld

)(ϕ) ⋅ V =
∂Ld
∂ya

(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4) ⋅ V (◻a), (3.130)

and the one-form (3.122) becomes

θLd = ∑
◻

◻∩∂U≠∅

( ∑
a

◻a∈∂U

π∗◻Θa
Ld

). (3.131)

Consider the subspace CL ⊂ C(Y) of the space of sections ϕ, that solve the discrete Euler-
Lagrange equations (3.118). A first variation at a solution ϕ of the discrete Euler-Lagrange
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field equations (3.118) corresponds to a vector field V ∈ TϕCL such that the associated
flow maps ϕ to other solutions of the discrete Euler-Lagrange field equations, i.e., sections
ϕ ∈ CL are integral curves of V . Restricting the action (3.123) to the subspace CL, the
first sum in (3.123) becomes zero and only the one-form (3.122) is retained. Computing
the exterior derivative of the variation of the action and restricting to two first variations
V,W ∈ TϕCL, we obtain

0 = d2
Ad ⋅ V ⋅W = dθLd(φ)(V,W ) = ∑

◻
◻∩∂U≠∅

( ∑
a

◻a∈∂U

V W π∗◻Ωa
Ld

), (3.132)

which is equivalent to

∑
◻

◻∩∂U≠∅

( ∑
a

◻a∈∂U

[(j1ϕ)∗(V W Ωa
Ld

](◻)) = 0. (3.133)

This is the discrete analogue to the multisymplectic form formula (2.262).

3.2.4. Discrete Noether Theorem
We restrict our treatment to the case of a scalar field theory, one spatial dimension,
and vertical transformations, but at least the first two restrictions are easily lifted [84].
Consider a one-parameter group of

ϕεi,k = η
ε ○ ϕi,k such that ϕ0

i,k = ϕi,k. (3.134)

The infinitesimal generator of the transformation ϕεi,k is

Xi,k =
d

dε
ϕεi,k∣

ε=0
or in abstract notation X◻a(ϕ◻a) =

d

dε
ϕε◻a∣

ε=0
. (3.135)

The discrete Lagrangian has a symmetry if it is invariant under this transformation

Ld(ϕ
ε
◻1 , ϕ

ε
◻2 , ϕ

ε
◻3 , ϕ

ε
◻4) = Ld(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4) for all ε. (3.136)

This is equivalent to

dL◻ ⋅X =
d

dε
∣
ε=0
Ld(ϕ

ε
◻1 , ϕ

ε
◻2 , ϕ

ε
◻3 , ϕ

ε
◻4) (3.137)

= ∑
a

◻⊆U

[
∂Ld
∂ya

(ϕ◻1 , ϕ◻2 , ϕ◻3 , ϕ◻4) ⋅X◻a(ϕ◻a)] = 0, (3.138)

or explicitly in grid coordinates,

dL◻ ⋅X =
∂Ld
∂y1 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) ⋅Xi,k

+
∂Ld
∂y2 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) ⋅Xi+1,k

+
∂Ld
∂y3 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) ⋅Xi+1,k+1

+
∂Ld
∂y4 (ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) ⋅Xi,k+1 = 0.

(3.139)
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k = 1

k = nt

nx 1 i − 1 i i + 1 nx 1

(b) (a)

(c) (d)

Fig. 3.4.: Boundary terms in a spatially periodic integration domain.

Since the ϕ are solutions of the discrete Euler-Lagrange field equations (3.118), the gen-
erating vector field X is a first variation, i.e., X ∈ TϕCL. This means that the sum in
(3.124) vanishes, and we obtain

θLd(ϕ) ⋅X ≡ ∑
◻

◻∩∂U≠∅

( ∑
a

◻a∈∂U

[(j1ϕ)∗(ıj1XΘa
Ld

)](◻)) = 0, (3.140)

or explicitly in grid coordinates,

0 = ∑
i

(i,k)∈∂U

[
∂Ld
∂y1 (ϕi,1, ϕi+1,1, ϕi+1,2, ϕi,2) ⋅Xi,1

+
∂Ld
∂y2 (ϕi−1,1, ϕi,1, ϕi,2, ϕi−1,2) ⋅Xi,1

+
∂Ld
∂y3 (ϕi−1,nt−1, ϕi,nt−1, ϕi,nt , ϕi−1,nt) ⋅Xi,nt

+
∂Ld
∂y4 (ϕi,nt−1, ϕi+1,nt−1, ϕi+1,nt , ϕi,nt) ⋅Xi,nt].

(3.141)

The various contributions arise as depicted in figure 3.4. If we fix the spatial index i,
there are four cells that touch the boundary, two at (i,1) and two at (i, nt), respectively.
The first contribution arises from the cell marked (a). The point (i,1) corresponds to
◻1, such that the derivative of the Lagrangian is computed with respect to y1 = y(◻1).
The other contributions follow in the same way. In principle, there are also contributions
to (3.140) that arise from the spatial boundary at i = 1 and i = nx. One either has to
account for those or select boundary conditions, that automatically take care of these
contributions. We shall always use periodic boundary conditions (as depicted), such that
practically there is no boundary in the spatial dimension.
With the help of the discrete symmetry condition (3.139), we can replace the first two
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lines in (3.141), such that

∑
i

(i,k)∈∂U

[
∂Ld
∂y3 (ϕi−1,nt−1, ϕi,nt−1, ϕi,nt , ϕi−1,nt)⋅Xi,nt+

∂Ld
∂y4 (ϕi,nt−1, ϕi+1,nt−1, ϕi+1,nt , ϕi,nt)⋅Xi,nt] =

= ∑
i

(i,k)∈∂U

[
∂Ld
∂y3 (ϕi−1,1, ϕi,1, ϕi,2, ϕi−1,2) ⋅Xi,2 +

∂Ld
∂y4 (ϕi,1, ϕi+1,1, ϕi+1,2, ϕi,2) ⋅Xi,2].

(3.142)

This is a conservation law, and as the number of timesteps nt is arbitrary, can be written
as

nx−1
∑
i=1

[
∂Ld
∂y3 (ϕi−1,k−1, ϕi,k−1, ϕi,k, ϕi−1,k) +

∂Ld
∂y4 (ϕi,k−1, ϕi+1,k−1, ϕi+1,k, ϕi,k)] ⋅Xi,k = const.

(3.143)

The structure of this conservation law implies that if the continuous Lagrangian has a
vertical symmetry, any consistent discretisation of the Lagrangian will lead to a discrete
conservation law corresponding to that symmetry.

3.2.5. Discrete Momentum Maps
Geometrically, a conserved quantity is described by a momentum map

Ja ≡ ıj1XΘa
Ld

with X◻a(ϕ◻a) =
d

dε
ϕε◻a∣

ε=0
, (3.144)

such that (3.140) takes the form

∑
◻

◻∩∂U≠∅

( ∑
a

◻a∈∂U

(j1ϕ)∗Ja(◻)) = 0, (3.145)

or explicitly in grid coordinates,
nx−1
∑
i=1

[J1(ϕi,1, ϕi+1,1, ϕi+1,2, ϕi,2) + J
2(ϕi,1, ϕi+1,1, ϕi+1,2, ϕi,2)

+ J3(ϕi,nt−1, ϕi+1,nt−1, ϕi+1,nt , ϕi,nt) + J
4(ϕi,nt−1, ϕi+1,nt−1, ϕi+1,nt , ϕi,nt)]. (3.146)

The invariance of the Lagrangian (3.136) and (3.125) implies

J1(ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) + J
2(ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1)

+ J3(ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) + J
4(ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) = 0, (3.147)

so that we can replace the last line of (3.146) to get

nx−1
∑
i=1

[J1(ϕi,nt−1, ϕi+1,nt−1, ϕi+1,nt , ϕi,nt) + J
2(ϕi,nt−1, ϕi+1,nt−1, ϕi+1,nt , ϕi,nt)] =

=
nx−1
∑
i=1

[J1(ϕi,1, ϕi+1,1, ϕi+1,2, ϕi,2) + J
2(ϕi,1, ϕi+1,1, ϕi+1,2, ϕi,2)]. (3.148)
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As this is true for any nt, we can infer the general expression

nx−1
∑
i=1

[J1(ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1) + J
2(ϕi,k, ϕi+1,k, ϕi+1,k+1, ϕi,k+1)] = const. (3.149)

This is equivalent to the conservation law (3.143).

3.3. Example: The Advection Equation
In this section, we apply the theory of the previous chapter to an interesting and instruc-
tive example, namely the advection equation. Its structure is similar to that of the Vlasov
equation which we will study in chapter 5. The linear advection equation for a field u(t, x)
(in the following referred to as density) reads

∂tu + c ∂xu = 0, (3.150)

where the velocity, c, is a constant parameter. For initial conditions u(t = 0, x) = u0(x),
the analytic solution is

u(t, x) = u0(x − ct). (3.151)

The advection equation does not have a natural variational formulation, but we can apply
the theory from section 2.2.7 to obtain an extended Lagrangian.

3.3.1. Extended Lagrangian
The extended Lagrangian for the advection equation is obtained by multiplying (3.150)
with the auxiliary variable v(t, x). The solution vector of the extended system is denoted
w = (u, v), such that the Lagrangian can be written as

L(j1w) = v(ut + cux)ω, (3.152)

where ω = dt ∧ dx is the volume form, so that the corresponding action is A = ∫ L. The
variational derivative of the action with respect to the Ibragimov multiplier v retains the
advection equation

δA

δv
= +ut + cux = 0. (3.153)

The variation with respect to the original variable u yields the adjoint equation

δA

δu
= −vt − cvx = 0. (3.154)

It is immediately observed that the adjoint equation has the same solution as the original
equation, such that if u is a solution of the advection equation, then w = (u,u) solves the
Euler-Lagrange equations of the extended Lagrangian (3.152). Here and in the remaining
part of the section, w denotes the combined fields (u, v).
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3.3.2. Variational Integrator
We discretise the Lagrangian (3.152) on a grid cell as depicted in figure 3.2 by

Ld(w
1,w2,w3,w4) = ht hx

1
4(v1 + v2 + v3 + v4)×

× [
1
2(
u4 − u1

ht
+
u3 − u2

ht
) +

c

2(
u2 − u1

hx
+
u3 − u4

hx
)] (3.155)

The discrete Euler-Lagrange field equations (3.93)

0 = ∂Ld
∂g1 (wi,k,wi+1,k,wi+1,k+1,wi,k+1) +

∂Ld
∂g2 (wi−1,k,wi,k,wi,k+1,wi−1,k+1)

+
∂Ld
∂g3 (wi−1,k−1,wi,k−1,wi,k,wi−1,k) +

∂Ld
∂g4 (wi,k−1,wi+1,k−1,wi+1,k,wi,k) (3.156)

are computed as

0 =1
4[
ui+1,k+1 − ui+1,k−1

2ht
+ 2 ui,k+1 − ui,k−1

2ht
+
ui−1,k+1 − ui−1,k−1

2ht
]

+
c

4[
ui+1,k+1 − ui−1,k+1

2hx
+ 2 ui+1,k − ui−1,k

2hx
+
ui+1,k−1 − ui−1,k−1

2hx
]. (3.157)

As in the continuous case, the discrete adjoint equation has the exact same form as the
discrete advection equation. Again, we find the same kind of averaging we have already
observed in the example of the wave equation (3.97).

3.3.3. Continuous Conservation Laws
We will shortly prove some conservation laws of the advection equation, namely the
conservation of the average density, the L1 and L2 norms, the total linear momentum and
kinetic energy. We consider vertical transformations with generators of the form

X =Xu ∂

∂u
+Xv ∂

∂v
with Xa =Xa(u, v), (3.158)

as discussed in section 2.3. The jet prolongation (2.303) of such vector fields are

j1X =Xu ∂

∂u
+Xv ∂

∂v
+ [

∂Xu

∂u

∂u

∂xµ
+
∂Xv

∂u

∂u

∂xµ
]
∂

∂uµ
+ [

∂Xu

∂v

∂v

∂xµ
+
∂Xv

∂v

∂v

∂xµ
]
∂

∂vµ
,

(3.159)

such that the invariance condition (2.306) becomes

j1X(L) =Xv (ut + cux) + v (ut + cux)(
∂Xu

∂u
+
∂Xv

∂u
). (3.160)

Conservation laws (2.309) take the form

d

dt ∫
[
∂L

∂ut
(j1w)Xu +

∂L

∂vt
(j1w)Xv]dx =

d

dt ∫
vXu dx. (3.161)

We can use these expressions directly to test for several possible symmetries.
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Conservation of the Average Density

Consider a vertical transformation generated by X = (Xu,Xv) with

Xu = 1, Xv = 0. (3.162)

The Lagrangian is trivially invariant under this transformation

j1X(L) = 0. (3.163)

The corresponding conservation law (3.161) is

d

dt ∫
v dx = 0. (3.164)

If u is a solution of the advection equation, the pair (u, v) = (u,u) solves the extended
system. We can therefore reduce the conserved quantity in (3.164) by specialising it to
v = u. This gives the conservation of the average density, namely

d

dt ∫
udx = 0. (3.165)

If, in addition, the advection equation (3.150) is provided with positive initial condi-
tions, u0(x) ≥ 0, the positivity is preserved at later times, and thus (3.165) turns into a
conservation law for the L1 norm of u.

Conservation of the L2 Norm

Consider a different vertical transformation generated by X = (Xu,Xv) with

Xu = u, Xv = −v. (3.166)

The Lagrangian density is invariant under this transformation as well

j1X(L) = −v(ut + cux) + v(ut + cux) = 0. (3.167)

The corresponding conservation law (3.161) is

d

dt ∫
vudx = 0. (3.168)

Upon identifying v with u, this gives the conservation of the L2 norm of u

d

dt ∫
u2 dx = 0. (3.169)

Conservation of Linear Momentum and Kinetic Energy

Lastly, consider the following vertical transformation generated by X = (Xu,Xv) with

Xu = c, Xv = 0. (3.170)

The Lagrangian density is trivially invariant also under this transformation

j1X(L) = 0. (3.171)
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The corresponding conservation law is
d

dt ∫
c v dx = 0. (3.172)

Upon identifying v with u, this gives the conservation of linear momentum
d

dt ∫
cudx = 0. (3.173)

Conservation of kinetic energy follows exactly the same way by choosing Xu = 1
2c

2, i.e.,
d

dt ∫
1
2 c

2 v dx =
d

dt ∫
1
2 c

2 udx = 0. (3.174)

We have therefore proved conservation of the most important quantities related to the
advection equation.

3.3.4. Discrete Conservation Laws
The discrete generator Xi,j = (Xu

i,k,X
v
i,k) of the transformation given by (3.162) is

Xu
i,k = 1, Xv

i,k = 0. (3.175)

The discrete Lagrangian (3.155) is invariant under this transformation

dL◻ ⋅X =
∂Ld
∂u1 (wi,k,wi+1,k,wi+1,k+1,wi,k+1)X

u
i,k

+
∂Ld
∂u2 (wi,k,wi+1,k,wi+1,k+1,wi,k+1)X

u
i+1,k

+
∂Ld
∂u3 (wi,k,wi+1,k,wi+1,k+1,wi,k+1)X

u
i+1,k+1

+
∂Ld
∂u4 (wi,k,wi+1,k,wi+1,k+1,wi,k+1)X

u
i,k+1

=
ht hx

8 [vi,k + vi+1,k + vi+1,k+1 + vi,k+1][ −
1
ht
−
c

hx
]Xu

i,k

+
ht hx

8 [vi,k + vi+1,k + vi+1,k+1 + vi,k+1][ −
1
ht
+
c

hx
]Xu

i+1,k

+
ht hx

8 [vi,k + vi+1,k + vi+1,k+1 + vi,k+1][ +
1
ht
+
c

hx
]Xu

i+1,k+1

+
ht hx

8 [vi,k + vi+1,k + vi+1,k+1 + vi,k+1][ +
1
ht
−
c

hx
]Xu

i,k+1

= 0. (3.176)

The corresponding conservation law (3.143) is
nx−1
∑
i=1

[
∂Ld
∂u3 (wi−1,k−1,wi,k−1,wi,k,wi−1,k) +

∂Ld
∂u4 (wi,k−1,wi+1,k−1,wi+1,k,wi,k)] ⋅X

u
i,k

= hx
nx−1
∑
i=1

1
4[vi,k + vi+1,k + vi+1,k+1 + vi,k+1]

= hx
nx−1
∑
i=1

1
4[ui,k + ui+1,k + ui+1,k+1 + ui,k+1], (3.177)

where the last equality arises from identifying v with u. The conservation of the discrete
momentum and energy follows along the same lines.
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4. Charged Particle Motion
This section addresses a reduced description of the motion of charged particles in a plasma,
the so called guiding centre dynamics. It can be seen as a limit of gyrokinetic theory, the
predominant model used in plasma physical particle-in-cell codes, that is valid when the
magnetic field is very strong, such that the gyration orbit of the particle is very small, or
when the electromagnetic field is almost spatially uniform, such that it varies only very
little along the gyration orbit. It is also closely related to drift kinetic theory which is a
reduced model of kinetic theory (see next chapter).
After a short summary of the Lagrangian formulation for this set of dynamical equations,
a set of variational integrators based on different quadrature rules is derived. This inte-
grators is adapted to the reduced dynamics in the poloidal plane similar to [103] as well
as to the dynamics in full tokamak geometry. Several higher order methods are derived
by composition methods. The advantages of the variational discretisations compared to
widely used Runge-Kutta schemes are demonstrated.

4.1. Guiding Centre Dynamics
In a magnetic field, charged particles move along a helix. This motion can be decomposed
into the gyration about a magnetic field line, and the motion of the centre of the gyration
(guiding centre) along the field line. Mathematically, this amounts to a coordinate trans-
formation from spatial coordinates x and the corresponding velocities ẋ to guiding centre
coordinates (X,Θ, u, µ), where X is the position of the guiding centre, Θ is the angle of
the gyration (gyrophase), µ the magnetic moment, and u = ẋ ⋅ b is the velocity along the
magnetic field lines (parallel velocity).
Littlejohn [77] was the first to devise a variational principle for the guiding centre motion
and thereby find simple proofs for conservation of energy and angular momentum. His
Lagrangian reads

L = A∗ ⋅ Ẋ + µΘ̇ −H (4.1)

with the Hamiltonian

H =
1
2u

2 + µB + ϕ (4.2)

and the so called “modified vector potential” (first discovered by Morozov and Solov’ev
[88])

A∗ = A + ub. (4.3)

Here, B is the magnetic field strength, b its unit vector, and ϕ is the electrostatic potential.
Units are chosen such that e = m = c = 1, with charge e, particle mass m, and speed of
light c.
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The Lagrangian (4.1) is regarded as a function of the guiding centre variables (X,Θ, u, µ)
and their time derivatives (Ẋ, Θ̇, u̇, µ̇). For the spatial components, the Euler-Lagrange
equations are

d

dt
(
∂L

∂Ẋ i
) −

∂L

∂X i
= 0 (4.4)

which explicitly amounts to
d

dt
A∗
i −A

∗
j,iẊ

j − µB,i − ϕ,i = 0. (4.5)

Computing the time derivative, this becomes

(A∗
i,j −A

∗
j,i) Ẋ

j − µB,i − ϕ,i = 0. (4.6)

From the equation of the gyrophase

d

dt
(
∂L

∂Θ̇
) = 0 or µ̇ = 0 (4.7)

the conservation of the magnetic moment µ is obtained. The Euler-Lagrange equation of
the parallel velocity is just

∂L

∂u
= 0 or u = b ⋅ Ẋ, (4.8)

i.e. the definition of the parallel velocity. And from the equation of µ
∂L

∂µ
= 0 or Θ̇ = B (4.9)

we obtain, upon restoration of physical units, the definition of the gyro frequency

Θ̇ = ω =
eB

m
. (4.10)

If the variation of the background electromagnetic fields is small along the radius of the
gyration, the particle’s motion can be approximated by the motion of just the guiding
centre, averaging over the gyrophase. The corresponding reduced Lagrangian is

L = A∗ ⋅ Ẋ −H, H =
1
2u

2 + µB − ϕ. (4.11)

This is the starting point for the derivation of a set of variational integrators for the
guiding centre motion of charged particles in a tokamak.

4.2. Variational Discretisation
At first, the general derivation of a variational integrator for guiding centre motion is
reproduced similar to Qin et al. [103], where the trapezoidal rule is used to discretise the
Lagrangian. In addition, we provide the derivation of a second integrator based on the
midpoint rule that appears to be more stable and small timesteps and yields more accurate
results. In the last section the construction of higher order schemes by composition of
low order schemes is sketched.
To allow for a compact notation, we introduce the generalised coordinates qi = X i with
i = {1,2,3} and qu = u. Together, they are denoted qν with ν = {1,2,3, u} or just q.
Correspondingly, the conjugate momenta are denoted pν or just p.
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4.2.1. Trapezoidal Discretisation
Applying a trapezoidal discretisation to Littlejohn’s guiding centre Lagrangian (4.1) gives

Ld(qk, qk+1) =
h

2 L(qk,
qk+1 − qk

h
) +

h

2 L(qk+1,
qk+1 − qk

h
) (4.12)

= h [
A∗
i (qk) +A

∗
i (qk+1)

2
qik+1 − q

i
k

h
−

(quk)
2 + (quk+1)

2

4

− ν
B(qk) +B(qk+1)

2 −
φ(qk) + φ(qk+1)

2 ]. (4.13)

This Lagrangian, however, results in a scheme with small stability region, as the expression
resulting from the (qu)2 term is explicit in qu. Qin et al. [103] replace this term with qkqk+1.
We explore a different modification in this term to make the resulting expression implicit
in qu, that is

Ld(qk, qk+1) = h [
A∗
i (qk) +A

∗
i (qk+1)

2
qik+1 − q

i
k

h
−

1
2 (

quk + q
u
k+1

2 )

2

− ν
B(qk) +B(qk+1)

2 −
φ(qk) + φ(qk+1)

2 ]. (4.14)

Questions about which discretisations of the Lagrangian can be regarded as “good”, i.e.,
produce well working, stable schemes, and which discretisations work less well remain
largely unanswered. Unfortunately, there exist no clear guidelines for the discretisation of
the Lagrangian, but the preservation of symmetries in the course of discretisation certainly
plays an important role.
Continuing with the derivation of the discrete Euler-Lagrange equations, these are defined
as

∂

∂qjk
[Ld(qk−1, qk) +Ld(qk, qk+1)] =

= h [A∗
i,j(qk)

qik+1 − q
i
k−1

2h −
A∗
j (qk+1) −A∗

j (qk−1)

2h − µB,j(qk) − ϕ,j(qk)] = 0, (4.15a)

∂

∂quk
[Ld(qk−1, qk) +Ld(qk, qk+1)] =

= h [bi(qk)
qik+1 − q

i
k−1

2h −
quk−1 + 2 quk + quk+1

4 ] = 0. (4.15b)

This set of equations forms an implicit system for the solution of the guiding centre
dynamics depending on data at three points in time, qk+1, qk and qk−1. It constitutes a
discrete map

(qk−1, qk)↦ (qk, qk+1). (4.16)

Solving the system for qk+1 yields nonlinearly implicit iteration rules for integrating the
discrete phasespace trajectory {qk}Nk=0 of the particle. A possible solution strategy is to
use a Newton solver for the nonlinear iteration. If the initial guess, e.g., by the linearised
scheme derived below, is sufficiently close to the solution, no more than two or three iter-
ations are needed. Using an analytic solution in the Newton iteration and a fixed number
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of iterations per timestep, such that an evaluation of the residual becomes unnecessary,
the computational effort is about the same as for a standard fourth order Runge-Kutta
method. The variational integrator is therefore computationally competitive to an explicit
standard method while yielding superior results.

Linearisation

The linearisation of (4.15) allows for an easier comparison with the continuous equations
of motion (4.6-4.9) and highlights the differences between the variational integrator and a
direct discretisation. It is also possible to use this linearised scheme to compute an initial
guess for a nonlinear solver applied to the above scheme.
Expand the [A∗

j (qk+1) −A∗
j (qk−1)]/2h term in (4.15a) into a Taylor series about qk

A∗
j (qk+1) −A∗

j (qk−1)

2h ≈ A∗
j,i(qk)

qik+1 − q
i
k−1

2h + bj(qk)
quk+1 − q

u
k−1

2h . (4.17)

Upon insertion into (4.15a) we obtain a linearised set of equations

[A∗
i,j(qk) −A

∗
j,i(qk)]

qik+1 − q
i
k−1

2h − bj(qk)
quk+1 − q

u
k−1

2h − µB,j(qk) − ϕ,j(qk) = 0, (4.18a)

bi(qk)
qik+1 − q

i
k−1

2h −
quk−1 + 2 quk + quk+1

4 = 0. (4.18b)

Except for the additional u̇b term, these equations resemble (4.6) and (4.8), while the
original equation (4.15a) resembles (4.5).

Position Momentum Form

The position-momentum form (3.14) of the trapezoidal integrator (4.15) is given by

pjk = −
∂

∂qjk
Ld(qk, qk+1), pjk+1 =

∂

∂qjk+1
Ld(qk, qk+1), (4.19a)

puk = −
∂

∂quk
Ld(qk, qk+1), puk+1 =

∂

∂quk+1
Ld(qk, qk+1). (4.19b)

Explicitly computing these expressions gives

pjk = −
1
2 A

∗
i,j(qk) [q

i
k+1 − q

i
k] +

1
2
[A∗

j (qk) +A
∗
j (qk+1)] +

h

2 µB,j(qk) +
h

2 φ,j(qk), (4.20a)

puk = −
1
2 bi(qk)

[qik+1 − q
i
k] +

h

4
[quk + q

u
k+1], (4.20b)

pjk+1 = +
1
2 A

∗
i,j(qk+1) [q

j
k+1 − q

j
k] +

1
2
[A∗

j (qk) +A
∗
j (qk+1)] −

h

2 µB,j(qk+1) −
h

2 φ,j(qk+1),

(4.20c)

puk+1 = +
1
2 bi(qk+1) [q

i
k+1 − q

i
k] −

h

4
[quk − q

u
k+1]. (4.20d)

This set of equations forms a nonlinearly implicit system for the solution of the guiding
centre dynamics depending only on data at two points in time, qk+1 and qk. The first
two equations have to be solved for the qk+1. Afterwards, the qk+1 are straight forwardly
computed, as the other two equations are merely explicit functions. The discrete map
corresponding to this formulation is

(qk, pk)↦ (qk+1, pk+1). (4.21)
Solving this system, results in the same trajectory {qk}Nk=0 as solving the system (4.15).
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Discrete Cartan Form

The discrete Cartan one-forms corresponding to the Lagrangian (4.14) are given by

Θ−
Ld

(qk, qk+1) = −
∂

∂qνk
Ld(qk, qk+1)dq

ν
k , Θ+

Ld
(qk, qk+1) = +

∂

∂qνk+1
Ld(qk, qk+1)dq

ν
k+1,

(4.22)

explicitly computed to be

Θ−
Ld

(qk, qk+1) = −
⎧⎪⎪⎪⎪⎪⎩

1
h
A∗
i,j(qk) [q

i
qk+1

− qik] −
1
h
[A∗

j (qk) +A
∗
j (qk+1)]

−
h

2µB,j(qk) −
h

2 φ,j(qk)
⎫⎪⎪⎪⎪⎪⎭
dqjk

−
⎧⎪⎪⎪⎪⎪⎩

1
2 bj(qk)

[qjk+1 − q
j
k] −

h

4
[quk + q

u
k+1]

⎫⎪⎪⎪⎪⎪⎭
dquk , (4.23)

Θ+
Ld

(qk, qk+1) = +
⎧⎪⎪⎪⎪⎪⎩

1
2 A

∗
i,j(qk+1) [q

i
k+1 − q

i
k] +

1
2
[A∗

j (qk) +A
∗
j (qk+1)]

−
h

2µB,j(qk+1) −
h

2 φ,j(qk+1)
⎫⎪⎪⎪⎪⎪⎭
dqjk+1

+
⎧⎪⎪⎪⎪⎪⎩

1
2 bj(qk+1) [q

j
k+1 − q

j
k] −

h

4
[quk + q

u
k+1]

⎫⎪⎪⎪⎪⎪⎭
dquk+1. (4.24)

Together, these two forms determine the exterior derivative of the Lagrangian Ld(qk, qk+1)

dLd(qk, qk+1) = Θ+
Ld

(qk, qk+1) −Θ−
Ld

(qk, qk+1). (4.25)

As ddLd = 0, the exterior derivative of both one-forms defines the same two-form

Ωd(qk, qk+1) = dΘ+
Ld

= dΘ−
Ld
. (4.26)

This is the discrete symplectic two-form Ωd. Its preservation along the Lagrangian flow
is given by construction and has been shown in section 3.1.4.

