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Abstract

This paper presents a robust semantic model for one-stage
interpretation of natural speech. Our semantic analysis us
no explicit syntactic and morphologic knowledge, whichrese
sufficient for narrow application domains. In contrast te-pr
vious approaches, our semantic model is embedded in a uni-
form, hierarchical, stochastic modeling framework togeth
with acoustic-phonetic and lexical knowledge, and semanti
representations are computed directly from acoustic obser
tions through a one-stage decoding process. The decoder pro
duces a hierarchical (tree-) structure of words and semaati
egory symbols by use of the so-called hierarchical language
model (HLM). We discuss generation of HLM by mixing rule-
based and data-driven language model (LM) generation tech-
nigues, namely weighted regular expressiongrams and ex-
act LM. Different HLM configurations with varying discount-
ing techniques, n-gram orders and scaling factors are @&eani
Experiments were conducted with an airport information dia
logue application. The evaluation results are based on HLM
perplexity and our previously published semantic tree smu

1. Introduction

In [1] we introduced a One-stage Decoder for Interpretatibn
Natural Speech (ODINS), which tightly integrates automati
speech recognition (ASR) and natural language understand-
ing (NLU) techniques in a one-stage decoding process. Ex-
periments confirmed that the one-stage approach can be favor
able over typically used multi-stage methods by avoidimgrsr
caused by decisions in early processing stages. In comtrast
typical hybrid speech understanding approaches, ODIN& ope
ates on a single, uniform model for acoustic-phonetic,cxi
and syntactic-semantic knowledge. Uniformity is appeplin-
cause it enables the integration of different types of kedge
models without having to modify the decoder, as long as the ex
pressive power of the underlying framework is sufficientr-Fu
thermore, decoder complexity is potentially lower, as amhg
algorithmic framework needs to be considered, instead ofyma
On the downside, a hybrid modeling approach may lend itself
to more efficient decoding.

Our uniform modeling approach is realized as a stochas-
tic context-free grammar representation through weigheetht-
tion network hierarchies (WTNH). WTNH consist of transitio
networks whose nodes either represent terminal symbolks-or r
fer to other transition networks. WTNH are similar to stogha
tic recursive transition networks, but they employ the Moor
machine representation instead of the Mealy one. As another
fundamental difference, WTNH are logically divided int@hi
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archy levels by defining groups of transition networks. Ehes
groups can then be assigned different attributes, suchias st
tural constraints or search parameters. In order to stilhma
tain flexibility, hierarchy levels can possess an arbitnauyn-

ber of sub-levels, and hierarchy levels may be skipped (Hee [
for a more detailed description). Uniform modeling appiees
based on composition of finite-state transducers enable eve
tighter integration of ASR and NLU, and automatic optimiza-
tion of the search space by automata minimization [2]. How-
ever, an explicit preservation of hierarchical modelingature

as in WTNH allows a better control over the decoding pro-
cess, which is e.g. useful for uncovering temporal aligrinasn
needed for confidence measure computation [3]. In the explic
itly hierarchical model, automata minimization can at tdas
performed locally for each network of a WTNH. The upper part
of a WTNH, representing syntactic-semantic knowledgeeis d
noted as hierarchical language model (HLM). HLM consist of
a hierarchical combination of local language models (LLWY) f
symbol sequences, each represented by a weighted transitio
network. We use HLM as a semantic grammar which combines
syntax and semantics in a single model, omitting explicit-sy
tactic and morphologic knowledge. Such an approach is typi-
cally more robust than a deep semantic analysis, espedially
NLU processing has to deal with unreliable textual inputisas
the case when users should be able to talk in a natural way and
in natural situations. On the downside, combining syntack an
semantics renders the model highly domain-specific.

In Section 2, we discuss HLM generation using a mixture
of rule-based and data-driven LM techniques. Through this
we aim to reduce the effort for model generation and achieve
good speech interpretation performance even if training ta
sparse. The use of WTNH enables to make independent mod-
eling decisions for each network of the hierarchy. The HLM
presented in this work were built from three different tyjpés
LLM: Weighted regular expressions-grams and exact LM.

