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Abstract

In the following work we present a novel approach to robust and flexible person tracking using an algorithm that combines two powerful

stochastic modeling techniques: the first one is the technique of so-called Pseudo-2D Hidden Markov Models (P2DHMMs) used for

capturing the shape of a person within an image frame, and the second technique is the well-known Kalman-filtering algorithm, that uses the

output of the P2DHMM for tracking the person by estimation of a bounding box trajectory indicating the location of the person within the

entire video sequence. Both algorithms are cooperating together in an optimal way, and with this cooperative feedback, the proposed

approach even makes the tracking of persons possible in the presence of background motions, for instance caused by moving objects such as

cars, or by camera operations as e.g. panning or zooming. We consider this as a major advantage compared to most other tracking algorithms

that are mostly not capable of dealing with background motion. Furthermore, the person to be tracked is not required to wear special

equipment (e.g. sensors) or special clothing. Additionally, we show how our approach can be effectively extended in order to include on-line

background adaptation. Our results are confirmed by several tracking examples in real scenarios, shown at the end of the article and provided

on the web server of our institute.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Tracking of objects in arbitrary complex environments is

one of the key problems of visual surveillance. A good

overview describing various approaches for surveillance is

given in Ref. [8].

However, if one looks closer at most of the methods

presented in this survey, it becomes obvious that many

approaches still have severe limitations. This becomes more

apparent if one considers the following classification of

tracking algorithms: the most simple algorithms are the ones

that use additional sensors for tracking, as e.g. bulbs or

special clothing. In this case, the problem of tracking mainly

reduces to the problem of locating the sensor signal in each

frame of the image sequence. Such an approach is often

taken in gesture recognition applications for tracking body

parts that would be difficult to locate without any additional

equipment. This can be still a difficult and challenging

problem, but the limitations of that approach are obvious.

A second class of tracking algorithms is mainly based on the

evaluation of motion information (see [21]), either derived

from difference images or from computation of the optical

flow [12]. There are several examples for the successful use

of this approach (see, e.g. [5,11,13,24]). For instance,

the system presented in Ref. [3] uses almost exclusively the

difference image for motion detection and accumulates the

motion patterns of people in one single representation,

mainly with the purpose of action recognition rather than

tracking. However, as soon as there is other motion in

the image besides the moving object, such approaches

have severe difficulties. It is worthwhile to note that—

unfortunately—this situation is very frequent for real

scenarios, e.g. the surveillance of traffic, corridors or gas

stations. If there are only other moving objects in the image,

one could still hope to segment the desired object from the

different optical flow fields caused by all moving objects,

although this is another difficult problem. If one simply

relies on tracking the largest optical flow field in the image,

one cannot be sure to track the right object. Also, many

of these approaches require a known static background

(see e.g. [20]).
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In Ref. [2] the optical flow computation is additionally

combined with the propagation of probability distributions

as first suggested in the Condensation algorithm (see [14]).

The examples presented in Ref. [2] are relatively simple and

the use of optical flow is still expected to be troublesome

in the presence of other motion in the image.

Things are getting more complicated if typical camera

operations such as zooming or panning are carried out,

leading to motion information distributed over the entire

image. In this case, it becomes basically impossible to track

the object by evaluating the motion information. Another

class of tracking algorithms can be identified as algorithms

without explicit shape models. These algorithms are

somehow similar to the first class of algorithms, with the

major difference that they do not search for sensor signals in

each frame, but they look instead for features that indicate

the presence of a specific cue or object. Especially in case of

tracking persons, they are often based on the use of colors

(as e.g. in Ref. [22]). In this case, colors are mostly used for

performing either a segmentation process or a block

matching process, where each block of the image is

classified to either contain the object to be tracked or part

of it, or to belong to the background. Such a process is often

supported by additional shape features. The major problem

of such an approach is the fact that the block-by-block

matching process is based on features that are globally

present in the investigated block. In this way, it is

e.g. investigated if the current block contains a sufficiently

high amount of skin color information or typical frequencies

indicating the shape of a body. This leads to the fact that the

matching process can be still erroneous, especially if

confusing shape or color cues are present in the image and

frequent confusions occur. A typical example showing the

difficulty of such an approach is the attempt to locate people

in static images using a block matching technique leading to

reported recognition rates of around 70% [18].

