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ABSTRACT

In this paper we propose a speaker clustering scheme working in
’Eigenspace’. Speaker models are transformed to a low-dimensio-
nal subspace using ’Eigenvoices’. For the speaker clustering pro-
cedure simple distance measures, e.g. Euklidean distance can be
applied. Moreover, clustering can be accomplished with base mo-
dels (for Eigenvoice projection) like Gaussian Mixture Models as
well as conventional HMMs. In case of HMM models re-projection
to original space readily yields acoustic models. Clustering in
subspace produces well-balanced cluster and is easily to control.
In the field of speaker adaptation several principal techniques can
be distinguished. The most prominent among them are Bayesian
adaptation (e.g. MAP), transformation based approaches (MLLR)
as well as so-called Eigenspace techniques. Especially the latter
have become increasingly popular, as they make use of a-priori
information about the distribution of speaker models. The ba-
sic approach is commonly called the Eigenvoice (EV) approach.
Besides these techniques, speaker clustering is a further attractive
adaptation scheme, especially since it can be - and has been - easily
combined with the above methods.

1. INTRODUCTION

In the topic of speaker adaptation several fundamental techniques
can be distinguished: One of the most prominent is probably Baye-
sian adaptation (e.g. MAP), proposed by Gauvain in [1, 2]. An-
other important adaptation strategy is based on affine model trans-
formation(s): Woodland and Leggetter (MLLR,[3]), Digalakis and
Neumeyer [4, 5]. Recently another adaptation scheme has received
remarkable interest: Eigenvoices, introduced by Kuhn et. al [6].
The approach is based on a transformation of the model parame-
ters to a low-dimensional subspace. By restricting adapted models
to this subspace, efficient use of the information about the distri-
bution of speaker model parameters can be made. The latter ap-
proach is particularly effective for rapid speaker adaptation with
sparse data.

Besides these adaptation techniques another principal adap-
tation scheme can be subsumed under the term ’speaker cluster-
ing’. The basic idea behind speaker clustering is to find groups
of speakers in a database, who have similar acoustic properties -
or at least similar properties in feature space. For each of these
groups individual HMMs can be generated. As a first approach
this can be used for speaker adaptation by selecting a model for a
new speaker from the set of given speaker or cluster models - based
on a similarity measure. In this basic form speaker clustering has

a big advantage over other adaptation schemes: In case of unsu-
pervised adaptation there is no need for a phonetic segmentation
in order to allow model selection. If an adaptation step is based
on a phonetic segmentation, it is commonly extracted from a 1st-
pass recognition result using generic or unadapted models - always
hoping the recognition was good enough. Such an assumption is
usually prone to errors. As far as speaker clustering is concerned,
in order to select a model for an unknown speaker from a pool
of cluster (recognizer) models, the only need is a robust similar-
ity measure. The pre-trained models can be either representing a
whole cluster or can be taken from a representative for a cluster
(reference speaker). Although the achievable improvements are
limited, such a selection strategy serves very well as a first stage in
a series of adaptation steps.

Various forms and extensions to the speaker clustering idea
have been investigated, e.g. by Furui [7] or Gao [8]. Recently
speaker clustering has received more attention since it can easily
be combined with the above adaptation strategies, as shown e.g.
by Johnson [9] or Gales [10].

A key problem in speaker clustering is the grouping proce-
dure itself. Especially for high-dimensional problems the grouping
process can be difficult to control. Sophisticated and often hand-
crafted distance measures are mostly applied to avoid divergence
of the clustering process and to achieve well-balanced cluster.

In this paper we propose a clustering procedure working in the
low-dimensional Eigenvoice subspace of speaker model parame-
ters. The transformation allows a high dimensionality reduction,
together with a decorrelation of model parameters themselves. As
a result of this transformation, simple speaker distance computa-
tion is possible.

2. EIGENVOICES

It was Kuhn et al. who first introduced the concept of Eigenvoices
[6]. The idea was probably inspired by the concept of Eigenfaces,
which has received much attention in image processing, more pre-
cisely in face recognition. The basic idea behind this approach is
to apply a Principal Components Analysis (PCA) to speaker model
parameters instead of - what is commonly done - applying it to the
feature parameters. PCA achieves decorrelation by determining
the principal axes (Eigenvoices) of the speaker covariance matrix.

PCA is basically a linear transformation aimed at finding new
basis vectors, i.e. a new coordinate system in which the trans-
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formed model parameters are linearly independent. In this sense,
PCA is highly effective for dimensionality reduction, since it al-
lows to determine the most important axes, i.e. the axes, which
produce the least error if all other basis vectors are omitted.

