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Abstract

This paper addresses the problem of tracking an unknown
number of humans in indoor environments with a mon-
ocular camera. Especially for cluttered or noisy video data
tracking people has proven as quite challenging. However
robust tracking results even for scenes with a very noisy
background will be provided by our novel multi-cue ap-
proach. Based on a factored sampling technique, providing
several hypotheses for possible locations of the tracked ob-
Jject, a modified active shape model approach is employed
to obtain a weighting for each hypothesis. This framework
is extended especially for challenging background scenar-
ios by utilizing salient points to revaluate all hypotheses.
Thus our algorithm provides a stable trajectory even in very
cluttered environments with non-rigid object shapes. As an
important advantageous aspect of this approach, only a few
hypotheses are needed to track people consistently, result-
ing in a very time efficient algorithm, while comparable
methods require at least between 100 and 1000 hypotheses.
To enable multiple object tracking, an intelligent layer is in-
troduced which evaluates all hypotheses in the frame based
on additional low-level cues. In this way our method is able
to detect fully automatically the number of persons visible
in the frame and track all available persons throughout the
video sequence.

1. Introduction

Within the last few years the automatic analysis of video
data gained more and more in importance not at least due
to a steadily growing amount of computing power. In this
context a wide spectrum of applications has arisen com-
prising topics like video surveillance [3], medical tasks as
well as intelligent indoor spaces [1]. To achieve these elu-
sive goals, one basic requirement for higher level process-
ing steps is the localization and tracking of single objects in
image sequences. Basically the main tracking approaches
can be split into two general categories, using different cues
for tracking an object. Approaches belonging to the first
group (e.g. blob detection [9]) consider the whole image to
extract objects. In opposite to this, other approaches, clas-
sified to the second group, apply particle filtering to pro-
duce hypotheses for the object position and evaluate the im-

VS 2006, Graz, Austria
IEEE, Jones, Graeme A. (Ed.)

age data only at these sample locations. Representatives
for this class would be contour models [2, 4], articulated
models [12] or color-based [13] techniques. But beside the
evident advantage, that particle filters are not restricted on
linear systems and do not assume Gaussian noise, there is
one common problem of such approaches - a suitable mea-
surement function has to be implemented. The novelty of
our approach now lies in the originality of this measure-
ment function, which does not only evaluate the image data
but additionally tries to fit samples to plausible shapes. To-
gether with a salient points tracker and a skin color detector
our technique enables a reliable multi object tracking.

As we mentioned at the beginning, tracking will be used
in numerous applications to enable further high level pro-
cessing. Meeting projects [11, 17] represent such a possible
application scenario. The goal of these projects is to auto-
matically generate a protocol of the meetings by recogniz-
ing single person gestures, emotion [14], attention [16] and
speech. For this reason the detection and tracking of partic-
ipants is indispensable to extract features, that can be used
for the classification of such gestures.

The structure of the paper is as follows. After a short de-
scription of the meeting data, the functionality of our track-
ing algorithm is introduced and will be explained in de-
tail. Afterwards results for our tracking implementation are
shown on the basis of different scenarios. Finally the paper
concludes with a short summarization.

2. Data Acquisition

For our research on meeting scenarios we used a scripted
meeting corpus, which has been recorded in a smart meet-
ing room. In this room a typical meeting environment was
emulated comprising a centrally located 4.8m x 1.2m rect-
angular table, a white-board as well as a projector screen.
Additionally there has been installed a fully synchronized,
multi-channel audio-visual recording equipment consisting
of 24 microphones and 3 closed-circuit television cameras.
A total dataset of 16 meetings with an average duration
of 1-3 minutes has been recorded providing high quality
video material with a PAL-resolution of 720 x 576 pixels
and a frame rate of 25 Hz. In this dataset each subset
of four sequences contains a certain amount of meeting
participants, comprising scenarios with 1 to 4 persons.
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Every sequence has been manually labeled in every 25th
frame by a bounding box around the heads.

