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Abstract
Improved efficiency of pruning accelerates the search process
and leads to a more time efficient speech recognition system.
The goal of this work was to develop a new pruning tech-
nique which optimizes the well known probability-based prun-
ing (beam width) by utilization of confidence measurement.
We use normalized hypotheses scores to guide the beam width
of the pruning process dynamically frame per frame during
the whole utterance. Compared with classical pruning tech-
niques like fixed beam pruning and histogram rank pruning
we achieved significantly better results concerning the time
consumption of the recognizer. The speed of the recognition
process could be accelerated up to 14 times with a slight degra-
dation in recognition accuracy.

1. Introduction
Making speech recognition more efficient in computation time
is still an important and topical issue. More and more speech
applications will be deployed in embedded systems which often
have only a limited computation capacity. In order to meet users
expectations we need acceptable runtime behavior by minimiz-
ing system response delays.

This situation motivated us to analyze commonly used
speech recognition algorithms in order to optimize their effi-
ciency in computation time. The most of time consumption dur-
ing the recognition process will happen in the search process.
Managing alternative hypotheses for each time frame could be
very time costly and memory loaded depending on the complex-
ity of the search network. The size of Viterbi search space of
HMM-based automatic speech recognition systems (ASR) in-
creases usually non-linearly with the vocabulary size. That’s
why different pruning strategies have been already proposed to
reduce the time consumption of the recognition process.

Probability-based pruningcontrols the beam widthBset of
the Viterbi search process at each time frame and keeps only
those hypotheses whose score is no less than a threshold from
the score of the best hypothesis. The threshold is generally set
for the whole recognition process. However the number of hy-
potheses which can be cut-off depends on the distribution of the
hypotheses scores. If they are close to each other only few of
them can be pruned.

Rank-based pruningavoids this problem by limiting the ab-
solute number of alternatives to a fixed value. In contrast to the
beam width technique rank pruning controls the number of hy-
potheses allowed for each time step independently of their dis-
tribution. For this reason all alternative hypotheses have to be
ranked by their log probabilities keeping only the bestNmax

hypotheses. The main disadvantage of this method is that two

passes through all hypotheses are required and the ranking can
be very time costly. To improve the efficiency of the ranking
procedure, usually a histogram of the hypotheses scores is com-
puted -histogram rank pruning.

It is a common practice to combine both - probability-based
and rank pruning. The combination allows achieving better re-
sults by memory saving and reduction of computational time
effort by keeping recognition accuracy on an acceptable level.

Proven confidence measures like maximum a posteriori
probability (PMAP ) or normalized log likelihood score (CNLL)
allow an assessment of the classification correctness at phone or
word level during the search process as described in [1], [2], and
[3]. Especially in the last years some pruning algorithms were
introduced concerning confidence measurement as a guide for
pruning techniques (among others Ortmanns [4], Liu [5], Re-
nals [6], and Abdou [7]). In [7] a complex look-ahead technique
was presented which has to manage HMM-specific thresholds
of posterior confidence scores to support the pruning procedure.
This could lead to an enormous management effort in case of
thousands of triphones which are often used in current ASR
systems. The a posteriori based look-ahead approach proposed
in [4] is based on a different framework than HMM, namely a
neural network.

All of the mentioned pruning techniques use generally con-
stant pruning thresholds during the whole search procedure.
Both Bset of the probability-based pruning andNmax of the
rank-based approach are predefined thresholds which have to
be justified during cross validation tests. However, these thresh-
olds could be adjusted dynamically to fit time-variant require-
ments by taking variable search quality into consideration.

In the next section we introduce a novel dynamic pruning
approach which controls the beam widthBset of HMM-based
Viterbi search process framewise. The decision about the appro-
priate threshold at each time frame is based on the utilization of
confidence measures. Section 3 describes the evaluation mater-
ial and the ASR system we used for our evaluations. In section
4 the results of our experiments will be shown.

