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Notation

Within this thesis we use the following notation and abbreviations:

Sik incremental payment for accident year i at development lag k

Cik cumulative payment for accident year ¢ until development lag k

S loss triangle with incremental payments

C loss triangle with cumulative payments

R; reserve for accident year @

R total reserve

PtP; Paid-to-Premium ratio for accident year i at development lag k

Fix age-to-age factor for accident year i, for development from lag k to k& + 1

estimate of -

fOL chain ladder factor for development k to k + 1

C’ka chain ladder estimate of cumulative payment C; j

X, Y random variables

x,y realizations of random variables X and Y, respectively
E [X] mean of X

Var [X] variance X

Cov [X,Y] covariance of X and Y

MSE [-] mean squared error of -

GLM Generalized Linear Model

GAMLSS  Generalized Additive Model for Location, Scale and Shape
N, NO Gaussian Distribution

TF t-Distribution

SEP1 Skew Exponential Power Type 1 Distribution
ODP Over-Dispersed Poisson Distribution

71G Zero-Inflated Gaussian Distribution

ZITF Zero-Inflated t-Distribution
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Preface

For non-life insurance companies, estimating reserves, known as 'reserving’, is an essential
and recurring task. Reserves are money put back the insurance company to pay future
obligations. In general, future obligations are unknown and many methods to estimate
them have been established in the last decades. The probably most famous method is
the chain ladder method. Originated as a purely deterministic algorithm, it’s simplicity
and estimation power let it become the standard estimation technique. With the chain
ladder method, estimation of ultimate losses and hence of reserves can easily and quickly
be done with standard computer software.

But providing no measures of accuracy of estimation, soon a need for more sophisticated,
stochastic models emerged. Kremer| (1982)) introduced a log-normal model for incremental
payments, but Mack! (1994) showed that this model is not exactly equivalent to the chain
ladder method. Instead he introduced a distribution free model which yields the same
reserve estimates as the chain ladder method and which allows to estimate a measure
of accuracy of estimation; the mean squared error. Renshaw and Verrall (1994)) casted
the chain ladder method into the framework of generalized linear models with an over-
dispersed Poisson model for incremental payments and based upon Kremer’s findings.
They could show that reserve estimates from this model coincide with estimates from the
chain ladder method and Mack’s distribution free model. But Mack and Venter (2000)
showed that beside some other differences the mean squared error of the over-dispersed
Poisson model does not agree with the mean squared error of Mack’s distribution free
model. Hence the models are not equivalent and a discussion about which is the better
model emerged.

Beside this extensions to both models were presented to improve estimation results. Like
for a portfolio of shares, there is the question if correlation of different lines of business
in an insurance portfolio is present and how it affects reserve estimates. To name some of
them, Braun| (2004)) introduced a way to model such dependencies using a multivariate
chain ladder approach. More research on this was conducted by Merz and Wiithrich
(2008), when they considered the prediction error of another version of the multivariate
chain ladder method. Merz and Wiithrich| (2009) combined the chain ladder method with
an additive loss reserving method to account for inhomogeneous sub portfolios.

While these approaches model dependence among the original payments, we follow an
approach introduced by [Shi and Frees| (2011)). They fit generalized linear models to loss
triangles and analyzed dependencies among the residuals of those models. However, we
show that generalized linear models are not suitable for loss triangles in many situations.



List of Tables

Especially the assumption of variance homogeneity is violated and thus dependence
modeling among residuals is not applicable. We fit generalized additive models for
location, scale and shape (GAMLSS), introduced by [Rigby and Stasinopoulos (2001},
2005)) to loss triangles and point out their advantage over generalized linear models and
the chain ladder method. Ensuring that all model assumptions are fulfilled we then
compare estimates of reserves to estimates from the established chain ladder method.
Finally we examine dependencies of lines of business within an insurance portfolio among
the residuals.

This thesis is structured as follows. In Chapter [I] we give an introduction to reserving,
the chain ladder method and the over-dispersed Poisson model. At the end of the
chapter bootstrapping as a technique to simulate losses and estimate predictive reserve
distributions within the chain ladder framwork is presented. In Chapter [2| we outline
the theoretical framework of generalized additive models for location, scale and shape
(GAMLSS). Chapter [3| gives an overview of distributions used in this thesis. In Chapter
we apply a GAMLSS to a line of business of an insurance portfolio and guide through
the model fitting process. We show why the chain ladder method and generalized linear
models fail in certain but common situations and why the GAMLSS is the better model
in Chapter [5] We deal with the topic of prediction power in Chapter [6] where we compare
next calendar year’s cash flow projections between GAMLSS and chain ladder method.
Finally, in Chapter [, we analyze ultimate loss projections from GAMLSS and chain
ladder method and examine residuals for dependence in an insurance portfolio.



1. Introduction to Reserving

In this chapter we present some basic definitions and results about loss triangles and
reserving which are needed in the later chapters of this thesis. Main sources for this
chapter are Mack (2002)) and England and Verrall (2002) with proofs and more detailed
explanations on the topics dealt with in this chapter. We start with a motivation for
reserving and the structure of loss triangles (or run off triangles). We then introduce the
chain ladder method to estimate reserves and a bootstrapping method based on a GLM
with over-dispersed Poisson distribution.

1.1. The Necessity of Reserving

We start with a short motivation of reserving. An insurance company should be able
to pay for claims whenever they occur. This is what clients expect when they sign a
contract with the insurance company and what authorities verify throughout the year.
On the other side, insurance companies probably don’t need to put back enough money
to pay for all claims of all clients at the same time, since the probability that this event
occurs is vanishingly small. So it is the insurer’s task to calculate the right amount of
money to put back to pay those claims who are likely to occur. That has to be ensured
on the short term as well as on the long term. This process is called reserving. The
idea behind reserving is to estimate future obligations of the insurance company, mainly
based upon their claims history. By that the insurance company gets an estimate of how
much money they will have to pay in the next month, next year and eventually the next
couple of decades. The money the insurance company has to put back then is called
reserve. Estimation of reserves for each single contract would be tedious and difficult.
On the other side, estimation for the whole portfolio at once would be too loose. By
doing so one would assume that the future obligations of e.g. a motor own damage policy
would behave similarly to the ones of e.g. a worker’s compensation policy. Since this
is not realistic, policies are aggregated into homogeneous groups, i.e. groups of policies
with similar characteristics. Examples are 'all motor own damage policies’ or ’all legal
protection policies’. There exist different levels of aggregation and it is up to the actuary
to choose an adequate level. Within this thesis we follow a relatively coarse grouping and
divide the portfolio only into different lines of business, often called LoB’s. Examples for
lines of business are motor own damage, third party liability, legal protection, household
contents insurances, etc. Reserving is then performed for each line of business and in
most cases independently of other lines of business. A common and useful method for
reserving is to analyze the claims history aligned in different types of triangles.



1. Introduction to Reserving

Accident Development Lag k
Year ¢ 1 2 3 4 5}
2007 T11 T12 X13 T4 T1p

2008 Ta1 T2 T23 T24
2009 r31 X32 I33

2010 Tg1  T42

2011 Ts5.1

Table 1.1.: General triangle structure

1.2. Loss Triangles

In order to estimate reserves insurance companies make use of their own claims history -
if possible. The underlying assumption is that future claims will have a similar pattern
as historical claims or that at least a functional relation between historical and future
claims exists. A way of analyzing historical data is to align them in a triangle. Clearly,
it is not the only way, but triangles have been used for a long time and proven to be a
useful tool in order to estimate reserves. One (very small) example of such a triangle is
shown in Table L1l

The rows of the triangle refer to the basis of calculation the data in the triangle is
measured. In this example it is the accident year, i.e. the data in row 2010" belongs to
the accident year 2010. A claim which occured in 2010 but has been reported in 2011
would then appear in the row for accident year 2010. To avoid long subscripts one may
use accident years 1,...,n instead, where 1 is the first available accident year (in this
case 2007). Some other possibilities for the basis of calculation are the reporting year
(i.e. in which year the claim has been reported to the company), the accounting year or
the underwriting year (i.e. in which year the policy has been written). Depending on
the underlying policies different calculation bases are useful. Here we will only deal with
accident year based data.

The columns of the triangle refer to the different development lags. They indicate the
time until the claim is known to the insurance company or a payment for the claim is
made. E.g. a car accident at New Year’s Eve 2010 happened in 2010 and hence appears
in the row for accident year 2010. However, the insurance company won’t be able to pay
for that claim in 2010. If it paid on say 3.1.2011, the payment would technically have
a lag. Development lags are measured in months, quarters or years and if not stated
otherwise we have data on a yearly basis for development lags. A development lag of 1
year means that e.g. the claim is paid within the first year (i.e. the same year) after it
occured. A lag of 2 years means the e.g. the claim is paid within the second year after the
claims occured etc.. In Table the cell in the last row of the first column z5; belongs
to accident year 2011, observed after the end of the first year, i.e. at the end of 2011.
We will denote the accident years by i = 1, ..., n and the development lags by k = 1,...,n.
n is then the latest year for which data has been observed and is equal to the latest
calendar year when using the accident year basis with development lags being one year.



