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ABSTRACT

Robust structural analysis techniques are crucial for
the recognition of handwritten mathematical for-
mulas. Therefore we integrated a novel probabili stic
structural classifi cation module into a single-stage
semantic decoder, recursively taking relative symbol
(or symbol group) positions and sizes into account.
On the basis of Gaussian, statisticall y independent
distributions for the resulting features we obtained a
reliable structural assessment measure which is set
against the corresponding symbol classifi cation sco-
res in a top-down chart parsing scheme.

The final recognition system performs at a writer
specifi c accuracy of 95.0 %. Real-time inline pro-
cessing is enabled due to an incremental breadth-
first search strategy.

1. INTRODUCTION

Online recognition of handwritten mathematical for-
mulas basicall y requires three different problems to
be solved [1]: 1) segmentation of handwriting stro-
kes to symbol hypotheses, 2) handwritten symbol re-
cognition, and 3) structural analysis of 2D symbol
arrangements.

Classicall y, these tasks are performed step by step in
a bottom-up multiple stage architecture, which may
imply the following typical shortcomings:

• In the absence of higher level contextual infor-
mation, symbol independent segmentation rules
often fail .

• For similar reasons, symbol recognition errors
occur due to missing higher level constraints or
due to preceding missegmentations.

• In case of segmentation and/or symbol recogni-
tion errors, information is irretrievably lost at
the borderline to any follow-up structural analy-
sis stage.

Our single-stage top-down classification strategy
significantly reduces such obstacles by

• allowing for semanticall y consistent (sub-)hypo-
theses only,

• incorporating semantic context into the syntac-
tic symbol and placement analysis processes,
and

• driving segmentation as an implicit aspect of
symbol recognition under contextual con-
straints.

Since we aim at an integrated system architecture
based on a Multimodal Probabili stic Grammar [2], a
statistical measure for the structural contents of
handwritten input was the next important system
component to be implemented in this approach. This
paper describes the detailed properties of this struc-
tural classification module as well as its contribution
to the overall MAP classifier inside our probabili stic
chart parser.

2. OVERVIEW

The basic system components and their interactions
are displayed in Fig. 1. Essentiall y, incremental
first-last processing of the given handwritten input is
performed by cycling through the different chart
parser modules; hereby one cycle corresponds to one
additionally processed handwriting stroke. Regard-
ing the general concept, especiall y our syntactic-se-
mantic representations and their integration in a
chart parsing mechanism, we refer to [3]. As can be
seen from Fig. 1, an alternating evaluation of syntac-
tic-semantic, graphemic, and geometric knowledge
takes place.
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Figure 1: Schematic system overview. For clarity,
only components addressed in this paper are shown.
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3. METHODS

This section presents the different parameters and
procedures that make up our structural analysis com-
ponent. After introducing our feature extraction
methods, we specify how the corresponding prob-
abili stic knowledge is gained and finall y evaluated
during recognition.

3.1. Geometric Feature Extraction

In order to obtain a reliable probabili stic geometric
model covering all the supported mathematical op-
erators [2], the first step is to find a proper set of
normalized geometric features that characterize the
positional relations between all the occurring hand-
written formula constituents.

3.1.1. Starting Point. Our top-down chart par-
ser systematicall y scans the search space by unfold-
ing Semantic Structures, i.e. hierarchic combina-
tions of semuns (semantic units) [3], as compact
representations of mathematical contents on the se-
mantic level. Every semun with its corresponding
type, value, and successor attributes refers to a cer-
tain mathematical operator or operand [2]. To com-
pare a given semantic hypothesis with the acquired
handwritten symbol sequence, the semantic hierar-
chy is mapped to a Syntactic Network consisting of
interconnected Syntactic Modules (SM) in which
writing order or symbol choice are modeled by tran-
sition or emission processes, respectively.

Accordingly, it makes sense to look for geometric
features that can be calculated per semun so that 1)
the geometric contribution to our probabili stic clas-
sification measure is smoothly integrated in the
existing parsing mechanism, and 2) a robust con-
text-free parameterization results.

3.1.2. Geometric Elements. In compliance
with our SM definition [3] we consider positional re-
lations between pairs of so-called geometric ele-
ments belonging to a particular semun. Such an ele-
ment may either be one of the emitted handwritten
symbols or the entire handwritten subexpression cor-
responding to one of the semun specific semantic
successors. For example, the semun type SUM (sim-
ple addition) with its single symbol emission (“+” -
sign) and its two successors (left and right addends)
requires three element pairs to be processed.

For every pair of geometric elements 1) relative sym-
bol positions and 2) relative symbol sizes are extrac-
ted. Recursive context-free geometry processing is a-
chieved by merging relevant features derived from
inside a specific semun (element fusion); the result-
ing medial feature vector is then passed back to the
semantic predecessor (cf. below).

3.1.3. Symbol Positions. To take local position-

al offsets between syntacticall y correlated geometric
elements into account, we first calculate symbol spe-
cific centers ( ii yx , ) of their surrounding rectangles
(xi1, xi2, yi1, yi2):

( )121 iixii xxxx −+= λ ;  ( )121 iiyii yyyy −+= λ (1)

Herein, [ ]1,0, ∈yx λλ  are weighting factors based
on expert knowledge. The final features ∆ξ and ∆η
for horizontal and vertical offset components result
by rescaling the pairwise center distances to the cur-
rent semun’s overall dimensions as sketched in Fig.
2. This implies a range of feature values from -1 to
1.
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Figure 2: Geometric feature calculation (positional
components) for the semun type “POW”. The ✩

sign denotes the type specific overall semun center
(Eq. 3) which is returned for recursive processing. ✔
(✘) components are regarded (disregarded) during
element fusion.

