
COMPARING NN PARADIGMS IN HYBRID NN/H
TIED POSTER

J. Stadermann, G.

Institute for Human-Machine
Munich University of

Arcisstrasse 21, 80290 Mu
Phone:+49-89-289-{283

Email: {stadermann, rigoll}

ABSTRACT

Hybrid NN/HMM acoustic modeling is nowadays an estab-
lished alternative approach in automatic speech recognition
technology. A comparison of feed-forward and recurrent
neural network topologies integrated in the tied-posteriors
framework is presented. We give some insights in the train-
ing process of the networks estimating class posterior prob-
abilities and show how the net’s quality can be determined
by introducing a new measurement prior to evaluating the
complete ASR system. Finally we demonstrate the flexibil-
ity of the tied-posteriors framework by showing results for
different context independent and context dependent acous-
tic models all based on the same system structure.

1. INTRODUCTION

A standard approach for designing acoustic models for
speech recognition is the combination of hidden Markov
models (HMMs) with (Gaussian) multi-mixture probability
densities either using separate mixtures for each HMM state
or using a set of shared (tied) mixtures. Improvements con-
cerning speed and/or accuracy of the acoustic model can be
achieved by using a combination of neural networks (NN)
with hidden Markov models. There are several possibili-
ties of integrating the NN in the speech recognizer architec-
ture: The NN can replace the conventional feature extrac-
tion [1], it can be used as an advanced vector quantizer in
discrete HMM systems [2] or it can be used as HMM out-
put probability estimator [3, 4]. In the following we will
only discuss the latter case. The first approach of proba-
bility estimation with a NN [3] uses a multi-layer percep-
tron (MLP) to estimate the posterior probability of each
phoneme (given a feature vector) and use these probabili-
ties directly in the HMM framework. This limits the HMM
topology to one-state HMMs and allows context-dependent
HMMs only with additional effort. The introduction of tied
posterior probabilities [4] overcomes these limitations: The
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ut of the NN is used as codebook of a semi-continuous
M and the HMM output probabilities are composed of a
ghted sum of the posterior probabilities entries. Starting

this approach presented - which uses an MLP for the
ability computation - we introduce a recurrent neural
ork (RNN) as posterior probability estimator. From [5]
known that a RNN-based recognition system produces
r rates comparable to traditional HMM approaches. Us-
a RNN allows the implicit use of context information
he network as well as the reduction of the number of
meters compared to a multilayer perceptron (MLP). In

trast to [5] where more than one RNN is used in the com-
e system we take only a single RNN and can therefore
ieve an even smaller system with nearly equal perfor-
ce.

thermore we compare the performance of MLP and
N tied-posterior systems if HMM state posterior proba-
ies are computed instead of phoneme posteriors. Finally
present the extension to triphone HMMs which is quite
asy task using tied-posteriors.
The remaining paper is organized as follows: Section 2
ls with the neural network paradigms that we have in-
igated, section 3 describes the architecture of the hy-
speech recognizer, section 4 shows the experiments’

ironment and methodology and section 5 presents the
ieved results. Finally section 6 summarizes the achieve-
ts and gives some remarks on future work.

FEED-FORWARD AND FEEDBACK NEURAL
NETWORKS

s section presents the architecture and the used algo-
ms of feed-forward and feedback neural networks (NN).
t to the networks is a feature vector consisting of 12

CC coefficients, the frame energy and the first and sec-
derivative of these values (delta and acceleration fea-

s), resulting in a feature vector size of 39. In our frame-



work, one feature vector is computed every 10 ms from a
data frame with a width of 20 ms. To improve the conver-
gence speed, the features are normalized by subtracting the
training set’s mean value and dividing by the training set’s
variance [6].
Targets for the training process are obtained by a forced
Viterbi alignment of the training data. In our experiments
we have used two sets of target values:

• Viterbi alignment on phoneme level: Each NN output
node represents one phoneme

• Viterbi alignment on HMM state level: Each NN out-
put node represents one HMM state. For more details
on the HMM topology, see section 3.

2.1. Feed-forward networks

The NN paradigm used here is a multi-layer perceptron
(MLP) based on the one described in [3]. It is a three-layer
network with full connection between nodes in adjacent lay-
ers. The input layer consists of the feature vector of frame t
plus 2m additional vectors from neighboring frames result-
ing in an input vector �u = (�f(t − m), . . . , �f(t), . . . , �f(t +
m))T The hidden layer uses the standard sigmoid non-
linearity. Since the output layer should represent probabili-
ties we apply the softmax function to the output vector.
The MLP is trained with supervised back-propagation, the
weights are updated after a block of training sentences is
processed. Following [6, 7], we train the network to min-
imize the cross entropy between classes, to prevent over-
fitting we stop the training if an error measure1 on a cross
validation set is increasing. Optionally we can force the net-
work to train a fixed number of iterations, before the cross
validation test is performed.

