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Control with Exponentially Decaying Lyapunov Functions and Its Use
for Systems with Input Saturation

Michael Buhl and Boris Lohmann

Abstract— This paper presents a design method for feedback
controls which leads to an exponentially decaying Lyapunov
function for the closed-loop system. The rate of decay is the only
and thus central parameter of the proposed design. The tight
connection between the control law and the Lyapunov function
is particularly favorable once the input saturation becomes
active. In that case an analytic estimate for the domain of
attraction is derived by using the Lyapunov function. Increasing
the rate of decay decreases the size of the estimate. Hence the
online variation of the rate of decay turns out to be a natural
way for designing a variable-structure controller.

Typically, the aim of linear state-feedback control is to
transfer the state of a dynamical system to a desired equi-
librium point within short time on the one hand and with
moderate amplitude of the control input signal on the other
hand. This compromise is to be found by suitably choosing
the parameters of the control design (which, for instance, are
the weighting matrices in a LQR design). If the allowable
range of the control input signal is limited, the design is
often done in a way that no input signal greater than the
saturation limit is generated. In consequence the stability
proof simplifies to the determination of invariant subspaces
where the system behaves in a linear way (see [1] or the
work related to low-gain feedback design e.g. [12]).

In this contribution, in order to achieve highly dynamic
control, we do not only consider the standard linear state-
space representation

x = Ax + bu (1)

with A € R*"*" b,x € R", v € R, but will also take
the input saturation explicitly into account, resulting in the
nonlinear model

% = Ax + bsat(u) )

with the saturation function

—Umaz fOI' u S —Umaz
sat(u) = U for —Upmar < U < Umax
Umaz  fOr U > Umax

Starting from system (1), we will first present a control
design which results from constructing an exponentially
decaying Lyponov function for the closed-loop system. The
decay rate o can be seen as a natural indicator for the speed
of the control system. Hence, using « as the only parameter
of the control design makes the design process transparent.
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An important benefit of the suggested a-controller comes
into play once the amplitude of w touches the input limi-
tations of the systems u,,q, leading to a nonlinear system
dynamic. In that case, other methods often require a separate
stability analysis and the control design is done by extensive
numerical optimization [7]. However, with the «-controller
and based on the Lyapunov function coming with it, it is
possible to analytically determine an estimate for the domain
of attraction of the closed-loop, nonlinear system. Especially
for a small rate of decay the achieved estimates seem to be
quite good approximations of the full domain of attraction.

Furthermore, the estimates confirm an intuitively expected
result, namely that a high rate of decay leads to a small do-
main of attraction and vice versa. Hence, increasing the speed
of the controller (by increasing «) while x is approaching
the origin, turns out to be a natural concept for improving
the speed of the a-controller. Increasing the feedback gains
and thereby the speed of the controller once the state vector
approaches the origin is a well-known concept (see survey
paper [1]) and is mainly referred to as variable-structure
controls or switching controls [3]. However, apart from [3]
and the presented controller no work is known to the authors,
where the variation is done among controls, which may
command input values u larger than w,,,,, leading to input
saturation over long time intervals.

I. DESIGN OF THE -CONTROLLER

In this section the design of a controller leading to an ex-
ponentially decaying Lyapunov function V' (x) is presented.
The fundamental equation for the design of the controller is
therefore

V=—aV (3)

with a > 0 being the rate of decay. If the input saturation
is neglected it is possible to find a control law, such that a
quadratic Lyapunov function V = x” Px will fulfill (3). For
this purpose the time derivative of V' is computed by using

(D):

T
vV = <8v) %x = 2xTP (Ax + bu)
ox

= x" (ATP + PA) x + 2x"Pbu = —ax" Px. (4)

In view of (4) the most natural control law for making V
negative clearly is
u = —bTPx. 5)

Inserting the control law (5) back into (4) one gets
x” (ATP + PA) x — 2x"Pbb" Px = —ax"Px.  (6)
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From (6) an algebraic Riccati equation can be derived for
determining the matrix P:

(A+2T)"P+P(A+21)—2Pbb"P =0 (7)

Thus the algebraic Riccati equation (7) together with the
control law (5) result in a closed-loop system, for which
an exponentially decaying Lyapunov function can be found.
The rate of decay « is the only and hence central parameter
of the control design. We would therefore like to name
the controller a-controller. In the following sections the
properties of the a-controller will be investigated closer.
With respect to (1) and (2) we thereby distinguish between
the linear properties and the properties in the presence of
input saturation.