The algorithm can be outlined as follows:

� train a speaker-dependent (SD) model for each speaker in
the database, using e.g. MAP

� for all speakers: align all model parameters of each speaker
in one large supervector, i.e.NS speakers! NS supervec-
tors

� compute mean and covariance matrix of allNS supervec-
tors

� apply PCA to determine principal axes

� select firstK Eigenvoices

By the application of Eigenvoices, the dimensionality of free
parameters can be reduced from several thousands to less than 100.
A fact, which makes this idea very attractive for rapid speaker
adaptation: if only sparse adaptation data are available, the model
for the new, unknown speaker can be constrained to the subspace
spanned by the firstK Eigenvoices allowing robust estimation. For
this task, Kuhn introduced an adaptation scheme, called MLED
(’Maximum Likelihood Eigenspace Decomposition’). This algo-
rithm estimates the constrained model parameters using a Maxi-
mum Likelihood approach. The maximization is done in original-
space with respect to the weightsw in Eigenspace. This can be
achieved by re-projecting the speaker specific weightsw back to
the original space:

�jm = ��jm +

KX
k=1

w(k)ejm(k)

ejm(k) is that part of Eigenvoicek belonging to gaussian den-
sity j of statem. Usually only the gaussian mean parameters are
adapted, nevertheless the algorithm should work with variances as
well. Solving the ML equations, a reestimation formula can be de-
rived for the parametersw. The estimate is very robust, however
it requires a phonetic segmentation.

As a main effect the transformation to a low-dimensional sub-
space reduces the number of parameters necessary for a similarity
measure between speakers drastically. Furthermore speakers shar-
ing similar Eigenspace coordinates can be assumed to be similar
even if Eigenspace dimensionality is reduced. In Eigenspace the
Euklidean distance between 2 speakersi andj is given by:

d
2

ij = jwi �wj j
2 = (wi �wj)

T (wi �wj) =

KX
k=1

(wik � wjk)
2

The Eigenvoice method can be applied to Hidden Markov Mo-
dels, as has been shown by Kuhn et al. In [11] Thyes used the
Eigenvoice approach also for speaker identification based on Gaus-
sian Mixture Models (GMM,[12]). He proposed 2 identification
setups, one after backtransformation in original space and one in

the reduced space. Thyes found that speaker identification in re-
duced space is not as effective as in original space. Nevertheless,
for the task of speaker grouping the exact speaker ID is of no im-
portance - as long as similarity conditions between speakers are
preserved.

3. CLUSTERING ALGORITHM

3.1. Distance measures

The key task of the clustering algorithm is to automatically find
groups (cluster) of speakers with similar properties in feature space.
In order to be able to make a statement about ’similarity’, a dis-
tance measure between 2 speakers has to be defined. The dis-
tance measure should work or at least depend on features which
are somehow contained or accessible to the preprocessing stage
and the model structure of the speech recognizer later on. Sim-
ple example: it would make no sense if the clustering is based on
the color of eyes - since the recognizer does not make any use of
this information (remark: just an example - not that color of eyes
would have something to do with speech).

Since the structure of models is usually very complex (i.e.
many high dimensional densities; in case of HMM: states), sim-
ple one-to-one distance measures are often not directly applicable
between models. Instead, likelihood or modified nearest/furthest-
Neighbor measures have to be used. E.g. in case of comparing
HMM models, on the one hand alignments between HMM states
have to be found, and on the other hand the distance measures
between the multimodal distributions within the states have to be
defined.

However, by the application of the Eigenvoice transformation
a whole complex speaker model simply can be reduced to a low-
dimensional set of coordinatesw, leading to:

dij = jwi �wj j

The above equation gives the distance (or similarity) between
2 speakers. In order to measure the distance between 2 speaker
cluster (cluster-to-cluster distance) we used a furthest-Neighbor
criterion. In our case the cluster-to-cluster distance is given by the
furthest speaker-to-speaker distance in Eigenspace from a speaker
of clusterm to a speaker from clustern:

D = Dmn = max
i2m;j2n

dij

At this point other definitions could be applied, e.g the intro-
duction of reference speakers, which would lead to:

Dmn = max
j2n

dij

with i = ref(m), whereby here:Dmn 6= Dnm.

3.2. Clustering Algorithm in Eigenspace

Bottom-Up Clustering:

Concerning clustering, 2 basic approaches are very common:
top-down and bottom-up. In the following we will focus on a
bottom-up scheme. Nevertheless, top-down approaches such as
LBG [13] are applicable as well.



The bottom-up clustering procedure in Eigenspace can basi-
cally be outlined as follows:

start: assign 1 speaker to each
initial cluster

repeat
- calculate distances in Eigenspace

between all M cluster
- find 2 cluster with minimal

distance D
- join the 2 cluster

M -> M-1
until M=C or

termination criterion fulfilled

Clearly the algorithm can be further optimized, since - for ex-
ample - not all cluster distances have to be recomputed in every
iteration. The basic idea behind this algorithm is to iteratively join
the most similar cluster. At the beginning each speaker is forming
an initial unique cluster. In each iteration all distances from each
cluster to all others have to be evaluated searching for the minimal
distance. The 2 cluster having minimum distance are joined giving
a new cluster containing the speakers from both cluster. The whole
process is iterated until the desired number of clusterC is reached
or some termination criterion is satisfied.

