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Abstract

We address the speaker independent automatic recognition of
spontaneous speech in highly variable noise by applying semi-
supervised sparse non-negative matrix factorization (NMF) for
speech enhancement coupled with our recently proposed front-
end utilizing bottleneck (BN) features generated by a bidirec-
tional Long Short-Term Memory (BLSTM) recurrent neural
network. In our evaluation, we unite the noise corpus and eval-
uation protocol of the 2011 PASCAL CHiME challenge with
the Buckeye database, and we demonstrate that the combination
of NMF enhancement and BN-BLSTM front-end introduces
significant and consistent gains in word accuracy in this highly
challenging task at signal-to-noise ratios from -6 to 9 dB.

1. Introduction

Automatic speech recognition (ASR) in many realistic scenarios,
including hands-free natural human-computer interaction and
multimedia retrieval, has to deal with spontaneous speech on the
one hand, and interfering audio sources on the other hand. As
an additional challenge, in many situations, such as analysis of
on-line videos, only one audio channel is available. To recog-
nize spontaneous speech in challenging scenarios, extensions
of the traditional ASR models have been proposed. Recently,
it was shown that ASR front-ends employing so-called bidirec-
tional Long Short-Term Memory (BLSTM) neural networks to
generate context-sensitive probabilistic speech features lead to
remarkable performance gains in conversational speech recogni-
tion [1]. Conversely, to increase robustness against background
noise, efforts have been devoted to both robust recognizers and
signal enhancement. Looking at previous studies in these fields,
we observe that studies on speech enhancement and noise-robust
ASR often look at simplistic recognition tasks. For example,
the 2011 PASCAL CHiME Challenge data [2] features realistic
noise from a domestic environment, yet utterances from the Grid
corpus which are strictly adhering to a fixed grammar and a vo-
cabulary of 51 phonetically similar keywords; furthermore, the
Challenge task is speaker dependent, allowing to create precise
models of how each speaker pronounces each word. A task that
is more complex from the ASR point of view is provided by
the Aurora 4 data; yet, it relies on read speech from the Wall
Street Journal corpus and a very limited amount of noise data
that is artificially scaled to produce different SNRs. As of today,
systematic studies on recognition of conversational speech at
varying levels of background noise are very sparse.

Hence, in this paper, we address the recognition of spon-
taneous conversational speech from the Buckeye database in
realistic, variable and mostly non-stationary noise from a do-
mestic environment as featured in the CHiME Challenge. To
foster realism, we restrict ourselves to methods that are appli-

cable to monaural signals. Furthermore, we enforce a stricly
speaker independent evaluation for speech enhancement as well
as ASR. To address the variability of spontaneous speech as well
as non-stationary noise, we propose a combination of monaural
speech enhancement by NMF (Section 2) and our Bottleneck
Bidirectional Long Short-Term Memory (BN-BLSTM) tandem
speech recognizer introduced in [1] (Section 3). We adapt the
NMF methodology from our previous study on small vocabulary
ASR in CHiME noise [3] to the large vocabulary ASR task at
hand: We consider semi-supervised NMF relying on speaker
independent phoneme models and unsupervised adaptation to
background noise. Details of the experimental setup including
the evaluation database are given in Section 4. Component-
level evaluation of both speech enhancement and recognition is
performed in Section 5 before concluding in Section 6.

2. NMF-based Speech Enhancement

NMF-based techniques for monaural speech enhancement, such
as the ones used in this study, are based on the assumption that
the wanted speech signal is corrupted by addition of interfering
noise:
V=v® Lvm

where V € Rf *N is an observed magnitude spectrogram of
speech overlaid by interfering noise, V(*) is the (true) spectro-
gram of the speech signal, and V™ is the (true) noise spectro-

gram. Furthermore, we assume that both V) and V™ can be
approximated as the product of speech and noise dictionaries

W) e R%XR(S) and W™ ¢ RfXR(n) with non-negative
. . . (s) (n)
coefficients (activations) H®) € Rf N HM ¢ Rf XN,

A=A® £ A® - WOHES L wmgm,

where A, A®) and A™ denote approximations of V, V) and
V™) respectively. In our semi-supervised NMF approach, we
estimate a fixed speech dictionary W from training data as
detailed in Section 4.2. In contrast, the noise dictionary w®
is estimated for each utterance along with H®) and H™ by
iterative minimization of the following cost function:

(W™ H) = ¢, (W"W H) + Aes(H) ()

where ¢, corresponds to the reconstruction error measured as
the Kullback-Leibler divergence d1(V|A) and ¢, is an additive
sparsity constraint; in our study, this simply corresponds to the
L1 norm of H, penalizing non-zero entries. For the minimiza-
tion of (1) the standard multiplicative update NMF algorithm is
applied, with a straightforward extension to include the sparsity
constraint. Similar semi-supervised NMF approaches have been
proven to be highly efficient for speech enhancement, e. g., in [4].