4.2.2. Midpoint Discretisation
We now derive an alternative method based on a midpoint discretisation. The main
advantage over the trapezoidal scheme from the last section is a higher accuracy of the
method. We restrict ourselves to deriving the Euler-Lagrange equations and the position-
momentum form of the equations of motion and do not repeat the derivation of the Cartan
one-form.
Applying a midpoint discretisation to Littlejohn’s guiding centre Lagrangian (4.1) gives

Ld(qk, qk+1) = hL(
qk + qk+1

2 ,
qk+1 − qk

h
) = hL(qk+1/2,

qk+1 − qk
h

) (4.27)

= h [A∗
i (qk+1/2)

qik+1 − q
i
k

h
− (

quk + q
u
k+1

2 )

2
− µB(qk+1/2) − φ(qk+1/2)], (4.28)
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where qk+1/2 =
1
2(qk + qk+1). The discrete Euler-Lagrange equations of this midpoint dis-

cretisation are computed as
∂

∂qjk
[Ld(qk−1, qk) +Ld(qk, qk+1)] =

=
1
2 [A∗

i,j(qk+1/2)][q
i
k+1 − q

i
k] +

1
2 [A∗

i,j(qk−1/2)][q
i
k − q

i
k−1] − [A∗

j (qk+1/2) −A
∗
j (qk−1/2)]

−
h

2 µ [B,j(qk−1/2) +B,j(qk+1/2)] −
h

2 [ϕ,j(qk−1/2) + ϕ,j(qk+1/2)] = 0,
(4.29a)

∂

∂quk
[Ld(qk−1, qk) +Ld(qk, qk+1)] =

=
1
2 [bi(qk−1/2) [q

i
k − q

i
k−1] + bi(qk+1/2) [q

i
k+1 − q

i
k] ] −

h

4 [quk−1 + 2 quk + quk+1] = 0.
(4.29b)

The position-momentum form of the midpoint integrator is computed as

pik = −
1
2
[A∗

i,j(qk+1/2)][q
i
k+1 − q

i
k] +A

∗
j (qk+1/2) +

h

2 µB,j(qk+1/2) +
h

2 ϕ,j(qk+1/2) (4.30a)

puk = −
1
2 bi(qk+1/2)[q

i
k+1 − q

i
k] +

h

4 [quk + q
u
k+1] (4.30b)

pik+1 = +
1
2
[A∗

i,j(qk+1/2)][q
i
k+1 − q

i
k] +A

∗
j (qk+1/2) −

h

2 µB,j(qk+1/2) −
h

2 ϕ,j(qk+1/2) (4.30c)

puk+1 = +
1
2 bi(qk+1/2)[q

i
k+1 − q

i
k] −

h

4 [quk + q
u
k+1]. (4.30d)

The first two equations have to be solved for qk+1. The solution of the second two equations
for pk+1 is then straight forward.

4.2.3. Higher Order Schemes
If the discrete Lagrangian is self-adjoint, c.f. section 3.1.5,

L∗d(qk, qk+1, h) ≡ −Ld(qk+1, qk,−h) = Ld(qk+1, qk, h), (4.31)

the resulting variational integrator can be composed to yield higher order methods. Both,
the trapezoidal Lagrangian (4.12)

(Ltr
d )

∗(qk, qk+1, h) = −(−h)
1
2 [L(qk+1,

qk − qk+1

−h
) −L(qk,

qk − qk+1

−h
)]

=
h

2 [L(qk,
qk+1 − qk

h
) −L(qk+1,

qk+1 − qk
h

)]

= Ld(qk, qk+1, h)

and the midpoint Lagrangian (4.27)

(Lmp
d )∗(qk, qk+1, h) = −(−h)L(

qk+1 + qk
2 ,

qk − qk+1

−h
)

= hL(
qk + qk+1

2 ,
qk+1 − qk

h
)

= Lmp
d (qk, qk+1, h)
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fulfil this property. The same is true for the modified trapezoidal Lagrangian (4.14), so
that we can apply the composition rules from section 3.1.5 to the schemes just derived.

4.3. Particle Motion in the Poloidal Plane
In this section we want to apply the derivations from the previous section to the motion
of a charged particle in axisymmetric tokamaks. The toroidal symmetry allows us to
reduce the dynamics to the poloidal plane of a tokamak. At first, the derivation of
Qin et al. [103] is reproduced, with the difference that cylindrical coordinates (R,Z)

are used instead of toroidal coordinates (r, θ). The toroidal symmetry implies that the
toroidal momentum pϕ is conserved and can be used to express the parallel velocity u as a
function of (R,Z). Hence, upon prescribing the values of the toroidal momentum pϕ and
the magnetic moment µ, only the coordinates of the poloidal plane (R,Z) are treated as
dynamical variables.
In [103], the Lagrangian is discretised with the trapezoidal rule exclusively. We will also
derive an integrator based on the midpoint rule as well as a composition scheme based
thereon. Finally we will compare all three of these schemes with a standard explicit
Runge-Kutta method. We restrict our treatment to the position-momentum form as that
appears more natural with respect to the specification of initial conditions.

Magnetic Field and Vector Potential

For the magnetic field B and the vector potential A we will use analytic expressions
following Qin et al. [103]. The vector potential is given as

AR =
B0R0Z

2R , AZ = − ln(
R

R0
)
B0R0

2 , Aϕ = −
B0r2

2qR , r =
√

(R −R0)2 +Z2, (4.32)

where subscripts R, Z and ϕ denote the radial, vertical and toroidal components, respec-
tively. The magnetic field B = ∇×A is

BR = −
B0Z

qR
, BZ =

B0 (R −R0)

qR
, Bϕ = −

B0R0

R
, B =

B0S

qR
,

with the normalised magnetic field being

bR = −
Z

S
, bZ =

R −R0

S
, bϕ = −

qR0

S
, S =

√
r2 + q2R2

0. (4.33)

Here, R0 is the radial position of the magnetic axis, B0 is the magnetic field at R0, and
q is the safety factor, regarded as constant. All the derivatives of the above expressions,
which will be needed in the derived schemes, are listed in section 4.C.

Toroidal Momentum and Parallel Velocity

It will be practical to express the Lagrangian with respect to to the momenta (pR, pZ , pϕ),
such that in cylinder coordinates (R,Z,ϕ) we have

L = pRṘ + pZŻ + pϕϕ̇ −H, H =
1
2u

2 + µB − φ, (4.34)
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with

pR = A∗
R = AR + ubR, pZ = A∗

Z = AZ + ubZ , pϕ = RA
∗
ϕ = R (Aϕ + ubϕ). (4.35)

As pϕ is conserved (∂L/∂ϕ = 0),

pϕ = −R [
B0r2

2qR + u
qR0

S
] = const, (4.36)

we can compute a functional expression for the parallel velocity u in which pϕ is a param-
eter

u = −[pϕ +
B0r2

2q ]
S

qRR0
= −[pϕ +

B0r2

2q ]
B

B0R0
. (4.37)

Reduced Lagrangian and Generalised Coordinates

Projecting the motion to the poloidal plane and assuming the absence of any electrostatic
field, the Lagrangian reduces to

L = pRṘ + pZŻ −H = A∗
RṘ +A∗

ZŻ −
1
2u

2 − µB, (4.38)

where the components of the generalised magnetic potential read

A∗
R =

B0R0Z

2R + [pϕ +
B0r2

2q ]
Z

qRR0
, A∗

Z = − ln(
R

R0
)
B0R0

2 − [pϕ +
B0r2

2q ]
R −R0

qRR0
,

(4.39)

and the parallel velocity u is given by (4.37). We introduce generalised coordinates qRk
and qZk with discrete conjugate momenta pRk and pZk

L = A∗
Rq̇

R +A∗
Z q̇

Z −
1
2u

2 − µB. (4.40)

This is the basis for the following discretisations.

4.3.1. Trapezoidal Discretisation
Applying a trapezoidal discretisation to the reduced guiding centre Lagrangian (4.40)
gives

Ltr
d (qk, qk+1) =

h

2 L(qk,
qk+1 − qk

h
) +

h

2 L(qk+1,
qk+1 − qk

h
)

= h [
A∗
R(qk) +A

∗
R(qk+1)

2
qRk+1 − q

R
k

h
+
A∗
Z(qk) +A

∗
Z(qk+1)

2
qZk+1 − q

Z
k

h

−
1
2 (

u(qk) + u(qk+1)

2 )

2

− µ
B(qk) +B(qk+1)

2 ]. (4.41)
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The position-momentum form (3.14) of the trapezoidal integrator is computed as

pRk =
1
2[ −A∗

R,R(qk) [q
R
k+1 − q

R
k ] −A

∗
Z,R(qk) [q

Z
k+1 − q

Z
k ] + [A∗

R(qk) +A
∗
R(qk+1)]

+
h

2 u,R(qk) [u(qk) + u(qk+1)] + hµB,R(qk)], (4.42a)

pZk =
1
2[ −A∗

R,Z(qk) [q
R
k+1 − q

R
k ] −A

∗
Z,Z(qk) [q

Z
k+1 − q

Z
k ] + [A∗

Z(qk) +A
∗
Z(qk+1)]

+
h

2 u,Z(qk) [u(qk) + u(qk+1)] + hµB,Z(qk)], (4.42b)

pRk+1 =
1
2[ +A∗

R,R(qk+1) [q
R
k+1 − q

R
k ] +A

∗
Z,R(qk+1) [q

Z
k+1 − q

Z
k ] + [A∗

R(qk) +A
∗
R(qk+1)]

−
h

2 u,R(qk+1) [u(qk) + u(qk+1)] − hµB,R(qk+1)], (4.42c)

pZk+1 =
1
2[ +A∗

R,Z(qk+1) [q
R
k+1 − q

R
k ] +A

∗
Z,Z(qk+1) [q

Z
k+1 − q

Z
k ] + [A∗

Z(qk) +A
∗
Z(qk+1)]

−
h

2 u,Z(qk+1) [u(qk) + u(qk+1)] − hµB,Z(qk+1)]. (4.42d)

The first two equations constitute a nonlinear system determining qRk+1 and qZk+1 and can
be written as a function F (qk, pk, qk+1) = 0. We solve it by Newton iteration with analytic
Jacobian J , which is determined by computing the variation of the two equations with
respect to qRk+1 and qZk+1, such that

J δqn+1
k+1 =

1
2 (

J11 J12
J21 J22

)(
δqRk+1
δqZk+1

) = −(
FR(qk, pk, qnk+1)

FZ(qk, pk, qnk+1)
) , (4.43)

where n denotes the Newton step, such that

qn+1
k+1 = q

n
k+1 + δq

n+1
k+1 . (4.44)

The components of the Jacobian can be found in section 4.B. After we solved for qRk+1 and
qZk+1, it is straight forward to evaluate (4.42c) and (4.42d) as these are explicit functions
for pRk+1(qk, pk, qk+1) and pZk+1(qk, pk, qk+1).

4.3.2. Midpoint Discretisation
Applying a midpoint discretisation to the reduced guiding centre Lagrangian (4.40) gives

Lmp
d (qk, qk+1) = hL(

qk + qk+1

2 ,
qk+1 − qk

h
) = hL(qk+1/2,

qk+1 − qk
h

)

= h [A∗
R(qk+1/2)

qRk+1 − q
R
k

h
+A∗

Z(qk+1/2)
qZk+1 − q

Z
k

h
−
u2(qk+1/2)

2 − µB(qk+1/2)].

(4.45)
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The position-momentum form (3.14) of the midpoint integrator is computed as

pRk =
1
2[ −A∗

R,R(qk+1/2) [q
R
k+1 − q

R
k ] −A

∗
Z,R(qk+1/2) [q

Z
k+1 − q

Z
k ] + 2A∗

R(qk+1/2)

+ hu(qk+1/2)u,R(qk+1/2) + hµB,R(qk+1/2)], (4.46a)

pZk =
1
2[ −A∗

R,Z(qk+1/2) [q
R
k+1 − q

R
k ] −A

∗
Z,Z(qk+1/2) [q

Z
k+1 − q

Z
k ] + 2A∗

Z(qk+1/2)

+ hu(qk+1/2)u,Z(qk+1/2) + hµB,Z(qk+1/2)], (4.46b)

pRk+1 =
1
2[ +A∗

R,R(qk+1/2) [q
R
k+1 − q

R
k ] +A

∗
Z,R(qk+1/2) [q

Z
k+1 − q

Z
k ] + 2A∗

R(qk+1/2)

− hu(qk+1/2)u,R(qk+1/2) − hµB,R(qk+1/2)], (4.46c)

pZk+1 =
1
2[ +A∗

R,Z(qk+1/2) [q
R
k+1 − q

R
k ] +A

∗
Z,Z(qk+1/2) [q

Z
k+1 − q

Z
k ] + 2A∗

Z(qk+1/2)

− hu(qk+1/2)u,Z(qk+1/2) − hµB,Z(qk+1/2)]. (4.46d)

The solution strategy is the same as for the trapezoidal method.

4.3.3. Numerical Results
We want to compare the different variational integrators with each other, the different
composition methods, and a standard fourth order Runge-Kutta discretisation, where our
main focus lies on the energy error and the geometry of the particle orbit for long time
integration. In the following, we consider the trapped particle example from Qin et al.
[103], which is initialised by

R = R0 + 0.05, Z = 0, µ = 2.25 × 10−6, pϕ = −1.077 × 10−3,

with

R0 = 1, B0 = 1, q = 2, τb = 43107,

where τb is the bounce time, determining the timestep. We used the normalisation pro-
posed by Qin et al. [103], where the parameters of the tokamak geometry are normalised
by R0 and B0, to be able to compare with their results.
We compare the evolution of the particle orbit for the two variational integrators and
the Runge-Kutta method at three different timesteps that correspond to 25, 50 and 100
timesteps per bounce period, respectively. In all three cases, we observe that the varia-
tional integrator follows the expected orbit accurately for long times, while the Runge-
Kutta method exhibits substantial deviations (see figures 4.1 - 4.3). Due to the loss of
energy in the Runge-Kutta simulations (see figures 4.4 - 4.6), the particle orbits shrinks
until eventually it almost contracts to a point. On the contrary, the variational inte-
grators exhibit an oscillating energy error, with a constant amplitude of the oscillation.
The amplitude of the energy error scales according to the order of the scheme, which is
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(a) Runge-Kutta (b) Variational Midpoint

Fig. 4.1.: Trapped particle after 8.000 bounce periods with 25 steps per bounce
period. The trapezoidal integrator is not stable for the timestep considered in this
example.

(a) Runge-Kutta (b) Variational Trapezoidal (c) Variational Midpoint

Fig. 4.2.: Trapped particle after 200.000 bounce periods with 50 steps per bounce
period.

(a) Runge-Kutta (b) Variational Trapezoidal (c) Variational Midpoint

Fig. 4.3.: Trapped particle after two million bounce periods with 100 steps per
bounce period.
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Fig. 4.4.: Energy error for trapped particle with 25 timesteps per bounce period
(green: Runge-Kutta, blue: variational midpoint).
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Fig. 4.5.: Energy error for trapped particle with 50 timesteps per bounce period
(green: Runge-Kutta, blue: variational trapezoidal, red: variational midpoint).
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Fig. 4.6.: Energy error for trapped particle with 100 timesteps per bounce period
(green: Runge-Kutta, blue: variational trapezoidal, red: variational midpoint).



4.4. Particle Motion in the Tokamak 93

second-order accurate, i.e., halving the timestep results in a reduction of the error by a
factor of four.
The stability region of the trapezoidal integrator appears to be smaller than that of the
midpoint integrator as simulations with 25 steps per bounce period are not possible. At
50 steps per bounce period, right from the beginning of the simulation, the trapezoidal
integrator shows slight deviations of the orbit, but the global topology of the orbit is
respected. These inaccuracies are recognisable as a slight smearing of the orbit and are
not observed for the midpoint integrator (see figure 4.1).
Note that figures 4.3 and 4.6 are results from a simulation of two million characteristic
times, corresponding to 200 million timesteps. These results agree well with those found
by Qin et al. [103], but extend them in considering an alternative discretisation that
appears to lead to more accurate results.

4.4. Particle Motion in the Tokamak
In this section, we want to discretise the particle motion in full tokamak geometry
(R,Z,ϕ, u), such that also the toroidal coordinate ϕ and the parallel velocity u are treated
dynamically, while µ is still regarded as a parameter. The resulting scheme is expected
to be somewhat simpler than the previous one as we avoid the complicated functional
expression for u. Although this requires the solution of a larger system of equations
describing the same dynamics, in this formulation both energy and toroidal momentum
are independently conserved quantities. This allows us to test the variational integrators
when the dynamics is constrained by more than one constant of motion.
As before, we introduce generalised coordinates qRk , qZk , q

ϕ
k , quk with discrete conjugate

momenta pRk , pZk , p
ϕ
k , puk . For simplicity, we neglect the electrostatic field, could, however,

be added with only minor complications.

4.4.1. Trapezoidal Discretisation
The discrete trapezoidal Lagrangian is

Ltr
d (qk, qk+1) = h [

A∗
R(qk) +A

∗
R(qk+1)

2
qRk+1 − q

R
k

h
+
A∗
Z(qk) +A

∗
Z(qk+1)

2
qZk+1 − q

Z
k

h

+
qRk A

∗
ϕ(qk) + q

R
k+1A

∗
ϕ(qk+1)

2
qϕk+1 − q

ϕ
k

h

−
quk q

u
k+1

2 − µ
B(qk) +B(qk+1)

2 ]. (4.47)

The position-momentum form (3.14) of the trapezoidal integrator is computed as

pRk =
1
2[ −A∗

R,R(qk) [q
R
k+1 − q

R
k ] −A

∗
Z,R(qk) [q

Z
k+1 − q

Z
k ] − q

R
k A

∗
ϕ,R(qk) [q

ϕ
k+1 − q

ϕ
k ]

+ [A∗
R(qk) +A

∗
R(qk+1)] −A

∗
ϕ(qk) [q

ϕ
k+1 − q

ϕ
k ] + hµB,R(qk)], (4.48a)

pZk =
1
2[ −A∗

R,Z(qk) [q
R
k+1 − q

R
k ] −A

∗
Z,Z(qk) [q

Z
k+1 − q

Z
k ] − q

R
k A

∗
ϕ,Z(qk) [q

ϕ
k+1 − q

ϕ
k ]

+ [A∗
Z(qk) +A

∗
Z(qk+1)] + hµB,Z(qk)], (4.48b)
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pϕk =
1
2[ + [qRk A

∗
ϕ(qk) + q

R
k+1A

∗
ϕ(qk+1)]], (4.48c)

puk =
1
2[ + hquk+1 − bR(qk) [q

R
k+1 − q

R
k ] − bZ(qk) [q

Z
k+1 − q

Z
k ] − q

R
k bϕ(qk) [q

ϕ
k+1 − q

ϕ
k ]],

(4.48d)

pRk+1 =
1
2[ +A∗

R,R(qk+1) [q
R
k+1 − q

R
k ] +A

∗
Z,R(qk+1) [q

Z
k+1 − q

Z
k ] + q

R
k+1A

∗
ϕ,R(qk+1) [q

ϕ
k+1 − q

ϕ
k ]

+ [A∗
R(qk) +A

∗
R(qk+1)] +A

∗
ϕ(qk+1) [q

ϕ
k+1 − q

ϕ
k ] − hµB,R(qk+1)], (4.48e)

pZk+1 =
1
2[ +A∗

R,Z(qk+1) [q
R
k+1 − q

R
k ] +A

∗
Z,Z(qk+1) [q

Z
k+1 − q

Z
k ] + q

R
k+1A

∗
ϕ,Z(qk+1) [q

ϕ
k+1 − q

ϕ
k ]

+ [A∗
Z(qk) +A

∗
Z(qk+1)] − hµB,Z(qk+1)], (4.48f)

pϕk+1 =
1
2[ + [qRk A

∗
ϕ(qk) + q

R
k+1A

∗
ϕ(qk+1)]], (4.48g)

puk+1 =
1
2[ − hquk + bR(qk+1) [q

R
k+1 − q

R
k ] + bZ(qk+1) [q

Z
k+1 − q

Z
k ] + q

R
k+1 bϕ(qk+1) [q

ϕ
k+1 − q

ϕ
k ]].

(4.48h)
As before, we employ Newton’s method to solve the system. The Jacobian is now a 4× 4
matrix, given by

J δqn+1
k+1 =

1
2

⎛
⎜
⎜
⎜
⎝

J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

δqRk+1
δqZk+1
δqϕk+1
δquk+1

⎞
⎟
⎟
⎟
⎠

= −

⎛
⎜
⎜
⎜
⎝

FR(qk, qnk+1)

FZ(qk, qnk+1)

Fϕ(qk, qnk+1)

Fu(qk, qnk+1)

⎞
⎟
⎟
⎟
⎠

, (4.49)

with components listed in section 4.B.

4.4.2. Midpoint Discretisation
The discrete midpoint Lagrangian is

Lmp
d (qk, qk+1) = h [A∗

R(qk+1/2)
qRk+1 − q

R
k

h
+A∗

Z(qk+1/2)
qZk+1 − q

Z
k

h

+ qRk+1/2A
∗
ϕ(qk+1/2)

qϕk+1 − q
ϕ
k

h
−

1
2 (

quk + q
u
k+1

2 )

2

− µB(qk+1/2)]. (4.50)

The position-momentum form (3.14) of the midpoint integrator is computed as

pRk =
1
2[ −A∗

R,R(qk+1/2) [q
R
k+1 − q

R
k ] −A

∗
Z,R(qk+1/2) [q

Z
k+1 − q

Z
k ] − q

R
k+1/2A

∗
ϕ,R(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+ 2A∗
R(qk+1/2) −A

∗
ϕ(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ] + hµB,R(qk+1/2)], (4.51a)

pZk =
1
2[ −A∗

R,Z(qk+1/2) [q
R
k+1 − q

R
k ] −A

∗
Z,Z(qk+1/2) [q

Z
k+1 − q

Z
k ] − q

R
k+1/2A

∗
ϕ,Z(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+ 2A∗
Z(qk+1/2) + hµB,Z(qk+1/2)], (4.51b)
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pϕk =
1
2[ + 2 qRk+1/2A

∗
ϕ(qk+1/2)], (4.51c)

puk =
1
2[ − bR(qk+1/2) [q

R
k+1 − q

R
k ] − bZ(qk+1/2) [q

Z
k+1 − q

Z
k ] − q

R
k+1/2 bϕ(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+ hquk+1/2], (4.51d)

pRk+1 =
1
2[ +A∗

R,R(qk+1/2) [q
R
k+1 − q

R
k ] +A

∗
Z,R(qk+1/2) [q

Z
k+1 − q

Z
k ] + q

R
k+1/2A

∗
ϕ,R(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+ 2A∗
R(qk+1/2) +A

∗
ϕ(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ] − hµB,R(qk+1/2)], (4.51e)

pZk+1 =
1
2[ +A∗

R,Z(qk+1/2) [q
R
k+1 − q

R
k ] +A

∗
Z,Z(qk+1/2) [q

Z
k+1 − q

Z
k ] + q

R
k+1/2A

∗
ϕ,Z(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+ 2A∗
Z(qk+1/2) − hµB,Z(qk+1/2)], (4.51f)

pϕk+1 =
1
2[ + 2 qRk+1/2A

∗
ϕ(qk+1/2)], (4.51g)

puk+1 =
1
2[ + bR(qk+1/2) [q

R
k+1 − q

R
k ] + bZ(qk+1/2) [q

Z
k+1 − q

Z
k ] + q

R
k+1/2 bϕ(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

− hquk+1/2]. (4.51h)

4.4.3. Discrete Noether Theorem
In the four-dimensional treatment, the interesting question is that of conservation of the
toroidal momentum pϕ. As we have discussed in the last section, pϕ is a conserved quantity
of the continuous system and should therefore be exactly conserved by the variational
integrator.
The corresponding transformation is

ϕεk = ϕk + εX
ϕ
k . (4.52)

Both, the trapezoidal (4.47) and the midpoint (4.50) Lagrangian are invariant under this
transformation, as can easily be seen. The discrete conserved momenta are

∂Ltr
d

∂qϕk+1
(qk, qk+1) ⋅X

ϕ
k =

1
2(qRk A

∗
ϕ(qk) + q

R
k+1A

∗
ϕ(qk+1)) ⋅X

ϕ
k = pϕk ⋅X

ϕ
k (4.53)

for the trapezoidal discretisation and
∂Lmp

d

∂qϕk+1
(qk, qk+1) ⋅X

ϕ
k = qRk+1/2A

∗
ϕ(qk+1/2) ⋅X

ϕ
k = pϕk ⋅X

ϕ
k (4.54)

for the midpoint discretisation.

4.4.4. Numerical Results
We use the same initial conditions as in the previous section, that is

R = R0 + 0.05, Z = 0, ϕ = 0, µ = 2.25 × 10−6,
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with

R0 = 1, B0 = 1, q = 2, τb = 43107.

The initial parallel velocity u is computed by evaluating equation (4.37) for the initial
values of R, Z and pϕ. The initial momenta are given below, where pZ = A∗

Z(q0), i.e.,

pR = 0, pZ = −2.438 × 10−2, pϕ = −1.077 × 10−3, pu = 0. (4.55)

As in the two-dimensional case, we compare the two variational integrators with the ex-
plicit fourth order Runge-Kutta method with different timesteps corresponding to 25, 50
and 100 steps per bounce period. The qualitative behaviour is the same as before. With
the Runge-Kutta method, the particle orbits deviates severely from its expected shape
while the variational integrators find the correct result (see figures 4.7 - 4.9). The trape-
zoidal integrator is not stable for 25 steps per bounce period and shows slight inaccuracies
for 50 steps per bounce period. The midpoint integrator is stable also for 25 steps per
bounce period and appears accurate already at this large timestep.
While the variational integrators exhibit an oscillating energy error with a bounded am-
plitude of the oscillation, the Runge-Kutta method dissipates energy monotonically (see
figures 4.10, 4.12 and 4.10). For the variational integrators, the amplitude of the error
oscillation scales with the order of the scheme which is second order accurate.
The most interesting question about the four-dimensional integrators is that of toroidal
momentum conservation. As expected, the variational integrators exhibit only very small
errors in the toroidal momentum, close to the machine accuracy (figures 4.11, 4.13 and
4.15) while the Runge-Kutta method dissipates the toroidal momentum as it appears
monotonically. While the energy error of the Runge-Kutta method seems too approach a
stationary value of order one percent or smaller, depending on the timestep, the toroidal
momentum is dissipated almost completely during the course of the simulations, indepen-
dently from the timestep.
The absolute value of the momentum error of the variational integrators seems to be
mostly determined by the residual of the Newton iteration. If the residual is too large,
errors tend to accumulate, leading to an almost monotonic growths of the momentum
error during the simulation. But even in that case, the toroidal momentum error is of
orders O(10−6)...O(10−3) for the simulation times considered here, and thus much smaller
than with the Runge-Kutta method.

4.5. Variational PIC Scheme
The reason for deriving variational integrators for guiding centre dynamics is of course not
to compute particle orbits in the poloidal plane but the aim of finding better integration
techniques for large scale particle-in-cell codes as they are used in the simulation of plasma
turbulence. In such codes, the electromagnetic fields are computed on a fixed grid, while
the particles move in a mesh-free space. To be self-consistent, the electromagnetic fields
have to be computed given the particle positions.
As the field dynamics can also be derived from an action principle, it is possible to combine
the particle Lagrangian and the field Lagrangian, together with an interaction term, to get
a Lagrangian description of the full system. This can then be used to derive a variational
integrator for the complete system of particles and fields, thereby not only conserving the
symplectic form of each particle, but the multisymplectic form of the full system as well.
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(a) Runge-Kutta (b) Variational Midpoint

Fig. 4.7.: Trapped particle after 50.000 bounce periods with 25 steps per bounce
period. The trapezoidal integrator is not stable for the timestep considered in this
example.

(a) Runge-Kutta (b) Variational Trapezoidal (c) Variational Midpoint

Fig. 4.8.: Trapped particle after 200.000 bounce periods with 50 steps per bounce
period.

(a) Runge-Kutta (b) Variational Trapezoidal (c) Variational Midpoint

Fig. 4.9.: Trapped particle after 250.000 bounce periods with 100 steps per bounce
period.
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Fig. 4.10.: Energy error for trapped particle with 25 steps per bounce period
(green: Runge-Kutta, blue: variational midpoint).
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Fig. 4.11.: Total linear momentum for a trapped particle with 25 steps per bounce
period (top: Runge-Kutta, bottom: variational midpoint).



4.5. Variational PIC Scheme 99

0 50000 100000 150000 200000
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(E
−
E

0
)/
E

0

1e 2

Fig. 4.12.: Energy error for trapped particle with 50 timesteps per bounce period
(green: Runge-Kutta, blue: variational trapezoidal, red: variational midpoint).
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Fig. 4.13.: Total linear momentum for a trapped particle with 50 timesteps per
bounce period (top: Runge-Kutta, middle: variational trapezoidal, bottom: varia-
tional midpoint).
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Fig. 4.14.: Energy error for trapped particle with 100 timesteps per bounce period
(green: Runge-Kutta, blue: variational trapezoidal, red: variational midpoint).
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Fig. 4.15.: Total linear momentum for a trapped particle with 100 timesteps per
bounce period (top: Runge-Kutta, middle: variational trapezoidal, bottom: varia-
tional midpoint).
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A similar idea has recently been presented by Squire et al. [121]. In that work, how-
ever, the electromagnetic fields are represented by discrete differential forms, which is the
geometrically correct approach, but not necessary if the electrostatic potential alone is
considered. In the following we sketch the derivation of a variational PIC scheme based on
the particle integrators from this chapter and a simple discretisation of the electrostatic
potential. We do not compute the actual Euler-Lagrange equations as the aim of this
section is merely to show the potential of this formulation and outline possible future
directions of research.