II. LINEAR PROPERTIES OF THE a-CONTROLLER

The properties of P, the solution to the Riccati equation
(7), are the key for understanding the linear properties of the
a-controller. The required results are mainly taken from [11]
and briefly presented in the next section.

A. Properties of P

Applying the theorems 13.5, 13.6 and 13.7 in [11] to the
Riccati equation (7) results in the following theorem:

Theorem I: Suppose A + S1 = A, has no imaginary
eigenvalues and (A, —2bb”) is stabilizable then the solu-
tion to the Riccati equation (7) has the following properties:

o P is real and symmetric.

o P is positive semi-definite (P > 0).

o P is positive definite, if A, has no stable modes.

e A, — 2bbTP is stable.

Furthermore by following the proof of theorem 13.7 in
[11] the next theorem can be formulated.

Theorem 2: If P is positive semi-definite, then the kernel
of P is spanned by the stable eigenvectors of A,,.

Proof: Let x € Ker(P), then Px = 0. Post-multiplying
(7) by x leads to PA,x = 0. Hence Ker(P) is an
A ,-invariant subspace and thus has to be spanned by the
eigenvectors v of A, . For those eigenvectors one can write
Av=A,v=(A,—2bbTP)v. As A, —2bb”P is stable,
Re()) has to be negative.

Conversely if A, has a stable eigenvalue A one gets by pre-
and post-multiplying (7) by the corresponding vector v and
v

2Re(\)v Pv — 207 Pbb” Pwv = 0. ®)

As P > 0 and Re()\) < 0 one gets v/Pv = 0. Thus if
Ker(P) # 0 it is spanned by the stable eigenvectors of A,
and if A, has stable eigenvectors Ker(P) # 0. O

B. Influence of « on the closed loop dynamics

For the choice of « the conditions of theorem 1 are
important. Due to them the existence of a positive semi-
definite solution P requires the pair (A,, —2bb’) to be
stabilizable. As A and A, have the same eigenvectors this
is always fulfilled if (A, bb7) is controllable. If (A, bb”)
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is only stabilizable the parameter o has to be chosen in a
way such that no uncontrollable eigenvector of A, becomes
unstable. Furthermore, it is claimed that A, must not have
any imaginary eigenvalues. This condition is always made
when the solution of the Riccati equation is discussed.
However, it is not important for the presented controller
design, see Remark VI-A in the appendix.
If the parameter « is chosen in a reasonable way, then the
most important relation between « and the dynamics of the
closed-loop system is given by the following theorem.

Theorem 3: Let the matrix A have ¢ eigenvalues with
Re(M1.q) > —5 and p = n — g eigenvalues with
Re(Agt+1..n) < —%. If there exists a positive semi-definite
solution P to the corresponding Riccati equation (7), then
the matrix A — bb”P of the closed-loop system has ¢
eigenvalues with Re(\;.,) = —§ and the p eigenvalues
Agt1..n of A with Re(Agy1..m) < —5.
Proof: The p eigenvalues of A with Re(Ag41..n) < —5
are the stable eigenvalues of A,. Hence the corresponding
eigenvectors span the kernel of P (Theorem 2). Therefore
they are not influenced by the control law © = —b” Px and
remain eigenvalues of the closed-loop system.

Let v be an eigenvector of A — bb”'P, which is not in
the kernel of P. By multiplying the Riccati equation (7) by
v and v one gets

v (A-bb"P)" Pv + v"P(A-bb'P)v = —av"Pv
vH Av
2Re(N)vPv = —avfPu
= Re(\) = —9%.

Thus it is shown that the eigenvalues of the closed-loop

matrix have either a real part of —% or the corresponding

eigenvectors have to be in the kernel of P. [J
1) Example: For illustrating the meaning of theorem 1 an

a-controller is designed for the system:

0 1 00 0
0 0 10 0

A= 0 0 0 1 b= 0 ©)
-4 0 5 0 1

having eigenvalues at —2, —1,1,2. The real parts of the
eigenvalues of the closed-loop system are shown in Fig. 1 as
a function of «. In Fig. 2 the eigenvalues of the closed-loop
and the open-loop system are shown in the complex plane.
As stated by theorem 1 for small « the controller influences
only the unstable eigenvalues of A. The stable eigenvalues
of A are only affected by the controller if their rate of decay

is less than 3.

III. PROPERTIES OF THE -CONTROLLER IN THE
PRESENCE OF SATURATION

Neglecting the input saturation the a-controller can be
just seen as a special kind of pole-placement controller.
The importance of a Lyapunov function fulfilling (3) mainly
comes into play once the input saturation is considered. In
this case the Lyapunov function allows a good and analytical
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Fig. 1. Real part of the eigenvalues for the open-loop system (9) and the
corresponding a-controller applied closed-loop system

8
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& -2 -1 0 1 2

Fig. 2. Eigenvalues in the complex plane for the open-loop system (9) and
the corresponding a-controller applied closed-loop system

estimation for the domain of attraction of the equilibrium
point.

