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Abstract

The need for better understanding of the shockwave/turbulent boundary layer
interactions phenomenon has been driving research in this area for several decades.
This work investigates the flow of a supersonic turbulent boundary layer along a
compression-expansion ramp by means of large-eddy simulation. Several numerical
tools have been developed and implemented into the in-house code of the Institute
of Aerodynamics and Fluid Mechanics of the Technische Universität München, in
order to perform the numerical simulation of this phenomenon.

A conservative immersed interface method for compressible viscous flows has
been derived, implemented and validated, allowing for the treatment of complex
geometries in a cartesian-grid based code. The proposed approach for large-eddy
simulation has been analyzed and validated with special focus on wall bounded
flows. All of the building blocks of the numerical code have been employed in the
large-eddy simulation of the flow of a supersonic turbulent boundary layer over a
compression-expansion ramp. Results from the computation have been validated
through direct comparison with experimental measurements provided by [Zhel-
tovodov et al., 1990].

The computational results confirm theoretical and experimental findings on fluc-
tuation amplification across the shockwave/boundary layer interaction region and
on turbulence damping through the interaction with rarefaction waves. The large-
eddy simulation provides evidence of the existence of Görtler-like structures origi-
nating from the recirculation region and traveling downstream along the ramp.

The computation has shown clear evidence of the existence of a low-frequency
unsteadiness localized in the vicinity of the oblique shock, thus confirming earlier
experimental findings. Furthermore, these oscillations are found to persist even if
no long coherent structures are present in the incoming turbulent boundary layer.
Wall pressure data are analyzed by means of Fourier analysis, highlighting the low-
frequency phenomenon in the interaction region. Furthermore, the flow dynamics
are analyzed using a Dynamic Mode Decomposition which shows the presence of
a low-frequency mode associated with the pulsation of the separation bubble and
accompanied by a forward-backward motion of the shock. The performed analysis
leads us to conclude that embedded incoming turbulent structures cannot represent
the driving mechanism for the low-frequency motion of the shock. The observed
shockwave/turbulent boundary layer interaction phenomenon is therefore a conse-
quence of the inherent dynamics between recirculation region and shock.

iii



iv



Contents

Abstract iii

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Introduction to the SWTBLI phenomenon . . . . . . . . . . . . . . . . . . 4

1.2.1. Description of the SWTBLI phenomenon . . . . . . . . . . . . . . 4
1.2.2. Low-frequency unsteadiness . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Objective of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Numerical approach 11
2.1. Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Large-eddy simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1. The filtering procedure . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2. Explicit LES approach . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3. Implicit LES approach . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1. Turbulent inflow boundary condition . . . . . . . . . . . . . . . . 26
2.3.2. Conservative Immersed Interface Method . . . . . . . . . . . . . 28
2.3.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3. Numerical approach validation 39
3.1. ALDM for compressible wall bounded flows . . . . . . . . . . . . . . . . 39
3.2. Supersonic turbulent channel flow . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1. Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2. Flow description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3. Turbulence statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3. Supersonic turbulent boundary layer flow . . . . . . . . . . . . . . . . . . 48
3.3.1. Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2. Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3. Flow description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.4. Turbulence statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4. CIIM validation cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1. Steady flow over a circular cylinder at ReD = 40 . . . . . . . . . . 58
3.4.2. Unsteady flow past a circular cylinder at ReD = 100 . . . . . . . 62
3.4.3. Vortex induced vibration of a 2-D elastically mounted cylinder 62

v



Contents

3.4.4. Laminar boundary layer flow over a compression corner at
Ma = 6.06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.5. Laminar cavity flow at Ma = 8.9 . . . . . . . . . . . . . . . . . . . . 67

4. Compression-Expansion corner flow 73
4.1. Flow configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3. Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4. Incoming supersonic turbulent boundary layer . . . . . . . . . . . . . . . 77
4.5. Time-averaged flow characteristics . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.1. Wall pressure and skin-friction coefficient . . . . . . . . . . . . . 79
4.5.2. Comparison of mean velocity profiles . . . . . . . . . . . . . . . . 82
4.5.3. RMS profiles comparison . . . . . . . . . . . . . . . . . . . . . . . . 85
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1. Introduction

1.1. Motivation

Modern rockets, under the competing demands of cost and performance, are typi-
cally designed to achieve high thrust-to-weight ratios. This objective is often pur-
sued using high area ratio, reduced length nozzles and/or optimized nozzle de-
signs [Östlund and Muhammad-Klingmann, 2005]. While modern nozzles typically
provide high in-vacuum performance, during low altitude flight unsteady detach-
ment of the over-expanded supersonic flow within the nozzle can lead to the gener-
ation of often dangerous nozzle side loads [Summerfield et al., 1954,Sunley and Fer-
riman, 1964,Nave and Coffey, 1973,Dumnov, 1996,Frey and Hagemann, 1999,Brown
et al., 2002]. The detrimental and sometimes catastrophic effects of these loads
have been documented, for example, in J2, SSME Block I, Ariane-5, Chinese CZ-
3B, Fastrac, Vulcain, and Japanese H-II and LE-7 engines [Nave and Coffey, 1973, S,
1996, Newman, 2001, Wang, 2004]. In large engines, side loads can reach extreme
magnitudes, for example, of the order of 103kN in Apollo Saturn V rockets [Brown
et al., 2002].

Such phenomena take place during the transient startup and shutdown of rocket
nozzles, when off-axis forces are triggered by unsteady internal flow separation, and
are occasionally enhanced by unsteady flow reattachment. The asymmetry of the in-
ternal flow structures is responsible for the generation of a net lateral force, generally
defined as side load. Depending on the nozzle contour and the nozzle pressure ra-
tio, the overall features concerning the nature and location of the separated flow and
shock structure features different states.

In the case of a thrust-optimized parabolic (TOP) nozzle, during the transient
startup and shutdown of phases, the flow states can be classified into two categories:
free shock separation (FSS) and restricted shock separation (RSS), as sketched in
Fig. 1.1 and Fig 1.2. The schematics of these processes are given in the models pro-
posed from by [Frey and Hagemann, 2000,Hagemann et al., 2002,Verma and Haidn,
2009].

The free-shock separation occurs at low values of nozzle pressure ratio (NPR) (de-
fined as the ratio between the stagnation pressure p0 and the back pressure pout). The
flow configuration that is achieved in the FSS state is characterized by an incipient
separation of the flow, which is triggered by an adverse pressure gradient between
the region of isentropic expansion and the subsonic entrainment region. Compres-
sion waves, originating from within the turbulent boundary layer, coalesce to form
a separation shock in the outer regions of the flow. This separation shock interacts
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1. Introduction

Depending on the nozzle contour and the nozzle pressure ratio
(NPR), the overall features concerning the nature and location of the
separated flow and shock structure comprise a life cycle of different
states. Foremost, many of the launch vehicles in operation today are
designedwith thrust-optimized parabolic (TOP) contours. The shape
of the throat region consists of a circular arc that transitions to the
nozzle divergent wall that then extends to the nozzle exit plane. If
there are discontinuities in thewall contour, a relativelyweak internal
shock forms slightly aft of the inflection point [4], which redirects the
expanding flow to follow the nonideal wall contour. Several opti-
mization strategies can be pursued on the TOP contour to reduce the
effect of unsteady and asymmetric flow separation. However, they
involve manipulation of the diverging wall contour, which can
adversely affect the thrust-to-weight ratio.

Various separated flow patterns can form inside nozzles while
operating at highly overexpanded conditions and have been observed
as far back as Arens and Spiegler [5], Nave and Coffey [6], and
Schmucker [7,8]. During the transient startup and shutdown of the
TOP nozzle, the flow states can be classified into two categories: free
shock separation (FSS) and restricted shock separation (RSS), as
shown in Figs. 1 and 2. These illustrations are based on compu-
tational simulations performed at NASA Marshall Space Flight
Center (MSFC) for this particular TOP nozzle.∗∗ In general, these
schematics are similar to the models presented by Frey and
Hagemann [4], Hagemann et al. [9], and Verma and Haidn [10].
However, deviations are attributed to the differences in the TOP
nozzle contours, NPR values, and test environments; the subscale
nozzles used in experimental campaigns exhaust in a diffuser and
ejector pipe that have different designs. In particular, Ruf et al. [11]
points out that the inlet of the ejector pipe can affect the location of
flow separation and associated flow structures.

The first flow state, FSS, occurs at low NPRs and is illustrated in
Fig. 1. The behavior of the FSS state is characterized by an incipient
separation of the flow at xs, which is triggered by an adverse
pressure gradient between the region of isentropic expansion and
the subsonic entrainment region. Compression waves, formed deep
within the turbulent boundary layer, coalesce to form a separation
shock in the outer regions of the flow (outside of the boundary
layer). This separation shock interacts with the reflected shock that
originates at the so-called “triple” point, where the Mach disk,
internal shock, and reflected shock coincide. A separated region

encompassing a series of compression and expansion waves is
located downstreamof the shocks. At the lowerNPRs, the separated
flow does not reattach and the flow continues as a free supersonic jet
and diffuses to subsonic speeds downstream due to mixing with the
subsonic entrainment region and the low-speed recirculating core
flow. The profile of the static wall pressure pw is shown in the lower
right-hand corner of Fig. 1 in a normalized form by using the
ambient back pressurepa. The profile indicates a regular expansion
up to the incipient separation point; thereafter, a rise to near ambient
pressure is observed throughout the entire subsonic entrainment
region.

When the NPR is increased in the TOP nozzle, the FSS state
transitions to a RSS state, which is indicated in Fig. 2. The incipient
separation point is now located further aft with respect to the
interaction point of the internal shock and Mach disk. The strong
shock that originates from this interaction eventually results in
outward radial momentum of the fluid that reattaches the supersonic
plume to thewall. A bounded region of separated flow is now formed
in between the separation shock and an expansion fan reflecting from
the shear layer of the supersonic plume, further referred to as an
annular separation bubble. Depending on the NPR, the annular
supersonic jet might remain attached to the wall. However, it is
believed that if the initial shocks (denoted by separation shock and
strong shock in Fig. 2) are sufficiently strong, a shock (labeled
incident shock) can appear that can separate the flow from the inner
wall again through a shock wave turbulent boundary-layer inter-
action (SWTBLI) phenomenon. The flow will presumably reattach
further downstream, thereby creating a second separation bubble as
indicated in Fig. 2. Where the static wall pressure is concerned, a
pressure increase above ambient occurs in the separated regions.
Once the flow reattaches, the flow expands and the pressure
decreases up to the second separation point. For clarification, a rise in
wall pressure does not necessarily indicate the presence of separated
flow since the flow only separates if the incoming waves are strong
enough. In the current experimental campaign a TOP nozzle was
used where two separation bubbles were identified during RSS state
by computational simulations.And so, in this article thefirst two rises
in static wall pressure do provide an indication of the location of the
first two separation bubbles. Finally, upon further increases in NPR,
the RSS structure returns to a FSS state with an entrainment flow
region that eventually vanishes once the nozzle flows full. It should
be noted that nozzles with an ideal contour do not have the FSS !
RSS transition; the flow resides in FSS state during the entire startup
due to the absence of the internal shock.

Fig. 1 Illustration of the internal shock structure during a FSS state in a TOP nozzle. A typical static wall pressure profile is schematically indicated in
the right lower corner.

∗∗Detailedflowmeasurements of the nozzle internalflowand shock pattern
from this nozzle are currently unavailable.
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Figure 1.1.: Shock system description during a free-shock separation state.

The most excessive side loads that have been observed during the
entire transient cycle of the engine occur when the shock pattern
transitions from FSS ! RSS and RSS ! FSS states. This has been
reported in the experimental studies of Hagemann et al. [9] and Ruf
et al. [1]. Östlund et al. [12] suggested that additional sources of side
load disturbances are produced by fluctuating wall pressures in the
separated regions of the nozzle, as well as aeroelastic fluid structure
coupling; the latter was studied experimentally by Brown et al. [13].
Numerical models have also been developed to provide more insight
into the origin of side loads during the full duty cycle of the engine.
Chen and Chakravarthy [14], for example, developed an unsteady
compressible RANS simulation of a supersonic expanding flow to
show the evolution of the separated region, which included a contact
surface, a slip stream behind the triple point, an initial shock front,
shocklets, and various sequential vortical and shock structures. In
more recent years, transient, time-accurate numerical studies by
Deck and Guillen [15], Schwane and Xia [16], and Wang [17] have
provided additional details on the side load activity. However, while
the overall findings from these computational efforts appear to
coincide with the experimental observations, a clear understanding
for the mechanisms governing the interaction zone remains
unknown. With only a fraction of these simulations having incor-
porated the modern advancements in computational modeling, com-
prehensive quantitative datasets are still lacking to allow robust

predictions of this behavior to be extended to more realistic
conditions where experimental measurements appear impractical in
the near future.

The focus of this article is to obtain better insight into the
fluctuating surface pressure signatures and response moments that
are invoked by unsteady pulsations of the shock structure and
separatedflowduring both FSS andRSS states as they occur in aTOP
nozzle. This is of considerable interest as increases in flow
unsteadiness preceding each flow state transition (FSS ! RSS and
RSS ! FSS) are believed to be plausible sources of transition
[18,19]. The unsteadiness of the FSS and RSS flow structures is
illustrated in Fig. 3. The incipient separation front x1s and
reattachment line x1r (for RSS only) are identified in this illustration
and posses unsteady motions that vary in azimuth. Thus, for the
illustration encompassing one separation bubble during RSS state,
x1s ! x1s"!; t# and x1r ! x1r"!; t#. The resulting unsteady, azimuthal
varying, wall pressure distribution results in off-axis forces as was
described as one of the direct sources of side load activity byÖstlund
et al. [12]. The unsteady motions resemble many of the features
observed in SWTBLI studies including the compression ramp
studies by Erengil and Dolling [20] and the recent incident shock
investigations ofHumble et al. [21]. Themost notable feature that has
attracted much attention in SWTBLI studies is the significant
discrepancy observed between the dominant low-frequency shock

Fig. 2 Illustration of the internal shock structure during a RSS state in a TOP nozzle. A typical static wall pressure profile is schematically indicated in
the right lower corner.

Fig. 3 Schematic of the unsteady motion of the incipient separation front and reattachment line during RSS flow state with one trapped separation
bubble. Azimuthal variations cause asymmetric pressure distributions and ultimately result in off-axis side loads.
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Nozzle contour

Figure 1.2.: Shock system description during a restricted-shock separation state.

with the reflected shock that originates at the so-called ”triple” point, where the
Mach disk, internal shock, and reflected shock coincide. A separated region encom-
passing a series of compression and expansion waves is located downstream of the
shocks. When the NPR is increased in the nozzle, the flow configuration transitions
to a restricted-shock separation state. The incipient separation point is now located
further downstream with respect to the interaction point of the internal shock and
Mach disk. The strong shock originating from this interaction eventually induces
an outward radial motion of the fluid that reattaches the supersonic plume to the
wall. A bounded region of separated flow is now formed in between the separation
shock and an expansion fan reflecting from the shear layer of the supersonic plume,
further referred to as an annular separation bubble. Depending on the NPR, the
annular supersonic jet might remain attached to the wall. However, it is believed
that if the initial shocks (labeled as separation shock and strong shock in inset of
Fig. 1.2) are sufficiently strong, a shock (indicated as incident shock) is generated
which can separate the flow from the inner wall again through a shockwave tur-
bulent boundary-layer interaction (SWTBLI) phenomenon. The flow might reattach
further downstream, thereby creating a second separation bubble. Concerning the
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Figure 1.3.: Schematic of the unsteady motion of the incipient separation front and
reattachment line during RSS flow configuration with a single separation
bubble. Azimuthal variations cause asymmetric pressure distributions
and ultimately result in off-axis side loads.

static wall pressure, a pressure increase above ambient conditions occurs in the sep-
arated regions. After the reattachment, the flow expands and the pressure decreases
up to the second separation point. Finally, upon further increases in NPR, the RSS
structure returns to a FSS state with an entrainment flow region that eventually van-
ishes once the nozzle flows full.

The works of [Ruf et al., 2009, Hagemann et al., 2002] have highlighted that the
highest value for the side loads is achieved during the phase in which the shock-
system transitions from the FSS state to the RSS and viceversa. Furthermore, [Östlund
et al., 2004] highlighted that additional sources of side load disturbances are linked
to wall pressure fluctuations in the separated regions of the nozzle. Computational
models have also been proposed to provide a deeper insight into the source of the
side loads during the full duty cycle of a rocket engine. [Chen and Chakravarthy,
1994,Deck and Guillen, 2002,Schwane and Xia, 2005,Wang, 2009] used an unsteady,
compressible RANS simulation to investigate the evolution of the separated region.
Even if the findings from these computational efforts appear to coincide with the
experimental observations, the details of the mechanisms governing the interaction
zone remain still unknown. With only a fraction of these simulations having ac-
counted for the modern advancements in computational modeling, comprehensive
quantitative datasets are still not allowing for an extension of the predictions to more
realistic conditions which do not allow for a direct experimental investigation.

The fluctuating nature of the surface pressure signal is a direct consequence of un-
steady pulsations of the shock structure and separated flow during both FSS and RSS
states. The unsteadiness of the FSS and RSS flow structures is illustrated in Fig. 1.3.
The incipient separation front and reattachment line (which is present only in the
case of RSS) are identified in this illustration and are characterized by an unsteady
motion along the azimuthal direction. The resulting unsteady wall pressure distri-
bution varies along the same direction and asymmetries in such distribution with
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respect to the nozzle axis generate an off-axis force. The modification of the pressure
distribution with respect to time constitutes the direct source of side load activity.
This motions originate directly from the intrinsic unsteadiness of the SWTBLI phe-
nomenon. In the experimental study of [Baars et al., 2012], both RSS and FSS con-
figurations are investigated by means of dynamic wall pressure measurements and
response moments of the nozzle/strain tube assembly. The spectral analysis of their
pressure data for the FSS condition has revealed two distinct peaks for the pressure
probe located near the separation shock. The first lower frequency peak is found
to be directly connected to the typical low-frequency unsteadiness that character-
izes the SWTBLI, while the second peak comprised more broadband high-frequency
noise that grew in energy with increasing distance downstream. The main aim of the
present work is to investigate the SWTBLI phenomenon in order to gain a deeper in-
sight into the mechanism that leads to the origin of the so called low-frequency shock
unsteadiness.

1.2. Introduction to the SWTBLI phenomenon

1.2.1. Description of the SWTBLI phenomenon

The basic interaction types most commonly studied between a shockwave and a
laminar/turbulent boundary layer are the normal/oblique shockwave interaction
and the compression corner flow or the flow over a bump. In this introduction both
configuration will be described. In the case of an oblique shock impinging on a
flat plate, the inviscid theory states that the shock is reflected in order to maintain
wall-parallel flow. The pressure increase, characterized by the Rankine-Hugoniot
condition, takes place abruptly at the nominal impingement point within an infinite
small extent, see Fig. 1.4. In real flows, where viscosity leads to the formation of a
boundary layer at the wall, SWTBLI becomes much more complex leading to greater
deviations from the inviscid solution. While weak interactions resemble the invis-
cid theory, stronger ones induce a separation of the boundary layer and the original
shock system comprising simply an incident and reflected shock is replaced by a
complex system of interactions. A description of the main phenomena characteriz-
ing the interaction between an impinging oblique shock and a supersonic turbulent
boundary layer are given in Fig. 1.5. The shock strength of the incident shock C1 and
the associated adverse pressure gradient are large enough to cause a separation of
the boundary layer. Due to the upstream influence mechanism, the separation takes
place well ahead of the nominal impingement point at the location S. The upstream
propagation of the adverse pressure gradient imposed by C1 induces compression
waves in the supersonic part of the boundary layer, which coalesce to form the re-
flected shock C2. The reflected shock C2 intersects the incident shock C1 at point
I and the original shocks continue traveling as transmitted shocks C3 and C4, re-
spectively. The shock C4 penetrates into the separated dissipative layer while being
curved due to the local Mach number variation, and is then reflected at the sonic
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1.2. Introduction to the SWTBLI phenomenon

Figure 2.3: Schematic representation of the wall pressure evolution for the inviscid flow case,
the viscid interaction without separation and the shock-induced separated flow.
The points S and R represent possible separation and reattachment locations
of the shear layer, respectively. The interaction length Lint is defined as the
distance between the inviscid impingement location X0 and the intersection of
the upstream pressure p1 with the extrapolation of the quasi-linear part of the
wall pressure distribution.

mechanism is used by the fluid suction control technique within the interaction region, which
will be discussed more extensively in section 2.3.2 .

5

Figure 1.4.: Schematic representation of the wall pressure evolution for the invis-
cid flow case, the viscid interaction without separation and the shock-
induced separated flow. The points S and R represent possible sepa-
ration and reattachment locations of the shear layer, respectively. The
interaction length Lint is defined as the distance between the inviscid
impingement location X0 and the intersection of the upstream pressure
p1 with the extrapolation of the quasi-linear part of the wall pressure
distribution.

line as a system of centered expansion waves. The expansion fan compensates the
pressure increase induced by the impinging shock C4, resulting in a pressure plateau
within the separated zone, see Fig. 1.4. The separated shear layer is thus deflected in
the direction of the wall, where it reattaches at the point R while being continuously
decelerated. The compression waves associated with the deceleration process coa-
lesce to form the reattachment shock. Through their DNS of an impinging shock on a
Ma = 2.25 turbulent boundary layer, [Loginov et al., 2006,Pirozzoli and Grasso, 2006]
find that the formation of a mixing layer at the separation bubble edge S is primar-
ily responsible for the amplification mechanism of turbulence. Downstream of the
SWTBLI, the boundary layer recovers an equilibrium state. The dividing streamline,
which bounds the recirculation zone, originates at the separation point S and ends
at the reattachment point R. The mixing layer is responsible for an energy trans-
fer of momentum from the outer high speed flow towards the separation region.
Consequently, the velocity on the dividing streamline steadily increases until the
reattachment process begins. The ability of the shear layer to overcome a pressure
increase associated to the reattachment process is directly influenced by the maxi-
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Figure 1.5.: Sketch of the oblique shock/boundary-layer interaction with separation.

mum velocity on this streamline at the onset of reattachment [Delery and Bur, 2000].
This characteristic furthermore explains why the interaction length Lint (see Fig. 1.4
for a definition of Lint) increases when the shock strength is incremented. As de-
picted in Fig. 1.4, the pressure increase ∆p through the SWTBLI can be decomposed
in two parts, namely ∆p1 associated to the separation and ∆p2 accompanied by the
reattachment process. [Delery and Bur, 2000] have shown that for the same flow pa-
rameters of the incoming boundary layer (especially the shape factor H12), the onset
of separation occurs at the same pressure level, consistent with the Free Interaction
Theory which states that the pressure rise until separation is only a function of up-
stream flow conditions. Therefore, an increase in the overall pressure rise ∆p goes
hand in hand with an increase in ∆p2. This in turn means, that the fluid particles on
the dividing streamline must possess a higher stagnation pressure which can only
be achieved by an increase of the shear layer length, allowing entrainment effects
to have enough time to provide sufficient momentum transfer from the outer flow
when reattachment begins [Delery, 1985].

Figure 1.6 shows a description of the main features of the interaction between
oblique shock and supersonic turbulent boundary layer along a compression ramp.
Ramp induced interactions lead to a similar organization for the separated flow, with
the boundary layer reacting to a pressure rise, no matter the cause of this pressure
increase. What changes, in this case, is the shock pattern associated with the inter-
action. The separation of the boundary layer at point S induces a deflection of the
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Figure 1.6.: Sketch of the compression ramp interaction with separation.

flow giving rise to the oblique shock C1 as in the previous cases, the flow behind C1
being still supersonic. The two shocks C1 and C2 meet at the triple point I. Since, the
states behind C1 and C2 are not compatible with the Rankine-Hugoniot conditions,
a third shock C3 starts from I, leading to a compatible state. Downstream of I, the
two states are separated by the slip line.

