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Abstract
This papers presents results on the application of re-

stricted Boltzmann machines (RBM) and deep belief networks
(DBN) on the Likability Sub-Challenge of the Interspeech 2012
Speaker Trait Challenge [1]. RBMs are a particular form of
log-linear Markov Random Fields and generative models which
try to model the probability distribution of the underlying input
data which can be trained in an unsupervised fashion. DBNs
can be constructed by stacking RBMs and are known to yield
an increasingly complex representation of the input data as the
number of layers increases. Our results show that the Likabil-
ity Sub-Challenge classification task does not benefit from the
modeling power of DBN, but that the use of an RBM as the first
stage of a two-layer neural network with subsequent fine-tuning
improves the baseline result of 59.0 % to 64.0 %, i.e., a rela-
tive 8.5 % improvement of the unweighted average evaluation
measure.
Index Terms: Likability, speaker trait challenge, restricted
Boltzmann machines, deep belief networks

1. Introduction
The recent surge of interest in deep belief networks (DBN) and
their constituent components have led to remarkable advances
in many machine learning and pattern recognition problems
and significant improvements have been reported lately in the
speech recognition community [2] [3]. These networks have
also been successfully applied to emotion recognition [4].

In the Likability Sub-Challenge of the INTERSPEECH
2012 Speaker Trait Challenge [1], the task is to automatically
predict the likability of a users voice from the speech signal
applying a pre-defined acoustic feature set. This might be of
interest in various applications in human-machine and human-
human communication, such as voice portals or social net-
works.

We have investigated the applicability of deep neural net-
works and Restricted Boltzmann machines (RBM) on this task
and we will show that indeed the baseline approaches using
Support Vector Machines and Random Forests can be outper-
formed.

The authors of the present paper are all affiliated with and
partly identical with the organizers of the Challenge. Therefore,
we do not participate in the Challenge. To ensure comparability
of the results, we strictly follow the procedures defined in [1]
and we neither use any data or information that were not avail-
able to all competitors nor more result trials on the test data.

The structure of this paper is as follows: in section 2 we
will describe RBMs for binary input and a variant thereof, the
Gaussian-Bernoulli RBM (GBRBM) for real-valued input data.
We will further show how deep belief networks (DBN) can be

constructed from these RBMs and how the resulting deep net-
works can be further trained to improve their discriminative per-
formance. In section 3 we will present the experimental setup
and the results obtiained on the Likability Sub-Challenge. Fi-
nally, in section 4 conclusions will be drawn.

2. Deep Belief Networks
The idea of using deep multilayer neural networks is not new,
but traditionally it has been difficult to train these models suc-
cessfully: with large initial weights, the typically adopted back-
propagation algorithm converges towards poor local minima;
with small initial weights, on the other hand, the gradients in
the lower layers become tiny making it infeasible to train net-
works with many hidden layers. Furthermore, if there are many
hidden layers in the neural network with many hidden units in
each layer, it is easy for the network to overfit.

In order to overcome these problems DBNs have been pro-
posed. Deep belief networks are probabilistic generative models
that are composed of multiple layers of stochastic, latent vari-
ables or hidden units, which typically have binary values. In
generative models the goal is to learn the distribution of the in-
put data p(data), instead of p(labels|data), as is common in
training a discriminative model.

Hinton et al [5] proposed an efficient, greedy algorithm that
allows to learn one layer at a time in an unsupervised fashion
using an undirected graphical model called a RBM.

2.1. Restricted Boltzmann Machine

RBMs are the building blocks of DBNs, and are undirected
graphical models with a layer of observed, or visible, variables
and a layer of latent or hidden variables, with each layer form-
ing one part of a bipartite graph; i.e., each visible unit (node) is
connected to each hidden unit, but there are no intra-visible or
intra-hidden connections. The graph of a RBM is depicted in
Fig. 1.

Figure 1: Restricted Boltzmann Machine graph.



A RBM assigns an energy to every configuration of visible
and hidden state vectors, denoted v and h respectively. For bi-
nary visible units, an RBM with V visible units and H hidden
units is governed by the following energy function:
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where vi and hj are the binary states of visible unit i and
hidden unit j, bvi and bhj are their biases, and wij is the weight
between them.