Definition 1: The domain of attraction of an equilibrium
point is formed by all points asymptotically approaching the
equilibrium point.

In general the domain of attraction of the nonlinear system
(2) can only be determined by simulations. However, based
on Lyapunov’s theory, an analytical estimation S can be
derived. ([8])

Theorem 4: Consider the nonlinear system x = f(x) with
£(0) = 0. Let V(x) be a scalar function with continuous par-
tial derivatives. If in a neighborhood S(n) = {x | V(x) < n}
of the origin

o V(x) is positive definite

o and V is negative definite,
then S(n) is part of the domain of attraction.

As stated in theorem 4 S(7)) is only part of the domain
of attraction. Whether S(n) is a big or small part and hence
a good or a very conservative estimation of the complete
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domain of attraction mainly depends on the choice of V(x).

For linear systems with input saturation quadratic func-
tions V = xTPx seem appropriate and are used in general.
Instead of choosing the matrix P by numerical optimization,
as this is often done, equation (3) serves as a criterion
for determining P. Besides the exponential decay of V a
constant value of V on the level sets of V is achieved by
(3). In the presence of input saturation (for |u| > q.) One
can easily check that V > —aV. Thus by choosing « small,
the shape of V' on the boundary 9S(n) = {x | V(x) = n}
has to stay in a small interval, namely [0; —an)]. If S exactly
separated the domains with V' > 0 and V < 0, S(7) would be
the complete domain of attraction. Therefore the possibility
of limiting V' on the boundary of S(7) to an arbitrarily small
interval is expected to result in a good estimation for the
domain of attraction.

A second benefit of the Lyapunov function coming with
the a-controller is that n can be calculated analytically.
Based on Theorem 4 7 is the solution of the constraint
optimization problem:

max 7

V <0 VxeSn)

(10)

(11

Instead of solving the optimization problem with the inequal-

ity constraint (11), one can look for the smallest level set
where the equality V' = 0 holds:

minn = xTPx (12)

x € R™\{0,Ker(P)} (13)

V(x) = x* (ATP + PA) x + 2x" Pbsat(u) = 0 (14)

The solution of this optimization problem is among the
stationary points of the related Lagrange function

L(x,p) = x"Px 4 puV. (15)

Replacing ATP + PA by —aP + 2Pbb” P and noticing
that (14) can only be fulfilled where [u| > U4, (otherwise

V = —aV < 0), one gets
L(x,p) =x"Px + p (x" (—aP + 2Pbb" P) x+
+2xT Pbumazsgn(u)) . (16)

The stationary points of L are given by

L
??7 =x"(—aP+2Pbb” P)x+2x" Pbu,,q,sgn(u)=0 (17)
oL
o P((2 — po)x+p(4b" Px+2umqq5gn(u))b)=0. (18)

The derivative of sgn(u) has been neglected in (18) because
the solution x* has to be where |u| > wUmas. As the
expressions in the two brackets in (18) are scalars and
x* ¢ Ker(P), it can be concluded that

x* = ab.

(19)

The factor a € R\ {0} can be computed by inserting (19)
into (17): 5

=t —— mazx
T TP —a

(20)

3150



Proceedings of the European Control Conference 2009 « Budapest, Hungary, August 23-26, 2009

Thus one gets the two solutions for x*

T @D
which are both situated on the level set S(7)
4b"Pb
n=xTPx* = 2 (22)

Y S u e
(2bTPb — )2 ™*
Hence an analytical estimation for the domain of attraction

is given by

S(P,n) = {x | x"Px < n} (23)

with 7 according to (22). As shown in [5] it is possible to
express b Pb by a and the eigenvalues of A.

Theorem 5: Let A have exactly ¢ eigenvalues with
Re(M1..4(A)) > —% and denote the sum of these eigen-
values by ~

=Y N(A).
i=1

Then the following equation holds

b Pb = v+ ¢%. (24)
Using (24) in (22) one gets
2

27+ (g=Dap "
From (25) some interesting results concerning the size of
S(P,n) can be derived. The proofs for the theorems 6 - 8
are given in [5].

Theorem 6: As long as o > 0 is chosen in a way such
that only one eigenvalue of A is shifted by the controller,
the size of S(P,n) doesn’t change.

If the shifted eigenvalue has originally been in the open
right-half complex plane, S(P, n) exactly describes the max-
imal domain of attraction of the equilibrium point.