1.2. Loss Triangles

Accident Development Lag k Accident Development Lag k
Year i 1 2 3 4 Year i 1 2 3 4
1 2321 1142 -530 143 1 2321 3463 2933 3076
2 1645 889 745 2 1645 2534 3279
3 1868 996 3 1868 2864
4 1574 4 1574
(a) Incremental losses (b) Cumulative losses

Table 1.2.: Example of triangles with incremental and cumulative losses

We therefore can write the triangle as the set {z;x|i + k <n+ 1}.

Besides looking at a certain accident year (i.e. a certain row) or at a certain development
lag (i.e. a certain column) it is sometimes useful to look at the diagonals of the triangles
as well. In this context (and on a yearly basis) the diagonals are defined as sets C; =
{Sikli+k—1=t}fort=1,...,n. Although being not real diagonals for ¢t < n the term
‘diagonals’ is commonly used in the insurance industry. Data in one diagonal belongs
to the same calendar year. Looking at the calendar years is sometimes useful as some
effects are only observable in this direction. An example could be a new law forcing the
company to pay higher compensations to the clients. This would then be observable for
all accident years and all development lags after the law has come into effect. Another
example is inflation which can be an issue for long triangles, i.e. triangles with a long
history.

We can now fill the triangle with data we want to analyze. Examples are incremental
or cumulative payments, premiums, outstanding payments and many more. Again it
depends on the line of business which triangles have to be analyzed. For the moment we
only consider triangles with incremental or cumulative payments. The triangles are then
called loss triangles and the payments are called paid claims.

Table [1.2 shows two triangles with incremental losses (a) and cumulative losses (b). For
example, x32 = 996 in Table (a) is the sum of the payments made only at lag k = 2,
i.e. in calendar year t =i + k — 1 = 4 for claims that originally occurred in accident year
1 = 3. Note that negative values for incremental payments are allowed and occur from
time to time. However, the same cell x35 = 2864 in Table (b) is meant to be the sum
of all payments until lag & = 2 for claims that originally occured in accident year i = 3.

Definition 1.1: In general we denote incremental payments by S; ;, and cumulative

k
payments by C; . Cumulative payments are defined as C;, = > S; ;. The corresponding
=1

]_
triangles are denoted by S = {Sixli=1,...,n, k=1,...,n+1—i} and C = {C;x|i =
L...,on,k=1,...,n+1—1i}.
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Note: As mentioned above, negative values are allowed for incremental but not cumula-
tive payments. In this context negative payments mean reimbursements to the insurance
company. This can happen when e.g. it turns out that the insurance company is not liable
to pay for a claim and gets a refund. Then for incremental paid losses at one development
lag a huge refund could exceed the actual payments, leading to a negative incremental
paid loss for that period. But clearly, the insurance company should not get back more
money than they have paid, so cumulative paid losses should not be negative. &

1.3. Reserving

As outlined earlier, 'reserving’ is the term used for ’estimating unknown future payments’
and the reserve is the money put back by the insurance company to pay those estimated
future obligations. Good estimation techniques for reserves are essential since

e too high reserves are unnecessarily bounded capital. That means the insurance
company could have used a fraction of the capital for other investments with higher
returns on capital.

e too low reserves can lead to serious problems for an insurance company. If not
enough money has been reserved the insurance company might not be able to pay
all obligations and could become insolvent.

It turned out that (loss) triangles are a very useful tool to estimate these payments
and popular reserving methods like the chain ladder method make use of them. Having
aligned data in a triangle structure like in Table future payments are those payments
located below the latest diagonal. Mainly they are caused by the fact that either

e a claim has occurred and has been reported to the company. The claim has been
analyzed by the insurance company and the insurance company knows that it will
have to pay money and how much they will have to pay. There is no uncertainty
about the size of the payment but the payout may be deferred for different reasons.
These claims are called then outstanding claims.

e a claim has already happened, but not been observed or reported to the company.
An example for this are diseases caused by asbestos. Although the claim occurred
a long time ago (i.e. when asbestos was used for building the house), diseases and
claims occur many years later. If the insurance company supposes (by studying e.g.
their claims history) that such losses can or will occur, they have to build reserves
to pay these claims. The reserves are called IBNR reserves.

While uncertainty in the first case is zero it can be huge in the second case. A special
case of the second are IBNER reserves. Assume a claim has occurred, been reported
to the company, analyzed by the company and a reserve has been set up. However, unlike
motor own damage claims the ultimate costs of e.g. a legal protection claim may differ
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materially from the initially estimated costs. The unsuccessful party could challenge the
judgment and a new trial could cause much more costs to the insurance company than
initially expected. If the insurance company fears that this could happen it has to build
IBNER reserves, incurred but not enough reported reserves. This special case does not
occur that often for most lines of business and hence is not analyzed separately from
the IBNR analysis. It also depends on data availability and quality if a special IBNER
analysis could be done at all. For the sake of simplicity we will only use IBNR reserves
and assume IBNER reserves to be part of the IBNR reserves, which need no further
analysis. Then the ultimate loss of a lines of business (or portfolio) is defined by

Ultimate Loss = Paid Claims + Outstanding Claims + IBNR. (1.1)
Outstanding Claims and IBNR can be combined and just called reserve, so that

Ultimate Loss = Paid Claims + Reserves.

Definition 1.2: Reserves for accident year i include all future obligations for this acci-
dent year and are calculated by

RiI i Si,ka ZIZ,,TL

k=n+1—1i

R; is call accident year reserve for accident year i. The total reserve is the sum of
all accident year reserves of the triangle, calculated by

1=2

In order to run a business an insurance company must be able pay the ultimate loss.
Since paid claims already have been managed (paid) in the past, focus lies on the reserves.
We point out that reserves include future payments which may have to be made many
years and decades after the initial estimation. How to ensure that payments can be made
is an exercise for the financial department rather than for the actuarial department.

1.4. A Deterministic Approach: Chain Ladder Method

As times goes by, more and more claims are handled by the insurance company and
all necessary payments are made. So eventually, when all claims are handled and no
payments need to be done anymore, the paid claims equal the ultimate loss. The chain
ladder method is based on this relationship. In actuarial literature it is often mentioned
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that the chain ladder method originated as a purely deterministic and computational
algorithm. Though it leads to good estimates of future obligations in many cases and thus
has been used for many years. Stochastic models for this algorithm have been developed
later with Mack’s distribution free model and his estimator for the standard error being
the most important one. Hence we will first introduce the pure chain ladder method and
afterwards derive Mack’s stochastic model as well as a generalized linear model.

The main assumption is that future claims will behave similarly to past claims and hence
the observed claims history can be used to estimate future claims. The method works on
cumulative loss triangles C of the form like in Table [I.3]

Accident Development Lag k
Year ¢ 1 2 oo o n—1 n
1 Cia Cia + Cipa1 Cip

2 (o Cs2 o Cyp

n—1 Cn—1,1 Cn—1,2
n le

Table 1.3.: Cumulative paid claims triangle

At lag n all claims are assumed to be fully developed. That means no further claims
occur after development lag n and all necessary payments have been made. For most
lines of business and large triangles (i.e. with many years of claims history) this makes
sense. An extension to this is to fit a tail curve which describes the development after the
latest observable development lag, but this is out of the scope of this thesis and will not
be handled. Thus, with the assumption that after n lags the claims are fully developed,
the aim is to find estimates for ultimate losses C;,,, @ = 2,...,n. C;, does not need to
be estimated and no reserve has to be set up for accident year ¢ = 1. The reserves is then
defined as

n
R; = E Sik =Cin—Ciny1—i 1=2,...,n
k=n+2—1

and Ry = 0 with Cj ,41-4, ¢ = 2,...,n, being the latest known payment. To estimate
C;,n different approaches exists. One them is the multiplicative approach, where the
ultimate loss C;,, is modeled by

Cin=0Ci1-Fi1-Fia--Fin,

where F , = Cj 41 /Cip forallk=1,...,n—1landi=1,...,n.
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Notation: The factors
Fi,k:Ci,k+1/Oi,ka k:17...,n—1,i:1,...,n

are called age-to-age factors.

F; i, describes the loss development from development lag k to development lag k + 1.
Since we assume C;, > 0 for all 4,k = 1,...,n, this is well defined. C} ; is unknown for
¢+ k >mn+1 and hence F;j, is unknown for i + & > n + 1.

To estimate unknown age-to-age factors the chain ladder method makes the assumption,
that on average the age-to-age factors Fj between accident years at one development
lag are the same. The chain ladder method estimates theses average age-to-age factors,
denoted by fi, kK =1,...,n — 1, by volume weighted averages of observed age-to-age
factors,

n—k n—k
Y CiuFie D Ciktr
i=1 i=1
O = - == . k=1,....n—1, (1.2)

> Ci > Cik
=1 =1

where C;;, are the weights. These factors are called chain ladder factors. Then

¢CL .
Oz n+2—i Ci,n+1—i “Jng1—i V= 2, .o, Nn (13)
and

COb, =CGE - f5, i+k>n+2 (1.4)

1

are chain ladder estimates of unknown future cumulative payments. We can rewrite (|1.4])
as

C!