In order to cope with sparse and unreliably distributechtraj
data, we apply smoothing techniques to LLM. Moreover, we
discuss transformations of the HLM likelihood distributioln
speech recognition, LM factor and word insertion penalty ai
in establishing a balance between the likelihood distitimst of
acoustic model (AM) and LM. We show how similar param-
eters are effectively applied to HLM, and introduce additib
parameters to adjust the within-HLM likelihood distribwri

Section 3 presents results of experiments within a speech
dialogue scenario for an airport information applicatibiffer-
ent experiments measure the influence of smoothing tecksiqu
weighting parameters andgram orders on the performance of
HLM and the whole speech interpretation system. HLM are
evaluated by computing the test-set perplexity directlytho
WTNH representation. The goodness of semantic representa-
tions decoded by ODINS from speech is measured with the tree
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node accuracy metric introduced in [4].

2. Hierarchical Language Models

A (flat) LM can be viewed as a likelihood distribution over sym
bol sequences. Given a sequeitef |S| symbolss; ... sg
from an alphabek, the likelihoodP(S) that this sequence oc-
curs can be expressed as the product of the occurrence likeli
hood of the single symbols given their predecessors:

S|

P(S) = HP(si|31.“si_1) 1)

Likewise, a HLM can be regarded as a likelihood distribution
over ordered tre€¥ of semantic symbols. For the moment, we
assume thaf is a constant-height tree, and that a horizontal
line throughT touches all tree nodes belonging to a hierarchy
level | of T, with 1 < | < L. T' denotes the sequence of
i = 1...|T'| tree node symbols! contained in a hierarchy
levell of T. If we assume that the symbols on tree ldvehly
depend on symbols of the next higher tree ldvel 1, we can
approximateP(T) by:

L-1
p(TH) [ P(TT™) (2

=1
As there exists a sequential correspondence between atljace
hierarchy levels, the tree nodes Bf can be segmented into
i=1...|T""!| consecutive sub-sequencisso that each sub-
sequenca!, directly corresponds to a tree nogfé* on the next
higher level. Hence, Equation 2 becomes:
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~
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In a HLM, each LLM describes one of the terms of Equation 3,
and is represented by a weighted transition network. The roo
language model represents the unconditional likelihooth te
P(ST). In order to increase HLM flexibility, we allow LLM
to refer to any hierarchy level below their own, not only te th
direct subordinate. In this casg,is no longer a constant-height
tree. Such level skipping is considered in Equation 3 by imag
ining a ‘dummy’ LLM with a single symbol for each skip tran-
sition, whose likelihood term is one and thus can be ignored.

For each of the likelihood terms of Equation 3, it can be
decided independently which type of LM to use. More specif-
ically, we can use a mixture of rule-based LM, whose struc-
ture and weighting is manually defined by human experts, and
data-driven modeling, where structure and weights are/eleri
automatically from annotated speech corpora. These two ap-
proaches can also be combined, e.g. by manually defining
model structure but automatically deriving model weigbtin

Due to the lack of suitable metrics, we select LLM types
manually with the aid of informal decision criteria. Ruladed
modeling is applied where the target language can be covered
with an easily definable rule set, or the amount of available
training data is too small for data-driven modeling. Moregwf
semantic objects required for an application are not seenglu
training, such as airline names or flight codes for our exampl
domain, manual extension of LLM is useful. Otherwise, we
estimate LM automatically from an annotated speech corpus.
Currently, availability of full tree annotations is assuineln
[1] we briefly described a semi-automatic, iterative praged
developed for this purpose. Data-driven LM approaches ean b
categorized according to their generalization abilities, to

assign non-zero probability to unseen events. Generializat
is especially important at the surface level of HLM, in order
to cover arbitrary-length utterances and variable ordeoh
semantic concepts.