1.2.2. Low-frequency unsteadiness

The interaction properties described above relate to the steady aspects of the STWBLI,
which are well studied and documented. In reality however, the case of a shock in-
duced separated turbulent boundary layer is much more complex as unsteady shock
motions of the reflected shock ranging over large spatial and temporal scales occur.
Various experimental and numerical studies confirmed the existence of such low-
frequency phenomena and identified a characteristic frequency being about two or
three orders of magnitude smaller than the characteristic frequency of the incoming
boundary layer O(U∞/δ0), [Dolling, 2001]. The driving mechanism of such low-
frequency shock motions is currently not understood and different theories have
been presented. Stated by [Piponniau et al., 2009], a major problem is to separate
the low-frequency shock motions associated to the separated flow from the ones re-
lated to unsteady conditions of the upstream boundary layer. Basically two main
lines of thought can be identified, where on the one hand the unsteadiness is cor-
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related with upstream events, while a second group links the the low-frequency
motion to an intrinsic feature associated to the dynamics of the separation bubble
and the shock motion. [Beresh et al., 2002] suggested that the low-frequency shock
motion is inherited by upstream events by means of continuous variations in the
upstream velocity profile, which is therefore responsible for the unsteady shock foot
motion. Positive velocity fluctuations resemble an instantaneously fuller velocity
profile, featuring an increased resistance to separation and hence shifting the sep-
aration shock downstream while the separation bubble is passively responding to
the shock movement. In order to relate such high-frequency dynamics to the low-
frequency shock-motion, the shock can be thought of as a low-pass filter, selectively
amplifying the low- frequency motions contained in the upstream boundary layer.
This idea has been formally proposed by [Plotkin, 1975], who postulated that the
shock displacement was obeying a first-order stochastic ordinary differential equa-
tion (ODE) with an associated characteristic time scale. [Plotkin, 1975] has shown
that such a mathematical model is capable of reproducing the wall-pressure low-
frequency spectrum. However, as stated by [Touber and Sandham, 2010], this model
lacks justifications about whether the oblique shock/boundary layer interaction can
be modeled so simply and, if so, on the key parameters responsible for the cutoff
frequency. In addition it is unclear if the low-energy/low-frequency content of the
upstream boundary layer is sufficient to be solely responsible for the low-frequency
unsteadiness, once the high frequencies have been cut off. Another approach is to
relate the slow timescales of the incoming boundary layer to the unsteady shock
movements, which led to investigations of the so-called ”superstructures”. Indeed,
in order to relate the low-frequency unsteadiness of the reflected shock with struc-
tures present in the incoming boundary layer, they need to be at least one order
of magnitude larger than the associated boundary layer thickness. [Ganapathisub-
ramani et al., 2006] investigated a supersonic boundary layer at Ma = 2 by means
of particle-image velocimetry (PIV) and Taylor’s hypothesis and found elongated
coherent structures with a length of about 50δ0. The impact of a structure of such
length will inevitably displace the reflected shock, possibly explaining the unsteadi-
ness. They proposed a simple scaling argument for the low-frequency content of
such superstructures being U∞/2Ls, with Ls representing the length of the structure
and U∞ the upstream free stream velocity. Considering the experimental investi-
gations by [Dupont et al., 2006], who created a database for the oblique shock re-
flection case for different shock intensities, energetically significant low-frequency
shock oscillations for the 8○ case could be found at frequencies about U∞/(119δ0).
Using the above scaling hypothesis for the superstructures would result in a length
of Ls ≈ 60, consistent with the value reported by [Ganapathisubramani et al., 2006].
Support for this hypothesis is provided by the DNS results of [Wu and Martin, 2007]
where long coherent structures with a length of 48δ0 have been found. However, it
should be noted that the appearance of such structures could be related to the re-
cycling/rescaling technique used in their work for the turbulent inflow generation,
probably forcing such structures. In addition, different experimental studies with
same inflow conditions but different corner and wedge angles [Dolling, 2001, Dus-
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sauge et al., 2006, Dupont et al., 2006, Piponniau et al., 2009], have shown that the
low-frequency shock motion changed markedly. Unless the shock truly acts as a
low-pass filter, the above mentioned investigations make the superstructures theory
questionable. The other line of thought states the low-frequency shock motions to
be deriving from a coupling effect between the dynamics of the separation bubble
and the shock movements, either through global instability of the separation bubble
or through some mechanism of self-sustainment. As mentioned before, [Dupont
et al., 2006] measured the characteristic low-frequencies of the shock motion for
an oblique shock impinging on a Ma = 2.3 turbulent boundary layer for various
wedge angles varying between 7○ < θ < 9.5○ and found that for an identical incom-
ing boundary layer the shock frequency is directly related to the shock intensity.
Based on the interaction length Lint and free stream velocity U∞, they stated the
Strouhal number StL = fLint/U∞ to lie in between 0.02 < StL < 0.04. The idea that
vortical structures originating from the shear layer which forms in the vicinity of
the reflected shock could interact with the separation bubble has been extensively
studied by [Piponniau et al., 2009]. They proposed a model based on the mass-
entrainment timescale from the mixing layer, whose timescale could be related to
those of the low-frequency shock motions. Moreover, they showed a coupling be-
tween the breathing motion of the separation bubble and the excursion of the re-
flected shock. While contractions of the bubble are related to downstream motion
of the reflected shock, expansions result consequently in an upstream shift. Low-
frequency self-sustained oscillations have numerically been supported by [Touber
and Sandham, 2009], who analyzed the stability of the SWTBLI by considering the
linearized Navier-Stokes equations about the base flow associated to the full LES.
Their main result was the proof of existence of a two-dimensional, non-oscillatory
but globally unstable mode, whose growth rate was found to be significantly smaller
than the typical time scales of the incoming boundary layer. In addition, using stan-
dard and non-standard modal decomposition, [Pirozzoli et al., 2010b] found the oc-
currence of two distinct flow modes, one associated with the turbulence structures
in the incoming boundary layer, the other associated with a cyclic breathing motion
of the separation bubble, hence resulting in a fore-and-aft motion of the reflected
shock. Another theory for self-sustained low-frequency unsteadiness based on an
acoustic feedback mechanism has been proposed by [Pirozzoli and Grasso, 2006].
Based on their DNS of an impinging shock at Ma = 2.25 and Reδ2 = 3725, they pro-
posed an acoustic feedback mechanism in the interaction region being responsible
for the self-sustained low-frequency oscillations of the reflected shock. Large co-
herent structures are shed in the vicinity of the mean separation location and are
convected along the detached shear layer towards the tip of the incident shock. The
unsteady interaction of such vortical structures with the incident shock tip produces
acoustic waves that propagate upstream within the subsonic part of the boundary
layer, affecting the position of the separation point and enhancing the shedding of
coherent structures. [Touber and Sandham, 2009] detected upstream acoustic waves
within the interaction region, confirming the possibility of the feedback-loop mech-
anism proposed by [Pirozzoli and Grasso, 2006].
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1.3. Objective of the present work

Given the elements proposed in the presented discussion, it becomes clear that shock-
wave/turbulent boundary layer interaction, and in particular the associated low-
frequency unsteadiness, is still a very active field of research where no exhaustive
description of this phenomenon has been reached yet. The following work intends
to give a deeper insight in the SWTBLI, using large-eddy simulation as the primary
tool to generate the data that is then analyzed by means of modal analysis.
In particular we will:

• Validate the proposed LES approach through sensitivity studies and compar-
isons with direct numerical simulation data.

• Validate the conservative immersed interface method introduced to handle
complex geometries in a cartesian-grid based code.

• Perform a global validation of the different parts of the numerical approach by
direct comparison with experimental results.

• Investigate the low-frequency unsteadiness phenomenon of the SWTBLI by
mean of Dynamic Mode Decomposition.

The thesis is organised as follows. The next chapter will introduce the govern-
ing equations with a focus on the 3D compressible Navier-Stokes equations and
the numerical approach proposed for the large-eddy simulation. In addition, the
so called conservative immersed interface method (CIIM) for compressible viscous
flows will be introduced. The following chapter will be devoted to the validation of
the single building blocks of the numerical approach proposed, namely: the implicit
large-eddy simulation approach, the digital-filter technique for the generation of
the turbulent inflow profiles and the CIIM for the description of embedded bound-
aries. From there, the following chapter will focus on the analysis of the results of
a large-eddy simulation of the flow of a supersonic turbulent boundary layer along
a compression-expansion ramp. The results will be directly compared with exper-
imental measurements derived from the work of [Zheltovodov et al., 1990]. The
next chapter will be devoted to the analysis of the low-frequency unsteadiness of
the shock motion. The proposed approach makes use of the numerical database
generated in the previous validation step, which will be analyzed by mean of Dy-
namic Mode Decomposition (DMD). Finally, a discussion about the low-frequency
motion, based on the knowledge acquired from both the large-eddy simulation and
the DMD analysis will be provided, followed by the conclusions and some sugges-
tions for future work.
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2. Numerical approach

This chapter describes the numerical approach that was implemented in order to
perform the simulations presented throughout this dissertation. In particular, the
large-eddy simulation technique used in this work will be detailed together with
the approach implemented for generation of the incoming turbulent-boundary-layer
fluctuations. Furthermore, the conserved immersed interface technique, used to de-
scribe embedded boundaries in the cartesian-grid based code adopted in this work,
will also be presented.

2.1. Governing equations

We consider the compressible Navier-Stokes equations in a dimensionless form :

∂ρ

∂t
+ ∂ρui
∂xi

= 0, (2.1)

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p
∂xi

+ 1

Re

∂τij
∂xj

, (2.2)

∂ρE

∂t
+ ∂ρEuj

∂xj
= −∂puj

∂xj
+ 1

Re

∂τijuj
∂xj

+ 1(γ − 1)RePrMa2

∂

∂xj
(κ ∂T
∂xj

) , (2.3)

where t and xi represent the time and the spatial coordinates of a Cartesian refer-
ence system, respectively. The above dimensionless equations represent the conti-
nuity, momentum and energy equation and have been derived by considering the
dimensional Navier-Stokes equations and normalizing all flow parameters with the
following reference values:

ui = u∗i
U∗

∞

, ρ = ρ∗

ρ∗
∞

, T = T ∗

T ∗

∞

, (2.4)

p = p∗

ρ∗
∞

U∗2
∞

, E = E∗

U∗2
∞

, xi = x∗i
L∗ref

, (2.5)

t = t∗ U∗

∞

L∗ref
, (2.6)

where the variables marked with a star (∗) represent dimensional quantities. The
governing flow parameters which appear in the system of equations after the non-
dimensionalization process are the Reynolds number Re, the Prandtl number Pr,
the Mach number Ma and the specific heat ratio γ.
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In Eq. (2.3) ui denotes the single component of the velocity vector and τij repre-
sents the viscous stress tensor for a Newtonian fluid

τij = µ (T )(∂ui
∂xj

+ ∂uj
∂xi

− 2

3
δij
∂uk
∂xk

) . (2.7)

The Navier-Stokes system of equations is closed by constitutive relations for pres-
sure p, temperature T , viscosity µ and diffusivity k. In the numerical examples pre-
sented in this work we consider a perfect gas with the ratio of specific heats γ as-
sumed to be equal to 1.4. For an ideal gas the pressure p and the temperature T are
determined by the definition of total energy

p = (γ − 1) (E − 1

2
ρu2

i ) , (2.8)

T = p

Rρ
, with R = 1

γMa2
. (2.9)

The temperature dependence of the viscosity is given either by a power-law or by
the Sutherland’s law

µ (T ) = ⎧⎪⎪⎨⎪⎪⎩
1
ReT

ψ

T 1.5 1+N
T+N with N = S

T ∗a S = 110.4K
. (2.10)

The thermal conductivity is computed from the viscosity using the following re-
lation

κ = 1(γ − 1)Ma2Pr
µ (T ) . (2.11)

2.2. Large-eddy simulation

Direct Numerical Simulation (DNS) suffers from the overall computational cost which
scales with O(Re 11

4 ), thus constraining practical applications of turbulent flows to
small Reynolds-numbers. Therefore, the Large-eddy simulation (LES) can be seen
as the most suitable approach to obtain a three-dimensional unsteady simulation of
a turbulent flow [Garnier et al., 2009]. The basic idea of LES is a scale separation ap-
proach, where the large-scale most-energetic turbulent structures are fully resolved
and the effect of the unresolved smaller scales is accounted for by the adoption of a
model. According to Kolmogorov’s theory of turbulence [Kolmogorov, 1991], small
scales of the flow are supposed to be universal and less dependent on the boundary
conditions than large scales, therefore leading to a simplification of the underlying
LES modeling effort.
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2.2. Large-eddy simulation

2.2.1. The filtering procedure

The above mentioned spatial-scale separation can be mathematically defined as the
convolution of a flow variable with a filter kernel. The resolved part of an arbitrary
vector field φ(x, t) is therefore defined by:

φ(x, t) = ∫
Ω(t)

G(x − x′; ∆)φ(x′, t)dx′ = G ∗ φ, (2.12)

where G is a homogeneous filter convolution kernel with normalization

∫ G(x)dx = 1 (2.13)

and ∆ its associated characteristic cut-off scale in space. Note that the spatial cut-off
scale is directly associated to the cut-off wave number kc = π/∆ in Fourier-space.
The vector field φ is split into a resolved φ and non-resolved part φ′, where the latter
quantity is referring to the subgrid-scales:

φ = φ + φ′. (2.14)

It is worth mentioning that three different filters can be identified in the frame-
work of LES, where two of them act implicitly. The first being the analytical filter
represented by the convolution product introduced above, that is needed for explicit
subgrid-scale models, where the additional model terms are derived from filtering
operations on the resolved fields. The second one is the grid filter, which arises from
the use of a finite computational mesh which is too coarse to resolve the smallest
scales of the turbulent flow and thus acts as an implicit low-pass filter in Fourier-
space. The latter is, hence, associated to the numerical scheme. Although the accu-
racy of a numerical scheme is often characterized by the order of its truncation error
in physical space, it seems more appropriate to compute the spectral distribution of
the truncation error in Fourier-space for LES in order to assess which wave numbers
k are captured by the numerical scheme [Garnier et al., 2009]. Therefore, the numeri-
cal solution of the Navier-Stokes equations is a result of all the mentioned filtering
processes which constitute the effective filter.

2.2.2. Explicit LES approach

In the framework of the explicit LES both the analytical filter and the grid filter are
active. To avoid any confusion between the grid-filtered and test-filtered fields, the
grid-filtered field will be denoted by the overline notation (⋅) and the test-filtered
field will be indicated by the hat notation (̂⋅). Both filters are of the type introduced
in Eqns. (2.12) and (2.13) and they also possess consistency, linearity and commuta-
tion properties [Garnier et al., 2009]. The grid-filtered compressible Navier-Stokes
equations may be written as:
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∂ρ

∂t
+ ∂ρũi
∂xi

= 0, (2.15)

∂ρũi
∂t

+ ∂ρũiũj
∂xj

+ ∂p

∂xi
− 1

Re

∂τ̃ij
∂xj

= −A1
i +A2

i , (2.16)

∂ρẼ

∂t
+ ∂ρẼũj

∂xj
− ∂pũj
∂xj

+ 1

Re

∂τ̃ijũj
∂xj

−
1(γ − 1)RePrMa2

∂

∂xj
(µ̃ ∂T̃
∂xj

) = −B1 −B2 −B3 +B4 +B5 +B6 −B7, (2.17)

where the quantities on the left hand-side can be directly calculated from the re-
solved scales. The terms on the right hand-side need to be modeled and represent
the effects of the unresolved subgrid-scales. The tilde notation denotes the Favre-
filter operator which is defined as:

φ̃ = ρφ
ρ
. (2.18)

This change of variable, in which filtered variables are weighted by the density, is
often used in the compressible case, since the necessary transformation from ρui to
ρũi raising from the non-linear terms in the Navier-Stokes equations would result
in an additional subgrid term which can be avoided by the use of Favre-filtering.
An exact definition of the subgrid-scale terms at the right hand side of the above
introduced system of equations can be found in the work of [Vreman et al., 1995,
Garnier et al., 2009]. On the basis of the a posteriori analysis of DNS data proposed
by [Vreman et al., 1995], it is possible to neglect part of the arising subgrid-scale
terms obtaining the following form for the system of equation:

∂ρ

∂t
+ ∂ρũi
∂xi

= 0, (2.19)

∂ρũi
∂t

+ ∂ρũiũj
∂xj

+ ∂p

∂xi
− 1

Re

∂τ̃ij
∂xj

≈ −∂σi,j
xj

, (2.20)

∂ρẼ

∂t
+ ∂ρẼũj

∂xj
− ∂pũj
∂xj

+ 1

Re

∂τ̃ijũj
∂xj

−
1(γ − 1)RePrMa2

∂

∂xj
(µ̃ ∂T̃
∂xj

) ≈ −∂σi,jũj
xj

− 1(γ − 1)Ma2

∂ρQj

∂xj
. (2.21)

The terms σi,j and Qj represent the SGS stress tensor and the SGS Reynolds heat
flux, respectively defined as:

σij = ρ (ũiuj − ũiũj) , (2.22)
Qj = (T̃ uj − T̃ ũj) . (2.23)
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2.2. Large-eddy simulation

According to the energy cascade process in turbulent flows, on average the en-
ergy is transferred from the large scales (integral length scales L) to the small ones
(Kolmogorov scales η), where finally the energy is dissipated through viscous effects
and transformed into internal energy. The main task of a subgrid-scale model is to
account for the influence of the unresolved scales onto the resolved ones and in par-
ticular to predict the energy transfer between those scales in an adequate manner.
Since the energy transfer to the small scales has been artificially inhibited through
the filtering process, the subgrid-scale model becomes responsible for providing the
correct amount of energy dissipation. In the framework of the explicit LES a sim-
ple eddy-viscosity assumption is commonly made in analogy to gas kinetics, which
states that the impulse transfer between turbulent eddies through collisions induces
stresses:

σij − 1

3
δijσkk = −2ρνtS̃

D
ij , (2.24)

where νt denotes the eddy viscosity and S̃Dij is the deviatoric part of the strain-rate
tensor which is computed from the filtered velocity field as follows:

S̃Dij = S̃ij − 1

3
δijS̃kk = 1

2
(∂ũi
xj

+ ∂ũj
xi

) − 1

3
δijS̃kk. (2.25)

The eddy viscosity νt has been modeled in numerous ways, the most popular model
being the classical Smagorinsky model where, according to the mixing length model
of Prandtl number, the eddy viscosity is related to a length and velocity-scale, the
length-scale being implicitly prescribed by the filter length ∆. A detailed overview
of several SGS models for LES of compressible flows is given in the work of [Garnier
et al., 2009]. Once the eddy viscosity νt has been calculated, the SGS heat flux is
modeled through:

Qj = T̃ uj − T̃ ũj = − νt
Prt

∂T̃

∂xi
, (2.26)

where Prt denotes the turbulent Prandtl, which is often considered constant. After
having related the unresolved scales to the resolved ones through Eqns. (2.24)-(2.26),
the system of equations is closed.

2.2.3. Implicit LES approach

In the previous section, explicit SGS modeling has been introduced by the filtering
concept where the underlying conservation law is modified and subsequently dis-
cretized. Without suggesting specific discretization schemes it was assumed for the
explicit SGS approach, that the truncation error of the spatial discretization scheme
is small enough, hence not affecting the SGS physics. Thus, the numerical method
and the turbulence modeling are assumed to be completely decoupled which in
general is not true. However, when solving numerically Eqns. (2.19)-(2.21) the ex-
plicitly computed SGS stress is affected by the truncation error of the discretiza-
tion scheme. This interference can result in strange results such as the lack of grid
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convergence. [Ghosal, 1996] has analyzed this problem analytically and has found
that the truncation error even of a fourth-order central-difference discretization can
have the same order of magnitude as the SGS stress. Implicit large-eddy simula-
tion (ILES) discretizes the unmodified conservation law and exploits this interfer-
ence between truncation error and SGS stress. Instead of an explicit computation of
the SGS stress, the truncation error of the discretization scheme itself is employed
to model the effects of unresolved scales. Therefore, ILES discretizes the unmodi-
fied conservation law and employs the truncation error of the spatial discretization
scheme, which is calibrated in such a way that it acts as a physically motivated SGS
model. Since the SGS model is implicitly contained within the discretization scheme,
an explicit computation of model terms becomes consequently unnecessary [Adams
et al., 2004, Hickel et al., 2006, Hickel and Larsson, 2008]. In order to highlight the
general idea of the ILES approach, consider the following generic one-dimensional
non-linear scalar transport equation for φ:

∂φ

∂t
+ ∂F (φ)

∂x
= 0 (2.27)

Following the filtering procedure, the discretized equation is obtained by convolu-
tion with an homogeneous filter kernel G and the subsequent discretization

∂φN
∂t

+G ∗ ∂FN(φN)
∂x

= −G ∗ ∂GSGS
∂x

, (2.28)

where the subscript N indicates grid functions resulting from the projection of the
continuous function φ(x) onto the numerical grid xN = xj , thus representing a dis-
crete approximation of φ(x). This projection operation is one of the sources of the
SGS modeling problem in LES, since it removes all scales beyond the Nyquist wave-
number kc = π/∆g, where ∆g is assumed to be a constant grid spacing. It has also to
be noted that Eq. (2.28) considers spatial scales only, although the underlying trans-
port equations makes it possible to associate a characteristic time scale with a length
scale. However, it is common practice to consider only spatial filtering, assuming
that all relevant time scales are resolved by choosing a sufficiently small time step
for the time integration scheme [Hickel et al., 2006].

In order to compute the nonlinear term in Eq. (2.28), the represented-scale part
of the unfiltered field is reconstructed by a suitable numerical approximation of the
inverse-filter operation φN = G−1∗φN applied to represented scales. Such reconstruc-
tion is defined as soft deconvolution problem. Since non-represented scales cannot
be retrieved, it is φN ≠ φ. The irreversibility of the grid projection of non-linear terms
is the cause of the generation of the subgrid-stress tensor or residual

GSGS = F (φ) − FN(φN), (2.29)

which needs to be modeled in order to close Eq. (2.28). An introduction to the explicit
SGS models which provide approximations or estimations of GSGS has been given in
the previous Sec. 2.2.2.
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2.2. Large-eddy simulation

When Eq. (2.28) is solved numerically, the truncation error of the numerical dis-
cretization scheme affects the solution φN in such a way that it does not satisfy
Eq. (2.28) anymore, but rather a Modified Differential Equation (MDE) which may
be formulated as:

∂φN
∂t

+G ∗ ∂FN(φN)
∂x

= GN − Ǧ ∗ ∂̌ǦSGS
∂̌x

, (2.30)

where the approximate numerical operators are denoted as (̌⋅). The truncation error
of the discretization scheme for the calculation of the numerical fluxes GN can be
expressed as:

GN = G ∗ ∂FN(φN)
∂x

− Ǧ ∗ ∂̌F̌ (φ̌N)
∂̌x

, (2.31)

where φ̌N is an approximation of the discrete grid function φN , which is obtained
from a regularized deconvolution applied to φN . In the framework of explicit LES,
is generally assumed that ∣∣G∣∣ ≫ ∣∣G ∗ ∂xGSGS ∣∣ and that ǦSGS ≐ GSGS , but actually
such requirement is violated by most of the discretization schemes at grid resolu-
tions that are of common use for LES. As it has been shown in other works [Ghosal,
1996, Kravchenko and Moin, 1997], this mutual interference of GN and GSGS can
have large and generally unpredictable effects on the accuracy of LES results. In the
present work we will make use of an implicit large-eddy simulation approach which
is based on the so called Adaptive Local Deconvolution Method which employs the
Finite Volume (FV) method as a starting point.