(2

k+1_C

— rCL rCL
- Cz k-1 " Jk-1"Jk

¢CL ¢CL :
= ... =Cint1—i Jngic1 " Tk s 1+ k>n+2.
Hence ultimate losses can be estimated by

ACL FCL rCL :
Cz',n = Ci,n+lfi “Jn1—i 1 = 2, oo (15)

n—1

and reserves by

ROE = CGF = Cippnoy = Cigrnor - (FS5L - fGE =1), i=2n (16)

i,n—1

So with the assumption that on average the age-to-age factors at one development lag
are the same for all accident year we get a relative easy estimator for the reserves. But a
downside of this method clearly is that estimates for reserves yield no information about
uncertainty.
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1.5. Mack’s Stochastic Model for the Chain Ladder
Method

We stress at this point that the chain ladder factors are no result of a stochastic model
but that stochastic models surrounding the chain ladder method have been developed
after first appearance of the algorithm.

The chain ladder algorithm with estimators as defined in ([1.2)) does not account for any
dependencies among accident years. That means the chain ladder method (implicitly)
makes the following

Assumption (CL1): The chain ladder methods assumes that cumulative payments of
different accident years are independent, i.e. that for i, =1,...,n,

{Ci,b .. '7Ci,n}7 {Cj,17 . '7Cj,n}7 { 7éj

are independent. &

From a statistical point of view it would have been preferable to have independently
and identically distributed cumulative payments C; ;. This assumption can be made, but
it is not the underlying assumption of the chain ladder method. Also, the assumption
of globally independent accident years is not necessarily fulfilled by the all triangles.
Inflation or new laws can influence the triangle such that the assumption is violated.
Hence a check to verify this assumption is inevitable.

Furthermore the chain ladder method assumes that on average the age-to-age factors at
one development lag are the same for all accident years. If we consider age-to-age factors
F; j; as random variables, this can be written as

As estimators for fi, k= 1,...,n — 1, we still use the chain ladder factors (|1.2)). So in
this model we estimate unknown future payments again by

~NCL FOL FCL s
C’L,k} — Ci,n_i'_l_i * n+1—z R k—1> 1 = 2, “ e ,TL,

and ultimate losses by
A FOL FCL .
C’L’,n = Ci,n+17i “Jnt1—icIp—1, U= 2, o, n.

One can see that in this setup estimates of unknown future claims depend solely on the
latest observable claim and the chain ladder factors. Even for the estimate of the ultimate
loss no other (known) cumulative payments are taken into account. This can be written
in terms of the conditional expectation:

E [Ci,k+1|ci,17 cee Ci,k] = Cirfr (1.8)

10
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forie=2,....,n, k=1,...,n — 1. Hence when using the chain ladder method we make
(implicitly) the following
Assumption (CL2): There exist development factors fi, ..., f,—1 such that

E [Ci’k+1’0i17 Ce 7Ci,k] = C’L,kfk VZ = 1, coe,n, k = 1, oo, — 1,

or equivalent to that

C; ;
E é’k+1|0i1;...7ci,k =fr Vi=1,...,n,k=1,...,n—1,
ik

The assumption is a special case of (1.7)), compare Mack| (2002))[p. 246]. The assumption
CL2 leads to a case where we do not want to estimate E [C; ], i = 2,...,n but E [C;,,|C],
since

CLIZ E [Ci,n‘ci,la tee 7Oi,n+l—i]

=K []E [Ci,n|0i,17 v 7Ci,n—1] |Oz’,17 R 7Ci,n+1—i]
LR [Cint oot Cins -, Cingai]

=K [Ci,n—l‘OiJ? s 7Ci,n+1—i] fn—l

=E [Cinti1lCiny -, Cinpr—i] far1-i- fa
= Cinti-1 - fot1—i -+ fao1
Theorem 1.3: Let
Crh ={Cijlj<k,i+k<n+1}, 1<k<n.
With assumptions CL1 and CL2 it holds that
(i) kaL is an unbiased estimator for fi for allk =1,...,n—1

(ii) Conditioned on Cy, the fC s are uncorrelated with

fCL FCL
E [ n+l—i """ n—1|Cn+1—i = fn+1—i te fn—l'
PROOF:

11
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(i) Let

be the subset of the triangle C until development lag k, i.e. we cut off the triangle
after development lag k. Then

CL1

E [FklCi) ' E[Fir|Cin,. .., Cis) E fr

Thus,
n—k n—k
Y CirFig > CikE [F; |Ck]
; =1 =1
e i) e |, | B0
> Cik > Cik
i=1 1=1
n—=k
> Cinfr
_E
> Cik
=1

forall k =1,...,n— 1. Hence
E /] =E [E | fFHe]| =E 1A = i
which shows that fkc L is an unbiased estimator for fy.

(ii) To show that the kaL 's are conditional uncorrelated, let j < k. Then
E [ijLffLWj] =E [E [ffozfﬂCk} |Cj] =E [ffLE [kaL|Ck} |Ca}
CE | fHC] 12 itk
SO f]CL and kaL are uncorrelated conditioned on C;. It then also follows that

FCL FCL
E |: n+l—i "’ n—l’cn+1—ii| = fn—l—l—i T fn—l'

With the results of the theorem it can be shown that the chain ladder ultimate loss
estimate (1.5)) is an unbiased estimator for E [C; ,,|C 1, . .., C;ny1—i] and the chain ladder

reserve estimate (1.6 is an unbiased estimator for E [R;|C;1,. .., C;nt1-i), see Mack
(1993)) or |[Mackl (2002]).

12
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The model defined so far surrounding the chain ladder method yields (condional) unbiased
estimators of the reserves. Yet it does not include a measure of accucary of the estimate.
Mack| (1993]) was able to give an explicit formula for the (conditional) mean squared
error of the reserve estimate. Since then this measure has been used extensively. But to
calculate the mean squared error, one more assumption has to be made. The conditional
mean squared error for an estimate I:El of the unknown reserves R; is defined as

MSEC [Ri] —E [(Ri - Ri>2 [ ,CWH] .
This is not the same as the unconditional mean squared error
MSE R —=E [(RZ- = RZ-)Q} .
We use the conditional mean squared error here because we want the best estimate

of reserves for a given claims history, i.e. a given loss triangle. In contrast to that the
unconditional mean squared error would average over all possible loss triangles.

Since Rz = Cz',n — Cz n+l—i and R — Oi,n+1—i7

Cim
MSEC |R [ ] {( i>2 |Cins ... 7Ci,n+1—i:|

=K {(Cm - CA’Z-,n>2 1Cix, ... 7Ci,n+1—i:|
— MSEC [cn] .

To calculate the conditional mean squared error we need the following Proposition.

Proposition 1.4: For random variables X, Y and a measurable function h it holds that

E[(X — h(Y)P[Y] = Var [X|Y] + (E[X[Y] - h(Y)*.

With

’Il

( 2% RIIRIC Ci,n+1—i)
h(Ci,h s zn-‘,—l z) Czn

X
Y

Q@

this becomes

MSEC [Cn} = Var [Cin|Cins o Conpri] o
+ (E ConlCine oy Comiri] — Cn>2 | '

13
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From this equation it is obvious that
éi,n =K [Ci,n|Ci,1a cee Ci,n-l—l—i]

minimizes the second term and thus the conditional mean squared error. We stress that
this form is true for C’m being deterministic. A slightly different version is shown in .
But it also becomes clear the even if one knew the best estimator for C’i,n, the conditional
mean squared error still would have an unknown component Var [C; ,|C; 1, ..., C;pni1-i].
So in order to calculate the conditional mean squared error the conditional variance is
needed. Hence an assumption on the conditional variance is made. To motivate this, we
use that with

C;
Gi’k T on—k .
> Cix
j=1
the chain ladder factors can be written as
Z Cz kE k

—k
CL =1 E
k = i sz k-
Z C’L k i=1

This is a weighted average of F; ;’s with weights G; . One can show (using Cauchy-Schwarz
inequality) that weights are optimal in the sense that they minimize the conditional
variance for f if they are inversely proportional to Var [F; ;|C; x]. Since we assume that
the chain ladder factors are optimal in the way we chose them, we implicitly make the
following assumption.