4.5.1. Total Lagrangian and Euler-Lagrange Equations
If we restrict ourselves to the electrostatic case, the action reads

A =∑
p
∫ ẋ2

p dt +
1
2 ∫ (

∂φ

∂x
)

2

dt dx − ∫ ρ(t, x)φ(t, x)dt dx (4.56)

where ρ is the charge density

ρ(t, x) =∑
s

qs∫ fs(x, v, t)dv. (4.57)

The distribution function of the species s is computed as the sum of the distribution
functions of each particle of that species

fs(t, x, v) =∑
p

fp(t, x, v), (4.58)

and the particle distribution function fp is determined by

fp(t, x, v) = Np Sx(x − xp(t))Sv(v − vp(t)), (4.59)

where Sx and Sv are the shape functions of the particle in space and velocity. The simplest
choice for Sv are just δ functions

Sv(v − vp) = δ(v
x − vxp) δ(v

y − vyp) δ(v
z − vzp). (4.60)

Smoother shape functions are often used for Sx, e.g., given by B-splines of order l,

Sx(x − xp) =
1

∆xp ∆yp ∆zp
bl(

x − xp
∆xp

) bl(
y − yp
∆yp

) bl(
z − zp
∆zp

), (4.61)

where the bl are recursively defined as

bl(ξ) =

+∞

∫
−∞

dξ′ b0(ξ − ξ
′) bl−1(ξ

′) (4.62a)

b0(ξ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∣ξ∣ < 1
2 ,

0 otherwise.
(4.62b)

Using these expressions, the action (4.56) becomes

A =∑
p
∫ ẋ2

p dt +
1
2 ∫ (

∂φ

∂x
)

2

dt dx −∑
p

qp∫ Sx(x − xp(t))ϕ(t, x)dt dx. (4.63)
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Computing the variation of the action with respect to xp gives the equations of motion
for the particle

δA

δxp
= ẍp + qp∫

∂Sx
∂x

(x − xp)ϕ(t, x)dx = 0, (4.64)

and the variation with respect to φ gives the Poisson equation
∂A

∂φ
= −∆φ(t, x) −∑

p

qp Sx(x − xp). (4.65)

This approach can now be used to obtain a fully variational discretisation of the system
consisting of particles and fields.

4.5.2. Variational Integrator
The action (4.63) is discretised by a midpoint rule according to section (3.1) and (3.2) as

Ad =∑
k

[
ht
2 (

xk+1
p − xkp
ht

)

2

+
ht
2 ∑i

(
φi+1,k − φi,k

2hx
+
φi+1,k+1 − φi,k+1

2hx
) (4.66)

−
ht
16∑i

(ρi,k + ρi+1,k + ρi+1,k+1 + ρi,k+1)(φi,k + φi+1,k + φi+1,k+1 + φi,k+1)] (4.67)

where the discrete expression of ρ, i.e., the quadrature rule to compute (4.57), depends
on the order of the splines (4.62) that are used. For linear B-splines, a trapezoidal rule
suffices, for quadratic B-splines, the Simpson rule should be used, and for cubic B-splines,
Gauss’ quadrature rule should be employed. The splines are integrated exactly by the
corresponding quadrature rules. The integration domain V i,j for ρi,k in a two-dimensional
setting is selected as depicted below.

(i, j)(i − 1/2, j) (i + 1/2, j)

(i, j − 1/2)

(i, j + 1/2)

So in one spatial dimension, Vi = [xi−1/2, xi+1/2], and the charge density becomes

ρi,k =∑
p

qp
V i ∫

V i

Sx(x − x
k
p)dx. (4.68)

Setting x̂ = x − xi gives

ρi,k =∑
p

qp
hx

+hx/2

∫

−hx/2

Sx(xi − x
k
p + x̂)dx̂. (4.69)
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For some of the quadrature rules the integration domain has to be (−1,+1), therefore we
introduce another transformation x̃ = 2x̂/hx with dx̂ = (hx/2)dx̃, so that

ρi,k =∑
p

qp
hx

+1

∫
−1

Sx(xi − x
k
p + hx x̃/2)dx̃. (4.70)

We can now write the fully discrete expressions for the charge density, according to the
different quadrature rules

ρi,k∣Trapezoidal =
1
2∑p

qp [Sx(xi − x
k
p −

hx
2 ) + Sx(xi − x

k
p +

hx
2 )], (4.71a)

ρi,k∣Simpson =
1
6∑p

qp [Sx(xi − x
k
p −

hx
2 ) + 4Sx(xi − xkp) + Sx(xi − xkp +

hx
2 )], (4.71b)

ρi,k∣Gauss =
1
2∑p

qp [Sx(xi − xp −
hx

2
√

3
) + Sx(xi − xp +

hx

2
√

3
)]. (4.71c)

Now we have all the necessary ingredients for the derivation of a fully variational PIC
scheme. The last step is to decide on the order of the B-splines and to actually compute
the discrete Euler-Lagrange equations. This, however, is left for future research.

4.A. Calculation of Transit and Bounce Times
In the calculation of the bounce time, we follow Brizard [21]. We merely collect the
necessary formulae. For details on the actual derivation we refer to Brizard’s original
work. We assume a circular tokamak with large aspect ratio, such that

ε ≡
r

R
≪ 1 (inverse aspect ratio). (4.72)

For a passing particle, the transit frequency is given by

ωt =
π ω∥

√
κ

K(κ−1)
(4.73)

while for a trapped particle, the bounce frequency is

ωb =
π ω∥

2 K(κ)
. (4.74)

Here, ω∥ is the characteristic parallel frequency, defined as

ω∥ =
1
qR

√

ε
µB0

m
, (4.75)

κ is the bounce-transit parameter, defined as

κ ≡
E − µB0(1 − ε)

2εµB0
, (4.76)

and K is the complete elliptic integral of first kind. Furthermore, m is the mass of the
particle, E = 1

2u
2 +µB its energy, µ the magnetic moment, and B the magnetic field. The

transit and bounce times are accordingly computed as

τt =
2π
ωt

=
2 K(κ−1)

ω∥
√
κ
, τb =

2π
ωb

=
4 K(κ)

ω∥
. (4.77)

For the trapped particle from the examples in this chapter, the bounce time is computed
to be τb = 43107.
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4.B. Jacobians
2D Trapezoidal Method

The Jacobian is defined as

J 2DTR =
1
2 (

J11 J12
J21 J22

) , (4.78)

with components

J11 = A
∗
R,R(qk) −A

∗
R,R(q

n
k+1) −

1
2 hu,R(qk)u,R(q

n
k+1), (4.79a)

J12 = A
∗
Z,R(qk) −A

∗
R,Z(q

n
k+1) −

1
2 hu,R(qk)u,Z(q

n
k+1), (4.79b)

J21 = A
∗
R,Z(qk) −A

∗
Z,R(q

n
k+1) −

1
2 hu,Z(qk)u,R(q

n
k+1), (4.79c)

J22 = A
∗
Z,Z(qk) −A

∗
Z,Z(q

n
k+1) −

1
2 hu,Z(qk)u,Z(q

n
k+1). (4.79d)

2D Midpoint Method

The Jacobian is defined as

J 2DMP =
1
4 (

J11 J12
J21 J22

) , (4.80)

with components

J11 = 2 [A∗
R,R(q

n
k+1/2) −A

∗
R,R(q

n
k+1/2)] +A

∗
R,RR(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,RR(qk+1/2) [q

Z
k+1 − q

Z
k ]

− hu,R(qk+1/2)u,R(qk+1/2) − hu(qk+1/2)u,RR(qk+1/2) − hµB,RR(qk+1/2), (4.81a)

J12 = 2 [A∗
Z,R(q

n
k+1/2) −A

∗
R,Z(q

n
k+1/2)]

+A∗
R,RZ(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,RZ(qk+1/2) [q

Z
k+1 − q

Z
k ]

− hu,R(qk+1/2)u,Z(qk+1/2) − hu(qk+1/2)u,RZ(qk+1/2) − hµB,RZ(qk+1/2),
(4.81b)

J21 = 2 [A∗
R,Z(qk+1/2) −A

∗
Z,R(qk+1/2)]

+A∗
R,RZ(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,RZ(qk+1/2) [q

Z
k+1 − q

Z
k ]

− hu,R(qk+1/2)u,Z(qk+1/2) − hu(qk+1/2)u,RZ(qk+1/2) − hµB,RZ(qk+1/2),
(4.81c)

J22 = 2 [A∗
Z,Z(qk+1/2) −A

∗
Z,Z(qk+1/2)] +A

∗
R,ZZ(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,ZZ(qk+1/2) [q

Z
k+1 − q

Z
k ]

− hu,Z(qk+1/2)u,Z(qk+1/2) − hu(qk+1/2)u,ZZ(qk+1/2) − hµB,ZZ(qk+1/2). (4.81d)

4D Trapezoidal Method

The Jacobian is defined as

J 4DTR =
1
2

⎛
⎜
⎜
⎜
⎝

J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

⎞
⎟
⎟
⎟
⎠

, (4.82)
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with components

J11 = A
∗
R,R(qk) −A

∗
R,R(q

n
k+1), (4.83a)

J12 = A
∗
Z,R(qk) −A

∗
R,Z(q

n
k+1), (4.83b)

J13 = q
R
k A

∗
ϕ,R(qk) +A

∗
ϕ(qk), (4.83c)

J14 = −bR(q
n
k+1), (4.83d)

J21 = A
∗
R,Z(qk) −A

∗
Z,R(q

n
k+1), (4.83e)

J22 = A
∗
Z,Z(qk) −A

∗
Z,Z(q

n
k+1), (4.83f)

J23 = q
R
k A

∗
ϕ,Z(qk), (4.83g)

J24 = −bZ(q
n
k+1), (4.83h)

J31 = −q
R
k+1A

∗
ϕ,R(q

n
k+1) −A

∗
ϕ(q

n
k+1), (4.83i)

J32 = −q
R
k+1A

∗
ϕ,Z(q

n
k+1), (4.83j)

J33 = 0, (4.83k)
J34 = −q

R
k+1 bϕ(q

n
k+1), (4.83l)

J41 = bR(qk), (4.83m)
J42 = bZ(qk), (4.83n)
J43 = q

R
k bϕ(qk), (4.83o)

J44 = −
1
2 h. (4.83p)

4D Midpoint Method

The Jacobian is defined as

J 4DMP =
1
4

⎛
⎜
⎜
⎜
⎝

J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

⎞
⎟
⎟
⎟
⎠

, (4.84)

with components

J11 = 2 [A∗
R,R(qk+1/2) −A

∗
R,R(qk+1/2)] + 2A∗

ϕ,R(qk+1/2) [q
ϕ
k+1 − q

ϕ
k ]

+A∗
R,RR(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,RR(qk+1/2) [q

Z
k+1 − q

Z
k ]

+ qRk+1/2A
∗
ϕ,RR(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ] − hµB,RR(qk+1/2), (4.85a)

J12 = 2 [A∗
Z,R(qk+1/2) −A

∗
R,Z(qk+1/2)] +A

∗
ϕ,Z(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+A∗
R,RZ(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,RZ(qk+1/2) [q

Z
k+1 − q

Z
k ]

+ qRk+1/2A
∗
ϕ,RZ(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ] − hµB,RZ(qk+1/2), (4.85b)

J13 = 2 qRk+1/2A
∗
ϕ,R(qk+1/2) + 2A∗

ϕ(qk), (4.85c)

J14 = bR,R(qk+1/2) [q
R
k+1 − q

R
k ] + bZ,R(qk+1/2) [q

Z
k+1 − q

Z
k ] + q

R
k+1/2 bϕ,R(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+ bϕ(qk+1/2) [q
ϕ
k+1 − q

ϕ
k ] − 2 bR(qk+1/2), (4.85d)
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J21 = 2 [A∗
R,Z(qk+1/2) −A

∗
Z,R(qk+1/2)] +A

∗
ϕ,Z(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

+A∗
R,RZ(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,RZ(qk+1/2) [q

Z
k+1 − q

Z
k ]

+ qRk+1/2A
∗
ϕ,RZ(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ] − hµB,RZ(qk+1/2), (4.85e)

J22 = 2 [A∗
Z,Z(qk+1/2) −A

∗
Z,Z(qk+1/2)]

+A∗
R,ZZ(qk+1/2) [q

R
k+1 − q

R
k ] +A

∗
Z,ZZ(qk+1/2) [q

Z
k+1 − q

Z
k ]

+ qRk+1/2A
∗
ϕ,ZZ(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ] − hµB,ZZ(qk+1/2), (4.85f)

J23 = 2 qRk+1/2A
∗
ϕ,Z(qk+1/2), (4.85g)

J24 = bR,Z(qk+1/2) [q
R
k+1 − q

R
k ] + bZ,Z(qk+1/2) [q

Z
k+1 − q

Z
k ] + q

R
k+1/2 bϕ,Z(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ]

− 2 bZ(qk+1/2), (4.85h)

J31 = −2 qRk+1/2A
∗
ϕ,R(qk+1/2) − 2A∗

ϕ(qk+1/2), (4.85i)
J32 = −2 qRk+1/2A

∗
ϕ,Z(qk+1/2), (4.85j)

J33 = 0, (4.85k)
J34 = −2 qRk+1/2 bϕ(qk+1/2), (4.85l)

J41 = 2 bR(qk+1/2) + bϕ(qk+1/2) [q
ϕ
k+1 − q

ϕ
k ] + bR,R(qk+1/2) [q

R
k+1 − q

R
k ]

+ bZ,R(qk+1/2) [q
Z
k+1 − q

Z
k ] + q

R
k+1/2 bϕ,R(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ], (4.85m)

J42 = 2 bZ(qk+1/2) + bR,Z(qk+1/2) [q
R
k+1 − q

R
k ]

+ bZ,Z(qk+1/2) [q
Z
k+1 − q

Z
k ] + q

R
k+1/2 bϕ,Z(qk+1/2) [q

ϕ
k+1 − q

ϕ
k ], (4.85n)

J43 = 2 qRk+1/2 bϕ(qk+1/2), (4.85o)
J44 = −h. (4.85p)

4.C. Derivatives
In this section, the reader can find an overview of the derivatives of the magnetic potential
and the magnetic field that appear in the various integrators for guiding centre dynamics.
Of course, all derivatives with respect to ϕ vanish as we assume axisymmetry.

Generalised Magnetic Potential in the Poloidal Plane

A∗
R,R = AR,R + u,R bR + ubR,R A∗

Z,R = AZ,R + u,R bZ + ubZ,R (4.86a)
A∗
R,Z = AR,Z + u,Z bR + ubR,Z A∗

Z,Z = AZ,Z + u,Z bZ + ubZ,Z (4.86b)
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A∗
R,RR = AR,RR + u,RR bR + u,R bR,R + u,R bR,R + ubR,RR (4.87a)

A∗
R,RZ = AR,RZ + u,RZ bR + u,R bR,Z + u,Z bR,R + ubR,RZ (4.87b)

A∗
R,ZZ = AR,ZZ + u,ZZ bR + u,Z bR,Z + u,Z bR,Z + ubR,ZZ (4.87c)

A∗
Z,RR = AZ,RR + u,RR bZ + u,R bZ,R + u,R bZ,R + ubZ,RR (4.87d)

A∗
Z,RZ = AZ,RZ + u,RZ bZ + u,R bZ,Z + u,Z bZ,R + ubZ,RZ (4.87e)

A∗
Z,ZZ = AZ,ZZ + u,ZZ bZ + u,Z bZ,Z + u,Z bZ,Z + ubZ,ZZ (4.87f)

Generalised Magnetic Potential in Tokamak Geometry

A∗
R,R = AR,R + ubR,R A∗

Z,R = AZ,R + ubZ,R A∗
ϕ,R = Aϕ,R + ubϕ,R (4.88a)

A∗
R,Z = AR,Z + ubR,Z A∗

Z,Z = AZ,Z + ubZ,Z A∗
ϕ,Z = Aϕ,Z + ubϕ,Z (4.88b)

A∗
R,u = bR A∗

Z,u = bZ A∗
ϕ,u = bϕ (4.88c)

A∗
R,RR = AR,RR + ubR,RR A∗

Z,RR = AZ,RR + ubZ,RR A∗
ϕ,RR = Aϕ,RR + ubϕ,RR (4.89a)

A∗
R,RZ = AR,RZ + ubR,RZ A∗

Z,RZ = AZ,RZ + ubZ,RZ A∗
ϕ,RZ = Aϕ,RZ + ubϕ,RZ (4.89b)

A∗
R,ZZ = AR,ZZ + ubR,ZZ A∗

Z,ZZ = AZ,ZZ + ubZ,ZZ A∗
ϕ,ZZ = Aϕ,ZZ + ubϕ,ZZ (4.89c)

A∗
R,uR = bR,R A∗

Z,uR = bZ,R A∗
ϕ,uR = bϕ,R (4.89d)

A∗
R,uZ = bR,Z A∗

Z,uZ = bZ,Z A∗
ϕ,uZ = bϕ,Z (4.89e)

A∗
R,uu = 0 A∗

Z,uu = 0 A∗
ϕ,uu = 0 (4.89f)

Parallel Velocity in the Poloidal Plane

u,R = −[pφ +
r2B0

2q ]
B,R

B0R0
−
B (R −R0)

qR0
(4.90a)

u,Z = −[pφ +
r2B0

2q ]
B,Z

B0R0
−
BZ

qR0
(4.90b)

u,RR = −[pφ +
r2B0

2q ]
B,RR

B0R0
−

2 (R −R0)B,R +B

qR0
(4.91a)

u,RZ = −[pφ +
r2B0

2q ]
B,RZ

B0R0
−

(R −R0)B,Z +ZB,R

qR0
(4.91b)

u,ZZ = −[pφ +
r2B0

2q ]
B,ZZ

B0R0
−

2ZB,Z +B

qR0
(4.91c)

Magnetic Potential

AR,R = −
B0R0Z

2R2 AZ,R = −
B0R0

2R Aϕ,R = −
Aϕ
R

−
B0 (R −R0)

qR
(4.92a)

AR,Z =
B0R0

2R AZ,Z = 0 Aϕ,Z = −
B0Z

qR
(4.92b)
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AR,RR =
B0R0Z

R3 AZ,RR =
B0R0

2R2 Aϕ,RR = −2 Aϕ,R
R

−
B0

qR
(4.93a)

AR,RZ = −
B0R0

2R2 AZ,RZ = 0 Aϕ,RZ =
B0Z

qR2 (4.93b)

AR,ZZ = 0 AZ,ZZ = 0 Aϕ,ZZ = −
B0

qR
(4.93c)

Magnetic Field

B,R = B [
R −R0

S2 −
1
R

] S,R =
R −R0

S
(4.94a)

B,Z = B
Z

S2 S,Z =
Z

S
(4.94b)

B,RR = B,R [
R −R0

S2 −
1
R

] +B[
1
R2 +

1
S2 − 2 (R −R0)2

S4 ] (4.95a)

B,RZ =
1
S2 [Z B,R − 2 (R −R0)B,Z] (4.95b)

B,ZZ =
B

S2 [1 − Z
2

S2 ] (4.95c)

Normalised Magnetic Field

bR,R = −
1
S
bRbZ bZ,R = −

1
S

[b2
Z − 1] bϕ,R = −

1
S
bZbϕ (4.96a)

bR,Z =
1
S

[b2
R − 1] bZ,Z =

1
S
bRbZ bϕ,Z =

1
S
bRbϕ (4.96b)

bR,RR =
bR
S2 [3 b2

Z − 1] bZ,RR =
bZ
S2 [3 b2

Z − 3] bϕ,RR =
bϕ
S2 [3 b2

Z − 1] (4.97a)

bR,RZ = −
bZ
S2 [3 b2

R − 1] bZ,RZ = −
bR
S2 [3 b2

Z − 1] bϕ,RZ = −
3
S2 bRbZbϕ (4.97b)

bR,ZZ =
bR
S2 [3 b2

R − 3] bZ,ZZ =
bZ
S2 [3 b2

R − 1] bϕ,ZZ =
bϕ
S2 [3 b2

R − 1] (4.97c)
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5. Kinetic Theory
In the kinetic theory of plasma dynamics [68, 127], the system of charged particles con-
stituting the plasma is described by a distribution function f(t, x, v) that can be seen as
a phasespace density. The integral of f over some phase space region Ω

∫
Ω

f(t, x, v)dxdv. (5.1)

gives the number of particles in that region, such that its velocity integral yields the
particle density

n(x) =

+∞

∫
−∞

f(t, x, v)dv, (5.2)

at a given point in space, and the integral over full phase space gives the total number of
particles N in the system

N =

+∞

∫
−∞

+∞

∫
−∞

f(t, x, v)dxdv. (5.3)

Conservation of phasespace volume along the particle trajectories implies that the distri-
bution function evolves according to the Liouville equation

∂f

∂t
+ ẋ ⋅

∂f

∂x
+ v̇ ⋅

∂f

∂v
= 0 (5.4)

which is a linear advection equation in phasespace. When the particle motion can be
described by a canonical Hamiltonian system, this equation can be expressed as

∂f

∂t
+ [f, h]xp = 0 (5.5)

where

[f, h]xp =
∂f

∂x

∂h

∂p
−
∂f

∂p

∂h

∂x
, (5.6)

are the canonical Poisson brackets, h is the particle Hamiltonian for the system under
consideration, and p is the canonical momentum conjugate to x.

5.1. The Vlasov-Poisson and Vlasov-Maxwell Systems
Replacing the acceleration with the Lorentz force

v̇ =
1
m
FLorentz =

q

m

⎧⎪⎪⎪⎩
E +

1
c
v ×B

⎫⎪⎪⎪⎭
(5.7)

we obtain the Vlasov equation (also referred to as the collisionless Boltzmann equation)
∂f

∂t
+ v ⋅

∂f

∂x
+
q

m

⎧⎪⎪⎪⎩
E +

1
c
v ×B

⎫⎪⎪⎪⎭
⋅
∂f

∂v
= 0. (5.8)

The fields E and B are computed self-consistently with respect to the particle distribution
given by f .
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5.1.1. The Vlasov-Maxwell System
The Vlasov-Maxwell system consists of the Vlasov equation (5.8)

∂f

∂t
+ v ⋅

∂f

∂x
+
q

m
(E +

1
c
v ×B) ⋅

∂f

∂v
= 0 (5.9)

and the dynamical Maxwell’s equations

∇×E = −
1
c

∂B

∂t
. ∇×B =

1
c
(
∂E

∂t
+ j). (5.10)

The charge density ρ and the current density j are given as moments of the distribution
function

ρ = q∫ f(t, x, v)dv, j = q∫ v f(t, x, v)dv, (5.11)

and E and B satisfy the constraints

∇ ⋅E = ρ, ∇ ⋅B = 0. (5.12)

The particle Hamiltonian h has the form

h =
1

2m (p −
q

c
A(x))

2

+ qφ(x). (5.13)

where the canonical momentum p is given by

p =mv +
q

c
A(x), (5.14)

A is the magnetic vector potential and φ is the electrostatic potential, such that the
electromagnetic fields are obtained by

E = −∇φ −
∂A

∂t
, B = ∇×A. (5.15)

5.1.2. The Vlasov-Poisson System
In the non-relativistic case, when v ≪ c, the v × B in the Lorentz force is very small
an can be neglected. If, moreover, B exhibits only little change over time, the electric
and magnetic field decouple, and we can describe the system by the electrostatic Vlasov
equation

∂f

∂t
+ v ⋅

∂f

∂x
+
q

m
E ⋅

∂f

∂v
= 0 (5.16)

The electric field E can be replaced by the electrostatic potential E = −∇φ, such that the
Vlasov-equation becomes

∂f

∂t
+ v ⋅

∂f

∂x
−
q

m

∂φ

∂x
⋅
∂f

∂v
= 0. (5.17)

The electrostatic potential φ is determined through the Poisson equation

−∆φ = ρ (5.18)
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where ρ is the charge density

ρ = qn = q∫ f dv. (5.19)

With the particle Hamiltonian h, consisting of the kinetic energy of the particles and their
potential energy in the electrostatic field,

h =
1

2m p2 + qφ, (5.20)

the Vlasov equation (5.17) can be expressed with Poisson brackets as in (5.5). In the
following treatment, it will however be more practical to express the Vlasov equation
with respect to velocity phasespace variables (x, v) instead of (x, p) as in the canonical
Poisson brackets (5.6). In that form, the Vlasov equation reads

∂f

∂t
+ [f, h]xv = 0 (5.21)

with particle Hamiltonian

h =
m

2 v2 + qφ (5.22)

and noncanonical Poisson brackets

[⋅, ⋅]x,p =
1
m

[⋅, ⋅]x,v. (5.23)

The additional mass factor will disappear in the normalisation procedure.

Dimensionless Equations

For the numerical treatment we normalise the Vlasov-Poisson equation to a dimensionless
equation. Charges are normalised to e, where the electron charge is qe = −e. Masses are
normalised to the electron mass me. The speed of light c is set to one, and the average
densities are also normalised to one,

1
Lx
∫ f(x, v)dv = 1, (5.24)

with Lx the size of the system. If both, electrons and ions (assumed to have opposite
charge ±e), are treated dynamically, the mass ratio must be accounted for in the Hamil-
tonian of the ions

∂fe
∂t

+ [fe, he] = 0, he =
1
2 v

2 − φ, (5.25a)
∂fi
∂t

+ [fi, hi] = 0, hi =
1
2
mi

me

v2 + φ. (5.25b)

In that case, the Poisson equation, of course, has contributions from both species

−∆φ = ∫ (fi − fe)dv. (5.26)

If the scale of the dynamics we are interested in is very fast the ions can be considered as
fixed in space and only the electrons have to be treated dynamically. The ions therefore
constitute a neutralising background that has to be taken into account in the Poisson
equation in terms of the ions’ average charge density (which is normalised to 1). Thereby
we obtain the following set of equations

∂f

∂t
+ [f, h] = 0, h =

1
2 v

2 − φ, −∆φ = 1 − ∫ f dv. (5.27)

We will restrict the following treatment to this case.
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5.1.3. Conservation Properties
The Vlasov-Poisson (and Vlasov-Maxwell) system conserves a number of quantities that
should in principle also be preserved in any numerical simulation. If this is not possible,
their error can give a hint of the validity of a numerical simulation and should therefore
always be monitored. These conserved quantities are1

• positivity and maximum principle (follows from characteristics theory)

0 ≤ f(x, v, t) ≤ max
(x,v)

f0(x, v), (5.28)

• total linear momentum P

d

dt
(∫ v f(x, v, t)dxdv) = 0, (5.29)

• total energy E

d

dt
(∫ v2 f(x, v, t)dxdv +

1
2 ∫ (

∂φ

∂x
)

2
dx) = 0, (5.30)

• any functional of the form

d

dt
(∫ F (f)dxdv) = 0, (5.31)

with the especially important cases of integral norms Lp and entropy

• integral norms Lp

d

dt
(∫ (f(x, v, t))

p
dxdv) = 0 for 1 ≤ p ≤∞, (5.32)

where p = 1 corresponds to the total particle number N and p = ∞ is the maximum
norm

• entropy S

d

dt
(∫ f ln f dxdv) = 0. (5.33)

In the derivation of the variational integrators, we concentrate on preserving the total
particle number, the total linear momentum, and the total energy.

1 Here, we merely list the conserved quantities, for proofs see e.g. the lecture notes of Sonnendrücker
[120].
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5.2. Review of Action Principles
As pointed out in the chapter on classical mechanics and field theory, action principles
are very powerful tools for the description of physical theories. Not only do they allow
us to derive equations of motions in a general and covariant way, but they also provide a
machinery for finding conserved quantities for free, namely, the Noether theorem.
The very first action principle for the Vlasov-Maxwell system is due to Low and was
published in 1958 [80]:

L = ∫ [
m

2 (
∂x

∂t
)

2
− qφ(x, t) + q

∂x

∂t
⋅A(x, t)] f(x, v)dxdv +

1
2 ∫ (E2 −B2)dx. (5.34)

Since then, a plethora of different action principles for the Vlasov-Poisson and Vlasov-
Maxwell systems have been proposed. These action principles can be classified by the
variables they use for the particles part; there are Lagrangian descriptions [80, 126], Eule-
rian descriptions [136, 70, 71, 39, 19, 20], and mixed Lagrangian-Eulerian (i.e., Hamilton-
Jacobi) descriptions [100, 101, 90, 102]. For the electromagnetic fields, of course, in all
action principles Eulerian variables are used.
While Lagrangian action principles are suitable for the derivation of numerical schemes
for particle-in-cell (PIC) codes, the natural basis for a Vlasov code is a purely Eulerian
action principle. These, however. have a severe difficulty, namely that the Vlasov system
is inherently noncanonical - the distribution function f does not have a canonical con-
jugate field variable. As we will see below, there are several possibilities to circumvent
this shortcoming. Unfortunately, none of these possibilities, while being quite elegant
analytically, do lend themselves to a straight forward discretisation.
What all action principles have in common is the electrostatic Lagrangian Lφ or the
electromagnetic Lagrangian LEM, depending on the Lagrangian describing the Vlasov-
Poisson or the Vlasov-Maxwell system. These Lagrangian densities are given by

Lφ =
1
2(
∂φ

∂x
)

2

, LEM =
1
2(E2 +B2). (5.35)

5.2.1. Parametrisation of the Distribution Function
An approach well known in fluid dynamics for a long time is the use of Clebsch variables,
first applied to the Vlasov system by Ye and Morrison [136]. Here the field variable, in
our case the distribution function f , is parametrised as the Poisson bracket of two Clebsch
potentials α and β that constitute canonically conjugate field variables:

f = [α,β]. (5.36)

The corresponding Lagrangian density reads

Lf = α
∂β

∂t
− [α,β]h, (5.37)

with the Hamiltonian density

Hf = f h = [α,β]h. (5.38)
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and h the particle Hamiltonian. The variations with respect to β and α lead to Vlasov
equations for α and β, respectively

∂α

∂t
+ [α,h] = 0, −

∂β

∂t
− [β,h] = 0. (5.39)

It is easy to show, that if α and β obey the Vlasov equation, so does f . Just insert the
parametrisation of f into the Vlasov equation,

∂[α,β]

∂t
+ [[α,β], h] = 0, (5.40)

apply the Leibniz rule to the time derivative,

∂[α,β]

∂t
= [

∂α

∂t
, β] + [α,

∂β

∂t
] , (5.41)

and the Jacobi identity to the Poisson bracket,

[[α,β], h] + [[β,h], α] + [[h,α], β] = 0, (5.42)

to get

[
∂β

∂t
+ [α,h], β] − [

∂β

∂t
+ [β,h], α] = 0. (5.43)

The outer Poisson brackets on the left hand side vanish, if α and β obey the Vlasov
equation.
The problems with this parametrisation are the behaviour of the Clebsch potentials at
the boundaries, especially for spatially periodic boundary conditions of f , their continuity
over the domain, as well as the question of how to initialise α and β for a given distribu-
tion function f .