Finite Volume formulation

We consider the compressible Navier-Stokes equations expressed in a conservative
form :

∂U

∂t
+∇ ⋅F(U) = 0. (2.32)

After defining the computational domain Ω(t) and integrating Eq.(2.32) over the
space-time volume Vj ∩ Ω(t) of a computational cell we obtain the following finite
volume discretization

∂U

∂t
= − 1

Vj
∮
∂(Vj∩Ω(t))

F(U) ⋅ n dA + 1

Vj
∮
Vj∩Ω(t)

S(U)dV, (2.33)

where the solution vector U containing the volume averaged conserved variables is
defined as

U = 1

Vj
∫
V j

UdVj. (2.34)

The vector U = [ρ, ρu1, ρu2, ρu3, ρE] contains density ρ, momentum ρui and total en-
ergy ρE. The overbar notation (⋅) identifies the volume average for any arbitrary
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2. Numerical approach

control volume Vj ∩Ω(t), which can be considered equal to any of the computational
cells of the grid. The flux form adopted in Eq. (2.32) ensures the exact conservation
of all components of the solution vector independently from the numerical scheme
adopted to compute the fluxes F(U) at the control volume surface ∂(Vj ∩Ω(t)). For
later convenience the flux F(U) across ∂(Vj ∩Ω(t)) is split into three components: a
first component C(U) due to the convective terms, a second component P(U) due
to surface stresses related to pressure and a final component D(U) due to viscous
surface stresses. Non-conservative source terms are collected into S(U). The com-
ponents of the fluxes along each direction of the reference system is given as:

Fi = Ci +Pi +Di =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui ρ
ui ρu1

ui ρu2

ui ρu3

ui ρE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
δi1 p
δi2 p
δi3 p
ukδik p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
τi1
τi2
τi3

ukτik + qi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.35)

Overview on the Adaptive Local Deconvolution Method 1

The finite volume method provides a suitable framework for I-LES. The FV dis-
cretization corresponds in fact to the evaluation of Eq. (2.28) using a top-hat filter

G (x, Vj)dx = ⎧⎪⎪⎨⎪⎪⎩
1/Vj , x ∈ Vj
0 , x ∉ Vj . (2.36)

The numerical building blocks of finite-volume methods are a reconstruction of the
unfiltered solution at cell faces, a numerical flux function that works on the recon-
structed solution, and a numerical integration scheme to compute the face-averaged
flux. The truncation error of finite-volume methods can be expressed as the diver-
gence of a tensor. This is a favorable feature with respect to physically motivated
implicit modeling. ALDM is therefore based on exploiting the formal equivalence
between cell-averaging and reconstruction in finite-volume discretizations and top-
hat filtering and deconvolution in SGS modeling.

Reconstruction procedure: the reconstruction of the unfiltered solution is obtained
from a solution-adaptive convex combination of Harten-type deconvolution polyno-
mials [Hickel et al., 2006, Adams et al., 2004, Harten et al., 1997]:

g̃∓k,r(xj±1/2) = k−1∑
l=0

c∓k,r,l(xN) φ(xj−r+l), (2.37)

where half-integer indices denote reconstructions at the cell faces. The grid-dependent
coefficients c∓k,r,l(xN) are chosen such that

g̃∓k,r(xj±1/2) = φ(xj±1/2) +O (∆k
g) (2.38)

1In this section a brief overview on the Adaptive Local Deconvolution Method for compressible
flows is given. A more detailed description of the method can be found in the work of [Hickel, 2012].
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2.2. Large-eddy simulation

on a grid with spacing ∆g. The deconvolution is regularized by limiting the degree
k of local approximation polynomials to k < K and by permitting all polynomials
of degree 1 < k < K to contribute to the approximately deconvolved solution. The
adaptivity of the deconvolution operator is achieved by dynamically weighing the
respective contributions by the factors

ωk,r (γk,r, φN) = γλk,rβk,r (φN)
∑k−1
s=0 γ

λ
k,sβk,s (φN) , (2.39)

where γk,r are free model parameters and βk,r are estimates of the smoothness of
the grid function on the respective stencil, to obtain a nonlinear adaptation of the
deconvolution. The following functional

βk,r (φN , xi) = (εβ + k−r−2∑
l=−r

(φ (xi+m+1) − φ (xi+m))2)−2

, (2.40)

where εβ = 10−99 to avoid division by zero. The procedure described above leads to
a hierarchy of reconstructions with increasing order of accuracy

φ̃∓1(xj±1/2) = g̃∓1,0(xj±1/2) (2.41)

φ̃∓2(xj±1/2) = 1∑
r=0

ω∓2,r (γ2,r, φN) g̃∓2,r(xj±1/2) (2.42)

φ̃∓3(xj±1/2) = 2∑
r=0

ω∓3,r (γ3,r, φN) g̃∓3,r(xj±1/2), (2.43)

which are then combined in the final reconstruction step:

φ̃∓(xj±1/2) = K∑
k=1

αk φ̃
∓

k(xj±1/2), (2.44)

where the additional parameters αk are introduced. In the compressible framework
the local adaptive reconstruction scheme is applied to primitive rather than con-
served variables leading to improved robustness of the numerical method in case of
strong density gradients.

Numerical flux function: a suitable consistent numerical flux function operates on
the approximately deconvolved solution. The adopted numerical flux function is
capable to meet the requirement of preserving the symmetries of the Navier-Stokes
flux and of being asymptotically consistent with incompressible turbulence theory
for low Mach number flows [Hickel, 2012]. For implicit SGS modeling, only the
hyperbolic flux C + P is considered, whose discretization causes the SGS effects of
interest. The effect of the truncation error of the diffusive flux could also be consid-
ered, as done by [Zandonade et al., 2004] for finite-volume optimal LES. However,
the discretization of the viscous flux has negligible influence on the results of LES

19



2. Numerical approach

at large Reynolds numbers, since the grid cutoff is typically chosen to be within the
inertial range. Gradients in the viscous flux tensor D are therefore approximated by
linear second-order schemes.

In the ALDM framework, secondary regularization is provided by a numerical
flux function with the general form

F̃j±1/2 = F ( φ̃+ + φ̃−
2

) −R (φ̃+ − φ̃−) . (2.45)

The numerical flux is composed of two elements. The first term corresponds to the
physical Navier-Stokes flux computed from the mean of both reconstructions of the
unfiltered solution at the considered cell face. The difference between both recon-
structions is exploited in a regularization term based on the reconstruction error(φ̃+ − φ̃−). The dissipation matrix R needs to be defined specifically for the particular
differential equation being under consideration.

Based on this observation, the single component of the convective flux Ci is given
as

C̃ρ
i = ũ∗

ρ̃+ + ρ̃−
2

−Rρ
i (ρ̃+ − ρ̃−) (2.46)

C̃ρui
i = C̃ρ

i

ũ+i + ũ−i
2

−Rρui
i

ρ̃+ + ρ̃−
2

(ũ+k − ũ−k) (2.47)

C̃ρE
i = ũ∗

ρ̃E
+ + ρ̃E−

2
+ ũ+k + ũ−k

2
(C̃ρui

i − ũ+k + ũ−k
4

C̃ρuk
i ) −RρE

i (ρ̃E+ − ρ̃E−) . (2.48)

The pressure flux is defined in the following way:

P̃i =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
δi1p̃∗

δi2p̃∗

δi3p̃∗

ũ∗i p̃
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.49)

where the interface pressure and transport velocity are computed from:

p̃∗ = p̃+ + p̃−
2

(2.50)

ũ∗i = ũ+i + ũ−i2
− 1

c̃

p̃+3 − p̃−3
ρ̃+ + ρ̃− , (2.51)

Here c̃ is the maximum speed of sound achived in the adjacent cells. It has to be
highlighted that the second term in Eq. (2.51) is introduced in order to ensure the
pressure velocity coupling.

In the framework of compressible flows, subgrid-scales are related to unresolved
turbulence but can also be connected to the presence of shockwaves. The spectral
energy transfer at shock waves differs considerably from the mechanisms in un-
resolved turbulence. These differences have to be taken into account in the SGS
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2.2. Large-eddy simulation

modeling strategy. Unresolved turbulence can be modeled with a numerical vis-
cosity proportional to a velocity gradient and the square of a characteristic length
scale. Propagating discontinuities represent unique SGS that usually modeled with
a numerical viscosity proportional to the fastest signal speed. Based on the consid-
erations above, the dissipation matrix is defined as follows:

R̃i =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σρ ∣ũ+i − ũ−i ∣
σρu1 ∣ũ+1 − ũ−1 ∣
σρu2 ∣ũ+2 − ũ−2 ∣
σρu3 ∣ũ+3 − ũ−3 ∣
σρE ∣ũ+i − ũ−i ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ fs ∣ũ∗i ∣ + ∣ũ+i − ũ−i ∣

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.52)

An additional term is hereby added to the regularization which is responsible to
account for the spectral energy transfer taking place at shock waves. This second
term is active only in the region where discontinuities are detected by the sensor
functional of [Ducros et al., 2000] :

fs = ⎧⎪⎪⎨⎪⎪⎩
1 , ∣∇⋅u∣

∣∇⋅u∣+∣∣∇×u∣∣ ≥ 0.95

0 , else
, (2.53)

where the large threshold value in Eq. (2.53) ensures that the term is active only at
strong shock waves.

The proposed form of the numerical flux is therefore capable of guaranteeing the
correct dissipation mechanism for unresolved turbulence and shockwaves and also
ensures asymptotic consistency with the ALDM formulation for incompressible tur-
bulence in the limit of Ma→ 0.

Finally the values for the model parameters α, γ, σ in the adaptive stencil-selection
scheme and the numerical flux function are optimized to adjust the spatial trunca-
tion error of the discretization. The list of the values obtained for the parameters
after the optimization can be found in the work of [Hickel, 2012].

ALDM Wall effects: The solution-adaptive behavior of ALDM is controlled by dy-
namic weight functionals ω∓k,r. The form of these weights is defined in such a way
that their statistical average resembles a central reconstruction scheme for isotropic
turbulence. Near solid walls, however, velocity fluctuations are strongly anisotropic.
Time-averaged values of selected weight functions of the ALDM deconvolution op-
erator are shown in Fig. 2.1 for a supersonic turbulent channel flow. We note that
ALDM reacts to flow anisotropy by becoming anisotropic in the near-wall region.
The resulting weights always prefer the stencil that is closer to the wall as shown,
e.g., for the wall-normal velocity component in Fig. 2.1. This weight distribution
leads to an upwind bias for fluid moving away from the wall and to a downwind
bias for fluid moving towards the wall. A central scheme is reproduced only at the
channel centerline and at two other other planes within the logarithmic layer.

The effect of the non-symmetric stencil selection on the implicit SGS model can
be analyzed indirectly. By considering the results of a direct numerical simulation
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Figure 2.1.: Time-averaged ALDM weight functions for central deconvolution of the
streamwise and wall-normal velocity component. Implicit LES of super-
sonic turbulent channel flow at Reτ = 450.
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Figure 2.2.: (a) Decomposition of the total shear stress τT . (b) Decomposition of the
total heat flux qT .

of a supersonic turbulent channel flow at Ma = 3 and Re = 4880 it is possible to
compute the single contributions to the total shear stress ⟨τT ⟩ and the total heat flux⟨qT ⟩ [Huang et al., 1995].

⟨τT ⟩⟨τw⟩ = 1⟨τw⟩ (⟨τ12⟩ − ⟨ρ⟩{u′′1u′′2}) (2.54)

⟨qT ⟩⟨qw⟩ = 1⟨qw⟩(⟨u1⟩ ⟨τ12⟩ + ⟨u2⟩⟨τ22⟩ + ⟨u′iτ ′i2⟩ − ⟨q2⟩ (2.55)

− {u1}⟨ρ⟩{u′′1u′′2} − ⟨ρ⟩{u′′2u′′i u′′i }
2

− ⟨ρ⟩{u′′2T ′′}(κ − 1)Ma2
)

The statistical average of the residual stress and heat flux of the implicit SGS model
can be the computed from the global shear-stress and energy balance as follows:

⟨τT ⟩⟨τw⟩∣SGS = ⟨τT ⟩⟨τw⟩∣DNS −
⟨τT ⟩⟨τw⟩∣I−LES (2.56)

⟨qT ⟩⟨qw⟩∣SGS = ⟨qT ⟩⟨qw⟩∣DNS −
⟨qT ⟩⟨qw⟩∣I−LES (2.57)

Figures 2.2(a) and 2.2(b) show the singular component of the total shear stress and
heat flux computed from the implicit LES results, together with the SGS contri-
bution obtained by using the DNS results as reference. The position of maximum
SGS contribution is closer to the wall than expected. The location of the SGS term
maximum does not coincide with the location of the resolved-Reynolds-shear-stress
and resolved turbulent heat transfer maximum. This shift is a consequence of the
anisotropic stencil selection, which causes increased SGS contributions near the walls.
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Figure 2.3.: Effective van Driest damping for the implicit LES of a supersonic turbu-
lent channel flow atReτ = 450, damping functional used with ALDM
(parameters value s = 1/3, d = 3, a+ = 50) and ⋅ linear approximation
0.02 y+.

Approaches for wall correction: One of the possible approaches to reduce the dis-
cretization anisotropy in the vicinity of the wall can be based on constraining or
damping the dynamic range of the stencil weights. Another possible approach can
be formulated by reducing the dissipative weight of the numerical flux function. As
already shown in the work of [Hickel, 2007], the latter approach is more practicable
due to a less negative impact on numerical stability of the former.

Van Driest wall damping: For the purpose of wall modeling a new formulation is
proposed for the factor σρui based on the Van Driest damping

σρuiV D = σρui (1 − exp [−( lwuτ
a+ν

)d])s
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fV D

(2.58)

where lw is the wall distance and uτ is the friction velocity at the closest wall. The
original scheme is recovered at large wall distances where σρuiV D → σρui ; d and a+ are
free parameters. The wall-asymptotic behavior of the effective change of the model
parameter σρui can be determined by Taylor series expansion. The leading term of
the expansion is

fV D ≈ 1(a+)ds (y+)ds. (2.59)

The work of [Hickel, 2007] has shown that the damping of Eq. (2.59) is rather insen-
sitive to the particular choice of d and a+. Given d, an optimal value for the length
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Figure 2.4.: Effective coherent-structure damping for the implicit LES of a supersonic
turbulent channel flow at Reτ = 450, damping function and ⋅ ana-
lytical approximation in the vicinity of the wall (y/H)3/2.

scale a+ can be selected such that the correct wall-shear stress is obtained. Optimal
values for ALDM were proposed [Hickel, 2007] as

d = 1

s
= 3 (2.60)

a+ = 50.0 (2.61)

With the adopted parameter values, the van Driest damping does not affect ALDM
at wall distances y+ > 80. The effective damping function is plotted in Fig. 2.3.

Coherent structure based criterion: A different formulation to achieve an adaptive co-
efficient σρuiCS is proposed based on the coherent structures model described in the
work of [Kobayashi, 2005, Kobayashi et al., 2008]. In this work, a new approach is
given for the dynamic computation of the Smagorinsky model constant Cs using a
function of the velocity gradient tensor. The method is based on the assumption
that the SGS dissipation is small in the center of a coherent fine-scale eddy, and that
the energy transfer between resolved scales and SGS is located around this coherent
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eddy. The damping coefficient in this case is constructed as follows:

σρuiCS = σρui πF
3/2
CS FΩ´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fCS

(2.62)

FCS = ⟨Q⟩⟨E⟩ , FΩ = 0.9 (1 − FCS), (2.63)

Q = 1

2
(⟨Wij⟩⟨Wij⟩ − ⟨Sij⟩⟨Sij⟩) , E = 1

2
(⟨Wij⟩⟨Wij⟩ + ⟨Sij⟩⟨Sij⟩) , (2.64)

⟨Wij⟩ = 1

2
(∂⟨uj⟩
∂xi

− ∂⟨ui⟩
∂xj

) , ⟨Sij⟩ = 1

2
(∂⟨uj⟩
∂xi

+ ∂⟨ui⟩
∂xj

) . (2.65)

⟨Sij⟩ and ⟨Wij⟩ are the Reynolds averaged velocity-strain tensor and the vorticity
tensor of the flow field, respectively. FCS is the coherent-structure function defined
as the second invariant ⟨Q⟩ normalized by the magnitude of the resolved velocity
gradient tensor ⟨E⟩. For incompressible flows, the second invariant Q α x2 and
E α const, therefore, the 3/2 power of fCS scales the implicit SGS viscosity propor-
tionally to x(3/2) near the wall. Figure 2.4 shows the effective damping function ob-
tained for the implicit LES of a supersonic turbulent channel flow. In contrast to the
van-Driest damping approach the unit value is never recovered even in the channel
centerline. A detailed analysis and validation of the different damping approaches
proposed here can be found in Sec. (3.1).

2.3. Boundary conditions

2.3.1. Turbulent inflow boundary condition

When considering DNS and LES of turbulent flows, one needs to prescribe three-
dimensional and time-dependent inflow conditions with correct statistical moments,
phase information and spectrum of the real turbulent flow under consideration [Tou-
ber, 2009]. Stated by [Garnier et al., 2009], the definition of such inflow conditions
is certainly one of the hardest open problems in the field of LES research. The most
straightforward approach is to simulate the complete transition from laminar to tur-
bulent by adding random disturbances to the laminar inflow profiles, hence induc-
ing natural transition further downstream. This approach has been followed in the
work of [Pirozzoli et al., 2004] and [Shahab et al., 2011], which allows to avoid pre-
scribing time-dependent turbulent fluctuations at the domain inlet. Besides the fact
that this method yields the most realistic results, simulating the transition process is
in itself a very expensive approach from the computational point of view.

In order to cope with this issue, one needs a certain level of approximation for
practical applications, hence yielding a conflict between accuracy and efficiency.
Commonly used techniques can be classified into two categories, namely precursor
methods and synthetic turbulence methods.
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The basic idea of the precursor type of methods is to run auxiliary simulations
to provide time and space dependent inflow conditions for the actual simulation.
Therefore, inflow boundary conditions are extracted from an instantaneous plane
of the auxiliary simulation and rescaled to the correct flow properties of the inflow
plane of the actual simulation [Stolz and Adams, 2003]. This is the basic idea of
the periodic and recycling/rescaling techniques, where the auxiliary simulation di-
rectly generates the inflow condition since periodic boundary conditions are applied
in streamwise direction. The most famous approach has been introduced by [Spalart
and Leonard, 1985], where the spatial streamwise growth of the boundary layer in
the auxiliary simulation is replaced by additional source terms in the Navier-Stokes
equations. The major drawback of this method is the explicit evaluation of such
growth terms. Based on the approach by [Spalart and Leonard, 1985], [Lund et al.,
1998] proposed a simplified method where the auxiliary simulation is allowed to be
quasi-periodic. Therefore, the outflow boundary conditions of the auxiliary simula-
tion are extracted and rescaled back to the inflow plane in an adequate manner. It is
worth mentioning that this recycling/rescaling technique can be used either in the
context of an auxiliary simulation or within the actual simulation itself by placing the
extraction plane inside the main domain. One major drawback in conjunction with
the recycling/rescaling technique with respect to the shockwave boundary layer in-
teraction dynamics that are investigated in this work is the fact that this method arti-
ficially introduces a frequency content related to the recycling length, hence strongly
affecting the interaction dynamics. In order to exclude that the investigated shock
motion is affected by numerical artifacts, the recycling/rescaling approach proposed
by [Lund et al., 1998] has been avoided in this work.

The basic idea of the synthetic turbulence methods is to prescribe an artificial in-
flow field which resembles the real turbulence by matching first/second order sta-
tistical moments. Stated by [Touber and Sandham, 2010], one major consequence of
the high level of approximation used is that the flow will be unphysical for some
distance downstream of the inflow plane. This in turn means that the flow exhibits
a certain unphysical transient length in which it slowly recovers these modeling er-
rors. One needs to account for this fact when considering the spatial extent of the
simulation domain. The simplest approach is to add random disturbances such as
white noise to the mean profiles. This method, however, usually leads to relami-
narization of the flow, since the energy in the wave-number space associated to this
approach is uniformly distributed, leading to a small amount of energy in the large
wavelengths. A more sophisticated approach is the Digital Filter (DF) technique
originally proposed by [Klein et al., 2003]. The general idea of this method will
be discussed briefly in the following. A random dataset is filtered to achieve tar-
geted one-point second order statistics as well as autocorrelation functions. Stated
by [Veloudis et al., 2007], integral length scales are used as input to make the non-
dimensional assumed (often Gaussian) shape of the autocorrelation function dimen-
sional at each point. Besides the prescribed turbulence length (or time) scales in
each coordinate direction, the main input parameters for the DF technique are the
first and second order statistical moments (mean values and Reynolds stresses) of
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all three velocity components for the inlet plane. In order to account for different
length scales present in boundary layers with regard to the wall-normal direction,
[Veloudis et al., 2007] proposed a zonal approach which will also be used in this
work. Based on this input, the DF approach is able to generate the inflow time-
dependent velocity field. The remaining task is to generate the thermodynamic
fluctuations, which in general is achieved by making use of the Strong Reynolds
Analogy (SRA), hence linking velocity fluctuations already obtained from the DF
technique with temperature fluctuations. Density fluctuations are obtained assum-
ing that the pressure is constant across the boundary layer. For a more detailed
description of the DF technique with respect to implementation issues the interested
reader is referred to [Klein et al., 2003, Touber, 2009, Veloudis et al., 2007].

2.3.2. Conservative Immersed Interface Method

Mathematical basis

The computational domain Ω(t) is divided into two different subdomains Ω1(t) and
Ω2(t), by the interface Γ(t). The volume Ω1(t) accounts for the region occupied by
the fluid and Ω2(t) refers to the region occupied by the solid obstacle. We solve
Eq. (2.31) for the fluid occupying the sub-domain Ω1 on a three-dimensional Carte-
sian grid with spacings ∆x, ∆y, ∆z. The fluid volume Vi,j,k ∩Ω1(t) can be expressed
through αi,j,k(t)∆x∆y∆z, where αi,j,k(t) is the fluid volume fraction of the consid-
ered cell (i, j, k). Applying Gauss’ theorem to Eq. (2.31), we obtain

∫ n+1

n
dt∫

Vi,j,k∩Ω1(t)
dx dy dz

∂U

∂t
+ ∫ n+1

n
dt∫

∂(Vi,j,k∩Ω1)

dx dy dz F ⋅ n = 0 , (2.66)

where ∂(Vi,j,k∩Ω1(t)) are the cell faces. Defining the interface segment within Vi,j,k as
∆Γi,j,k(t) = Γ(t) ∩ Vi,j,k, the term ∂(Vi,j,k ∩Ω1(t)) can be expressed as the combination
of two elements. The first element is the sum of the surfaces obtained by intersecting
the interface with the cell faces, which can be presented as A11

i,j,k∆y∆z, A12
i,j,k∆y∆z ,

A21
i,j,k∆x∆z , A22

i,j,k∆x∆z , A31
i,j,k∆x∆y , A32

i,j,k∆x∆y where Almi,j,k is the so called cell face
aperture described in Fig. 2.5. The second element is the interface segment ∆Γi,j,k(t).
After introducing the volume averaged solution, Eq. (2.66) can be rewritten in the
following form where time integration is approximated for simplicity by an forward-
Euler scheme and all terms on the right hand side are evaluated at tn. Note that for
Runge-Kutta schemes this corresponds to a substep

∆x ∆y ∆z (αn+1
i,j,kU

n+1

i,j,k − αni,j,kUn

i,j,k) (2.67)

= ∆t ∆y ∆z [A11
i,j,kF

11
i,j,k −A12

i,j,kF
12
i,j,k]+ ∆t ∆x ∆z [A21

i,j,kF
21
i,j,k −A22

i,j,kF
22
i,j,k]+ ∆t ∆x ∆y [A31

i,j,kF
31
i,j,k −A32

i,j,kF
32
i,j,k] +∆t Xi,j,k (∆Γi,j,k(t)) .

28



2.3. Boundary conditions

A
i , j, k

A
i , j, k

A
i , j, k

A
i , j, k

i , j+1, k i+1 , j+1, ki−1 , j+1, k

i+1 , j, ki−1 , j, k

i−1 , j−1, k i , j−1, k i+1 , j−1, k

i , j, k

∆Γ

12

11

22

21

= α
i,j

i , j, k

Figure 2.5.: Two dimensional schematic of conservative discretization for a cut cell.