3. Tracking of Single Meeting Partici-
pants

3.1. Skin Color Detection

Although it might be impossible to realize robust tracking
of human body parts only with low-level features like the
skin color, it is nevertheless a key feature for the local-
ization of hands and heads. In order to extract skin col-
ored regions in the image, the RGB-color intensities are
transformed into the normalized rg-chromatic color space
to compensate varying lightning conditions in the images.
Furthermore tests have shown, that in this 2D color space
the skin-color distribution can be described by a Gaussian
function, which provides a probability
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for each pixel to be skin-colored. For our experiments we
have manually labeled roughly 400000 skin colored pixels
originating from more than 200 different pictures. Observ-
ing the rg-chroma space for this training material, the mean
vector 4 and the covariance matrix C' in the equation above
have been computed as:
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After a threshold operation a binary mask as depicted in
Figure 1b indicates areas with skin colored pixels. To avoid

Figure 1: Binary mask (b) representing only skin-colored
areas in the original image (a)

initialization of hypothesis on skin colored areas which ob-
viously do not indicate a head, the aspect ratios of all skin
colored blobs are analyzed. For this reason a bounding box
is fitted around each blob. The ratio between height and
width of this rectangle has to lie between 0.6 and 0.9 to be
considered as a probable head and thus to serve as possible
initialization location for new hypotheses. In Figure 1b all
these remaining blobs are marked by rectangles.

3.2. Particle Filter Framework

Tracking persons in video data is challenging and elusive
due to the complexity of the human body. Furthermore we
have to deal with dense visual clutter in our meeting sce-
narios, and therefore Kalman Filtering has turned out as
not very suitable for tracking under such contrarious condi-
tions. Thus an algorithm is applied that uses factored sam-
pling ([6],[8],[7]), which provides simultaneous alternative
hypotheses s; modeling the probability distribution w; at
each time step ¢. Based on the observations z,, representing
the image features, the aim is to track the position of the
persons throughout the posterior probability p(w¢|z1.¢). In
most cases, there is no functional representation available
for this conditional probability, but it can be derived itera-
tively by
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Updating the posterior distribution p(w;_1|z1.¢4—1) from
the previous time step by prediction with dynamics
p(w¢|wy_1) leads to the effective prior p(w¢|z1..—1) for the
actual time step. Finally multiplying the prior distribution
with our measurement p(z;|w;) results in the current state
density p(w¢|z1.¢)-

For the computational processing this filtering distribution
is approximated now by a sample-set .Sy = {s(i) i =

t >t

1,...,N}. In this sample-set each hypothesis siz), also
called particle, consists of a g-dimensional vector, which
will be further described in Section 3.3, and thus repre-
sents one possible shape in the image with a weight n,ﬁ’).
In Figure 2, hypotheses for both participants of the meet-
ing are depicted. At the beginning the N particles are ini-

Figure 2: Image taken from a typical meeting scenario. Par-
ticles are placed on different locations in this image, but will
finally concentrate on the heads over the temporal progress

tialized uniformly distributed on skin colored regions in
the image, which we have obtained by the skin color de-
tection described in Section 3.1. Starting with this initial
sample-set {séz),ﬂ((f) = %,i=1,...,N} our aim is to
derive a sample-set of constant size N for each of the fol-
lowing time steps. Therefore we choose N; < N parti-

cles from the old particle set {sgi_)l,ﬂt(i_)l,i =1,...,N}



at time step ¢, each with its probability w,gi_)l. After this
procedure some of the old elements will be lost, while oth-
ers may appear more than only one time in our new set

{sy),wt 1,4 = 1,...,N1}. In the next step each ele-
ment of the new set is predicted by a linear dynamical
model with constant velocity and thus the new sample-set
{sﬁ”, ;" 1,1’ = 1,..., N1} is generated. To complete this
set, No = N — Nj further particles are initialized on skin
colored regions as it was already done for deriving the basic
set {s((f) }.

Due to this step, persons can be automatically tracked again
even if they have previously left the camera view or the
track has been lost some times ago. Finally the weights

( ) for the elements of the new particle set are computed
by measuring the head likelihood p(z;|w;), which is de-
scribed in the following section. Thus the the weights can
be updated by

m? o mi p(ze|we) ©)

3.3. Active Shape Model based Measurement

In the literature a lot of different cues for tracking humans
in cluttered environments are introduced. Applied to our
indoor scenario most of them such as the face or the body
have turned out to be not suitable for tracking because these
features are relatively often either completely invisible or
partially occluded. For this reason we exploit the shape of
the head as an alternative key feature for our tracking algo-
rithm introduced in the previous section. Due to the vari-
ations of the shape, which are caused e.g. by turning the
head, a flexible model based on the work of Cootes et al.
[5] was chosen to represent the shilouette of the head.
Generating the model, £ points are positioned manually
along the shape, resulting in a 2k-dimensional landmark
vector