A prominent representative for LM with generalization
ability aren-grams, which limit the dependency of the current
symbol s; to then — 1 previous symbols, denoted as history
h}'. Thus, then-gram model likelihoodP, (S) of a symbol se-
guenceS is an approximation of Equation 1. In the basic case,
the maximume-likelihood estimate of angram is directly com-
puted from then-gram counts by normalization with the counts
of all n-grams with the same history. The generalization abil-
ity of n-grams is often extended by combination with lower-
order n-grams through interpolation or backoff [5]. In addi-
tion to generalization, discounting is a central issuedatistical
language modeling. Discounting reduces the likelihoodhef t
unreliable estimates from the observed counts and rdulisds
the freed probability mass. The joint application of distiing
and generalization, in the sense that the probability nmaesif
by discounting is redistributed among unseen events adste
generalization, is denoted as smoothing. A comparativeystu
of different smoothing techniques fargram LM can be found
in [5]. In our work, we use ‘canonical’ Katz backoff smootgin
and modified Kneser-Ney smoothing as proposed in [5]xAll
gram models were computed with the SRILM Toolkit [6].

In order to integratex-gram LM into HLM, they need to
be represented as weighted transition networks. For biackof
n-gram LM efficient network representations are known
(e.g. [7]). The backoff principle is implemented via fagur
transitions to null nodes, which realizes a context changnt
(n— 1)-gram if then-gram does not exist. If the-gram exists,
its preference over the backoff path must be ensured. In the
utilized SRILM Toolkit [6] this problem is solved by deletin
the direct transition if it has a lower likelihood than theckaff
path.

When considering the generalization abilities of the whole
HLM, it has to be taken into account that the hierarchicalcstr
turing of semantic symbol sequences into equivalence edass
itself has a generalizing effect. Therefore, generalirathay
not be desirable, especially for sub-surface LLM. In thiseza
we use so-calledxact LM which exactly cover the symbol se-
quences seen during training. Hence, the exact modelHibedi
P.(S) is an exact description of the likelihod®(S) of Equa-
tion 1, and not an approximation like tleegram likelihood. A
transition network representation of an exact LM is credtgd
representing the training symbol sequences for a LLM ag a lis
of regular expressions. This is then compiled into a finitges
automaton and minimized by use of the Lextools and FSM Li-
brary toolkits [8, 9].

Again it must be assumed that the amount of training
data is not sufficient to reflect the real distribution of egen
very well, so that discounting is also desirable for exact.LM
We apply two different discounting techniques to exact LM,
namely additive discounting and Good-Turing discountiseg(
[5]). The latter is also the basis for many smoothing techesq
such as Katz and Kneser-Ney smoothing. However, in contrast
to n-gram LM, we directly discount on the network level, i.e.
we use network transitions as the basic events. Through this
discounting techniques can be applied generally to any LM
that has a network representation whose transitions can be
marked with counts. This is of special interest for this work
because it enables data-driven weighting and smoothing of



rule-based LM (see following section). In order to perform
counting and smoothing of network transitions, the corpus
statistics need to be transfered to the network. This idezhrr
out by walking the paths through the network corresponding
to the corpus’ symbol sequences and counting how often each
network transition is traversed. Note that the transitietwork
needs to be deterministic in order to determine a unique path
for each symbol sequence.

In addition to data-driven LM, HLM contain rule-based LM
in the shape of manually defined weighted regular expression
These are compiled into transition networks by use of the Lex
tools toolkit [8]. The weighting can either be defined mafyal
distributed uniformly, or derived from corpus data. Thedat
is performed as described in the previous section, by cognti
and discounting network transitions. This procedure é&ffely
realizes a combined rule-based and data-driven LM, which ca
be useful if the model structure can easily be given manually
but the model weighting is not clear to the human expert.

2.1. Likelihood Balancing

The LM factor X is an essential parameter in practical speech
recognition, because it balances the likelihood values Mdf A
and LM heuristically against each other, by a linear scaling
of the LM likelihood distribution. The necessity for a like-
lihood transformation arises because HMM emissions are no
‘real’ probabilities, but values on a probability densityEtion.

In addition to adapting the ranges of the likelihood valueis
simultaneously utilized to balance the relative influentAM

and LM on the decoding process. The higher the valug, tfe
more the recognition results are dominated by the likelkhoo
distribution of the LM. This means that in doubt a likely word
transition with an unlikely acoustic match will be prefeti@/er

a less likely word transition with a more likely acoustic ofat
This property can be utilized to compensate differenceseén t
qualities of AM and LM heuristically by giving more influence
to the model of higher quality, thus avoiding errors causgd b
the lower-quality model.