2. Confidence-guided pruning method
Our novel approach is a combination of the widely used classi-
cal probability-based beam pruning technique and runtime con-
fidence measurement. As already mentioned above probability-
based pruning uses a constant thresholdBset to set beam width
of the Viterbi search process at each time frame of the whole
utterance. In contrast to this an appropriate confidence measure
of the best hypothesis allows to take the time-variant behavior
of the search process into account. As a result beam widthB(t)
can be set dynamically at each time framet according to the
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Figure 1: Schematic view of the confidence-guided dynamic
pruning method (CGD).

confidence estimation.

2.1. Computation of the confidence measure

In this work we use a confidence measurement which is a varia-
tion of the maximum a posteriori probabilityPMAP , the math-
ematical formulation is:

PMAP = P (ci|x) =
p(~x|ci)P (ci)

p(~x)
.

PMAP can be thought of as the ratio of a proposed score
p(~x|ci)P (ci) of a classci and the so called catch-all scorep(~x).
Whereci corresponds to a HMM state and~x to the acoustic
observation vector. The catch-all score reflects how well the
acoustic models estimate the observation probabilities.

As slight variation ofPMAP , the normalized log likelihood
CNLL, will be computed as the logarithm ofPMAP normal-
ized by the prior probabilityP (ci), s. Equation 1.CNLL is
expressed in the logarithmic space and can be viewed as a zero-
centered confidence score where positive scores indicate good
and negative scores bad confidence.

CNLL(ci|~x) = log

�
p(~x|ci)

p(~x)

�
, (1)

where the observation probability will be computed as follows:

p(~x) =

NcX
j=1

p(~x|cj)P (cj) .

Earlier works (e.g. [1]) provide adequate results about the
good quality ofCNLL as a reliable confidence measurement.
However the confidence of the hypotheses at a specific time
frame of the utterance cannot be directly used to control the
pruning of the Viterbi beam search process. That is because
the confidence of the hypotheses can change in time in a large
manner. A particular hypothesis could be pruned at a specific
time frame because of its low confidence, even if this hypothesis
would be the best one at the end of the utterance.

This is the reason why pruning techniques generally work
on accumulated quantities. Therefore the main task is to find
a way which allows to use confidence measurement for accu-
mulated values of hypotheses. They have to be computed step
by step during the search process. We define the accumulated
normalized log likelihoodCacc, the ratio of the accumulated

hypothesis likelihood probability and the accumulated observa-
tion’s probability for each time frame from 1 to T of the utter-
ance:

Cacc = log

 QT
t=1 p(~x|c)QT
t=1 p(~x)

!
.

Unfortunately this score increases continuously because of
the steady increasing difference betweenp(~x|c) andp(~x) from
frame to frame. Therefore we use a modified normalization in-
stead ofp(~x), the combined maximum of accumulatedp(~x) and
best word end likelihoodWbest:

C
′

acc = log

 QT
t=1 p(~x|c)

max(
QT

t=1 p(~x)|Wbest)

!
. (2)

Equation 2 allows to generate a normalization quantity
which can be used for each time step to compute the confi-
dence value of the hypothesis score. Fig. 2 shows an example
of normalized hypothesis scoreC′

acc of the best hypothesis. As
we can see in the diagram the curve of the normalized score
(dashed line) depends on the time frame. Especially high local
maximum values appears in correlation to pauses in the utter-
ance.

In the classical pruning case we have to set an appropriate
constant beam width which allows to keep the best hypothe-
sis from the first frame until the last. Such a constant beam
width would correspond to a horizontal line in Fig. 2 at a spe-
cific score level of e.g. 200. In contrast to this our dynamic
approach allows to use a constant thresholdBset relative to the
normalized score (dashed line). At each time frame only those
hypotheses will be kept which score is no less than a threshold
B(t) = Bset + C′

acc(t) from the score of the best hypothesis.
Further optimization of this dynamic approach can be

achieved if the threshold which is set relative to the normal-
ized score (Bset) will also be computed dynamically. For this
purpose we vary the value ofBset depending on the value of
the normalized scoreC′

acc itself which indicates the observation
quality of acoustic models. Low score indicates poor certainty
of the best hypothesis therefore the beam width should be in-
creased. This kind of dynamic lift (dotted line in Fig. 2) gives
some compression to the dynamic beam width. On the one hand
greaterC′

acc score indicates good confidence of the best local
hypothesis therefore the dynamic beam width∆Bdyn could be
decreased. On the other hand∆Bdyn should be increased in
case of low local confidence to avoid the pruning of the global
best hypothesis. To implement this kind of dynamic lift we use
a modified sigmoid function to control the beam width between
appropriate upper and lower thresholds:

