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ABSTRACT

Within this work we suggest a novel approach to affect 

recognition based on acoustic and linguistic analysis of spoken 

utterances. In order to achieve maximum discrimination power 

within robust integration of these information sources a fusion 

on the feature level is introduced. Considering classification we 

use meta-classifiers as StackingC and Boosting for a stabilized 

performance and combination of classifiers within ensembles. 

Extensive comparison of diverse base-classifiers comprising 

among others Support Vector Machines, Neural Networks, 

stochastic models, and Decision Trees will be fulfilled. 381 

acoustic features are extracted and their relevance is calculated 

by a Sequential Forward Floating Search in comparison to 

reduction by a Principal Component Analysis. Several variants 

for linguistic feature calculation are described and ranked 

including bunch-of-words, n-grams, salience, and mutual 

information. Furthermore reduction by stopping and stemming 

or filter-based selection methods is evaluated reducing 2,334 

linguistic features. Seven discrete emotions described in the 

MPEG-4 standard are recognized within an existing recognition 

engine. The presented results base on two large databases of 

4,336 acted and real emotion samples from movies, chat and car 

interaction dialogues. A significant gain and an outstanding 

overall performance are observed by this novel fusion and use of 

ensembles.  

1. INTRODUCTION 

A variety of approaches towards automatic emotion recognition 

were presented since the research activities started in the late last 

decade. Today we are all aware of the great importance of the 

integration of emotional aspects as the next step towards more 

natural human-machine interaction [6]. Growing interest in the 

extraction out of diverse modalities among which speech is 

found on top-level can be observed at the time.  

Large numbers of diverse acoustic hi-level features based mostly 

on pitch, energy, and durations were discussed considering their 

performance. However, sparse analysis of single feature 

relevance by means of filter or wrapper based evaluation has 

been fulfilled, yet. Features are mostly reduced by means of the 

well known Principal Component Analysis (PCA) and selection 

of the obtained artificial features corresponding to the highest 

eigen-values [3]. As such reduction still requires calculation of 

the original features we compare it to a real elimination of 

original features within the set. As search function within feature 

selection (FS) we apply a Support Vector Machine (SVM) based 

Sequential Forward Floating Search (SFFS) [8], which is known 

for its high performance. Thereby the evaluation function is the 

classifier, in our case SVMs as described in section 5, which 

optimizes the features as a set rather than finding single features 

of high performance. The search is performed by forward and 

backward steps eliminating and adding features to an initially 

empty set. 381 static acoustic high-level features form the basis 

for this analysis.  

However, already in early speech-based emotion recognition 

works estimation of the emotion by the spoken content was 

analyzed [1]. Nowadays it seems to be broadly considered 

reasonable that integration of such linguistic information 

improves the overall performance [3][5], while suggested 

methods vary strongly. Examples are uni-grams [2], calculation 

of emotional salience [3], rule-based decision, training of neural 

networks [1], or use of Bayesian Networks as in our former 

works [5]. Language information so far is not included on the 

feature level, but rather in a post-stage fusion. A drawback 

thereby is that information for a maximum discrimination is 

already lost. Additionally the evaluation of the gain considering 

integration of spoken content information can only be judged in 

total. In order to achieve an early feature fusion and enable 

direct relevance measurement by FS we therefore decided to 

include language features within the acoustic vector.  

Dealing with classification methods also no unity can be found 

so far [6]. Within this work we concentrate on use of ensembles 

of classifiers in order to cope with biased training due to the 

comparably small training sets used in speech emotion 

recognition and the growing dimensionality by inclusion of 

novel features. Boosting was already successfully applied in 

speech emotion recognition in [7]. While methods as Boosting 

or Bagging stabilize single classifiers, we introduce StackingC 

within speech-based affect recognition to combine the power of 

diverse classifiers for the final decision. In [10] it is shown that 

StackingC, a variant of Stacking, is usually the best choice 

considering maximum performance applying ensembles. The 

results using diverse single classifiers are also provided as a 

basis of comparison. 

The paper is structured as follows: In section 2 we describe the 

databases in detail and show construction of an affective 

vocabulary. In sections 3 and 4 we introduce our acoustic and 

respectively linguistic features. In section 5 meta-classification 

will be discussed. Finally results of the overall features are 

shown, and conclusions are drawn. 
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2. EMOTIONAL DATABASES AND VOCABULARY 

The emotions used resemble the far spread MPEG-4 set, namely 

joy, anger, disgust, fear, sadness, surprise and added neutrality. 