Alternatively, it is possible to use explicit shape models

(see e.g. [1,6]), but the construction of such models is a

quite tedious task, and due to the large flexibility of human

body movements, it is very difficult to establish a shape

model that is able to cope with all these varieties. In this

case, the typical limitations and inflexibility of deterministic

rule-based systems become apparent.

In Ref. [10], a powerful tracking system is presented that

is even capable of tracking multiple persons. It makes use of

a relatively simple image-processing scheme, mainly

relying on background subtraction, background update and

fundamental morphological operations. Additionally, it

makes use of the previously mentioned explicit shape

models for tracking specific body parts. However, since it

relies heavily on background subtraction, it apparently

seems to be dependent on a fixed camera position with no

panning or zooming operations to assure a background that

basically is static and may change only slightly due to

changing illumination and other environmental conditions.

This assumption seems to be confirmed by the experiments

presented in that article.

The approach suggested in this article for tracking of

people is one of the first attempts to use a statistical shape

model for tracking. The statistical model is represented by a

so-called Pseudo-2D Hidden Markov Model (P2DHMM)

(see [15]). Additionally, this P2DHMM is combined with a

Kalman-filter for motion prediction. As will be shown later

in more detail, such an approach has the following

advantages:

† Similar to the explicit shape model approach, the

statistical shape model is able to exploit some apriori-

knowledge about human body shapes (e.g. the rough

decomposition into head, body, legs). It therefore retains

some of the advantages of this approach while being able

to expand its flexibility and robustness.

† At the same time, the advantage of the model-free

approach can be exploited, to automatically learn the

features which are relevant for the problem. Thus, it

combines the advantages of model-based and model-free

approaches.

† The fact that the system does not rely on any motion

information has several important advantages. One of

them is the capability of tracking people independent of

the fact that they are moving or not.

† Another consequence is the advantage that tracking is

possible in presence of other moving objects in the

background.

† The approach even works for panning or zooming

operations generating motion information throughout

the entire image sequence. This is demonstrated at the

end of this article in Figs. 5 and 6. There, it is also

explained that another advantage of the P2DHMM

approach is the exploitation of the automatic scaling

capabilities of HMM’s in general, that become important

in zooming operations due to the fact that the tracked

object may change its size drastically.

† Through HMM multistream technique, it is easily

possible to combine various features, such as e.g. color

or shape features and to give those features a different

weighting. This is accomplished in the following way:

different types of features are extracted from the image

frame, e.g. one feature type based on gray values

describing the shape of the object to be analyzed and

another feature type using color features, e.g. derived in

the RGB space. Both feature extraction methods lead to

vectors, which are not combined into one single larger

vector, but kept separately, leading to two separate vector

sequences for the image frame. During training, for each

vector stream a separate Gaussian distribution is

estimated as emission probability for each HMM state.

During recognition, in each state the two different

probabilities resulting from the shape and the color

stream are added in the log domain with a weighting

factor. The relation of the weighting factors for the shape
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and the color stream indicates the emphasis given to the

system either for shape or for color evaluation. Of course,

additional feature types (e.g. texture-based) can be

extracted and handled in the same way, thus allowing

for a flexible emphasis of different feature types in the

HMM framework.

† Using the previously mentioned capability, it is possible

to either design the system for person-independent mode

(e.g. by emphasizing more general shape features) or for

person-specific mode (e.g. by emphasizing more the

color of the clothes). In the latter case, one could track a

specific person in presence of other moving persons,

e.g. in a pedestrian zone or a shopping mall. Fig. 5 at the

end of the article shows such a case.

† Through specific capabilities of P2DHMMs, the system

is capable of exploiting local rather than global

information. This enables the system for instance to

track a person with a red T-shirt and blue jeans in

presence of a person wearing a blue T-shirt and red jeans,

or vice versa. This would not be possible for many

other systems that are evaluating global color features,

e.g. color histograms in each frame.

2. Basic tracking algorithm

As mentioned already in Section 1, the key feature of

our algorithm is the fact that it makes use of two powerful

stochastic modeling techniques, namely Pseudo-2D

HMMs and Kalman-filters. In this case, the input of the

Kalman-filter relies on the information provided by a

complex shape model of the person’s body of which the

structure has been automatically learned and acquired by

the P2DHMM. The dynamic information needed for

tracking is solely generated by the Kalman-filter.