∆t = tn+1 − tn is the time step size, αi,j,kVi,j,kUi,j,k and Ui,j,k are the vector of the
conserved quantities in the cut cell and the vector of volume averaged conservative
variables respectively. Flm

i,j,k is the average flux across a cell face and Xi,j,k is the
integral momentum and energy exchange across the interface. Details on Xi,j,k are
given in the following section. For cells that are not cut by the interface, volume
fractions and cell face apertures become unity, the corresponding interface surface
fraction ∆Γi,j,k vanishes and Eq. (2.66) simplifies to

Vi,j,k (Un+1

i,j,k −U
n

i,j,k) = ∆t ∆y ∆z [F11
i,j,k −F12

i,j,k] (2.68)

+ ∆t ∆x ∆z [F21
i,j,k −F22

i,j,k] + ∆t ∆x ∆y [F31
i,j,k −F32

i,j,k] .
Being effective only in cut cells, this immersed interface method can be seen as a

local modification of the underlying finite volume scheme near the interface.

Geometry of the immersed interface

Cell-face apertures Almi,j,k, volume fractions αi,j,k and interface area ∆Γi,j,k(t) are de-
termined from a levelset field Φ, i.e., a signed distance of a point in the domain to the
immersed surface. The zero-levelset contour (Φ = 0) describes the interface between
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the fluid and the obstacle. Cells that are completely inside the obstacle are blocked
by imposing zero cell-face apertures and consequently do not contribute to the vol-
ume balances. The levelset field allows for the representation arbitrary geometries
and straightforward handling of moving boundaries.

Interface interaction

The interface interaction term Xi,j,k (∆Γi,j,k) proposed in Eq. (2.67) contains contri-
butions of pressure, viscous effects and heat transfer to the momentum and energy
balance across the interface

Xi,j,k (∆Γi,j,k) = Xp +Xv +Xht . (2.69)

The cell index is omitted, for clarity, here and in the following equations.

Pressure term Xp : following the work of [Hu et al., 2006] a one-sided face-normal
Riemann problem R (U,vΓ

n) = 0 (2.70)

is solved for the pressure on ∆Γ(t). The velocity vΓ
n = vΓnΓ is the component of the

interface velocity in the direction of the local normal vector nΓ on the interface. The
interface velocity can be imposed for a given interface motion or it can be derived
from fluid-structure interaction. Approximate Riemann solvers [Toro, 2006] are suf-
ficient for solving Eq.(2.70) with acceptable accuracy. After solving the Riemann
problem for the interface pressure pΓ, the contributions of the term Xp to momen-
tum and energy equation are computed as follows

Xp =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
pΓ∆Γ(t) nΓ

1

pΓ∆Γ(t) nΓ
2

pΓ∆Γ(t) nΓ
3

pΓ∆Γ(t) (nΓ ⋅ vΓ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.71)

where nΓ = [ nΓ
1 , n

Γ
2 , n

Γ
3 ] is the interface normal vector.

Viscous term Xv : in order to take into account the viscous stress at the immersed
boundary, a viscous term Xv is added to the flux balance of the cut cell. This term
contributes to the momentum and energy equations. The contribution to the mo-
mentum equation derives from the friction force D that a fluid moving along a solid
boundary exerts on the boundary itself. Integrating the viscous stress tensor τ̄ over
the surface of the fluid solid interface ∆Γ(t) gives

D = ∫
∆Γ(t)

τ̄ ⋅ nΓ dS (2.72)
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Figure 2.6.: Local reference system for a cut cell.

The viscous stress tensor τ̄ can be expressed in the local reference system (n̂, t̂, p̂),
see Fig. 2.6, as

τ̄ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2µ∂un∂n̂ − 2
3µ (∇ ⋅ u) µ (∂ut

∂n̂ + ∂un
∂t̂

) µ (∂up∂n̂ + ∂un
∂p̂ )

µ (∂un
∂t̂

+ ∂ut
∂n̂

) 2µ∂ut
∂t̂

− 2
3µ (∇ ⋅ u) µ (∂ut∂p̂ + ∂up

∂t̂
)

µ (∂un∂p̂ + ∂up
∂n̂ ) µ (∂up

∂t̂
+ ∂ut

∂p̂ ) 2µ
∂up
∂p̂ − 2

3µ (∇ ⋅ u)
⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.73)

A line approximation of the interface surface cutting the cell together with the no-
slip condition lead to the following simplification of the term ∇ ⋅ u

∇ ⋅ u = ∂un
∂n̂

+
�
�
�∂ut

∂t̂
+
�
�
�∂up

∂p̂
. (2.74)

The viscous stress tensor then reduces to

τ̄ =
⎡⎢⎢⎢⎢⎢⎣

2µ∂un∂n̂ − 2
3µ

∂un
∂n̂ µ∂ut∂n̂ µ

∂up
∂n̂

µ∂ut∂n̂ −2
3µ

∂un
∂n̂ 0

µ
∂up
∂n̂ 0 −2

3µ
∂un
∂n̂

⎤⎥⎥⎥⎥⎥⎦ (2.75)

and the viscous force becomes with second order accuracy

D ≃ ∫
∆Γ(t)

τ̄ ⋅ nΓ dS ≃
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3µ

∂un
∂n̂

∂ut
∂n̂

∂up
∂n̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∆Γ(t) . (2.76)

The local volume averaged velocity can be decomposed into a normal and a tan-
gential component

u = u∥ + u� , (2.77)
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Figure 2.7.: Two-dimensional description of the interpolation.

where

u� = (u ⋅ nΓ) ⋅ nΓ (2.78)

u∥ = u − u� . (2.79)

Based on the previous definition, the viscous force becomes

D =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3µ

∂un
∂n̂

∂ut
∂n̂

∂up
∂n̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∆Γi,j,k(t) = µ(4

3

∂u�

∂n̂
+ ∂u∥

∂n̂
)∆Γ(t) . (2.80)

The problem now reduces to the computation of the velocity gradient. The velocity
gradient is computed by a linear approximation, and an estimate of the velocity
difference is obtained by substracting the interface velocity vΓ from the velocity uP ′′
in the point P ′′ , see Fig. 2.7. The point P ′′ is determined based on the foot point P ′
on the immersed interface, the normal vector and the distance ∆hi,j,k. The velocity
in P

′′ is calculated from the eight surrounding cell centers using a linear Lagrange
interpolation as proposed in [Meyer et al., 2010]. The same interpolation procedure
is used to interpolate the viscosity µ in the interpolation point P ′′ . Then, Eq. (2.80)
can be written as

D = µ⎛⎜⎝
4

3

u�

P ′′ − vΓ
�

∆h
+ u

∥

P ′′ − vΓ
∥

∆h

⎞⎟⎠∆Γ(t) , (2.81)
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with

vΓ
�

= (vΓ ⋅ nΓ) ⋅ nΓ (2.82)

v∥ = vΓ − vΓ
�
, (2.83)

where the length scale ∆h is defined as

∆h = √(∆x nΓ
1)2 + (∆y nΓ

2)2 + (∆z n3)2, (2.84)

Concerning the energy equation, the presence of the immersed boundary introduces
a new term C, which is effective only in case of moving boundary problems

C = ∫
∆Γ(t)

(τ̄ ⋅ vΓ) ⋅ dS . (2.85)

Using the quantities that were introduced previously we obtain with second-order
accuracy in the global reference system

C ≃ D ⋅ vΓ. (2.86)

The additional viscous term of the flux balance of the cut cell Xv assumes the fol-
lowing final expression

Xv =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
D1

D2

D3

C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.87)

Heat Transfer term Xht : in case of an adiabatic solid wall, no heat is transferred
across the boundary since∇T ⋅n = 0, but heat transfer q has to be considered in case of
an isothermal wall boundary condition. The heat transfer across the interface ∆Γi,j,k
is

q = ∫
∆Γ(t)

k ∇T ⋅ dS = ∫
∆Γ(t)

k ∇T ⋅ nΓ dS , (2.88)

the temperature gradient ∇T is expressed in the local reference system (n̂, t̂, p̂) as
described in Fig. 2.6. A linear approximation of the interface cutting the cell and the
isothermal-wall assumption lead to the following simplification of the temperature
gradient

∇T =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T
∂n̂

∂T
∂t̂

∂T
∂p̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T
∂n̂

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.89)

and the heat transfer across the wall boundary is approximated with second order
accuracy as

q = ∫
∆Γ(t)

k ∇T ⋅ dS = k∂T
∂n̂

∆Γ(t) . (2.90)
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The temperature gradient is computed by linear approximation and an estimate of
the temperature difference is obtained by substracting the fixed wall temperature
T Γ from the temperature T P

′′
in the point P ′′ , see Fig. 2.7. The temperature in P ′′ is

calculated from the eight surrounding cell centers using a linear Lagrange interpo-
lation. For the computation of the temperature gradient we use the same distance
∆hi,j,k as in the previous section. The resulting approximation to the heat flux is

q = k T P ′′ − T Γ

∆h
∆Γ(t) , (2.91)

where the thermal conductivity k is evaluated in the in the interpolation point P ′′ .
The heat transfer term Xht added to the flux balance of the cut cell is

Xht =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.92)

Mixing Procedure

The intersection between the immersed interface and the Cartesian grid can give rise
to small cells for which a stable fluid state may not be reached based on the timestep
calculated according to the CFL condition for the full cell size. On the other hand,
accounting for the real size of these small cells can lead to extremely small time steps.

In order to achieve numerical stability without the need of excessively decreas-
ing the time step size, a conservative mixing procedure is introduced, where the
conserved quantities of small cells are mixed with larger neighboring cells. The pro-
cedure essentially follows the approach proposed in the work of [Hu et al., 2006].
Modifications are introduced in order to account for non uniform grid spacing and
in order to remove directional dependencies. Furthermore, the number of target
cells adopted for the mixing is increased to include all possible neighboring cells
available in a three dimensional field.

The mixing procedure is only applied to cut cells with a volume fraction below a
certain threshold, which in our computational examples is set to αth = 0.5. Increasing
this threshold allows for a larger timestep but reduces the accuracy of the solution
in the interface region.

Seven target cells for mixing are determined from the local normal vector on the
interface. For each mixing target cell a weight βi,j,k is defined
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Figure 2.8.: Two dimensional description of the mixing procedure.

βxi,j,k = ∣nΓ
1 ∣2 αmixi,j,k (2.93)

βyi,j,k = ∣nΓ
2 ∣2 αi,mixj ,k

βzi,j,k = ∣nΓ
3 ∣2 αi,j,mixk

βxyi,j,k = ∣nΓ
1 n

Γ
2 ∣ αmixi,mixj ,k

βxzi,j,k = ∣nΓ
1 n

Γ
3 ∣ αmixi,j,mixk

βyzi,j,k = ∣nΓ
2 n

Γ
3 ∣ αi,mixj ,mixk

βxyzi,j,k = ∣nΓ
1 n

Γ
2 n

Γ
3 ∣2/3 αmixi,mixj ,mixk .

The weights are subsequently normalized to ensure consistency

βxi,j,k + βyi,j,k + βzi,j,k + βxyi,j,k + βxzi,j,k + βyzi,j,k + βxyzi,j,k = 1 . (2.94)

The mixing flux Mtrg
i,j,k is calculated for each mixing direction in the following way

Mtrg
i,j,k = β

trg
i,j,k [(Vtrgαtrg Utrg) Vi,j,k αi,j,k − (Vi,j,kαi,j,k Ui,j,k)Vtrgαtrg]

αi,j,k Vi,j,k β
trg
i,j,k + αtrg Vtrg , (2.95)

where trg stands for the mixing target cell. Conservativity is maintained by a flux
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formulation consistent with non-uniform Cartesian grids

Ui,j,k = (Ui,j,k)∗ + Mtrg
i,j,k

αni,j,kVi,j,k
(2.96)

Utrg = (Utrg)∗ − Mtrg
i,j,k

αntrgVtrg
(2.97)

where (Ui,j,k)∗ and (Utrg)∗ are the volume averaged conserved variables of the cut
cell (i, j, k) and of the target cell before mixing. This procedure is applied for all
small cut cells and mixing target cells before each time-step and Runge-Kutta sub-
step.

Note that the mixing procedure automatically deals with vanishing and newly
created cells. In the first case, the conservative quantities are all transported to the
target cells, whereas, for the second case, the conservative quantities in a newly
created small cell are derived directly from its target cell.

Extending Procedure

In order to allow for using unmodified, interpolation stencils in the finite volume re-
construction scheme near the interface and to provide physical conditions for newly
created fluid cells, the conserved variables are extrapolated across the interface into
a ghost-cell by solving

∂U

∂tf
− n ⋅ ∇U = 0 , (2.98)

in the pseudo-time tf until a steady state solution in the near interface region is
reached. In case of stationary boundary condition the velocity is mirrored in the
cells that are located beyond the ghost-cell, while in case of moving boundary the
velocity is set to be equal to the local interface velocity vΓ. In case of isothermal wall
boundary condition the temperature is set to be equal to the local wall temperature
T Γ, the pressure is obtained from the extension procedure, the density is calculated
from the local wall temperature and the extended pressure and finally the energy is
computed from the extended pressure, the newly computed density and the local
velocities. For an adiabatic wall boundary, the extending procedure is applied to all
the thermodynamic variables.

2.3.3. Implementation

At the beginning of the computation, the level-set field is computed on the basis of
geometrical input data. Based on the level-set field information, cut cells are iden-
tified and their face apertures and volume fractions are determined. In cases with
non-moving interfaces this procedure is applied once at the start of the computation.
For moving interfaces, the level-set field is updated and the above procedure has to
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be repeated in each timestep. The general procedure for one Euler time step can be
summarized as follows:

Step 1. The conservative mixing procedure is applied to all cells with a volume
fraction below the set threshold.

Step 2. Given the volume averaged conservative quantities U
n
, the extend-

ing procedure described in Sec. 2.3.2 is applied to small or empty cells in the
interface region and to the cells on the other side of the interface.

Step 3. The convective and diffusive fluxes are calculated for all cells without
accounting for the presence of the interface.

Step 4. The fluxes across the cell faces of cut cells are scaled with the face
apertures.

Step 5. The terms Xp, Xv and Xht are computed in each cut cell.

Step 6. The flux divergence is computed.

Step 7. The level-set field and the solution are advanced in time.

At the end of this procedure, mass, energy and momentum conservation are locally
and globally ensured by construction. A third-order Runge-Kutta time integration
scheme [Shu, 1988] is used in this work. In each Runge-Kutta sub-step, all the steps
are invoked once. For moving interfaces, the level-set field needs to be updated in
time in each Runge-Kutta sub-step. After each sub-step, cut cells are identified with
the instantaneous zero-level-set, and their face apertures and volume fractions are
updated.
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3. Numerical approach validation

In this present chapter the validation of the single component blocks of the numer-
ical approach is presented. The implicit large-eddy simulation approach and the
digital-filter technique for the generation of the turbulent inflow profiles will be
validated through supersonic turbulent channel flow and boundary layer compu-
tations. A set of validation cases for the conservative immersed interface method is
also presented.

3.1. ALDM for compressible wall bounded flows

Most flows of practical interest are bounded by a solid surface. Examples include
internal flows such as the flow through pipes, channels, ducts and tunnels; external
flows such as the flow around aircraft, cars, ships or other vehicles.

The first LES of wall-bounded flow dates back to the 1970’s when [Deardorff, 1970]
performed the first large-eddy simulation of an incompressible channel flow, at in-
finitely large Reynolds number, using the Smagorinsky model and only 6720 grid
points. A few years later, fast growing computer resources allowed [Kim et al., 1987]
to carry out a LES on a grid almost 10 times the size of Deardorff’s and at a Reynolds
number, based on channel halfwidth and mean centerline velocity, of Re = 13800.
Nevertheless, the first DNS computed by [Kim et al., 1987] was only affordable in
the mid-80’s and used about four million grid points to simulate the turbulent in-
compressible channel flow at a Reynolds number of Re = 3253. These DNS results
provided an unprecedented insight into the details of near-wall flow phenomena
and allowed for assessments and improvements of RANS turbulence models and
LES subgrid-scale models.

The effect of compressibility on wall-bounded flows has been investigated exper-
imentally by [Morkovin, 1962] and [Bradshaw, 1977]. They concluded that for a
Mach number up to 5 and in the absence of massive heat transfer at the wall, small-
scale turbulent fluctuations were little affected by compressibility (often referred to
as Morkovin’s hypothesis in the literature). Numerical confirmation of this hypoth-
esis was obtained from the DNS of the supersonic channel flow of [Coleman et al.,
1995], followed by the DNS of supersonic boundary layers of [Guarini et al., 2000]
and [Maeder et al., 2001]. Later [Foysi et al., 2004] further investigated the effects of
compressibility and gave an explanation for the reduction of pressure-strain correla-
tions in supersonic compared to incompressible isothermal channel flow by relating
it to the sharp wall-normal density variations in the framework of a Green-function-
based analysis of the pressure field.
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In this section, we propose an analysis of the different implicit modeling ap-
proaches for wall bounded flows. The original ALDM formulation is compared with
its extensions based on the van-Driest and the coherent-structures damping proce-
dures. Each of the formulations is evaluated through a comparison with results
derived from Direct Numerical Simulation.

3.2. Supersonic turbulent channel flow

3.2.1. Problem setup

Supersonic, turbulent channel flow only exists when the heat generated by dissipa-
tion within the flow field is removed through the walls. This requirement poses the
need for wall cooling and leads to the generation of strong near-wall mean temper-
ature, viscosity and density gradients. The compressible channel flow considered
here features a Reynolds number based on the bulk quantities and channel half-
width of Reb = 4880 and a Mach number of Ma = 3.0. This flow configuration al-
lows to compare our DNS results with those of [Coleman et al., 1995]. We consider
an ideal gas with a ratio of specific heats γ = cp/cv = 1.4. The variables are non-
dimensionalized with the wall temperature Tw, the channel half-width H , the bulk
averaged density ρb = ∫ 1

0 ⟨ρ⟩d(y/H) and the bulk velocity ub = 1/ρb ∫ 1

0 ⟨ρ⟩⟨u⟩d(y/H).
The Reynolds number is defined with the bulk quantities and the channel half-width
H as Re = ρbubH/µw, and the Mach number is computed according to Ma = ub/cw.
The non-dimensional dynamic viscosity is calculated using as a power law with the
exponent ψ = 0.7 [Coleman et al., 1995]. The time is non-dimensionalized with H/ub.
The friction Reynolds number Reτ = ρwuτH/µw , with uτ = τw/ρw, is a result of the
simulations.

The channel flow is periodic in the streamwise (x) and spanwise (z) directions.
The wall boundary conditions are no-slip for the velocity and isothermal for the
temperature. To enforce streamwise periodic boundary conditions in the simula-
tion, the mean pressure gradient ∂⟨p⟩/∂x has been replaced by a body force of type
fpg. In the course of the simulation the body force fpg is controlled to achieve con-
stant mass flux. The grid spacing is constant in the streamwise and spanwise direc-
tions and is stretched with hyperbolic tangent function in the wall-normal direction.
Table 3.2 gives an overview of the different grids resolutions adopted for the simu-
lation. Except for the DNS, all simulations were initialized with a laminar velocity
profile with a random disturbance superimposed in each of the three coordinate di-
rections. The maximal amplitude of the disturbances was chosen to be 10% of the
bulk velocity. To save computer time, the DNS simulation was started from a turbu-
lent profile obtained from a coarse grid LES computation, interpolated onto the fine
DNS mesh. The convective fluxes are computed using the Adaptive Local Decon-
volution Method. The viscous fluxes are discretized using a second-order central
differences scheme. Time advancement is achieved by a third-order TVD explicit
Runge-Kutta [Shu, 1988].
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3.2. Supersonic turbulent channel flow

Table 3.1.: Lines and symbols for the different cases.

Case Symbol

DNS [Coleman et al., 1995] ○
DNS s

LES (ALDM)a
LES (ALDM-VD)b
LES (ALDM-CS)c ⋅ ⋅
(a) Original ALDM formulation for compressible flows as in [Hickel, 2012].
(b) ALDM with van-Driest formulation for wall-damping.
(c) ALDM with coherent structures damping approach.

Table 3.2.: Grid adopted for the resolutions study.

Case Nx Ny Nz βb

DNS [Coleman et al., 1995]a 144 119 80 -
DNS 504 128 168 2.45
LES (L1) 320 170 86 2.9
LES (L2) 640 170 86 2.6
(a) Results obtained using a spectral Fourier-Legendre space differentiation
(b) hyperbolic tangent stretching function in the y-direction

y(i) = Ly(1.0 − tanh(βy(1.0 − i/Ny))/ tanh(βy))

Table 3.3.: Mean flow variables.

Case ∆x+ ∆y+ ∆z+ Reτ ⟨Tc⟩a
DNS [Coleman et al., 1995] 39.1 0.2 24.0 451.0 2.493
DNS 11.2 0.5 5.6 450.0 2.498
LES (L1) - ALDM 40.0 0.8 15.0 412.3 (8.4%) 2.538 (1.61%)
LES (L1) - ALDM-VD 41.3 1.1 20.7 414.5 (7.9%) 2.522 (0.97%)
LES (L1) - ALDM-CS 40.0 0.8 15.0 429.4 (4.6%) 2.481 (0.66%)
LES (L2) - ALDM 20.0 0.8 7.0 422.3 (6.2%) 2.523 (1.02%)
LES (L2) - ALDM-VD 31.8 1.1 16.5 424.6 (5.6%) 2.506 (0.33%)
LES (L2) - ALDM-CS 20.0 0.8 7.0 441.3 (1.9%) 2.489 (0.31%)
(a) The subscript c indicates center-line values.
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3. Numerical approach validation

3.2.2. Flow description

Turbulent channel flows are characterized by the presence of alternately high-speed
and low-speed streaks in the viscosity-affected near-wall layer. It is well estab-
lished, based on two-point-correlation data, that the length of the streaks in fully-
established channel flow or a canonical boundary layer is of order 103 wall units
[Kreplin and Eckelmann, 1979], and that the streaks are separated by a distance of
order 102 wall units [Kim et al., 1971]. There is no complete agreement, however,
on the precise mechanisms responsible for the formation and sustenance of these
quasi-organised structures. Conventional explanations, mostly derived from low-
Reynolds-number DNS results, focus on the quasi-streamwise vortices as being the
primary dynamical structures responsible for streak formation and turbulence gen-
eration [Jimenez and Pinelli, 1999], and these are interpreted by some as being the
tails of hair-pin vortices [Adrian and Meinhart, 2000]. Fig. 3.1 shows the Q iso-
surface criterion in the domain, highlighting the turbulent structures in the super-
sonic turbulent channel flow. The temperature distribution is given in both x−y and
y−z. Temperature fluctuations in the near wall region are also presented showing the
typical streamwise elongated patterns connected to the high-speed and low-speed
streaks.

3.2.3. Turbulence statistics

Statistical quantities are computed by time-averaging over a sampling period τs,
which accounts for 250 non-dimensional time units, and spatial-averaging in the ho-
mogeneous direction z. A general Reynolds average quantity noted as ⟨φ⟩ is defined
as: ⟨φ(y)⟩ = 1

Lx

1

Lz

1

τs
∫
Lx
∫
Lz
∫
τs
φ(x, y, z, t)dxdz dt. (3.1)

Favre-average quantities are obtained from Reynolds averaged values through the
following relationship:

{φ} = ⟨ρφ⟩⟨ρ⟩ (3.2)

{φ′′φ′′} = ⟨ρφφ⟩ − ⟨φφ⟩⟨φφ⟩⟨ρ⟩ . (3.3)

DNS results comparison

Table 3.3 shows slight differences in terms of mean flow properties between the
DNS of [Coleman et al., 1995] and our DNS results. In our case the friction-velocity
Reynolds number Reτ is smaller and accordingly the centerline temperature Tc is
higher. These difference may be due to the different numerical method (spectral
Fourier-Legendre space differentiation and third-order time integration for [Cole-
man et al., 1995], but may also arise from the different definition of the forcing fpg.
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3.2. Supersonic turbulent channel flow
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Figure 3.1.: Instantaneous flowfield obtained from the supersonic turbulent channel
flow DNS. (center) Q-criterion iso-surface colored with stramwise veloc-
ity. (top) Instantaneous temperature field in the x − y and y − z plane.
(bottom) Temperature fluctuations in the x − z plane at y+ ≈ 10.

