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Abstract
A comparison of traditional continuous speech recogniz-
ers with hybrid tied-posterior systems in distributed en-
vironments is presented for the first time on a challeng-
ing medium vocabulary task. We show how monophone
and triphone systems are affected if speech features are
sent over a wireless channel with limited bandwidth.
The algorithms are evaluated on the Wall Street Journal
database (WSJ0) and the results show that our mono-
phone tied-posterior recognizer outperforms the tradi-
tional methods on this task by a dramatic reduction of
the performance loss by a factor of 4 compared to non-
distributed recognizers.

1. Introduction
Distributed speech recognition (DSR) is an emerging
technology to implement speech recognizers on thin
clients connected to a base station over a (wireless) chan-
nel. The distributed speech recognition systems that we
want to investigate are based on recognizers using hidden
Markov models (HMMs), a feature extraction module, a
Viterbi recognition engine and a language model (figure
1). To improve the recognition performance especially
in a distributed environment we present a hybrid speech
recognizer by adding a neural net to the feature extraction
module that computes posterior probabilities [1].
The idea of DSR is to let the client compute the recogni-
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Figure 1: Standard speech recognizer architecture

tion features and then transmit these features to the base

station where a big server is located that holds the mem-
ory consuming language model and the HMMs (see fig-
ure 2). Since we consider the transmission channel to be
loss-less1 the parameter that deteriorates the recognition
result (compared to a stand-alone recognizer) is the al-
lowed bit rate on the channel.
Recently, the AURORA project [2] has defined an envi-
ronment for developing front-ends for DSR. This envi-
ronment defines a channel with half the bit rate of a stan-
dard GSM data transmission line (9.6 kbit/s), so the max-
imum bit rate is 4.8 kbit/s. Subtracting channel coding
bits and header the effective bit rate usable for data is 4.4
kbit/s (more details can be found in [3]). The AURORA2
training data is based on parts of the TI digits database
artificially added with noise. This database only contains
single digit words or short sentences with digit chains.
This paper’s goal is to port our methods developed for the
TI digit database and the AURORA2 database [1,4] to the
WSJ0 database [5] that includes a considerably larger vo-
cabulary (5000 words) and to demonstrate the feasibility
of hybrid distributed speech recognition for a quite com-
plex speech recognition task. Here it is no longer feasi-
ble to use whole-word HMMs as proposed in [2]. Instead
we start with traditional monophones based on the LIMSI
phoneme set with 47 phonemes.
Furthermore, good recognition results on this task are
achieved with triphone systems, so we also want to inves-
tigate the behavior of triphone recognizers in a distributed
environment. Sections 2 and 4 deal with standard acous-
tic models, section 5 explains the hybrid tied-posterior
approach and section 6 presents the results.

2. Feature extraction and vector
quantization for continuous density

recognition
In this section, we first investigate the conditions required
if contiuous density HMMs are employed for DSR. As
will be seen, a vector quantizer is needed on the client
side for this scenario to transmit the features over the

1assuming appropriate channel coding
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wireless channel. The incoming audio data is sampled
and divided into overlapping frames (frame width 25 ms,
frame shift 10 ms). We compute 13 mel-frequency cep-
strum coefficients (MFCCs) including the zeroth coeffi-
cient c0 and the logarithmic frame energy E. The fea-
ture vector is divided into 7 sub-vectors according to the
scheme proposed in [3] and depicted in figure 3. Fi-
nally, each sub-vector is quantized using a k-means vector
quantizer with an Euclidean distance measure. The re-
sulting number of vectors in each codebook is also given
in figure 3. Since only the 7 codebook indices need to be
sent over the channel the bit rate necessary for the trans-
mission of the feature vectors reduces to

BRVQ =
6 · 6 bits + 8 bits

10 ms
= 4.4 kbit/s

3. Continuous density monophone
recognizer

The continuous HMMs use Gaussian mixture probabil-
ity density functions (pdf) to model the output pdf of the
feature vector given the HMM state:

p(~x(t)|state i) =

J
∑

j=1

cij

1
√

(2π)nσ2
ij

e
−

(~x(t)−~mij )2

2σ2
ij (1)