Binary Clustering:

The application of the Eigenvoice reduction implies another
quite simple clustering scheme. After transforming the speaker
coordinates are zero-mean and are distributed along the princi-
pal axes. This allows a binary clustering approach in Eigenspace.
Along each axis a separating function can be introduced:

ci =

�
1 if wi � 0
0 else

K Eigenvoices giveK separating functions. Accordingly,K
Eigenvoices allow the definition of2K cluster. All cluster bound-
aries are given by a change in sign of the Eigenvoice coefficients.
The cluster idI = 1 : : : K can be computed by:

I = 1 +

KX
k=1

ci2
k�1

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

As base models for speaker clustering we used Gaussian Mixture
Models [12, 14] with one GMM per speaker and 64 densities with
diagonal variances per model. Model training was performed us-
ing MAP enrolment starting from a generic base model. Prepro-
cessing included 12 MFCCs as well as delta-coefficients. Speech
data were taken from the German Verbmobil database. In total,
there were 613 male and female speakers. Eigenvoices were com-
puted on the Gaussian mean parameters only, giving a original su-
pervector dimension of64 � 24 = 1536.

4.2. Clustering Process in Eigenspace

In order to show the cabability of the algorithm, we evaluated a
K = 2 Eigenvoices task. Figure 1 shows a scatterplot of these

first 2 Eigenvoice coefficients. As clustering algorithm we used
the bottom-up approach described beforehand. The clustering was
strictly forward, i.e. no reassignment of speakers - except by join-
ing of cluster - was allowed.
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Fig. 1. Eigenspace with 2 dimensions shows strong separa-
tion in male (�) and female (Æ) speakers.

Figure 1 shows that 2 broad primary cluster are given by gen-
der. Major information about gender is contained already in the
first Eigenvoice coefficient. Similar results were reported in [15]
and [16], although they used HMMs as base models for Eigenvoice
computation.

The scatterplots in figure 2 depict some sample iterations of
the clustering process. Depicted are iterations with C = 4 (upper
figure) and C = 8 cluster. Cluster sizes seem well balanced.

4.3. Speech Recognition Performance

In order to examine clustering quality we performed several speech
recognition experiments. Experiments were conducted on the Ger-
man Verbmobil database using the Eval96 testset. For each speaker
cluster an individual HMM set was trained for the recognizer us-
ing MAP. For each test utterance an individual HMM set was se-
lected for the recognition pass. Our baseline setup allows basically
several selection techniques. We were using an implicit selection
based on the best HMM score. This setup requires parallel recog-
nition passes with all HMM sets. Alternatively, a selection by a
GMM classifier (1 GMM per speaker cluster) would also be pos-
sible.

Table 1 shows word error rates (WER) for different clustering
approaches. “Bottom-up” depicts the proposed speaker cluster-
ing technique in Eigenspace, whereas “binary” indicates the bi-
nary Eigenvoice clustering scheme. The entries marked “SI” and
“GMM” are used for comparison. SI is the baseline system with
speaker-independent HMM models (only 1 HMM set). “GMM-
orig” stands for a comparable standard clustering scheme working
with speaker GMM models in original space. It uses a likelihood
distance measure. Recognition results show equal performace for
the bottom-up clustering approach in comparison to the standard
scheme. Even slight improvements can be observed. Moreover,
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Fig. 2. Sample iterations in 2-dim. Eigenspace produce well
balanced speaker cluster (4 and 8 cluster resp.).

the baseline system could be outperformed in any case. The key
advantage is given by the speaker distance computation, which is
far faster, much simpler and more robust.

clustering technique #EV #cluster WER [%]
2 2 29.7

bottom-up 2 4 29.2
2 8 29.1

binary 2 4 30.7
none, SI (baseline) - (1) 31.2
GMM-orig - 12 29.2

Table 1. Word error rates (WER) for different clustering
techniques and different number of cluster.

5. CONCLUSION

In our paper we presented a speaker clustering approach work-
ing in speaker Eigenspace. By the application of the Eigenvoice
transformation into a low-dimensional parameter space, a parame-
ter reduction can be achieved allowing simple and robust distance
computation between speakers. The clustering process of the algo-
rithm has been shown on a sample task with 2 Eigenvoices. Overall

performance has been compared with standard GMM-based clus-
tering technique working in original model space. Speech recog-
nition experiments have shown good performance, even improve-
ments of the proposed clustering technique.
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