The comparison between the DNS computations in terms of mean van-Driest trans-
formed streamwise velocity ⟨u+1,V D⟩, given in Fig. 3.2(a), shows a perfect overlap-
ping. A strong discrepancy is visible for the mean wall normal velocity ⟨u2⟩, given
in Fig. 3.2(b). The centerline wall-normal velocity for the reference DNS of [Coleman
et al., 1995] does not reach a zero value, clearly highlighting that these results can-
not be considered as fully converged. Our computation, on the other hand, shows a
zero value for the wall-normal velocity in the middle of the domain, clearly certify-
ing that the averaging procedure has been conducted for a sufficient amount of time.
Finally, Fig. 3.2(c) and Fig. 3.2(d) show the distribution of the mean temperature ⟨T ⟩
and mean Mach number ⟨Ma⟩, respectively. The comparison has been carried out
also in terms of reynolds-stresses, shown in Fig. 3.3(a) and Fig. 3.3(b). Our DNS
shows slightly higher values for fluctuations in the near wall region compared to
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3. Numerical approach validation

the results of [Coleman et al., 1995]. The maximum level of discrepancy, however, is
kept below 3%.

A clear statement cannot be made concerning the origin of this small discrepan-
cies between the DNS computations described above. Both the different numerical
approach and the insufficient averaging time adopted in the work of [Coleman et al.,
1995] could be indicated as sources of these small differences.

Implicit LES results

The original ALDM formulation has been compared with the extensions featuring
the van-Driest (ALDM-VD) and the coherent structures (ALDM-CS) damping ap-
proaches. The analysis has been carried out for every grid resolution level. Table 3.3
shows the mean flow properties obtained for the implicit-LES computations per-
formed using different grid resolutions. As expected, the worse prediction in terms
of friction Reynolds number Reτ is obtained for the original ALDM formulation
without the addition of damping procedures. A certain increase is achievable when
using the van-Driest based damping approach, which overall allows for an incre-
ment in terms of friction reynolds number value of approximately 1% with respect
to the unmodified formulation. The best performance is obtained when resorting to
the coherent structures based damping formulation, which allows for an improve-
ment of the prediction with respect to the original ALDM of approximately 4%. It
is worth mentioning that the computation carried out using the ALDM-CS method
on the lower resolution grid (L1), delivers a predicted value of the friction Reynolds
number closer to the DNS result with respect to the other two computations carried
out using the original ALDM and the ALDM-VD approaches on the higher resolu-
tion grid (L2). A similar trend is obtained for the mean centerline temperature ⟨Tc⟩,
even if the deviation with respect to the DNS results is significantly smaller.

Figures 3.4(a) and 3.4(b) show comparisons between DNS and LES data for the
mean streamwise velocity profile in van-Driest scaling ⟨u+1,V D⟩ versus the wall co-
ordinate y+ = y uτ (ρw/µw). For both grid configurations L1 and L2, the underpre-
diction of the friction velocity delivered by the original ALDM and the ALDM-VD
approaches directly reflects on the van-Driest transformed velocity, which is over-
estimated in both the logarithmic and wake region. A significant improvement is
clearly visible when adopting the ALDM-CS method which delivers the best predic-
tion for both grid resolution levels.

Computational results for the Reynolds stresses are shown in Figs. 3.5(a) - 3.5(b)
- 3.5(c) - 3.5(d). A similar trend is visible as before. Both the original ALDM and
the ALDM-VD versions underpredict the reynolds stresses with respect to the DNS
reference results. Better agreement is achieved with the ALDM-CS formulation. The
inset given in Figsò. 3.5(a) and 3.5(b) shows the wall-normal and spanwise velocity
fluctuations. In this case, the discrepancies with respect to the DNS data are stronger
for the original ALDM and ALDM-VD version while the ALDM-CS approach deliv-
ers satisfactory results.

Values for the turbulent heat flux are also given in Fig. 3.6(a) and 3.6(b). In both
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Figure 3.2.: DNS results comparison.(a) Mean van-Driest scaled velocity ⟨u+1,V D⟩, (b)
mean wall normal velocity ⟨u2⟩, (c) mean temperature ⟨T ⟩, (d) mean
Mach number ⟨Ma⟩.
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Figure 3.3.: DNS results comparison. Velocity fluctuations.
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Figure 3.4.: Mean van-Driest transformed velocity ⟨u+1,V D⟩ for the LES of a supersonic
turbulent channel flow atRe = 4880 andMa = 3.0. (a) L1 grid. (b) L2 grid.
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Figure 3.5.: (a)-(b) Streamwise, wall normal and spanwise velocity fluctuations for
the L1 grid (left) and L2 grid (right). (c)-(d) Turbulent shear stress.
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Figure 3.6.: Turbulent heat flux for the L1 grid (a) and L2 grid (b).
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Figure 3.7.: Contribution of the sub-grid scale term to the global shear-stress balance
(a) and to the total heat flux (b) for the L2 grid configuration.

cases the ALDM-CS version outperforms the original ALDM and the ALDM-VD
approaches. It is also worth noticing that also in this case the computation carried
out on the L1 grid using the ALDM-CS formulation is capable of delivering a better
prediction than the one obtained from the original ALDM and ALDM-VD on the
L2 grid. Finally, Figs. 3.7(a) and 3.7(b) show the contribution of the subgrid-scale
term to the total shear stress balance and the total heat flux balance. The differ-
ences between the different ALDM formulations are located in the near-wall region
(y/H < 0.3). The adoption of the ALDM-VD approach brings about only a moderate
reduction of the dissipation provided by the implicit method. An improved reduc-
tion of the subgrid-scale term in the near-wall region is achieved when employing
the ALDM-CS approach, which delivers a decrease of the peak value for the dissipa-
tion of around 40%. These results are consistent with the increased level of turbulent
fluctuations obtained for the ALDM-CS formulation in the near-wall region.
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3. Numerical approach validation

3.3. Supersonic turbulent boundary layer flow

Further assessment of the implicit-LES modeling approach has been carried out by
comparing the original ALDM formulation with the van-Driest and coherent struc-
tures damping procedures for the supersonic turbulent boundary layer flow con-
figuration. A resolution study has been performed considering only the numerical
setup consisting of the coupling of the original ALDM with the coherent structures
damping approach.

3.3.1. Numerical method

The convective fluxes are discretized using the Adaptive Local Deconvolution Me-
thod. The viscous fluxes are discretized using a second-order central differences
scheme. Time advancement is achieved by a third-order TVD explicit Runge-Kutta
[Shu, 1988]. At the bottom of the computational domain, an isothermal no-slip
boundary condition is imposed, with the wall temperature assumed to be equal to
Tw/Tref = 1.717, while an extrapolation based on Riemann invariants is adopted at
the upper boundary. At the outlet, an extrapolation condition is used, and at the
inlet, an inflow turbulent boundary condition, relying on a modified version of the
digital-filter procedure proposed by [Touber, 2009]. Mean values and rms values
needed for the digital filter procedure are directly extracted from the DNS database
of [Pirozzoli and Bernardini, 2011]. Details about the filtering properties adopted in
this study are given in Tab. 3.4.

3.3.2. Problem setup

The incoming boundary layer is spatially evolving at a freestream Mach number,
M∞ = 2.0, and an inlet Reynolds number, Reinτ = ρwuτδin0 /µw = 251 or Reinθ = ρ∞u∞θin/µ∞ = 1121.0 (where uτ is the friction velocity, δin0 is the inflow boundary layer thick-
ness, and θin is the momentum thickness at the inlet). The computational domain

Table 3.4.: Digital-Filter procedure parameters.

Velocity component u1 u2 u3

Ix in δV D a
1 10 4 4

N b
Fy

= 2 Iy/∆y 35c-65d 45c-85d 30c-40d

N b
Fz

= 2 Iz/∆z 15 15 30
(a) van-Driest displacement thickness δV D1 = ∫ ∞0 [1 − u1,V D]dy.
(b) number of grid points derived from specified integral length scales Iy, Iz.
(c) Filter length for the lower region y ≤ δV D1 .
(d) Filter length for the upper region y > δV D1 .
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3.3. Supersonic turbulent boundary layer flow

Table 3.5.: Lines and symbols for the different cases.

Case Symbol

DNS [Pirozzoli and Bernardini, 2011] ○
LES (ALDM)a
LES (ALDM-VD)b
LES (ALDM-CS)c ⋅
(a) Original ALDM formulation for compressible flows as proposed in [Hickel, 2012].
(b) ALDM with van-Driest formulation for wall-damping.
(c) ALDM with coherent structures damping approach.

Table 3.6.: Grid resolutions study using ALDM-CS.

Case Line Nx Ny Nz ∆x+ ∆y+ ∆z+ βa

LES (L1) 320 170 86 40.0 0.8 15.0 4.7
LES (L2) 640 170 86 20.0 0.8 7.0 4.7
LES (L3) 320 170 172 40.0 0.8 8.0 4.7
LES (L4) 640 170 172 20.0 0.8 8.0 4.7
(a) hyperbolic sine bunching law in the y-direction

y(i) = sinh(β(i − 1)/(Ny − 1))/(sinh β)

used in this study has a size of Lx×Ly×Lz = 50.0 δin0 ×6.0 δin0 ×4.8 δin0 in the streamwise
(x), wall-normal (y) and spanwise (z) directions, respectively. As shown in Tab. 3.6,
different grid resolutions are used with uniformly spaced grid in the streamwise
and spanwise directions, and clustered grid in the wall-normal direction based on
an hyperbolic tangent function.

The flowfield is initialized using the inlet values. A series of approximately 200
characteristic times, tc = δin0 /u∞, is achieved to sweep the initial transient solution.
Then, turbulence statistics are sampled and extracted at a constant time interval of
∆tc = 0.2 from a time series covering a total time span of ttotc = 600. By plotting the
time evolution of the main boundary layer, such as the boundary layer thickness and
the friction velocity, this sampling time is judged to be sufficient to reach a statistical
convergence of the considered quantities.

3.3.3. Flow description

In turbulent boundary layer flows, the near-wall region is characterized by the pres-
ence of alternating streaks of high- and low-speed fluid. These streaks originate
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3. Numerical approach validation

from elongated, counter-rotating streamwise vortices near the wall. These struc-
tures significantly contribute to the turbulence production, which occurs because of
a bursting process where low-speed streaks gradually lift up from the wall, oscil-
late, and then break up violently, ejecting fluid away from the wall into the outer
layer [Smits and Dussauge, 2006]. In order to show the turbulent nature of the flow
in the near-wall region wall parallel slices of velocity and temperature fluctuations
are shown in Fig. 3.8-(a) at y+ ≈ 10. This data are obtained from the LES computa-
tion carried out with the grid configuration L4 and using the ALDM combined with
the coherent structures damping approach. As shown in the work of [Pirozzoli and
Bernardini, 2011], Fig. 3.8-(a) shows typical alternating high- and low-speed streaks,
which correspond to positive and negative velocity fluctuations, respectively. It is
also worth to underline the large number of streaks in the spanwise direction (z),
which is an indicator of the sufficient width of the domain in this direction. In-
deed, a sufficient resolved number of streaks means that the flow is not confined
in the spanwise direction, and that turbulence mechanisms are not inhibited by the
domain extent [Jimenez and Moin, 1991]. Velocity fluctuations in the outer layer
at y+ ≈ 100 are shown in Fig. 3.8-(b). At this location the flow features the pres-
ence of large scale structures which are responsible for the large-scale transport of
turbulence in the outer layer [Smits and Dussauge, 2006]. Fig. 3.9 draws the Q iso-
surface criterion in the second half of the domain colored by the u1 velocity field.
The figure shows highly turbulent structures inclined with respect to the wall in the
downstream direction and featuring a strongly intermittent character.
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Figure 3.8.: (a) Instantaneous velocity fluctuations at y+ ≈ 10. (b) Instantaneous ve-
locity fluctuations at y+ ≈ 100.
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Figure 3.9.: Instantaneous flowfield obtained from the L4 grid using the ALDM-CS
formulation. (center) Q-criterion iso-surface colored with stramwise ve-
locity. (top) Instantaneous temperature field in the x − y and y − z plane.
(bottom) Temperature fluctuations in the x − z plane at y+ ≈ 10.

3.3.4. Turbulence statistics

In the following section, statistical quantities are obtained by time-averaging over a
sampling period τs and spatial-averaging in the homogeneous direction z. A general
Reynolds average quantity noted as ⟨φ⟩ is defined as:

⟨φ(x, y)⟩ = 1

Lz

1

τs
∫
Lz
∫
τs
φ(x, y, z, t) dz dt. (3.4)
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Wall properties

Figures 3.10(a)-3.10(b) show the incompressible skin-friction distribution, Cfinc
, as

a function of the Reynolds number based on the incompressible momentum thick-
ness Reθinc

. Results are compared to formulas given by [Smits et al., 1983], Kármán-
Schoenherr, as well as to DNS data of [Guarini et al., 2000], [Maeder et al., 2001],
[Pirozzoli et al., 2004] and [Pirozzoli and Bernardini, 2011]. The skin-friction coeffi-
cient, Cfinc

, and the Reynolds number, Reθinc
, are calculated using the van-Driest II

theory for an isothermal wall ( [Pirozzoli et al., 2004] and [Pirozzoli and Bernardini,
2011]), which is found to be a reliable transformation for collapsing data at different
Mach flow regimes:

Cfinc
= FC Cf Reθinc

= Fθ Reθ, (3.5)

with the transformation functions, FC and Fθ, are:

FC = Tw/T∞ − 1

arcsin2α
Fθ = µ∞

µw
(3.6)

where

α = Tw/T∞ − 1√
Tw/T∞(Tw/T∞ − 1) . (3.7)

The incompressible friction coefficient correlations used in Figs. 3.10(a) - 3.10(b) are
given by:

Cfinc,S
= 0.024 Re

−1/4
θinc

(3.8)

Cfinc,B
= 0.026 Re

−1/4
θinc

(3.9)

Cfinc,KS
= 1

17.08 (log10Reθinc
)2 + 25.11 (log10Reθinc

) + 6.012
, (3.10)

where the subscripts B, S and KS refer to the empirical correlations of Blasius,
[Smits et al., 1983], and Kármán-Schoenherr, respectively.

Figure 3.10(a) shows that the the ALDM-CS delivers a slight overestimated value
for the skin-friction coefficient, Cfinc

, when compared with empirical correlations
and DNS data. The ALDM and ALDM-VD formulations tend also to overpredict the
local friction coefficient and their difference with respect to the ALDM-CS formula-
tion is around 1.5%, for the ALDM-VD, and 2.5%, for the ALDM original version,
respectively. The grid sensitivity study, given in Fig. 3.10(b), shows that the ALDM-
CS formulation delivers a value for the skin-friction coefficient which always lies in
the region contained between the Blasius’s and Kármán-Schoenherr’s empirical re-
lations. The increase of the resolution strongly reduces the difference with respect to
the DNS data provided by [Pirozzoli and Bernardini, 2011]. Fig. 3.10(b) also shows
that an increment of the resolution in the streamwise direction delivers a better im-
provement in terms of skin-friction coefficient prediction with respect to an increase
of the resolution in the spanwise direction. By doubling the number of grid points in
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Figure 3.10.: Incompressible skin-friction coefficient Cfinc
as a function of the

Reynolds number based on incompressible momentum thickness
Reθinc

. ( ⋅ ) Blasius, ( ) Smits, ( ) Kármán-Schoenherr. ( ○ )
[Pirozzoli and Bernardini, 2011] (Ma = 2), ( n ) (Ma = 2.5) [Guarini et al.,
2000], ( u ) (Ma = 2.25) [Pirozzoli et al., 2004] , (  ) (Ma = 3.0) [Maeder
et al., 2001]. (a) Comparison between the different LES formulations
with the L1 grid. (b) Grid sensitivity study.

the streamwise direction, we obtain a reduction of the Cfinc
of around 4% while the

increase of the number of grid points in the spanwise direction delivers a decrement
of the skin-friction value which is found to be below 1%.

Mean flow properties

The van-Driest transformed mean streamwise velocity ⟨u+1,V D⟩, which accounts for
the variation of the mean flow properties aiming to collapse a compressible ve-
locity profile with its incompressible counterpart, is shown as a function of y+ in
Figs. 3.11(a) and 3.11(b). In accordance with what has been shown for the compress-
ible turbulent channel flow computation, we can see that an under-estimation of the
friction velocity uτ has a direct impact on the predictions obtained for the original
ALDM and the ALDM-VD approaches. In the viscous sub-layer and up to the be-
ginning of the buffer region (y+ < 10), all models collapse on the DNS data. In the
buffer region (20 < y+ < 100) the slope of the profile is correctly reproduced by all
the different models employed. However, a slightly better agreement with the DNS
data is achieved for the ALDM-CS formulation. In the wake region (y+ > 100) the
the ALDM-CS approach shows a slight underestimation of ⟨u+1,V D⟩, while a better
prediction is obtained from both the ALDM-VD and original ALDM approach.

Fig. 3.11(b) shows the sensitivity study carried out on the ALDM-CS approach. All
of the predicted values collapse on the DNS prediction, even if a slight improvement
of the results is obtained for higher resolution computations in the wake region.
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Figure 3.11.: Mean van-Driest transformed streamwise velocity ⟨u+1,V D⟩ as a function
of y+. ( ) linear-law. ( ) logaritmic-law log(y+)/0.41 + 5.25. (a)
Comparison between the different LES formulations with the L1 grid.
(b) Grid sensitivity study.
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Figure 3.12.: Mean averaged mass flux ⟨ρu1⟩ and temperature ⟨T ⟩. (a) Comparison
between the different LES formulations with the L1 grid. (b) Grid sen-
sitivity study.

Distributions of the mean-averaged quantities as a function of y/δ0 are plotted in
Fig. 3.12(a). Overall, the predictions for both the averaged mass flux ⟨ρu1⟩ and tem-
perature ⟨T ⟩ are satisfactory. The normalized temperature is slightly higher in the
core for the original ALDM and the ALDM-VD formulation confirming the influence
of the damping of the turbulent fluctuations in the near-wall region. The sensitivity
study shown in Fig. 3.12(b) indicates how the increase of grid resolution does not
have a strong influence on the first-order statistical moments prediction. Fig. 3.13(a)
shows the normalized velocity fluctuations for the different LES approaches as a
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Figure 3.13.: Reynolds stresses. (a) Comparison between the different LES formula-
tions with the L1 grid. (b) Grid sensitivity study.

function of y/δ0. All the formulations deliver a certain under-estimation of the ve-
locity fluctuation in the outer-region. When considering Fig. 3.13(c), which shows
the velocity fluctuations rescaled by means of the Morkovin hypothesis, we can see
that the different formulations correctly predict the location of the peak in the near
wall region but over-estimate the value of the streamwise velocity peak of around
10%. A considerable improvement in the second-order moment prediction for the
ALDM-CS approach can be achieved by an increase in the resolution, as shown in
Figs.3.13(b) and 3.13(d), which show the grid sensitivity analysis. The best results for
the velocity fluctuations are obtained when increasing the resolution in the spanwise
direction.

Higher-order moments, such as the skewness of the velocity fluctuations, can be
calculated for better analysis of the turbulence nature from statistics view-point. By
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3. Numerical approach validation

definition, the skewness coefficient of a given fluctuation of a quantity φ′ is given as:

S(φ′) = ⟨φ′3⟩⟨φ′2⟩3/2
(3.11)

Fig. 3.14(a) shows the prediction in terms of velocity skewness S(u′1) obtained for
the several implicit-LES approaches considered. Apart from the near-wall deviation
of the skewness coefficient, the turbulence behavior is found to be nearly Gaussian,
with S(u′1) ≈ 0 (slightly negative). A similar behavior can be seen for the skewness
of the temperature fluctuation. In this case the grid resolution study shows a slight
improvement in the prediction accuracy of the skewness factors for velocity and
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Figure 3.14.: Streamwise velocity u1 skewness. (a) Comparison between the different
LES formulations with the L1 grid. (b) Grid sensitivity study.
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Figure 3.15.: Temperature T skewness. (a) Comparison between the different LES
formulations with the L1 grid. (b) Grid sensitivity study.
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3.3. Supersonic turbulent boundary layer flow

temperature. It has to be noted that a large dataset of snapshots has to be gathered
in order to achieve the convergence of the results concerning the skewness factors.
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3. Numerical approach validation

3.4. CIIM validation cases

In order to perform the validation of the conservative immersed interface method
several test cases have been taken into account. A thorough analysis of the ac-
curacy of interface interaction model has been carried out by considering viscous
laminar flows. Computations with stationary and moving boundaries problems
are performed. For discretization in space a 5th-order WENO scheme with a local
Lax Friedrichs numerical flux function [Jiang and Shu, 1998] is used for the con-
vective terms and a second-order accurate Central Difference Scheme (CDS) for the
viscous terms. Time advancement is performed using a third-order explicit three
step Runge-Kutta scheme [Shu, 1988].

First, results for simulations of steady and unsteady low Mach number laminar
flows over a circular cylinder are presented. We consider laminar flows in steady
and vortex-shedding regimes for Reynolds numbers in the range between ReD = 40
and ReD = 150. A rather low Mach number, Ma = 0.3, has been chosen to meet with
incompressible nature of the experimental data. The flow over a circular cylinder is a
suitable validation test case, since the flow field exhibits different regimes depending
on the Reynolds number, and the curved boundary is challenging for Cartesian grid
methods. Furthermore, a huge amount of reference data is available from literature.

Afterwards, the focus is moved towards the laminar boundary layer flow over a
compression corner at Ma = 6.06. More details about the flow configuration will
be given in the dedicated section. The aim of this computation is to validate the im-
mersed interface method also in the supersonic regime where compressibility effects
play an important role.

A final validation of the presented method is achieved by computing the flow in
a square surface cavity located in a low Reynolds number Ma = 8.9 external flow.

3.4.1. Steady flow over a circular cylinder at ReD = 40

At Re = 40 laminar separation occurs on the leeward side of the cylinder, generating
a pair of vortices that are symmetrically attached to the cylinder. The computational
domain and grid adopted for the calculation are shown in Figs. 3.16 Fig. 3.17, respec-
tively. At the inflow boundary the freestream values of the conservative variables
are prescribed, while a linear extrapolation boundary condition is used at the out-
flow. On the upper and lower wall a slip boundary condition is imposed. A sponge
layer of length Ls = 5D is applied at the inflow and at the outflow boundary to ab-
sorb spurious waves. The sponge layer drives the solution variables towards the
free-stream values.

The present case has also been used to analyze the convergence order of the im-
mersed interface method. Computations have been carried out on four grids with
different resolutions. All grids have uniform spacing and square cells in the region
occupied by the cylinder. Points from the outer region of the computational domain
are then clustered towards this inner square region by means of a linear distribu-
tion. Details about the different grid resolutions are given in Table 3.7. The solution
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3.4. CIIM validation cases

Table 3.7.: Grid sizes and number of points n along the diameter.
Nx ×Ny n
140 × 80 20
280 × 160 40
420 × 240 60
560 × 320 80
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Figure 3.16.: Computational domain for the flow over a circular cylinder.

from the finest grid is taken as reference for the error estimation. This result is in
good agreement with the DNS data. The peak position of both factors is correctly
recovered by the LES, whereas their magnitudes are slightly over-estimated.