We optimize the value of A on a held out development set (cf.
Section 4.2). Informally, the purpose of sparsity is to force that
only a few basis vectors can be active at a given time, which is a
reasonable assumption if the basis vectors correspond to, e. g.,
phonemes, or spectra originating from different noise sources.
The update rules are applied for a fixed number of iterations
which is optimized on our held out development set (cf. Section
4.2). For speech enhancement, we obtain an estimate of the
clean speech spectrogram, Ve, by element-wise filtering of the
observed spectrogram V: V) = (A(®)/A) ® V. All exper-
iments for this paper are based on the NMF implementations
found in our open-source toolkit openBliSSART [5] to enforce
reproducibility of our results.

3. Bottleneck-BLSTM based Speech
Recognition

In tandem ASR systems, the output activations of neural net-
works trained on phoneme or phoneme state targets are used as
probabilistic features, alternatively to (or in combination with)
standard MFCC features. For enhanced probabilistic feature
generation, standard multilayer perceptrons (MLP) can be re-
placed by bidirectional Long Short-Term Memory networks [6]
which allow to access and model long-range temporal context
information via so-called memory blocks substituting the con-
ventional neurons in the network’s hidden layers. Generally,
bidirectional networks consist of two sets of hidden layers, one
for forward and one for backward processing. This enables the
incorporation of past and future context and captures for exam-
ple co-articulation effects in human speech (for more details,
see [6]). Combining BLSTM based feature generation with the
‘bottleneck’ idea was shown to lead to lower error rates in spon-
taneous speech recognition [1]. The bottleneck principle allows
to generate tandem feature vectors of arbitrary size by using the
activations of a narrow hidden (bottleneck) layer as features —
rather than the logarithmized output activations corresponding
to the estimated phoneme or phoneme state posteriors.

Figure 1 illustrates the detailed structure of the Bottleneck-
BLSTM front-end applied for our experiments. Since we focus
on bidirectional processing, we have two bottleneck layers: one
within the network processing the speech sequence in forward
direction and one within the network for backward processing.
39 cepstral mean and variance normalized MFCC features (in-
cluding deltas and double deltas) are extracted from the speech
signal every 10 ms using a window size of 25 ms. These features
x¢ serve as input for a BN-BLSTM network that is trained on
framewise phoneme targets. During feature extraction, the acti-
vations of the output layer are ignored; only the activations of
the forward and backward bottleneck layer are processed (i. e.,
the memory block outputs of the bottleneck layers). Together
with the original MFCC features, the forward and backward
bottleneck layer activations are concatenated to one large fea-
ture vector which is then decorrelated by Principal Component
Analysis (PCA). In Figure 1, the connections between the bottle-
neck layers and the output layer are depicted in grey, indicating
that the activations of the output layer (o;) are only used during
network training and not during BN-BLSTM feature extraction.

4. Experiments

4.1. Evaluation Database

Our choice of evaluation database was motivated by the lack
of a noisy spontaneous speech database with a clean reference;

Figure 1: Architecture of the Bottleneck-BLSTM front-end.
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while the COSINE corpus [7] provides realistic recordings of
spontaneous speech in an outside environment, it is less suited
to component level evaluation of source separation and ASR
since even the close-talk speech in this corpus is corrupted by
environmental noise. Thus, we used the Buckeye corpus [8]
recorded in clean conditions and mixed with the CHiME noise
corpus [2] to simulate spontaneous speech encountered in a noisy
domestic environment.

The Buckeye corpus contains recordings of interviews with
40 speakers and was originally intended to study phonetic vari-
ation among speakers. The speech is highly spontaneous and
contains a variety of non-linguistic vocalizations. Thus, we be-
lieve that this corpus is better suited to evaluation of speech
separation in real-life conditions than, e. g., the popular TIMIT
corpus of read speech, which is characterized by lower varia-
tion. Only the subjects’ speech is used. The segmentation into
utterances and the speaker-independent subdivision into training,
development, and test set (stratified by speaker age and gender)
exactly corresponds to the ASR experiments reported in [9].

