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Abstract

Throughout the past few years it has been shown that Gaussian
Mixture Models (GMM) are highly suitable for speaker identi-
fication and verification. Nevertheless these models try to rep-
resent primarily the distribution of the available training data -
neglecting any possible phonetic information which might be
of worth. In our paper we present a recognition system using
multiple speaker GMMs based on phonetic classes. By intro-
ducing ’phonetic’ mixture coefficients a weighting of phoneme
classes with respect to speaker recognizability can be achieved.
The implicit integration in the probability computation avoids
the need for a phonetic labeling during recognition. The mix-
ture weights can be learned in a training phase. Model training
was examined applying MAP enrolment as well as the recently
reported Eigenvoice approach. Especially for the latter the pho-
netic separation has shown to be advantageous. Recognition
error reductions up to 15 % relatively were achieved. Further-
more, the multiple GMM approach is particularly effective for
speaker enrolment with sparse training data.

1. Introduction
Throughout the past years Gaussian Mixture Models (GMM)
[1] have proven to be highly capable for identifying or verify-
ing speakers - commonly superior to Hidden Markov Models
(HMM) or other classifiers [1, 2]. Although they do not di-
rectly consider phonetic information, the densities contained in
a GMM do reflect the whole phonetic space - if training data is
abundant. Commonly speaker dependent models are generated
by retraining a speaker independent model, which should cover
the whole phonetic space. However, if only few training data
are available, some phonemes are sparsely represented or even
will be missing totally in the enrolment utterances. In this case
the densities covering those phonemes will probably be nega-
tively affected by the data of some other phonemes - leading to
a potentially worsened modeling for this speaker.

In our approach we tried to constrain the influence of pho-
nemes on each other by modeling each phoneme or phonetic
class by an individual GMM. Since the timing information is
of minor importance for the task of speaker identification, ev-
ery speaker can be represented by multiple GMMs (instead of
HMMs) - one per phonetic class. Another way of imposing con-
straints on the degree of freedom was presented by Thyes [3]
et al. They confine model parameters by using the Eigenvoice
method, which is basically a subspace projection technique. In
our system we tried to combine both methods.

Moreover, in past studies it has been shown, that speaker

discrimination varies among the different phonemes or pho-
neme categories [2, 4, 5]; e.g. Parris [5] used HMMs to deter-
mine the usefulness of the individual phonemes. Table 1 depicts
speaker identification performance for some sample phonemes
and their frame frequency in the training data normalized on the
most frequent phoneme.

Phoneme #occur. (rel.) recognition rate (percent)
/n/ 1.00 32.7
/m/ 0.53 29.2
/s/ 0.85 20.8
/p/ 0.09 8.3
/f/ 0.37 11.1
/a/ 0.30 19.1
/e:/ 0.20 17.9
/x/ 0.16 10.6

Table 1: Speaker recognition performance on frame level
for some sample phonemes (74 speakers, German Verbmobil
database).

In accordance with previous studies Table 1 clearly shows
that even some of the minor occurring phonemes possess a high
speaker separating power. In order to account for the vary-
ing speaker separating properties of phonemes Auckenthaler
[2] used a phonetic weighting of the GMM scores. In our ap-
proach we tried to exploit this source of information by intro-
ducing mixture weights for the different phonetic classes. These
weights can be learned automatically by optimizing a confi-
dence measure during the training phase. Furthermore there is
no need for a phonetic labeling during recognition.

2. Phonetically Structured GMMs
2.1. Parallel Gaussian Mixture Models

In a standard GMM based speaker identification system setup
each speaker is modeled by a single, individual GMM. In our
approach we represent each speaker by several GMMs - each
of them covers an individual phoneme or a group (class) of
phonemes. Fig 1 illustrates the system setup. The separation
of phonemes is especially useful during speaker enrolment. For
the recognition phase the models can also be recombined - as
explained later on.