Since we only receive VQ indices from the client, we
have to decode the data by replacing the VQ label with
the corresponding codebook vector (this assumes that the
codebook vectors are known on the server side).
Now, additional delta and acceleration coefficients are
computed on the server side for each frame. The fi-
nal feature vector contains then 42 elements (14 “re-
stored” components plus delta coefficients plus acceler-
ation coefficients). The HMM topology consists of 3-
state HMMs for all phonemes and the sentence start/end
silence model. The short pause model is a 1-state
HMM. The training process applies the Baum-Welch re-
estimation and is stopped if 12 Gaussian mixture compo-
nents are reached.
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Figure 2: DSR architecture
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Figure 3: Codebook generation of the vector quantizer (7
codebook vector indices per frame

4. Continuous density triphone recognizer
The triphone system uses the same features as the mono-
phone system. Since the number of HMMs increases
from 47 to 10500 we expect more distortion effects for
this large number of model units, coming from the quan-
tization error. On the other hand we gain more accuracy
modeling the different speech sounds including contex-
tual information. Experiments described in section 6 will
give the answer to the question which effect will dom-
inate the other one in a distributed recognizer. We use
word-internal triphones and start with a trained single-
mixture monophone system as initialization. If 6 mix-
tures are reached we stop the training process and start
the recognition. To reduce the number of parameters in
the Gaussian system we use the tree-based clustering al-
gorithm available in the Hidden-Markov model tool kit
(HTK) [6]. After tree-based clustering, the number of
models is reduced to 1050.

5. Tied-posterior front-end and recognition
engine

Tied-posteriors represent a hybrid NN/HMM speech
recognition technology and have been introduced in [7].
It has been successfully applied to DSR in [1, 4, 8] and
shall now be investigated the first time for a medium
vobulary distributed speech recognition task. The tied-
posterior system is based on a multi-layer perceptron
(MLP) that is trained to estimate phoneme posterior prob-
abilities using the standard back-propagation training al-
gorithm [9]. In the distributed framework, the MLP is
located on the client side and the posterior probabilities
are sent over the channel.
The MLP’s target values for the training process are cre-
ated by a Viterbi alignment of the training set. We use
the same phoneme set as in section 3, so we have 47
neural net (NN) outputs. The NN’s input layer contains
the current feature vector ~f(t) with 12 MFCC coeffi-
cients, the logarithmic frame energy and delta and accel-
eration coefficients resulting in 39 components plus 2m
adjacent feature vectors (for our experiments we chose
m = 3). The entire input vector is then ~x = ( ~f(t −

m), . . . , ~f(t), . . . , ~f(t + m)).
The HMMs use the MLP outputs as tied probabilities for
all states (see [7]). Thus, the HMM output probabilities



are given as:

p(~x|Si) =

J
∑

j=1

cij ·
Pr(j|~x)p(~x)

Pr(j)
(2)

where Si is the HMM state, cij are the mixture coeffi-
cients (

∑J

j=1 cij = 1) and J is the number of phonemes.
Since p(~x) is independent of the HMM state Si it can be
omitted and (2) can be rewritten as

p(~x|Si) ∝

J
∑

j=1

cij ·
Pr(j|~x)

Pr(j)
(3)

Transmitting 47 probability values2 would exceed the
maximum bit rate so we need to quantize the NN output.
Furthermore, [7] states that the important information is
stored in a few NN outputs with the other NN outputs
being close to zero. So we only transmit the np high-
est probabilities with bnp bits each using the non-linear
quantizer depicted in figure 4. Additionally, the encoded
index of the quantized probabilities must be known which
takes ni = 6 bits (47 possible positions) and the resulting
bit rate is

BRTP =
np · (bbp + ni)

10 ms
=

4 · (5 + 6) bits

10 ms
= 4.4 kbit/s

On the server side we use the inverse quantizer to receive
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Figure 4: Non-linear quantizer (np = 4, bnp = 5)

the original values again (distorted by the quantization er-
ror). Posterior probabilities not received are set to 0.
The main advantage of the tied-posteriors approach in the
DSR framework is the neural net’s ability to concentrate
the important class information in only a few probability
values. Moreover we have information about the frame
context processed in the NN and can extend this infor-
mation without changing the amount of transmitted data.
In [8] we have shown how this characteristic can be used
to include additional features like RASTA-PLP [10] to