While the Kalman-filter obtains its input information

from the P2DHMM, the filter itself feeds its output

information back to the P2DHMM and improves in this

way the shape detection procedure of the P2DHMM.

This optimal feedback between these two modules is

another reason for the powerful performance of the

approach. By letting only the Kalman-filter be responsible

for the dynamic information of the tracking process, and

relying in the measurement process completely on shape

and (optionally) color information, the tracking procedure

becomes entirely independent of other disturbing motions

in the background. In this way, it is e.g. possible to track

a person in front of a street with moving cars, because for

each frame of the image sequence the Kalman-filter will

only react on the detected position of the person’s shape

and not on the motion of the person, the motion of the

cars, or the shape of the cars. This confirms the statements

made at the end of Section 1 concerning the advantages of

our approach. In the following sub-sections, we describe

the basic functionality of both major components of our

tracking system.

2.1. Measurement vector generation with pseudo-2D

hidden Markov models

The P2DHMM generates a measurement vector that is

used as input to the Kalman-filter. The components of this

vector are the center of gravity of the person detected in

the image and the width and height of the bounding box.

The following steps are carried out for that purpose: first, the

image is processed with a DCT-based feature extraction

method that is adopted from a face recognition system [7].

The image is scanned with a sampling window from top to

bottom and left to right. The pixels in the sampling window

of the size 8 £ 8 are transformed using the DCT according

to the following equation

Cðu; vÞ ¼ aðuÞaðvÞ
X7

x¼0

X7

y¼0

f ðx; yÞ cos
ð2x þ 1Þup

16

� �

� cos
ð2y þ 1Þvp

16

� �
ð1Þ

A triangle shaped mask extracts the first 10 coefficients

ðu þ v # 3Þ; which are arranged in a vector. An overlap

between adjacent sampling windows improves the ability

of the HMM to model the neighborhood relations between

the windows. The result of the feature extraction is

a two-dimensional array of vectors with the

dimensionality 10. This array is presented to a P2DHMM

as shown in Fig. 1.

Such a P2DHMM can be considered as a 2D stochastic

model of an object in an image. It models the occurrence of

a feature vector sequence which can be derived from that

object if the object is pre-processed in the same manner as

described above (see [15,16]). The parameters of the

P2DHMM consist of the transition and output probabilities

of the various HMM states and can be learned in order to

model different objects. The learning of person shapes can

be accomplished in the following way: Several hundred

images of persons with appropriate pre-processing are

presented to the P2DHMM for learning the structure of a

human body by applying parameter estimation methods,

such as the Forward–Backward algorithm, to the P2DHMM

(see e.g. [19]). Since the P2DHMM can be considered as an

elastic model (see also [23] for other approaches to

deformable models), it is capable of modeling the human

body in various positions.

This is illustrated in Fig. 1 by the hand-drawn sketch

above the P2DHMM, showing a person within a complex

background. The scenario of modeling hand-drawn sketches

has been investigated extensively in Ref. [17]. A direct

relation to an equivalent segmentation procedure of a real

image can be easily derived by assuming an image

pre-processed by an edge detector. In this case, the edges

in the image would be very similar to the strokes in the

sketch. It is therefore taken here as an example with a theory

in the background that is well described in Ref. [17]. If such
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a sketch is modeled by a P2DHMM, each vertical stripe

(column) of the above image will be assigned to one of the

superstates of the P2DHMM, indicated by straight arrows

directly leading to the vertical ellipses of the HMM in Fig. 1.

Additionally, the blocks in each stripe will be aligned to the

states within the superstates of the P2DHMM in vertical

direction, as hinted by the curved arrows in Fig. 1. Thus,

the P2DHMM has the basic capability of performing a

non-linear 2D warping on the image.

In order to be capable of locating a body within a flexible

environment with a complex background, the following

important step is carried out: the above displayed P2DHMM

is trained with static images that show a person within a

complex environment, and not isolated or in front of a

uniform background. In this way, while the HMM

parameters of the system are learned successfully, several

of the P2DHMM states will be assigned to the background,

and other states will be assigned to the body regions of the

person. In a subsequent step, the images are again presented

to the learned P2DHMM and a Viterbi-alignment (see [19])

is carried out. In this way, it is possible to find out which

states of the P2DHMM have been assigned to background

features and which states typically represent the body parts.