The additive noise considered in this study is taken from the
corpus of the 2011 PASCAL CHiME Challenge [2]. This cor-
pus contains genuine recordings from a domestic environment
obtained over a period of several weeks. Most of the noise is
highly non-stationary due to abrupt changes such as appliances
being turned on/off, impact noises such as banging doors, and
interfering speakers; more details can be found in [2]. To create
the noisy version of our evaluation database, we followed the
protocol which was used to create the CHiME Challenge ASR
task [2]: In the development and test set, we employ six signal-
to-noise ratios (SNRs) ranging from 9 dB down to -6 dB in steps
of 3 dB. After normalizing the speech signals to -6 dB maximum
amplitude to avoid clipping after mixing with noise, we chose for
each speech signal six noise segments from the CHiME develop-



ment/test noise matching the different SNRs. As proposed in [2],
the noisy utterances are not constructed by artificial scaling of
the speech or noise amplitudes, but by choosing noise segments
as they were recorded in a real life situation. This means that
noisy utterances at low SNRs occur in noise that naturally has
high energy, such as broad band impact noise. The SNRs were
measured on first order differences of speech and noise signals.

In addition, we created a multi-condition training set by mix-
ing clean training speech with random segments of the six hours
of training noise (disjoint from development and test noise)
provided with the CHiME Challenge corpus. For this multi-
condition training set, we added random segments of noise with
the normalized speech utterances; this provides a good coverage
of SNRs while not assuming any knowledge about the exact
SNRs occuring in the test conditions. For the experiments re-
ported in this paper, all signals were downmixed to mono by
averaging channels.

4.2. Sparse Semi-Supervised NMF

To apply NMF on the development and test set, spectrograms
of the signals were calculated by short-time Fourier Transform
(STFT) using Hann windows of 25 ms length at 10 ms frame
shift. A shorter window size and frame shift than in our previous
study on the small vocabulary CHiME Challenge ASR task [3]
have been chosen to cope with higher variability of spontaneous
conversational speech.

To build a phoneme-dependent yet speaker-independent
speech model for NMF, for each phoneme, the corresponding
spectrograms were extracted from the Buckeye training set ac-
cording to a forced alignment with the recognizer described
in [1]. These concatenated phoneme spectrograms were reduced
to a single dictionary atom by a 1-component NMF. The column-
wise concatenation of these atoms builds the matrix W (%), Thus,
the number of speech components R®) in semi-supervised NMF
was equivalent to the number of phonemes (39). The advantage
of such phoneme-dependent speech bases over unsupervisedly
learnt ones has been shown in [10].

In addition, the number of noise components R™ as well
as the sparsity constant A and the number of NMF iterations
K were optimized in a limited three-dimensional grid search
on a subset of the development set which consisted of 10 ran-
domly selected utterances of each speaker at 6 SNRs (param-
eter ranges: R(™ € {4,8,12,16}, A € {0,0.01,0.1,1},
K € {1,2,4,8,16,32}). The separation performance was
measured in terms of signal-to-distortion ratio (SDR), signal-to-
interference ratio (SIR) and signal-to-artifact ratio (SAR) [11].
SDR takes into account the trade-off between noise suppression
and introduction of separation artifacts, i.e., loss of relevant
speech information. The overall best SDR (8.8 dB on average
from -6 to 9 dB SNR) was obtained for 4 noise components, 4
NMEF iterations and A = 0.1, which is a gain of more than 4 dB
over the noisy data (average SDR = 4.5 dB). As can be seen from
Figure 2, higher numbers of iterations tend to decrease SDR es-
pecially for a high number of noise components. More precisely,
additional iterations increase noise suppression in terms of SIR
at the expense of introducing artifacts (decreasing SAR); this
can be explained by overfitting of the noise components to the
speech, due to the mismatch of the speaker-independent speech
model. Conversely, more noise components are only slightly
beneficial for the SDR in the case of 1 or 2 iterations. This is
somewhat expected, as the number of noise sources present in a
single speech turn is limited, and thus overfitting occurs of too
many parameters are estimated in the noise components.

Figure 2: Signal-to-distortion ratio (SDR, top) and signal-to-
interference ratio (SIR, bottom) on the noisy Buckeye develop-
ment set (average across 6 SNRs from -6 to 9 dB), by number of
noise components and number of iterations in semi-supervised
sparse NMF (A = 0.1).
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Figure 3: Separation performance on noisy Buckeye test set:
Baseline SDR and SDR / SIR after applying sparse semi-
supervised NMF (K = 4, R™ =4, A = 0.1).
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4.3. BLSTM-HMM

For tandem feature generation, we trained a BN-BLSTM net-
work consisting of three hidden layers (per input direction) on
framewise phoneme targets obtained via HMM based forced
alignment of the clean Buckeye training set. All network and
training parameters, including the size of the hidden layers, learn-
ing rate, etc. were set exactly as in [1]. Only the first 39 principal
components of the PCA-transformed BN-BLSTM feature vector
were used as final features for tandem ASR. In the HMM sys-
tem applied for processing the tandem and BN-BLSTM features
each phoneme is represented by three emitting states (left-to-
right HMMs) with 16 Gaussian mixtures. Tied-state cross-word
triphone models with shared state transition probabilities were
applied. Both, acoustic models and a back-off bigram language
model were trained on the training set of the Buckeye corpus.



