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ABSTRACT 

In this study we surveyed an approach to determine an user’s need of assistance while operating an automotive 
human-machine interface by means of gestures. In an extensive usability study we investigated three characteristic 
features that seemed to be suitable for this approach. The first stage of our 2-stage methodology is a neural network 
based classification that determines if a user needs help while performing a certain task. In the second stage a 
heuristic postprocess based on statistics determines which help this user actually needs in the given context. This 
approach was then evaluated in an offline application. 

1. INTRODUCTION 

Gesture controlled operation of in car devices can provide a comfortable way of interaction. But one can assume, 
that not many people are familiar to use it intuitively. Therefore we present an automatic, adaptive help system, 
which supports the novice user to operate the human-machine interface (MMI). It seems to be perspicuous that the 
user’s need for assistance or his uncertainty does have an effect on his cognitive performance, i.e. the reflection 
time, as well as on the execution of the gestures concerning duration and quality. Based on this consideration, our 
goal is to provide an automatic, but unobtrusive assistance to minimize the amount of help requests. 

2. METHODOLOGY 

2.1. Experimental Environment 

The experiment was conducted in the institute’s driving simulation laboratory (cf. fig. 2.2a). It consisted of two 
parts: 1) user interaction in a parked car and 2) user interaction while driving (simulation). This paper will present 
the results of part 1. The study was carried out applying the so called ‘Wizard of Oz’ methodology. This means that 
an experimental manager (‘wizard’) telecontrols occurring events and is able to influence the system’s behavior, 
while the test person is told to interact with an already implemented und functioning system. The test subject was 
seated inside the car and confronted with an automotive MMI. The experimental manager resided in the control 
room. He had visual connection to the subject from two points of view (cf. fig. 2.2b). Subject and wizard 
communicated via audio intercom. 

The GUI was optimized for operation using right hand gestures and simulates devices such as radio, cassette-player, 
CD-player, CD-changer, telephone and navigation system. It is the result of a study about controlling automotive 
devices by gestures. Subjects had to interact with the MMI exclusively by gestures to avoid interfering side effects. 
The experimental manager observed the subject’s right hand movements via monitor and interpreted them on the 
basis of a given vocabulary. This means that the ‘wizard’ acted like a 
gesture recognition system. He only accepted valid gestures that were 
part of the vocabulary corpus. The implemented gesture vocabulary 
consists of a set of intuitive right handed movements which resulted 
from former studies of our institute [Zob01]. The test person had no 
instructions at all, except to use only gestures for interaction. If the 
subject had any problems concerning the manner of performing 
gestures or the appliance of the MMI, he/she could push a ‘help 
request button’ (cf. fig. 2.2c) to get context sensitive help. This 
assistance is provided in several different audio-visual ‘help 
packages’ (cf. fig 2.1).  Figure 2.1: Example for a ‘help package’ 
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Figure 2.2: Schematic experimental setup: a) plan view of driving simulation laboratory; b) camera positions: 
camera 1 views the space where gestural input is performed, camera 2 shows a front view of the subject; 
c) layout of touch-sensor, help-request-button and display (also outlined in b) 
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During the experiment, the test subject was asked to perform a variety of typical tasks which were read out 
automatically by a virtual moderator. Such a task could be “Switch to CD number 4 and listen to track 5” or “Call 
Mr. Hunsinger”. The experiment was divided into several task blocks of increasing difficulty. After each block, the 
subject was interviewed. The person was asked how he/she gets along with the gestures and the operation of the 
MMI. Furthermore the experimental subject should explain whether he/she was satisfied with the given context 
sensitive assistance. 

Throughout the whole test procedure all relevant data were automatically logged to hard disk with time stamp. 
These contain besides the status of the MMI (i.e. active device, current CD title, volume setting, current destination, 
etc.) every request for assistance and all moments the right hand of the experimental subject left the steering wheel 
and returned to it. This information is given by a touch sensor mounted to the steering wheel (cf. fig. 2.2c). The 
subject was instructed to keep this sensor always pressed unless gestural interaction had to be done. 

2.2. Preprocessing (Feature Extraction) 

In order to infer the user’s need of assistance, three features are determined as input for the help system. The first 
feature is the execution duration et  of the gestures. This represents the time, while the right hand is off the steering 
wheel. The second feature maps the time the user has to think before executing a gesture. This feature is named 
‘cognition time’ ct . It is actually the time between the execution of separate gestures. Both were measured by the 
touch sensor located on the steering wheel (cf. fig. 2.2c). The third feature - execution quality of the gestures k - is 
estimated by the experimental manager and assigned to six categories: ‘unknown’, ‘very bad’, ‘bad’, ‘acceptable’, 
‘good’ and ‘very good’. Thereby he has to consider two aspects: how well each gesture is executed itself and how 
well it can be distinguished from other gestures. The execution quality corresponds to a confidence measure of a real 



gesture recognition system. Later on the ‘Wizard of Oz’ will be replaced by our real-time gesture recognition system 
[Mor99]. All three features are then preprocessed to get a standardized feature space. 

The first two features et  and ct  are averaged by using former measurements of the actual user, as well as 
corresponding measurements of all test subjects. They are calculated as follows:  
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 with [ ]et n , [ ]ct n  : actual execution duration, resp. actual cognition time  
  [ ]

normet n , [ ]
normct n  : execution duration, resp. cognition time, normalized to previous averages  

  
0et , 

0ct  : each: average over all gestures and experimental subjects  
  ew , cw  : each: weight, to adjust the ratio between users and overall average 

Then both features are non-linearly scaled to a data-range of 0 to 1 regarding standard deviation of all test data (cf. 
fig. 2.3). This leads to the features 1p  and 2p . Thereby the average durations [ ] 1normet n =  and [ ] 1normct n =  are 
mapped to 1[ ] 0.5p n =  and 2[ ] 0.5p n = . These operations provide adaptation to the users gestural behavior 
concerning execution duration and cognition time. 