Finall y, the overall semun center is determined as
follows (element fusion):
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The binary weights εx, εy include type specific expert
knowledge in order to regard or disregard contributi-
ons from the different embedded geometric elements
(1 ≤ i ≤ n). For example, we suppress the positional
contribution of the superscript term when merging
the geometric elements of an exponential expression
(Fig. 2). As soon as the semantic predecessor is pro-
cessed as described above, Sx  and Sy  represent the
center coordinates of the corresponding successor-ty-
pe geometric element.

3.1.4. Symbol Sizes. Although a considerable
portion of structural information is covered by sym-
bol placement properties, a reliable and detailed
structural analysis must also take relative symbol si-



zes into account. Especiall y nested expressions, e.g.
x

2
y , are usually written down by combining positio-

nal and scaling techniques. Again, we evaluate pairs
of geometric elements per semun, this time by com-
puting the ratio of the corresponding symbol sizes g:

j

i
ij g

g
5log=ζ ;  ( )12 iigi yyg −= λ (4)

As usual, expert knowledge serves to specify symbol
dependent weights λg ∈ [0,1] which conform to
common typing conventions. The special value
λg = 0 is used to exclude certain criti cal symbols
(e.g. minus signs) completely from scaling consid-
erations. Since the scaling range in typical handwrit-
ten formulas is below 5, these ratios are transformed
to a logarithmic scale of base 5; in this way the in-
teresting range of symbol sizes is mapped to a fea-
ture value range matching that of our positional fea-
tures (cf. Sec. 3.2, Fig. 3). This convention makes
sure that positional and scaling properties have a
counterbalanced impact on the overall structural
classification measure (cf. Sec. 3.3).

The medial symbol size inside the current semun is
given by:
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In analogy to Eq. 3, binary weights gε  enable selec-
tive exclusion of irrelevant geometric elements from
this value. It is then fed into the scaling feature com-
putation for the predecessor semun as described in
Sec. 3.1.3.

3.2. Parameterization

For every given geometric element pair (i,j) the
above features yield 3-dimensional feature vectors
Γi j = <∆ξi j, ∆ηi j, ζi j>. The pairwise feature distribu-
tions as observed in a writer specific training corpus
(cf. Sec. 3.4) are displayed in Fig. 3 for some typi-
cally competing mathematical functions. On the
whole, the structural classes to be discriminated ap-
pear to be rather well -separated. Furthermore, the
plots indicate that single Gaussians should be suff i-
cient for modelli ng the different components.

To parameterize our structural classifier, we decided
to assume statistical independence between the three
feature vector components for the following reasons:

• The feature distributions do not significantly re-
veal statistical coupling effects,

• including covariances in our parameter sets
would require inappropriately large training
corpora per writer, and
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Figure 3: Pairwise geometric feature distributions
for selected semun types: product (PROD), sub-
/superscript (POW), subtraction (SUM), and fraction
(FRAC). The two-digit numbers (12, 13, 23) refer to
the different pairs of geometric elements.

• even by using our inline processing scheme, a
statisticall y independent implementation would
not reach real-time performance.

Thus a number of at most 3(n2-n) model parameters,
i.e. 3 arithmetic means plus 3 standard deviations
per geometric element pair, must be estimated for
every supported semantic type (n geometric ele-
ments).

3.3. Classification Measure

Since our chart parser incrementall y rates hypothe-
ses by adding up neglog scores derived from prob-
abili stic measures, it is straightforward to define our
structural classification score as the exponent of the
respective Gaussian PDFs. The ∆ξ contribution (and
analogicall y those for ∆η and ζ ) for a pair (i,j) of
geometric elements then reads:
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µi j and σi j denote the Gaussian mean or standard
deviation, respectively, for element pair (i,j). The
total structural score for a semun S  results by sum-
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Figure 4: Test formula samples and results. The dashed circles point out deficiently recognized areas.

ming over all features and geometric element pairs
as follows:
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By exponentiating the number of actuall y included
element pair scores (bracketed coeff icient term)
with a so-called structural complexity weight 1 Γα ,
the structural contribution to the overall hypothesis
score can be adjusted to that from the symbol recog-
nition level: On the basis of around 2000 symbol and
structure scores from our test formula corpus we de-
rived an optimum value of 25.1=Γα  for this empi-
rical constant; the majority of both types of scores is
then located inside the common value interval
[0,100].

At the same time – since 1≈Γα  – the structural
scores from different semun types are well -balanced
against each other by being rescaled according to the
number of scored geometric element pairs.

3.4. Training

For a writer specific evaluation we trained our struc-
tural classification layer using merely a corpus of 16
realistic handwritten formulas taken from [4]. In
parallel we extracted a reference base of symbol pat-
terns for our extended DTW symbol recognition lay-
er [3]; for a better coverage of the supported symbol
inventory we added another record for any favoured
writing style of every symbol from our alphabet.

                                                       
1 Increasing this parameter upvalues structurall y more
complex hypotheses (corresponding to a higher total num-
ber of geometric element pairs).

4. RESULTS & CONCLUSIONS

The recognition results in terms of 8 independent
test formulas are shown in Fig. 4. Defining the rec-
ognition accuracy R  as the overall quota of correc-
tly classified symbols plus structural constituents, we
obtain a value of %0.95=R .

Summing up, we have shown that a single-stage
probabili stic approach including geometric-structu-
ral properties is capable of robustly decoding hand-
written mathematical formulas. Our compact writer
specific prototype runs under real-time conditions
while utili zing a strokewise inline processing sche-
me. Although it seems that even small training cor-
pora yield suitable structural model parameters, it
should be examined to which extent the system be-
nefits from larger data pools. Moreover, we aim at
implementing a writer independent version as well
as a refined alignment between the different invol-
ved classification layers.
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