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Abstract

Today video surveillance systems are widely used in
public spaces, such as train stations or airports, to en-
hance security. In order to observe large and complex
facilities a huge amount of cameras is required. These
create a massive amount of data to be analyzed. It is
therefore crucial to support human security staff with
automatic surveillance applications, which will create
an alert if security relevant events are detected. This
way video surveillance could be used to prevent poten-
tially dangerous situations, instead of just being used as
forensic instrument, to analyze an event after it hap-
pened. In this treatise we present a surveillance sys-
tem which supports human operators, by automatically
detecting abandoned objects and loitering people. Two
major parts have been implemented: a multi-camera
tracking algorithm based on homographic transforma-
tion and the subsequent analysis of the observed object
trajectories. An alarm event is triggered if an object is
abandoned for 25 seconds or a person is staying in the
view for more than 60s.

1. Introduction

The increased interest in public safety after recent ter-
roristic activities has caused a rapid growth in the num-
ber of surveillance cameras. Traditional operator-based
surveillance of public spaces is very labor intensive,
due to the number of people involved in analyzing the
recorder video material on- and off line. Up to now
video surveillance has been used as forensic tool, to ob-
tain knowledge about what has happened. Therefore a
fully automated surveillance system seems desirable in
order to provide continuous analysis of people’s behav-
iors, discover potential threats in time and eventually
prevent dangerous situations. This is not an easy task,
as the system has to deal with large crowds resulting
in severe occlusion, difficult and fast changing lighting
situations, and views that are very narrow or too wide.

The PETS 2007 benchmark data set presents four typ-
ical security relevant problems at a a busy airport ter-
minal. First the detection of luggage left unattended
for more than 25s. This seems a relevant task for law
enforcement, as luggage containing explosives or chem-
ical threats could be left behind. The difficulty in this
task is to reliable detect luggage items and addition-
ally determine the owner of the luggage if they have
left the item unattended for at least 25. For this prob-
lem several approaches have been already described in
the PETS 2006 challenge [1]. The second task is the
detection of loitering people. A person is considered loi-
tering if she enters a view and stays there at least 60s.
As third scenario luggage theft is considered. Theft is
defined as an item of luggage moved further than 3 me-
ters away from the original owner. A variation would
be two individuals swapping a luggage item as fourth
scenario. Whether the initial owner notices this proce-
dure or not should not be an issue, as both scenarios
are realistic. For each of the for scenarios two data
sets, recorded from 4 camera views, are provided. In
this work we will concentrate on the left luggage task
and loitering.
Our approach to these problems is basically split into
two modules. In the first stage we apply a multi-camera
object tracking framework. Object detection is per-
formed in each camera view separately, applying an
adaptive foreground segmentation based on Gaussian
mixtures. Tracking is then performed centrally in the
ground plane, by homographic transformation of the
single camera detection results and their fusion. The
second stage deals with the analysis of the object’s tra-
jectories obtained by the tracking module. It takes the
time spend in the scene into account, detects station-
ary objects and splits and merges in the trajectory. All
this information is used to make a decision about a
person’s behavior.
The paper is structured as followed: The multi-camera
object detection and tracking module is described in
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sec. 2. The event detection is described in sec. 3. Fi-
nally results will be presented in sec. 4 followed by a
short discussion sec. 5.

2. Multi-Camera Object Detec-
tion And Tracking

This section will describe the process of object track-
ing, which is first performed in each single camera per-
spective, followed by a homographic transform into the
ground plane. In the end the tracking is performed with
the fusioned data from each camera view.

2.1. Object Detection

For object detection in each single camera view we
apply a common adaptive foreground segmentation
method, based on works presented by Stauffer and
Grimson[2]. Each RGB-pixel of the image is mod-
eled by K Gaussian mixtures. This seems reasonable,
as each pixel’s variance due to noise can be modeled.
With K = 3 we compute a model for background, fore-
ground and shadow separately. The probability density
function for each pixel is given by:
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Where X is a vector containing the pixel’s RGB val-
ues. Each mixture is defined by θk = µk, θk. Taking
the probability ωk into account we get the set of pa-
rameters: Φ = ω1, ...ωk, θ1, ..., θk. This way each image
pixel is represented by:

fX(X, Φ) =
K∑

k=1

P (k)fX|k(X|k, θk)