Under the this energy function, the conditional probabilities
for each visible and hidden unit given the others are
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where

g(x) =
1

1 + e−x
(4)

is the logistic or sigmoid function.

The network assigns a probability to every possible joint
configuration (v, h) via the energy function as:

p(v, h) =
e−E(v,h)

Z
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u,g
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where Z is called the partition function. The marginal dis-
tribution of the visible units is then given as

p(v) =
∑
h

p(v, h) (6)

and the gradient of the average log-likelihood is

∂ log p(v)

∂wij
= ⟨vihj⟩0 − ⟨vihj⟩∞ (7)

The average ⟨·⟩0 can be readily computed using the sample
data v, but the average ⟨·⟩∞ involves the normalisation constant
Z, which cannot generally be computed efficiently (being a sum
of an exponential number of terms).

To avoid the difficulty in computing the log-likelihood gra-
dient, Hinton [6] proposed the Contrastive Divergence (CD) al-
gorithm which approximately follows the gradient of the differ-
ence of two divergences:

∂ log p(v)

∂wij
≈ ⟨vihj⟩0 − ⟨vihj⟩k (8)

The expectation ⟨·⟩k represents a distribution from running
a Gibbs sampler (eqs. 2, 3) initialized at the data for k full steps.
This process is shown in Fig. 2. In practice, we typically choose
k = 1. This is a rather crude approximation of the true log
maximum likelihood gradient, but it works well in practice.
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Figure 2: Illustration of k-step Gibbs sampling.

2.2. Gaussian-Bernoulli Restricted Boltzmann Machine

To deal with real-valued input data, we use an RBM with Gaus-
sian visible units and binary hidden units yielding a so-called
GBRBM, where we use the modified energy function proposed
in [7]:

E(v, h) =
V∑

i=1

(vi − bvi )
2

2σ2
i

−
V∑

i=1

H∑
j=1

vi
σ2
i

hjwij −
H∑

j=1

hjb
h
j

(9)
Under the modified energy function, the conditional proba-

bilities for each visible and hidden unit given the others are
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where N (·|µ, σ2) denotes the Gaussian probability density
function with mean µ and variance σ.

In our approach we also learn the parameter σ. Note, how-
ever, that this σ2 is not necessarily equivalent to the variance of
the input data.

2.3. Constructing a Deep Belief Network

Once the weights of an RBM have been learned, the outputs of
the hidden nodes can be used as input data for training another
RBM that learns a more complex representation of the input
data. Proceeding this way a deep belief network (DBN) can be
constructed stacking one RBM on top of the preceding layer.
Building a deep generative model one layer at a time is much
more efficient than trying to learn all of the layers at once.

The parameters of this stacked network model are often
close to an optimum and hence gradient descent techniques can
be used to fine-tune the DBN. The limited information con-
tained in the labels is then used to only slightly adjust the pre-
trained weights in order to improve the discriminative power of
the generative model.

One important property of DBNs is that their hidden states
can be inferred very efficiently by a single bottom-up pass in
which the top-down generative weights are used in the reverse
direction. Another important property is that each time an extra
layer of learned features is added to a DBN, the new DBN has
a variational lower bound on the log probability of the training
data that is better than the variational bound for the previous
DBN, provided the extra layer is learned in the right way [5].
The weights and biases of a DBN can be used to initialize the
hidden layers of a feedforward neural network which is given
an additional output layer. For a wide variety of tasks, discrim-
inative fine-tuning of a DBN-initialized neural network gives
much better performance than the same neural network initial-
ized with small random weights [8]. Many of the generatively



learned features may be irrelevant for the discrimination task,
but those that are relevant are usually much more useful than the
input features because they capture the complex higher-order
statistical structure that is present in the input data.

It has been shown in [8] that greedy layer-wise unsuper-
vised pre-training is crucial in deep learning by introducing a
useful prior to the supervised fine-tuning training procedure.
The regularization effect is claimed to be a consequence of
the pre-training procedure establishing an initialization point of
the fine-tuning procedure inside a region of parameter space in
which the parameters are henceforth restricted. Furthermore,
overfitting can be substantially reduced if a generative model
is used to find sensible features without making any use of the
labels.