The third feature - execution quality k - is averaged using a time interval, which is weighted with a memory function 
[ ]w n . The goal of [ ]w n  is to evaluate past gestures less than the current one. This is realized by a descending 

exponential characteristic: [ ] nw n e−= . The feature is then scaled to a data-range of 0 to 1, too. This results in: 
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Since 7 3[7] 10w e− −= <  it is a good choice to only evaluate the past seven gestures, so that the time interval of [ ]w n  
is seven gestures. To simplify matters 3p  can be determined recursively: 

  1 1
3 3[ ] (1 ) [ 1] [ 1]p n e k n e p n− −= − − + −  

Feature 3p  can be called a current average of gesture quality. This is to avoid assistance for a user who performs a 
bad gesture only once. The bad quality of this gesture will be averaged in the context of the last gestures. That way 
this operation also provides an adaptation to the user’s gestural behavior in consideration of the last gestures. 

Furthermore the statement, whether the subject actually needs assistance (‘yes’ or ‘no’), is determined as target 
feature T[n]. 

Figure 2.3: The blue line shows the non-linearly scaling function regarding standard deviation σ of all test 
data, the red line the five categories as described in sec. 2.3, both shown on 1[ ]p n  exemplary 



2.3. Creating the underlying neural network 

The feature vectors of the first two-thirds of the experimental subjects were then used to train a neural network, 
which supplies the statement, whether the subject needs help, or not. First the training data are categorized linearly: 
the first two features 1p  and 2p  in the five categories ‘very short’, ‘short’, ‘normal’, ‘fast’ and ‘very fast’ (cf. fig. 
2.3) and the third feature 3p  into the same six categories as k above (cf. sec. 2.2). In consequence all feature vectors 
are mapped to a maximum of 150 training vectors. As the neural network is built as a probabilistic neural network 
(PNN) based on a radial basis network (RBN), the first layer contains a maximum of 150 neurons depending on the 
training material. As a positive side effect the memory usage of the neural network will be decreased as well as the 
system’s speed will be increased. As the training data do not cover the whole feature space there are areas which are 
represented only by very few neurons. In order to avoid an over-weighting, resulting from this, the individual 
neurons are weighted by their normalized average distance to all other neurons in the feature space. This is done 
because in training material of present quantity (the training material consists of about 2000 gestures) there are 
always outliers and because there is much more data for the statement ‘the user doesn’t need assistance’ than for the 
statement ‘the user needs assistance’. By these modifications it can be avoided that the network will almost always 
determine the class which represents the first statement. This means to the PNN that its recognition performance 
increases in stability. 

2.4. Application and postprocessing 

In the current status the help system is applied off-line. The logged data sets of the remaining one-third of the test 
subjects are used as test data. The individual features are preprocessed the same way as above, but not categorized. 
Then the input feature vector is fed into the neural network, which supplies the result, whether the user needs 
assistance, or not. As the network does not take into account the context of the MMI, it is necessary to find out the 
accurate assistance as a function of the context and the user’s operation history. Therefore the system searches the 
help database for the statistically most probable ‘help package’. Statistics of the current user (e.g. which gestures 
have been used recently, in which context, were they used in the correct manner, which assistance was already 
presented to the user, etc.?) as well as of all test subjects (e.g. with which gestures / with which functionalities of the 
MMI did the users get along best / worst, etc.?) are considered. If necessary the postprocessing algorithm sometimes 
suppresses assistance, even if the neural network determines that the user needs help. Such possible cases are 
checked heuristically and lead to an improvement of the overall recognition result. If, for example, the user was 
thinking a long time before the latest gesture and does a very slow and uncertain right hand move, yet, this caused 
what he wanted, e.g. to accept a telephone call for the first time, the MMI should not provide information of how to 
accept a telephone call. 

3. RESULTS 

In sum 2935 gestures of 18 experimental subjects were evaluated. In 304 cases subjects needed assistance. 2013 
gestures were used as training data. The remaining 922 data sets were used for recognition. As can be seen in fig. 3.1 
the overall recognition rate of the neural network is 92.0 % and the error rate is 8.0 %. The error rate can be reduced 
by relatively 24 % doing the postprocessing (cf. fig. 3.2). The recognition rate of the case, that the user doesn’t need 

Figure 3.1: Recognition rates of neural network without postprocessing 
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help, is 94.6 %, while the rate of the other case, where the user needs assistance, is only 62.7 %. That is because of 
the fact that only about 10 % of the training material represents this target. The postprocessing has only effect in the 
first case and increases its recognition rate to 96.7 %. 

Reclassification of the training material shows similar results (cf. fig. 3.3). But here the recognition rate for the 
target ‘user needs assistance’ is more than 10 % higher. 

4. CONCLUSION 

The results of our study show that the system is able to recognize reliably, whether the user is in need of assistance, 
or not. The statistical postprocessing ensures that most of the time the accurate assistance is presented to the user, so 
that the operation of the MMI is facilitated. We are quite confident that in the future the help system will also work 
very well with the input of our institute's real-time gesture recognition system [Mor99]. Follow-up studies will have 
to take into account that different gestures need different execution durations and that subjects need different 
cognition times in order to plan different gestures. In addition one has to consider that different gestures typically 
show different confidence measures. 
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Figure 3.3: Reclassification with training data: Recognition rates of neural network for all experimental subjects 

Figure 3.2: Recognition rates of neural network with postprocessing 
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