Assumption (CL3): There exists constants o,...,02 | such that

Cik

k41 2

Var C—|Ci’17”'70i’k :ak/C’i’k
i,k

or equivalently
Var [Ci,k+1|0i,17 ey Cz,k] = Ci,kglz

holds foralli=1,....,n, k=1,...,n —1. &

With this last assumption the conditional mean squared error as defined in ((1.9) can be
calculated:

14
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Theorem 1.5: Under the assumptions CL1, CL2 and CLS3 it holds that

— 2| 1 1
MSEC(R) =C?, > —£|=
) -f2 Czk n—k
k=n+1—i Jk ) ch7k
j=1
PROOF: See (Mack, 2002, Section 3.2.5). O

Analogously one can show a similar result for the total reserve R = Ry + ... R,:

~

Lemma 1.6: Under the assumptions CL1, CL2 and CLS it holds for R=Ry+...+R,

that
n n n—1 26_2 1
MSEC(R) =Y "¢ MSEC(R;) + Ci ( > Ok,n> > S
=2 h=it1 henii-i Jk T
=1
PROOF: See (Mackl 2002, Section 3.2.5). O

With these two results we extended the classic chain ladder method by a measure of
accuracy of the estimates. We summarize the model with its assumptions in the following

Definition 1.7: Let C = {Cy,,i+k < n+1} be a loss triangle with cumulative payments
and let Cy, > 0 for all i, k. Let the following assumptions be fulfilled:

(CL1) The accident years are globally independent, i.e. for alli,j =1,...,n, i # j,
{Cirse o Cind {Chn, ..., Cn}
are independent

(CL2) There exist development factors fi, ..., fn_1 such that
E [Ci,k—l-l’Cih LRI Cl,k] - Cz,kfk

holds for allt=1,....n, k=1,...,n—1

15
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(CL3) There exist constants 3, ... ,02_, such that

Var [Ci,k+1|0i,l7 ey Oz7k] = Ci,ko—]%
holds for alli=1,...,n, k=1,...,n—1i.
Then define

n—k
> Ci k1

fCL . 1=1
kT

L k=1,...,n-1 (1.10)
> Cin
=1

as the estimators for fy. A,CCL 15 called the chain ladder factor for development lag k.

Note (Connection to Weighted Least Squares Estimation):
(CL2) can interpreted as follows: fix development lag k, then (CL2) has the form of a
linear regression of C; ;41 on Cj,

Cika:oc—i-ﬁkCi,k—i—ai, ?;:1,...,71—]%‘,

with independent normal distributed error term ¢; with E [¢;] = 0. From (CL2) we get
a=0foralli=1,...,n—k and from (CL3) we get Var[g;] = C;,o?. That means
variances are heteroscedastic, leading to weighted least squares estimation. Minimizing

E

-— 1

o (Cisr — CinBr)”

Q(6r)

i=1

for Kk =1,...,n — 1 indeed leads to the chain ladder factors as defined in ([1.10}), since

n—k
FE9) = 2 g (Cun = Cuai) (o) L0
n—~k
Z Ci k1
5 Ci

To summarize Mack’s model, the main advantage is that this model does not require a
specific distribution for incremental or cumulative payments. It makes only assumptions
on the first two moments and one can quickly derive estimates of the reserves and the

16
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conditional mean squared error of those estimates. It is important to keep in mind that
all results have been derived conditioned on the loss triangle C, especially the conditional
mean squared error. In this model ultimate loss and reserve estimates are the same as for
the original chain ladder method.

However, no loss or reserve distribution is available from this model. Other models, e.g.
those within the framework of generalized linear models do not have this downside as we
will show in the next section.

1.6. A Generalized Linear Model for the Chain Ladder
Method

Mack’s distribution free model is not the only stochastic model for the chain ladder
method which yields the same estimates of reserves. Another popular approach is to fit
the chain ladder method into the framework of generalized linear models.

Definition 1.8: A generalized linear model (short: GLM) consists of

Random Component
Random wvariables Y;, 1 = 1,...,n, independently distributed with a probability
density function or probability mass function coming from the exponential family
with parameters 6 and ¢, given by

0;y; — b(6;
sz(yz|9u¢) = exp {y—()

() +C(yz-,¢)},

with known functions a;(+), b(+) and c(-,-). The Y;’s are called response variables,
0; the canonical parameter and ¢ the dispersion parameter.

Systematic Component
A linear predictor

77z(,3) = sz,B = B + 51%‘,1 + ...+ kai,k

with realizations x; ; of covariates X;, j = 1,...,k, and unknown regression
_ T
parameter B = (Bo,...,0k)" .

Link Component
A known monotonic function g : R — R such that

9(pi) = n:i(B) = =] B,

where p; 1s the mean of Y;. g s called laink function.

17
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In a more compact matrix notation the linear predictor can be written as
"7(:3) = p=XB,

with X € R"** the design matrix. The unknown regression parameter 8 has to be
estimated from the data, e.g. by maximum likelihood estimation. It can be shown that
the first two moments of an exponential family distribution are given by

E[Y;] =b(6:;) =
Var [Y;] = b (6:)ai(¢) = V(1:)ai(),

where b'(6;) = a%_b(@i) and b (0;) = g—;b(&i). V' (u;) is called the variance function. If

a;(¢) can be expressed as

with prior weights w;, it is sometimes useful to express the variance by

Var[Y;] = ¢V(Mz‘)‘

Wi

A special case of variance functions are power variance functions where

with £ > 0. Then the variance can be expressed as
3
Var[Y;] = %

Wi

In this specification quasi maximum likelihood estimation is performed to obtain param-
eter estimates. Special cases are e.g. £ = 0, w; = 1 for all ¢ and ¢ > 0, which relates
to a GLM with Gaussian distribution and for £ = 1, w; = 1 for all ¢ and ¢ = 1, which
describes a GLM with Poisson distribution. In these cases quasi maximum likelihood
estimates are the same as maximum likelihood estimates.

A complete introduction and further results on generalized linear models can be found
e.g. in McCullagh and Nelder| (1989).

Based on Kremer| (1982), Renshaw and Verrall (1994)) defined a model which gives the
same estimates of ultimate losses C; ,,, 1 = 2,...,n, as the chain ladder method. Kremer
suggested to use a log linear model for incremental payments .S; ;. In formulas,

log(Sik) ~ N (c+ a; + By, 07) independent,

18
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with ¢, ay, B € Rfori=1,...,n, k=1,...,n. «a; and [, describe development among
rows and columns, respectively, o2 is the variance. With

1 if (i,k) <n+1

0 ,else

)

my = E[log(Six)], o=0  wp= {

this can be interpreted as a GLM with linear predictor of the form
m;, = ¢+ oy + B

Instead of this Renshaw and Verrall| (1994) used a generalized linear model with log link,
but the same structure of the linear predictor, i.e.

log(mi k) = 1+ o, + By,

where m; , = E [S;x]. To specify the GLM, they set

1 Lif (i k) <n+1

0 ,else

V(i) == mi, Wik 1= { ; ¢ > 0.

By that interpretation of fitted values is easier than in Kremer’s model since they already
are on the normal scale and don’t need to be transformed. Note that if ¢ is unknown
this is not a GLM and quasi maximum likelihood estimation is required. Also, the model
is over-parameterized and additional constraints are needed, e.g. demand a; = 0 = .
Incremental payments can be estimated by

~

Sik =1y =exp{¢+ & + B},

with quasi maximum likelihood estimates ¢, &;, Bk
For ¢ > 1 the model is an over-dispersed Poisson model. Recall that for a Poisson
distribution it holds that

Y ~ Pois(\) = E[Y]=X=VarlY].

For the Poisson distribution over-dispersion means that the variance ist greater than the
mean. So if Y has an over-dispersed Poisson distribution, it holds that

E[Y] =), Var[Y]= ¢\,

with ¢ > 1. Obviously, a Poisson distribution is not a useful distribution to model claim
amounts. But since the solution of the quasi-likelihood equation does not rely on C; ;s
which are non-negative integers, one does not care about the range of the underlying
distribution in this special case, compare [Mack and Venter| (2000). So if we say that S;
should follow an over-dispersed Poisson distribution, it holds that

E[Sik] =m;r and Var[S;i] = ¢mx

19
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with ¢ > 1. In this formulation the model just specifies the first two moments. To deal
with over-dispersed Poisson models there are different ways. One possibility is to use
quasi maximum likelihood estimation to estimate parameters. Another possibility is to
use a so-called mixing approach, noted in [McCullagh and Nelder (1989). For a random
variable \S; i, let

Sik|Zix = zig ~ Pois(zi)
Ziw > 0with B [Z;4] = mag = exp{ay + Bi}.

The distribution of Z; , is called the mixing distribution. Conditioned on an observation

Zik, Yir then has a Poisson distribution with mean z; ;. A popular distribution for Z; j, is
the Gamma distribution with mean m,; and index ¢m, 4, i.e.

Zig ~ (Mg, dm; i)

E [Zi,k] =Mk
my;
Var[Z; ] = ¢’k.

McCullagh and Nelder| (1989) showed that in this case S;, follows a negative binomial
distribution with parameters ¢m; and 1/¢, i.e.

Sk ~ negbin(¢m;y, 1/¢)
E [Sik] = miy

Var [S; k] = m; (1 + %)

We see that for every ¢ > 0 over-dispersion is present and for ¢ — oo we observe a
Poisson distribution.

Note: All of the following (theoretical) results are true for any model than can be used
to describe an over-dispersed Poisson model. For the actual estimation we will use a
GLM with negative binomal distribution. Thus, we use the term over-dispersed Poisson
model and whenever estimations occur, this implicitly means they have been derived by
a GLM with negative binomial distribution. Estimation in R can be done using glm.nb
of the MASS package. &

Verrall (2000) showed that the reserve estimates for the over-dispersed Poisson model are
the same as for the chain ladder method. We illustrate this in an example.