Within the acoustic feature selection and classifier evaluation the 

emotional speech corpus EMO-CAR collected in the framework 

of the FERMUS III project was used [4]. This allows for direct 

comparison of results introduced in our former works presented 

in [5]. It consists of 2,829 emotional samples of car-user-

interface interaction dialogues. In total 13 speakers, one female, 

are contained within the database.  

In order to get a high number of samples with acoustic and 

linguistic content in sufficient quality considering speech 

recognition and extraction of acoustic emotion features we 

decided for acted emotions as a main corpus. The textual content 

was taken from movie scripts of seven U.S. American movies 

from the years 1977 till 1999. Namely these are Alien, Annie 

Hall, Five Easy Pieces, Notting Hill, Scream, Ten things I hate 

about you, and Toy Story. Genres include Sci-Fi, Comedy, 

Drama, Horror and Fantasy and have been selected in order to 

cover all aimed at emotions. The utterances were annotated 

phrase-wisely by two test persons, and 1,144 phrases consisting 

of 7.0 words in average with identical labeling could be 

obtained. The set was supplemented by emotions of text-based 

internet conversation labeled accordingly until 1,507 utterances 

were collected in total. The phrases were acted and recorded as 

single utterances in an anechoic chamber with a condenser 

microphone AKG-1000S MK-II over a long period to avoid 

anticipation effects of the three actors in total.  

The vocabulary for the linguistic analysis bases on 3,396 phrases 

with further movie excerpts, and web-chat statements included. 

In order to cover as many regular terms as possible enlargement 

of the dictionary was also fulfilled by emotional labeling of the 

10,000 most frequent terms in English language [9]. Finally the 

balanced affective word list [11] was included. The emotional 

vocabulary was then built by storing each new word and 

counting the total frequency of occurrence for each of the 2,234 

disjunctive terms within the tagged emotion. Thereby two 

different variants have been considered for the calculation of 

posteriors: Once a Laplace-estimation assuming an equal initial 

distribution among emotion classes was used denoted as p(ei|w) 

of the probability of emotion ei given the word w, and once all 

posteriors were initially set to zero, denoted as p*(ei|w) in 

chapter 4. 

3. ACOUSTIC FEATURES 

In former works [4] we compared static and dynamic feature sets 

for the prosodic analysis and demonstrated the higher 

performance of derived static features. As the optimal set of 

global static features is broadly discussed [6], we considered an 

initially large set of 381 features comprising features which 

cannot be described in detail here. We rather concentrate on the 

basic extraction of top ranked attributes as the results of a FS by 

SVM-SFFS show a saturation point at 33 features. The 

following figures 1 and 2 present results of the feature reduction 

and an exemplary excerpt of the reduced set. Figure 1 also 

shows that a true reduction of features seems no drawback 

compared to the reduction by PCA. The feature basis is formed 

by the raw contours of the signal, pitch, energy and voicing 

probability. As within acoustic features the target is to become 

utmost independent of the spoken content, which is only 

respected in the linguistic features, only sparse spectral features 

are extracted. 20 ms frames of the speech signal are analyzed 

every 10 ms using a Hamming window function. The values of 

energy resemble the logarithmic mean energy within a frame. As 

pitch detection algorithm we apply an average magnitude 

difference function. Low-pass symmetrical moving average 

filtering smoothes the raw contours prior to the statistical 

analysis. Higher level features are subsequently derived and 

normalized by their standard deviation and mean. Silence 

duration is calculated using common bi-state dynamic energy 

threshold segmentation. Durations of voiced sounds rely on the 

voicing probability. 

Acoustic Feature Reduction
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Figure (1): Acoustic feature reduction by PCA and SVM-SFFS 

for speaker (in-) dependent recognition ASI / ASD 

Rank   GainR  Feature 

1 0.279 Pitch maximum gradient 

2 0.187 Pitch mean value, adapted 

3 0.072 Energy mean value, normalized 

4 0.187 Pitch mean value gradient 

5 0.097 Signal number of zero-crossings 

6 0.201 Pitch standard deviation 

7 0.122 Pitch relative maximum 

8 0.046 Duration of silences mean value 

9 0.082 Energy maximum gradient 

10 0.140 Pitch range 

11 0.116 Pitch mean dist. between reversal points 

12 0.057 Duration of voiced sounds std. dev. 