Fig. 3.18 shows the velocity contours and the mean streamlines. The geometri-
cal properties of the symmetrical vortices, as defined in Fig. 3.18, and the drag
coefficient CD, are summarized in Table 3.8. Experimental and numerical results
from the literature are also given for comparison. The present results are in good
agreement with the references. In Fig. 3.19 the surface pressure coefficient Cp =
2 ⋅ (p − p∞)/(ρ∞U2

∞
), computed directly from the interface interaction pressure, is

compared with experimental and numerical results. Fig. 3.20 shows the error in
terms of the drag coefficient CD for the coarser grids with respect to the finest grid.
The results confirm second order convergence for integral quantities.
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Figure 3.17.: Computational grid for the flow over a circular cylinder at Re = 40,
n = 40. In the local zoomed region every 5th line is shown.
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Figure 3.18.: Streamwise velocity and streamlines for the flow over a circluar cylin-
der at ReD = 40.
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Table 3.8.: Steady flow past a circular cylinder at ReD = 40.
L a b θ CD

Fornberg [Fornberg, 1980]b 2.24 - - 55.6○ 1.50
Dennis and Chang [Dennis and Chang, 1970]b 2.35 - - 53.8○ 1.52
Coutanceau and Bouard [Coutanceau and Bouard, 1977]a 2.13 0.76 0.59 53.8○ -
Tritton [Tritton, 1959]a - - - - 1.59
Linnick and Fasel [Linnick, 2003]c 2.28 0.72 0.60 53.6○ 1.54
De Palma et al. [De Palma et al., 2003]c 2.28 0.72 0.60 53.8○ 1.55
Tseng and Ferziger [Tseng and Ferziger, 2003]c 2.21 - - - 1.53
Hartmann et al. [Hartmann et al., 2008]d 2.24 - - - 1.53
Presentd (n = 80) 2.34 0.74 0.60 54.6○ 1.58
a Experimental data
b Numerical result using body fitted grid method
c Numerical result using an immersed boundary method
d Numerical result using a Cartesian cut-cell method

Table 3.9.: Grid sizes and number of points n along the diameter.
Nx ×Ny n
360 × 200 40
620 × 400 80

3.4.2. Unsteady flow past a circular cylinder at ReD = 100

At ReD = 100 the flow becomes unsteady and the cylinder wake oscillates exhibiting
a wavy structure known as the von Kármán vortex street. The computational do-
main and the boundary conditions are the same as in the ReD = 40 case. The grid
has a similar topology as the one used in the previous case, the only difference is
that the equidistant spacing region in the core is extended in downstream direction
to account for the vortical structures in the cylinder wake.

Two computations are carried out with different grid resolutions. The properties
of the grids are given in Table 3.9.

Fig. 3.21 shows the velocity contours and the mean streamlines, The drag coeffi-
cient CD, the maximum lift coefficient Cmax

L and the Strouhal number St are summa-
rized in Table 3.10. Experimental and numerical results from the literature are also
given for comparison. The results for the finest grid case are in good agreement with
the references.

3.4.3. Vortex induced vibration of a 2-D elastically mounted
cylinder

The flow over a single elastically mounted cylinder has been studied numerically
by [Borazjani et al., 2008]. This case is chosen to validate the immersed interface
method for moving boundary problems and viscous laminar flows. As shown in
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Table 3.10.: Unsteady flow past a circular cylinder at ReD = 100.
St CD Cmax

L

Williamson [Williamson, 1996]a 0.164 - -
Linnick and Fasel [Linnick, 2003]b 0.166 1.34 ± 0.009 ± 0.333
De Palma et al. [De Palma et al., 2003]b 0.163 1.32 ± 0.010 ± 0.331
Tseng and Ferziger [Tseng and Ferziger, 2003]b - 1.42 ± - -
Hartmann et al. [Hartmann et al., 2008]c 0.164 1.35 ± - ± 0.334
Presentc (n = 40) 0.166 1.40 ± 0.015 ± 0.341
Presentd (n = 80) 0.166 1.38 ± 0.013 ± 0.331
a Experimental data
b Numerical result using an immersed boundary method
c Numerical result using a Cartesian cut-cell method
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Figure 3.21.: Streamwise velocity and streamlines for the flow over a circluar cylin-
der at ReD = 100.
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Fig. 3.22a, a circular cylinder is mounted in a uniform flow with one degree of free-
dom in the y-direction, allowing for free vibration perpendicular to the flow. The
equation that governs the cylinder motion in non-dimensional form is

∂2Y

∂t2
+ 1

U2
red

Y = 1

2Mred

CY , (3.12)

where Y is the coordinate of the cylinder position along the y-axis normalized by
the cylinder diameter D, CY is the lift coefficient per unit spanwise length and the
reduced velocity and mass have the following definition:

Ured = U

fD
Mred = M

ρD2
, (3.13)

with M being the cylinder mass, K the stiffness factor of the spring and f the
eigen frequency. Large-amplitude vibrations of the cylinder are induced when the
eigen frequency of the cylinder falls within the so called “lock-in” region [Blevins,
1990], i.e., if the vortex-shedding frequency matches the eigen frequency [Sarpkaya,
2004, Williamson and Goverdhan, 2004]. In order to investigate the “lock in” phe-
nomenon, we perform simulations where the Reynolds number is fixed toReD = 150
and the reduced mass of the system is set to Mred = 2 while the eigen frequency of
the system is modified by varying the reduced velocity Ured with increments of 1
within the range 4 ≤ Ured ≤ 7. The coupling between the fluid and the structure is
done through a loose coupling strategy. The lift coefficient is computed from surface
forces and the governing equation of the structure 3.12 is integrated explicitely in
time without subiteration for the coupling. Two computational grids are used for
the computations. The topology and the extension of the grids are the same as the
ones used in the computations at ReD = 40. Details about the total number of points
Nx×Ny and about the actual resolution, expressed in terms of the number n of points
contained in the cylinder diameter, are given in Tab. 3.11. We use the same bound-
ary conditions as in the previous cases. The time history of the calculated cylinder
location for the case with Ured = 4 and Mred = 4 is shown in Fig. 3.22 and the vorticity
distribution for an istantaneous solution of the flow field is given in Fig. 3.23.

Table 3.11.: Grid details for the vortex induced vibration test case.
Nx ×Ny n
140 × 115 25
280 × 230 50

Fig. 3.24 shows the variation of the maximum displacement of the cylindermax(Y )
for different values of Ured. Values in the range between Ured = 4 and Ured = 7 pro-
duce vibrations with a maximum amplitude of approximately half of the cylinder
diameter. To validate the new method, Fig. 3.24 also shows results from [Borazjani
et al., 2008], who also used an immersed boundary method. At lower resolution
the immersed interface method underestimates the maximum displacement of the
cylinder. Our method provides results that are in good agreement with those of [Bo-
razjani et al., 2008] when the same resolution as in the reference is adopted.
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Figure 3.22.: (a) System description. (b) Time history of the cylinder vertical po-
sition for the following paramters setting: Mred = 2 , Ured = 4.
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streamlines for the following paramters setting: Mred = 2 , Ured = 4.
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Figure 3.24.: Maximum amplitude variations for the CURVIB method of [Borazjani
et al., 2008] ( ) and for the immersed interface method ( ○ : n = 50
, ⋅− △ : n = 25. )

3.4.4. Laminar boundary layer flow over a compression corner at
Ma = 6.06

In this test case we consider a Ma = 6.06 laminar flow over a compression corner,
according to an experimental investigation carried out by Lewis et al. [Lewis et al.,
1968]. In such flow configuration the adverse pressure gradient generated by the
shock leads to the separation of the boundary layer.

The Reynolds number based on freestream conditions and on the distance Lc be-
tween the model leading edge and the location of the corner is ReLc = 1.5 ⋅ 105 and
the compression corner angle is αc = 10.25○. An adiabatic and an isothermal con-
dition, with a temperature ratio Tw/T∞ = 1.7, are considered for the surface of the
experimental model.

The present experiment has been chosen for numerical computation since it allows
us to test the immersed interface method in the compressible regime. The isothermal
wall test case is also fundamental in order to validate the term Xht of the interface
interaction model.

The computational domain adopted for the computation extends from x/Lc = 0.4
to x/Lc = 2.0 in the streamwise direction and from y/Lc = 0 to y/Lc = 0.6 in the
wall normal direction. Two grids were used for the computation, both character-
ized by a refinement towards the central region. Details about the grids are given in
Table. 3.12. The same number of points within the incoming boundary layer thick-
ness nδ0 has been chosen for both, the adiabatic and the isothermal case, requiring a
higher grid stretching factor in the isothermal case due the thinner incoming bound-
ary layer.
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Table 3.12.: Grid details for the hypersonic compression corner flow test case. Total
number of cells Np and cells for incoming boundary layer thickness nδ0 .

Grid name Np nδ0
level 1 ∼ 75000 20
level 2 ∼ 250000 40

Lc

αc = 10.25◦

∆(x/Lc) = 0.6

L
y

=
0
.6

L
c

Lx = 1.6Lc

x

y

Figure 3.25.: Computational box for the laminar boundary layer over a compression
corner.

At the inflow boundary the laminar similarity solution is prescribed. At the out-
flow and at the upper boundary a linear extrapolation boundary condition is used.
The compression corner geometry is imposed by the immersed interface method.

Fig. 3.26 shows the contour plot of the pressure together with streamlines high-
lighting the extension of the recirculation region for the adiabatic wall case. Figs. 3.27
(a)-(b) show the comparison between experimental and numerical results for the
wall pressure distribution along the wall. For both cases the lower resolution com-
putation delivers a shorter recirculation region and underestimates the pressure in
the core region. Furthermore, a certain oscillation of the pressure signal can be seen
after the reattachment in the lower resolution computation. Such oscillations are
mainly due to the coarsening of the grid in the downstream region of the compres-
sion corner. The higher resolution computation shows a good agreement with ex-
perimental data. Moreover, the higher resolution computation does not exhibit any
oscillation of the pressure signal in the downstream region.

3.4.5. Laminar cavity flow at Ma = 8.9

We consider a Ma = 8.9 laminar flow over a hollow body of revolution which con-
tains a cavity. Geometrical details about the hollow test model used to carry out
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Figure 3.26.: Pressure contours and streamlines showing the recirculation region for
the adiabatic wall case.
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Figure 3.27.: Pressure distribution along the ramp surface.(a) Adiabatic wall case:● Experimental data [Lewis et al., 1968]; level 1 grid ⋅ ; level 2 grid
. (b) Isothermal wall case: ● Experimental data [Lewis et al., 1968];

level 1 grid ⋅ ; level 2 grid .
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the experimental investigation that we adopted as reference for our computations
can be derived from the work of Jackson et al. [Jackson et al., 2001]. Several cavity
configurations are considered in the experimental and numerical analysis of Jackson
et al. [Jackson et al., 2001]. For our validation purpose we focus only on the square
cavity configuration. The Reynolds number based on the freestream conditions and
on the cavity edge D is ReD = 238500. The model surface is assumed to be isother-
mal with a temperature ratio Tw/T∞ = 4.93471. The computational domain, shown
in Fig. 3.28, extents from x/D = −1.7 to x/D = 14 in the x-direction and from y/D = 0
to y/D = 4 in the y-direction. Two different grids are used for the computation which
are characterized by a different refinement level in the proximity of the hollow body
surface. The coarse mesh (level 1) has minimum cell dimension in wall normal dis-
tance within the cavity region of ∆xmin/D = 0.0035 and the fine mesh (level 2) is
characterized by ∆xmin/D = 0.001. A close up view of the level 2 grid in the ca-
vity region is given in Fig. 3.29. At the inflow freestream values are imposed. At
the streamwise outflow a linear extrapolation procedure is applied, while at the top
a boundary condition based on riemann-invariants extrapolation is adopted. The
model geometry is treated as an isothermal wall boundary and described through
the immersed interface method.

An instantaneous snapshot of the computed Schlieren-type visualization (Fig. 3.4.5
a) reveals similarities with the experimental picture (Fig. 3.4.5 b). A shock wave orig-
inating from the leading edge of the model is clearly visible in both figures. Fig. 3.31
shows a comparison in terms of computed local Mach number profile for the fore-
body boundary layer in a position located 0.4 ∆x/D upstream of the cavity leading
edge. Tab. 3.13 gives a comparison in terms of displacement and momentum thick-
ness. A good agreement is found for both local and integral features of the bound-
ary layer. A special focus is given to the flow inside the cavity. Fig. 3.32 shows the
streamline pattern within this region obtained from the level 2 grid. The flow is
characterized by a main central vortex with two secondary vortices located at the
lower corners of the cavity. Another small secondary vortex is visible near the top of
the front wall. This vortex system is in a good agreement with computational result
shown in Fig. 12 of the work of Jackson et al. [Jackson et al., 2001]. A small difference
can be found in the lower-right secondary vortex which extends less to the left side
than the one from the reference.

A final comparison is shown in Fig. 3.33 (a)-(b) between numerical and experi-
mental results concerning the surface pressure and heat transfer distribution for the
cavity and parts of the fore-body and after-body. The abscissa s/D, represents a wet-
ted distance along the body surface being zero at the top-rear corner of the cavity.

Table 3.13.: Computed laminar boundary layer data at x/D = 7.6.
δ∗/D θ/D

Numerical reference data [Jackson et al., 2001] 0.1052 0.00672
Present( level 1 grid ) 0.1104 0.00693
Present( level 2 grid ) 0.1075 0.00681
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Figure 3.28.: Computational domain for the cavity and the region external to the
body of revolution. The body of revolution is described by the zero
levelset contour line.

More details about the calculation of the abscissa s/D can be found in the refer-
ence [Jackson et al., 2001]. A good agreement between experimental and numerical
results is found for both quantities and a good mesh independence of the results is
also clearly visible.
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Figure 3.29.: Detail of the computational grid in the cavity region. Each 20th line is
shown.
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Figure 3.30.: Instantaneous representation of the flow by the Schlieren-type visual-
ization. (a) The computed density gradient magnitude ∣∣∇ρ∣∣ and (b)
experimental Schlieren visualization [Jackson et al., 2001].
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Figure 3.31.: Computed local Mach number profile at x/D = 7.6. level 1 grid;
level 2 grid; ○ numerical reference data [Jackson et al., 2001].
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Figure 3.32.: Cavity streamlines pattern. The flow over the cavity is from left to right
and the main cavity vortex has a clockwise circulation.
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Figure 3.33.: (a) Surface pressure distribution. (b) Surface heat transfer distribution.
level 1 grid; level 2 grid; ○ experimental reference data [Jackson

et al., 2001].
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4. Compression-Expansion corner flow

4.1. Flow configuration

Several experimental works [Zheltovodov and Yakovlev, 1986, Zheltovodov et al.,
1990, Zheltovodov, 1991] were dedicated to the investigation of the essential flow
phenomena taking place in compression-decompression ramp flows. A sketch of
the main aspects of the flow is given in Fig. 4.1. The undisturbed incoming turbu-
lent boundary layer is deflected at the compression corner. This causes the gener-
ation of a compression shock which penetrates the boundary layer with the pene-
tration depth being dependent on the local Reynolds number. For sufficiently large
deflection angles the adverse pressure gradient within the boundary layer results in
a region of mean-flow separation near the corner. A detached shear layer travels
above the separation region and reattaches in the inclined part of the compression
ramp. A λ-shock system is generated near the separation region. The forward foot
of the λ-shock originates from the region of flow separation, and the rearward foot
from the region of flow reattachment. Further downstream, the reattached bound-
ary layer reaches the decompression ramp and passes through the Prandtl-Meyer
expansion. Even further downstream, the boundary layer relaxes again towards a
developed zero-pressure-gradient boundary layer.

In Fig. 4.1 the separation and the reattachment positions are indicated by S and
R, respectively. In the inset 1, the process of turbulence amplification by the inter-
action with a rapid compression within the boundary layer is depicted. Note also
that the shock foot spreads out towards the wall due to reduced local Mach num-
ber and to turbulent diffusion, at the same time the shock foot location experiences
a backward and forward motion in the streamwise direction ( inset 2 ). After the
reattachment at the deflected part of the compression ramp, a turbulent boundary
layer is re-established. Experimental results support the existence of pairs of large
counter-rotating streamwise vortices in the reattachment region as well as in the re-
verse flow of the separation zone ( inset 3 ). Inset 4 shows the damping of turbulent
fluctuations by the interaction with the Prandtl-Meyer expansion at the expansion
corner. Fig. 4.2 gives a general overview on the flow field obtained from the large-
eddy simulation. The temperature field shown on the left side clearly highlights
the thickening of the boundary layer after the interaction and the shedding of struc-
tures after the decompression corner. Iso-surfaces of the Q-criterion are shown in the
middle to show the turbulent structures in the near-wall region. Finally, a contour of
the streamwise velocity fluctuations in the vicinity of the wall is given on the right
side. This last view highlights the strong modification undergone by the turbulent
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4. Compression-Expansion corner flow

structures in the vicinity of the wall when interacting with the shock and with the
centered-expansion.

4.2. Experimental setup

In the present work we compare our results with the experimental data from [Zhel-
tovodov et al., 1990]. For the first time the whole compression-expamsion ramp was
taken into account. The experiments were performed using two models having the
same shape but different linear scales. The larger model was used for a detailed in-
vestigation of the mean flow with a free-stream Mach number of Ma∞ = 2.88 and a
Reynolds number based on the incoming boundary layer thickness of Reδ0 = 132840.
The turbulence characteristics are investigated using the small model with a free-
stream Mach number of Ma∞ = 2.95 and Reδ0 = 63560. A description of the test
model used for the high Reynolds case is given in Fig. 4.3, together with its actual
dimensions. The experimentally obtained flow field and the measurement stations
are sketched in Fig. 4.4 for both configurations of the 25○ compression-expansion
ramp. In the present work, the conditions of the large model are chosen, but a com-
parison is also carried out with the turbulence data obtained from the small model
by scaling them with the local boundary layer thickness. The present work aims
at assessing the prediction quality of the employed numerical techinque by directly
matching the experimental parameters. Given the successful validation, the compu-
tational results provided a reliable numerical database for the analysis of different
issues such as turbulence evolution and interaction with compression and rarefac-
tion waves, features of near wall structures and characteristics of the shock-system
unsteadiness.

4.3. Numerical setup

The computational domain, shown in Fig. 4.5, has the extents Lx = 41.25 δ0, Ly =
12 δ0 and Lz = 4 δ0. The computational grid, shown in Fig. 4.6, has been generated
with an adaptive mesh refinement procedure which guarantees that the first point in
the wall-normal direction at the inlet, with respect to the ramp geometry, is located
at y+ ≈ 2.2. As a reference for possible comparison with other types of grids, a
detailed description of the grid in the inflow boundary is given. The total number
of points in wall normal direction in the inflow plane is 300. Six successive steps
with a refinement factor of 2 are employed. 60 points are employed in the region
0. < y/δ0 < 0.25. 60 points in the region between 0.25 < y/δ0 < 0.75. 45 points in the
region 0.75 < y/δ0 < 1.5. 45 points in the region 1.5 < y/δ0 < 3.0. 45 points in the
region 3.0 < y/δ0 < 6.0 and 45 points in the region 3.0 < y/δ0 < 12.0. Such resolution
was found to be enough to reproduce the experimental results in the first reference
section E1 with sufficient accuracy. A total number of 32.5 × 106 grid points are
used to discretize the computational domain. The grid spacing in the streamwise
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Figure 4.1.: Main flow phenomena of the compression-expansion ramp flow.
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Figure 4.2.: Global view of the compression-expansion ramp flow. (left) Temperature
field. (middle) turbulent structures visualized by means of Q-criterion
isosurface, together with the shock visualized as pressure isosurface.
(right) streamwise velocity fluctuations in the vicinity of the wall.
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4. Compression-Expansion corner flow
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Figure 2: Experimenatal measurement sections for the large (a) and small (b) model.

matching directly the experimental parameters. Given the successful valida-

tion, the computational results provided a reliable numerical database for the

analysis of different issues such as turbulence evolution and interaction with

compression and rarefaction waves, features of near wall structures and char-

acteristics of the shock-system unsteadiness. Details of the flow configuration

are given in sec. 2. The numerical approach is presented in sec 3 and finally

the details about the features of the flow are given in sec. 4. Conclusions are

provided in sec. 5.

2. Flow Configuration

The computational domain, shown in Fig. 3, has the extents Lx = 41.25 δ0,

Ly = 12 δ0 and Lz = 4 δ0. The computational grid, shown in Fig. 4, has been

8

Figure 4.4.: Experimental measurement sections for the large (a) and small (b)
model.
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4.4. Incoming supersonic turbulent boundary layer

Table 4.1.: Streamwise location of the measurement stations.

Large Model Small Model
Station x/δ0 Station x/δ0

E1 -8.05 T1 -15.42
E2 -2.93 T2 4.41
E3 -1.95 T3 7.93
E4 -1.22 T4 14.98
E5 1.22
E6 2.68
E7 3.05
E8 4.15
E9 5.73
E10 7.56
E11 12.20
E12 15.24
E13 19.15

direction is ∆x+ ≈ 52.9 and in the spanwise direction a resolution of ∆z+ ≈ 25.7 is
adopted.

4.4. Incoming supersonic turbulent boundary layer

The correct description of the features of the incoming turbulent boundary layer
plays a key role in the downstream evolution of the flow. The extent of the sepa-
ration zone, for example, depends directly on the level of turbulence in the incom-
ing boundary layer. Based on this evidence a first flat-plate boundary-layer simu-
lation is carried out in order to estimate the transition length needed by the flow
to recover the modeling errors introduced by the digital filter procedure adopted in
the inflow boundary. For this simulation the domain is rectangular with a stream-
wise extent Lx = 20, a wall normal extent of Ly = 4 and a spanwise extent equal to
the one adopted in the compression-expansion ramp configuration of Lz = 4.0. In
this case the grid has been generated with an adaptive mesh refinement procedure
which guarantees the same resolution as the one achieved in the full configuration(∆x+ = 52.9, y+min = 2.2,∆x+ = 25.7). The prescribed mean turbulent boundary layer
profile and turbulence intensities for the digital filter procedure were obtained from
an earlier temporal simulation under the same flow conditions. After a start up tran-
sient of about 100 δ0/U∞ time units, the simulation was continued for about 150 δ0/U∞
gathering statistics with a sampling interval of 0.02 δ0/U∞. The streamwise station
located at x = 11.95 showed the best agreement with the reference experimental
station E1. A detailed comparison of mean-flow characteristics between experiment
and computation in the reference sectionE1 is shown in Table 4.2. The comparison is
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4. Compression-Expansion corner flow
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4.5. Time-averaged flow characteristics

Table 4.2.: Summary of mean-flow parameters for the flat-plate boundary layer
simulation.

δ0 δ1 δ2 H12 Reδ0 Reδ2 Cf ⋅ 103

Experiment 1.0 0.349 0.073 4.78 132840 4924 1.47
Computation 1.0 0.314 0.079 3.97 132846 5385 1.41

carried out in terms of displacement and momentum thickness δ1 and δ2, Reynolds
number based on free-stream velocity, momentum thickness and viscosity at the
wall,Reδ2 and shape factor,H12. The agreement of the mentioned quantities between
computation and experiment is good. Fig. 4.7(a) shows the skin-friction evolution
obtained for the digital filter. The technique produces a transient of about 8 ref-
erence lengths. The wall-normal distribution of mean Mach number, temperature,
velocity, and density are compared with the experimental data in Fig. 4.7(b). In the
bulk, the computed velocity profile agrees well with the experimental data, and mi-
nor discrepancies can be observed for the density and temperature profiles. Fig. 4.8
shows the autocorrelation coefficients in the spanwise direction Rαα(z/δ0)/Rαα(0)
for the considered grid in the position x/δ0 = 11.95 and local y+ = 150. The figure
shows that the correlations for the velocity components and density decay towards
zero thus ensuring that the computational domain in the spanwise direction is suf-
ficiently wide not to inhibit the turbulence dynamics. The Van-Driest-transformed
velocity profiles are shown in Fig 4.9(a) for both experimental and numerical results.
Both profiles agree well with the logarithmic law of the wall U+

V D = log(y+)/0.4+5.25.
A certain deviation from the logarithmic behavior is visible for the first two exper-
imental values. Turbulence statistics at the same streamwise station are shown in
Fig. 4.9(b). In order to compare our results with DNS data of an incompressible tur-
bulent boundary layer by [Spalart, 1988], we adopted the compressibility correction
by [Huang et al., 1995]. To further proof the validity of the results, a set of experi-
mental values of Cf versus Reδ2 taken from [Fernholz and Finley, 1977,Fernholz and
Finley, 1981], together with the Kárman-Schönerr friction coefficient prediction law
and our computed value, are shown in Fig. 4.4. The computed Cf lies below the
value predicted by the empirical correlation but is well within the uncertainty range
of the experimental measurements.