7xk7yk)- (4)

This procedure is repeated for [ pictures to capture as much
variations as possible for the model. In order to be able to
compare equivalent points in the training set, the euclidean
transformations have to be removed from all shape vectors
{xi,i = 1,...,1} and they have to be aligned, so that the
mean squared error over the sum of distances of all shapes
is minimized. Thus we can exploit the statistics, which we
want to use for modeling new shapes, by calculating the
mean
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over all training samples x;. Finally the eigenvectors 7);
and the corresponding eigenvalues \; of L are computed.

Gathering all eigenvectors with the r highest eigenvalues
into a matrix ¢, we can generate any shape from the training
set using

x' ~ X+ dc. @)

where the vector c is used for weighting each eigenvector
7; in the matrix ® to produce the variations of the shape.
In Figure 3 the effects on the shape are visualized for vari-
ations of the three most important eigenvectors. Together
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Figure 3: Variation of the weights for the three most impor-
tant eigenvectors. Each eigenvector changes specific parts
of the shape primarily in one main direction, indicated by
the arrows.

with the euclidean parameters o (scale), ¥ (rotation) and 7
(translation), the r-dimensional vector c creates one hypoth-
esiss(9) = [, %, T, c| mentioned in the previous section. As
already explained, these hypotheses are utilized to approx-
imate the probability distribution p(z¢|w;), which can be

derived by evaluating the quality of each particle sgi) (indi-

cated by its weight wél)) on the true image data.

In the first step of the measurement, the gradient image as
depicted in Figure 4 is calculated. To discard as much of the
background noise as possible, the gradient image is masked,
so that only interesting regions remain. These interesting
regions are defined by motion, which is obtained by ob-
serving the absolute value of the difference image between
the actual and the previous frame, and additionally by the
surroundings of the actual shapes. After that the model is
iteratively adapted to the image data based on the gradient
image as follows:

Iteration start

The normal vector {n;,i = 1,...,k} through each land-
mark (available from the mean model shape X) is computed
and along this straight line the dot product p; ; of the unit
vector normal and the gradient g(z,y) at each pixel posi-
tion inside a certain distance € to the respective landmark
{p: = (¢}, y),i =1,...,k} (cf. Figure 4) is calculated.
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For each landmark the pixel (z;, ;) with the highest score
i, is chosen for a new contour X, which represents best
the image data.

In the next step the model calculates optimal parameters
for the euclidean transformations to minimize the sum of

pij=mn;og(pi+j-ni),Vie{l,...



Figure 4: Gradient image, in which edges are represented
by the absolute value of the gradient. Furthermore through
each landmark (light gray points) the normal vectors have
been plotted. Along these normals the landmarks are shifted
to the pixel, where normal vector and gradient direction are
most similar, resulting in the new landmark positions (dark
gray points).

squared distances between the model landmark vector x’
and the landmarks of the new contour x. This is achieved
by taking the partial derivatives of the squared distance F
and solving to the variables o, ¥ and 7
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At this stage, we achieve a transformed contour X by ap-
plying these parameters to the model X. Finally the shape
of the contour x is adapted to that of the new contour X
by computing an optimal model parameter ¢ according to
Equation 7

c=d"(%x-%x) (10)

and thus we are given a transformed and adapted contour x.
Iteration _end

This iteration block is repeated until the difference of the
parameter c between two successive iterations falls below a

given threshold. The complete weighting procedure is fin-
ished by the computation of the sum over the dot product
between the unit vector normal and the gradient at the land-
mark position {p; = (2;,9:),¢ = 1,...,k} of the final
contour X:
k
Q=7 lgp:i)omi’ (11)
i=1
With the dot product in Equation 11 a score for the qual-
ity can be measured, to what extent the adapted model fits
gradients in the image data. As this equation already im-
plies, the score should not depend on the direction of the
unit vector normal and thus we have to summarize over the
absolute value of the dot product. This score now repre-
sents the probability for a plausible head contour described
by the respective hypothesis s(*) at time step ¢ and is used
to update the weight 7, according to Equation 3.