13 0.069 Energy median of rise-time 

14 0.030 Duration of silences median 

15 0.151 Duration mean value of voiced sounds 

16 0.066 Spectral energy below 250 Hz 

17 0.067 Energy std. dev. dist. of reversal points 

18 0.050 Energy mean of fall-time  

19 0.051 Energy mean dist. of reversal points 

20 0.035 Energy relative maximum 

Figure (2): First 20 acoustic feature ranks by a SFFS with SVM-

wrapper and Gain Ratio GainR showing single feature relevance 
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4. LINGUISTIC FEATURES 

Basing on the output hypothesis of a state-of-the-art HMM-

based ASR-engine spoken content analysis can be included in 

the overall model. In an earlier work [5] we introduced a 

spotting-based approach for emotional key-phrases by a 

Bayesian Network. The output was fused with acoustic feature 

processing by a Neural Net. However, the aim here is to enable 

an integration of acoustic and linguistic features in one vector. 

As a consequence single linguistic features are demanded. The 

so called bunch-of-words method applied in automatic document 

categorization was chosen as a starting point. Thereby each word 

in the vocabulary adds a dimension to the linguistic vector 

representing the term frequency within the actual utterance. As a 

high dimensionality may decrease the performance of the 

classifier and flexions of terms reduce performance especially 

within small databases methods of feature reduction seem 

mandatory. We first consider the most natural form by use of a 

stop-list obtained by expert-knowledge. It consists of ignorable 

words due to their lack of affective information. These have to 

be chosen carefully, as it may not be easily visible if a word 

possesses an emotional connotation. We therefore stopped 

mostly articles, names, etc. resulting in 93 stop-terms. Stemming 

clusters words of the same stem, and reduces dimensionality 

while in general directly increasing performance. This comes as 

hits within an utterance are crucial and their number increases 

significantly if none is not lost due to minor word differences as 

plural form verb conjunctions. A further reduction of words was 

obtained either by filter-based FS or reduction by a PCA. Within 

FS we decided for information gain ratio calculation [12] due to 

its low computation efforts compared to SVM-based FS as used 

for the lower dimensional acoustic set. While the reduced sets by 

these methods both clearly fell behind, an interesting side effect 

is that Gain Ratio shows the most emotional words in the corpus. 

The 20 highest ranks can be seen in figure 3. 

Rank GainR Term Rank GainR Term 

1 0.553 disgusting 11 0.237 wonderful 

2 0.465 throw 12 0.230 sad 

3 0.465 yuck 13 0.229 cool 

4 0.446 dirty 14 0.229 christ 

5 0.276 face 15 0.222 bitch 

6 0.272 lucky 16 0.220 beautiful 

7 0.264 perfect 17 0.215 jesus 

8 0.264 delighted 18 0.213 thank 

9 0.259 afraid 19 0.190 glad 

10 0.243 great 20 0.174 sorry 

Figure (3): 20 highest ranked terms and their Gain Ratio GainR  

Significantly better results were obtained by a reduction to seven 

dimensions. Thereby eleven variants were considered for 

calculation of the features directly corresponding to the emotion. 

The posteriors p(ei|w) described in section 2 form the basis of 

computation as shown in figure 4, where selected variants are 

shown. The table also shows the maximum performance 

obtained with each feature variant using SVMs as described in 

section 5. The solution on rank one resembles uni-grams as 

suggested in [2], and the rank nine version is applied in [3] 

besides that SVMs are used each instead of a maximum 

decision. The alternative ranked four corresponds to mutual 

information. In the table the following two abbreviations are 

used, where the first corresponds to the salience (sal) as 

introduced in [3]: 

7
( ) ( | ) ( , )

1
sal w p e w ld i w ei i

i
 and 

( | )
( , )

( )

p e wii w e
i p ei

Rank Rate,% Dim. Feature Type 

1 73.9 7 *log i (w,e )10 i
w U

4 69.8 7 * *p e w log i (w,e )i 10 i
w U

5 69.4 7 * *p e w sal wi
w U

6 62.0 7 i(w,e )i
w U

7 60.2 7 p e w sal wi
w U

9 39.5 7 p e wi
w U

10 36.4 1853 Bunch-of-words, Stop&Stem 

11 35.8 2334 Bunch-of-words 

12 33.2 1000 Bunch-of-words, Stop&Stem, FS 

Figure (4): Selected linguistic feature set variants with mean 3-

fold performance using SVMs, run on 1,507 samples 

5. META-CLASSIFICATION 

With relatively small training sample sizes compared to the 

dimensionality of the data a high danger of bias due to variances 

in training material is present. In order to improve instable 

classifiers as neural nets or decision trees a solution besides 

regularization or noise injection is construction of many such 

weak classifiers and combination within so called ensembles. 