∆Bdyn =
Tupp

1 + e(α−C′
acc)/β

+ Tlow . (3)

The parametersα andβ in Equation 3 can be easy determined
using a cross evaluation corpus. Reasonable setting for our ex-
periments wasα = β = 20. The threshold for the pruning
decision is computed in this case as follows:

B(t) = ∆Bdyn(t) + C
′

acc(t) . (4)

Fig. 1 shows the schematic block diagram of the
confidence-guided dynamic (CGD) pruning approach.
CGD pruning computes beam width of the probability-based
pruning dynamically in accordance with the confidence
assessment of the best hypothesis (s. Equation 4). The∆
estimator is responsible to compute∆Bdyn(t) for each time
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Figure 2:Example for dynamic beam width during the appointment negotiation utterance’Ja genau, lassen wir gleich die letzte Woche
im März, prima!’ (English: That’s correct, let’s keep right the last week in March, great!)

frame based on the confidence score of the best hypothesis
C′

acc(t) using Equation 3. The results we achieved with this
dynamic approach for differentTupp andTlow can be seen in
section 4.

The main challenge in computingC′

acc in HMM based sys-
tems is to get a correct assessment ofp(~x). That is because they
generally do not have dedicated models for this purpose. The
computation ofp(~x) requires the calculation of the emission
of all HMMs which could be very time expensive. However
Kamppari in [1] proposed a way to get managed this problem by
the reduction of the catch-all model’s size in term of the number
of Gaussian components.

2.2. Catch all model generation

The process of reduction of catch-all model size is an iterative
bottom-up clustering process. In each iteration step two Gaus-
sians which are most similar to each other are found and then
combined into a new one. As the measure for the similarity of
two Gaussians the weighted Battacharyya distance measure will
be used:

DBatt = − log

Z p
P1 (x) · P2 (x) dx .

Battacharyya distance is a measure of overlap between two
Gaussians with ranges between 0 and∞ corresponding to full
and no overlap. The specific implementation ofDBatt for
Gaussians is

DBatt =
1

8
(~µ1 − ~µ2)

T ·

�
Σ1 + Σ2

2

�
−1

· (~µ1 − ~µ2)

+
1

2
ln

�����Σ1 + Σ2

2

���� · |Σ1|
−1/2 · |Σ2|

−1/2

�
,

whereµ1 andµ2 are the means of the Gaussians andΣ1 and
Σ2 the covariance matrices.DBatt is scaled to compress the
acoustic space so that the entire acoustic space is covered with
acceptable resolution using weights of the Gaussiansw1 and
w2:

Dscale =

s
w2

1 + w2
2

2w1w2
.

In HMM systems these weights can be computed based on the
weights of the mixture distribution functions (s. [7] for de-

tails). The combination of the most similar Gaussians will be
processed based on Equation 5, 6 and 7 for each dimensiond

wnew = w1 + w2 (5)

µnew,d =
w1

w1 + w2
· µ1d +

w2

w1 + w2
· µ2d (6)

Σnew,d =
w1

w1 + w2
· Σ1d +

w2

w1 + w2
· Σ2d

+
w1

w1 + w2
·

w2

w1 + w2
· (µ1d − µ2d)2 . (7)

After a new Gaussian was computed it is added to the pool
of Gaussians of the catch-all model and the Gaussians from
which the new one was created, are removed. This iteration is
repeated as long as required to achieve the desired compression
ratio of the acoustic space. As presented in [1] and [7] catch-all
model allows acceptable estimation of the observation probabil-
ity p(~x) even with a compression ratio of 95 %. Based on these
findings the evalutaions for this work were also made with a
catch-all model of the same compression ratio of 95 %. In that
way we were able to reduce the complexity of the acoustic mod-
els, trained on the Verbmobil ’96 training material, from about
twenty-five thousand mixture components to about thousand.