4. Multi Person Tracking

Due to the basic principle of the particle filter all hypothe-
ses would finally concentrate only on one location in the
image - to wit the one where the hypotheses have their
highest weight. To prevent all hypotheses from converg-
ing to one and the same shape, a hyper layer is introduced
to control the allocation of M different hypotheses sets
S,SJ) = {Siz),’frgz),i =1,...,N},5 = 1,..., M, where
each of these sets consists of N hypotheses to represent ex-
actly one object. The hyper layer is organized similar to
the basic particle filter described in Section 3.2, but here
hypotheses comprise complete hypotheses sets. These hy-
potheses sets are sampled and predicted as it was done for
the single hypotheses above. Then for each hypothesis of
the sets, the active shape model is run to obtain a weight.

Due to this measurement a weight Hij ) for the hyper layer
hypotheses St(J ) can be computed by
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This measurement still would not prevent hypotheses sets to

converge in one image location. Thus some additional low-

level cues, which are described in the following sections,

are utilized to enhance the performance of ongoing tracking

multiple objects.

4.1. Skin Color Validation

For the validation of the sets the ratio between the area cov-
ered by the mean shape and the corresponding skin blob,
i.e. the mean blob with the smallest distance to the mean
shape, is computed:

{Ameanshape} N {Askinblob}
{Askinblob } '

To allow some tolerance, especially for situations like sit-
ting down or occlusion, where no skin color is available,
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the hyper layer hypothesis weight is only updated, if psgin
is less than a given threshold:

09 =109 - pain (14)

Since the skin color map has been already computed (cf.
Section 3.1), this measure means no additional computa-
tional expense.

4.2. Salient Points Validation

Salient points or interest points are landmarks in an image
which are often intuitively obvious to a human like corners
or edges of objects. In our context interest points are defined
as prominent points within the human head, e.g. the eyes,
mouth, nose or ears. To detect these features strong corners
within the hypothetical shape of a head, represented by the
mean of the hypotheses set, the Harris operator is applied.
Thus features are determined by computing the eigenvalues
A1,2(z, y) of the tensor matrix

_ > (all/olgﬁ)2 S (dl/dx - dI/dy)
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where R is a quadratic neighborhood of n pixels. The minor
of the two eigenvalues is then assigned to its corresponding
pixel location (z,y), resulting in an eigenvalue map 7". On
this map, a non-maxima suppression within a 3 x 3 neigh-
borhood is performed to obtain local maxima. After that all
corners with an eigenvalue smaller than an adaptive thresh-
old, depending on the maximum of 7T, are discarded. Fi-
nally, for all remaining eigenvalues resp. corners it has to
be ensured that all corners are distanced far enough to the
next corner. Therefor the distances between all corners are
computed and all corners distanced less than a minimum
distance are rejected. These salient points are used for the
improvement of the hypotheses’ weight as follows:

If there have not been assigned any salient points to the hy-
potheses set before, the K corners with the highest eigen-
values are assigned. These salient points are predicted in the
next frame by calculating the optical flow for every pixel of
the actual image using the algorithm of Lucas and Kanade
[10]. The new salient points are validated again and as Fig-
ure 5 demonstrates, some of them are positioned outside the
shape (). The ratio

No. of salient points inside
No. of overall salient points

(16)

Psalient =

between remaining salient points inside the shape and over-
all salient points. With this probability again the hyper layer
hypothesis weight can be updated as follows:

Ht(j) = H)E]) * Psalient 17)
If the number of salient points is smaller than K the missing

ones are refilled by the those detected in the way described
above, thus each hypotheses set St(] ) always is assigned N
salient points. The salient points validation can be inter-
preted as a measure for the excursiveness of the mean shape
represented by the hypotheses set Séj ). which should be of
course very small.

Time step t

Time step t+1

Figure 5: Frames with bounding box, containing salient
points (light gray points). Some of the salient points ()
left the bounding box after optical flow prediction. These
points are replaced by new detected salient points (5%).