A related approach was taken by Flå [39, 40]. He parametrises f with respect to some ref-
erence distribution function f0 from the same symplectic leaf, i.e., a distribution function
with the same number of particles and the same energy. f0 does not refer to the initial
conditions, but is in general evolving along with f . The Poisson bracket of f0 with some
generator S then gives the deformation of f0 towards the actual distribution function f :

f = f0 + [S, f0]. (5.44)

Here, f0 might be an equilibrium solution (e.g. a local Maxwellian distribution) while
f describes the turbulent state of the system. In this description, however, there is no
limitation on the difference ∆f = f − f0, besides that both, f and f0, have to lie on the
same symplectic leaf. So this is not comparable to a δf method.
The corresponding action is somewhat more complicated, as f and f0 generate differ-
ent electromagnetic fields, which has to be taken into account. The Lagrangian for the
distribution function reads

Lf = f0
∂S

∂t
− [S, f0]h − e f0 (φ − φ0), (5.45)
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and the Lagrangian for the electrostatic potentials is

Lφ =
1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎩

(
∂φ

∂x
)

2

− (
∂φ0

∂x
)

2⎫⎪⎪⎪⎪⎪⎪⎪⎭
. (5.46)

So that the action reads

A[f0, f, φ0, φ] = ∫

⎧⎪⎪⎪⎪⎪⎪⎪⎩

f0
∂S

∂t
− [S, f0]h − e f0 (φ − φ0)

⎫⎪⎪⎪⎪⎪⎪⎪⎭

dt dxdp

+
1
2 ∫

⎧⎪⎪⎪⎪⎪⎪⎪⎩

(
∂φ

∂x
)

2

− (
∂φ0

∂x
)

2⎫⎪⎪⎪⎪⎪⎪⎪⎭
dt dx. (5.47)

The variation with respect to S yields the Vlasov equation for f0,

∂f0

∂t
+ [f0, h] = 0. (5.48)

The variation with respect to f0 yields a Vlasov-like equation for S,

∂S

∂t
+ [S,h] = e (φ − φ0). (5.49)

The variations with respect to φ and φ0 yield the corresponding Poisson equations

∆φ = −e∫ (f0 + [S, f0])dp = −e∫ f dp (5.50)

∆φ0 = −e∫ f0 dp. (5.51)

Flå’s parametrisation is subject to similar problems as the Clebsch parametrisation. It is
not obvious how to find the generating function S for given distribution functions f and
f0. Besides, it is much more suggestive to prescribe f0 and S and obtain the initial f
through the parametrisation as this procedure gives a physical meaning to S that would
be lost when proceeding the other way around. Unfortunately, this strategy can not be
followed, unless a set of generating functions S for some standard scenarios in plasma
physical simulation is found.

5.2.2. Constrained Variations
Brizard [19, 20] suggested an action for the Vlasov-Maxwell system that is defined on an
eight-dimensional extended phasespace, adding time and energy to position and momen-
tum. He uses constraint variations δf = [δS, f]cov, where δS is the infinitesimal generator
of the variation and [⋅, ⋅]cov denote Poisson brackets in the extended phasespace

[f, h]cov = [f, h] +
∂f

∂ε

∂h

∂t
−
∂f

∂t

∂h

∂ε
. (5.52)

The action is written as

Af = ∫ f Hcov dt dε dxdp, (5.53)
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with the covariant Hamiltonian Hcov(t, ε;x, p) = h(t, x, p) − ε, thus

Af = ∫ f (h − ε)dt dε dxdp. (5.54)

The variation of A is computed as follows

δAf = ∫ δf (h − ε)dt dε dxdp (5.55)

= ∫ [δS, f]cov (h − ε)dt dε dxdp (5.56)

= ∫ δS [f, (h − ε)]cov dt dε dxdp. (5.57)

Introducing a space-time-split in the Poisson bracket, we get

δAf = ∫ δS
⎧⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂ε

∂(h − ε)

∂t
−
∂f

∂t

∂(h − ε)

∂ε
+ [f, h] − [f, ε]

⎫⎪⎪⎪⎪⎪⎪⎪⎭

dt dε dxdp. (5.58)

As ∂h/∂ε = ∂h/∂t = 0 and of course ∂ε/∂t = 0 as (t, ε;x, p) are independent variables, we
get

δAf = ∫ δS
⎧⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂t
+ [f, h]

⎫⎪⎪⎪⎪⎪⎪⎪⎭

dt dxdp, (5.59)

which holds for any variation δS and thus yields the Vlasov equation, i.e.,

δAf
δS

= 0 ⇒
∂f

∂t
+ [f, h] = 0. (5.60)

This action principle does not fit the formalism of chapter 3 very well. While it certainly
is possible to use the variational integrator framework to compute a discrete variational
derivative of the action (5.53), constrained to the form δf = [δS, f], it is not easy to see
what properties the resulting discrete equations will have. The application of the discrete
Noether theorem from section 3.2.4 does not seem straight forward. And it is not obvious
how to incorporate a symmetrisation of the Poisson brackets in a natural way. We will
see in section 5.3 that this is crucial to retain some of the symmetries of the continuous
system on the discrete level and obtain a robust numerical scheme (see also appendix
B). Besides, the use of extended phasespace adds further complications, as the additional
dimensions have to be removed by restriction of the dynamics to a hyperplane of constant
energy after the application of the discrete action principle.

5.2.3. Euler-Poincaré Reduction
Another action principle based on constrained variations is the one by Cendra et al.
[25], which is obtained from Low’s action principle (5.34) by Euler-Poincaré reduction
[55, 57, 82, 56]. Albeit this formulation is not directly applicable to the variational in-
tegrator approach as well, it deserves some attention as it constitutes the most natural
geometric description of the Vlasov-Maxwell system that has been found so far. The for-
mulation becomes even more interesting as it has recently been extended to gyrokinetics
by Squire et al. [122]. Furthermore, work by Pavlov et al. [99] suggests that a descendent
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of the variational integrator method as it is presented in this work can be applied to this
formulation (for more details see section 7.2.2).
The basic idea is to reduce the system by using the invariance of the Lagrangian under
particle relabelling

ψ(x0, v0) = (x(x0, v0), v(x0, v0)). (5.61)

ψ is the particle evolution map. It maps particles with initial phasespace position (x0, v0)

to their current phasespace position (x, v). The distribution function is therefore given
as

f = f0 ○ ψ
−1, (5.62)

or explicitly

f(x(x0, v0, t), v(x0, v0, t)) = f0(x0, v0), (5.63)

i.e., f is just carried along the particle flow. The Lagrangian can be written

Lf0(ψ, ψ̇, φ, φ̇,A, Ȧ) = ∫ f0(x0, v0) [(
e

c
A(x) +mv) ⋅ ẋ −

m

2 v2 − eφ(x)]dx0 dv0

+
1

8π ∫ [( −∇φ −
∂A

∂t
)

2

− (∇×A)

2

]dx. (5.64)

Invariance of the Lagrangian under the particle relabelling transformation ψ means

Lf0(ψ, ψ̇, φ, φ̇,A, Ȧ) = Lf0ψ−1(ψψ−1, ψ̇ψ−1, φ, φ̇,A, Ȧ) ≡ l(u, ψ̇, φ, φ̇,A, Ȧ), (5.65)

where u = (ẋ, v̇) is the phasespace velocity field

u(x, v) ≡ ψ̇ ○ ψ−1(x, v), (5.66)

such that

l(u, ψ̇, φ, φ̇,A, Ȧ) = ∫ f(x, v) [(
e

c
A(x) +mv) ⋅ ux −

m

2 v2 − eφ(x)]dxdv

+
1

8π ∫ [( − ∇φ −
∂A

∂t
)

2

− (∇ ×A)

2

]dx, (5.67)

where x and v are now considered as coordinates rather than fields and ux is the spatial
component of the phasespace velocity u.
We now have to compute the variations of l with respect to u and f . Variations with
respect to φ and A yield Maxwell’s equation in the usual way. Variations of the particle
evolution map ψ lead to variations in the phasespace velocity,

δu =
∂η

∂t
+ [u, η], (5.68)

which have the form of Lin constraints, well know in fluid dynamics [118]. Here, [⋅, ⋅]
denotes not the Poisson but the Lie bracket, i.e.,

[u, η] = (u ⋅ ∇z)η − (η ⋅ ∇z)u, (5.69)
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where ∇z denotes the nabla operator in phasespace. Variations of ψ also induce variations
of the distribution function,

δf = −∇z ⋅ (fη). (5.70)

According to (5.62), the evolution of f is is determined by the phasespace advection
equation,

∂f

∂t
+ (u ⋅ ∇z)f = 0, (5.71)

which obviously is the Vlasov equation in conservation form. Computing the variational
derivative of ∫ l dt with respect to δu and δf leads to the Euler-Poincaré equations,

∂

∂t

δl

δu
+ (u ⋅ ∇z)

δl

δu
= f ∇z

δl

δf
. (5.72)

With the reduced Lagrangian (5.67) this leads to

ux = v, uv = E +
1
c
v ×B, (5.73)

such that (5.71) takes the expected form (5.9).

5.2.4. Lie Action Principles
A number of action principles have been derived based on Lie group methods [136, 70, 71,
39]. These are not only more complicated than the actions introduced above, they also
suffer from similar problems, i.e., they employ constrained variations, auxiliary variables,
generating functions, etc. We do not want to go into detail here, but just mention that
all of these do not seem to be applicable for our purposes.

5.3. Variational Discretisation
We have seen in the previous section that, even though a variety of action principles
for the Vlasov-Poisson and Vlasov-Maxwell systems exist, none of them appears directly
applicable within the variational integrator framework. We therefore have to build an
extended Lagrangian as described in section 2.2.7.

5.3.1. Extended Lagrangian
To write the action for the dimensionless Vlasov-Poisson system (5.27), we need two Ibrag-
imov multipliers, g(t, x, v) for the Vlasov equation and ψ(t, x) for the Poisson equation,

A[f, g, φ,ψ] = ∫ g (
∂f

∂t
+ [f, h])dt dxdv + ∫ ψ (∆φ + 1 − ∫ f dv)dt dx (5.74)

Computing the variations results in the following equations of motion
δA

δg
= +

∂f

∂t
+ [f, h] = 0, δA

δψ
= ∆φ + ∫ f dv − 1 = 0 (5.75a)

δA

δf
= −

∂g

∂t
− [g, h] − ψ = 0, δA

δφ
= ∆ψ + ∫ [g, f]dv = 0 (5.75b)
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A compatible solution of the auxiliary variables is given by g = f and ψ = 0, such that
the adjoint equation for the Vlasov equation becomes the Vlasov equation itself, and
the Poisson bracket in the adjoint equation of the Poisson equation is identical zero as
[f, f] = 0, thereby admitting a constant solution for ψ, where we choose ψ = 0 to obtain the
first equality. The solution vector of the extended system of equations is thus (f, f, φ,0).

5.3.2. Variational Integrator
The discretisation of the action (5.74) follows exactly along the lines of section 3.2, the
only difference being that we have three dimensions now, time t, space x, and velocity v
(see figure 5.1).

∂ϕ

∂t
:

1 2

34

5 6

78

∂ϕ

∂x
:

1 2

34

5 6

78

∂ϕ

∂v
:

1 2

34

5 6

78

x

v

t

Fig. 5.1.: For a given phasespacetime grid cell, there are four possible ways of
defining derivatives in the different coordinate directions (t, x, v), namely along the
black lines. The actual discrete derivatives correspond to the averages over all four
corresponding possibilities.

The approximations of the fields and derivatives are therefore

ϕ → ϕī,j̄,k̄ ≡
1
8
⎧⎪⎪⎪⎩
ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6 + ϕ7 + ϕ8⎫⎪⎪⎪⎭

(5.76a)

∂ϕ

∂t
→ (

∂ϕ

∂t
)
ī,j̄,k

≡
1
4

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ5 − ϕ1

ht
+
ϕ6 − ϕ2

ht
+
ϕ7 − ϕ3

ht
+
ϕ8 − ϕ4

ht

⎫⎪⎪⎪⎪⎪⎪⎪⎭

(5.76b)

∂ϕ

∂x
→ (

∂ϕ

∂x
)
i,j̄,k̄

≡
1
4

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2 − ϕ1

hx
+
ϕ3 − ϕ4

hx
+
ϕ6 − ϕ5

hx
+
ϕ7 − ϕ8

hx

⎫⎪⎪⎪⎪⎪⎪⎪⎭

(5.76c)

∂ϕ

∂v
→ (

∂ϕ

∂v
)
ī,j,k̄

≡
1
4

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ4 − ϕ1

hv
+
ϕ3 − ϕ2

hv
+
ϕ8 − ϕ5

hv
+
ϕ7 − ϕ6

hv

⎫⎪⎪⎪⎪⎪⎪⎪⎭

.

(5.76d)

The bar over the indices indicates in which dimension averaging is applied as depicted in
figure 5.1. Considering a given phasespacetime grid cell, the time derivative, for example,
can be defined along each of the four highlighted edges of that cell. Our discrete time
derivative is the average over all four of that possibilities, denoted by overbars ī, j̄, but not
k̄ as that is the coordinate direction of the derivative. The fields themselves are averaged
in all three dimensions, such that their indices have overbars ī, j̄,k̄.
In the Poisson equation, we do not have a v dimension, so we have to define a reduced
field average and a reduced x derivative as follows

ϕī,k̄ ≡
1
4
⎧⎪⎪⎪⎩
ϕ1 + ϕ2 + ϕ5 + ϕ6⎫⎪⎪⎪⎭

, (
∂ϕ

∂x
)
i,k̄

≡
1
4

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2 − ϕ1

hx
+
ϕ6 − ϕ5

hx

⎫⎪⎪⎪⎪⎪⎪⎪⎭

. (5.77)
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Some care has to be taken when discretising the Poisson bracket (see Salmon and Talley
[110]). To retain the properties of the continuous bracket (antisymmetry and the Jacobi
identity) at the discrete level, a symmetrisation has to be introduced in the Lagrangian.
One has to realise that by partial integration the even permutations in the integrand are
all identical (assuming boundary conditions such that the boundary terms of the partial
integration vanish)

∫ g [f, h]dxdv = ∫ f [h, g]dxdv = ∫ h [g, f]dxdv.

Hence, instead of one of the permutations a convex combination can be used just as well

∫ g [f, h]dxdv = ∫
⎧⎪⎪⎪⎩
αg [f, h] + β f [h, g] + γ h [g, f]

⎫⎪⎪⎪⎭
dxdv with α + β + γ = 1.

(5.78)

The symmetric case, i.e., the one that retains the properties of the bracket at the discrete
level, corresponds to α = β = γ = 1/3. We therefore write the action

A[f, g, φ,ψ] = ∫ [g
∂f

∂t
+

1
3(g [f, h] + f [h, g] + h [g, f])]dt dxdv

− ∫ [
∂ψ

∂x

∂φ

∂x
+ ψ (∫ f dv − 1)]dt dx, (5.79)

where we also did a partial integration in the second integral to avoid second order deriva-
tives. As the two integrals in the action have different integration domains, (t, x, v) for
the Vlasov equations and (t, x) for the Poisson equation, we split the discrete Lagrangian
into two parts

LVd = gī,j̄,k̄ (
∂f

∂t
)
ī,j̄,k

+
1
3(gī,j̄,k̄ [f, h]i,j,k + fī,j̄,k̄ [h, g]i,j,k + hī,j̄,k̄ [g, f]i,j,k) (5.80)

LPd = −(
∂ψ

∂x
)
i,k̄

(
∂φ

∂x
)
i,k̄

− ψī,k̄ (∑
j

fī,j̄,k̄ − 1) (5.81)

with the discrete Poisson bracket

[f, h]i,j,k = (
∂f

∂x
)
i,j̄,k̄

(
∂h

∂v
)
ī,j,k̄

− (
∂f

∂v
)
ī,j,k̄

(
∂h

∂x
)
i,j̄,k̄

. (5.82)

With these definitions the discrete action becomes

Ad = ht hx hv ∑
i,j,k

LVd + ht hx ∑
i,k

LPd (5.83)

= ht hx hv ∑
i,j,k

[gī,j̄,k̄ (
∂f

∂t
)
ī,j̄,k

+
1
3(gī,j̄,k̄ [f, h]i,j,k̄ + fī,j̄,k̄ [h, g]i,j,k̄ + hī,j̄,k̄ [g, f]i,j,k̄)]

− ht hx ∑
i,k

[(
∂ψ

∂x
)
i,k̄

(
∂φ

∂x
)
i,k̄

+ ψī,k̄ (∑
j

fī,j̄,k̄ − 1)]. (5.84)
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The discrete Euler-Lagrange field equations (3.93) are computed as

0 =
∂LVd
∂g1 (yi,j,k, yi+1,j,k, yi+1,j+1,k, yi,j+1,k, yi,j,k+1, yi+1,j,k+1, yi+1,j+1,k+1, yi,j+1,k+1)

+
∂LVd
∂g2 (yi−1,j,k, yi,j,k, yi,j+1,k, yi−1,j+1,k, yi−1,j,k+1, yi,j,k+1, yi,j+1,k+1, yi−1,j+1,k+1)

+
∂LVd
∂g3 (yi−1,j−1,k, yi,j−1,k, yi,j,k, yi−1,j,k, yi−1,j−1,k+1, yi,j−1,k+1, yi,j,k+1, yi−1,j,k+1)

+
∂LVd
∂g4 (yi,j−1,k, yi+1,j−1,k, yi+1,j,k, yi,j,k, yi,j−1,k+1, yi+1,j−1,k+1, yi+1,j,k+1, yi,j,k+1)

+
∂LVd
∂g5 (yi,j,k−1, yi+1,j,k−1, yi+1,j+1,k−1, yi,j+1,k, yi,j,k, yi+1,j,k, yi+1,j+1,k, yi,j+1,k)

+
∂LVd
∂g6 (yi−1,j,k−1, yi,j,k−1, yi,j+1,k−1, yi−1,j+1,k, yi−1,j,k, yi,j,k, yi,j+1,k, yi−1,j+1,k)

+
∂LVd
∂g7 (yi−1,j−1,k−1, yi,j−1,k−1, yi,j,k−1, yi−1,j,k−1, yi−1,j−1,k, yi,j−1,k, yi,j,k, yi−1,j,k)

+
∂LVd
∂g8 (yi,j−1,k−1, yi+1,j−1,k−1, yi+1,j,k−1, yi,j,k−1, yi,j−1,k, yi+1,j−1,k, yi+1,j,k, yi,j,k) (5.85)

for the discrete Vlasov equation and

0 =
∂LPd
∂ψ1 (yi,k, yi+1,k, yi+1,k+1, yi,k+1) +

∂LPd
∂ψ2 (yi−1,k, yi,k, yi,k+1, yi−1,k+1)

+
∂LPd
∂ψ3 (yi−1,k−1, yi,k−1, yi,k, yi−1,k) +

∂LPd
∂ψ4 (yi,k−1, yi+1,k−1, yi+1,k, yi,k) (5.86)

for the discrete Poisson equation.
These discrete variations yield the following discrete Vlasov-Poisson system

0 = f̄k+1 − f̄k−1

2ht
+

1
8(A(fk+1, hk+1) +A(fk+1, hk) +A(fk, hk+1)

+ 2A(fk, hk) +A(fk, hk−1) +A(fk−1, hk) +A(fk−1, hk−1)) (5.87)

0 = ∆fdφik+1 −
1
4(

nv

∑
j=0
fi−1jk+1 + 2

nv

∑
j=0
fijk+1 +

nv

∑
j=0
fi+1jk+1) + 1

+ 2∆fdφik −
1
2(

nv

∑
j=0
fi−1jk + 2

nv

∑
j=0
fijk +

nv

∑
j=0
fi+1jk) + 2

+∆fdφik−1 −
1
4(

nv

∑
j=0
fi−1jk−1 + 2

nv

∑
j=0
fijk−1 +

nv

∑
j=0
fi+1jk−1) + 1. (5.88)

The time derivative of the distribution function f is an average of centred-finite-differences
over 9 grid points in phasespace, weighted as depicted below.
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The Poisson bracket A(⋅, ⋅) is discretised by the well known Arakawa scheme [4] (see also
appendix B). It is noteworthy that the Arakawa discretisation arises naturally from the
variational principle. This is of course a consequence of the applied symmetrisation, but
that symmetrisation is imperative to retain the symmetries of the continuous Lagrangian
on the discrete level.
The discrete Laplace operator ∆fd is just the standard finite difference stencil [+1 − 2 +

1]/h2. The Poisson equation is, however, averaged over three points in time, and the
charge density is averaged over three points in space.

Simplifications

Overall, we obtain a well working, nonlinearly implicit scheme. It allows, however, for
some simplifications. The first issue is the representation of the time derivative by a
second order discretisation. This requires the prescription of initial conditions at two
consecutive points in time, which is unnatural as the Vlasov equation requires only one
initial condition. Rewriting the discrete Vlasov equation (5.87) as

0 = f̄k+1 − f̄k
2ht

+
1
8(A(fk+1, hk+1) +A(fk+1, hk) +A(fk, hk+1) +A(fk, hk))

+
f̄k − f̄k−1

2ht
+

1
8(A(fk, hk) +A(fk, hk−1) +A(fk−1, hk) +A(fk−1, hk−1)) (5.89)

the solution to this issue becomes apparent. Consider the reduced equation

0 = f̄k+1 − f̄k
ht

+
1
4(A(fk+1, hk+1) +A(fk+1, hk) +A(fk, hk+1) +A(fk, hk)). (5.90)

If we use this equation to determine f1 for given initial conditions f0, and use this as initial
conditions for (5.89), the solution of (5.89) will always also be a solution of (5.90) and
vice versa. We can therefore solve the reduced system (5.90) instead of (5.89), retaining
all conservation properties, but replacing the time derivative of the distribution function
with a discrete derivative of first order.
By a similar argument we can remove the time average in the discrete Poisson equation
(5.88). If we prescribe an initial distribution function at k = 0 and only use the third line
of (5.88) to compute the corresponding potential, all three parts of the discrete Poisson
equation have to hold separately at all times. We can thus replace the discrete Poisson
equation by

0 = ∆fdφik+1 −
1
4(

nv

∑
j=0
fi−1jk+1 + 2

nv

∑
j=0
fijk+1 +

nv

∑
j=0
fi+1jk+1) + 1. (5.91)

Interestingly, this reduction can already be implemented on the level of the discrete La-
grangian by modifying some of the averaging, i.e., by removing the time average from g
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in the Vlasov equation and all time averages in the Poisson equation

LVd = gī,j̄,k (
∂f

∂t
)
ī,j̄,k

+
1
3 gī,j̄,k [(

∂f

∂x
)
i,j̄,k̄

(
∂h

∂v
)
ī,j,k̄

− (
∂f

∂v
)
ī,j,k̄

(
∂h

∂x
)
i,j̄,k̄

]

+
1
3 fī,j̄,k̄ [(

∂h

∂x
)
i,j̄,k̄

(
∂g

∂v
)
ī,j,k

− (
∂h

∂v
)
ī,j,k̄

(
∂g

∂x
)
i,j̄,k

]

+
1
3 hī,j̄,k̄ [(

∂g

∂x
)
i,j̄,k

(
∂f

∂v
)
ī,j,k̄

− (
∂g

∂v
)
ī,j,k

(
∂f

∂x
)
i,j̄,k̄

] (5.92)

LPd = −(
∂ψ

∂x
)
i,k

(
∂φ

∂x
)
i,k

− ψī,k (∑
j

fī,j̄,k − 1). (5.93)

This is an important point as it allows us to study and compare the discrete symmetries
and conservation laws of both the original and the reduced scheme. Without having done
the analysis (which should be addressed in future work), we observe numerically that
both schemes preserve the total particle number, the total linear momentum, and the total
energy of the system exactly, i.e., up to machine accuracy. Furthermore, integral norms of
the distribution function f are preserved, and as the scheme is symplectic by construction,
the phasespace volume is preserved as well. Solely, positivity of the distribution function
and the maximum principle are not preserved automatically.

5.3.3. Linearised Lagrangian

Another simplification that can be introduced on the level of the Lagrangian is a lineari-
sation with respect to time. The above scheme has extraordinary conservation properties,
but in some situations the solution of a nonlinear system of equations might be too de-
manding in terms of computational time and might thus not be an option. Moreover, to
get quick convergence of the nonlinear iteration (e.g. in a Newton solver) a good predictor
or initial guess is necessary. We therefore derive a linearised scheme that can be used in
both of these cases and examine which of the properties of the fully nonlinear scheme are
retained. Again, we apply a different averaging strategy, defining separate averages, space
and velocity derivatives for timepoints k and k + 1

ϕī,j̄,k ≡
1
4
⎧⎪⎪⎪⎩
ϕ1 + ϕ2 + ϕ3 + ϕ4⎫⎪⎪⎪⎭

, ϕī,j̄,k+1 ≡
1
4
⎧⎪⎪⎪⎩
ϕ5 + ϕ6 + ϕ7 + ϕ8⎫⎪⎪⎪⎭

(5.94a)

(
∂ϕ

∂x
)
i,j̄,k

≡
1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2 − ϕ1

hx
+
ϕ3 − ϕ4

hx

⎫⎪⎪⎪⎪⎪⎪⎪⎭

, (
∂ϕ

∂x
)
i,j̄,k+1

≡
1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ6 − ϕ5

hx
+
ϕ7 − ϕ8

hx

⎫⎪⎪⎪⎪⎪⎪⎪⎭

(5.94b)

(
∂ϕ

∂v
)
ī,j,k

≡
1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ4 − ϕ1

hv
+
ϕ3 − ϕ2

hv

⎫⎪⎪⎪⎪⎪⎪⎪⎭

, (
∂ϕ

∂v
)
ī,j,k+1

≡
1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎩

ϕ8 − ϕ5

hv
+
ϕ7 − ϕ6

hv

⎫⎪⎪⎪⎪⎪⎪⎪⎭

(5.94c)
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and replace the symmetrised Poisson bracket by

(g [f, h] + f [h, g] + h [g, f])
i,j,k

=

=
1
12(gī,j̄,k ([fk, hk+1]ij + [fk+1, hk]ij) + gī,j̄,k+1 ([fk, hk+1]ij + [fk+1, hk]ij)

+ fī,j̄,k ([hk+1, gk]ij + [hk+1, gk+1]ij) + fī,j̄,k+1 ([hk, gk]ij + [hk, gk+1]ij)

+ hī,j̄,k ([gk, fk+1]ij + [gk+1, fk+1]ij) + hī,j̄,k+1 ([gk, fk]ij + [gk+1, fk]ij))

(5.95)

with

[fk, hk+1]i,j = (
∂f

∂x
)
i,j̄,k

(
∂h

∂v
)
ī,j,k+1

− (
∂f

∂v
)
ī,j,k

(
∂h

∂x
)
i,j̄,k+1

(5.96)

such that in combinations of f and h, both fields are always taken at different times.
In the time derivative and in the Poisson equation we apply the simplifications from the
previous section, thereby obtaining the linearised discrete Lagrangians

LVd = gī,j̄,k (
∂f

∂t
)
ī,j̄,k

+ (g [f, h] + f [h, g] + h [g, f])
i,j,k

(5.97)

LPd = −(
∂ψ

∂x
)
ik

(
∂φ

∂x
)
ik

− ψīk (∑
j

fīj̄k − 1). (5.98)

The resulting scheme is

0 = f̄k+1 − f̄k
ht

+
1
2(A(fk+1, hk) +A(fk, hk+1)) (5.99)

0 = ∆fdφik+1 −
1
4(

nv

∑
j=0
fi−1jk+1 + 2

nv

∑
j=0
fijk+1 +

nv

∑
j=0
fi+1jk+1) + 1.

As we will see in the numerical examples, this scheme still preserves the total particle
number, linear momentum, and integral norms of the distribution function, but it does
not preserve the energy exactly. Instead the usual energy behaviour of symplectic methods
is observed, i.e., the energy error oscillates about zero with a bounded amplitude of the
oscillation.
The loss of exact energy conservation is almost certainly explained by destruction of some
symmetry (namely the one responsible for energy conservation) in the discrete Lagrangian
in the course of the linearisation procedure. Again, a detailed analysis of the discrete
symmetries and discrete conservation laws should clarify this point.