4.5. Time-averaged flow characteristics

4.5.1. Wall pressure and skin-friction coefficient

The mean wall pressure, normalized by its mean value at the station E1, constantly
increases during the shockwave/boundary layer interaction with a plateau inside
the separation zone. It later drops to the initial values after interacting with the
expansion fan (Fig. 4.11(a)). The mean skin-friction exhibits the typical behavior for a
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incoming boundary layer at the station E1. Mach number ( LES ⋅ , ex-
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perimental (computed using the skin-friction coefficient Cf measured in
the experiment). , LES. ⋅ , linear law. , log-law log(y+)/0.4+5.25.
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Figure 4.10.: Friction coefficient dependence on Reδ2 . ▲, LES. ∎, experiment. ▽, Stal-
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4. Compression-Expansion corner flow

separated flow (Fig. 4.11(b)). The initial decrease at x/δ0 = −20, is due to the synthetic
turbulence technique adopted for the generation of the inflow data. A transient of
about 5δ0 is needed for the flow to recover then the modeling errors introduced by
the digital filter procedure. A slight decrease along the flat plate is then visible,
since the incoming boundary layer grows and the local Reynolds number increases(x/δ0 < −6). The friction coefficient drops, and near the separation point S assumes
negative values inside the reverse flow region (−4.5 < x/δ0 < 2.0). It rises again after
the reattachment point R to values which are slightly above the incoming ones on
the upper surface. The spikes near the compression and the decompression corners
are related to limited resolution of the corner singularity, where steep gradients of
flow variables occur over a short distance.

4.5.2. Comparison of mean velocity profiles

Figure 4.12 gives a description of the mean flow evolution in terms of the mean
streamwise velocity component. The colored dashed lines represent minimum and
maximum values in the spanwise direction for each station. The velocity considered
for the comparison in the stations E5 to E10 has been computed by projecting the
local velocity in parallel direction to the deflected part of the ramp. The undisturbed
incoming turbulent boundary-layer profile in section E1 evolves into a profile with
weak reverse flow slightly downstream of the separation point (section E2). Further
downstream, the reverse flow becomes stronger (sections E3 − E5). At section E6
the boundary layer re-attaches while still showing a momentum deficit in the wake.
This re-established attached boundary layer develops towards an undisturbed pro-
file further downstream (sections E7 −E10). After the expansion fan the boundary
layer becomes thicker and recovers similar features to the undisturbed incoming
condition (sections E11 − E13). Taking into account the spanwise variation of the
computed mean velocity, experimental and numerical data generally agree well. In
section E5 the computation predicts lower values of negative velocity with respect
to the experimental data. Such discrepancy is evident also in the data of [Loginov
et al., 2006] and can be explained by accounting for difficulties in measuring the re-
verse flow and also taking under consideration that the accuracy and the reliability
of experimental data are reduced near the location of the zero velocity. With respect
to the data of [Loginov et al., 2006] a better prediction is achieved for the section E2.
Our computation clearly shows a region of incipient separation and a better agree-
ment in the region inside the boundary layer. In section E8, a clear disagreement is
visible in the outer region. This region of the flow is coincident with the position of
the second stem of the λ-shock system which exhibits a highly unsteady character. It
is known that the accuracy of the static pressure measurements is reduced in regions
characterized by unsteady shocks.
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Figure 4.11.: (a) Averaged wall-pressure and (b) skin-friction coefficient distributions
in the streamwise direction. ○ , reference experiment; current LES
averaged in time and over the spanwise direction. Symbols S and R
indicate the mean separation and reattachment points.
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4.5. Time-averaged flow characteristics

4.5.3. RMS profiles comparison

A comparison of the root-mean-square (RMS) values of velocity
√⟨u′u′⟩ and den-

sity
√⟨ρ′ρ′⟩ fluctuations is shown at the downstream stations T1 − T4 in Fig. 4.13.

The data refer to the lower Reynolds number experiment carried out on the small
model, as mentioned in Sec. 4.1. The locations of the measurement sections T1 − T4
are shown in Tab. 4.1. The measurement technique allowed only to record relative
changes of the RMS values where data of the undisturbed boundary layer serve
as reference. In this work we tried to mimic the experimental procedure of [Zhel-
tovodov and Yakovlev, 1986] by normalizing the computational data with the re-
spective maxima in section T1. Since the first section T1 is located outside of the
computational domain, its values are compared to turbulence data extracted from
section E1, which refers to an undisturbed zero pressure gradient turbulent bound-
ary layer. In the first section the near-wall maxima of the velocity RMS distributions
is not captured by the experiment due to the lack of near-wall resolution. In section
T2 we can see that the interaction with the shock causes an amplification of density
fluctuations by a factor of about 3, which agrees well with previous numerical ob-
servation [Adams, 2000, Loginov et al., 2006]. For what concerns the velocity fluctu-
ations in the same location, a higher amplification factor is predicted by the compu-
tation with respect to the provided experimental values. In section T3 discrepancies
in the location of the maxima for both the velocity and density fluctuations are vis-
ible. Such differences are due to the different flow topology since the experimental
measurements were conducted on a model that was scaled with respect to the one
considered in the simulation. In the last section T4 the agreement for the velocity
fluctuations is quite good but also in this case the near wall maxima could not be
captured by the experiment. For the density fluctuations same discrepancies due to
flow topology could be detected.

4.5.4. Görtler-like vortices

Despite the flow geometry being two-dimensional, the interaction between the boun-
dary layer and the shock breaks spanwise homogenity. Fig. 4.14 shows a snapshot
of the streamwise velocity fluctuations field in a plane parallel to the compression-
expansion ramp wall at y+ ≈ 12. The colourmap is set in order to highlight the region
of the flow with a velocity excess. On the left side of the domain we can see the
typical streaky structures of a turbulent boundary layer. Such structures are then
destroyed by the interaction with the shock. After the boundary layer reattachment
location, a pattern which is related to two streamwise evolving structures is clearly
visible. Such structures are indicators of the presence of a pair of counter-rotating
streamwise vortices, often called Görtler-like vortices. This pattern extends along
the entire deflected part of the ramp and disappears after the passage through the
decompression corner. A zig-zag pattern is visible after the second corner which is
caused by the passage of these vortical structures through the plane considered for
the analysis. Afterwards the typical streaky structures of the incoming undisturbed
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tions at stations T1-T4. ○ , reference experiment; , current LES av-
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Figure 4.15.: (a) Isosurface of streamwise vorticity. The clockwise rotation is rep-
resented by the blue color. Anti-clockwise rotation is given in the red
color. (b) Sketch of the main features characterizing the Görtler vortices.

boundary layer are recovered.
Further evidence of the presence of a pair of streamwise vortices is given by con-

sidering Fig. 4.15(a) which shows isosurfaces of the time averaged vorticity compo-
nent in the direction parallel to the deflected part of the compression ramp. Since the
circulation of these vortices is rather small, it is quite difficult to extract them from
the background turbulence. Based on this consideration, the vorticity filtered by in-
terpolation on an equidistant grid for the purpose of visualization. Positive rotation
is indicated in red and negative rotation in blue. In order to highlight the clockwise
vortex evolving along the streamwise direction, the periodic computational box has
been duplicated in the spanwise direction.

The presence of these streamwise vortices significantly affects the properties of
the mean flow and turbulence structure [Lüdeke et al., 2004, Floryan, 1991, Inger,
1977, Zheltovodov and Yakovlev, 1986, Loginov et al., 2006]. Considering the pre-
vious Figures 4.12 and 4.13, an increase of the spanwise variation is clearly visible
in the region where the Görtler vortices are detected. Such a variation has to be
taken into account when performing a comparison with the experimental values
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Figure 4.16.: Distribution of the mean skin-friction coefficient at the wall in the span-
wise direction. , averaged in time; , averaged in time and over
spanwise direction.

which refer to measurements taken along the symmetry plane of the model. The
spanwise inhomogeneity of the mean Cf , caused by Görtler-like vortices is shown
in Fig. 4.16. The amplitude of the variation increases from ±0.06 × 103 in the undis-
turbed boundary layer at the station E1 to ±0.3 × 103 in the section E6 just after the
reattachment. After the decompression corner the amplitude of the variation be-
comes less pronounced, decreasing from ±0.3 × 103 to ±0.1 × 103 at station E11. The
distribution becomes more uniform without extrema suggesting that the streamwise
vortices decay while passing through the expansion fan. The isosurfaces of vorticity
are also supporting this conclusion. Further downstream at station E13 the varia-
tion reduces almost to the undisturbed value of ±0.08× 103. Generally, the evolution
of the streamwise vortices further downstream is an open question. For a compres-
sion corner at hypersonic speeds at Ma∞ = 6 they extend only for a short distance
downstream of the concave region [Simeonides, 1993].

The effects of the presence of the Görtler-like vortices are clearly evident when we
consider Fig. 4.17(a), which shows the surface-streamline pattern in the vicinity of
the reattachment region. Such a figure is a computational analogue of the experi-
mental oil-flow visualization, shown in Fig. 4.17(b), obtained from the experiments
of [Zheltovodov and Yakovlev, 1986]. In Fig. 4.17(a) a solid line represents the reat-
tachment line given by the contour of ⟨Cf ⟩ = 0, which features a significant variation
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4.5. Time-averaged flow characteristics

in the spanwise direction. The pattern of distinct saddle and node points located
along the reattachment line is seen in both the numerical and experimental figures.
In accordance with what is shown in the sketch given in Fig. 4.15 (b), streamwise ori-
ented convergence and divergence lines develop, respectively, from the saddle and
node points not only downstream (after the reattachment) but also upstream (into
the reverse flow in the separation zone). The position of the convergence lines is
approximately z/δ0 ≈ −1.0 and z/δ0 ≈ 1.0, and the position of the divergence lines is
approximately z/δ0 ≈ 0 and z/δ0 ≈ 2.0. The convergence lines can be related to cross-
flow uplift and the divergence lines to cross-flow downwash, so that they represent
footprints of two-pairs of counter-rotating streamwise vortices. In agreement with
previous experimental and numerical observations [Floryan, 1991, Loginov et al.,
2006] the spanwise width of each vortex pair is about 2δ0. As in the case of [Loginov
et al., 2006] the computational domain size in the spanwise direction is 4δ0 with peri-
odic boundary conditions applied in the homogeneous direction. Such an approach
allows for capturing flow structures with spanwise periodicity of 4δ0 at most. There-
fore, it is not possible to exclude the existence of structures with larger spanwise
periodicity, although there is no experimental evidence for such structures.

4.5.5. Turbulence evolution

The interaction of turbulence with a shock wave results in a decrease of turbulence
length scales and an increase in turbulent fluctuations [Larsson and Lele, 2009, Ar-
donceau et al., 1979, Adams, 2000]. The interaction of turbulence with a Prandtl-
Meyer expansion, on the other hand, results in a decrease of the turbulent fluctua-
tions. For the considered compression ramp, the process of turbulence amplification
through the compression shock and turbulence damping through the expansion fan
is visualized in Figs. 4.18(a) and 4.18(b), where we show profiles of the RMS values of
the fluctuating velocity

√⟨u′tu′t⟩ and density
√⟨ρ′ρ′⟩ at the same locations that were

considered for the comparison of the mean velocity profiles. The velocity fluctua-
tions for the stations E5 to E10 have been projected on the ramp parallel directions,
as done before for the mean velocity profiles. All quantities are normalized with the
incoming free-stream quantities. Thick solid lines denote the time- and spanwise-
averaged values, while dashed lines refer to the spanwise minimum and maximum
values. Concerning the velocity fluctuations, we observe the typical distribution for
an equilibrium turbulent boundary layer at the location E1 with the characteristic
peak located in the near wall region. As we move behind the shock interaction at
positionE2, the peak moves away from the wall towards the shear-layer. From posi-
tion E3 onwards, a secondary peak is visible, which reflects the unsteadiness of the
oblique shockwave. The same qualitative distribution is maintained up to section
E10.

For section E11, which is located after the decompression corner, a profile similar
to the one of the incoming undisturbed boundary layer is recovered with a slightly
higher level of turbulence in the outer part. This enhanced turbulent content in the
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x/δ0

z
/
δ 0

(a)

(b)

Figure 4.17.: (a) Numerical surface streamlines pattern. Contours of the time av-
eraged local friction coefficient are shown. The thick solid line indi-
cates the location of < Cf >= 0 where the boundary layer reattaches. (b)
Oil-flow visualization from the experiment [Zheltovodov and Yakovlev,
1986]. The thick dashed line indicates the position of the corner.
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Figure 4.18.: (a) Streamwise velocity fluctuation
√⟨u′tu′t⟩, (b) Density fluctuations√⟨ρ′ρ′⟩. Maximum values along the spanwise direction.
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outer boundary layer is due to structures that originate in the shear layer and shed
downstream after the Prandtl-Meyer expansion. For the density fluctuations, similar
amplification effects are visible as for the velocity fluctuations. The secondary peak
due to the shockwave unsteadiness has a higher value than the peak produced by
the shear layer in section E2. Moving downstream, the first peak due to the shear
layer increases while the second peak due to the shockwave motion decreases. This
means that the amplitude of the shockwave movement decreases away from the
wall.

In Figs.4.19(a) and 4.19(b), we show the Reynolds normal stress τ11 = ⟨ρu′′u′′⟩, the
Reynolds shear stress τ12 = ⟨ρu′′v′′⟩ and the structure parameter −τ12/τ11 for all analy-
sis stations. In agreement with previous findings of [Adams, 2000] and [Loginov
et al., 2006], the maximum Reynolds normal-stress moves away from the wall to the
detached shear layer downstream of the interaction at E2 and stays there until sec-
tion E10 is reached. Downstream of the Prandtl-Meyer expansion a profile similar
to the one of the incoming boundary layer is recovered in section E11, with slightly
higher turbulence values in the outer region. The maximum Reynolds normal-stress
is amplified by a factor of 4 while passing through the interaction from section E1
to section E2. This amplification factor is in good agreement with the DNS results
of [Adams, 2000]. The passage through the Prandtl-Meyer expansion reduces the
Reynolds normal-stress to approximately the same value as in the incoming bound-
ary layer. Again we find a slightly higher level in the outer region. In the same
interval the maximum Reynolds shear-stress is amplified by a factor of around 10.
This value is lower than what was estimated in the DNS of [Adams, 2000]. It agrees,
however, very well with the range given by [Smits and Muck, 1987] for experiments
on the 20○ compression ramp configuration. A reason for this discrepancy could be
related to the high Reynolds number of the present LES, which results in the flow
conditions that are more similar to the experiments of [Smits and Muck, 1987].

The Prandtl-Meyer expansion has similar effects on the Reynolds shear-stress as
on the Reynolds normal-stress discussed above. Fig. 4.19(c) shows the structure
parameter −τ12/τ11, which indicates the level of anisotropy of the turbulence. In the
incoming boundary layer it predicts a value of around 0.15, which agrees well with
what has been shown by [Adams, 2000] and by [Loginov et al., 2006]. Peaks in the
anisotropy can be found close to the shockwave and at lower intensity in the shear
layer zone.

In Fig. 4.20 we show the Reynolds stress anisotropy maps for selected streamwise
stations. As mentioned above, the interaction between boundary layer, flow sep-
aration and shock wave results in different amplification levels for the individual
components of the Reynolds stress tensor. The corresponding change in anisotropy
is characterized by the anisotropy tensor

bij = ⟨ρu′′i u′′j ⟩
2⟨ρ⟩⟨k⟩ − 1

3
δij. (4.1)

A representative picture of the turbulence state can be obtained by investigating the
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Figure 4.19.: (a) Reynolds normal stress τ11 = ⟨ρu′′1u′′1 ⟩, (b) Reynolds shear stress
τ12 = ⟨ρu′′1u′′2 ⟩ and (c) the structure parameter −τ12/τ11 at measurements
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evolution of the second and third invariant of this tensor

IIb = bijbji, IIIb = bijbjkbik. (4.2)

[Lumley, 1978] has shown that all realizable flow fields must lie inside an anisotropy
invariant map, whose vertices constitute the asymptotic states of turbulence: one
component turbulence, two component axisymmetric turbulence, and three dimen-
sional isotropic turbulence.

In the incoming turbulent boundary layer (Fig. 4.20(a)) a two-component turbu-
lent state is observed in the vicinity of the wall that evolves towards isotropic condi-
tions away from the wall. These findings are in agreement with the DNS of [Piroz-
zoli et al., 2010a] and [Shahab et al., 2011]. A different behavior is found within
the recirculation region (Fig. 4.20(b)). Turbulence in the separated flow closely re-
sembles an isotropic state near the wall (0.1 < y/δ0 < 0.2). Further away from the
wall it evolves towards an axisymmetric expansion state inside the detached mixing
layer. The adverse pressure gradient acting along the compression ramp drives the
turbulent fluctuations towards an axisymmetric compression state, as can be seen
in Figs. 4.20(c) and 4.20(d) close to the wall. In the outer region, the anisotropy
tensor indicates axisymmetric expansion, which is representative for the reattached
shear layer that travels along the wall after the reattachment point. After passing the
Prandtl-Meyer expansion, the turbulence slowly recovers a two-component state in
the near wall region, which is similar to the incoming undisturbed turbulent bound-
ary layer (Fig. 4.20(e)). The outer part of the boundary layer is however affected by
the persisting shear layer and shows some evidence of axisymmetric expansion. In
the station E13 (Fig. 4.20(f)), the turbulence state of the incoming boundary layer is
almost recovered although the influence of the shear layer in the outer region is still
visible.

4.6. Shock-system features

An instantaneous snapshot of the computed Schlieren-type visualization (Fig.4.21(a))
reveals similarities with the experimental picture (Fig. 4.21(b)). The undisturbed
boundary layer (1) is affected by the separation shock (2). The interaction results
in the appearance of a reverse flow region (3) and of a separated shear layer (4)
with traveling shocklets (5) above it. The compression in the reattachment region
leads to the generation of the unsteady second stem (6) of the λ-shock configura-
tion. The spanwise variation of the shock position causes some smearing of the
shock position in the interaction region after averaging in the spanwise dir.ection.
The rearward stem of the λ-shock originating from the reattachment region features
an highly unsteady character. As visible from an animation of a set of numerical
Schlieren visualizations which is available as a supplement to the online version
of the paper (http://dentaku.aer.mw.tum.de/pub/grilli/SchlierenMovie.gif), there
are phases in which the second stem is clearly visible as unique structure and phases
in which is distributed in a series of shocklets. The animation also clearly highlights
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Figure 4.20.: Reynolds stress anisotropy invariant map evaluated at different sta-
tions. (a) station E1 x/δ0 = −8.05, (b) station E3 x/δ0 = −2.93, (c) station
E7 x/δ0 = 3.05, (d) station E10 x/δ0 = 7.56, (e) station E11 x/δ0 = 12.20,
(f) station E13 x/δ0 = 19.25. The color map indicates the distance from
the wall y/δ0.
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Figure 19: Instantaneous representation of the flow by the Schlieren-type visualization.

The computed density gradient averaged in spanwise direction ∣∣∇ρ∣∣ (a) and experimental

Schlieren visualization (b).
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Figure 4.21.: Instantaneous representation of the flow by the Schlieren-type visual-
ization. The computed density gradient averaged in spanwise direction∣∣∇ρ∣∣ (a) and experimental Schlieren visualization (b).

the unsteady motion of the shock system and the shedding of compression waves
behind the main shock. As visible from the video, such compression waves travel
in the region between the shear layer and the main oblique shock and then collapse
in the second stem of the λ-shock, but they are not visible anymore as organized
structures after passing through the Prandtl-Meyer expansion. The presence of such
traveling shocklets is found to be responsible for the plateau region with high level
of density fluctuations, that is visible in the Fig. 4.13(b), between the two peaks re-
lated to the shear layer and to the unsteady shock, respectively.

The most important feature of the shock-system is the low frequency unsteady
motion featured by the main oblique shock. Evidence of the shock motion can be ob-
tained by considering an instantaneous contour of the magnitude of the gradient of
pressure on a streamwise-spanwise plane located at y/δ0 ≈ 0.1, as given in Fig. 4.22.
The figure shows the shock located upstream of the dashed line, which represents
the mean shock location. The detected amplitude of the streamwise movement of the
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Figure 20: Instantaneous snapshot of ∣∣∇p∣∣ at y/δ0 ≈ 0.1. The dashed line indicates the

mean shock location.
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Figure 21: (a) Wall-pressure signals and (b) corresponding weighted power spectral density

at different streamwise locations relative to the ramp corner.
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Figure 4.22.: Instantaneous snapshot of ∣∣∇p∣∣ at y/δ0 ≈ 0.1. The dashed line indicates
the mean shock location.

shock is roughly 1 δ0 at this wall-normal coordinate. In the considered timeframe, the
shock is wrinkled along the spanwise direction, with an amplitude of about 0.5 δ0,
in accordance with what has been previously shown by [Wu and Martin, 2008]. An
animation of a set of visualizations of the pressure gradient magnitude in the con-
sidered plane has been analyzed, showing that the shock is most of the time not
wrinkled in spanwise direction. The presence of this instantaneous sharp corruga-
tion of the shock could therefore be related to a local modification of the recirculation
bubble located downstream or, as mentioned in the work of [Wu and Martin, 2008],
to the presence of a low-speed structure in the incoming boundary layer, which is
responsible for the upstream movement of the shock.
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5. Analysis of the unsteady
shockwave behavior

In this chapter the unsteady features of the shockwave turbulent boundary layer
interaction are investigated in order to extract the main properties of the mechanism
that yields the low- requency shock unsteadiness. For this purpose, the results from
the computation presented in chapter 4 are analyzed by means of the Dynamic Mode
Decomposition (DMD) [Schmid, 2010]. Characteristics of the shock motion are first
analyzed in terms of wall-pressure data, after which a modal analysis is presented.

5.1. Wall pressure data analysis

We start by analyzing LES wall-pressure signals from 130 pressure probes placed
along the median line of the wall. The probes are equally distributed within a re-
gion that extents from x/δ0 = −6.5 (upstream of the shock foot position) to x/δ0 = 0
(the ramp corner) with a spacing of ∆x/δ0 = 0.05. The pressure signals have been
recorded for each time-step. Figure. 5.1(a) shows wall-pressure signals at three dif-
ferent positions, highlighting the characteristics of the shock motion. In the incom-
ing boundary layer at x/δ0 = −6.45, the normalized magnitude is around unity with
only small fluctuations. At x/δ0 = −4.5, the signal fluctuates between 1 and 2, show-
ing peaks which are due to the motion of the shock. At position x/δ0 = −0.25, which
is located in the separation region, the mean-pressure value increased to a value of
2.5, but distinct peaks are no longer visible. Nonetheless, we observe an increase of
the pressure-fluctuation amplitude which corresponds to turbulence amplification
by the shock. The corresponding weighted power spectral densities are plotted in
Fig. 5.1(b). At the shock foot the peak frequency is 0.0039U∞/δ0. Given the amount
of available data from the simulation, a total number of 3 cycles of shock motion are
considered in the present analysis. A Strouhal number StL = fL/U∞ can be defined,
where L is the length of the mean separation bubble (L = 6.0δ0 in the present LES),
and gives StL = 0.0234 which is consistent with the range of StL indicated by [Dus-
sauge et al., 2006].

The unsteady character of the interaction zone is further illustrated by the analysis
of the wall-pressure spectra, shown in Fig. 5.2 as a function of the Strouhal number
and the streamwise coordinate direction. Upstream of the interaction, the spectra
show typical features of turbulent boundary layers with the dominant peak located
at St ≈ 1. A qualitative change is observed near the foot of the shock (highlighted
with a dashed line in the figure), where substantial energy at lower frequencies is
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Figure 5.1.: (a) Wall-pressure signals and (b) corresponding weighted power spectral
density at different streamwise locations relative to the ramp corner.
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Figure 5.2.: Contours of the weighted power spectral density of wall-pressure in the
St-x/δ0-plane. The power spectral density is normalized such that their
integral over frequency is unity. Thirty contours levels have been used;
the dashed vertical lines indicate the location of the separation S and
reattachment point R respectively. The solid line indicates the position
of the corner CC.

found, which confirms the low-frequency nature of the unsteadiness in this region.
The low-frequency peak disappears when moving towards the center of the sepa-
ration region and, approaching the reattachment location, the energy is evenly dis-
tributed over three decades of Strouhal numbers. This behavior is in good agreement
with results reported by [Dupont et al., 2006].