In order to assign the observed pixel to the correct
kind of surface the term P (k, |X, Φ) is maximized by
applying the bayes rule and the maximum a posteriori
criteria:

P (k|X, Φ) =
P (k)fX|k(X|k, θk)

fX(X|Φ)

k̂ = arg max
k

P (k|X, Φ)

Up to now each pixel has been modeled independently
of its neighborhood and some false positives have been
produced due to image noise. By applying morpho-
logic operations such as opening and closing, noise is
eliminated and holes within foreground areas are filled.
After this step so called Blobs are detected within the
image by using connected component analysis [3]. In
order to reduce memory and computation effort only

the object’s shape is stored and processed in future
steps.

Some additional robustness and a gain in computa-

a) b) c) d)

Figure 1: Foreground segmentation, morphologic op-
erations and connected component analysis. Only the
shape is required for tracking

tional effort have been achieved by masking the input
images, so only in relevant image areas object detec-
tion has been performed.
The parameter fα denotes the updatetime in frames
and has to be set carefully. A compromise has to be
made, as a fast update would model a stationary ob-
ject as background after a short while, whereas too slow
updates result in difficulties with changing lighting sit-
uations or if an object from the initial background is
removed, the new visible area would be modeled as new
object. We chose fast updates in the beginning, as the
sequences are rarely empty, and to get slower after a
few initialization frames.

2.2. Homographic Transformation in
multiple Layers

To compute the exact position of a person in 3D,
just the lowest point of a detected blob from a single
camera perspective could be used, followed by simple
epipolar geometry, to find the line intersecting the
ground plane. A major drawback in object detection
with one single camera is occlusion handling. Two
objects, which are occluding each other only partially,
will be recognized as one. Even methods, such as
KL Tracking [4] or color histogram based mean shift
tracking [5] cannot solve the occlusion problem.
Therefore Khan presented an approach using ho-
mographic transformation in [6], which performs a
transformation from one image plane into another one.
A minimum of seven corresponding points in image
and world coordinates have to be known to locate
any blob position on the image plane, assuming, that
the blob’s lowest point is in contact with the ground.
Therefore the homographic transformation matrix has
to be computed once for every single camera:
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Figure 2: Homographic Transformation of object
shapes for all four camera views

Therefore the parameters of the transformation ma-
trix hij are determined using the Tsai camera calibra-
tion method [7]. For experimental results both the
given calibration data and a set of new calibration
points have been used, as the provided calibration data
seemed to contain some errors.
The shape of the previously detected blobs is then
transformed for each camera view. Image 2 shows the
results of the homographic transformation in all four

camera views. As it can be seen the transformations
can be interpreted as shadows created by light sources
located at the camera positions. The area within the
outline of a polygon is considered as candidate for an
object, as we cannot state any information about the
object’s depth and height at the moment. Depth in-
formation subsequently is gathered by the fusion of all
four given camera perspectives. In the optimum case
a boolean operation can be performed on the result-
ing polygon transforms on the ground plane. In areas
with intersections of at least three polygons it can be
assumed that a object is located. Obviously there are
some errors due to shadows or changing lighting situa-
tions. These are not a major issue, as these usually do
not appear in all camera views at the same time. Con-
sequently these will be eliminated during the following
fusion process. Another strength of the homographic
transform and the subsequent fusion is the robustness
to occlusion. Each transformed blob denotes the region
an object could be located in, even if it is not visible
from the actual camera view. Assuming that objects
are not occluded completely in every camera view, all
present objects can be detected.
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Figure 3: left: a false positive during tracking, right
the corrected result

In real world tracking scenarios there are some minor
drawbacks, for instance if a walking person lifts one
foot it does not touch the ground and an error will be
performed during the tracking process. Image 3 visu-
alizes a second error source, here just with two cam-
eras. There are two objects located directly in front
of the system’s two given cameras. With the fusion
of the polygon outlines it could be assumed that there
is a third object. So in fact one more camera would
be needed to solve this problem. Another possibility
is to perform the homographic transform not only in
the ground plane, but also in additional layers. For
example the transformation to a plane with h = 1m
would result in an intersection of a person’s hips, just
in the same position p as the feet touch the ground. As
the blob is virtually moved a bit in the camera’s direc-



tion the false intersection will be extinguished if it is a
person with an average height of about 1.6m. This ap-
proach is performed for the heights of 0m, 0.3m, 0.8m
and 1.2m. These values have been experimentally de-
termined, and proved to provide reliable results. An
unsolved problem remains if for instance a piece of lug-
gage is located just behind the persons in view. It
would be totally occluded and not detected if we apply
the layer based approach. Therefore a decision has to
be made if false positives or misses are to be preferred.
In a practical environment false positives would proba-
bly result in a low acceptance of the implemented sys-
tem.