Theorem 6 is mainly of interest for systems with one
unstable eigenvalue. In that case a reasonable lower bound
for a is given by i, = —2Re(A2) with Ay(A) being
the eigenvalue of A with the second biggest real part.
Choosing « smaller than «,;, results in a slower controller
without enlarging the domain of attraction. Furthermore
S(P(cmin), Mmin) describes the domain of attraction exactly
and cannot be enlarged by any other control law.

Theorem 7: If all eigenvalues of A are in the closed left-
half plane, then there exists an & such that for « — & (from
above) 7 tends towards infinity and hence S(P,7) contains
the whole state space. The value of & is given by

q—1
with ¢ denoting the number of all eigenvalues of A with
Re(M\(A)) > —% and 7 denoting the sum of those eigenval-
ues.

Theorem 7 is in accordance with the expectation that it is
always possible to find a globally stabilizing controller for
a stable system. The interesting point is the rate of decay,
which can be achieved by the globally stabilizing controller.

&=

(26)
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Table I shows the resulting & for some exemplary pole
configurations. It can be seen there, that although the sum of
A(A) is for all examples —12, the globally stabilizing rate
of decay & differs quite a lot depending on the distribution
of the open-loop eigenvalues. In any case, however, & is
obviously a reasonable lower bound for a.

TABLE I
& FOR DIFFERENT POLE CONFIGURATIONS

2A) &
~1,-2,-9 | 6
=2,-2,-8 | 8
=3,—4,—5 | 12

For the special case of an asymptotically stable scalar
system ¢ becomes 1 and hence & becomes oco. Although
this very simple case is not of real interest, the resulting &
confirms that arbitrarily fast controllers can be applied to an
asymptotically stable scalar plant.

Theorem 8: If a > & (for open-loop stable systems) or
chosen such that more than one eigenvalue of A is shifted
by the control law (¢ > 2), the following property holds:

d
n = £<O
P = Ezo

The consequence of theoremdg is that the size of S(P,7)
is decreasing with increasing values of a.. Hence theorem 8§
partially confirms some considerations of the control design,
namely that small values of « result in a good or respectively
large estimation for the domain of attraction.

2) Example: For illustrating the meaning of theorem 6
and theorem 8 the estimations S(a) = S(P(a),n(«)) are
shown in Fig. 3 for different values of a. The dynamics of
the therefore considered system are

XZH é]x+[(1)]sat(u)

with ;4. = 5. Besides the decreasing of S(«) with
increasing «, the situation for o = 2 is of special interest. In
that case P becomes singular and S(«) becomes unbounded
in the direction of the stable eigenvector of A. However,
because of the input saturation neither a further decrease of
« nor the use of any other controller can enlarge the size of
S in the direction of the unstable left eigenvector.

@7

IV. VARIABLE-STRUCTURE CONTROLLER

In summary the a-controller reveals the well-known trade-
off between the closed-loop dynamics and the domain of
attraction, which can be achieved by a linear controller. A
possible way to overcome this trade-off can be seen in a
variable-structure control design [1], [3]. The basic idea of
such a control design is to vary the feedback gains of a linear
controller in dependency on the state vector thus resulting in
a nonlinear controller. The main goal of such a variation is a
better utilization of the actuator and hence approaching the
time optimal controller.
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)
o
‘

Fig. 3. S(a) for a = 2,4, ...,10 (from outer to inner) for the system (27)

Considering the properties of the a-controller the variation
of « turns out to be a natural way for the design of a variable-
structure controller. The variation of « is therefore done by
the following selection strategy:

Chose the largest « inside the interval [min; Qmaz] for
which x € S(«) is true.

If this strategy is applied continuously, x will always be
on the boundary of S(«). Therefore the continuous selection
strategy can be expressed as

x"P(a)x = fn(a) (28)

with 8 — 1. Unfortunately (28) cannot explicitly be solved
for . Thus one way is to solve (28) at every time step
by a numerical solver. This requires some numerical effort,
however resulting in a smooth variation of « and .

Besides the continuous variation also a discrete variation
of « is possible. In the discrete case ! matrices P ; and
values 7;..; are computed and stored for the corresponding
values a1, ; in advance. During runtime only the largest o;
fulfilling (28) has to be selected among the [ values oy,
which requires much less computational power. The disad-
vantage of the discrete variation is the occurrence of jumps
in « and u. By storing P and 7 for a sufficient large number
of values « these jumps can however be made arbitrarily
small. In dependence on the available computational power,
the storage on the machine and the required smoothness of
u either the continuous variation, the discrete variation or a
combination of both variation strategies can be chosen.