5.2. Dynamic Mode Decomposition

Dynamic Mode Decomposition is a technique that allows for a modal analysis of
a data sequence, without resorting to a numerical solver or an underlying model
[Schmid, 2010, Schmid, 2011]. In the case of a linearized flow (i.e. a flow of small
perturbation about a steady base flow), the extracted structures are equivalent to
global eigenmodes. For a nonlinear flow, the decomposition produces modes that
express the dominant dynamic behavior captured in the data sequence. Defining
a temporal linear operator A which advances our snapshot basis V(t) such that
V(tn+1) = AV(tn), the DMD algorithm is able to extract approximate eigenvalues
and eigenmodes of a reduced-order representation of the linear operator A from
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the data sequence. For sufficiently long sequences, each DMD-mode is then linked
to a single temporal frequency [Rowley et al., 2009]. In this manner, DMD differs
from the Proper Orthogonal Decomposition which generally does not yield direct
information concerning the frequency of the detected modes. This feature makes
DMD analysis particularly suited to the present study, since our goal is to focus on
low-frequency unsteadiness. The DMD-algorithm has thus been applied to temporal
snapshots of the spanwise-averaged flow variables in a subdomain containing the
interaction region and the recirculation bubble. The box used for the DMD extraction
has the exact dimensions of the contour plot shown in Fig. 5.5. The box extends in
the range −4.5 < x/δ0 < 2.4 in the streamwise direction and in the range 0 < y/δ0 < 2 in
the wall normal direction. A total number of 770 snapshots, equispaced in time with
∆tU∞/δ0 = 1 (allowing for a resolvable Strouhal number of 0.5), have been processed.
The choice of sampling interval has been motivated by our aim of extracting the low-
frequency unsteadiness; the high-frequency part of the spectrum is under-sampled.
The eigenvalues λ of the reduced-order representation of the linear inter-snapshot
mapping A are shown in Fig. 5.3(a). All eigenvalues fall on the unit circle, which is
expected for a saturated system. Fig. 5.3(b) shows the amplitude distribution for the
detected modes, plotted versus the dimensionless frequency. The Strouhal number
of the maximum-amplitude mode is found to be 0.00282,which is in good agreement
with the value obtained from the Fourier-analysis of the wall-pressure data.

In order to asses whether the modes detected in the low-frequency regime are af-
fected by aliasing, the DMD analysis has been performed successively decreasing
the number of considered snapshots. A first analysis was carried out considering a
total number of snapshots equal to 385 equispaced in time with ∆t U∞/δ0 = 2 (al-
lowing for a maximum resolvable Strouhal number of 0.25). In the second analysis
a total number of snapshots equal to 257 equispaced in time with ∆t U∞/δ0 = 3
(allowing for a maximum resolvable Strouhal number of 0.125). Fig. 5.2 shows the
amplitude distribution of the modes obtained through the dynamic mode decompo-
sition in the three different cases. It can be concluded that aliasing is negligible for
the low frequency DMD modes that are considered in the next part of this analysis.

In addition, ut has also been verified that the superposition of all the obtained
DMD modes recovers a flowfield approximately resembling that of the full LES.

A reconstruction of the flow-field based on the four most dominant modes (la-
beled in Fig. 5.3(b)) has been carried out where the flow-field evolution of each mode
has been recovered based on its frequency and amplitude and then added to the
mean flow; Fig. 5.5 shows the result, displayed at four time instants. The mean po-
sition of the shock and the mean recirculation region are indicated by dashed lines.
The choice of the number of modes to be considered was based on the decrease of the
error norm obtained by adding another mode to the reconstruction. The norm was
computed as ∑t=2Tt=0 ∣si+1(t)− si(t)∣/∣si(t)− s1(t)∣, where i equals the number of modes
considered, and T is the period of the mode having the highest amplitude. With
four DMD modes the error norm for the reconstructed fields is below 15%. The re-
constructed flow exhibits a breathing motion, with the separation bubble expanding
and shrinking periodically, and the shock moving forward-backward accordingly.
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Figure 5.3.: (a) Close-up view of the eigenvalue distribution of the inter-snapshot
mapping in the complex plane, detected by the DMD method. (b) Am-
plitude distribution of the detected modes.
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Due to the low-frequency nature of the selected modes, no structures reminiscent of
turbulence can be detected in the reconstruction.

In order to further investigate the features of the low-frequency unsteadiness, the
shock location and the mass of the recirculation region versus time have been de-
termined for the reconstructed flow. The four most dominant modes have succes-
sively been added one after the other to the mean flow, and mass of the recircula-
tion region as well as the shock displacement have been computed for each result-
ing flowfield. The shock position was tracked away from the wall at x/δ0 = −1.95
and y/δ0 = 1.75. This location allows for a more precise definition of the shock
position, since here is sharply developed and less affected by boundary-layer tur-
bulence. The exact position of the shock was determined by computing the loca-
tion of the maximum density gradient in x-direction. It should be noted that the
extent of the shock motion reduces while moving away from the wall. Hence the
extent of the shock motion as reported in the Fig. 5.6(b) is lower than typical shock-
excursion values reported for the shock foot. An estimate of the actual value of the
shock-motion amplitude in the proximity of the wall can be extracted from Fig. 5.2,
where the region indicating high levels of energy in the low frequency regime ex-
tents from x/δ0 = −4.75 to x/δ0 = −3.5, giving a value for the shock-motion amplitude
of 1.25x/δ0. The mass of the reverse flow region has been computed by consid-
ering the region of the flow where the u-velocity is negative. As can be seen in
Fig. 5.6(a), the superimposition of the modes confirms a temporal asymmetry in the
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5.2. Dynamic Mode Decomposition

Figure 5.5.: Four snapshots from a reconstruction of the flow fields from a linear
combination of the four most dominant dynamic modes. Instan-
taneous oblique shock position. Mean oblique shock position.

Mean recirculation region domain.
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5. Analysis of the unsteady shockwave behavior

expansion-contraction cycle of the bubble and the oscillatory behavior of the shock.
With all four modes superimposed on the mean flow, we observe that the mass
increase in the recirculation region occurs significantly faster than the subsequent
mass loss. Simultaneously, the downstream displacement of the shock is slower
than its upstream motion. This is consistent with the model proposed by [Pipon-
niau et al., 2009], in which contractions of the bubble stem from a mass entrainment
process involving the shear layer above the recirculation region, whereas the dilata-
tions correspond to a large mass flux in the reverse direction, needed to maintain
the recirculation region. In addition, a clear delay between changes of the recircu-
lation region and the motion of the shock can be detected; the instants in time of
respective minima and maxima are indicated in Fig. 5.6(a). An animation of the re-
constructed flow field by the four dominant modes, available at the following link
(http://dentaku.aer.mw.tum.de/pub/grilli/LowFrequencyShockMotion.avi), clear-
ly highlights the modification of the separation bubble as the main driver of the
shock motion.
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Figure 5.6.: (a) Temporal evolution of the mass (per unit span) of the reverse-flow
region; (b) shock location versus time. Each variable has been extracted
from a reconstructed flow-field sequence based on the four most domi-
nant dynamic modes.
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The shockwave turbulent boundary layer interaction (SWTBLI) is one of the most
prevalent phenomena occurring in high-speed flight. From an engineering point of
view, this phenomenon can have a significant impact on aircraft or rocket perfor-
mance. The interaction of the shock with the turbulent boundary layer causes the
separation of the boundary layer and the subsequent formation of a recirculation
region. The main characteristic of such an interaction is the low-frequency unsteadi-
ness of the shock producing amplified wall pressure fluctuations which, in turn, can
cause strong buffeting of the underlying structure, eventually leading to failure due
to fatigue.

In order to investigate this problem by means of large-eddy simulation, a numeri-
cal tool has been developed which features several aspects, each one of them playing
a key role for the achievement of the final simulation target.

At first, a conservative immersed interface method for compressible viscous flows
has been derived with the aim of being suitable for dealing with complex moving
or stationary boundary problems. The method is based on a local modification of
the classical finite volume scheme on Cartesian grids and on a Level-Set technique.
These features make the implementation quite simple and allow to handle moving
boundary problems in a straightforward way. Computations of laminar flows at
low and high Mach numbers with and without heat transfer are performed and
compared with results from the literature in order to evaluate the accuracy of the
method.

The focus has then been moved to the analysis and validation of the proposed
implicit-LES approach. Several LES of supersonic turbulent channel flows and su-
personic turbulent boundary layers have been carried out. It has been shown that
a significant improvement for the LES prediction in the case of wall bounded flows
could be achieved by combining ALDM with a damping procedure based on a co-
herent structures detection criterion, as proposed by [Kobayashi, 2005] in the frame-
work of explicit-LES.

Afterwards, the numerical investigation of a compression-decompression ramp
flow has been performed. A high Reynolds number corresponding to experimental
conditions has been achieved, allowing direct comparison of the data. The Reynolds
number based on the incoming boundary-layer thickness is Reδ0 = 132840, the free
stream Mach number is M∞ = 2.88. The results are validated successfully against the
reference experiment of [Zheltovodov et al., 1990]. Good agreement has been found
for surface-pressure and skin-friction distributions, mean velocity profiles. Some
differences have been detected for the comparison of density and velocity fluctua-
tions, since this set of experimental data has been derived with an experiment that

109



6. Conclusions

was conducted at a smaller Reynolds number Reδ0 = 63560. Evidence for the ex-
istence of streamwise Görtler-like vortices has been found in the computational re-
sults. Such vortices are generated in the core of the recirculation region after the
compression corner. They travel downstream along the ramp and they vanish after
interacting with the Prandtl-Meyer expansion induced by the decompression corner.
The effect of these structures on the spanwise mean-flow variation had to be taken
into account when performing validation of numerical methods using experimen-
tal data. The computation has shown amplification of turbulence when interacting
with the compression wave, with amplification factors that are found to be in ac-
cordance with previous numerical and experimental investigations conducted on
compression-corner flows. It also has been shown that the interaction between tur-
bulence and Prandtl-Meyer expansion results in a damping of the level of turbulent
fluctuations. An analysis of the turbulence structure in the near wall region showed
that the boundary layer recovers the typical streaky structures featured by the in-
coming zero pressure gradient turbulent boundary layer, after the passage through
the decompression corner.

A particular focus has been posed on to the analysis of the low-frequency shock
unsteadiness which has been detected in the numerical simulation. We have applied
a Dynamic Mode Decomposition to a set of snapshots of spanwise averaged flow
fields extracted from the LES. By considering a subdomain that contains both the
shock and the recirculation region, we have identified and isolated a high-amplitude
mode within the low-frequency regime. A temporal reconstruction of the flow field
associated with the four most dominant modes has reproduced a pulsating sepa-
ration bubble together with an oscillatory streamwise motion of the shock. This
reduced description of the flow behavior (based on four dynamic modes) has cap-
tured the main features of the shock-wave turbulent-boundary-layer interaction: a
clear coupling between the motion of the recirculation region and the motion of the
shock, in agreement with experimental observations [Piponniau et al., 2009]. Our
results have shown that SWTBLI cannot be described by a single mode, but that the
superposition of the four dominant low-frequency modes is sufficient to recover the
essential characteristics. These modes are phase locked and represent an asymmetric
cycle for the shock motion as well as the periodic pumping of the separation bub-
ble. As shown in Fig. 6.1, the DMD analysis shows negligible variations of the flow
field in the region located upstream of the interaction. Based on this reconstruction
we can state that upstream effects of the incoming boundary layer are irrelevant for
the SWTBLI considered in our investigation. By adopting the scaling argument in-
troduced from [Ganapathisubramani et al., 2006] the length of the structure capable
of generating such a low frequency would exceed the domain considered upstream
of the interaction in our simulation. At the same time, any of the structures that
could be generated upstream would infer a low-frequency motion which is at least
one order of magnitude higher than any of the four DMD modes considered in our
analysis. Based on this evidence, we conclude that such structures cannot represent
the driving mechanism for the low-frequency motion of the shock. Our results fully
support the hypothesis that the observed SWTBLI phenomena are a consequence of
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Figure 6.1.: (a) Contours of the amplitude of the superimposition of the four most
dominant modes. (a) streamwise velocity u1 ( 20 contours ranging from
0.005 to 0.065 ). (b) density ρ ( 20 contours ranging from 0.005 to 0.15 ).

the inherent dynamics between separation bubble and shock and are not driven by
upstream coherent structures.

Finally, one possible application of the DMD analysis that has been conducted
here could be in the field of aerodynamic design. The DMD modes that have been
extracted from the analysis presented above could be used to generate a reduced-
order model of the flow. As the mode basis is truncated to a limited number of low-
frequency the most energetic modes, high frequencies are filtered and small scales
could be neglected. Such model could be then adopted to assess the resistance of the
underlying structural element.
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A. Dynamic Mode Decomposition

In this appendix a brief description of the Dynamic Mode Decomposition approach
will be given, together with a sample code and a validation test case that might be
used for further implementations and developments.

A.1. General description

We consider at first a set of flow fields collected by sampling either direct numerical
simulations or experimental data. A pre-processing stage might be required for ex-
perimental data in order to avoid possible interference effects coming from inherent
measurement noise. The data should be ordered in the form of a snapshot sequence
given by the matrix defined as follows

DN
1 = {d1,d2, ....,dN}, (A.1)

where di stands for the i-th flow field. In the above definition, the subscript 1 denotes
the first field of the sequence, while the superscript N denotes the last entry in the
sequence. We then consider an ordered sequence of data separated by a constant
sampling time ∆t.

We consider now a linear mapping A which relates the flow field di to the subse-
quent flow field di+1 in the following way:

di+1 = A di (A.2)

This mapping is assumed to be the same over the sampling interval that spans
in the snapshot range [0, (N − 1)∆t]. If the flow fields stem from a nonlinear pro-
cess, this assumption resorts to a linear tangent approximation. For slowly varying
systems, a multiple-scale argument can provide a foundation for the above assump-
tion. In the special case of purely linear processes, no approximation is invoked
by assuming a constant mapping. In any case, the assumption of a constant map-
ping between the snapshots di allow for formulating the sequence of flow fields as
a Krylov sequence

DN
1 = {d1,A d1,A

2 d1, ....,A
N−1 d1}. (A.3)

The main goal of the dynamic mode decomposition is the extraction of the dynamic
characteristics (eigenvalues, eigenvectors, pseudoeigenvalues, energy amplification,
resonance behaviour, etc.) of the dynamical process described by the linear operator
A and contained in the sequence DN

1 . By Increasing the number of snapshots of
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the data sequence given by DN
1 beyond a critical number of snapshots, the vectors

given by (A.2) become linearly dependent. Therefore, adding further flow fields
di to the data sequence will not improve the vector space spanned by DN

1 . If this
limit is reached, it is possible to express the vector dN as a linear combination of the
previous, and linearly independent, vectors di , i = 1, ....,N as follows

dN = a1 d1 + a2 d2 + .... + aN−1 dN−1 + r (A.4)

which in a matrix form can be written as

dN = DN−1
1 a + r (A.5)

with aT = {a1, a2, ...., aN−1} being the vector of the linear combination coefficients
and r the residual vector. Considering the relations introduced above is possible to
write:

A{d1,d2, ....,dN−1} = {d2,d3, ....,dN} = {d2,d3, ....,D
N−1
1 a} + r lTN−1 (A.6)

where lTN−1 ∈ R is a unit vector of dimension N − 1. Eq. (A.6) can be then expressed
in matrix form as

A DN−1
1 = DN

2 = DN−1
1 S + r lTN−1, (A.7)

where the matrix S represents a companion matrix

S =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1

1 0 a2

1 ⋱ ⋮⋱ ⋱ aN−2

1 aN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.8)

The only unknown elements in S are the coefficients {a1, a2, ...., aN−1}, which repre-
sent the above mentioned (N−1)-component linear approximation of the last sample
dN in terms of the previous samples {d1,d2, ....,dN−1}.

The eigenvalues of S are approximations of the eigenvalues of the linear operator
A. The computation of S then proceeds by computing the linear coefficients vector
a. The last element of a given data sequence dN is expressed as a linear combination
of the previous elements of the sequence as stated in Eq. (A.5), whose least-squares
solution, for a full-rank matrix DN−1

1 is obtained through:

a = R−1 Q dN with DN−1
1 = Q R. (A.9)

Even though the decomposition based on a companion matrix S is mathematically
correct, a practical implementation yields an ill-conditioned algorithm that is often
not capable of extracting more than the first or first two dominant dynamic modes.
This is particularly true when the data stem from an experiment and are contami-
nated with noise and other uncertainties. For this reason, we choose a more robust
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implementation that computes the full matrix S̃ related to S via a similarity trans-
formation. The robustness requirement is achieved by a preprocessing step using
a singular value decomposition of the data sequence DN−1

1 = UΣVH . Substituting
the singular value decomposition UΣVH into Eq. (A.7) and rearranging the result-
ing expression, we obtain S̃ = UHAU = UHDN

2 VΣ−1. By recognizing that the ma-
trix U contains the proper orthogonal modes of the data sequence DN−1

1 , the above
operation resorts to a projection of the linear operator A onto a proper-orthogonal-
decomposition basis. A further advantage of this operation, besides a more robust
calculation of the low-dimensional representation of A, is the opportunity to ac-
count for a rank-deficiency in the data sequence DN−1

1 via a restriction to a limited
projection basis U given by the non-zero singular values of Σ (or by singular values
above a prescribed threshold). In our case, we obtain the following expression for
the dynamic modes Φi:

Φi = U Λi, with [Λi, λi] = eiv (S̃) (A.10)

with Λi as the i-th eigenvector of S̃, i.e. S̃Λi = λiΛi and U as the right singular
vectors of the snapshot sequence DN−1

1 .
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A.2. Matlab script for Dynamic Mode Decomposition

%%% -----------------------------------------------------------------------
%%% Dynamic Mode Decomposition - Matlab script
%%% Muzio Grilli (2012)
%%% Matlab
%%% -----------------------------------------------------------------------
%%% -----------------------------------------------------------------------
%%%
%%% These routines may contain errors and bugs.They are distributed without
%%% warranty of merchantability, even without implied warranty of fitness
%%% for any particular purpose.
%%%
%%% (c) by Muzio Grilli , 2012
%%%
%%% -----------------------------------------------------------------------

clear all
clc

%%% -----------------------------------------------------------------------
%%% Step 1: Define the location of the data and timestep
%%% -----------------------------------------------------------------------

pathbase = ’/Users/grilli/Documents/PhD_work/Dissertation/matlab/’;
pathdata = ’data/’;
pathres = ’dmd’;

pathinput = strcat(pathbase,pathdata)
pathoutput = strcat(pathbase,pathres)
pathgrid = strcat(pathinput,’grid.dat’)

dt = 1/19

%%% -----------------------------------------------------------------------
%%% Step 2: Define dimensions of the snapshot basis ( M rows N colums )
%%% M defines the number of entries in each snapshot
%%% N defines the number of snaphot
%%% ---------------------------------------------------------------
%%% The grid contains 188 x 62 points = 11656
%%% -----------------------------------------------------------------------

m = 11656
n = 80

md = 11656.d0
nd = 80.d0

npx = 188
npy = 62
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nmode = 2

%%% -----------------------------------------------------------------------
%%% Step 3: Define threshold value for singular values
%%% -----------------------------------------------------------------------

soll = 10e-9

%%% -----------------------------------------------------------------------
%%% Step 4: Read in the snapshot basis to form the D_{1}ˆ{N-1} matrix
%%% -----------------------------------------------------------------------

for i = 1 : n-1
file = strcat(’File’,num2str(i));
pathfile = strcat(pathinput,file);
D1(:,i) = dlmread(pathfile);

end

%%% -----------------------------------------------------------------------
%%% Step 5: Read in the snapshot basis to form the D_{2}ˆ{N} matrix
%%% -----------------------------------------------------------------------

for i = 2 : n
j = i - 1;
file = strcat(’File’,num2str(i));
pathfile = strcat(pathinput,file);
D2(:,j) = dlmread(pathfile);

end

%%% -----------------------------------------------------------------------
%%% Step 6: Execute economy size SVD of D_{1}ˆ{N-1}
%%% -----------------------------------------------------------------------

[U,S,V] = svd(D1,’econ’);
Sval = diag(S);

%%% -----------------------------------------------------------------------
%%% Step 7: Compute singular values entries above the threshold
%%% -----------------------------------------------------------------------

r = 0;
for i = 1 : n - 1

if Sval(i) > soll
r = r + 1;

end
end

Smax = max(Sval)
Smin = min(Sval)

%%% discarded percentage of total variance
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discarded = 100 - (sumsqr(Sval(1:r))*100/sumsqr(Sval))

%%% -----------------------------------------------------------------------
%%% Step 8: Extract portion of the matrixes
%%% -----------------------------------------------------------------------

Up = U(:,1:r);
Sp = S(1:r,1:r);
Vp = V(:,1:r);
Vt = V’;
Vtp = Vt(1:r,:);

%%% -----------------------------------------------------------------------
%%% Step 9: Compute inverse of the singular values diagonal matrix S
%%% -----------------------------------------------------------------------

Spinv = inv(Sp);

%%% -----------------------------------------------------------------------
%%% Step 10: Compute matrix L1 = Uˆ{H} * D_{2}ˆ{N}
%%% -----------------------------------------------------------------------

L1 = Up’ * D2;

%%% -----------------------------------------------------------------------
%%% Step 11: Compute matrix L2 = V * Sˆ{-1}
%%% -----------------------------------------------------------------------

L2 = Vp * Spinv;

%%% -----------------------------------------------------------------------
%%% Step 12: Compute matrix L = L1 * L2
%%% -----------------------------------------------------------------------

L = L1 * L2;

%%% -----------------------------------------------------------------------
%%% Step 13: Compute eigenvalues and eigenvectors of the L matrix
%%% -----------------------------------------------------------------------

[eivVec,eivVal] = eig(L);
eivarray = diag(eivVal);

%%% -----------------------------------------------------------------------
%%% Step 14: Compute unscaled Dynamic Modes
%%% -----------------------------------------------------------------------

X1 = Up * eivVec;

%%% -----------------------------------------------------------------------
%%% Step 15: Compute Dynamic Modes amplitudes
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%%% -----------------------------------------------------------------------

d=X1\D1(:,1);

amplitude=abs(d);

%%% -----------------------------------------------------------------------
%%% Step 16: Compute scaled Dynamic Modes
%%% -----------------------------------------------------------------------

X=X1*diag(d);

%%% -----------------------------------------------------------------------
%%% Step 17: Reconstruction
%%% -----------------------------------------------------------------------

for i = 1 : n - 1
VandermondeMatrix(:,i) = eivarray.ˆ(i-1);

end

Flowfield=X*VandermondeMatrix;
Flowfield=real(Flowfield);
relErr = norm((D1-Flowfield),’fro’)/norm(Flowfield,’fro’)

A.3. Validation example

A validation example is also given here as a reference for further implementations
of the dynamic mode decomposition. The data refers to a series of visualizations
of a flame, which is available at the following link (http://dentaku.aer.mw.tum.de
/pub/grilli/DMDcase). One of the snapshots is given in the figure given below:

Results from the dynamics mode decomposition of the database are also given
in terms of eigenvalue distribution and detected dynamic modes amplitudes with
respect to their own frequency.
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Figure A.1.: Snapshot from the flame visualization database.
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Figure A.2.: DMD spectrum for the flame visualization example. (a) Time-stepper
spectrum visualization. The color and symbol size of the eigenvalues
indicate the coherence of the associated dynamic modes. (b) amplitudes
distribution with respect to the frequency. The spectrum is symmetric
since the post-processed data is not complex.
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Figure A.3.: Spatial distribution of the first four most dominant dynamic modes.
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