2.2. Recurrent networks

Our recurrent neural network (RNN) is based on the one
presented in [8], see figure 1. It is a partial recurrent net-
work with separate output and feedback nodes, but with
full connection between input, output and feedback nodes.
In [9] is is stated that recurrent neural nets are as well as
multi-layer perceptrons suitable for estimating class poste-
rior probabilities. A RNN possesses the general advan-
tage that context information of past time steps is implicitly
stored in the feedback nodes. By delaying the network de-
cision by m frames, we can incorporate information about
future time frames, as well. So, applying feature vector
�u(t − m) = �f(t − m) to the input, we obtain the output
�y(t) and the feedback vector �x(t + 1). Similar to the MLP

1In our case, the frame error rate, described in section 4 is used.
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Fig. 1. Basic RNN architecture

use a sigmoid function in the feedback nodes and a soft-
function

yi(t) =
exp(si(t))∑J

ξ=1 exp(sξ(t))
(1)

e output nodes.
e we are dealing with a quite large training set (roughly
frames), the back-propagation through time (BPTT) al-
thm was found to be the most suitable training algorithm
his task: In the first pass the network propagates through
ock of training data and unfolds the network in time.
result is a virtual multi-layer perceptron with a number
idden layers equal to the number of time steps and an
ut vector at each time step. A second pass is required

ropagate the output errors back through time. The func-
to be optimized is again the cross entropy function and

stopping criterion is the same one as in the MLP case.
ering from the MLP training described above, we apply
RPROP [10] weight update strategy here. Parameters
e tuned are the number of feedback nodes, the block
used for BPTT and the number of frames after which a

ght update takes place.

3. INTEGRATION OF THE NN IN THE HMM
FRAMEWORK

already stated in section 1, we are using the tied-
teriors approach presented in [4] to integrate the neural
in the HMM framework. The tied-posteriors approach
ased on a (continuous) tied-mixture system where the
ut probabilities of each state are denoted as

p(�x|Si) =
J∑

j=1

cij · p(�x|j) , (2)
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Fig. 2. HMM/NN acoustic model with I = 3 HMM states

where Si is the HMM state and cij are the mixture coeffi-
cients. The idea is now to replace the probability density
p(�x|j) by the posterior probability Pr(j|�x) by using

p(�x|j) =
Pr(j|�x)p(�x)

Pr(j)
(3)

Since p(�x) is independent of the HMM state Si it can be
omitted and (2) becomes

p(�x|Si) ∝
J∑

j=1

cij · Pr(j|�x)
Pr(j)

(4)

The posterior probability Pr(j|�x) is estimated by the NN.
As stated in section 2 the number of output nodes of the NN
J is either equal to the number of phonemes or to the num-
ber of HMM states, the a-priori probability Pr(j) can be
estimated by counting the phoneme/state occurrences in the
training set for both cases.

3.1. Monophone HMMs

All phoneme HMMs and the silence HMM are linear left-
to-right models with 3 states. We use an additional HMM
for short pauses between words that consists of one state.
The overall number of monophone HMMs is 47 with 139
states in total. Figure 2 shows the principle set-up of the
tied-posteriors system. The advantage of this approach is
that the posterior probabilities are not directly connected to
the HMM but only via the mixture coefficients cij . It is pos-
sible to change the number of network outputs (here from
47 to 139) without changing the HMM topology. On the
other hand, the HMM topology can be changed - one state
HMMs, 3-state HMMs, triphones - without changing the
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. The mixture coefficients cij are estimated using a stan-
maximum likelihood criterion and the Baum-Welch

ing algorithm.

Triphone HMMs

entioned before, introducing triphones produces no ex-
rchitectural effort in a tied-posteriors system. The num-
of HMMs increases from 47 to 10500, but according to
4 the number of NN outputs stays at 47 and 139, re-
tively. We use word-internal triphones and start with a
ed single-mixture monophone system as initialization.
educe the number of parameters we use a modified tree-
d clustering algorithm based on the one available in the

den-Markov model tool kit [11] applied to the weights
After tree-based clustering, the number of models is

ced to roughly 1000.
The language model used for the word recognition is the
dard bigram language model that comes with the WSJ0
base.

4. EXPERIMENTAL ENVIRONMENT

experiments have been evaluated on the WSJ0 speech
corpus with a closed vocabulary of 5000 words. The
and the HMM have been trained on the speaker-

pendent training corpus which contains 7240 spoken
ences. The speech recognition performance of the com-
e system has been tested on the speaker-independent test

November 1992.
itionally, we have computed the frame error rate (FER)
e neural network on a training set’s sub set for cross val-

ion during the NN training (724 sentences). The frame
r rate is computed as follows:

• Take the index of the output node with the highest
posterior probability

• Compare this index with the Viterbi alignment - if the
index corresponds to the correct model count a cor-
rect frame otherwise count an error

m [12] it is known that a low FER does not automati-
y guarantee a low word error rate. The results in section
ove this fact, so we try to find another indicator to judge
NN’s quality for speech recognition before training the
Ms. Here, we suggest to compute the NN’s phoneme
r rate (PER). The PER is computed by creating a se-
nce of phoneme symbols resulting from the sequence of
est NN posterior probabilities. Figure 3 illustrates the
tion of the phoneme sequence. This phoneme sequence
mpared to the training data with common dynamic pro-
ming techniques taken from [11]. We obtain an error
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Fig. 3. Phoneme string created by the neural net

rate as follows:

PER = 1 − Correctness (disregarding insertion errors)
(5)

Confusions between the two output nodes representing si-
lence and short pause are eliminated in the PER, since they
do not influence the word error rate. Additionally, we count
the absolute number of insertions, deletions and substitu-
tions. These measures can tell us, if the NN tend to change
its probability values quite rapidly between adjacent frames
(high number of insertions) or if it shows some tendency to
keep its current output state (low number of insertions). We
found out, that the number of deletions and substitutions de-
termines the NN’s performance in the ASR system.
Finally, the word error rate (WER) (WER = 1−Accuracy)
of the complete hybrid system is evaluated on the given test
set. As stated in section 3, the tied-posteriors approach al-
lows arbitrary HMM topologies, so we present results for 3-
state monophone models as well as 3-state triphone HMMs.

5. RESULTS

The first part of the results is a comparison of frame error
rates (FER) obtained on our cross-validation set, followed
by a table with phoneme error rates (PER) computed on
the same set of data. The FER and PER of RNN139 and
MLP139 (state alignment) are computed by adding the three
state posteriors to get a phoneme posterior probability. This
procedure allows to compare the nets at least to some extent
with RNN47 and MLP47, respectively

The weight factor denotes the ratio between the number
of weights compared to the first given MLP. The number of
weights directly determines the speed of the NN, so a lower
value is desirable. Since the RNN computes the weights
at no extra cost2, the weight factor is proportional to the
gain in computing time. The NNs with 139 output nodes
are trained using a HMM state alignment, the NNs with 47
output nodes use a phoneme alignment. The MLP uses 7
frames in the input layer (corresponding to m = 3, see sec-
tion 2), the RNN takes one frame as input and delays its
decision by 3 frames (m = 3).

2compared to a feed-forward net
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LP47 47 273 321000
(1,0)

27,54%

N47 47 39 196680
(0,61)

25,64%

LP139 139 273 413000
(1,29)

27,96%

N139 139 39 149260
(0,46)

27,71%

able 1. Frame error rate (calculated from NN output)

ural net del. subs. ins. err.
LP47 575 7466 50138 13,92%
N47 983 8401 32608 16,25%

LP139 664 7620 47376 14,35%
N139 694 8530 45881 15,97%

ble 2. Phoneme error rate (calculated from NN output)

From table 1 the RNN paradigm is the clear winner re-
ing frame errors, but looking at table 3, the MLP still

ieves better performance. Starting from the results in
we compute the PER as described in section 4. Here, a

erence is observed: The RNN produces a much smaller
ber of insertions due to the lower FER. On the other

d, the error (disregarding insertions) is higher than in
MLP case. These two facts let us conclude that the
P produces more errors during a phoneme segment, but
gns most segments to the correct posterior vector (with
correct phoneme getting the highest probability value).
ontrast to that, the RNN produces little errors within
oneme segment, but often assigns the wrong posterior

tor to other segments. These segments get more or less
in the HMM decoding step. A reason for this might be
RNN’s built-in state-keeping behavior.

ural net del. subs. ins. error
LP47 106 385 61 10,31%
N47 109 520 94 13,51%

LP139 80 388 61 9,88%
N139 73 437 81 11,04%

Table 3. Word error rate Monophones

The RNN’s higher word error rate in table 3 mainly
s from a higher number of (word) substitutions, a fact
is again a hint for our discussion of the PER results. The
ificantly better performance of RNN139 (state align-
t) compared to RNN47 (phoneme alignment) shows us



that increasing the RNN’s number of feed-forward weights
helps to overcome the explained problems.

neural net del. subs. ins. error
MLP47 100 343 42 9,15%
RNN47 122 461 64 12,09%
MLP139 82 334 42 8,56%
RNN139 80 418 70 10,52%

Table 4. Word error rate Triphones

Using tree-based clustered triphones (table 4), the gain
in accuracy is evident throughout all net types. The rates
might further improve if a better clustering is applied or if
the recognition engine is tuned towards the triphone system
(we use exactly the same set up as for the monophone case).

6. CONCLUSION

The tied-posteriors approach is presented emphasizing its
flexibility to combine different neural net paradigms with
varying HMM topologies. We compare feed-forward and
recurrent neural networks estimating a varying number of
posterior probabilities. A gain in terms of computation time
is possible using recurrent networks due to the lower num-
ber of weights, but its inherent state-keeping attribute gener-
ated by the feedback nodes lowers the recognition accuracy.
Increasing the number of forward weights improves the sit-
uation. Apart from the frame error rate we introduced a new
measurement to rate the neural net’s performance prior to
training complete acoustic models. Our comparison using
the WSJ0 task includes monophone and triphone acoustic
models and both NN types achieve a performance compa-
rable to standard Gaussian systems. Future work includes a
closer look at the RNN’s behavior to come up with the MLP
results and the application of clustering techniques to adjust
the number of output neurons in a systematic and optimal
way.
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