5.4. Velocity Space Collision Operator
A well known problem with low order finite difference schemes like ours is the development
of oscillations when phasespace filaments of the order of the grid size develop. In other
discretisation techniques, e.g. finite elements or semi-Lagrangian methods, interpolation
procedures are employed which, as a side effect, damp these oscillations. An alternative
is to add a velocity space collision operator.
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5.4.1. Continuous Collision Operator
We start by considering the Lenard-Bernstein operator [74] which conserves the total
particle number but not momentum and energy

CLB[f] = ν
∂

∂v
[
∂f

∂v
+ vf]. (5.100)

We try to fix this by adding correction terms that restore these conservation properties
and obtain the same collision operator as Filbet and Sonnendrücker [38]. The general
expression of the collision operator with collision frequency ν is

C[f] = ν
∂

∂v
[
∂f

∂v
+A(v, f) f] (5.101)

where the correction term is of the form

A(v, f) =
K

∑
n=1

An(f) v
n−1. (5.102)

If the operator shall preserve the total particle number, linear momentum, and energy (i.e.,
the zeroth, first and second moment of the distribution function), the velocity integral of
the collision operator, multiplied with {1, v, v2} has to vanish. In general, to preserve the
first K moments, C[f] has to fulfil

+vmax

∫
−vmax

vkC[f]dv = ν

+vmax

∫
−vmax

vk
∂

∂v
[
∂f

∂v
+A(v, f) f]dv = 0 for k = 0, ...,K. (5.103)

The integration domain should be the whole real line, (−∞,+∞), but in the discrete
case, it suffices if the velocity domain is large enough to ensure that f and its derivatives
vanish or are at least very small at the boundaries. A partial integration with respect to
v (neglecting the collision frequency ν) gives

[vk (
∂f

∂v
+A(v, f) f)]∣

+vmax

−vmax

− k

+vmax

∫
−vmax

vk−1 [
∂f

∂v
+A(v, f) f]dv (5.104)

which means that f and ∂vf have to be (close to) zero at v ± vmax such that

[vk (
∂f

∂v
+A(v, f) f)]∣

+vmax

−vmax

≈ 0. (5.105)

Assuming that this is fulfilled, conservation of the moments of f requires the following
expression to vanish

+vmax

∫
−vmax

vk−1 [
∂f

∂v
+A(v, f) f]dv. (5.106)

Partial integration of the first term gives

[vk−1f]∣
+vmax

−vmax
−

+vmax

∫
−vmax

[(k − 1) vk−2 −A(v, f) vk−1] f dv (5.107)
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where the surface term vanishes (approximately) for f ≈ 0 at v ± vmax. Plugging (5.102)
into the integral and writing Mi for the ith moment of f , we get the set of conditions

(k − 1)Mk−2(f) =
K

∑
n=1

An(f)Mk+n−2(f) for k = 1, ...,K. (5.108)

We want to preserve all moments up to K = 2, so we compute

k = 1 ∶ 0 = A1M0 +A2M1,

k = 2 ∶ M0 = A1M1 +A2M2.

With the definition of the moments

M0 = n = ∫ f dv, M1 = nu = ∫ vf dv, M2 = nε = ∫ v2f dv (5.109)

we get the system

0 = A1n +A2nu,

n = A1nu +A2nε.

the solution of which determines the correction factors to be

A1 =
u

u2 − ε
, A2 = −

1
u2 − ε

. (5.110)

where the factors Ai depend on the distribution function f through the momenta n, u
and ε. The full expression of our operator is thus

C[f] = ν
∂

∂v
[
∂

∂v
+
v − u

ε − u2 ] f. (5.111)

The denominator represents the temperature T = ε − u2 of the plasma, such that the
correction factor (v − u)/T corresponds to the thermal spread of the particles about the
average velocity.

Comparison With Other Operators

The operator (5.111) can be shown to be related to the one presented by Oppenheim [97],
Ong and Yu [96], as well as Clemmow and Dougherty [32], by multiplying the right hand
side of (5.111) with the denominator of the second term

C ′[f] = ν
∂

∂v
[(ε − u2)

∂

∂v
+ (v − u)] f. (5.112)

Upon insertion of the definition of ε we get

C ′[f] = ν
∂

∂v
[(

1
n ∫

v2 f dv − u2)
∂

∂v
+ (v − u)] f

= ν
∂

∂v
[(

1
n ∫

(v − u)2 f dv)
∂

∂v
+ (v − u)] f (5.113)
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where the last equality holds as

1
n ∫

(v − u)2 f dv =
1
n ∫

(v2 − 2uv + u2) f dv =
1
n
(∫ v2 f dv − 2nu2 + nu2) =

1
n ∫

v2 f dv − u2.

Equation (5.113) is the expression presented in the above references [97, 96, 32]. It has
similar properties as our operator, i.e., it preserves the total particle number, the total
linear momentum, and the total energy. It also relaxes towards a Maxwellian, but the
coefficient of the diffusion term modifies its behaviour, such that the strength of the
diffusion scales with the thermal energy ε − u2.

5.4.2. Discrete Collision Operator
To obtain the discrete collision operator we repeat the derivation at the discrete level in
the same spirit we derived the discrete action principle, i.e., by mimicking the continuous
derivation. We discretise the derivatives in the collision operator (5.101) by

Cd[j] = ν [
f(j − 1) − 2f(j) + f(j + 1)

h2
v

+A1,d
f(j + 1) − f(j − 1)

2hv

+A2,d
v(j + 1) f(j + 1) − v(j − 1) f(j − 1)

2hv
]. (5.114)

where we dropped the spatial and time indices as the collision operator is always computed
at a single point in spacetime (i, k). The coefficients A1,d and A2,d are choosen to enforce
the discrete conservation properties

0 =∑
j

(v(j) + v(j + 1))(Cd(j) +Cd(j + 1)), (5.115a)

0 =∑
j

(v2(j) + v2(j + 1))(Cd(j) +Cd(j + 1)). (5.115b)

Discrete partial integration, i.e., reordering of the sums, then leads to the following ex-
pressions for the correction factors A1,d and A2,d

A1,d = −
ud

εd − u2
d

, A2,d =
1

εd − u2
d

(5.116)

which, no surprises, are exactly the same as their continuous counter parts (5.110). The
important result is that we automatically obtain the correct energy and momentum pre-
serving discretisation of the moments

nd = hv∑
j

f(j), ud =
hv
nd
∑
j

v(j)f(j), εd =
hv
nd
∑
j

v2(j)f(j). (5.117)

The complete discretised collision operator is (replacing the subscript d with grid coordi-
nates)

Ci,j,k = ν [
f(i, j − 1, k) − 2f(i, j, k) + f(i, j + 1, k)

h2
v

+
[v(j + 1) − u(i, k)] f(i, j + 1, k) − [v(j − 1) − u(i, k)] f(i, j − 1, k)

2hv [ε(i, k) − u2(i, k)]
].

(5.118)



128 5. Kinetic Theory

We add the discrete operator to the simplified nonlinear Vlasov equation (5.90) by em-
ploying a spacetime averaging approach mimicking the result of the discrete variational
principle

f̄k+1 − f̄k
ht

+
1
4(A(fk+1, hk+1) +A(fk+1, hk) +A(fk, hk+1) +A(fk, hk)) = Cī,j,k̄[f] (5.119)

where

Cī,j,k̄ =
1
8[Ci−1,j,k + 2Ci,j,k +Ci+1,j,k +Ci−1,j,k+1 + 2Ci,j,k+1 +Ci+1,j,k+1].

This averaging does not have an effect on the conservation properties as the discrete
collision operator is designed to conserve the total particle number, the linear momentum
and energy locally, i.e., for each spacetime grid point (i, k) separately.

5.5. Numerical Examples
In this section we consider several numerical examples that can be considered standard
benchmark cases [53, 134, 15, 38, 5, 91, 28].
If not noted otherwise, the simulation domain is [0,2π/k]×[−vmax,+vmax]. The resolution
is always nx = 201, nv = 401, and except for the simulations with the linear integrator, the
timestep is ht = 0.1 in units of the inverse plasma frequency. For the linear integrator the
timestep is ht = 0.01.
Most of the examples are initialised as a perturbation of a Maxwellian distribution, given
by

fM(x, v) =
1

√
2π

exp{−1
2 v

2} . (5.120)

The temperature is set to one such that the thermal velocity is also one. The density is
normalised to one. The initial potential is determined by the initial distribution function
via the Poisson equation.

5.5.1. Simulation Code
The variational integrator for the Vlasov-Poisson system, equations (5.90) and (5.91),
constitutes a nonlinearly implicit system of equations. The nonlinearity is solved by New-
ton’s method where in each Newton step a direct linear solver based on LU decomposition
and a GMRES correction is employed. The initial guess for the Newton solver is either
computed by the linear variational integrator from section 5.3.3, or, in linear or weakly
nonlinear examples, the last timestep is used. Depending on the problem, the Newton
solver usually needs 1-3 iterations to converge with a residual smaller 10−11. In most cases,
the LU decomposition of the Jacobian needs only be carried out once per timestep.
The implementation of efficient solvers is a topic left for of future research, but preliminary
results suggest that for a sufficiently good initial guess, the LU decomposition can be
replaced by an iterative method (GMRES), where only a few iterations are needed to
solve the linear system.
The code is implemented in Python and Cython using PETSc [14, 13] to solve the non-
linear system and take care of the parallel communication and MUMPS [129] for the LU
decomposition.
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5.5.2. Diagnostics
We have not yet carried out a detailed analysis of the discrete conservation laws of the
Vlasov-Poisson system. We therefore assume a discrete representation of the conservation
properties according to the discretisation of the Lagrangian, i.e., a midpoint representa-
tion.
The total particle number is computed as

Nk =
1
4
nx−1
∑
i=1

nv−1
∑
j=1

(fi,j,k + fi+1,j,k + fi+1,j+1,k + fi,j+1,k)hxhv, (5.121)

where i = nx corresponds to i = 1 as we use periodic boundary conditions in space.
Furthermore, the velocity domain should always be chosen large enough, such that fi,1 =
fi,nv = 0, the above expression is really just a sum of f over the whole phasespace grid
(i, j),

Nk =
1
4
nx

∑
i=1

nv

∑
j=1
fi,j,k hxhv. (5.122)

Similar to (5.121), the L2 norm is computed as

L2
k =

nx−1
∑
i=1

nv−1
∑
j=1

[
1
4(fi,j,k + fi+1,j,k + fi+1,j+1,k + fi,j+1,k)

⎤
⎥
⎥
⎥
⎥
⎦

2

hxhv, (5.123)

momentum is computed as

Pk =
1
8
nx−1
∑
i=1

nv−1
∑
j=1

(fi,j,k + fi+1,j,k + fi+1,j+1,k + fi,j+1,k)(vj + vj+1)hxhv, (5.124)

energy is computed as

Ek =
1
16

nx−1
∑
i=1

nv−1
∑
j=1

(fi,j,k + fi+1,j,k + fi+1,j+1,k + fi,j+1,k)×

× (hi,j,k + hi+1,j,k + hi+1,j+1,k + hi,j+1,k)hxhv, (5.125)

and entropy is computed as

Sk =
1
4
nx−1
∑
i=1

nv−1
∑
j=1

(fi,j,k + fi+1,j,k + fi+1,j+1,k + fi,j+1,k)×

× log(
1
4
(fi,j,k + fi+1,j,k + fi+1,j+1,k + fi,j+1,k))hxhv. (5.126)

It is expected that a rigorous calculation of the discrete conservation laws from the discrete
Noether theorem (section 3.2.4) may improve on the quality of the discrete conservation
laws. Even with the foregoing heuristic diagnostics, we obtain very satisfying results so
that a more precise analysis is left for future work.
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5.5.3. Landau Damping
Landau damping is probably the most popular benchmark for the Vlasov equation, first
because it is a purely kinetic effect involving phase mixing, and second because there
are analytical results available to compare with (at least in the linear case). The initial
distribution function is given by

f(x, v) = fM (1 +A cos(kx)), (5.127)

where fM is a Maxwellian distribution (5.120). With k = 0.5, the spatial simulation
domain is [0,4π], and vmax = 10. The resolution is nx = 201, nv = 401, and the timestep
is ht = 0.1 in units of the inverse plasma frequency. The spatial step width hx = 2π/nxk
depends on the chosen wave number k.

Linear Landau Damping

At first, we consider the linear case, which can be compared with theoretical results, that
is an initial perturbation with A = 0.01, k = 0.5, and without collisions (ν = 0). Figure
5.2) shows the time traces of the errors of the total particle number, the total energy, and
linear momentum, while the evolution of the electrostatic energy is displayed in figure 5.3.
Using only the marked maxima, the damping rate is computed to be γ = −0.152, which
is very close to the theoretical value of γ = −0.153. Using only the first ten maxima, we
obtain the predicted value γ = −0.153. The total particle number and the total linear
momentum are preserved optimally (see figure 5.2) and exhibit the expected oscillatory
behaviour about a constant value. The error in the total energy is very small but seems
to grow during the simulation. Indeed, the error of the particle number oscillates about
zero for t < 40, and then jumps to 10−13. The energy error appears to grow monotonically,
although it remains very small. This is attributed to the formation of structures on a
scale length shorter than the grid step size, namely, subgrid modes which are discussed
below.
We can therefore conclude that, without additional ad hoc devices (such as hyperdiffu-
sion), the integrator shows remarkable conservation properties and accuracy, as far as the
grid is sufficient to resolve the phase-mixing structure of the distribution function. For
long-time integration, special care of subgrid modes should be taken.

Subgrid Modes and Collision Operator

At about t = 40, subgrid modes start to develop. Consequently, large gradients in the
distribution function appear, which in turn lead to an unphysically large electrostatic
potential. Therefore, the total energy error increases, as can be seen in figure 5.2, and the
damping rate becomes spurious (figure 5.3). To remove these subgrid modes, we employ
the collision operator described in section 5.4. It dissipates the L2 norm but retains the
conservation of total particle number, total energy, and total linear momentum.
At a collision frequency of ν = 10−4, the error of the conserved quantities is almost optimal
(figure 5.4), and the electrostatic field is damped up to the machine accuracy (figure 5.5).
When measuring the absorption coefficient γ from the first timesteps, a good agreement
with the theoretical value is observed. Long-time measurements of γ result, however, in
values too small compared with the theoretical value. For the marked maxima in figure
5.5, we obtain γ = −0.144. This behaviour is explained by subgrid modes which are not
damped completely by the collision operator and are therefore still active.
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To obtain the approximately correct value of γ = −0.152, we have to increase the collision
frequency to ν = 4 × 10−4 (figure 5.6). Even so, there is almost no visible difference in
the time traces of the energy error for ν = 1 × 10−4 and ν = 4 × 10−4, figures 5.4 and 5.6,
respectively, the difference is obvious in the damping of the electrostatic potential.
These results suggests that the linear case, for which an analytical solution is known,
can be used to tune the collision frequency for a given step width hv in velocity space.
We will see in the following nonlinear examples, that in all cases a collision frequency of
ν = 4 × 10−4 is necessary to obtain accurate conservation of particle number, energy and
momentum on long timescales.

Nonlinear Landau Damping

In the case of nonlinear Landau damping, A = 0.5 and k = 0.5, the previous observations
manifest more clearly. The effects of the subgrid modes are much more pronounced
as the nonlinear character of the dynamics tends to develop smaller scale structures in
phasespace. In particular, the phase mixing that comes along with Landau damping
quickly develops very small phasespace structures that cannot be resolved.
With a collision frequency of ν = 10−4, the conservation of energy and the total particle
number is severely violated. Only the error in the linear momentum is very small (see
figure 5.8). In contrast to the previous example, here a larger contribution to the error
seems to come from the kinetic part. The relatively large error in the total particle
number is directly reflected in the error of the kinetic energy. With a collision frequency
of ν = 4 × 10−4, instead, conservation of the total particle number, energy as well as the
total linear momentum is optimal, see figure 5.10.
The initial damping rate is hardly changed by the collisions. For ν = 0 we find γ1 = −0.2854
(no figure), for ν = 10−4 we find γ1 = −0.2856 (figure 5.9) and for ν = 4 × 10−4 we find
γ1 = −0.2864 (figure 5.11). All numbers are equal to two digits and compare well with
the existing literature, e.g., Cheng and Knorr computed γ1 = −0.281, Nakamura and Yabe
computed γ1 = −0.280, and Heath et al. computed γ1 = −0.287.
The effect of the collisions on the second phase, where the electrostatic potential is growing
again, is more pronounced. Without collisions, we obtain γ2 = 0.0860, with ν = 10−4 we
obtain γ2 = 0.0830 and for ν = 4 × 10−4 the we find the growth rate to be γ2 = 0.0746 and
hence considerably reduced. The results of Cheng and Knorr, who computed γ2 = 0.084,
and Nakamura and Yabe, who computed γ2 = 0.0845, are closer to our results with less
or no collisions. The result of Heath et al., γ2 = 0.0746, on the other side, matches ours
exactly (for a summary see table 5.1).
Not surprisingly, the collisions damp the electrostatic field, and more so for larger collision
frequencies ν. The important question is whether they are just removing unphysical
contributions to the field energy that originate from subgrid modes, or whether they
damp the field too much. As already described, the relatively large error in the energy
and particle number for ν = 10−4 suggests that subgrid modes are not sufficiently damped.
Therefore the electrostatic potential is likely to be affected as well, such that part of
the electrostatic energy is due to subgrid modes and therefore unphysical. Consequently,
the electrostatic energy is likely to be overestimated in that case. On the other hand,
it cannot be anticipated that the smaller growth and consecutively stronger damping for
ν = 4×10−4 is closer to the real situation as we are counteracting a numerical effect with an
effective collision operator, which neither allows us to draw conclusions for the collisionless
case, nor represents the physical collision process. Furthermore, the electrostatic energy is
much larger in the nonlinear case than in the linear case. Therefore the error in the total
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energy can not be attributed to the kinetic or the potential part without ambiguity. The
correlation between the errors in the total particle number and the total energy suggests,
however, that the energy error arises mainly from the kinetic energy. A definite conclusion
is not possible, but simulations with higher resolution and higher order integrators should
indicate which effects are physical and which are numerical.
In figure 5.12, the time evolution of the distribution function is plotted. The phase mixing
is nicely visible as is the action of the collision operator. At about t = 30 the phasespace
structures start to become too small to be resolvable and get therefore damped by the
collisions. At about t = 50, the fine scale structures have disappeared almost completely,
but a large scale oscillation is still visible. At t = 200 this oscillation has been further
damped, such that it does not appear in the plot anymore.

Linear Integrator

For both, linear and nonlinear Landau damping, we also did simulations with the linear
integrator from section 5.3.3. The simulation parameters are the same, except for the
timestep, which was chosen as ht = 0.01. We did only simulations without collisions, as in
the linear scheme, the collision operator can only be treated explicitly (as it is inherently
nonlinear) and therefore even smaller timesteps would be necessary. For both, linear and
nonlinear Landau damping, we find the same behaviour with the linear method as we do
with the fully nonlinear method.
In the case of linear Landau damping, the total particle number and the total linear
momentum are well preserved (see figure 5.13). The conservation of the total energy
is good, but the error is larger than with the nonlinear integrator. In fact, we observe
a behaviour of the energy error that is typical for multisymplectic integrators, namely,
the energy is not preserved exactly, but its error is bounded, often oscillating, where the
amplitude of the oscillation depends on the timestep. This is the reason why we choose a
smaller timestep for the simulations with the linear integrator, i.e., to still get good energy
conservation. In the case of linear Landau damping, the amplitude of the oscillation is
O(10−9). However, after the initial perturbation is damped, it becomes much smaller
again.
In the case of nonlinear Landau damping, initially, the total particle number and total
linear momentum are well preserved and the energy error shows a similar behaviour as
in the linear case, albeit with a larger amplitude of the error which is O(10−5) (see figure
5.14). Eventually the energy error grows larger due to subgrid modes, which will also
spoil the momentum and particle number conservation when running for longer times.
We see that the linear integrator poses a viable alternative if solving a nonlinear system is
not an option. That the linear integrator is working rather well is probably attributed to
the fact that the Vlasov-Poisson system consists of two linear equations. The nonlinearity
arises only through the coupling of the two equations.

L2 Norm and Entropy

Before we move to the next example, a comment on the evolution of entropy and the L2

norm is in order. The variational integrator for the Vlasov-Poisson system (5.90, 5.91)
preserves the L2 norm of the distribution function exactly (see figures 5.15 and 5.17, top).
Through the application of the collision operator, the L2 norm is dissipated (figures 5.15
and 5.17, middle and bottom).
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Integrator ν γ1 γ2
Linear VI 0 −0.285 +0.087
Nonlinear VI 0 −0.285 +0.086
Nonlinear VI 1 × 10−4 −0.286 +0.083
Nonlinear VI 4 × 10−4 −0.286 +0.075
Cheng and Knorr [28] - −0.281 +0.084
Nakamura and Yabe [91] - −0.280 +0.085
Heath et al. [53] - −0.287 +0.075

Tab. 5.1.: Damping and growth rates in nonlinear Landau damping simulations with
variational integrators and comparison with previous works.

Entropy is not conserved by our variational integrator, but without collisions it can be
used as a diagnostic for the appearance of subgrid modes. In the case of linear Landau
damping, where the effect of the subgrid modes onto the distribution function is rather
small, the entropy grows slowly but steadily as can be seen in the top of figure 5.16. In
the case of nonlinear Landau damping, where the effect of the subgrid modes onto the
distribution is more severe, the entropy is growing slowly at first, just as in the linear
case, but starting from about t = 15 it is growing much more rapidly (top of figure 5.18).
This sudden growth indicates the appearance of subgrid modes, long-time before they are
visible in the energy diagnostics. In the simulations with collisions (bottom of figures 5.16
and 5.18) the entropy is increasing more smoothly, not showing such sudden jumps.

5.5.4. Twostream Instability
The distribution function is initialised as

f(x, v) = v2 fM(x, v) (1 +A cos(kx)), (5.128)

with amplitude A = 0.05 and wave number k = 0.5. The simulation parameters are the
same as before. The spatial domain is [0,4π], vmax = 10, nx = 201, nv = 401, ht = 0.1. The
collision frequency is taken to be either ν = 0 or ν = 4×10−4, following the tuning by linear
Landau damping, described in the previous section. The distribution function describes
two particle beams, propagating in opposite direction and having a small perturbation
imposed on them.
In simulations without collisions (ν = 0), we find a good conservation of the total par-
ticle number and the total linear momentum, but conservation of the total energy is
violated (figure 5.19). Employing the collision operator, optimal energy conservation can
be restored (figure 5.20). The collision frequency necessary to retain the correct energy
throughout the whole simulation is ν = 4 × 10−4, as it was estimated in the linear Landau
damping simulations.
The distribution function, figure 5.21, exhibits the correct qualitative behaviour. After an
initial growth of the instability, particles become trapped and a hole in phasespace forms.
Between t = 100 and t = 200, the distribution function takes an almost steady state.

5.5.5. Jeans Instability
Finally, we are considering a test case from gravitational dynamics, the Jeans instability
[17, 29]. The only difference compared with plasma dynamics is that the gravitational
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field is always attractive. This results in a change of sign in the Poisson equation. The
distribution function is initialised as

f = fM (1 +A cos(kx)), (5.129)

with A = 0.01 and k = 0.8. The spatial domain is [0,2.5π], vmax = 10, nx = 201, nv = 401,
ht = 0.1. For k < 1, the distribution function is unstable and collapses towards the centre
of the simulation domain. For k > 1 initial perturbations are damped.
The conservation properties are very similar as in the case of the twostream instability.
Without collisions, the total particle number and the total linear momentum are well con-
served but not the total energy (figure 5.22). Adding collisions, with the same frequency
of ν = 4×10−4 as before (hv is still the same), energy conservation is retained (figure 5.23).
The qualitative behaviour of the distribution function (figure 5.24) meets the expectations.
As we choose k < 1, the initial perturbation is unstable and develops a swirl about the
centre of the simulation domain, corresponding to a gravitational collapse. Between t = 50
and t = 100 the distribution functions reaches a steady state and barely changes until
t = 200.
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Fig. 5.2.: Linear Landau damping without collisions. The total particle number and
the total linear momentum are well preserved. Conservation of the total energy is
slightly violated due to subgrid mode effects.
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Fig. 5.3.: Linear Landau damping without collisions. Evolution of the electrostatic
energy. At about t = 40, subgrid modes start to develop, eventually spoiling the
damping of the initial perturbation.
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Fig. 5.4.: Linear Landau damping with collision frequency ν = 10−4. With collisions,
the total particle number, energy, and linear momentum are all preserved up to
machine precision.
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Fig. 5.5.: Linear Landau damping with collision frequency ν = 10−4. Evolution of
the electrostatic energy. The qualitative behaviour of the linear Landau damping
is restored by the collisions, but the damping rate, γ = −0.144, is to low.
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Fig. 5.6.: Linear Landau damping with collision frequency ν = 4×10−4. With collisions,
the total particle number, energy, and linear momentum are all preserved up to
machine precision. Hardly any differences to the case with ν = 10−4 are visible.
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Fig. 5.7.: Linear Landau damping with collision frequency ν = 4 × 10−4. Evolution of
the electrostatic energy. Both, the correct qualitative behaviour and the correct
damping rate, γ = −0.152, are obtained for ν = 4 × 10−4.



138 5. Kinetic Theory

−3.0

−1.5

0.0

1.5

(N
−
N

0
)/
N

0

×10−9 Total Particle Number Error ∆N(t)

−1.6

−0.8

0.0

0.8

(E
−
E

0
)/
E

0

×10−7 Total Energy Error ∆E(t)

0 50 100 150 200
t

−1.5

−1.0

−0.5

0.0

0.5

P

×10−14 Total Momentum P (t)

Fig. 5.8.: Nonlinear Landau damping with collision frequency ν = 10−4. Conservation
of the total particle number and energy is violated due to subgrid mode effects.
Total linear momentum is preserved exactly.
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Fig. 5.9.: Nonlinear Landau damping with collision frequency ν = 10−4. Evolution of
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Fig. 5.10.: Nonlinear Landau damping with collision frequency ν = 4×10−4. Collisions
retain the conservation of the total particle number and energy in addition to exact
preservation of the linear momentum.
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Fig. 5.11.: Nonlinear Landau damping with collision frequency ν = 4×10−4. Evolution
of the electrostatic energy.
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Fig. 5.12.: Nonlinear Landau damping with collision frequency ν = 4×10−4. Contours
of the distribution function in phasespace. Contours are linear and constant.
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Fig. 5.13.: Linear Landau damping with linear integrator and without collisions.
The total particle number and the total linear momentum are well preserved. Con-
servation of the total energy is good, but the error is larger than with the nonlinear
integrator.
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Fig. 5.14.: Nonlinear Landau damping with linear integrator and without collisions.
Total particle number and total linear momentum are well preserved, but the energy
error is soon dominated by subgrid mode effects.
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Fig. 5.15.: Linear Landau damping. Evolution of the L2 norm.
Top: ν = 0, Middle: ν = 10−4, Bottom: ν = 4 × 10−4.
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Fig. 5.16.: Linear Landau damping. Evolution of the entropy S.
Top: ν = 0, Middle: ν = 10−4, Bottom: ν = 4 × 10−4.
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Fig. 5.17.: Nonlinear Landau damping. Evolution of the L2 norm.
Top: ν = 0, Middle: ν = 10−4, Bottom: ν = 4 × 10−4.
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Fig. 5.18.: Nonlinear Landau damping. Evolution of the entropy S.
Top: ν = 0, Middle: ν = 10−4, Bottom: ν = 4 × 10−4.
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Fig. 5.19.: Twostream instability without collisions. Total particle number and linear
momentum are well preserved but energy conservation is violated due to subgrid
modes.
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Fig. 5.20.: Twostream instability with collision frequency ν = 4×10−4. Collisions retain
exact energy conservation in addition to exact preservation of the total particle
number and linear momentum.
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Fig. 5.21.: Twostream instability with collision frequency ν = 4 × 10−4. Contours of
the distribution function in phasespace. Contours are linear and constant.



146 5. Kinetic Theory

−0.8

0.0

0.8

1.6

2.4

(N
−
N

0
)/
N

0

×10−13 Total Particle Number Error ∆N(t)

−3.0

−1.5

0.0

1.5

3.0

(E
−
E

0
)/
E

0

×10−7 Total Energy Error ∆E(t)

0 10 20 30 40 50 60 70 80
t

0.0

1.5

3.0

P

×10−14 Total Momentum P (t)

Fig. 5.22.: Jeans instability without collisions. Total particle number and linear
momentum are well preserved, but energy conservation is violated due to subgrid
modes.
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Fig. 5.23.: Jeans instability with collision frequency ν = 4 × 10−4. Collisions retain
exact energy conservation in addition to exact preservation of the total particle
number and linear momentum.
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Fig. 5.24.: Jeans instability with collision frequency ν = 4 × 10−4. Contours of the
distribution function in phasespace. Contours are linear and constant.
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6. Magnetohydrodynamics
Magnetohydrodynamics (MHD) describes the dynamics of electrically conducting fluids
like plasmas or liquid metals. It is one of the most widely applied theories in laboratory
as well as astrophysical plasmas physics [115, 48, 18, 34, 41], used to describe macroscopic
phenomena like equilibrium states in tokamaks or stellarators, large scale turbulence, or
dynamos that generate magnetic fields of stars and planets. The structure of the equations
is very similar to hydrodynamics, albeit in MHD the fluid equations are coupled with
Maxwell’s equations, thereby allowing for an even richer variety of phenomena.