Example: Consider the following cumulative / incremental loss triangle in Table [I.4]
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Accident Development Lag Accident | Development Lag
Year 1 2 3 4 ) Year 1 2 3 4 5
1 97 121 129 135 136 1 97 24 8 6 1
2 101 118 130 136 2 101 17 12 6
3 100 122 130 3 100 22 8
4 104 118 4 104 14
5 101 5 101

Table 1.4.: Cumulative and incremental loss triangle

We apply the chain ladder technique to the cumulative loss triangle and obtain Table

Accident Development Lag
Year 1 2 3 4 5t
1 97 121 129 135 136
2 101 118 130 136 137.01
3 100 122 130 136.02 137.03
4 104 118 127.15 133.04 134.03
5) 101 120.35 129.68 135.70 136.69

Table 1.5.: Chain Ladder estimates (cumulative losses)

Then
Ry, =137.01 — 136 = 1.01, R3=7.03, Ry,=16.03, Rs=35.70
and hence
R=Ry+ Ry+ R, + Rs = 59.77.

For the over-dispersed Poisson model we can fit a generalized linear model with negative
binomial distribution:

ex.nb <- glm.nb(formula=Incr~as.factor(DevLag) + as.factor(AYear),
data=ex.data, link="log")

Note that this model uses incremental payments rather than cumulative payments,
indicated by Incr. DevLag stands for the development lag, AYear for the accident year,
both treated as factors. Predictions of the model are shown in Table [L.6
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Accident Development Lag
Year 1 2 3 4 5}
1 97 24 8 6 1
2 101 17 12 6 1.01
3 100 22 8 6.02 1.01
4 104 14 9.15 5.89 0.99
5 101 19.35 9.33 6.01 1.01

Table 1.6.: GLM estimates (incremental losses)

It is easy to calculate that the estimated total reserve in this model is 59.77 and thus the
same as for the chain ladder method. &

To get the mean squared error of R; in this framework some more calculations have to
be done. [England and Verrall (2002) noted how to calculate the mean square error of R;
and R in this case. To ease notation, let

A:={0Gk)i=2....,nk=n+2—1i,...,n}

denote the indices of the unknown data below the latest diagonal, i.e. the lower triangle.
Let

A ={,k)|k=n+2—14,...,n} i=2,...,n

denote the i-row of the unknown triangle.

Proposition 1.10: In the over-dispersed Poisson model, fori = 2,...,n, the mean
squared error of the estimate R; of R; is given by

MSE[ } Z(bmlkjthszar i k]

ke keA; ( )
A . . 1.11
+ 2 Z mLklmi,k‘zCOV [ni,k’l ) 772‘,1@] .
ki,ko €A;
k1 <k2
The mean squared error of the estimate R of R is given by
MSE |R [ ] Z O g + Z m; 2 . Var [ 4]
(i,k) e A (i,k) e A

+2 Z mil,/ﬁmimkz Cov [772'1,/617?1'2,762} : (112)
(il,k1) €A
(i2,k2) € A

(i1,k1) # (i2,k2)
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1.7. Bootstrapping

PROOF: See (England and Verrall, 2002, Section 7.2). O

It is important to note that this mean squared error is the unconditional mean squared
error. This makes it very different from the conditional mean squared error that Mack
proposed.

We see that for calculating the mean squared error also the variance-covariance matrix of
Niks (1,k) € A, is required. This is not directly available but can be calculated from the
variance-covariance matrix of the estimated parameters and the design matrix.

The over-dispersed Poisson model is one way to get a predictive distribution and mean
squared error for ultimate losses or reserves. Other examples are the a negative binomial
model or a normal approximation. In either case the models yield the same estimates
of future claims. It is important to note that we use an over-dispersed Poisson model,
which is only represented by a negative binomial distribution. This not the same as the
negative binomial model, introduced in Verrall (2000).

1.7. Bootstrapping

As seen in previous sections the chain ladder method is an heuristic approach to determine
reserves. Furthermore it provides measures for the variability of reserve estimate by the
mean squared error (compare Theorem [1.5/and Lemmall.6]) when fit into Mack’s stochastic
model. But what it does not provide is a distribution of those estimates. The connection
to generalized linear models in the last section guided a possible way to obtain a predictive
loss distribution and especially a different way to estimate future claims. As for the
chain ladder method the mean squared error can be calculated for these models, see
Proposition . In general, for a random variable S;; and it’s estimate S'lk the mean
squared error of prediction can be written as

The main difference to Proposition is that here the estimate S’Zk is kept random and

we do not consider a conditional mean squared error. Approximating E [S; ;] by E [Szk]
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1. Introduction to Reserving

in the second terms leads to an estimate of the mean squared error of the form
. N2
MSE [Si4| = E [(Sk ~ i) }

sz [5])]

~ B [(Sux ~ B15,)] ~ 28 [(50s ~ B5ia) (S0 B [5u])]

)~
)]

= Var [S; x] — 2Cov [Siyk, 5’14 + Var [gzk} )

~E | (5~ El5.]
i,k 2
+E {(Szk —E [S,

If we assume that the future claim S;;, is independent of its estimator SM, the second
term vanishes and we are left with

MSE [Sk} ~ Var [S;] + Var [Sk] (1.13)

/2 process variance + estimation variance.

Although calculation of the mean squared error is possible for the over-dispersed Poisson
model (see Proposition , this guides an alternative way to obtain the mean squared
error. If we estimated the process and estimation variance, the mean squared error
could be estimated with . Furthermore, if we had the predictive distribution of the
reserves, the mean squared error could be calculated as it’s variance. Then also statistics
like median and quantiles would be available and would allow for much more analyses of
reserves.

But within e.g. the over-dispersed Poisson model the predictive distribution of accident
year reserves I:Ei, 1=2,...,n,is the sum of predictive distributions of the corresponding
incremental payments. While for some cases the distribution of a sum of random variables
can be easily calculated (e.g. if all random variables are Gaussian distributions), it is
difficult to find the distribution in general in an analytical way.

But observe that the split into process variance and estimation variance of is not
present in expressions and (1.12)). So [England and Verrall (1999) and [England
(2001)) used the split into process variance and estimation variance and a bootstrapping
technique to calculate the mean squared error from the sampled predictive values.

In general, bootstrapping means sampling with replacement from a given data set to
obtain further information about statistics of interest. The statistics can be calculated for
each of the sampled sets and a predictive distribution of the statistics can be estimated
if the number of sampled sets is large enough.

In this context we resample the observed triangle and estimate reserves for each sampled
triangle. Having done this often enough, a predictive distribution of the reserves can be
estimated and the mean squared error as well as other statistics can be derived from the
predictive distribution.
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1.7. Bootstrapping

Note: In the following we are especially interested in calculating the mean squared error
of an over-dispersed Poisson model. Hence we need to specify at this point what model we
use. In our case, as mentioned earlier, we use a GLM with negative binomial distribution.
To clearly differentiate our model from the negative binomial model introduced by |Verrall
(2000), we continue to call our model a GLM with negative binomial distribution rather
than a negative binomial model. &

To apply bootstrapping, independent and identically distributed data is required. While
we assume independence of the data for the GLM, data does not need to be identically
distributed. Thus for bootstrapping with the GLM with negative binomial distribution
we rather use scaled Pearson residuals 7*7, defined as

5P _ Sik — Mk
T N ~
\ ¢mi,k

with gb an estimate of the dispersion parameter ¢, S;; observed incremental payments
and 7, ;, estimated means. An estimator for ¢ is e.g.

i=1,...nk=1,....n+1—1, (1.14)

=5 )’

(% _ 1=1

n(n jl)—2n—|—1 (1.15)

N:I»—t

where

Ty = ——— i=1,....n,k=1,....,.n+1—1,

are the unscaled Pearson residuals (see England and Verrall (2002))). In words, we divide
the sum of unscaled Pearson residuals by the degrees of freedom, which is the number of
observations (3n(n + 1)) minus the number of parameters estimated (2n — 1 = Intercept
+n—1 factors for development lag + n — 1 factors for accident year).

If the GLM is well specified the scaled Pearson residuals fulfill the requirements of
independent and identically distributed data. Instead of one dispersion parameter for all
observations more flexible approaches allowing for non-constant dispersion parameters
can be used and may improve results. But then the model is no longer a GLM. Hence
we use one parameter ¢ and preserve the GLM structure with the negative binomial
distribution.

To estimate m;, i =1,...,n, k=1,...,n+1—14, two approaches exist:
e Use the fitted values of the GLM with negative binomial distribution

e Use a backward recursion as defined in ((1.16))
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1. Introduction to Reserving

As outlined in Renshaw and Verrall (1994)), both methods yield the same estimate of
m; . While for the GLM statistical software is required, the backward recursion can be
done in spreadsheets and is thus easier to handle from a practitioner’s side. To apply the
backward recursion, set

~

Cint1—i = Cingi—i 1=1,...,n,
. . 1 .
Cz}k:Ci,k-&-l'E i1=1,....n—1,k=1,....,n—1
k (1.16)
mig = Cir — Cip—1 i=1,....n—1k=2,....n+1—1
mi1 = Cig 1=1,...,n.

Since this may not be intuitive at first sight, we explore this in more detail in an example.

Example (Backward recursion): Consider a loss triangle with cumulative payments
as in Table [I.7 If only incremental payments are available the cumulative payments can
be calculated in the known way (compare Definition [1.1).