Then the states are marked accordingly as background states

or person states, respectively. In Fig. 1, it is assumed that

all states marked by a white circle represent body parts,

and all states marked with dark circles are typical

background states. This integrated segmentation procedure

is illustrated by noting that all blocks within the white frame

of the hand-drawn sketch in Fig. 1 have been aligned to the

white states of the P2DHMM. It is important to note that this

learning procedure is a preparatory action that has to be

carried out only one single time and is not part of the actual

tracking procedure. It is only required if the object to be

tracked changes (e.g. from a person to a car) or the model

has to be especially adapted to a specific person with special

look and clothing. This stochastic model is capable of

modeling persons within a complex background.

As mentioned in Section 1, it combines the advantages of

approaches with explicit shape models by exploiting the

shape information learned from the body examples in the

training images and of approaches without those shape

models by maintaining the statistical learning and

classification capabilities of these methods.

A popular paradigm used in tracking which can be

considered to be most close to the P2DHMM approach is the

use of blobs (see [22]), which makes use of similar

statistical modeling techniques; however, blobs have a

much simpler structure and seem to have less capabilities

for the local modeling of features. For instance, a

person with a red T-shirt and blue jeans might be difficult

to be modeled with a blob, but can be effectively modeled

by a P2DHMM by assigning probability density functions

emphasizing red color features in the upper states of the

P2DHMM and emphasizing the emission of blue color

features in the lower states of the P2DHMM in Fig. 1.

Fig. 1. Stochastic model of a two-dimensional object using a P2DHMM.
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The actual tracking procedure starts with the presen-

tation of the first frame of the tracking video sequence to

the trained P2DHMM. If an image containing a person is

presented to the above displayed especially trained

P2DHMM, the Viterbi algorithm can be used again in

order to compute the segmentation of the image into

blocks assigned to the dark background states and blocks

assigned to the white person states, thus obtaining the

person’s shape.

Fig. 2 shows examples for such a segmentation

process on two static images. Because of the detailed

and elastic matching capabilities of the P2DHMM, the

algorithm is capable of locating the person even in

complex environments, as shown in Fig. 2. Due to the

special embedding process of the body states and the

background states, very accurate person segmentation can

be achieved in this way. The power of this approach can

be explained by the fact that in this case the Viterbi

algorithm performs an integrated segmentation and

recognition process for the human body and thus follows

the important principle that in many computer vision

applications object segmentation is only possible if the

object is recognized at the same time. This is especially

true for the problem of locating people in complex

backgrounds, where typical segmentation procedures

based on histograms and color tables will fail.

It is interesting to analyze such a segmentation

procedure in comparison to a discriminative segmentation

that would be for instance provided by a neural classifier

or a Support Vector Machine (SVM) trained on positive

and negative examples for background and persons.

The SVM will make use of a real recognition approach,

by scanning the image frames for regions and classifying

these regions as either ‘foreground’ or ‘background’.

The P2DHMM approach as presented in this article is

mainly an alignment procedure rather than a

classification procedure. Although trained according to

the Maximum Likelihood (ML) principle, the P2DHMM

obtains its discriminative power by forcing each image

block to align either to background or foreground

states rather than classifying the blocks into one of

these categories.

It is further noteworthy that this approach also works

very well if the background of the actual investigated

image is different from the background of the training

images. However, it is a logical consequence that this

combined person recognition and segmentation procedure

works especially well if the system operates in the

same environment where also the training samples have

been acquired and therefore the statistical properties of the

non-stationary background are known to the system. This,

however, may not be a very severe limitation, because such

a condition comes naturally with most popular surveillance

applications. For instance, if the system was used for

surveillance of a corridor in a shopping mall, it could be

trained on persons in that corridor where perhaps the

background consists mainly of various shop-entrances or

shop-windows with products. Even if the system would

scan the entire corridor, resulting into a non-stationary

background, the approach works well because the statisti-

cal properties of the background would be still stored in

the various HMM states. Non-stationary background

is therefore no limitation for the system. If the system

would be reused, e.g. for surveillance of a traffic

intersection, the background states could be easily adapted

with the Forward–Backward algorithm to this new

situation (for more details on the background adaptation

see Section 3).

In the next step, the center of gravity (COG) of the person

is computed from the segmentation result obtained from the

Viterbi algorithm by simply calculating the appropriate

moment from the blocks inside the black marked area

indicating the person (as shown in Fig. 2). The coordinates

of this COG, denoted as xs and ys; and the size of the

bounding box of the segmentation, denoted as w and h; serve

as the measurement input to the Kalman-filter.