h = 0.3m

h = 1.2m

h = 0.8m

h = 0m

||

&&

||

&&

&&

Figure 4: Rule-based fusion of the four single layers

In all four layers the previously described fusion by
computation of the polygon intersections can be per-
formed. In a following step a fusion of all four layers
is performed. As we do not know the exact height of
the detected objects and both small, e.g. luggage, and
large objects, e.g. persons, have to be detected, a rule
based decision has been applied. So at least within two
layers intersections have to be found. These would be
either the lower two, for small objects or the upper two
for huge objects. Figure 4 illustrates this process. As
a result we get the regions Ri(t), in which objects can
possibly be found for each frame. These regions are
described by their position pi(t) and the radius ri(t),
where the radius is computed with: r =

√
area/π.

Figure 5 illustrates the detected region, indicated with
a black circle, for a person standing near the point (1, 0)
which is the only person within the defined tracking
area. All errors due to lighting changes and shadows
have been eliminated, as only the one visible person
has been detected.

2.3. Object Tracking And Detection Of
Tracking Events

Up to now only possible object regions Ri(t) are de-
tected in the ground plane. There is not yet an as-
signment of a region Ri(t) to an object Oj(t), and no
temporal trajectory has been yet determined. Further-

Figure 5: Fusion result for frame 138 of scene s01

more there is no information about temporal and spa-
tial relationships between objects. Two objects could
be created by a split of one for instance. Or two objects
become one after a merge. Therefore a tracking algo-
rithm has been developed which assigns detected re-
gions R(t) to objects O(t), performs a temporal, track-
ing and recognizes splits and merges of objects:

R(t) → O(t)

where O(t) is a vector containing all observed objects
oj(t), and R containing all regions ri. Common track-
ing approaches, such as condensation, presented by Is-
ard and Blake [8], or unscented Kalman filtering [9]
have been dismissed due to high computational effort.
We decided to use a heuristic approach to remain
real time capable in all computation stages. Each
object oj(t) is described by its position p(t), the ra-
dius r(t), speed v(t), the time in the camera view
LifeT ime(oj(t)) and an ID id(t). In the first step an
estimation of the new object position is made by taking
speed and old object position into account:

~oi = ~oi + ~vi

In the next step we determine the new possible object
regions with the homografic transform in all four cam-
era views. For each predicted object oj we determine
the probability kij that a detected region ri(t) belongs
to the actual object. This is done by modeling each
object with a Gaussian distribution. Regions located
nearer to an object’s center are assigned a larger prob-
ability than regions located further away:

~ki = [ki1ki2 . . . kij ] where kij = exp (−‖oi − pj‖)2

σ2
)

Where σ denotes the variance, which is approximated
by the average radius of a human, here σ = [0.3 0.5].
Now the new objects are aligned to the detected re-
gions. Areas with a large probability therefore are
weighted higher. Additionally the size of a region’s sur-
face and the estimated object position are taken into



account:

oj =
0.1 · oj +

∑
i

2π(ri)2 · kij · pi

0.1 +
∑
i

2π(ri)2 · kij

It seems reasonable to assign more than one region to
an object, as for instance feet are often detected as two
independent regions, although they belong to one per-
son.
By the simple subtraction of two subsequent object po-
sitions we can compute the object’s speed:

vj(t) = oj(t)− oj(t− 1)