Table 1: Word accuracies [%] on Buckeye test set at SNRs from -6 to 9 dB, on average across these SNRs, and for clean speech. MCT:

multi-condition training.

Front-end | NMF | MCT SNR clean
-6dB  -3dB 0dB 3dB 6dB 9dB avg
MFCC X X 21.21 2311 2540 27.85 30.85 3448 27.15 | 50.97
MFCC X v 2525 2736 30.09 3159 3420 37.00 30.92 | 43.84
MFCC v X 23.06 2532 27.17 29.65 3256 3648 29.04 | 50.54
MFCC v v 26.51 28.82 30.85 3285 35.13 3795 32.02 | 43.83
BN-BLSTM X X 22773 25.08 28.13 30.51 35.16 39.04 30.11 | 58.21[1]
BN-BLSTM X v 3493 3758 40.04 4171 44.60 46.87 40.96 | 51.12
BN-BLSTM v X 2447 2679 2975 32,18 36.53 40.74 31.74 | 57.94
BN-BLSTM v v 35.74 3845 4049 4245 4527 4729 41.62 | 5091
5. Results we find that the drastic gains in SDR by NMF do not yield a

We evaluate the separation by sparse semi-supervised NMF, with
parameters optimized on the development set as described in
Section 4.2, on the test set in Figure 3. We observe a constant
and significant gain over the noisy SDR baseline; the SDR gain,
however, decreases with increasing SNR, ranging from 4.6 dB
(-6 dB SNR) down to 2.9dB (9 dB SNR). Furthermore, NMF
boosts the SIR by 7.3dB at -6 dB SNR and by 5.9 dB at 9dB
SNR. Considering the word accuracies of ASR (Table 1), we
observe drastic decreases in noisy conditions; however, by using
NMEF, we achieve a consistent gain of around 2 % absolute across
all SNRs considered. The latter is in strong contrast to our earlier
study [3] where a downgrade had to be accepted at high SNRs
when using NMF. We attribute this to the optimization of the
NMF parameters on SDR which effectively leads to using much
less NMF iterations than in [3] (4 instead of 100). In contrast to
NMEF, using multi-condition training improves the performance
of the MFCC front-end particularly in highly noisy conditions,
but a severe downgrade of 7 % absolute is observed for clean
speech; clean speech, in turn, seems to be largely unaffected by
applying NMF. By combining NMF and MCT results on noisy
speech can be further improved, but the downgrade for clean
speech remains. This downgrade along with the low accuracies
in noisy conditions indicate the difficulty of modeling highly
variable speech and noise at the same time. The BN-BLSTM
front-end delivers consistently higher word accuracies than the
MFCC front-end, both with and without NMF; the gain by using
the BN-BLSTM front-end instead of MFCC features increases
with the SNR and the largest improvement (7 % absolute, up
to 58.21 %) is found for clean speech. Finally, the overall best
result across noisy speech (35.74 % to 45.27 %, mean = 41.62 %)
and clean speech (50.91 %) is observed when combining BN-
BLSTM with NMF and MCT. Overall, it seems that the BN-
BLSTM can profit much more from training with noisy data than
the HMM with MFCC features.

6. Conclusions

We have presented a large scale study on speaker independent
recognition of spontaneous speech in various levels of interfer-
ing non-stationary noise. Significant gains could be achieved
by a combination of NMF and BN-BLSTM, and optimization
of NMF on SDR could avoid a downgrade in high SNRs and
clean conditions. Still, the word accuracies indicate that this
task remains highly demanding, especially due to the interfering
speakers occuring in the ‘noise’; the latter condition is especially
challenging for monaural separation algorithms. Furthermore,

corresponding boost of ASR accuracy, especially not in the case
of the noise-robust BN-BLSTM frontend. This is in contrast
to our results on ‘command and control’ speech in the original
CHiME Challenge task [3] where we found BLSTM and NMF
to be complementary; this observation could be attributed to in-
sufficient power of simple linear, low dimensional NMF models
in the case of spontaneous speech. Hence, it will be promising
to compare exemplar-based enhancement methods based on the
NMF framework. Besides, the mismatch of ASR accuracies and
source separation metrics deserve further investigation, in order
to enable optimization of source separation for ASR without
costly task based evaluations in the future.
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