2.2. Combination of P2DHMM output with Kalman-filter

In order to describe the moving person and to represent

the result of the tracking procedure, a state vector x is

Fig. 2. Example for person segmentation in complex environments using the P2DHMM paradigm.
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introduced, consisting of the following components:

x ¼

xs : x-coordinate of COG of person

ys : y-coordinate of COG of person

vx : horizontal velocity of COG of person

vy : vertical velocity of COG of person

w : width of bounding box

h : height of bounding box

2
6666666666664

3
7777777777775

ð2Þ

The motion of the person is described by a simple dynamic

model, assuming that the person moves with a constant

velocity between the sample points k and k þ 1: In this case,

the dynamic behavior of the person can be expressed by the

system equation

xkþ1 ¼ A·xk þ wk ð3Þ

with the system matrix

A ¼

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666666664

3
7777777777775

ð4Þ

and wk as the process noise added to this process. It is

assumed that only a part of the actual state variables can be

directly measured from the actual input, resulting in the

measurement equation

yk ¼ H·xk þ vK ð5Þ

with the measurement matrix H and the measurement noise

vk which is resulting from the measurement errors.

The Kalman-filter computes the reconstruction of the state

vector x from the measurement y according to the following

equations (see e.g. [9,20]):

x̂þ
k ¼ x̂2

k þ KðkÞ·½yk 2 Hx̂2
k � ð6Þ

KðkÞ ¼
P2ðkÞHT

HP2ðkÞHT þ RðkÞ
ð7Þ

PþðkÞ ¼ ½I 2 KðkÞ·H�·P2ðkÞ ð8Þ

x̂2
kþ1 ¼ A·x̂þ

k ð9Þ

P2ðk þ 1Þ ¼ A·PþðkÞ·AT þ QðkÞ ð10Þ

In this way, the gain matrix KðkÞ is updated for each discrete

frame k according to the well-known equations of the

Kalman-filter. Q and R are the covariance matrices of the

stochastic processes w and v; respectively. The measure-

ment vector y is in this case:

y ¼ ½xs; ys;w; h�
T ð11Þ

resulting in the following choice for the measurement

matrix H:

H ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

ð12Þ

From the input information of the P2DHMM, contained in

condensed form in the vector y; the system estimates the

state vector x and predicts in that way the information about

the bounding box, contained in the last two dimensions of x:

The third and fourth dimension of x deliver the velocity of

the person and mainly serve as variables supporting the

mathematical model of the person’s motion and the stability

of the system.

2.3. Interaction between Kalman-filter and P2DHMM

An important point is the fact that—while the vector x is

constructed from the vector y in the Kalman equations—the

update of the vector x is used in return as input to

the P2DHMM in order to improve the estimation of the

vector y; thus resulting into a cooperative feedback between

the Kalman-filter and the P2DHMM and vice versa.

This positive cooperation is realized in the following way:

The bounding box estimated by the Kalman-filter is

enlarged by a factor of 1.5, and the Viterbi search for the

P2DHMM is concentrated on this specific region. This

significantly improves the segmentation procedure provided

by the Viterbi algorithm and results in a very good shape

segmentation even if the person modifies his shape (e.g. by

shrinking his arms) during the movement.

Such effective segmentation can only be achieved by

the accurate shape modeling with the P2DHMM approach

in combination with the reduction of the search region for

the Viterbi algorithm provided by the bounding box

estimation of the Kalman-filter. If a simpler shape model

was used for this purpose, an accurate segmentation of the

body (which will be mostly in presence of other moving

objects or in cluttered environments) would be more

difficult and the tracking algorithm would probably fail. In

our approach, the previously mentioned integrated seg-

mentation and recognition procedure guarantees a high

quality segmentation result even under difficult conditions

in real scenarios. In return, only this superior shape

segmentation procedure enables the system to rely

exclusively on static shape information of the person for

providing the measurement signal to the Kalman-filter and

thus makes the approach truly independent of any

background motion. Therefore, the strength of the

algorithm lies in the use of this special segmentation

procedure plus the suitable feedback from the Kalman-

filter output for optimizing the search space of the

segmentation process.
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In theory, it would be possible to aim for a more

probabilistic combination between Kalman-filter and

P2DHMM. One possibility for this would be to affect the

measurement equation (5) by the production probability of

the HMM, e.g. by increasing the value of the matrix R

(indicating the measurement noise covariance) if the

production probability is low (thus introducing less

confidence in the current measurement). One problem

with this idea is the fact that the production probability of

the P2DHMM is mainly affected by the probability

generated by the background according to its states which

could be low if the current background does not match the

model of the background states, although the segmentation

could be very good due to a good person match for the

foreground states. There are other probabilistic combination

possibilities feasible and we plan to investigate this point in

future activities.