Accident | Development Lag k
Year ¢ 1 2 3

1 Cip Cip Cis
2 Co1 Cop
3 0371

Table 1.7.: 3x3 loss triangle with cumulative payments

Chain ladder factors are

1
Ci1+ Oy
o Cus
2 ~
Cip

We apply the backward recursion:

Step 1: Start with latest diagonal
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1.7. Bootstrapping

Accident Development Lag k&
Year ¢ 1 2 3
1 A Cis=Ciz
R Cop = U
3 Cs1=0Cs;

Table 1.8.: Step 1

Step 2: Recursively go backwards. ..

Accident Development Lag k
Year ¢ 1 2 3
1 CAY1,2 :?1,3/fQCL CAY1,3
R Ca
3 Csa

Table 1.9.: Step 2

Step 3: ...until first column is filled

Accident Development Lag k&
Year @ 1 2 3

1 C:'l,l = C:'LQ/]‘;CL C:'1,2 CA’173
Co1 ZQQ,Q/fFL Cao
3 Cs1

Table 1.10.: Step 3

Step 4: Calculate 7, 5, by differencing.
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1. Introduction to Reserving

Accident Development Lag k
Year ¢ 1 2 3
1 my1 = Cl,l mio = Cl,z - 01,1 mi3 = C'1,3 - C'1,2
moq1 = 02,1 Mmoo = 02,2 - 02,1
3 Mgy = Cs;

Table 1.11.: Step 4

&
The procedure so far has been the following;:
e input: a loss triangle with incremental payments
e estimate the GLM with a negative binomial distribution
e calculate scaled Pearson residuals rff,: and m; fori=1,...,n, k=1,...,.n+1—1

As mentioned above the reason for using this recursion is the fact that it can be easily
done in a spreadsheet. No matter which of both approaches is used to calculate 1, for

1=1,...,n, k=1,...,n+ 1 —1, we are still interested in incremental payments. From
(1.14) it follows that
Sik =71/t i=1,...n k=1,...,n+1—1i. (1.17)

Resampling the scaled Pearson residuals leads to a new set of incremental payments using
(1.17)). To identify the resampled data in each iteration, let B denote the number of total
iterations done in the bootstrap, e.g. B=1000. Let b = 1,..., B be the current iteration.
Then a new incremental payment of accident year ¢ at lag k in iteration b is given by

Ste=(E) ik, vl =1 k=1, n+1—i.
Let
S'={Sli=1,....,n,k=1,....n+1—4d}
denote the triangle of resampled incremental payments in iteration b and
C'={Clhli=1,....,n,k=1,....n+1—1i}

the corresponding triangle of cumulative payments.
From each triangle S* (C”) unknown payments S?, (C?,) in the lower triangle can be
estimated; the GLM uses S?, the chain ladder method C°. Then, accident year reserves
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1.7. Bootstrapping

Ri«’, 1 = 2,...,n and total reserve R’ can be estimated. Again both methods lead to
the same result but the chain ladder method is faster and estimation can be done in a
spreadsheet.

Having a set of total reserves {}A%l, e RB }, the mean of this set could be calculated and
used as the reserve estimate of the triangle. But this does not yet specify a predictive
distribution of the reserve and hence we can not calculate the mean squared error.
Recalling , the sample variance of {}?1, e ,RB } is the estimation variance. We still
need to calculate process variance. Since this is not observable, a second stage of the
bootstrap is needed.

In each iteration b and for every S'f’ . in the lower triangle we simulate once from the

underlying distribution; in this case negative binomial distribution with mean m?,. m?,

is unknown and needs to estimated from the data. As for estimates m; of m,; in the
upper triangle, there are two ways of estimating mka in the lower triangle:

e by the fitted values of the over-dispersed Poisson model (GLM)
e a backward recursion as defined in (|1.18)).

In the second case, we set fori =2,....,.n, k=n+2—1,...,n

R R . b
Cho =P ( CL)

1,k+1 Azk kA (118)
mfk = Cf,k - Cib,kfl'

The first line of is nothing else but the chain ladder method (with chain ladder
factors calculated from the resampled triangle) and the second one is simple differencing
to obtain incremental payments and hence estimates for mfk The recursion can obviously
be done in a spreadsheet and might be easier to use. But again both methods yield the
same estimate.

The estimates 7, refer to the means of the negative binomial distribution. So the

unknown future payments including the process variance, denoted by S’f’ x» can then be
estimated by simulating once from this distribution:

SPy. ~ negbin(¢ml,,, 1/9).

Having a set {S’Z1 PR S‘fk} of such payments a predictive distribution could be estimated.
But since we are interested in the predictive distribution of reserves, let

I

k=n+2—1i

and

oy
=2
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1. Introduction to Reserving

be the (accident year) reserves at iteration b. From the sets {R}, ..., R®} or {R!, ..., R"}
we can estimate the predictive distribution and can calculate mean, variance and confi-
dence intervals. E.g. for R;, the sample mean

B
spE . L b
RPY = 23 R

b=1

could be used as a best estimate for R; and could be compared to the chain ladder
estimate. The sample variance is an estimator for the mean squared error and could then
be compared to the mean squared error from the Mack’s stochastic model for the chain
ladder method. But again one has to keep in mind that this mean squared error derived
by bootstrapping is an unconditional mean squared error whereas Mack’s mean squared
error is a conditional one. We summarize the procedure at the end of this section in

Algorithm [I.1]

The output of the bootstrap as given in Algorithm are sets of estimated accident
year reserves. To get sets of total reserves another summation in line 15 by accident year
is required. As mentioned above results could be compared to the chain ladder method.
However, since we apply another statistical model to loss triangles in the next chapters,
we can not only compare the first two moments but the complete predictive distribution
of both models.

For more about the bootstrap for the over-dispersed Poisson model as well as for other
models we refer to England and Verrall (2002). An implementation of the chain ladder
method with bootstrapping for R is provided by Markus Gesmann, Daniel Murphy
and Wayne Zhang in their Chainladder package (see http://code.google.com/p/
chainladder/).
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1.7. Bootstrapping

Algorithm 1.1 Bootstrap with B simulations for ODP model

Require: Loss Triangle with cumulative payments
Ensure: Sets of reserve estimates by accident year

1:

ot

10:
11:
12:

13:

14:

15:

16:
17:

Calculate chain ladder factors fkc L from cumulative loss triangle by

n—k
> Ci k1

foL =1
E T ek
> Cir
i=1
Calculate unscaled Pearson residuals of the upper triangle by

Tfk _ Sz’,k _A mi,k
mik
Calculate ¢ as in (T.14)
Calculate scaled Pearson residuals in the upper triangle by
Calculate m;, in the upper triangle using backward recursion and differencing as
defined in (1.16)
Begin iterative loop
for [ =1to B do

resample scaled Pearson residuals (rff,j )b

determine new incremental payments S,ﬁm 1=1,....n,k=1,...,n+1—1 by

b (n.sP\b [ ob ~ b L _ -
Si’k—(ri’k) my 1My, 1=1,....n,k=1,...,n+1—1.

determine corresponding incremental and cumulative loss triangles S? and C?
. \b
calculate chain ladder factors ( e L>

calculate cumulative payments C’f’ , 10 the lower triangle with the chain ladder
factors.
calculate m?, for in the lower triangle using

b Ab b
my, = Ci,k: - Ci,k:—l

for each cell in the lower triangle simulate once from an over-dispersed Poisson

distribution with mean mf i as calculated in the last step to get S’Zb k

calculate accident year reserve Ri’ by
pb . ab &b
RZ — Sz,n+2fz + e + SZ,TL

store {RY,... Rb}
end for
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2. Introduction to GAMLSS

In this section we introduce the framework of generalized additive models for location,
scale and shape, GAMLSS. We will focus on the theoretical part of it in this section.

2.1. The ldea

GAMLSS were introduced by Rigby and Stasinopoulos (2001}, [2005). They have been
established to allow for more flexibility when modeling data of all kind than a generalized
linear model. For generalized linear models (GLM), compare Definition

e the distribution of the response variable Y has to come from an exponential family.
The probability density function (pdf) or probability mass function (pmf) of Y can
be written as

Oy — b(y)
a(¢)

where ¢ is the dispersion paramater, 6 the canonical parameter and a(-), b()
and c(-,-) are known functions.

fy(yl0.¢) :exp{ + c(y, ¢)},

e there is a linear predictor of the form

n=nB)=a"B=70+xz1b1+...+ B
with covariates xq, ..., r; and unknown regression parameters f, ..., .

e the relation between the mean p = E [Y] and the linear predictor 7 is given by a
link function g such that

g(p) =n==z"B.