3. Experiments and Results
The results presented in this section were obtained by carrying
out experiments on the Likability Sub-Challenge of the Inter-
speech 2012 Speaker Trait Challenge, which uses the ”Speaker
Likability Database” [9]. The speech is recorded over fixed and
mobile telephone lines at a sample rate of 8 kHz. The feature set
contains 6125 features based on low-level descriptors and func-
tionals applied thereon. For details about the Challenge and the
underlying feature set refer to [1].

3.1. Feature Preprocessing

We trained and evaluted the networks on the complete Chal-
lenge feature set comprising all the 6125 acoustic features. As
the feature set exposes an extremely high variance and as RBMs
and other neural network architectures are not scale-invariant,
all input features were normalized to zero mean and unit vari-
ance which often is beneficial or even necessary to obtain good
results with neural networks [10]. Means and standard devi-
ations for normalization were computed from the training set.
It is interesting to note that the feature set was approximately
Gaussian distributed after this preprocessing. This turns out to
be beneficial for using GRBMs, as these models work very well
in this case.

3.2. Training Setup

3.2.1. Restricted Boltzmann Machine

Training RBMs, although conceptually simple, requires many
parameters to be adjusted carefully in order to be successful;
we used the suggestions in [11] as a starting point. We ap-
plied stochastic gradient descent (SGD) run on mini-batches.
The minibatch size trades off noisy gradients with slow con-
vergence. We obtained best results with a mini-batch size of
20. Gradient descent in mini-batches works best if the data is
presented in random order, hence we shuffled the input data ac-
cordingly.

We trained each RBM for 50 epochs using contrastive di-
vergence with one Gibbs step per mini-batch. For the pre-
training, we used a learning rate of 10−3 for the weights and
biases and a learning rate of 10−6 for the σ parameter of the
GBRBM. Often a momentum term is used to smooth the gradi-
ents, but it was not helpful for pre-training the RBMs, so we set
it to 0. As a further regularization we applied a small weightcost
parameter. This prevents the weights becoming too big, which
typically leads to bad generalization performance.

We also found out that the performance of the RBM in
the first layer can be improved by moderate sparsification of

the weight matrices. Enforcing weight sparseness is equivalent
to incorporating L0 and approximate L1 regularizations to the
training criterion. We reached an optimum in performance for a
sparsity threshold of 0.08 and after each mini-batch simply set
all weights assuming a value below this threshold to 0.

As the first layer of our final network we used a GRBM
which is a good model of the approximately Gaussian dis-
tributed input data (after preprocessing). Any subsequent RBM
layer was then a standard RBM with binary visible and binary
hidden units. The training parameters were the same for both
type of models, except that in the binary-binary RBM obviously
there is no σ parameter to be modeled.

3.2.2. Full Network

Following section 2.3, a deep belief network was constructed by
stacking the pre-trained RBMs and adding an additional layer
on top. For the Likability Sub-Challenge we have binary target
labels (likable / not likable) and thus for the top-layer we used
a logistic regression network with one output node.

For the fine-tuning phase, the full network was then trained
using SGD based on a crossentropy cost function. Even though
SGD is known to be a rather limited approximator with respect
to the full batch gradient descent we obtained best results for
small batch sizes of 2, with the input data being shuffled ran-
domly.

Network training was run until the unweighted accuracy on
the development set reached a minimum. This is referred to as
early stopping in the literature [10]. Several parameter com-
binations have been tried out, but we obtained the best results
using a learning rate of 0.05, no momentum term, and a sparsity
threshold of 0.

To enforce additional regularization, we constrained the
square of the L2 norm to be small using a regularization co-
efficient of 10−4.

3.3. Results

Table 1 shows the results obtained on the Likability Sub-
Challenge when applying the different neural network architec-
tures. Preliminary experiments have shown that for the task at
hand a constant layer size of 2048 proved to be most effective.