Two of the most popular methods are Bagging and Boosting 

[10]. Within the first random bootstrap replicates of the training 

set are built for learning with several instances of the same 

classifier. A simple majority vote is fulfilled in the final decision 

process. In Boosting the classifiers are constructed iteratively on 

weighted versions of the training set. Thereby erroneously 

classified objects achieve larger weights to concentrate on hardly 

separable instances. Also a majority vote, but based on the 

weights, leads to the final result. However, these methods both 

use only instances of the same classifier. If we strive to combine 

advantages of diverse classifiers Stacking is an alternative. 

Hereby several outputs of diverse instances are combined. In 

[10] StackingC as improved variant is introduced, which 

includes classifier confidences e.g. by Maximum Linear 

Regression. It is further shown that by StackingC most ensemble 

learning schemes can be simulated, making it the most general 

and powerful ensemble learning scheme. One major question 

however is the choice of right base classifiers for the ensembles. 

In [10] two optimal sets built of seven and four classifiers are 

introduced. However, the performance with the smaller set 

shows similar results at less computational effort for training. 

We use a slightly changed variant of their set as seen in figure 5, 

which delivered better results. Results on the various tasks 
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applying StackingC, Bagging, Boosting and selected base-

classifiers are shown. However, we can provide only a very brief 

introduction of the latter in the ongoing. A comprehensive 

description is available in [12]. The major drawback of the 

firstly selected well known rather simple Naïve-Bayes (NB)

classifier is the basing assumptions that features are independent 

given class, and no latent features influence the result. Another 

rather trivial variant is a nearest distance measurement based on 

entropy calculation (ND). The further considered Neural Nets 

are renowned for their non-linear transfer functions, self-

contained feature weighting capabilities and discriminative 

training. A Multi Layer Perceptron (MLP) with the number of 

input neurons equaling the number of input features, a sigmoid 

transfer function in the hidden layer, and 7 output neurons for 

each emotion was used. Support Vector Machines (SVM) show a 

high generalization capability due to their structural risk 

minimization oriented training. In this evaluation we used a 

couple-wise decision for multi-class discrimination and a 

polynomial kernel. As Decision Tree we chose an unpruned 

C4.5. In general these are a simple structure where non-terminal 

nodes represent tests on features and terminal nodes reflect 

decision outcomes. The attributes are ordered by their gain ratio. 

Classifier ASI,% ASD,% LIN,% 

NB 51.1 86.3 73.4 

ND 73.8 86.9 69.5 

SVM 76.1 91.0 73.9 

C4.5 63.7 82.4 75.0 

Bagging C4.5 75.2 86.9 76.3 

Boosting C4.5 76.0 92.7 74.2 

MLP 73.2 90.6 73.3 

Bagging MLP 73.8 92.5 75.3 

Boosting MLP 73.6 92.7 74.3 

StackingC MLR  

NB ND SVM C4.5  

76.4 92.9 76.8 

Figure (5): Performances of single classifiers and ensembles 

All tests have been carried out on the datasets described in 

section 2 by a three-fold stratified cross-validation. Only the 

mean performance is shown. The standard deviation throughout 

cycles never exceeded 2%. Acoustics only speaker dependent 

(ASD) and speaker independent (ASI) evaluations were each 

considered. Furthermore results for refinement of the 

performance on the linguistic only feature set ranked one in 

figure 4 by optimal classification is shown (LIN). Only results 

with optimal parameter configuration are shown.  

6. FINAL RESULTS AND CONCLUSION 

The final evaluation shows direct comparison for integration of 

linguistic features. The test ran in a 10-fold cross-validation with 

minor standard deviation on the described corpus. As StackingC 

proved most reliable in the prior runs it was chosen within this 

analysis. The acoustic features were analyzed speaker 

dependently and the mean performance was 90.3%. Evaluation 

based on linguistics reached 76.8% as already seen in figure 5. 

Within fusion 94.8% in average were reached. In an overall FS 

the linguistic features were ranked on places14-17, 19, 25, and 

29. These results both clearly stress the importance of content 

analysis integration. This is especially true as language 

information in principal depends less of the speaker. The applied 

linguistic methods can also be used in text-based affect 

recognition. Summarized we could demonstrate the high gain 

achieved by a novel early feature fusion of acoustic and 

linguistic information in speech emotion recognition. Out of 381 

acoustic features 20 most relevant could be presented. Further 

more 9 variants of linguistic features were shown. Selection of 

features showed similar performance than the often applied 

reduction by use of Principal Components with high eigen-

values at less original extraction effort. Finally it could be shown 

that StackingC as classification method led to a maximum gain. 

The high performance achieved encourages dealing with 

recognition in noise in future experiments. 
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