As a side-effect of balancing the likelihood distributiphs
also affects the average length of a word. For relativelgdar
values of)\, the LM likelihood values become comparatively
small, so that a traversal from one word to another one is more
‘costly’ than staying within aword. Consequently, longerds
are favored so that word deletion errors occur more likeinth
word insertions. Ideally, we would expect that the decoder
achieves its maximum performance when it recognizes about
as many words as were spoken. Hence, the number of dele-
tions D should approximately equal the number of insertiéns
at the optimum value of. In order to describe this expecta-
tion numerically, we define thimsertion deletion ratia/ DR as
the ratio betweerd and D in the optimum match between the
reference transcriptions and recognizer hypotheses st a¢é

In order to illustrate the application of to our one-stage
speech interpretation problem, we regard the maximum a-
posteriori formulation of the search problem for the cas# th
the HLM consists ofL = 4 hierarchy levels, namely a word
level T! = W, a word class levell? = K, a concept level
T* = C and a concept sub-levAl> = C’. Denoting the
acoustic observation sequenceXaswe get:

argmax P(X|W)[P(W|K) K [P(K|C')P(C'|C)] e P(C)]*
W.,K,C’,C
4)

Please ignore\ x and \¢ for the moment. Hence, we apply

in the WTNH by scaling the scores of all transitions withirt-ne
works belonging to the HLM, i.e. on the word level and above.
In order to quantify the likelihood balance between AM and
HLM, we can use the evaluation method defined in [4], which
performs a tree match between the annotated referencatrdes
the semantic hypothesis trees produced by ODINS. With the re
sulting statistics on matched tree nodes, we define a tree nod
IDR analogous to the wordDR above.

In order to balance the likelihood distributi@vthin HLM,
we introduce additional scaling factors for the main hiengr
levels, namely a word class factag and a concept factoxe
for the example of Expression 4. Again, we can get a measure
for the likelihood balance within HLM by looking at the num-
bers of inserted and deleted tree nodes on an evaluatioimset.
order to get separateDR values for each hierarchy level, tree
nodes belonging to different hierarchy levels are counegmhs
rately.

A more direct influence on thEDR is exercised by adding
offsets to the likelihood transformation. In order to lintfie
number of parameters, we only examine one offset parameter
in this work, namely the word insertion penatiy,. We apply
pw to WTNH by adding it to the scores of all transition that
lead into a word node.

3. Experimental Results

Experiments were conducted on a corpus of spontaneoushspeec
utterances collected by simulating an airport informatite-
logue system through a wizard-of-0z setup. The corpus ig-an e
tended version of the one used in [1, 4], containing ak&00
utterances with 5000 words from32 subjects in total. HLM
were trained on a subset 26 subjects, evaluation and cross-
validation were performed o6 subjects’ utterances each. As
in Equation 4, the semantic tree annotations yiekierarchy
levels. The word level contains abdif0, the word class level
10 and the concept leveldd unique symbols. As the speech
corpus does not completely contain the word class contehts r
evant for the example application, the missing words (adoun
30) are added manually. HLM are generated using a mixture of
data-driven and rule-based LM techniques, as describeddn S
tion 2. The root LM is a backoffi-gram LM, the other LLM are
either exact LM or generated from regular expressions. ¥/ord
within word classes are distributed uniformly. In all othé&iM,
weights are derived from corpus statistics and smoothee@-as d
scribed in Section 2. The unknown-word rat.i3% and1.5%
on evaluation and cross-validation set. The AM consisthef t
same speaker-independent tied intra-word triphone HMNh wit
about 25k Gaussian mixture components as described in [1].

Our primary evaluation metric for the complete speech in-
terpretation process is the tree node accurdey, from [4],
which we compute from the counts of correct, substituted
Sn, inserted,, and deleted tree nodés,, after matching refer-
ence and hypothesis trees by:

Cn—1In
Acn = & 3 5.+ Dy ©)

Similar to IDR, accuracies can also be computed for specific
hierarchy levels, by considering only the tree nodes froai th
level. In order to evaluate HLM alone, we compute test-set pe
plexitiesppl of HLM by determining the best path through the
transition network representation, corresponding tortbe &n-
notations of the test-set.