Now it is checked if all regions ri are assigned to an
object oj . If this has not happened, as the region’s cen-
ter is located too far away from each object’s center, a
new object is created. This procedure is required to de-
tect persons entering the observed area and detect a so
called split, where one object is split into two new ob-
jects. Finally, this is the point when the object IDs are
introduced. A new object appearing near the borders
of one of the camera views is considered as unknown
object and gets a new free ID assigned. If an object
pops up in the middle of the camera views it is proba-
bly created by a split, and therefore gets the same ID
as an overlapping object from the last frame. It rarely
happens that an object just pops up in the middle of
the tracking area and is too far away from any exist-
ing object. This usually is a false detection, caused
by lighting changes or shadows. In most cases these
spontaneous appearances vanish after a few frames. A
merge is detected if the distance of two object centers
is smaller than the medium radius of the two objects.
The new object is assigned the ID of the older blob. In
a last step objects, which are not in the field of view
anymore, are removed from the list, if no regions are
assigned to them for at least 2 frames. Figure 6 illus-
trates the detection of a split and merge.
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Figure 6: Right: merging objects, Left: splitting ob-
jects

Figure 7 shows the results of the tracking algorithm
for two frames from the first sequence. Especially the

lower image shows the capability of assigning multiple
regions to one object. Without this in the lower image
six individual objects would have been detected instead
of just the two visible ones.

Figure 7: Two samples from S01

2.4 Stationary Object Detection

Our event recognition module mainly considers the tra-
jectories of each tracked object, which are obtained as
described in 2.3. By analyzing the trajectories’ splits,
merges and stationary objects are detected.
In order to be able to recognize left luggage, we decided
to recognize stationary objects. This seems rather rea-
sonable, as only non moving luggage has to be recog-
nized. Therefore the variance directed in x and y of
the object positions oj(t) is computed over the last M
frames and subsequently normalized.

oi =
1
M

t∑
t′=t−M

oi(t′)

vari(t) =

∥∥∥∥∥ 1
M

t∑
t′=t−M

(oi(t′)− oi)
2

∥∥∥∥∥
2

If the variance vari is below a threshold, which has
been experimentally determined the object oj is con-
sidered stationary, else moving.

{vari(t) < var threshold} ⇒ (Oi stationary)

Figure 8 shows the result of the stationary object de-
tection on a sample from Scene S08. A yellow circle
with r = 2m and a red one with r = 3m indicate the



minimum distances required for scenario recognition.
As it can easily be seen, both the human and the back-
pack are detected as a stationary object, as their both
variances are below a predefined threshold. Therefore
it could be wise to implement a human body or lug-
gage item detector, in order to discriminate the type of
stationary object. This is of major importance as the
event detection has no information about the object
type, but just the status. A potential system could be
based on a boosted cascade of Haar-basis-like features
as presented by Viola and Jones [10], or Support Vector
Machines [11] [12].

Figure 8: Stationary object detection with one miss
classification.

3 Event Detection

In recent works [13], [14] on human behavior analy-
sis Bayesian Networks or Hidden Markov Models have
shown promising results. Unfortunately, most common
probabilistic classifiers, both dynamic and static, re-
quire some kind of training material or at least expert
knowledge. Due to the lack of a complex database we
decided to work with an expert knowledge based ap-
proach. Instead of creating a probabilistic model a set
of rules has been defined to detect events. This rather
old fashioned approach seems to be very reliable both
on the PETS 2006 and 2007 data set.
According to the definition provided for the PETS 2007
challenge a person is loitering if she stays in the field of
view for at least 60 sec. This task can be solved rather
easily, by adding a time stamp LifeT ime(oj(t)) to ev-
ery tracked object if it appears for the first time. If the
difference is larger than the required lifetime within the
camera view, an alert can be created.
Various approaches have been presented for the left lug-
gage detection task in the past [1]. Having a close look

at the provided data sets, it becomes clear, that leav-
ing luggage is following a quite similar scheme. In the
first place an object will split into two. One of these
parts will remain stationary in the following frames.
The other one will be leaving the stationary one after
a while. A warning is displayed if the object distance
is larger than 3m. If the distance is larger than 3m for
at least 30s an alert signal is displayed. Figure 9 il-
lustrates this process, which has been implemented as
a simple decision tree. A second case is that a split
is detected and after a short while the moving object
vanishes within the 3m region. This commonly hap-
pens near the borders of the field of view. Therefore
the sudden vanishing of the moving split object has to
be also modeled.