Speaker enrolment is commonly done by retraining a gen-
eral speaker independent background model using training al-
gorithms like ML or MAP [8]. If enrolment data are scarce,
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preferably the MAP algorithm is applied in order not to affect
models of unseen data, for which the parameters of a back-
ground model are usually better trained. Nevertheless, if some
phonemes are only sparsely contained in the training data, the
Gaussian densities of the background model representing these
phonemes are affected by other phonemes contained in the data.
This would lead to a detriment in modeling, especially if - for
some other speakers - these phonemes are seen in the training
data. A separation of the individual phonemes or groups of
phonemes could at least partially prevent such negative influ-
ences.
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Figure 1: Parallel phoneme group GMMs for a speaker.

Each phonetic class modelMmj of speakerm is repre-
sented by a Gaussian mixture distribution withKj densities:

p(xjm; j) =

KjX

k=1

cmjkN (x; �mjk;�mjk ; )

The mixture coefficients for phonetic class modelj of a
speakerm have to obey the probabalistic constraint:

KjX

k=1

cmjk = 1

The probability for speakerm is obtained by summing over
all submodelsj.

pm(x) = p(xjm) =

JX

j=1

p(xjm; j)

In order to take into consideration that different phonemes
have different speaker discriminating properties [4] we intro-
duced a speaker independent weighting factorcj for each class
(see Fig. 1) which can be interpreted as a ’phonetic mixture
coefficient’. Therefore,p(xjm) becomes

p(xjm) =

JX

j=1

cjp(xjm; j)

Like the mixture coefficients in each class model, these fur-
ther mixture coefficients have to obey the probabalistic con-
straint:

JX

j=1

cj = 1

An approximation for the speaker probability is obtained by
taking the maximum probability of all submodelsj (s. Fig 1):

p(xjm) = max
j

cjp(xjm; j)

Using the maximum approximation, the speaker GMMs are
treated as parallel GMMs. In case of summing over all individ-
ual model outputsp(xjm; j) the individual GMMs can - for
the recognition phase - basically be recombined giving a single
GMM with K

� =
PJ

j=1
Kj densities and modified mixture

coefficients:

c
�

k� = cjcmjk

Nevertheless, the main advantage of the approach lies in
the separate training of the Gaussian distributions for groups of
phonemes on the one hand and the incorporation of phonetic
mixture coefficients on the other hand. As explained in section
3 these coefficients can be independently learned in a training
phase. Because of the implicit nature of the mixture weights
there is no need for a phonetic labeling during recognition.

2.2. Phoneme Classes

The selection of phoneme classes is based on several factors:

� phonetic similarity

� speaker separability of the individual phonemes

� frequency of occurrence

As shown later in the results section we experimented with vari-
ous class sizes ranging from 10 to 16 classes. Broad classes like
nasals, fricatives, different vowels, liquids as well as plosives
are forming base classes which were subdivided giving 10 to 16
groups overall. E.g. the nasal /m/ was selected as a single class,
since it offers a high frequency (s. Table 1) together with good
speaker separability. Other phonemes showing only few occur-
rences were combined with phonetically similar phonemes. Ta-
ble 2 displays some sample classes.

class Phonemes
nasals 1 /m/
nasals 2 /n/ /N/
fricatives /s/ /S/ /z/ /Z/ /f/ /v/ /C/ /x/ /j/
liquids /l/ /r/
plosives /t/ /k/ /d/ /b/ /p/ /g/
vowels 1 /E:/ /e:/ /E/

Table 2: Class composition for some sample classes.
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2.3. Model Training

In order to train the phonetic GMMs two major issues have to
be examined:

� Segmented data

� Model size (number of Gaussians) per submodel

A key issue for the training of proper phonetic models is
the availability of ”pure” data for each phoneme. For this pur-
pose we were using fully trained HMM models of an automatic
speech recognition system for the phonetic segmentation of the
training utterances. Moreover we applied pronunciation vari-
ant modeling in order to find a more exact mapping between
phonemes and transliteration. The transliteration of the utter-
ance was assumed to be known. Since the phonemes are oc-
curring with different frequencies each class has to be modeled
with a proper number of Gaussian densities. For this purpose
we applied a likelihood based cluster algorithm, similar to the
one described in [6], which was already successfully utilized
for HMM codebook initialization. The algorithm is basically
an extension to the well-known LBG-algorithm: through itera-
tive splitting of Gaussian mixtures the number of prototypes is
continuously increased until some likelihood based termination
criterion is satisfied. This way the number of Gaussian densities
per submodel can be determined automatically.