The reported evaluation measure is the unweighted accu-
racy (UA). In the given case of two classes (L and NL), it is
calculated as (Recall(L)+Recall(NL))/2, i. e., the number of
instances per class is ignored by intention, because the UA is
also meaningful for highly unbalanced distributions of instances
among classes.

The results show that this classification task does not ben-
efit from the modeling power of DBNs, but that the use of a
GBRBM as the first stage of a two-layer neural network with
subsequent fine-tuning improves the baseline result of 59.0 %
UA to 64.0 % UA, i.e., a relative 8.5 % improvement. As more
layers are added, the performance decreases, and a two-layer
DBN already has lower performance than a standard one-hidden
layer multi-layer perceptron (MLP).

We also tried architecture topologies with decreasing layer
sizes which are equivalent to the well-known bottleneck net-
works. Such models have been successfully applied in previous
challenges, for example on tasks of the Interspeech 2010 Par-
alinguistic Challenge [12]. A fundamental difference is that the
approach to create classic bottleneck networks (such as e.g. au-
toencoder networks) is to decrease the layer sizes towards the
innermost hidden layer and to increase them towards the top
layer, then to train the network, and finally to take the output of



Table 1: Results on the Likability Sub-Challenge. MLP refers
to a standard one-hidden layer neural network with random ini-
tialization of its weight parameters. Test results are reported for
the experiments that were submitted to the Challenge site and
which were returned by the Challenge organizers. Participants
were allowed to submit only five uploads of their predictions on
unlabeled test data.

UA Test / UA Devel
Baseline (random forests) [1] 59.0 / 57.6
MLP (random initialization) 60.9 / 56.4

DBN (1 layer) 64.0 / 57.2
DBN (2 layers) 62.9 / 56.2
DBN (3 layers) 62.2 / 56.0
DBN (4 layers) – / 54.1

the smallest, innermost layer, hence discarding the upper lay-
ers. Here we construct bottleneck networks by stacking RBMs
trained with the contrastive divergence algorithm and with de-
creasing layer size towards the output layer. The results ob-
tained on various bottleneck topologies are depicted inTable 2.

Table 2: Results on the Likability Sub-Challenge for bottleneck
architectures. Test results are reported for the experiments that
were submitted to the Challenge site and which were returned
by the Challenge organizers.

UA Test / UA Devel
Baseline (random forests) [1] 59.0 / 57.6
DBN (6125-2048-1024-256) 60.2 / 60.3

DBN (6125-2048-1024-256-32) – / 59.1
DBN (6125-1024-256-32) – / 53.6

DBN (6125-1024-256-32-8) – / 56.2

Even though bottleneck architectures have been used suc-
cessfully on many different tasks, the results show that the Lik-
ability Sub-Challenge task does not benefit from their applica-
tion. The first two bottleneck topologies actually beat the base-
line results on the development set; a result which is confirmed
on the test set for the first bottleneck architecture. Nonetheless,
the test result on the first topology still is considerably below
the best test result obtained with a one-layer DBN.

4. Conclusion
We investigated the applicability of deep belief networks on the
Likability Sub-Challenge of the Interspeech 2012 Speaker Trait
Challenge. For this particular task we were not able to leverage
the power of DBNs to model the complex probability distribu-
tion of the supplied full feature set. Neither bottleneck topolo-
gies nor the standard topology of stacking equally sized layers
were as efficient as a standard MLP whose first layer consists of
a GBRBM trained in an completely unsupervised manner. With
this architecture we were able to improve the baseline results
of 59.0 % UA to 64.0 % UA which constitutes a relative im-
provement of 8.5 % UA. In our opinion this clearly shows the
potential that lies in unsupervised methods for the paralinguistic
domain.

With respect to further optimization of our system, we think
about considering second-order optimization methods for the
fine-tuning stage of the neural network training such as Con-

jugate Gradient Descent or Quasi-Newton methods, which are
known to be more efficient on small-scale problems. Fur-
thermore, given the approximately Gaussian distribution of the
mean- and variance-normalized feature set it might be interest-
ing to compare GBRBMs to radial basis funcions in the first
hidden layer. More importantly, we plan to examine more thor-
oughly the potential of semi-supervised techniques in the con-
text of emotion and speaker trait recognition.
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