2stored as 4 bytes-float values

cope with non-office environments.
The triphone system using tied-posteriors is created ba-
sically in the same way as explained in section 4. The
only change is the replacement of the Gaussian functions
with the 47 NN outputs and the application of eq. 3. An-
other interesting conclusion is the fact that the difference
in performance for a monophone and triphone system in
distributed environments is dramatic for standard systems
and very small for tied-posterior systems.

6. Results
Our results are computed on the WSJ0 database. The
training set for all experiments is the official speaker in-
dependent training set si-84. Tests have been performed
on the speaker independent test set si-05 with a vocabu-
lary size of 5000 words [5]. The following abbreviations
are used in the result tables:

- MFC39-MLP - 12 mel-cepstrum coefficients plus
log. frame energy, with delta and acceleration co-
efficients, the quantized posterior probabilities are
“dequantized” on the server side

- MFC14-VQ7 - mel-cepstrum features (13 mel-
cepstrum coefficients (including c0) plus log.
frame energy) quantized to seven vector indices -
on the server side the indices are replaced by the
codebook prototypes and delta and acceleration co-
efficients are computed

- tied-post. - tied-posterior HMM system described
in section 5

- mono - monophone HMM system

- triphone - triphone HMM system with word-
internal triphones

- WER - word error rate

In both tables the first column denotes the feature ex-
traction method used on the client side3, the second col-
umn describes the recognizer’s type on the server side.
The last column denotes the word error rate (WER =
1−Accuracy). Table 1 shows the results obtained with the
Gaussian system and the tied-posterior system in normal
(i.e. non-distributed) recognition mode. Table 2 presents
the same systems now in the distributed environment with
quantized features (bit rate 4.4 kbit/s).

First regarding the monophone systems we can ob-
serve just a slight degradation of the tied-posterior result
if quantized features are used (relative loss 14%). In con-
trast to that the relative loss of the Gaussian system is
over 65%. Thus, we can state that the tied-posterior ap-
proach is much more robust to quantization than the con-
tinuous Gaussian recognizer. The triphone systems be-
have a little bit different: Here, both systems are very

3in case of distributed recognition



feature extraction recognizer WER
(%)

MFC14 cont. mono 16.64
MFC42-MLP tied-post.

mono
10.31

MFC14 cont. triphone 12.63
MFC42-MLP tied-post. tri-

phone
9.15

Table 1: Results on the WSJ0 test set with a standard
recognizer

feature extraction recognizer WER
(%)

MFC14-VQ7 cont. mono 27.42
MFC42-MLP tied-post.

mono
11.74

MFC14-VQ7 cont. triphone 13.37
MFC42-MLP tied-post. tri-

phone
9.86

Table 2: Results on the WSJ0 test set with a distributed
recognizer

robust to the feature quantization (7% relative loss tied-
posterior, 6% Gaussian), so we can state that the higher
number of modeling units leads to more accuracy in spite
of the quantization error independent of the feature trans-
mission method.
However, in the monophone case the distributed tied-
posterior system is clearly outperforming the Gaussian
WSJ system, the error increase of the hybrid system is
less than a quarter of the Gaussian’s one. It shows that the
tied-posterior architecture seems to be especially suitable
for distributed speech recognition even for complex and
demanding recognition tasks.

7. Conclusion

We have compared continuous and hybrid tied-posterior
speech recognizers in a distributed environment where
the feature extraction is separated from the other mod-
ules. The connection is established via a channel with
limited bandwidth. Experiments carried out on the WSJ0
database have shown that the hybrid tied-posterior ap-
proach can cope better with quantized features than tra-
ditional continuous recognizers. The second conclusion
drawn from the experiments is that a triphone system is
generally much less affected by the quantization error.
This effect is valid for the standard Gaussian system as
well as for the hybrid one.
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