An extension of GLM are generalized additive models (GAM). They are more flexible by
allowing the (transformed) mean g(u) not only to be a linear combination of covariates
x1,...,Tk, but to be a sum of smooth functions of covariates. That is we allow for smooth
functions fi,..., fr such that

g(p) = Bo+ filz1) + ... + frlwr),

where fi,..., fr can have a parametric or non-parametric form. We refer to Hastie and
Tibshirani (1990)) for a detailed discussion of GAM.
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2. Introduction to GAMLSS

Although GLM and GAM are extensive models which may work well in many cases,
there are cases where even more flexible models are desirable. For a GLM the first two
central moments of the exponential family are given as

E[Y]=b(0) and Var[Y]="b"(0)a(e),

where () and b”(0) are the first and second derivate of b(#) w.r.t. to 6, respectively.
b"(0) is called variance function. We can see that the variance is a function of the
mean, defined implicitly via the variance function. Righy and Stasinopoulos| (2005)) claim
that this is true for skewness and kurtosis as well. Thus the idea has been to develop a
new model which allows explicit modeling of these moments rather than keeping implicite
dependence on the mean. They also relaxed the requirement of a distribution from an
exponential family by allowing more general distributions.

2.2. The Model

Let n be the number of observations of a random variable Y. Let Y = (Y3,...,Y,)7
be the corresponding random vector. We assume that Y;, ¢ = 1,...,n, are independent
distributed conditioned on a vector 87 = (0i1,...,0;) of p parameters and have pdf
or pmf fy (y;]0"). 6", i = 1,...,n, are sets of the overall population parameter vector
0" = (64, ...,0,) related to the ith observation. In this thesis we deal with a maximum
of four parameters 6y,...,0, and call them p,o,v and 7, respectively. p is meant to
be the location, o the scale and v and 7 the shape parameters. In most cases they are
closely related to the first four (central) moments. As an example consider a Gaussian
distribution. Naturally there a two parameters, p the mean and o the standard deviation.
v and 7 aren’t necessary at all such that p = 2.

As for GLM and GAM we need to define a functional relation between the parameters
and covariates. In general, let g;(-),...,g4(-) be known monotonic link functions such
that

J1
91(01) = g1(p) =m = X181 + szl%'l

j=1

Jo
92(02) = ga(0) =2 = Xof2 + szﬂjz
=1

5 (2.1)
93(03) = gs(v) =m3 = X383 + szﬂjza
j=1
Ja
94(01) = g4(1) = n1 = X 4B + szﬂﬂa
j=1
where for k = 1,2,3,4, 0L = (O, ..., 0p1)s 0 = (1, ptn), 0 = (01,...,0,), ¥V =
(V1,...,v), and T = (7q,...,T,) are vectors of length n, X € R™*/« are known design
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2.2. The Model

matrices (for the fixed effects), B = (B, .-, 3 J;) are parameter vectors (for the fixed
effects), Z;, € R"*%* are known design matrices (for the random effects) and ~;; are
random vectors of dimension gj;. We then call this model a Generalized Additive
Model for Location, Scale and Shape (GAMLSS). Because of numerical advantages
(compare Rigbhy and Stasinopoulos| (2005, Appendix B)), the vectors v, 7 =1,..., Ji,
are not combined into a single vector ;. Each linear predictor n; consists of

e a parametric component X,;8;
e an additive (random) component Z;]Z:l Zi%ji-

Instead of random effects «y;; one could also use smooth functions like for GAM. In the
R package gamlss there are currently many kinds of additive terms implemented. To
name some of them cubic splines, penalized splines, varying coefficients, LOESS and
random effects are available and offer a maximum degree of flexibility. Each n; can be
modeled using its own specific set of covariates, additive terms and link function. This
allows modeling more complex scenarios than e.g. GLM or GAM.

In this thesis we will use a slightly simpler version of model by not using random
effects. That is we will use the model

91(61) = g1(p) =m = X5
92(02) = ga(0) =1m2 = Xafs
93(03) = g3(v) = n3 = X33 (22)
94(04) = g4(T) = nu = X 4P,

and refer to this as the (fully parametric) GAMLSS. It is still more flexible than a GLM
or GAM because although loosing the possibility of having additive terms we preserve
the opportunity to model up to four parameters and use an almost arbitrary distribution
for Y. The only requirement for the distribution is that the (log-)likelihood and the first
and second derivatives have to be available and computable since maximum likelihood
estimation is used to fit a model. Since we not allow for more than four parameters the
distribution should also not have more than four parameters.

Notation: To identify a GAMLSS for a random variable Y we use the notation in line
with Rigby and Stasinopoulos (2005]),

Y ~ D (gi1(bh) = t1, g2(02) = ta, g3(03) = t3, ga(0s) = 14),
where

e D defines the distribution of Y. We will only use distributions we introduce in
Chapter [3

® gi(+),...,04(-) are the known monotonic link functions for parameters 6y, ..., 0,.
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2. Introduction to GAMLSS

e ty,...,ty are the model formulae for the explanatory terms. As mentioned in above,
we will only use a parametric component without additive terms, see (2.2)).

Consider the following example:
Y ~ TF (1 = poly(X1,2), In(o0) = Xo, v =1).

This would be a model for Y where Y is assumed to follow a ¢-distribution. The location
parameter p is modeled by a polynomial on covariate X; of degree 2 with identity link,
the scale parameter ¢ is modeled by covariate X, with a log-link and the parameter v
which describes the degree of freedom of the t-distribution is modeled as a constant (with
identity link).

Note that in this formulation v = 1 does not mean to fix v at 1 but to estimate a constant
for v. To fix a certain paramater we denote this e.g. by

Y ~ TF (In(p) = X1 + as. factor(X3), In(o) = poly(Xs,3), v :=2).

In this model Y has again ¢-distribution, where p is modeled by X; and a factor on X,
with log link, o by a polynomial on X5 of degree 3 with log link and v is fixed at 2.

At this point we end the brief introduction of GAMLSS. A detailed discussion can be
found in |[Rigby and Stasinopoulos (2005)), also making notes about the distributions,
algorithms and model selection process. The choice of the distribution depends strongly
on the data and for our insurance portfolio some non-standard distributions have been
used. Therefore we introduce the set of distributions used in this thesis in Chapter [3|
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3. Distributions

In this section, we want to give a brief overview about the distributions used for fitting
the Paid-to-Premium (PtP) ratios. We only state results about these partially not very
common distributions and/or parameterizations. More discussion about the distributions
can be found in the literature.

3.1. Gaussian Distribution

For the sake of completeness we start with the Gaussian distribution (and the ¢-distribution
afterward)

Definition 3.1: A random variable Y has a Gaussian distribution if its probability
density function has the form

_ 1 L (y—nY
fy(ylu,a)—maexp{ 2( . )} (3.1)

where y € R, p € R is the mean and o > 0 is the standard deviation (or volatility). We
then write X ~ N (u, o).

Note that a slightly different parametrization is given by
1 1(y —p)?
o) =~ exp { -5 U (3.2)

where y € R, p € R is the mean, 0% > 0 is the variance and we then write X ~ N'(u, 0?).
This has to be mentioned since both version are implemented in the gamlss package. The
first one corresponds to the NO-distribution and will be used throughout this thesis. The
second corresponds to the NO2-distribution.

Using the first version the mean and variance are

E[Y]
Var [Y]

2

Y

1
o
which exist for all valid choices of y and o.
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3. Distributions

3.2. t-Distribution

We need to introduce two version of the ¢-distribution in this section: the standardized
and the non-standardized ¢-distribution.

Definition 3.2: A random variable Y has a (standardized) t-distribution if its
probability density function is

v+1
2

_ () A
o) = 2 (147) 33)

fory € R, where v > 0 is the number of the degrees of freedom. Equivalently one could
write

v+1

fob) = s (1+5) (3.0

where B(a,b) is the Beta function. We then write X ~ t(v).

Mean and variance are given by

Densities of standard Gaussian and

standardized t-distribution

—— Stand. Gaussian
---- Stand. t (df = 1)

Density

Figure 3.1.: Density plot for standard Gaussian and standardized t-distribution

A plot of densities for the standard Gaussian and standardized t-distribution is given in
Figure [3.1] The ¢-distribution has heavier tails than the Gaussian distribution for small
degrees of freedom. For increasing degrees of freedom the standardized t-distribution
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3.2. t-Distribution

approaches the standard Gaussian distribution. While for 30 degrees of freedom an
approximation by the standard Gaussian distribution is enough for most cases the gamlss
package uses the standard Gaussian distribution not until 10° degrees of freedom.

A generalization of is the non-standardized t-distribution.

Definition 3.3: A random variable Y with probability density function

_v+1

Iy (Wl o) = NF();W—)W (1 += (” - ”) ) , (35)

where p € R 1s the location parameter, o > 0 the scale parameter and v > 0 the
number of degrees of freedom is called non-standardized t-distribution . We then
write Y ~ t(p, o,v).

Mean and variance are given by
E[Y]
Var [Y]

9 V

0 ifvr>1
o

ifv>2.

V —
Jackman| (2009) noted some more details about this distribution. In the gamlss package

both distributions are included in the TF-distribution, with the standardized t-distribution
being a special case of the non-standardized ¢-distribution with © =0 and o = 1.