Speaker dependent models were created from a speaker in-
dependent background model. For the multiple GMM setup in-
dividual background models were trained for all phonetic clas-
ses. Model enrolment was performed using either the Maxi-
mum Aposteriori (MAP) [8] training algorithm or the recently
reported Eigenvoice [3, 7] approach. The Eigenvoice method
is basically a projection onto a precomputed subspace, which
constrains the degree of freedom. The method should be partic-
ularly effective if only few enrolment data are available.

3. Class Mixture Coefficients
A major advantage in training parallel GMMs is the fact, that
the class mixture coefficientscj can be determined separately.
We investigated several approaches of selecting/computing the
class weightsc:

� Equal coefficients

� Class A-priori probability

� Optimization of confidence measureL(X; c)

For the latter case we determinedc by optimizing the con-
fidence measure:

L(X; c) = log p(Xj �m)� log p(Xjm̂) =

=
X

T

log p(xtj �mt)�
X

T

log p(xtjm̂t)

L(X; c) =
X

T

log

JX

j=1

cjp(xtj �mt; j)

�
X

T

log

JX

j=1

cjp(xtjm̂t; j)

This measure of confidence evaluates the score distance be-
tween the correct speaker�m and a rival modelm̂. Since the
GMM parameters for each class GMM, i.e. the probabilities

p(xtjm; j) are trained in advance, the above confidence crite-
rion is only dependent onc. As rival models (on frame basis)
we examined 2 possibilities:

� Top-1 rival speaker

� Background model

For the optimization ofL(X; c) gradient descent techniques
can be applied.

4. Experimental Results
In order to test our approach we used two experimental setups.
The first setup comprised 74 male and female speakers with
sufficient enrolment data available (>30 seconds per speaker).
Utterances for training were taken from the German Verbmo-
bil Spontaneous Speech Corpus. Preprocessing uses 12 Mel-
cepstral coefficients. All speaker GMMs have 64 Gaussian den-
sities with diagonal covariance matrices. In the multi GMM
approach the total number of Gaussians per speaker is also lim-
ited to 64. Speaker dependent models were created using MAP
for the retraining of a speaker independent background model.
The baseline system had 1 GMM per speaker, whereas the mul-
tiple GMM setup comprised 10 GMMs. Phonetic mixture co-
efficients for each phoneme group were created as described in
section 3. Table 3 shows the results obtained. In the multiple
GMM section of Table 3 the leftmost column depicts whether
parallel (’max’) or a recombined single GMM (’sum’) was used.
The second column indicates the training mode for the phonetic
mixtures.

recognition rate (in percent)
Adaptation method 1 sec. 3 sec.

single GMM (baseline)
MAP 87.47 96.21

MAP, Means only 88.12 96.21

mult. GMMs, 10 Groups
equal 88.77 97.19
apriori 89,78 97,19max
top-1 89.33 96,63

background 89.54 96.91
equal 88,69 97,47
apriori 89.45 97.19sum
top-1 89.41 97.19

background 89.45 97.19

Table 3: Recognition performance for 1 and 3 seconds test con-
dition, enrolment data> 30 seconds.

Table 3 shows an error reduction up to15:8% relatively
to the baseline system. Although the use of multiple GMMs
per speaker already gave a reduction of10:4% relatively, the
application of adapted mixture weights showed a further error
rate reduction. In Table 4 the mixture coefficients for the sample
classes (s. Table 2) are displayed. Astonishingly, the nasal /m/
(’nasals 1’) was weighted down by the algorithm, although it
has a high capability for separating speakers (see Table 1).