6.1. Incompressible ideal MHD
The equations of magnetohydrodynamics result from the combination of the Navier-Stokes
equation for an incompressible fluid,

∂V

∂t
+ (V ⋅ ∇)V = −∇p + µ∇2V + F, (6.1)

with Maxwell’s equations of electrodynamics. As usual for an incompressible flow, the
mass densities are taken constant. V is the fluid velocity, satisfying ∇ ⋅ V = 0, p is the
pressure, F is a force term, and µ is the viscosity of the fluid. The right-hand side
is normalised to the density ρ. The fluid carries an electric current density J and is
immersed into a magnetic field B, which produces the force F = J ×B. Throughout this
chapter, we use natural units for electromagnetic quantities, i.e., µ0 = ε0 = c = 1.
To obtain an evolution equation for the magnetic field, we combine Faraday’s law

∂B

∂t
= −∇ ×E (6.2)

with Ohm’s law for a resistive plasma

E + V ×B = ηJ, (6.3)

η being the plasma resistivity and E the electric field, and Ampere’s law

J = ∇×B (6.4)

with the displacement current neglected, to get

∂B

∂t
= ∇× (V ×B) − η∇×∇ ×B. (6.5)

With the identities

∇×∇ ×B = ∇ (∇ ⋅B) −∇2B, (6.6)
∇× (A ×B) = A (∇ ⋅B) −B (∇ ⋅A) + (B ⋅ ∇)A − (A ⋅ ∇)B, (6.7)
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the induction equation (6.5) becomes

∂B

∂t
= V (∇ ⋅B) −B (∇ ⋅ V ) + (B ⋅ ∇)V − (V ⋅ ∇)B − η∇(∇ ⋅B) + η∇2B. (6.8)

Both V and B are divergence-free, so the induction equation simplifies to

∂B

∂t
+ (V ⋅ ∇)B = (B ⋅ ∇)V + η∇2B. (6.9)

The force term F in the Navier-Stokes equation is rewritten as

F = J ×B = (∇×B) ×B = (B ⋅ ∇)B −
1
2∇(B ⋅B). (6.10)

Again, we used Ampere’s law and the identity

B × (∇×B) = 1
2 ∇(B ⋅B) − (B ⋅ ∇)B. (6.11)

Summing up, we obtain the following system of equations

Incompressible MHD Equations

∂V

∂t
+ (V ⋅ ∇)V = (B ⋅ ∇)B + µ∇2V −∇P, ∇ ⋅ V = 0, (6.12)

∂B

∂t
+ (V ⋅ ∇)B = (B ⋅ ∇)V + η∇2B, ∇ ⋅B = 0, (6.13)

with the generalised pressure P being the sum of the kinetic gas pressure and the magnetic
pressure

P ≡ p +
1
2 B

2. (6.14)

The first equation (6.12) is called the momentum equation, the second equation (6.13)
the induction equation. Both V and B are divergence-free, V as we are considering an
incompressible fluid, and B as there are no magnetic monopoles. But while ∇ ⋅ B = 0
is implied by the induction equation (provided that the initial magnetic field B(t = 0)
is divergence-free), ∇ ⋅ V = 0 is a dynamical constraint, for which the pressure P is a
Lagrange multiplier.
The left-hand sides of (6.12,6.13) represent the advective derivatives of the velocity field
V and the magnetic field B. The force term (B ⋅ ∇)B is the directional derivative of B in
direction of B. It describes the magnetic tension force, a restoring force that straightens
magnetic field lines. This force is perpendicular to B and inversely proportional to the
radius of the field line curvature so that the fluid is accelerated towards the local centre of
the curvature. As the magnetic field is advected by the fluid, the field lines are dragged
with the fluid and thus straightened.
The term µ∇2V describes diffusion of the fluid due to viscosity and results from the diver-
gence of the anisotropic part of the stress tensor. As we are dealing with an incompressible
fluid, this term only amounts to shear stress.
The pressure gradient ∇p arises from the isotropic part of the stress tensor which describes
normal forces. The effect of this term is that fluid flows from regions of high pressure to
regions of low pressure. The magnetic pressure has the same effect, fluid flows from regions
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of high magnetic pressure to regions of low magnetic pressure. Due to the advection of
the magnetic field with the fluid velocity this then leads to the field lines being pushed
apart (imagine a bundle of field lines driven apart).
When η = 0, (6.13) states that the magnetic field is advected with the fluid flow, which
implies the conservation of the magnetic flux through a surface moving with the fluid [9].
In a resistive plasma, η∇2B describes diffusive effects, for which the magnetic field are
not just dragged along with the field, but are free to change their topology.
In ideal MHD, viscosity and resistivity are neglected, thus µ = η = 0. As an effect, the
topology of the magnetic field lines is conserved. They are not allowed to open up and
reconnect. A property that we would like to maintain on the discrete level. Two important
conserved quantities of ideal MHD in two dimensions [9] are the total energy

E =
1
2 ∫ [ ∥V ∥

2
+ ∥B∥

2
]dxdy, (6.15)

and cross helicity

H = ∫ V ⋅B dxdy. (6.16)

Conservation of both quantities are desirable in numerical simulations.

6.1.1. Lie Derivative Formulation
To elucidate the link with work related to ours [43], we rewrite the MHD equations with
Lie derivatives, thereby also emphasising the advective character of the equations a bit
further. Write the ideal MHD equations in component form, use covariant components in
the momentum equation, and add and subtract V j∂iVj and Bj∂iBj

∂tVi + V
j∂jVi + V

j∂iVj = B
j∂jBi +B

j∂iBj + V
j∂iVj −B

j∂iBj − ∂iP, (6.17a)
∂tB

i + V j∂jB
i −Bj∂jV

i = 0, (6.17b)

where Vi and V i are co- and contravariant components, respectively, and analogously for
Bi and Bi. The second and third term on the left-hand side of the momentum equation
are the Lie derivative of a 1-form, V ♭ = Vi dxi, along its corresponding vector field V . The
first two terms on the right-hand side are the Lie derivative of another 1-form, B♭ = Bi dxi,
also along its corresponding vector field B. In the induction equation, the second and
third term are the Lie derivative of a vector field, B, along V (recall section 2.1.7). The
reformulated ideal MHD equations read

Lie Derivative Formulation of Ideal Magnetohydrodynamics

∂V ♭

∂t
+£V V ♭ = £BB♭ − d[P +

1
2 ∥B∥

2
−

1
2 ∥V ∥

2
], (6.18)

∂B

∂t
+£VB = 0. (6.19)

Now the interpretation of the time evolution of the fields becomes even more apparent.
The evolution of the fluid velocity is determined by three different mechanisms. The
Lie derivative of the velocity along itself describes the change of velocity along the fluid
flow. The Lie derivative of the magnetic field along itself describes how the magnetic field
changes along field lines. The resulting force, as already discussed, pushes the velocity field
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towards the local centre of the magnetic field-line curvature, and thus, as the magnetic
field is advected by the fluid flow, balances variations in the magnetic field. The gradient
of the pressure states that fluid flows from regions of high (kinetic and magnetic) pressure
to regions of low (kinetic and magnetic) pressure. The Lie derivative in the induction
equation just states that the magnetic field is advected along the fluid flow.
But what is the meaning of the additional terms? Essentially they just remove physics
that we added with the Lie derivative but that was not present in the original equations.
The Lie derivative describes all actions that happen along the given vector field, namely
a (rigid) translation, a (rigid) rotation, and a deformation, but the original term, e.g.
(u ⋅ ∇)u, describes only a translation. Let us try to better understand this by having a
look at the external derivative of the velocity term (in component form)

1
2 ∂i ∥V ∥

2
= V j ∂iVj =

1
2
(V j ∂iVj + V

j ∂jVi) +
1
2
(V j ∂iVj − V

j ∂jVi) = TijV
j + SijV j.

(6.20)

Here we split ∂iVj in a symmetric part Tij and an antisymmetric part Sij. The symmet-
ric tensor T describes the rate of stretching of the vector V along the direction of the
eigenvectors or T. As we are discussing incompressible fluids only, the divergence of V
vanishes and the trace of T is zero. The fluid element gets deformed but its volume stays
constant. Taking the dot-product of a vector with the antisymmetric tensor S describes
the rate of rotation of the vector V with angular velocity vector 1

2ξ, with ξ = ω = ∇ × V

being the vorticity. Analogously, 1
2 ∂i ∥B∥

2 splits into two contributions, describing the
rate of stretching and rotation of B, where now ξ = J = ∇×B.

6.1.2. Potential Formulation in Two Dimensions
Another formulation of magnetohydrodynamics, especially popular in reconnection stud-
ies, is the so called potential formulation. Here, the dynamics is not described in terms of
the velocity field and the magnetic field, but in terms of their potentials, the streaming
function ψ and the magnetic vector potential A.

Potential Formulation of Ideal Magnetohydrodynamics

∂(∆ψ)
∂t

+ [ψ,∆ψ] = [A,∆A], (6.21)
∂A

∂t
+ [A,ψ] = 0. (6.22)

Here, [⋅, ⋅] are Poisson brackets with respect to the spatial variables (x, y). The velocity
and the magnetic field are computed as

V = ∇× ψ, B = ∇×A, where ψ = (0,0, ψ) and A = (0,0,A), (6.23)

such that in this formulation, the constraints ∇ ⋅ V and ∇ ⋅B are automatically fulfilled.
With the help of vorticity and current density

ω = ∇× V, J = ∇×B, where ω = (0,0, ω) and J = (0,0, J), (6.24)
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we can rewrite the above equations as

∂ω

∂t
+ [ω,ψ] = [J,A], −∆ψ = ω, (6.25)

∂J

∂t
+ [ω,A] = [J,ψ] + 2 [∇ψ,∇A], −∆A = J, (6.26)

thereby reducing the highest order of derivatives that appear in the equations from three
to two. An important point, since this simplifies the derivation of variational integrators.
Looking at this formulation, one might get the expression that we can directly apply the
discretisation from the last chapter to this formulation. After all, we already discretised
the time derivative, Poisson brackets, and the Laplace operator. Unfortunately, it is not
that simple, as in the above potential formulation, additional derivatives appear within
the Poisson brackets. To account for those properly, one has to do so at the level of the
discrete action. Consequently, one has to repeat the whole derivation, work that is left
for future research.

6.2. Variational Discretisation
We will base the derivation of the variational integrator for ideal MHD on the equations
(6.12) and (6.13). Their respective components are

∂Vx
∂t

+ Vx ∂xVx + Vy ∂yVx −Bx ∂xBx −By ∂yBx + ∂xP = 0, (6.27a)
∂Vy
∂t

+ Vx ∂xVy + Vy ∂yVy −Bx ∂xBy −By ∂yBy + ∂yP = 0, (6.27b)
∂Bx

∂t
+ Vx ∂xBx + Vy ∂yBx −Bx ∂xVx −By ∂yVx = 0, (6.27c)

∂By

∂t
+ Vx ∂xBy + Vy ∂yBy −Bx ∂xVy −By ∂yVy = 0. (6.27d)

As we will see in the next section, we have to use a staggered grid approach for the
discretisation of the MHD equations. To be able to discretise (6.27) on a single grid
cell as depicted in figure 6.1, we have to transform these equations as follows. At first,
consider the momentum equations. Like in section (6.1.1), add and subtract Vy ∂xVy in
the x component, add and subtract Vx ∂yVx in the y component, and do the same for the
corresponding B terms, such that

∂tVx + Vy (∂yVx − ∂xVy) −By (∂yBx − ∂xBy) + ∂x[P +
1
2 ∥V ∥

2
−

1
2 ∥B∥

2
] = 0, (6.28a)

∂tVy + Vx (∂xVy − ∂yVx) −Bx (∂xBy − ∂yBx) + ∂y[P +
1
2 ∥V ∥

2
−

1
2 ∥B∥

2
] = 0. (6.28b)

In the round brackets, we find the rotation operator, which is the z component of the
curl, i.e.,

(∇× V )z ≡ ∂xVy − ∂yVx, (6.29)

and in the square brackets, we find a modified pressure term

P̃ = P +
1
2 ∥V ∥

2
−

1
2 ∥B∥

2
= p +

1
2 ∥V ∥

2
, (6.30)



154 6. Magnetohydrodynamics

that contains the kinetic instead of the magnetic energy in addition to the gas pressure p.
Next, consider the induction equation. By the divergence free constraint of V and B make
the replacements ∂xVx = −∂yVy in equation (6.28a), ∂yVy = −∂xVx in equation (6.28b), and
corresponding terms for B, such that

∂tBx + Vy ∂yBx − Vx ∂yBy +Bx ∂yVy −By ∂yVx = 0, (6.31a)
∂tBy + Vx ∂xBy − Vy ∂xBx +By ∂xVx −Bx ∂xVy = 0, (6.31b)

which can be condensed into

∂tBx + ∂y(VyBx − VxBy) = 0, (6.32a)
∂tBy + ∂x(VxBy − VyBx) = 0, (6.32b)

where the term in brackets is of course the z component of the curl of V ×B. To make
the following derivations more tractable, we define two operators with components

ψx(V ) ≡ −Vy (∂xVy − ∂yVx), φx(V,B) ≡ −∂y(VxBy − VyBx), (6.33a)
ψy(V ) ≡ +Vx (∂xVy − ∂yVx), φy(V,B) ≡ +∂x(VxBy − VyBx), (6.33b)

which is the same notation used by Gawlik et al. [43]. With that, the incompressible,
ideal MHD equations read

∂tV + ψ(V ) − ψ(B) +∇P̃ = 0, (6.34a)
∂tB + φ(V,B) = 0. (6.34b)

The corresponding extended Lagrangian, is readily written upon introducing three auxil-
iary variables α, β, γ, where α and β are vector fields and γ is a scalar field. The extended
Lagrangian for (6.34) reads

L(V,B, P̃ , α, β, γ) = α ⋅ [∂tV + ψ(V ) − ψ(B) +∇P̃ ] + β ⋅ [∂tB + φ(V,B)] + γ [∇ ⋅ V ].

(6.35)

This will be the basis for the derivation of the variational integrator. It is worth mentioning
that ∇ ⋅ V = 0 is a dynamical equation determining the pressure, c.f. comments after
equation (6.14). The Ibragimov multipliers α, β and γ correspond to the physical variables
V , B and P̃ , respectively.

6.2.1. Staggered Grid
Straight forward centred finite difference discretisations of the Navier-Stokes equation,
where the components of the velocity vector and the pressure are located at the same
grid points, are known to be prone to instabilities (see e.g. Langtangen et al. [69] or
McDonough [86]). The pressure often becomes highly oscillatory as a symmetric difference
operator, e.g., with stencil [−1 0 + 1], annihilates pressures which oscillate between +1
and −1 between neighbouring grid points. This is often referred to as checkerboarding.
An efficacious remedy for this problem is the introduction of a staggered grid, where the
pressure is located at the centre of a grid cell and the velocity components at the vertices,
like it is depicted in figure 6.1a. The location of the physical quantities comes natural
when viewed as differential forms. The pressure is a zero-form and is therefore collocated
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at the centre of a cell. The velocity (and in two dimensions also the magnetic field) is a
one-form and is therefore collocated at the edges of a cell.
This can also be seen by considering the discrete divergence-free constraint of the velocity
field

Vx(i, j +
1
2 , k) − Vx(i − 1, j + 1

2 , k)

hx
+
Vy(i +

1
2 , j, k) − Vy(i +

1
2 , j − 1, k)

hy
= 0, (6.36)

which is defined such that the logical location of the divergence coincides with the location
of the pressure. The function of the pressure in incompressible fluid dynamics can be
described as taking care of the divergence of the velocity field. By this discretisation, only
one pressure point takes care of the divergence of the neighbouring velocity points. And
as the divergence is computed by a simple forward finite difference, without symmetric
stencil, checkerboarding will not be an issue.

Vx(i− 1, j + 1
2 ) Vx(i, j +

1
2 )

Vy(i+
1
2 , j − 1)

Vy(i+
1
2 , j)

P (i+ 1
2 , j +

1
2 )

(a) Divergence Constraint

Vx(i, j − 1
2 )

Vx(i, j +
1
2 )

Vy(i+
1
2 , j)Vy(i− 1

2 , j)

P (i− 1
2 , j − 1

2 )

P (i− 1
2 , j +

1
2 )

P (i+ 1
2 , j − 1

2 )

P (i+ 1
2 , j +

1
2 )

(b) Momentum Equation

Fig. 6.1.: Staggered Grid. Left: Natural positions for the pressure and the velocity
components. Right: Dual grid.

On this grid, the time derivatives are defined pointwise (without spatial averaging)

∂Vx
∂t

→ (
∂Vx
∂t

)
i,j+

1
2 ,k+

1
2

≡
Vx(i, j +

1
2 , k + 1) − Vx(i, j + 1

2 , k)

ht
, (6.37a)

∂Vy
∂t

→ (
∂Vy
∂t

)
i+

1
2 ,j,k+

1
2

≡
Vy(i +

1
2 , j, k + 1) − Vy(i + 1

2 , j, k)

ht
. (6.37b)

For the spatial derivatives of the vectors, we use a midpoint averaging with respect to
time, i.e.,

∂Vx
∂x

→ (
∂Vx
∂x

)
i+

1
2 ,j+

1
2 ,k+

1
2

≡
1
2 [

Vx(i + 1, j + 1
2 , k) − Vx(i, j +

1
2 , k)

hx

+
Vx(i + 1, j + 1

2 , k + 1) − Vx(i, j + 1
2 , k + 1)

hx
], (6.38a)

∂Vx
∂y

→ (
∂Vx
∂y

)
i,j,k+

1
2

≡
1
2 [

Vx(i, j +
1
2 , k) − Vx(i, j −

1
2 , k)

hy

+
Vx(i, j +

1
2 , k + 1) − Vx(i, j − 1

2 , k + 1)
hy

], (6.38b)
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∂Vy
∂x

→ (
∂Vy
∂x

)
i,j,k+

1
2

≡
1
2 [

Vy(i +
1
2 , j, k) − Vy(i −

1
2 , j, k)

hx

+
Vy(i +

1
2 , j, k + 1) − Vy(i − 1

2 , j, k + 1)
hx

], (6.39a)

∂Vy
∂y

→ (
∂Vy
∂y

)
i+

1
2 ,j+

1
2 ,k+

1
2

≡
1
2 [

Vy(i +
1
2 , j + 1, k) − Vy(i + 1

2 , j, k)

hy

+
Vy(i +

1
2 , j + 1, k + 1) − Vy(i + 1

2 , j, k + 1)
hy

], (6.39b)

Note, that the x derivative of Vx and the y derivative of Vy are defined on the grid in
figure 6.1a, while the y derivative of Vx and the x derivative of Vy are defined on the dual
grid in figure 6.1b. The indices of the derivatives denote the logical collocation of the
derivative, which is always the cell centre.
Derivatives of the pressure can only be defined on the dual grid, figure 6.1b. They are
naturally defined on the edges of the cells. The staggering approach is applied to P also
with respect to time, i.e., the pressure nodes are (i+ 1

2 , j +
1
2 , k+

1
2). Taking all of this into

account, we define
∂P

∂x
→ (

∂P

∂x
)
i,j+

1
2 ,k+

1
2

≡
P (i + 1

2 , j +
1
2 , k +

1
2) − P (i − 1

2 , j +
1
2 , k +

1
2)

hx
, (6.40a)

∂P

∂y
→ (

∂P

∂y
)
i+

1
2 ,j,k+

1
2

≡
P (i + 1

2 , j +
1
2 , k +

1
2) − P (i + 1

2 , j −
1
2 , k +

1
2)

hy
. (6.40b)

Averages are needed only on the dual grid, so we are defining them only there and only
for the vector fields. For V , the averaging is applied with respect to both, space and time,

⟨Vx⟩i,j,k+1
2
≡
Vx(i, j −

1
2 , k) + Vx(i, j +

1
2 , k)

4 +
Vx(i, j −

1
2 , k + 1) + Vx(i, j + 1

2 , k + 1)
4 ,

(6.41a)

⟨Vy⟩i,j,k+1
2
≡
Vy(i −

1
2 , j, k) + Vy(i +

1
2 , j, k)

4 +
Vy(i −

1
2 , j, k + 1) + Vy(i + 1

2 , j, k + 1)
4 ,

(6.41b)

but as α will be collocated at k + 1
2 (see comment in the next section), its averages do not

feature a time average,

⟨αx⟩i,j,k+1
2
≡
αx(i, j −

1
2 , k +

1
2) + αx(i, j +

1
2 , k +

1
2)

2 , (6.42a)

⟨αy⟩i,j,k+1
2
≡
αy(i −

1
2 , j, k +

1
2) + αy(i +

1
2 , j, k +

1
2)

2 . (6.42b)

6.2.2. Navier-Stokes Equation
We start the derivation of the variational integrator by restricting our attention to the
incompressible Navier-Stokes equation

∂tV + ψ(V ) +∇P = 0, ∇ ⋅ V = 0, (6.43)



6.2. Variational Discretisation 157

neglecting the force term through the magnetic field. The generalisation to magnetohy-
drodynamics is straight forward, as the magnetic field appears with the same advection
term ψ(B) as the velocity field, and the analytical expression of the pressure P in terms
of v and B2 does not play any role. The action integral of the extended Lagrangian (6.35),
reduced to this subsystem, is

A = ∫ [... + α ⋅ [∂tV + ψ(V ) +∇P ] + γ [∇ ⋅ V ] + ...]dt dxdy. (6.44)

To be able to discretise all of the derivatives in the first term of the Lagrangian, we have to
switch to the dual grid, as depicted in figure 6.1b. The time derivatives are approximated
using the trapezoidal rule,

αx (∂tVx) → αx(i, j −
1
2 , k +

1
2)(

∂Vx
∂t

)
i,j−

1
2 ,k+

1
2

+ αx(i, j +
1
2 , k +

1
2)(

∂Vx
∂t

)
i,j+

1
2 ,k+

1
2

,

(6.45a)

αy (∂tVy) → αy(i −
1
2 , j, k +

1
2)(

∂Vy
∂t

)
i−

1
2 ,j,k+

1
2

+ αy(i +
1
2 , j, k +

1
2)(

∂Vy
∂t

)
i+

1
2 ,j,k+

1
2

.

(6.45b)
Here, we are exploiting the same ideas, explained in section 5.3, but here that is imple-
mented directly into the Lagrangian rather than in the final integrator. We omit the time
averaging of α, which implies that α is collocated at k + 1

2 , just as the time derivative.
We use a trapezoidal approximation to avoid spatial averaging of the time derivatives in
the resulting scheme, as that might again lead to grid oscillations (checkerboarding), this
time in the velocity field. We apply the same approximation to the pressure gradient
term, for the same reason, i.e., to avoid oscillations, and as the structure of the terms is
identical (e.g., ∂tVx and the x component of the pressure gradient ∂xP are both objects
collocated at the same logical position),

αx (∂xP ) → αx(i, j −
1
2 , k +

1
2)(

∂P

∂x
)
i,j−

1
2 ,k+

1
2

+ αx(i, j +
1
2 , k +

1
2)(

∂P

∂x
)
i,j+

1
2 ,k+

1
2

,

(6.46)

αy (∂yP ) → αy(i −
1
2 , j, k +

1
2)(

∂P

∂y
)
i−

1
2 ,j,k+

1
2

+ αy(i +
1
2 , j, k +

1
2)(

∂P

∂y
)
i+

1
2 ,j,k+

1
2

.

(6.47)

As previously mentioned, the pressure is collocated at k + 1
2 , such that no time average

of P is needed. The ψ operator (6.33) is discretised by a midpoint approximation, both
with respect to space and time, i.e.,

αxψx(V ) → − ⟨αx⟩i,j,k+1
2
⟨Vx⟩i,j,k+1

2
[(
∂Vy
∂x

)
i,j,k+

1
2

− (
∂Vx
∂y

)
i,j,k+

1
2

], (6.48)

αyψy(V ) → + ⟨αy⟩i,j,k+1
2
⟨Vy⟩i,j,k+1

2
[(
∂Vy
∂x

)
i,j,k+

1
2

− (
∂Vx
∂y

)
i,j,k+

1
2

]. (6.49)

As, e.g., αx and Vy are objects collocated at different logical positions, they cannot be
multiplied directly, but products can only be computed of their averages, which are collo-
cated at the cell centres. Therefore, we have to use a midpoint approximation in this term.
The rotation is logically located at the centre of the cell, therefore posing no problems.
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The discretisation of the second term in (6.44) is implemented on the grid in figure 6.1a.
Recognising that γ is a scalar field and thus collocated at the same position as the pressure,
the discretisation follows directly from (6.36), i.e.,

γ (∇ ⋅ V ) → γ(i + 1
2 , j +

1
2 , k) [(

∂Vx
∂y

)
i,j−

1
2 ,k̄

+ (
∂Vx
∂y

)
i,j̄,k̄

]. (6.50)

Summing up all contributions gives the discrete Lagrangian.

6.2.3. Induction Equation
Now we consider those terms of the action that will yield the induction equation.

A = ∫ [... + β ⋅ [∂tB + φ(V,B)] + ...]dt dxdy. (6.51)

To find a discretisation of the operator φ(V,B) on a single grid cell, we have to first do a
partial integration, such that

A = ∫ [... + βx [∂tBx − ∂y(VxBy − VyBx)] + βy [∂tBy + ∂x(VxBy − VyBx)] + ...]dt dxdy

= ∫ [... + βx ∂tBx + (∂yβx)(VxBy − VyBx)

+ βy ∂tBy − (∂xβy)(VxBy − VyBx) + ...]dt dxdy. (6.52)

The discretisation of the time derivative is the same as in the case of the momentum
equation, i.e., using a trapezoidal rule,

βx (∂tBx) → βx(i, j −
1
2 , k +

1
2)(

∂Bx

∂t
)
i,j−

1
2 ,k+

1
2

+ βx(i, j +
1
2 , k +

1
2)(

∂Bx

∂t
)
i,j+

1
2 ,k+

1
2

,

(6.53)

βy (∂tBy) → βy(i −
1
2 , j, k +

1
2)(

∂By

∂t
)
i−

1
2 ,j,k+

1
2

+ βy(i +
1
2 , j, k +

1
2)(

∂By

∂t
)
i+

1
2 ,j,k+

1
2

.

(6.54)

The factors of the operator φ are collocated at different positions of the grid, e.g., in the
first equation, ∂yβx is collocated at (i, j), Vx and Bx are collocated at (i, j + 1

2), and Vy
and By are collocated at (i + 1

2 , j). Therefore, we have to use a midpoint rule, i.e.,

(∂yβx)(VxBy − VyBx) → (
∂βx
∂y

)
i,j,k+

1
2

[ ⟨Vx⟩i,j,k+1
2
⟨By⟩i,j,k+1

2
− ⟨Vy⟩i,j,k+1

2
⟨Bx⟩i,j,k+1

2
],

(6.55)

(∂xβy)(VxBy − VyBx) → (
∂βy
∂x

)
i,j,k+

1
2

[ ⟨Vx⟩i,j,k+1
2
⟨By⟩i,j,k+1

2
− ⟨Vy⟩i,j,k+1

2
⟨Bx⟩i,j,k+1

2
].

(6.56)

With that, we have all the ingredients for a complete discretisation of the action integral
corresponding to (6.35).
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6.2.4. Variational Integrator

Computing the variation of the discrete action with respect to α, β and γ, we obtain the
discrete ideal MHD equations

V
i,j+1/2,k+1
x − V

i,j+1/2,k
x

ht
+ ψ

i,j+1/2
x (

V k + V k+1

2 ) − ψ
i,j+1/2
x (

Bk +Bk+1

2 )

+
P i+1/2,j+1/2,k+1/2 − P i−1/2,j+1/2,k+1/2

hx
= 0,

(6.57)
V
i+1/2,j,k+1
y − V

i+1/2,j,k
y

ht
+ ψ

i+1/2,j
y (

V k + V k+1

2 ) − ψ
i+1/2,j
y (

Bk +Bk+1

2 )

+
P i+1/2,j+1/2,k+1/2 − P i+1/2,j−1/2,k+1/2

hy
= 0,

(6.58)
B
i,j+1/2,k+1
x −B

i,j+1/2,k
x

ht
+ φ

i,j+1/2
x (

V k + V k+1

2 ,
Bk +Bk+1

2 ) = 0, (6.59)

B
i+1/2,j,k+1
y −B

i+1/2,j,k
y

ht
+ φ

i+1/2,j
y (

V k + V k+1

2 ,
Bk +Bk+1

2 ) = 0, (6.60)

[
V
i+1,j+1/2,k
x − V

i,j+1/2,k
x

hx
+
V
i+1,j+1/2,k+1
x − V

i,j+1/2,k+1
x

hx

+
V
i+1/2,j+1,k
y − V

i+1/2,j,k
y

hy
+
V
i+1/2,j+1,k+1
y − V

i+1/2,j,k+1
y

hy
] = 0.

(6.61)

with the discrete operators defined by

ψ
i,j+1/2
x (V k+1/2) = − ⟨Vx⟩i,j,k+1

2
[(
∂Vy
∂x

)
i,j,k+

1
2

− (
∂Vx
∂y

)
i,j,k+

1
2

]

− ⟨Vx⟩i,j+1,k+1
2
[(
∂Vy
∂x

)
i,j+1,k+1

2

− (
∂Vx
∂y

)
i,j+1,k+1

2

],

(6.62)

ψ
i+1/2,j
y (V k+1/2) = + ⟨Vy⟩i,j,k+1

2
[(
∂Vy
∂x

)
i,j,k+

1
2

− (
∂Vx
∂y

)
i,j,k+

1
2

]

+ ⟨Vy⟩i+1,j,k+1
2
[(
∂Vy
∂x

)
i+1,j,k+1

2

− (
∂Vx
∂y

)
i+1,j,k+1

2

],

(6.63)
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and

φ
i,j+1/2
x (V k+1/2,Bk+1/2) = +[ ⟨Vx⟩i,j+1,k+1

2
⟨By⟩i,j+1,k+1

2
− ⟨Vy⟩i,j+1,k+1

2
⟨Bx⟩i,j+1,k+1

2
]

− [ ⟨Vx⟩i,j,k+1
2
⟨By⟩i,j,k+1

2
− ⟨Vy⟩i,j,k+1

2
⟨Bx⟩i,j,k+1

2
],

(6.64)

φ
i+1/2,j
y (V k+1/2,Bk+1/2) = −[ ⟨Vx⟩i+1,j,k+1

2
⟨By⟩i+1,j,k+1

2
− ⟨Vy⟩i+1,j,k+1

2
⟨Bx⟩i+1,j,k+1

2
]

+ [ ⟨Vx⟩i,j,k+1
2
⟨By⟩i,j,k+1

2
− ⟨Vy⟩i,j,k+1

2
⟨Bx⟩i,j,k+1

2
].