3. Experimental setup
The evaluations described in this paper were performed on the
commonly used speech recognition system HTK (Release 3.1)
[8]. As test material we used the German Verbmobil ’96 corpus
[9], which contains 343 sentences, i.e. 6428 words. The compu-
tation of the scaling factors was performed on a distinct cross-
validation set, which contains 599 sentences (11577 words).
For the recognition process, we used a bigram language model,
a dictionary with 5343 entries, and triphone acoustic models
with about 25000 mixtures trained on the Verbmobil ’96 train-
ing corpus.

4. Experiments and results
The goal of the experiments presented in this section was to
evaluate the capability of the confidence-guided dynamic prun-
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Figure 3: Word error rates (WER) of different pruning tech-
niques depending on time factor: probability-based beam width
(PB), combined probability-based and rank (PBR), confidence-
guided (CG), and confidence-guided dynamic pruning (CGD).

ing approach to accelerate the search process of an ASR sys-
tem. For this purpose we ran several tests on the Verbmobil ’96
evaluation data (s. section 3) using different pruning techniques
and parameters. Our results are presented in Fig. 3 which shows
word error rates(WER) depending on thetime factor. The time
factor was defined as the ratio of the time consumption of the
ASR with particular pruning parameter settings and the time
consumption of the ASR without any pruning. The tests were
performed always on all utterances of the evaluation corpus.

We compared our dynamic pruning techniques with the
classical probability-based fixed beam width pruning and with
the combination of beam width and rank pruning. The curve
of constant beam width in Fig. 3 was determined by computing
the WER for the evaluation corpus using different beam width
valuesBset in a range of [80-250]. To the greater beam width
value belongs lower WER but higher time factor. The combina-
tion of beam width and rank pruning was evaluated by keeping
Bset at 210 and varyingNmax in the range of [500-9000]. The
curve of confidence-guided (CG) beam width was found using
static beam width relative to the normalized score of the best hy-
pothesis in a range of [55-200]. The curve of confidence-guided
dynamic (CGD) beam width was plotted usingTupp = 110 and
differentTlow in a range of [20-70] (s. Equation 3 for details).

Fig. 3 shows that our confidence-guided dynamic beam
pruning approach outperforms the static methods significantly.
The time factor of the ASR using CGD pruning could be de-
creased to 0.23 without increasing WER. Furthermore if we ac-
cept an increase of WER of about 1 % CGD achieves a time
factor of 0.07 which corresponds to the acceleration of the ASR
about 14 times (reciprocal time factor). In comparison the clas-
sical constant beam width pruning achieves with the same WER
increase a time factor of 0.19 (in accelaration 5 times). Further
results of our evaluation tests can be shown in Table 1.

5. Conclusion
This paper has presented a novel dynamic beam width prun-
ing method using confidence measurement for accumulated hy-
pothesis score normalization. Confidence-guided pruning per-

Pruning method; parameters WER [%] Time factor

PB;Bset = 250 33.63 0.43
PB;Bset = 150 34.4 0.19

PBR;Bset = 210, Nset = 9000 33.63 0.32
PBR;Bset = 210, Nset = 2000 34.66 0.17

CG;Bset = 200 33.63 0.5
CG;Bset = 90 34.5 0.14

CGD;Tupp = 110, Tlow = 70 33.63 0.23
CGD;Tupp = 110, Tlow = 40 34.66 0.07

Table 1:Word error rates and the corresponding time factors of
different pruning methods.

forms significantly better than classical pruning techniques. As
a result a significant improvement in decoding speed of the ASR
system could be achieved. This technique suggests a kind of
dynamic beam control behavior, therefore the next step of our
work will be to investigate the combination of confidence mea-
surement and adaptive control pruning strategies [10].
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