Furthermore, the P2DHMM approach allows the

elegant incorporation of additional features, such as e.g.

colors or textures in the person segmentation procedure,

by using multi-stream techniques. In this case, different

features are derived from each frame of the image

sequence (for instance DCT-based features, color features

and texture features). Each different feature type leads to a

different feature stream, if all frames of the sequence are

processed. The states of the P2DHMM model the

occurrence of each feature with a different probability

density function, and the overall observation probability

of the combined features in a certain state is computed as

the product of the probabilities generated by each

feature’s density function. Weighting factors can be

introduced in order to adjust the influence of the various

feature streams. Consequently, the system can even be

used to track a person in presence of other moving

persons, if the person to be tracked has been acquired

previously by the P2DHMM parameters which will

automatically learn the shape cues from the person’s

body and color and texture cues from his clothes.

The complete interaction procedure between

P2DHMM and Kalman-filter is illustrated in Fig. 3: On

the left upper side, a moving person has been segmented,

and the coordinates of the COG serve as measurement

signal for the Kalman-filter which predicts a new

state vector from this measurement input and the motion

equation. On the right upper side, this leads to a

new bounding box which can be derived from the

updated state vector (inner black rectangle). This area is

enlarged and thus yields an image fraction shown on the

right lower side (black bold rectangle) which serves as

search area for the P2DHMM. From there, the loop is

closed by yielding a new segmentation which

generates the new measurement signal in the upper left

part of Fig. 3.

3. Background adaptation

As already mentioned at the end of Section 2.1, one

advantage of our P2DHMM-based tracking system is that it

can easily be adapted to different environments, even online

during a tracking process.

Because we know which states of the P2DHMM are

responsible for the background, it is feasible to adapt

specifically those background states to changes in

Fig. 3. Block diagram of the interaction between the P2DHMM and the Kalman-Filter.
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the background of the scenery [4]. This adaptation of

the classifier can lead to an improved and more reliable

person segmentation due to a better discrimination

between person and background model. Therefore, we

think that our system architecture is especially suitable for

such an adaptive approach.

The adaptation procedure is illustrated in Fig. 4. The

left part of this figure shows the states of the P2DHMM

before the adaptation. To this model a Baum-Welch

re-estimation algorithm is applied using the image

section in the current bounding box as training data.

This globally adapts the probability density functions

of all states of the model to the current search region

within a specific image frame. Since we apply only

a few FB-iterations, starting with the parameters of the

previous background information, this procedure corre-

sponds to an adaptation rather than to a re-estimation and

can also be carried out relatively quickly. The result is a

globally adapted model to which subsequently a

weighted merging process is applied that adopts the

person states of the current model unchanged while

updating the background states with a suitable weighting

factor. The final result is an updated model with

unchanged person states and adapted background states,

as shown at the right part of Fig. 4. Background

adaptation is thus possible because the spatially

distributed structure of our model gives us the possibility

to know exactly where the new background information

is assigned to and which part of our model we have to

update accordingly.

The person states are left unchanged to ensure that the

original model is not changed too much which could impair

the quality of the segmentation. This is reasonable because

it is not to be expected that the person will change

significantly during the tracking process and because the

usual changes of the person can be taken into account by the

elasticity of the model. With our adaptation procedure it is

also possible to update the person states of the model with a

small weighting factor, but it has to be considered that this

could decrease the robustness of the tracking process

because the adaptation is unsupervised. Section 4 will

show some effects of our adaptation procedure on actual

tracking examples.

4. Experimental results

Fig. 5 at the end of the article shows a tracking

example for a moving person in a complex environment.

It contains six frames selected from a complete tracking

sequence consisting of approximately 200 frames.

The complete sequence is available under http://www.

mmk.e-technik.tu-muenchen.de/demo/tracking.html.