(6.65)

This discretisation of the operators ψ and φ is the very same as those found by Gawlik
et al. [43] and Liu and Wang [78]. However, Gawlik et al. resolve the nonlinearity in
a different way, such that in their scheme, cross helicity is preserved exactly, but the
energy error shows a monotonic growth. In our scheme, energy is preserved exactly as is
cross helicity (up to machine accuracy). They follow a different but related path in their
derivation, based on Euler-Poincaré reduction. The crucial difference is, that in their
method, only the velocity field is treated variational, and the magnetic field is treated
as a quantity advected with the velocity field, whereas in our method, the velocity field
and the magnetic field are treated on equal footing, fully variationally. The scheme of Liu
and Wang uses an explicit Runge-Kutta method for time integration, so that conservation
laws are broken in long time simulations.
Note the absence of any spatial averaging of the time derivatives and the pressure gradient.
This is on purpose, as we wanted to prevent the emergence of grid-scale oscillations in
the fields by the introduction of the staggered grid.

6.3. Numerical Examples
In this section, we consider four quite different examples of ideal magnetohydrodynamics
problems taken from the previous literature [33, 42, 43]: Alfvénic waves, the passive
advection of a magnetic loop, the development of current sheaths in an Orszag-Tang
vortex, and the development of magnetic islands along a current sheath.

6.3.1. Diagnostics
Energy

The total energy of the system is the sum of kinetic energy and magnetic energy, which
are computed by

Ek
kin,d = hx hy

1
2∑i,j

V 2
x (i, j + 1/2, k) + hx hy

1
2∑i,j

V 2
y (i + 1/2, j, k) (6.66)

Ek
mag,d = hx hy

1
2∑i,j

B2
x(i, j + 1/2, k) + hx hy

1
2∑i,j

B2
y(i + 1/2, j, k). (6.67)

As there is no dissipation term in the ideal MHD equations, the total energy is always
preserved.
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Cross Helicity

The cross helicity is the integral of the scalar product of the velocity and magnetic fields,

Hk
d = hx hy

1
2∑i,j

Vx(i, j + 1/2, k)Bx(i, j + 1/2, k)

+ hx hy
1
2∑i,j

Vy(i + 1/2, j, k)By(i + 1/2, j, k). (6.68)

In ideal MHD, the parallel components of the velocity and magnetic fields do not interact,
such that the integral of their product over the spatial domain stays constant.

Vector Potential

In two dimensions, the magnetic field is given by

Bx = ∂yA and By = −∂xA. (6.69)

The magnetic potential is collocated at the cell centres of figure 6.1b. Therefore these
equations discretise as

Bx(i, j +
1
2) =

A(i, j + 1) −A(i, j)

hy
and By(i, j +

1
2) = −

A(i + 1, j) −A(i, j)

hx
.

(6.70a)

The potential field can be reconstructed by fixing A(1,1) and looping over the whole grid,
computing

A(i, j + 1) = A(i, j) + hyBx(i, j +
1
2) and A(i + 1, j) = A(i, j) − hxBx(i, j +

1
2),
(6.71)

using the first equation to compute columns and the second to jump between rows, or the
other way around. To which value A(1,1) is fixed is not important as A is determined
only up to a constant. The contour lines of the magnetic potential A correspond to field
lines of the magnetic field B. Hence, A is an important diagnostic.

Current Density

The current is given by the curl of the magnetic field, or in two dimensions by the z
component of the curl. The discrete version of that is

J(i, j, k) =
By(i + 1/2, j, k) −By(i − 1/2, j, k)

hx
−
Bx(i, j + 1/2, k) −Bx(i, j − 1/2, k)

hy
.

(6.72)

As the vector potential, the current is collocated at cell centres.

6.3.2. Alfvén Waves
In the first example, we consider a travelling Alfvén wave, initialised by

Vx = 0, Vy = V0 sin(πx), Bx = B0, By = B0 sin(πx), P = 0.1,
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Fig. 6.2.: Conservation of energy and cross helicity for a travelling Alfvén wave.

with V0 = 1 and B0 = 1. The simulation domain is [0,2] × [0,2] with periodic boundaries
and a resolution of nx × ny = 30 × 30. The timestep is ht = 0.1 in units of the Alfvén time
(i.e., the Alfvén velocity is one).
Although this example is rather simple, the results of our variational integrator are already
remarkable. Figure 6.2 shows the time traces of the errors in the total energy and the
cross helicity. For most of the simulation, the amplitude of the oscillations is O(10−15),
i.e., machine precision. The sudden jump in the error of the cross helicity at about t = 800
might be explained by the residual of the Newton iteration being slightly larger for some
timesteps than it is during the rest of the simulation. We want to stress that during the
runtime of 1000 characteristic times there is no change in the energy within the machine
accuracy. It appears as if the Alfvén wave would continue travelling practically forever.
It also worth mentioning, that this is a fully nonlinear wave, i.e., the amplitudes of the
perturbations of the magnetic field as well as the velocity field are O(1).

6.3.3. Loop Advection
We now consider a case with very small magnetic field, such that the momentum and
induction equations are almost decoupled and the magnetic field is passively advected by
the fluid. The initial conditions are

Vx = V0 cos(θ), Vy = V0 sin(θ), Bx = ∂yA, By = −∂xA, P = 1.0,

with

A = A0 (R −
√
x2 + y2), V0 =

√
5, θ = tan−1(0.5), A0 = 10−3, R = 0.3.

The spatial domain is [−1,+1] × [−0.5,+0,5] with periodic boundaries. We consider two
resolutions, 128 × 64 and 256 × 128, and a timestep ht = 0.01.
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The problem is setup such that the loop should return to its initial position after integer
times t = 1,2,3, .... In figure 6.5 it can be seen that this is initially the case, but after
some time, the loop gets deformed, such that its centre is slightly displaced from its
initial position at integer times. Note, that in figure 6.5 only contours in the interval
[1.2 × 10−4,3.0 × 10−4] are plotted. Otherwise, the plot would be too polluted since the
velocity and magnetic field are of course not entirely decoupled but back react onto each
other. A possible reason for this behaviour is that our scheme is only of second order
and therefore not extremely accurate. Higher order variational integrators might achieve
better accuracy, but this is a topic left for future research. Nevertheless, the energy and
cross helicity are preserved optimally throughout the whole simulation (figures 6.3 and
6.4). Interestingly, the errors are somewhat larger, when the resolution is increased. The
amplitude of the energy error, for example, is about 5× 10−16 on a grid of 128× 64 points,
but 3 × 10−15 on a grid of 256 × 128 points. First of all, one must not forget how close
to machine precision these values are, so slight deviations for similar but not identical
simulations are no surprise. However, this issue can be explained more specifically by the
larger number of degrees of freedom in the case with higher resolution that results in a
stronger error accumulation.

6.3.4. Orszag-Tang Vortex
Next we consider the evolution of current sheets in an Orszag-Tang vortex, where we use
the same initial conditions as Cordoba and Marliani [33], namely

Vx = ∂yψ, Vy = −∂xψ, Bx = ∂yA, By = −∂xA, P = 0.1.

with

ψ = 2 sin(y) − 2 cos(x), A = cos(2y) − 2 cos(x).

The spatial domain is [0,2π] × [0,2π] with periodic boundaries. We consider two resolu-
tions, 64 × 64 and 128 × 128, and a timestep ht = 0.01.
The Orszag Tang vortex constitutes a turbulent setting that leads to the growths of current
sheaths. These are areas of large current density due to a change of sign in the magnetic
field. In figure 6.8, the current density computed by (6.72) is plotted. The current sheaths
are located in those parts of the plot where the colour changes from blue to red within
a small region. Starting from about t = 60, the simulation is under resolved and subgrid
modes start to appear. The situation is similar using 128 × 128 grid points. Note that in
the original work, Cordoba and Marliani [33] use an adaptive mesh refinement approach
with an initial resolution of 1024 × 1024 points. The important observation is, that even
with low resolution energy and cross helicity are preserved optimally (see figures 6.6 and
6.7). During the simulation, only a slight growth in the errors is observed, probably due
to the subgrid modes, but the errors stay O(10−15) for the whole time. As before, we
observe that the energy error is slightly larger in the case of higher resolution. As before,
this is probably due to the higher number of degrees of freedom, and therefore increased
error accumulation.

6.3.5. Current Sheath
In the following, we consider as initial conditions for the magnetic field three different
current sheath models that appear in reconnection studies: a sharp jump of the magnetic
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field

Bsharp
y =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

+B0 x < x1

−B0 x1 ≤ x ≤ x2

+B0 x > x2

with x1 = 0.5, x2 = 1.5,

a tanh profile

Btanh
y = B0 tanh(πx),

and a cosh profile

Bcosh
y =

B0

cosh(πx) ,

with Bx = 0 and B0 = 1 in all three cases. The initial conditions for the fluid quantities
are

Vx = V0 sin(πy), Vy = 0, P = 0.1

for all three cases. The spatial domains are [0,2]×[0,2] for the sharp jump, [−4,+4]×[0,4]
for the tanh case and [−1,+1]× [−1,+1] for the cosh case. For the sharp case we consider
different resolutions, namely 32×32 and 64×64 grid points, to analyse the qualitative and
conservative behaviour. To compare the field line evolution for the different models, we
use a common resolution of nx×ny = 30×30. In all three cases we use periodic boundaries
and a timestep of ht = 0.1.
In all of the considered cases, the conservation of energy and cross helicity is optimal
(see figures 6.9 - 6.12). The jumps in the energy error of the cosh case (figure 6.11) are
probably due to the Newton solver converging to a slightly larger residual than during
the rest of the simulation. Nevertheless, the energy error is extraordinary small. Thus
here we want to focus on the conservation of field line topology.
In figure 6.13, the field line evolution for the sharp jump is plotted. Initially all field
lines are parallel. Due to the perturbation in the velocity field, the magnetic field lines
get bend, but for most of the time, they do not break up and reconnect. At t = 1 and
t = 5 we see what appears to be reconnection events, but as these islands disappear very
soon after they form, this is likely to be attributed to artefacts of the plotting function
(like an inaccurate interpolation or integration of the contour lines). At about t = 20,
however, real islands form an consecutively grow as can be seen at t = 25. At this point,
the solution can not be regarded physical anymore.
We have to stress here, that this set of initial conditions is quite challenging for most
numerical schemes due to the discontinuity and other methods break down much earlier.
To investigate the preservation of the magnetic field line topology on longer time scales,
we consider therefore the two less severe examples of current sheaths, defined by cosh and
tanh profiles, that are frequently used in reconnection studies [50, 51, 128]. In both, the
cosh and the tanh case, the magnetic field changes sign not suddenly but more smoothly.
Under this condition, we can run the simulation much longer. Both, figures 6.14 and 6.15,
show the field line evolution for the case of the cosh sheet and the tanh sheet, respectively,
up to t = 100. We observe, that for a smooth magnetic field, magnetic field lines are only
bend but do not reconnect, as is expected from the theory but rarely observed in numerical
simulations, especially on the time scales we are considering here. In our description of
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magnetohydrodynamics, reconnection can only occur if the resistive term, proportional
to ∇2B, in (6.13) is present. But in ideal MHD, η = 0, such that the topology of the
magnetic fields lines is preserved. Most numerical schemes, however, do feature a certain
amount of numerical resistivity, leading to unphysical reconnection. In the variational
integrator, such spurious resistivity appears to be completely absent, at least in the case
of a continuous magnetic field.
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Fig. 6.3.: Loop advection, 128 × 64 grid points. Conservation of energy and cross
helicity.
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Fig. 6.4.: Loop advection, 256 × 128 grid points. Conservation of energy and cross
helicity.



6.3. Numerical Examples 167

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 0.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 1.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 2.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 3.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 4.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 5.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 6.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 7.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 8.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 9.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 10.00

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t = 12.00

Fig. 6.5.: Loop advection, 128 × 64 grid points. Evolution of the magnetic loop.
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Fig. 6.6.: Orszag Tang Vortex, 64× 64 grid points. Conservation of energy and cross
helicity.
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Fig. 6.7.: Orszag Tang Vortex, 128 × 128 grid points. Conservation of energy and
cross helicity.
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Fig. 6.8.: Orszag Tang Vortex, 64 × 64 grid points. Current density. Fixed colour
scale.
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Fig. 6.9.: Current sheath, 32 × 32 grid points. Conservation of energy and cross
helicity.
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Fig. 6.10.: Current sheath, 64 × 64 grid points. Conservation of energy and cross
helicity.
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Fig. 6.11.: Cosh current sheath, 30×30 grid points. Conservation of energy and cross
helicity.
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Fig. 6.12.: Tanh current sheath, 30×30 grid points. Conservation of energy and cross
helicity.



172 6. Magnetohydrodynamics

0.5 1.0 1.5

0.5

1.0

1.5

t = 0.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 1.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 2.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 3.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 4.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 5.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 6.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 8.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 10.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 15.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 20.00

0.5 1.0 1.5

0.5

1.0

1.5

t = 25.00

Fig. 6.13.: Sharp current sheath, 30 × 30 grid points. Magnetic field lines.
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Fig. 6.14.: Cosh current sheath, 30 × 30 grid points. Magnetic field lines.
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Fig. 6.15.: Tanh current sheath, 30 × 30 grid points. Magnetic field lines.
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7. Summary and Outlook

7.1. Results
In this work, it was successfully demonstrated that the application of variational inte-
grators to models from plasma physics has great potential in the development of novel
numerical algorithms that map the real world to the discrete more realistically than most
standard methods. In the following our results will be summarised.

7.1.1. Theory
Most systems from plasma physics, especially infinite dimensional ones (field theories), do
not admit a natural Lagrangian formulation to which the variational integrator method
is directly applicable. To be able to apply variational integrators to plasma physics
problems it was therefore necessary to extend the theory. A combination of Ibragimov’s
theory of extended Lagrangians with the theory of variational integrators made it possible
to use this method for systems not envisaged in the original theory. This includes several
systems, like advection type problems, that are typical for plasma physics. The impact
of this result reaches far beyond the realm of the examples considered in this work, as
the class of problems that is admissible to the variational integrator theory is now greatly
enlarged.
An important feature of Ibragimov’s theory is the recovery of Noether’s theorem, which
allows us to analyse the conservation properties of a system on the continuous as well
as on the discrete level, thereby allowing us to find the exact discrete expressions of the
quantities that are conserved by the variational integrators.

7.1.2. Particle Dynamics
In chapter four, previous work on the development of variational integrators for guiding
centre dynamics in two dimensions was extended. A new integrator based on a midpoint
discretisation was developed and compared with the previous one based on a trapezoidal
discretisation. The properties of both integrators are then evaluated against the standard
explicit fourth order Runge-Kutta method. The midpoint integrator appears to be more
accurate and more stable at smaller timesteps than the trapezoidal integrator. But both
are by far superior to the Runge-Kutta method, for which the particle is found to severely
deviate from its expected orbit. The variational integrators exhibit a much better long
term stability as the global error of the energy is limited and does not grow in the course
of a simulation, i.e., there is no numerical dissipation. The particle orbit is preserved for
millions of characteristic times and hundreds of millions of timesteps. Indeed, the energy
is not constant but found to oscillate about a fixed value. The important point is that
the amplitude of the oscillation stays constant during the whole simulation.
These integrators were then extended to four dimensions where an additional conserved
quantity, the toroidal momentum, is present. The performance of the integrators with
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respect to energy conservation and accuracy of the particle orbit were similar to those
of the two dimensional case. The error in the toroidal momentum is determined by the
residual of the nonlinear solver.
All of the derived integrators are nonlinearly implicit such that iterative methods have
to be used to solve the corresponding system of equations. In the two dimensional case,
an analytic solution of the linear system comprising each Newton step can be used with
a fixed number of iterations, namely three plus an explicit initial guess, such that the
computational effort is about the same as with the fourth order Runge-Kutta method. In
the four dimensional case, a matrix solver is used to solve the system of equations, which
is computationally more demanding than the corresponding Runge-Kutta integrator, but
most probably more efficient ways of solving this system could be found. That, however,
is an issue that was not part of this work and is left for future research.

7.1.3. Kinetic Theory
In chapter five, several variational integrators for the Vlasov-Poisson system in one di-
mension (actually, one spatial plus one velocity dimension) were derived. This system can
be regarded as the stepping stone to more complicated models like gyrokinetics, which is
the backbone of nowadays’ small scale turbulence simulations in plasma physics.
A fully nonlinear integrator was constructed, that has outstanding conservational prop-
erties, preserving the total particle number, the total energy, linear momentum and the
L2 norm up to machine precision. The only limit to the performance of this integrator is
the grid resolution. If not sufficient, subgrid modes may develop, leading to large gradi-
ents in the distribution function, therefore altering the solution unphysically and spoiling
the conservation properties. This is, however, a well known phenomenon with low-order
finite difference methods like ours. To counteract these effects, a collision operator was
constructed, that dissipates the L2 norm and damps the subgrid modes, thereby retaining
the conservation of the total particle number, energy and momentum. It was shown that
with the collision operator the variational integrator allows for long time simulations of
different standard test cases from kinetic theory, linear and nonlinear ones, for example
Landau damping and the twostream instability.
Furthermore, a linearly implicit integrator was constructed, which is computationally less
demanding but retains most of the conservation properties, even though it does not reach
the accuracy in the errors of the conserved quantities as the nonlinear integrator. It is
important to note that the linearisation is implemented at the level of the Lagrangian. It
is not the discrete Euler-Lagrange equations that are linearised. This is a crucial point,
as it guarantees that the properties of variational integrators, conservation of discrete
momenta and the multisymplectic form, are kept intact. What is lost is exact energy
preservation. Instead, an oscillating energy error is found, as it is typical for symplectic
and multisymplectic methods. The amplitude of the oscillation depends largely on the
strength of the nonlinearity as well as on the timestep. In most cases, however, the
linearised system still yields very good results. The energy error is still bounded and
there is still no numerical dissipation. This integrator can be used to compute an initial
guess for an iterative solver of the nonlinear integrator but also standalone, if the solution
of a nonlinearly implicit scheme is computationally too expensive.
Albeit implementing efficient solution techniques for the derived schemes was not an
objective of this work, first results suggest that efficient iterative methods (GMRES) can
be used effectively if a sufficiently accurate initial guess is available. If the linear integrator
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could be solved efficiently with the GMRES method, the computational effort could be
in the vicinity of explicit methods.

7.1.4. Fluid Dynamics
In chapter six, a variational discretisation of a fluid plasma model, namely ideal incom-
pressible magnetohydrodynamics, was developed and analysed. The ideal model shares
many features with more sophisticated and physically comprehensive descriptions used in
simulations of large scale turbulence or magnetic reconnection, to name just two examples.
The scheme is similar to the one for the Vlasov-Poisson system in that it is fully nonlinear
and exhibits excellent conservation properties. Both, the total energy and the cross helic-
ity are preserved up to machine precision over long simulation times. Nonlinear Alfvénic
waves, a core phenomenon of magnetohydrodynamics, were found to keep travelling for
thousand characteristic times without loosing energy. In turbulent settings, where small
scale structures can develop, problems with subgrid modes were observed if the resolution
was not sufficient, similar to the Vlasov-Poisson integrator. As in realistic simulations
usually some form of dissipation is present in the model, this is not expected to be a
problem impairing the applicability of the derived scheme. In these cases, the use of
a conservative scheme can ensure that the dissipation mechanism is consistent with the
physical dissipation and not numerically generated.
The analysis of several reconnection models has shown the preservation of magnetic field
line topology by the variational integrator for very long times, provided that the magnetic
field is continuous. For a discontinuous magnetic field, the topology is still preserved
for times longer than with most standard methods, but at some point the solution was
found to become spurious, probably due to error accumulation. This is, however, not
discouraging as the variational integrator was not constructed with discontinuities in
mind for which usually specially designed methods are employed.

7.1.5. Semi-Discretisations
In the appendix we describe two different approaches of using variational integrators or
closely related methods to obtain semi-discretisations for the Vlasov equation and similar
systems.
In appendix A, the spatial dimensions are transformed into Fourier space and only time
or time and the velocity dimensions are discretised variationally. In appendix B, discreti-
sation methods for different kinds of brackets are presented, where only the phasespace
dimensions are discretised but not time. A new discretisation for Nambu three brackets
is derived, that has potential use in simulations of the gyrokinetic Vlasov equation in
axisymmetric tokamaks. Furthermore, it is shown that discretisation strategies for Lie-
Poisson brackets are applicable also to problems from plasma physics. Interestingly, these
bracket discretisations are quite similar to variational integrators, e.g., for the Vlasov-
Poisson system.

7.2. Future Work
This work has shown that the application of variational integrators in plasma physics is
both viable and attractive. Thereby it has lead the way to a number of possible directions
for future research, some of which are sketched below.
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7.2.1. Theory
The theory of variational integrators is still young and therefore not fully developed. So
far, there are no clear guidelines on which discretisations of the Lagrangian lead to “good”
(e.g., stable) numerical schemes. A possible solution to this might be the combination
of the present methods with Arnold’s theory of finite element exterior calculus (more on
this below).
In general, the variational integrator method does not lead to schemes that are (multi-)
symplectic, momentum and energy preserving at the same time, without implementing
one or another form of timestep adaption, either global timestep adaption or asynchronous
variational integrators [62, 76]. However, the methods we derived for the Vlasov-Poisson
system as well as for ideal magnetohydrodynamics turned out to be exactly energy pre-
serving (to machine precision), momentum preserving (also to machine precision), and
they are multisymplectic by design. It would be interesting and important to understand
such properties and find general criteria for which discretisations of the Lagrangian lead
to such optimal integrators.

Finite Element Discrete Exterior Calculus

Recently, a discrete theory of exterior calculus based on finite elements has been developed
by Arnold et al. [6, 7]. In contrast to the theory of variational integrators, this theory
of finite element exterior calculus is embedded in an abstract Hilbert space framework
that makes the analysis of stability and convergence of the derived discretisations much
more systematic. A connection between these two theories might allow for a rigorous
numerical analysis of variational integrators and therefore help to find answers to some
of the questions raised in the previous paragraph.

Analysis of Discrete Conservation Laws and Preservation of the Multisymplectic
Form

To judge the performance of the variational integrators derived in chapters five and six,
only heuristic diagnostics were used. Instead, a detailed analysis of the discrete conser-
vation laws using the discrete Noether theorem of section 3.2.4 should be carried out to
find exact expressions of the conserved quantities.
It was shown how the solution space of a system described by an extended Lagrangian
(section 2.2.7) can be restricted to the solution space of the original system to recover the
conserved quantities. An open problem is to find out if the multisymplectic structure of the
extended system endows the physical system with a compatible multisymplectic structure
and if so how the structure of the extended system can be restricted to obtain the one
of the physical system. The variational integrators preserve a discrete counterpart of the
multisymplectic structure by construction, but so far no statement about the conservation
of the multisymplectic structure of the original system is possible.

7.2.2. Vlasov-Poisson and Vlasov-Maxwell
Some obvious extensions of the variational integrator for the Vlasov-Poisson system from
chapter five include higher dimensional domains, the Vlasov-Maxwell system, and higher
order schemes. Not many surprises are expected in deriving variational integrators for
the Vlasov-Poisson system in higher dimensions, especially extending the integrator of
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the Vlasov equation should prove to be straight forward. Treating the electrodynamic
equations of the Vlasov-Maxwell system properly might however necessitate the use of a
staggered grid approach [137] and therefore suggests a treatment based of discrete exterior
calculus [123, 124].
The derivation of higher order schemes as well appears to be a straight forward generali-
sation of the results presented in this work. The most interesting question in this respect
is if Arakawa’s fourth order discretisation of the Poisson brackets can be derived by a
variational method similarly to his second order discretisation.

Nambu Bracket Discretisation

In appendix B, it was shown that the Lie-Poisson bracket formulation of the Vlasov
equation can be used to obtain semi-discretisations of the phasespace part of the Vlasov
equation by first transforming them to Nambu brackets. A Lie-Poisson bracket also exists
for the Vlasov-Maxwell system [82]

{F,G} = ∫ f [
δF

δf
,
δG

δf
] dxdv + ∫ (

δF

δE
⋅ (∇×

δG

δB
) −

δG

δE
⋅ (∇×

δF

δB
))dxdv

+ ∫ (
δF

δE
⋅
δf

δv

δG

δf
−
δG

δE
⋅
δf

δv

δF

δf
)dxdv + ∫ f B ⋅ (

∂

∂v

δF

δf
×
∂

∂v

δG

δf
)dxdv, (7.1)

where f is the distribution function, E and B the electric and magnetic fields, respectively,
and H is the Hamiltonian energy functional, given by

H(f,E,B) =
1
2 ∫ ∥v∥

2
f(t, x, v)dxdv +

1
2 ∫ ( ∥E(t, x)∥

2
+ ∥B(t, x)∥

2
)dx, (7.2)

such that the evolution of all functionals F (f,E,B) is determined by

Ḟ = {F,H}. (7.3)

Preliminary results suggest that this Lie-Poisson bracket has a Nambu bracket formulation
as well which could be used to derive semi-discretisations for the Vlasov-Maxwell system,
where in contrast to the Vlasov-Poisson system not only the distribution function but
also the electric and magnetic fields obey dynamical equations.

Dirac Bracket Discretisation

Recently, there has been some effort to derive Dirac brackets for several models of plasma
physics [27, 26], including the Vlasov-Poisson and Vlasov-Maxwell systems. These brack-
ets are constructed to respect constraints of the dynamics automatically, e.g. ∆φ−∫ f dv =
0 for the Vlasov-Poisson system or ∇ ⋅V = 0 for incompressible fluids. The Dirac brackets
for the Vlasov-Poisson system,

{F,G}∗(f,E) = ∫ f [
δF

δf
−∆−1∇ ⋅

δF

δE
,
δG

δf
−∆−1∇ ⋅

δG

δE
]dxdv, (7.4)

can be transformed into Lie-Poisson brackets,

{F,G}(f,Φ) = ∫ f [
δF

δf
−
δF

δΦ ,
δG

δf
−
δG

δΦ]dxdv, (7.5)
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where

Φ = ∆φ = −∇ ⋅E. (7.6)

Again it might be possible to find a relation with Nambu brackets and use that relation to
obtain semi-discretisations. An interesting peculiarity of this formulation is that due to
the Poisson equation being included as a constraint two dynamical equations, the usual
one for the distribution function f and another one for the potential vorticity Φ, have to
be solved. This might turn out to be an advantage for parallel implementations of the
resulting methods.

Euler-Poincaré Action Principle

The Euler-Poincaré action principle reviewed in section 5.2.3 might pose the starting
point for the derivation of variational integrators in a similar way as was done by Pavlov
et al. [99, 98] and Gawlik et al. [43] for incompressible fluids. As already noted by
Squire et al. [122] this might prove nontrivial as, e.g., a discretisation of the group of
symplectomorphisms, which describes the dynamics of the Vlasov-Poisson and Vlasov-
Maxwell systems, has to be found (for a more thorough discussion see [122]).
Despite the possible difficulties it seems worthwhile to pursue this path as the Euler-
Poincaré reduced system appears to be the most natural, most geometric formulation of
the family of Vlasov systems known to date.

Gyrokinetics

From the point of view of applying variational integrators in large scale plasma physics
codes, the kinetic model appears to be less attractive than the gyrokinetic model. Gy-
rokinetics is a version of kinetic theory reduced to five phasespace dimensions instead of
six, thereby lowering the computational burden.
An extension of the variational integrators derived in this work to gyrokinetics is thus an
important topic of future work, overlapping with the extension to higher dimensions and
the Vlasov-Maxwell system.

7.2.3. Ideal and Reduced MHD
The most obvious extensions of the variational integrator for magnetohydrodynamics from
chapter six are similar to those of the Vlasov-Poisson case: moving to three dimensional
domains, higher order discretisations, and more comprehensive models. Some others are
shortly explained below.

Potential Formulation

In studies of magnetic reconnection, the potential formulation presented in section (6.1.2)
is very popular. To derive variational integrators for this formulation, an extended version
of the theory for second or third order field theories has to be applied [65, 64]. Apart
from this there appear to be no obvious obstacles.
It would be quite interesting to compare the performance of variational integrators for
the two different approaches, i.e., the description in terms of the potentials A and ψ and
the description in terms of the fields B and V .
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Nambu and Dirac Brackets

Several flavours of magnetohydrodynamics can also be described by Lie-Poisson brackets,
e.g., for the ideal case in potential formulation that is

{F,G}(A,ω) = ∫ A([
δF

δA
,
δG

δω
] − [

δF

δω
,
δG

δA
])dxdy + ∫ ω [

δF

δω
,
δG

δω
]dxdy, (7.7)

with the Hamiltonian energy functional

H(A,ω) =
1
2 ∫ (ψω −Aj)dxdy. (7.8)

Here, A is the magnetic vector potential, j = −∆A the current density, ω = −∆ψ is the
vorticity, and ψ the streaming function. With the Casimir invariant

C = ∫ Aω dxdy, (7.9)

this can be transformed into a Nambu bracket

{F,G,C}(A,ω) = ∫
δC

δω
([
δF

δA
,
δG

δω
] − [

δF

δω
,
δG

δA
])dxdy + ∫

δC

δA
[
δF

δω
,
δG

δω
]dxdy.

(7.10)

A discretisation approach as described in appendix B.3.3 should be straight forwardly
applicable to this expression.
As for the family of Vlasov systems, there has been recent research on Dirac bracket for-
mulations for magnetohydrodynamics as well [27, 26], which might open new possibilities
for deriving discretisations if a relation between Dirac brackets and Nambu brackets could
be drawn as outlined above.





183

A. Mixed Spectral-Variational Schemes
In this appendix, we sketch how to derive mixed spectral-variational methods for the
Vlasov-Poisson system. We do the derivation for a system very similar to Vlasov-Poisson,
but somewhat simpler, namely the vorticity equation in two spatial dimensions. The gen-
eralisation to the Vlasov-Poisson equation, e.g., in two spatial and two velocity dimensions
is mostly straight forward.