If « is varied continuously, the stability of the variable-
structure controller can be shown with the Lyapunov function

V =x"P(a)x (29)
with « and hence P chosen by (28). Computing the time
derivative of (29) one gets

V =x"Px + x"Px +x"P'xd (30)
(G ——
Va
with V, denoting the time derivative of V' for a fixed . As
long as & < aynas the selection strategy (28) is active and
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hence one can write

V =V, +xTP'xé = B c. (31)
The time derivative V,, has to be negative definite because
x € S(«). Furthermore, because of theorem 8 one has P’ >
0 and ' < 0. Therefore one can conclude from (31) that
& >0 and thus V = 8n/a < 0.

Once « has reached o4, the time derivative ¢ vanishes
and V = Va < 0.

If « is varied discretely, P’ > 0 and o’ < 0 are again
the key properties for proving the stability of the controller.
Due to these two properties the switching surfaces 9S(c;)
(where « is increased from «;_; to ) are nested (see e.g.
Fig. 3). While @ = «; it holds that x € S(«;) and therefore
V; = xTP(a;)x is a valid Lyapunov function and the corre-
sponding closed-loop system performs asymptotically stable.
In consequence x approaches the origin thereby crossing
the switching surface S(c;41). Thus the same conditions as
in the continuous case ensure also in the discrete case the
increase of . Once o = 7 = Qunq, asymptotic stability
results by using V = xT P (a4 )X.

3) Example: As an example the variable-structure con-
troller is applied to the model of a submarine, which was
firstly described by [6]

0 1 0 0
x=1|0 0 1 x+ | 0 |sat(u) (32)
0 0 -0.005 1

with x; being the dive depth of the submarine. The
input saturation of the linearized model is given by
Umae = 2.De — b. For testing the controller an initial
disturbance of xo = [0 0 — 0.004]7 shall be compensated.
In Fig. 4-6 the results are shown for the time optimal
controller, a fixed a-controller and a variable-structure
a-controller. The latter varies the parameter « inside the
interval [0.01;0.58]. The « for the fixed controller is set to
0.011 ensuring x( € S.

 —time optimal control B
/ —variable-structure control
_35l  ~~-fixed a-controller 1

0 200 400 600 800
time (sec)

1000

Fig. 4. Dive depth of the submarine 1 in m
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0 200 400 600 800
time (sec)

1000

Fig. 5. Input to the submarine system sat(u)

0.6

0.4r

0.1F

0 200 400 600 800
time (sec)

1000

Fig. 6. Variation of o

For the evaluation of the controller performance Table
IT shows the time which is achieved by another structure-
variable controller [1] or saturating fixed controller [6] for
reaching a dive depth of 0.1m. In comparison to the fixed
but saturating controller [6] or to the variable-structure
controller [1] the results of the corresponding a-controllers
can compete very well.

TABLE 11
TIME TO REACH A DIVE DEPTH OF 0.1m

time optimal | var.-str. [1] | var-str. «
541 792 703

fixed sat. [6] | fixed «
2340 989

V. SUMMARY AND CONCLUSION

The paper presents a control design, which allows to
compute an exponentially decreasing Lyapunov function for
the closed loop system. The rate of decay « is the only
parameter of the control design. Hence the complexity of
the design process is independent of the order of the system.
Furthermore, « is a very meaningful parameter. Therefore a
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reasonable choice of a should be an easy task for the control
engineer.

In the context of actuator saturation the suggested control
design provides an analytic estimate for the domain of
attraction. Based on that the incorporation of the a-controller
in a variable-structure control design turns out to be a natural
way for achieving a fast controller with a very large estimate
for the domain of attraction (resulting from «,;,). Besides
the limits vy, and aunq, no further parameters have to be
set by the control engineer. A numerical example shows that
the resulting controller comes rather close to the time optimal
trajectory confirming the performance of the controller.
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VI. APPENDIX
A. Remark

If A, has imaginary eigenvalues, which are not observable
by Q (this is always the case, because Q = 0), it can be
easily shown that the corresponding eigenvectors are in the
kernel of P. Therefore A, — 2bb” P still has imaginary
eigenvalues and hence is not asymptotically stable. In order
to avoid a solution P, which is not asymptotically stabilizing,
A, is in general assumed to have no imaginary eigenvalues.
However as the eigenvalues of the real system A are placed
S left of the eigenvalues of A, the corresponding eigenval-
ues of the real closed-loop system A —bb” P have a real part
of —5. Therefore the occurrence of imaginary eigenvalues
in A, does not cause any problems for the a-controller.
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