The tracking result is visualized by the bounding box

estimated from the Kalman-filter in each frame. In the

first frame of this sequence, a person enters a corridor and

passes through the door. In the second frame, another

person is leaving from a door in that corridor. This second

person passes the person to be tracked in the third and

fourth frame. Note that between the first and the second

frame as well as between the second and the third frame a

fast zooming operation is performed. It can be seen that

despite of the additional motion—caused by the moving

door and the zooming operation—the person is tracked

reliably, even when another person is passing through the

scene. Special attention should also be given to

the zooming operation with respect to another effect:

Typically in a zooming operation, not only the object’s

location but also its size can change dramatically. It is

well known that HMM’s are especially suitable for scaling

effects in the time or space domain, due to the

self-transitions allowing the accumulation of an arbitrary

number of feature blocks and thus processing objects of

(almost) arbitrary size. In the image sequence, this effect

of size variation and the way this is handled by the

tracking algorithm can be seen very well.

Fig. 6 shows six frames of another complex scene, where

a person passes a traffic light with moving cars in the

background. This entire sequence is available under the

same above web address. In the second frame, a van passes

behind the tracked person. The most remarkable frames are

in third and fourth position, where the person passes the pole

of the traffic light (and therefore is partially occluded for a

while) and a car is additionally passing through the scene.

Also note that a panning operation is performed throughout

the entire image sequence, generating additional motion in

each frame. Also in this case, the tracking procedure has no

Fig. 4. Procedure of the adaptation of the P2DHMM to the background of the search region.
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difficulties, neither with the disturbing motion nor with the

occlusion by the pole.

In Fig. 7, a comparison of tracking results with

background adaptation on and off is shown. In the upper

row there are three frames from a video sequence as in Fig. 6

with tracking marks inserted by a tracking process with

background adaptation switched off. These frames are

especially interesting because a red van is passing behind

the person who is to be tracked, so the background

around the person will change fast and strongly. The

markings of the tracking process consist of three rectangles

and a cross. The outer large rectangle surrounds the search

region, the inner bold rectangle describes the Kalman

estimation (i.e. the prediction of the Kalman-filter) of the

position of the person, the inner thin rectangle surrounds

the person area which is segmented by the P2DHMM (that

is the area within the search region that is classified as

belonging to the person; see also Fig. 8), and the cross

describes the COG of the person area. It can be seen from

those markings that in the lower sequence (where adaptation

is switched on) the person is captured significantly more

precisely. This is especially clearly visible in the second and

third frame of each sequence, where the white Kalman box

is much smaller and more focused to the person in the lower

sequence, whereas it is distracted by the passing van in the

upper sequence.

In Fig. 8, magnifications of the search regions from the

image frames shown in Fig. 7 are displayed, with the

image pixels that have been classified as part of a person

marked in white. It can be seen that without background

Fig. 5. Indoor tracking example with a passing person and zooming operations.
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adaptation the segmented person area is spread towards

the passing van in the background (especially in the last

frame), while this effect is strongly reduced when the

background adaptation is active. The overall outcome is a

much more precise tracking result if the background

adaptation is switched on.

5. Summary and conclusion

In this article, a new approach to the tracking of people

in arbitrary complex environments has been presented.

The major novelty of this approach is the fact that through

the use of P2DHMMs the advantages of model-based and

of feature-based tracking approaches can be combined,

leading to a very reliable module for person segmentation

that can be combined effectively with a Kalman-filter,

taking care of the dynamic aspects of the tracking

procedure, and contributing to an effective limitation of

the search region for the segmentation. The tracking

examples presented in this article demonstrate that this

approach indeed has the basic capability of tracking

people in arbitrary environments, with arbitrary motion in

the background that can be caused by other moving

objects or zooming and panning operations. It has been

demonstrated how our approach can be effectively

extended to an adaptive procedure, with an on-line update

of our background model, resulting in an improved

Fig. 6. Outdoor tracking example with passing cars, occlusion by a pole and panning operations.
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tracking performance. Further possible improvements

include the investigation of alternative Kalman-filter

structures and better interaction between the two stochas-

tic modeling techniques P2DHMM and Kalman-filter.

These improvements are currently under investigation.

Other long term goals of this research include the

previously mentioned aim of tracking specific persons in

the presence of other moving people using highly

sophisticated P2DHMMs with multistream techniques.
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