A.1. The Vorticity Equation in 2D
The vorticity equation describes the evolution of the vorticity of a fluid element in an
incompressible ideal fluid

∂ω

∂t
+
∂ω

∂x

∂ψ

∂y
−
∂ω

∂y

∂ψ

∂x
= 0, (A.1)

where ω is the vorticity of the fluid and ψ is the streaming function, determined by

−∆ψ = ω. (A.2)

In two dimensions, the vorticity equations takes a particularly interesting form which has
a structure similar to the one of the Vlasov-Poisson system. The analogy is not exact, as
the Poisson equation (A.2) is two-dimensional.

In Fourier representation ω and ψ take the form

ω(r, t) =∑
k

exp{−i k ⋅ r} ω̂(k, t), (A.3a)

ψ(r, t) =∑
k

exp{−i k ⋅ r} ψ̂(k, t), (A.3b)

where k ∈ Z2 and r = (x, y) ∈ I2. With the shorthand notation ωk for ω̂(k, t) and ψk for
ψ̂(k, t), the vorticity and Poisson equations become

∂ωk
∂t

= ẑ ⋅ ∑
p+q=k

(p × q) ωq ψp, (A.4)

−k2ψk = ωk. (A.5)

The reality condition

ω(−k, t) = ω∗(k, t) (A.6)

determines the Fourier modes in the lower half plane and will play an important role in
the analysis of conserved quantities.
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A.2. Conservation Laws
We will concentrate on a particular invariant of the spectral vorticity equation, the L2

norm of the vorticity

G =∑
k

∣ωk∣
2
= ∫

I2

ω2 dxdy. (A.7)

In physical space, dG/dt = 0 is a consequence of the anti-symmetry of the Poisson brackets
in (A.1). In Fourier space, the conservation of G follows by multiplying the spectral
vorticity equation with ω−k

ω−k
∂ωk
∂t

= ẑ ⋅ ∑
p+q=k

p × q ω−k ωq ψp (A.8)

and adding of the result to the same equation with the sign of k flipped

ωk
∂ω−k
∂t

= ẑ ⋅ ∑
p+q=−k

p × q ωk ωq ψp (A.9)

to get

ω−k
∂ωk
∂t

+ ωk
∂ω−k
∂t

= ẑ ⋅ [ ∑
p+q=k

p × q ω−k ωq ψp + ∑
p+q=−k

p × q ωk ωq ψp]. (A.10)

With the reality condition, the left-hand side becomes

ω−k
∂ωk
∂t

+ ωk
∂ω−k
∂t

=
∂

∂t
(ω∗kωk) =

∂

∂t
∣ωk∣

2
. (A.11)

We sum the full equation over k and rewrite the sums on the right-hand side
∂

∂t
∑
k

∣ωk∣
2
= ẑ ⋅∑

k

∑
q

[(k − q) × q ω−k ωq ψk−q + (−k − q) × q ωk ωq ψ−k−q]

= ẑ ⋅∑
k

∑
q

k × q [ω−k ωq ψk−q − ωk ωq ψ−k−q]. (A.12)

On the right-hand side, exchange k and q (we can do this as both, the sum of k and
the sum of q, run over the whole wave number space) and add the result to the original
equation

∂

∂t
∑
k

∣ωk∣
2
=

1
2 ẑ ⋅∑k

∑
q

⎧⎪⎪⎪⎪⎪⎪⎪⎩

k × q [ω−k ωq ψk−q − ωk ωq ψ−k−q] + q × k [ω−q ωk ψq−k − ωq ωk ψ−q−k]
⎫⎪⎪⎪⎪⎪⎪⎪⎭

=
1
2 ẑ ⋅∑k

∑
q

k × q [ω−k ωq ψk−q − ωk ωq ψ−k−q + ωq ωk ψ−q−k − ω−q ωk ψq−k]

=
1
2 ẑ ⋅∑k

∑
q

k × q [ω−k ωq ψk−q − ω−q ωk ψq−k]. (A.13)

Now change the sign of both k and q, and add the result to the original equation
∂

∂t
∑
k

∣ωk∣
2
=

1
4 ẑ ⋅∑k

∑
q

k × q [ω−k ωq ψk−q − ωq ω−k ψ−q+k + ωk ω−q ψ−k+q − ω−q ωk ψq−k]

= 0. (A.14)

Thus we have proved that G is conserved.
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A.3. Extended Lagrangian
The extended Lagrangian one-form for the spectral vorticity equation is

L(ωk, ξk) = ξk [
∂ωk
∂t

− ẑ ⋅ ∑
p+q=k

p × q ωq ψp]dt. (A.15)

The Poisson equation (A.5) is not explicitly time dependent and therefore not included.
The variational principle applied to the action

A = ∫ L(ωk, ξk) (A.16)

yields two equations

∂ωk
∂t

= ẑ ⋅ ∑
p+q=k

p × q ωq ψp, (A.17a)

∂ξk
∂t

= ẑ ⋅ ∑
p+q=k

p × q ξq ψp, (A.17b)

that are identical. So we can assume that ξ has the same solution as ω, which is important
for the analysis of conserved quantities with Noether’s theorem.

A.4. Variational Integrator
In the discrete system we apply the Fourier-Galerkin truncation where the sum is taken
only over a finite subset of all possible wave numbers k. We will only discretise time with
the help of a discrete variational principle.

The discrete extended Lagrangian density is

Ld(ω
1
k, ω

2
k; ξ1

k, ξ
2
k) =

1
2 (ξ1

k + ξ
2
k)[

ω2
k − ω

1
k

ht
−

1
4 ẑ ⋅ ∑p+q=k

p × q (ω1
q + ω

2
q)(ψ

1
p + ψ

2
p)]ht. (A.18)

With that one finds the discrete Euler-Lagrange equations

∂Ld
∂ξ1 (ωj, ωj+1) +

∂Ld
∂ξ2 (ωj−1, ωj) = 0 (A.19)

to be

ωj+1
k − ωjk

2ht
+
ωjk − ω

j−1
k

2ht
=

1
8 ẑ ⋅ ∑p+q=k

p × q [(ωj−1
q + ωjq)(ψ

j−1
p + ψjp) + (ωjq + ω

j+1
q )(ψjp + ψ

j+1
p )].

(A.20)

This corresponds to the sum of two equations (c.f. the discussion in section 5.3.2),

ωj+1
k − ωjk

2ht
=

1
8 ẑ ⋅ ∑p+q=k

p × q (ωjq + ω
j+1
q )(ψjp + ψ

j+1
p ), (A.21a)

ωjk − ω
j−1
k

2ht
=

1
8 ẑ ⋅ ∑p+q=k

p × q (ωj−1
q + ωjq)(ψ

j−1
p + ψjp). (A.21b)
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If ωk is a solution of the first equation, it is also a solution of the second equation, as
well as of the original equation (for a detailed discussion see section 5.3). So the discrete
equation we use to advance the spectral vorticity in time is

ωj+1
k − ωjk
ht

=
1
4 ẑ ⋅ ∑p+q=k

p × q (ωjq + ω
j+1
q )(ψjp + ψ

j+1
p ). (A.22)

The proof of conservation of the discrete L2 norm follows exactly the same path as in the
continuous case and is therefore omitted.

A.5. The Vlasov-Poisson System
The Vlasov-Poisson system (see also chapter 5)

∂f

∂t
+ v ⋅

∂f

∂x
−
∂φ

∂x
⋅
∂f

∂v
= 0 (A.23)

∆φ = −∫ f dv. (A.24)

describes the dynamics of a charged particle system, characterised by the particle dis-
tribution function f , in an electrostatic potential φ. In Fourier representation, f and φ
read

f(t, x, v) =∑
k

exp{−i k ⋅ x} f̂(t, k, v), (A.25)

φ(t, x) =∑
k

exp{−i k ⋅ x} φ̂(t, k), (A.26)

and the Vlasov and Poisson equations become

∂f̂

∂t
− i v ⋅ k f̂ + i φ̂ k ⋅

∂f̂

∂v
= 0, (A.27)

k2 φ̂ = −∫ f̂ dv. (A.28)

The variational integrator is derived in the same way as for the vorticity equation, only
that now, in addition to time, also the velocity dimensions are considered in the derivation.
However, the analysis of conservation laws is supposedly more complicated than in the
previous case.
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B. Discretisation of Brackets
In this appendix we want to discuss the discretisation of Poisson brackets, Lie-Poisson
brackets and both finite and infinite dimensional Nambu brackets [92]. This treatment is
based on ideas of Salmon and Talley. In [110], they describe a general way of discretising
Poisson brackets [⋅, ⋅] by a method based on a discrete functional derivative that is very
similar to the variational integrator formalism. In [109], Salmon generalises these ideas
to infinite dimensional Nambu brackets (Nambu field brackets), which are related to Lie-
Poisson brackets as they often appear in the Hamiltonian description of plasma physics
models.

B.1. Canonical Poisson Brackets
The starting point for Salmon and Talley [110] is the rephrasing of the equation at hand,
e.g.,

Df(t, x, p) = 0, (B.1)

where D is any operator, in a weak formulation, that is

∫ g(x, p)Df(t, x, p)dxdp = 0 for any test function g(x, p). (B.2)

If the solutions of (B.2) are regular and (B.2) vanishes for any g(x, y) it is equivalent to
the original equation (B.1). Consider as an example the Vlasov equation from chapter 5,

∂tf + [f, h] = 0, (B.3)

for which the corresponding weak formulation reads

∫ g(x, p) (∂tf + [f, h])dxdp = 0. (B.4)

Here, f(t, x, p) is the distribution function and h is the particle Hamiltonian. This is
almost identical to the extended Lagrangian (5.74) from chapter 5. What is missing is
the integral over time. So from this formulation, a semi-discretisation of the phasespace
part of the equation is obtained. Such a semi-discretisation has also been considered by
León et al. [75] in the framework of variational integrators.
In the following we want to concentrate on the brackets, ignoring the time derivative.
Therefore, we consider the energy functional

E = ∫ g [f, h]dxdp, (B.5)

such that the Poisson bracket [f, h] is retained by a functional derivative with respect to
g, that is

δE

δg
= [f, h]. (B.6)
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It is now important to realise, integrating by parts with appropriate boundary conditions,
that the following expressions are identical

∫ g [f, h]dxdp = ∫ f [h, g]dxdp = ∫ h [g, f]dxdp. (B.7)

The energy functional (B.5) can thus be written as a convex combination of these three
expressions

E = ∫ [αg [f, h] + β f [h, g] + γ h [g, f]]dxdp, (B.8)

where α + β + γ = 1. This observation is important for the discretisation of the brackets.
To retain the antisymmetry properties of the brackets on the discrete level Salmon and
Talley observed that equal factors, α = β = γ = 1/3, have to be used, such that

E =
1
3 ∫ [g [f, h] + f [h, g] + h [g, f]]dxdp. (B.9)

B.1.1. Discrete Poisson Brackets on a Rectangular Mesh
The next step in the derivation is the discretisation of this integral. Salmon and Talley
discretise the derivatives along the diagonals of a grid cell as depicted below.

ϕ1 ϕ2

ϕ3ϕ4

Where the discrete derivatives are defined as

ϕ⊠x(x, p) ≈
ϕ2 − ϕ4

hx
, ϕ⊠p (x, p) ≈

ϕ3 − ϕ1

hp
. (B.10)

This definition of the derivatives appears quite unnatural and ambiguous as both the x
and the p derivative could be defined along each of the two diagonals. The actual choice
seems mostly motivated by the desired result, to obtain Arakawa’s discretisation of the
brackets (details follow below). However, we will see that this specific discretisation is
also obtained by using the discrete derivatives from chapter 3 instead. I.e., we define the
derivatives along the edges of the grid cell, that is

ϕ◻x(x, p) ≈
1
2(
ϕ2 − ϕ1

hx
+
ϕ3 − ϕ4

hx
), ϕ◻p (x, p) ≈

1
2(
ϕ4 − ϕ1

hp
+
ϕ3 − ϕ2

hp
). (B.11)

As in chapter 3, the fields are approximated by averages over all four vertices of the grid
cell,

ϕ◻(x, p) ≈
1
4(ϕ1 + ϕ2 + ϕ3 + ϕ4). (B.12)
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Upon defining

S◻(g, f, h) ≡
1
4(g1 + g2 + g3 + g4)[

1
2(
f 2 − f 1

hx
+
f 3 − f 4

hx
)

1
2(
h4 − h1

hp
+
h3 − h2

hp
)

−
1
2(
f 4 − f 1

hp
+
f 3 − f 2

hp
)

1
2(
h2 − h1

hx
+
h3 − h4

hx
)], (B.13)

the discrete equivalent of the energy functional (B.9) becomes

Ed =
1
3∑◻

(S◻(g, f, h) + S◻(f, h, g) + S◻(h, g, f)). (B.14)

The discrete Poisson brackets at a grid point (i, j) are obtained by computing a discrete
functional derivative, the same way as we computed the discrete variation, that is

[f, h]i,j =
∂Ed
∂gi,j

. (B.15)

Only four terms of the sum (B.15) include gi,j, such that those four terms define the
discrete Poisson bracket

[f, h]i,j =
∂Ed
∂g1 (ϕi,j, ϕi+1,j, ϕi+1,j+1, ϕi,j+1) +

∂Ed
∂g2 (ϕi−1,j, ϕi,j, ϕi,j+1, ϕi−1,j+1)

+
∂Ed
∂g3 (ϕi−1,j−1, ϕi,j−1, ϕi,j, ϕi−1,j) +

∂Ed
∂g4 (ϕi,j−1, ϕi+1,j−1, ϕi+1,j, ϕi,j). (B.16)

The result of this computation is the well-known Arakawa scheme [4].

B.1.2. Arakawa’s Discretisation

In his original work [4], Arakawa considers different discretisations of the Poisson brackets
with the aim of preserving the total number of particles

∫ [f, h]dxdp = 0 → ∫ f(t)dxdp = ∫ f(0)dxdp, (B.17)

the total energy

∫ [f, h]hdxdp = 0 → ∫ f(t)h(t)dxdp = ∫ f(0)h(0)dxdp, (B.18)

and the L2 norm of the distribution function

∫ [f, h] f dxdp = 0 → ∫ f 2(t)dxdp = ∫ f 2(0)dxdp. (B.19)
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He defines four different discretisations of J(f, h) = [f, h], that is

J++ =
1

4hx hp
⎧⎪⎪⎪⎩
(f+0 − f−0)(h0+ − h0−) − (f0+ − f0−)(h+0 − h−0)

⎫⎪⎪⎪⎭
, (B.20a)

J+× =
1

4hx hp
⎧⎪⎪⎪⎩
f+0(h+− − h++) − f−0(h−− − h−+) − f0+(h−+ − h++) + f0−(h−− − h+−)

⎫⎪⎪⎪⎭

=
1

4hx hp
⎧⎪⎪⎪⎩
h++(f0+ − f+0) − h−−(f−0 − f0−) − h−+(f0+ − f−0) + h+−(f+0 − f0−)

⎫⎪⎪⎪⎭
,

(B.20b)

J×+ =
1

4hx hp
⎧⎪⎪⎪⎩
f++(h+0 − h0+) − f−−(h0− − h−0) − f−+(h−0 − h0+) + f+−(h0− − h+0)

⎫⎪⎪⎪⎭

=
1

4hx hp
⎧⎪⎪⎪⎩
h+0(f++ − f+−) − h−0(f−+ − f−−) − h0+(f++ − f−+) + h0−(f+− − f−−)

⎫⎪⎪⎪⎭
,

(B.20c)

J×× =
1

8hx hp
⎧⎪⎪⎪⎩
(f++ − f−−)(h−+ − h+−) − (f−+ − f+−)(h++ − h−−)

⎫⎪⎪⎪⎭
, (B.20d)

where the subscript 00 refers to the grid point where the brackets are defined, +0 the grid
point on the right, −0 the grid point on the left, and so on, as depicted below.

−−

−0

−+

0−

00

0+

+−

+0

++

Arakawa then explores different combinations of those expressions to find that all three
of the above conservation properties (B.17) - (B.19) are only respected for

J =
1
3(J++ + J+× + J×+), (B.21)

which is exactly the expression we obtain from (B.16). The above expressions correspond
to a second order discretisation of the Poisson bracket. Arakawa also provides fourth
order expressions. It would be very interesting to see, if these can be derived by a similar
approach. This, however, is a problem left for future research.

B.1.3. Discrete Poisson Brackets on a Triangular Mesh
A similar discretisation of the brackets can be performed on a mesh of triangles, leading
to the scheme of Sadourny et al. [106]. The only complication comes with the fact that we
have two kinds of triangles, namely those pointing upward and those pointing downward,
and we have, of course, to consider the contribution of both.
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1 2

3 1 2

3

Therefore we need to define cell averages and discrete derivatives for each type of triangle
separately. The grid points of the triangles are given by

△ = ((i, j), (i + 1, j), (i, j + 1)) ▽ = ((i, j), (i + 1, j), (i + 1, j − 1)), (B.22)

such that the vertices are denoted by

△1 = (i, j), △2 = (i + 1, j), △3 = (i, j + 1), (B.23a)
▽1 = (i, j), ▽2 = (i + 1, j), ▽3 = (i + 1, j − 1). (B.23b)

Field averages are the same on both kind of triangles but the derivatives are different,
that is

ϕ△ =
1
3
(ϕ△

1
+ ϕ△

2
+ ϕ△

3
) , ϕ▽ =

1
3
(ϕ▽

1
+ ϕ▽

2
+ ϕ▽

3
) , (B.24a)

ϕ△x =
ϕ△

2
− ϕ△

1

hx
, ϕ▽x =

ϕ▽
2
− ϕ▽

1

hx
, (B.24b)

ϕ△p =
1
2(
ϕ△

3
− ϕ△

1

hp
+
ϕ△

3
− ϕ△

2

hp
), ϕ▽p =

1
2(
ϕ▽

1
− ϕ▽

2

hp
+
ϕ▽

1
− ϕ▽

3

hp
). (B.24c)

Upon defining

S△(g, f, h) ≡
1
3(ϕ△

1
+ ϕ△

2
+ ϕ△

3
)[

1
2(
f△

2
− f△

1

hx
)(
h△

3
− h△

1

hp
+
h△

3
− h△

2

hp
)

−
1
2(
f△

3
− f△

1

hp
+
f△

3
− f△

2

hp
)(
h△

2
− h△

1

hx
)], (B.25a)

S▽(g, f, h) ≡
1
3(ϕ▽

1
+ ϕ▽

2
+ ϕ▽

3
)[

1
2(
f▽

2
− f▽

1

hx
)(
h▽

1
− h▽

2

hp
+
h▽

1
− h▽

3

hp
)

−
1
2(
f▽

1
− f▽

2

hp
+
f▽

1
− f▽

3

hp
)(
h▽

2
− h▽

1

hx
)], (B.25b)

the discrete energy functional (B.9) becomes

Ed =∑
△

1
3(S△(g, f, h) + S△(f, h, g) + S△(h, g, f))

+∑
▽

1
3(S▽(g, f, h) + S▽(f, h, g) + S▽(h, g, f)). (B.26)

The discrete Poisson brackets at a grid point (i, j) are obtained by computing the discrete
functional derivative as in (B.15), that is

[f, h]i,j =
∂Ed
∂gi,j

. (B.27)
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Six terms of the sum (B.26) include gi,j, such that those terms define the discrete Poisson
bracket

[f, h]i,j =
∂Ed
∂g△1 (ϕi,j, ϕi+1,j, ϕi,j+1) +

∂Ed
∂g△2 (ϕi−1,j, ϕi,j, ϕi−1,j+1)

+
∂Ed
∂g△3 (ϕi,j−1, ϕi+1,j−1, ϕi,j) +

∂Ed
∂g▽1 (ϕi,j, ϕi,j+1, ϕi−1,j+1)

+
∂Ed
∂g▽2 (ϕi,j−1, ϕi,j, ϕi−1,j) +

∂Ed
∂g▽3 (ϕi+1,j−1, ϕi+1,j, ϕi,j).

(B.28)

The result of this computation is the scheme of Sadourny et al. [106],

[f, h]d =
1
A7

6
∑
a=1

1
2 fa (ha+1 − ha−1) (B.29)

where the area of the hexagon, A7, is

A7 = 6A△ = 3hx hp cos 30○, (B.30)

a denotes the vertices of the hexagon as depicted below, a = 6 + 1 is replaced with a = 1,
and a = 1 − 1 is replaced with a = 6.

0
1

23

4

5 6

B.2. Nambu Three Brackets
The ideas of the previous section can be extended to the three brackets defined by Nambu
[92]

[f, g, h] ≡ εabc f,a g,b h,c =
∂f

∂x
[g, h]

yz
+
∂f

∂y
[g, h]

zx
+
∂f

∂z
[g, h]

xy
, (a, b, c) ∈ {x, y, z},

(B.31)

where [⋅, ⋅]xy denote Poisson brackets with respect to x and y, etc.. The energy functional
is completely analogous to the previous one, that is

E = ∫ k [f, g, h]dxdy dz (B.32)

=
1
4 ∫

⎧⎪⎪⎪⎩
k [f, g, h] + f [k, h, g] + g [k, f, h] + h [k, g, f]

⎫⎪⎪⎪⎭
dxdy dz, (B.33)

where we applied the same symmetrisation ideas as before.
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B.2.1. Discrete Nambu Brackets
The discrete derivatives are defined similar as before, only that now we have to consider
a three dimensional grid, such that the field averages and discrete derivatives become

ϕ◻ =
1
8
(ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6 + ϕ7 + ϕ8) (B.34a)

ϕ◻x =
1
4 (

ϕ2 − ϕ1

hx
+
ϕ3 − ϕ4

hx
+
ϕ6 − ϕ5

hx
+
ϕ7 − ϕ8

hx
) , (B.34b)

ϕ◻y =
1
4 (

ϕ4 − ϕ1

hy
+
ϕ3 − ϕ2

hy
+
ϕ8 − ϕ5

hy
+
ϕ7 − ϕ6

hy
) , (B.34c)

ϕ◻z =
1
4 (

ϕ5 − ϕ1

hz
+
ϕ6 − ϕ2

hz
+
ϕ7 − ϕ3

hz
+
ϕ8 − ϕ4

hz
) . (B.34d)

The discrete action follows exactly along the lines of the previous derivations. The exact
form of the discrete brackets is quite complex and therefore not explicitly repeated here.

B.2.2. Application to Gyrokinetics
An application of this formulation and our discretisation is the gyrokinetic Vlasov equation
on an extruded triangular mesh as depicted below [117],

∂f

∂t
+

1
√
gB∗

∥

[h, f,A∗
ϕ]
xypz

= 0, (B.35)

where (x, y) are coordinates in the poloidal plane of an axisymmetric tokamak, ϕ is the
toroidal coordinate and pz is the parallel momentum, g is the metric, f the distribution
function and h the particle Hamiltonian, A∗ = A+ c

epzb is the generalised vector potential
and B∗

∥
= b ⋅ (∇×A∗) the parallel magnetic field strength.

x

y pz

Here, we have to combine the ideas of the previous sections. The spatial derivatives are
defined in the poloidal plane over triangles and averaged in the momentum coordinate.
Again we have to consider upward pointing and downward pointing triangles separately.
The momentum derivative is defined in the extruded direction and averaged over the
vertices of each triangle. Field averages are defined over all vertices of a three-dimensional
grid cell. The rest of the derivation follows straight forwardly.
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B.3. Lie-Poisson and Nambu Field Brackets
The natural Hamiltonian formulation of the Vlasov equation is via Lie-Poisson brackets.
As we discussed in chapter five, the Vlasov-Poisson system does not have a canonical
Hamiltonian formulation, nevertheless it is a Hamiltonian system. In this section we
want to explore a discretisation approach for such Lie-Poisson brackets.
After sketching the noncanonical Hamiltonian description of systems like Vlasov-Poisson,
we review Salmon’s approach [109] of discretising Lie-Poisson brackets. He does not dis-
cretise the brackets directly, but first finds equivalent infinite dimensional Nambu brackets
(Nambu field brackets) and then discretises those by similar ideas as they were presented
in the previous section.

B.3.1. Noncanonical Hamiltonian Field Theory
The dynamics of Hamiltonian systems is usually expressed with the help of canonically
conjugate variables (q, p) and Hamilton’s equations

q̇ =
∂H

∂p
and ṗ = −

∂H

∂q
. (B.36)

The evolution of any functional F (q, p) can be obtained with Poisson brackets, i.e.,

Ḟ (q, p) = [F,H]. (B.37)

A large class of Hamiltonian systems, especially infinite-dimensional ones and especially
systems from plasma physics (e.g., Vlasov-Poisson, reduced and ideal MHD, incompress-
ible Fluid dynamics), do not fit into the form of (B.36). They can, however, be described
by a generalisation of (B.37). The dynamics of a functional F (ξ) of state variables ξ(t, x)
(e.g., distribution function, vorticity, density, temperature) of a Hamiltonian system is
determined by

Ḟ (ξ) = {F,H}, (B.38)

where H(ξ) is the Hamiltonian functional and {⋅, ⋅} are generalised Poisson brackets, that
means they are antisymmetric and fulfil the Leibniz rule and the Jacobi identity.

B.3.2. Lie-Poisson and Nambu Brackets in the Vlasov Equation
The Vlasov equation can be express in terms of Lie-Poisson brackets [82] as

Ḟ = {F,H} ≡ ∫ f [
δF

δf
,
δH

δf
]dxdp, (B.39)

where F is any functional of f and H is the total energy functional

H = ∫
∣p∣2

2m f(x, p)dxdp +
1
2 ∫ ∣∇φ(x)∣2 dx. (B.40)

Following Salmon’s considerations for the vorticity equation [109], the Lie-Poisson bracket
of the Vlasov equation can be expressed as a Nambu field bracket (see also [16]). Therefore
we just have to replace the single f in (B.39) with the functional derivative of the L2 norm,

Z =
1
2 ∫ f 2 dxdp. (B.41)
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Hence, the Lie-Poisson bracket in (B.39) becomes a Nambu three bracket,

Ḟ = {F,H,Z} ≡ ∫
δZ

δf
[
δF

δf
,
δH

δf
]dxdp. (B.42)

This bracket is antisymmetric in its three parameters, a property that is important in the
discretisation procedure.

B.3.3. Discretisation of Nambu Field Brackets
The functionals Z and H are approximated by a simple quadrature rule as

Z =
1
2∑i,j

f 2
i,j, H =∑

i,j

fi,j hi,j =∑
i,j

fi,j (p
2
j/m + qφi,j). (B.43)

As in the previous sections, the key observation to a successful discretisation is the equiv-
alence of the following expressions (integrating by parts with appropriate boundary con-
ditions)

∫
δZ

δf
[
δF

δf
,
δH

δf
]dxdp = ∫

δF

δf
[
δH

δf
,
δZ

δf
]dxdp = ∫

δH

δf
[
δZ

δf
,
δF

δf
]dxdp. (B.44)

The functional derivatives are defined on each vertex of a grid cell as we know it from
the previous chapters and we define averages and derivatives just as before, c.f. equation
(B.34).

f 1 f 2

f 3f 4

The functional derivative of the L2 norm is therefore discretised as

δZ

δf
≈

1
4(

∂Z

∂f 1 +
∂Z

∂f 2 +
∂Z

∂f 3 +
∂Z

∂f 4), (B.45)

and the Poisson brackets in B.42 are discretised by

[
δF

δf
,
δH

δf
]
d

=
1

4hxhp

⎧⎪⎪⎪⎪⎪⎪⎪⎩

(
∂F

∂f 2 −
∂F

∂f 1 +
∂F

∂f 3 −
∂F

∂f 4)(
∂H

∂f 4 −
∂H

∂f 1 +
∂H

∂f 3 −
∂H

∂f 2)

− (
∂F

∂f 4 −
∂F

∂f 1 +
∂F

∂f 3 −
∂F

∂f 2)(
∂H

∂f 2 −
∂H

∂f 1 +
∂H

∂f 3 −
∂H

∂f 4)
⎫⎪⎪⎪⎪⎪⎪⎪⎭

, (B.46)
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such that the discrete Nambu field bracket can be written as

{F,H,Z}d̃ = ∑
grid boxes

1
4(

∂Z

∂f 1 +
∂Z

∂f 2 +
∂Z

∂f 3 +
∂Z

∂f 4)[
δF

δf
,
δH

δf
]
d

. (B.47)

To retain the antisymmetry property of the continuous Nambu bracket on the the discrete
level, this expression has to be symmetrised, taking into account all even as well as all
odd permutations

{F,H,Z}d =
1
6({F,H,Z}d̃ + {H,Z,F}d̃ + {Z,F,H}d̃

− {F,Z,H}d̃ − {H,F,Z}d̃ − {Z,H,F}d̃). (B.48)

With the discretisations we described above, considering only the even permutations
suffices, but in general this is not the case. The semi-discrete analogue of the Vlasov-
Poisson equation is then

∂fij
∂t

= {fij,H,Z}d. (B.49)

With our discretisation of the derivatives, this will again lead to the Arakawa discretisa-
tion. It is an interesting observation that derivations on the Lagrangian side (variational
integrators) and on the Hamiltonian side (discrete Nambu brackets) lead to similar dis-
cretisations of the equations of motion. This is due to the fact that both the extended
Lagrangian formulation and the Lie-Poisson brackets (B.39) are constructed on the basis
of the particle brackets [⋅, ⋅]. This appears to be a consequence of the use of extended
Lagrangians.
It will be interesting to further develop this approach as Lie-Poisson brackets exists for a
wide range of system from plasma physics, like the Vlasov-Maxwell system and different
flavours of magnetohydrodynamics.
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