The multiple GMM approach should be particularly effec-
tive if training data are scarce. In order to examine this task
we enroled 26 speakers not contained in the first experiment.
Training data was limited to a 5 second enrolment per speaker.
Background models as well as phonetic mixture weights were
taken from the first experiment.
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Phoneme top-1 background
nasals 1 0.049 0.072
nasals 2 0.127 0.152
fricatives 0.243 0.160
liquids 0.092 0.078
plosives 0.268 0.147

vowels 1 (e) 0.034 0.074

Table 4: Mixture weights for sample classes.

recognition rate (in percent)
Adaptation method 1 sec. 3 sec.

single GMM (baseline)
MAP 70.40 86.07

MAP, Means only 68.43 84.14

mult. GMMs, 10 Groups
equal 72.61 85.66
apriori 74,70 86,90max
top-1 73.37 87.03

background 73.82 86.62
equal 73.52 85.93
apriori 74.62 87.45sum
top-1 74.58 87.31

background 74.77 87.59

mult. GMMs, 16 Groups
max equal 72.00 84.97

Table 5: Recognition performance for 1 and 3 seconds test con-
dition, 26 speakers, 5 seconds speaker enrolment.

Table 5 shows error rate reductions up to15:8% relatively,
depending on the evaluation time and weighting mode. Whereas
for the 1 second test an improvement was achieved regardless
of the weighting applied, for the 3 second test only the in-
troduction of an adequate weighting led to error rate reduc-
tions up to12:8% relatively. The use of 16 phonetic classes
brought a slightly worse recognition performance. As a fur-
ther comparison we used the Eigenvoice approach for group
enrolment. A thorough description of this algorithm can be
found in [7]. We computed the Eigenspace (PCA) for each
group individually using the GMM models from the first ex-
periment. Only the mean parameters were included. Speaker
enrolment was performed by means of Maximum Likelihood
Eigen-Decomposition (MLED). In case of multiple GMMs, the
dimension of the individual subspace (#EV), is limited by the
dimension of the original space:Kj �DimMFCC . The Eigen-
voice approach should be compared with the ’MAP, means only’
baseline system, since only the Gaussian mean parameters are
altered. Table 6 shows for the multi-GMM approach improved
recognition rates in comparison to the single GMM setup. This
effect could be related to the fact, that in the multiple GMM
case an individual subspace weighting vector is used for each
phonetic submodel, whereas in the single GMM case a single
mutual weighting vector is used for the whole GMM, i.e. for all
’phonetic’ densities. This seems too rigid for the modeling of
speaker specific characteristics.

5. Summary

In our paper we propose a GMM training approach based on
phonetic classes in combination with a phonetic weighting. De-

recognition rate (in percent)
EigenVoices (EV) 1 sec. 3 sec.

#EV single GMM (baseline)
20 61.36 76.00
30 65,46 79,31
40 67.14 80.14
50 67.06 79.17
70 65.46 78.34

weights #EV mult. GMMs, 10 Groups
2 38.18 54.21
10 68.28 83.86

max, 20 70.55 84.14
equal 30 71.69 84.69

40 70.06 84.28
50 70.29 83.45

max, apriori 30 73.18 86.34

Table 6: Recognition performance for model training using
Eigenvoices (26 speakers, 5 seconds enrolment).

pending on the task, recognition error reductions up to15%
relatively are achieved. For each class an individual GMM is
trained. For the recognition phase these models can also be re-
combined into a single GMM. By the separation of phonetic
classes there is a fix relationship between a Gaussian density
and the phoneme or phonetic class, which it is representing. By
this way densities representing unseen phonemes are not detri-
mented by other classes appearing in the training data. So the
robust estimation of the initial speaker independent model can
be maintained. This approach seems particularly useful for fast
speaker enrolment. Moreover, for the Eigenvoice adaptation
method the splitting into phoneme classes brought particular
improvement, since the probably too rigid subspace constraints
for entire single GMMs are lessened.
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