split

stationary

moving

t t+30

Figure 9: Scheme of leaving a piece of luggage

4. Results

In this section we will discuss the results on the datasets
1, 2, 7 and 8 of the PETS 2007 tracking challange, as
luggage theft has not been implemented yet. For the
sequences 3, 4, 5 and 6 just the timestamps for leaving
luggage unattended and the position have been com-
puted. Two sets of results will be given. First an
overview on the implemented tracking algorithm and
second the results of the alarm detection.
Assuming an exact annotation of the data within the
provided ground truth and provided an accurate cam-
era calibration it is possible to compare the tracking
results in the spatial domain. A possible object to
compare tracking accuracy could be the unattended
luggage left at the patch x = 0, , y = 0, z = 0. Ta-
ble 2 shows the detected x and y position within the
event detection. Note, that part of the error should re-
sult from different calibration, as the calibration data
has been changed, because we experienced some errors
with the provided calibration data. Furthermore the
bags were probably not dropped of exactly at (0, 0).
Anyways the error should be tolerable for the given
application scenario.
Loitering persons were recognized without any misses.



Scene: td te δt x y
S01 1648 148 23 -1.130388 0.845811
S02 1718 218 89 -0.161693 -0.172595

S07(obj) 1833 333 -1 -0.047781 -0.153542

Table 1: Timestamps and positions for loitering

Table 1 shows the timestamps for detection of loitering
Ld, the resulting time of scene entering E and the po-
sition of the loitering person when the alarm is set x,y.
Image 10 shows a sample from an alert created in scene
S01 at frame 1648. Without applying a pedestrian de-
tection left luggage will also be recognized as loitering
object, as it happened in sequence S07 at frame 1833,
see fig. 12. It should not be a major issue, as luggage
and loitering are both security issues and are meant to
cause alerts.

Figure 10: A loitering person has been detected

The recognition of luggage events is by far more com-
plicated than the detection of loitering people. Espe-
cially the split and merge detection tends to be rather
difficult. The maximum distance between two objects
has to be set carefully and be fitted to each application
scenario. Here the maximimum distance for splits was
set to 0.5r and resulted in no false positive and no miss
for left luggage detection. Figure 11 shows the result-
ing warning and subsequent alert for the implemented
system. Table 2 shows both the time stamps for the
detection of unattended luggage and abandoned lug-
gage. Additionally the position of the original owner
(xown, yown) is indicated, if available.

5. Conclusion

The proposed algorithms have the advantage of being
very simple and being of low computational effort. Es-
pecially the tracking based on the homographic trans-
form has shown reliable results, although the required
foreground segmentation often showed errors, due to

Scene: td x y xown yown

S07 unatt. 1491 -0.01 -0.20 NA NA
S08 unatt. 1147 -0.14 0.04 -2.38 -1.05
S08 left 1773 -0.12 0.04 NA NA

Table 2: Timestamps and positions for unattended and
left luggage in S07 and S08

Figure 11: A sample from S08. First the person leaves
the 3m radius. After 25s an alert will be set

lighting changes and shadow, which have not been com-
pensated during preprocessing. The event detection
performed surprisingly robust despite the fact, that a
simply rule-based system has been applied.
As a consequence of the systems simplicity there are
some limitations both for tracking and event detec-
tion. Tracking based on heuristics shows to be reliable
for small spatial movements, compared to the object
radius, as present in both the PETS 2006 and PETS
2007 benchmark data. As soon as ’jumps’ occur and
and objects moves a distance larger than its radius the
tracker unfortunately fails. Therefore a more complex
description of motion is required for other scenarios.
Another weakness is the temporal supervision of the
tracked blobs. There is no identification of the tracked
blobs. For instance if two objects merge and after a
while split again we are not able to surely assign the
object IDs before the merge.
The rule based event detection works surprisingly well
with the given data set. Due to its simplicity the
computational effort is kept low and no training steps
are required. Unfortunately not every potential threat
has been modeled with this approach. For instance
an unattended luggage item might merge with a pass-
ing person. The following split will be recognized,
but not if the luggage had eventually been swapped
in the meantime. An accidental shift of a station-
ary object would also distract the implemented algo-
rithm. Therefore a blob correspondence could be im-
plemented based on the individual color histograms
and silhouettes, which would allow modeling more com-



Figure 12: Left: As soon as the person is not detected
in the 3m radius a warning is set. Right: Objects
can be recognized as loitering people. Due to lighting
changes false detections can occur

plex scenes.
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