Figure 1 depicts the total tree node accuracy curves for dif-
ferent smoothing scheme combinations on the evaluatian set
The bigram root LM are subjected to Katzaf2 or modified
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Figure 1:Tree node accuracy for different smoothing schemes.

Kneser-Ney knmod smoothing, exact networks are adjusted
by additive &dd) or Good-Turing ¢tne) discounting. As the
plot showsknmodconsistently outperformisatzby about).5%
absoluteAcc,, over the whole tested range af although the
HLM perplexities displayed in the legend indicate the cantr
The superiority oknmodis in accordance with the findings of
[5]. Acc,, andppl of the two exact network discounting meth-
ods don't differ much, wherebgtnetseems marginally better.
As gtnetis theoretically more promising thadd and achieved
better results in other studies, we select it for furthereeixp
ments. In the second experiment, tiigram order of the root
LM was varied between and3. While the trigram root LM
yields a significantly better HLM perplexity §.5) than the bi-
gram 0.0), the total tree node accuracy only improves slightly
from 87.5% to 87.7% on the evaluation set. As expected, omit-
ting then-gram context by setting = 1 yields a substantial
loss in both perplexityq7.6) and accuracy&2.7%). For other
experiments we used = 2.

In another experiment, we investigated the effects of the
likelihood transformation parameters described in Sacid,
starting with baseline settings 8fc = 1, A\c = 1 andpw = 0.

At first, we carried out a joint optimization of only, Ax and

Ac with regards toAcc,, on the cross-validation set, yielding
A =18, Ak = 1.5 and\¢ = 1.25. In a second experiment, we
also addegw to the joint optimization, which yielded = 18,

Ak = 1.5, A\¢ = 1.25 andpw = —10. Table 1 summarizes
the resulting total and per-level tree node accuracieseofutio
experiments on the evaluation set. Error rate reductions co
pared to the baseline are also given. In the baseline expetim
only X was optimized, yieldingn = 21. Although the within-
HLM likelihood balancing yields no gain in total accuracydan
even a small loss on the word level, the word class errors are
reduced significantly by3.5% relative. The use ofw yields
further improvements on the word and concept levels. Inrorde
to illustrate the effects of within-HLM likelihood balamd, the
per-levelIDR curves of baseline and first optimization are plot-
ted in Figure 2. Most noticeable is the improvement on thedwor
class level. Wher& times more word class insertions than dele-
tions occur in the baseline setting, this is reducetl.6dfor the
optimized setting. The word and concd?R are also brought
closer to the expected optimum valuelof

baseling Ak, Ac opt. AK, Ac, pw opt.

Accy | Accn| Errra| Acca| Erree

Word 85.1% [ 84.9% | +1.3% [85.3% | —1.3%
WordClasy 94.8% | 95.5% | —13.5% | 95.5% | —13.5%
Concept 89.0% [ 89.3% | —2.7% [89.6% | —5.5%
Total 87.5% | 87.5% | —0.0% |87.8% | —2.4%

Table 1:Results of optimized likelihood balancing.
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Figure 2: IDR before and after likelihood balancing.
4. Conclusion

We discussed HLM for robust semantic modeling in our one-
stage speech interpretation framework. As previously show

a comparable two-stage system only performs as accurate as
our one-stage system if its speech recognition stage patesg

a large number of alternative hypotheses to the second.stage
We showed for an airport information test system, that thee us
of advanced smoothing methods for HLM such as modified
Kneser-Ney smoothing significantly improves the accurafcy o
the whole system. We also applied LM factor and word penalty
known from speech recognition to our system, and showed that
an extension of the transformation with hierarchy leveletep
dent scaling factors improves the likelihood balance withie
HLM, yielding a significant reduction of the word class esor
We also gave evidence that the ratio of insertions and deleti
aids as an indicator for the likelihood balance of HLM.
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