5. Results

Although a lot of research is concentrated on multiple ob-
ject tracking there is little agreement amongst the commu-
nity on how to evaluate or compare these methods. For the
tracking results shown below in Table 1, a comprehensive
list of error measures, introduced in [15], is used to enable
nevertheless a qualitative and objective performance rating
of our tracks. The basic procedure for the evaluation is as
follows:

At first for each combination between a tracker output, re-
ferred to as estimate Z;, and a labeled tracking target, de-
noted as ground truth object GT ;» two measures, the preci-
sion and recall are computed as follows:

Recall Q= %

.. |[E:NGT ;|
Precision 3, ; = llf-l J

As it can be shown very easily, both o and 3 must be high
to obtain good tracking results. For this reason, a coverage
test using the F-measure
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has to be passed, returning only a high value if «; ; and
B;,; are high. This test is considered to be passed, if Fj ;
exceeds a fixed threshold ¢, and thus determines, that G7 f
is being tracked by Z;. The error measures, which can now
occur in multiple object tracking and thus are computed for
all tracking results in this paper, can be defined as follows:

a) Measure F'P - False positive. There is an Z indicating
an object, where no G7 is.



b) Measure F'N - False negative. A G7 is not tracked by
an L.

¢) Measure MT - Multiple trackers. More than one E
is associated with only one G7. In order to obtain the
subjective impression of a human spectator each ex-
cess G7 is counted as a MT error.

d) Measure M O - Multiple objects. More than one G7'
is associated with only one £. Again a MO error is
assigned for each excess G7.

e) Measure CD - Configuration Distance. The differ-
ence between the number of Z and G7, divided by the
number of GT present in a given frame.

e) Measure F'IT - Falsely identified tracker. An Z;
which passed the coverage test for G7 ; is different to
that identifying this ground truth object before.

f) Measure F'/O - Falsely identified object. A G7,
which passed the coverage test for Z; has not been the
identified object in the frame before.

g) Measure OP - Object purity. If G7, is the ground
truth object which has been identified by Z; for most
of the time, then OP is the ratio of frames (n; ;) that
G7 ; is correctly identified by Z; to the overall number
of frames (n;) GT f exists.

h) Measure T'P - Tracker purity. If Z; is the estimate
which has been identified by G7 ; for most of the time,
then T'P is the ratio of frames (n; ;) that E; is correctly
identified by GT ;1o the overall number of frames (n;)
‘E; exists.

To obtain an overall impression of the performance of
the tracking results, all these error measures are divided
by the number of ground truth objects visible in each
frame, summed up and normalized by the overall amount
of frames, e.g.:

f
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In Table 1 the error measures are listed for 13 sequences,
where every 25th frame of the tracking output was evalu-
ated on the ground truth data. Frames from the other se-
quences have been used for training the active shape model
and have therefor not been included into the tracking eval-
uation. For the assignment of ground truth and estimates a
common threshold of 0.33 for the F-measure from the cov-
erage test was used. As this table shows for meetings with
only a few participants, our algorithm provides robust re-
sults. With the growing number of participants persons of-
ten leave and reenter the room. Thus hypotheses have to be
initialized very often and basically there is not enough time

to adapt the shapes to the image data.

In Figure 6 every third frame of a typical video sequence,
containing quite a lot of challenges, is depicted. In the first
frame one person is already in the room, being tracked very
precisely. A second person enters the room and, as shown
by the rectangle, is automatically detected and tracked. The
second person walks towards the left side of the room, oc-
cluding the first person partially. At the beginning of this
occlusion, the bounding box of the first person is slightly
disturbed, but recovers even during the occlusion. For
all runs of our tracking algorithm on the video sequences
one common active shape model consisting of 20 land-
marks points was used, which has been trained on 40 head-
shoulder contours based on 5 different persons.

6. Summary and Conclusions

In this paper a system for the automatic tracking of multi-
ple people has been presented. A novel tracking approach
based on the combination of two powerful techniques, Ac-
tive Shape Models and Particle Filters, has been introduced.
This basic framework was further optimized so that only
20 hypotheses per object are necessary for tracking, only
a fraction compared to most of the state-of-the-art particle
filter approaches. This implementation has been tested on
approximately two hours of video material containing spe-
cial challenges like dense visual clutter in the background,
partial/total occlusion and different skin color. Extracts of
our results have been depicted, which show a robust track-
ing behavior even for critical situations like sitting down or
partial occluded scenes. Although video sequences can be
already processed in acceptable time, future work will deal
with optimizing and accelerating our algorithm by incor-
porating additional low-level features, which will lead to a
further improvement of available hypotheses in the frame-
work. First attempts will also be run on integrating auto-
matic recognition of person gestures into this framework,
which will be necessary for generating a protocol of meet-
ings by the computer.
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