Densities of non-standardized Densities of non-standardized

t-distributions for different degrees of freedom t-distributions for different scale parameters

0.4
1

<
S — di=2 — o-=1
o - df=8 | s -15
df=16 o=2

0.3
0.3
1

Density
0.2
|
Density
0.2
|

0.1
0.1

0.0
1

(a) A small number of degrees of free- (b) The variance increases with in-
dom leads to heavy tails creasing o and the curve flatens

Figure 3.2.: Density plots of non-standardized ¢-distributions with different degrees of
freedom v or scale parameter o

Figure [3.2| shows that tails are heavier the fewer the degrees of freedom are. Since we
are interested in modeling the scale parameter with a GAMLSS we require at least two
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degrees of freedom to guarantee existence of the variance. For increasing scale parameter
we see a flattening density curve, analog to the Gaussian case.

3.3. Zero-Inflated Distributions

Almost all analyses of loss triangles known to us were performed on triangles with 'good’
losses. That means neither losses of size 0 nor negative losses occurred. But since both
cases occur (often) in reality we need to model them. The second case of negative losses
can easily be included by using e.g. the above introduced Gaussian and t-distributions.
The first case is not that easy but can be modeled by using a mixed discrete-continuous
distribution. We will introduce two of them now.

A zero-inflated distribution is mixture of a continuous distribution with a discrete
distribution. In this work Gaussian or t-distributions will play the role of the continuous
distributions. The discrete distribution is of type Bernoulli. Here the success probability
p indicates the probability of the mixture distribution being 0. Thus we get in general a
distribution of the form

vi= 0 , with probability p
~ F' | with probability 1 — p,
where F' is a continuous distribution. Let X ~ F', then one can see that
E[Y]=(1-p)E[X]

holds. With small effort one can further derive

Var[Y] = (1 - p)E [X?] — (1 - p)’E [X]*.

Zero-Inflated Gaussian Distribution

Definition 3.4: Let Y = 0 with probability v and Y ~ N (u, o) with probability 1 — v.
ThenY has a zero-inflated Gaussian distribution , wherev € (0,1) is the probability
forY =0. We then write Y ~ ZIG(u,o,v).

For v = 0 we get the Gaussian distribution, for v = 1 we get a degenerated distribution,
localized at 0. It is easy to see that the density of Y ~ ZIG(u,0,v) is given by

) . y y=0
wm%mv——<1_w7iﬁq{_%@;f} YA0

As seen for the general case it is straight forward to show that

+o0
Emzf v+ fr(yl o,v)dy = (1 — )

o0
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3.3. Zero-Inflated Distributions

and

Var[V] = / T (L= el o)y = (1— ) (i + 0%) — (1 — 02

[e.9]

for all valid choices of u, o and v.

Yet the zero-inflated Gaussian distribution has not been implemented in the gamlss
package. But in this case the zero-inflated Gaussian distribution can easily be implemented
following the instructions in (Stasinopoulos et al.l 2008, Section 4.2). The required
derivatives of the log-likelihood stay the same for p and o since the new parameter v
enters additively into the log-likelihood:

l<y|/~L7 g, V) = ln(fy(y|,u, g, V))

_ {ln(y) ,y=0
In(1—v) —In(v27) —In(o) — 2 (%)2 YyA0

The new required derivatives for v as well as cross-derivatives can be calculated easily.
The further needed probability and quantile functions as well a random number generator
for the ZIG-distribution can be derived similarly. In Figure 3.3 we give two examples of
densities of zero-inflated Gaussian distributions.

Density of a zero-inflated Gaussian distribution Density of a zero-inflated Gaussian distribution

1.0

— ZIG(n=2,0=0.5,p=0.3)
-- N(u=2,0=0.5)

0.6

— ZIG(w=0,0=1,p=0.5)
---- N(u=0,0=1)

0.5
1
0.8
1

0.4
1
0.6
1

Density
0.2 0.3
| |
Density
0.4

0.2
1

0.1

0.0
1

Figure 3.3.: Examples of zero-inflated Gaussian distributions

3.3.1. Zero-Inflated t-Distribution

Definition 3.5: Let Y = 0 with probability 7 and Y ~ t(u, o, v) with probability 1 — 7.
Then Y has a zero-inflated t-distribution , where T € (0,1) is the probability for
Y =0. We then write Y ~ ZITF(pu,0,v,7T).
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3. Distributions

The density of Y ~ ZITF(u,0,v, ) is given by

T =0
fY(yyﬂa o,V, 7_) - F(u+1) N2 _VTH
(= Dgms (1+2(5)°) 7 w#0

One can show that

+o00
E[Y}:/ y- fy(ylp,ov,m)dy = (1 —7)p forv > 1

o0

and

Var [Y} - /_+oo(y - (1 - T)/“L)2 ’ fY(y|M7O-7 v, T)dy

o0

:(1—7’)(02 V2+u2)—(1—7)2p2 for v > 2.
v

Like the zero-inflated Gaussian distribution the zero-inflated ¢-distribution has not been
implemented yet in the gamlss package. But similarly to the zero-inflated Gaussian
distribution the zero-inflated ¢-distribution can be implemented using the same technique.

3.4. Skew Exponential Distribution

As readers familiar with reserving might know, there exist lines of business which are
very “short-tailed”. That means already after a few development lags no or just very few
claims occur. For these lines of business our analyses have shown that even a Gaussian
distribution has too heavy tails. The Gaussian distribution would strongly overestimate
claims for later development lags and increase reserves. Also observed distributions
are sometimes very skewed, putting the use of symmetric distributions into question.
Therefore we introduce another distribution. According to the naming in the gamlss
package we will call this distribution the skew exponential power type 1 distribution
(SEP1 distribution). First we need another distribution to write the SEP1 distribution in
a more comfortable way.

Definition 3.6: Let Y be a random variable with probability density function

g

2
v Yy—H
,O,V) = ——— —|— 3.6
o) = o exp{ = } (5.6)
forpeR, 0 >0 andv > 0. Then Y has a power exponential type 2 distribution .

We write Y ~ PE2(p, 0, v).

There are three special cases:
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3.4. Skew Exponential Distribution

e For v = 1 we get a Laplace distribution with mean ;1 and variance 202.
e For v =2 we get a Gaussian distribution with mean p and variance 202
e For v — oo we observe a uniform distribution on [u — o, u + o].

Citing |Stasinopoulos et al.| (2008) we have

and
re)
2 v
Var[Y] =0 O
()
Densities of PE2 and Gaussian distribution Densities of several PE2 distributions

3 — PE2(u=0,0-42,v=2) 31 — PE2(u 2,v=1)
- 2,v=3)

PE2|

(

o N(u=0,0=1) ---- PE2(
(i

-~ PE2(

=0,0=
=0,0=

=0,0=2,v=10)
=0, 0=2,v=10000)

K
"
(0

0.4

Density
0.3
|

0.2

0.1

0.0
1

Figure 3.4.: Examples of skew exponential power type 2 distributions

Examples of power exponential type 2 distributions are given in Figure [3.4] For v = 2
the power type 2 distribution degenerates to a Gaussian distribution with variance 202
For v — oo the PE2 distribution converges to a uniform distribution on [u — o, u + o].

With the PE2 distribution we can now define the SEP1 distribution:

Definition 3.7: A random variable Y with probability density function

Feylpso ) = 2 f2u(2) Fra(2) (3.7

withy €R, z=(y—p)/o, t € R, 0 >0, v €R and 7 > 0 is called skew exponential
power type 1 distribution ,Y ~ SEP1(u,o0,v,7). fz, and Fz, are the density function
and cumulative distribution function the power exponential type 2 distribution Zy ~
PE2(0,7Y7 7).
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3. Distributions

The SEP1 distribution is of Azzalini type 1 (compare Azzalini| (1986)). Hence moments
can be calculated following Azzalini’s approach (see also Stasinopoulos et al.| (2008]) for
details):

E[Y]=p+oE[Z]
Var[Y] = o’Var[Z] =0 (E [Z°] —E [Z]Q) ;
where Z = (Y — u) /o) and

and

r
21 _ 2/7

A e)
with pBEo being the cumulative distribution function Beta distribution (in the gamlss
package named original Beta distribution). It is important to note that neither the mean
nor the variance are simple functions of only one parameter but depend on all four
parameters. Thus interpretation of a single parameter is not very easy.
Figure gives an impression of what the influences of the different parameters are.
clearly affects only the location. While o mainly influences the variance it also has an
influence on the mean. v controls the slope of the density until its maximum. A big v
results in a steep slope with maximum u. For v — oo, Y ~ SEP1(0,0,v, 1) behaves like
a Exp(1/0) distribution (not shown here). While an increasing v leads to a right-skewed
distribution an increasing 7 leads to a left-skewed distribution. For 7 — oo we see a
distribution with the form of a triangular distribution on [u, u + 0/2) and a uniform
distribution on [u 4+ 0/2, i + o). Although there may be connections to several other
distributions we will present only on one distribution which is a special case of the skew
exponential power type 1.

3.4.1. Skew Gaussian Distribution
A special case of is 7= 2.

Definition 3.8: Let Y ~ SEP1(u,0,v,7) and fix T = 2, then Y has a skew normal
distribution.

The skew exponential power type 1 distribution is defined via the power exponential type
2 distribution. Hence, for 7 = 2 we get for the probability density of Z ~ PE2(0,2'/2,2):
z—0/ 1 22

i } = 75 P {—5} = ¢(z),

2
2oy 2 )
f2(00.277.2) = 5 5iar (3) exp{
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SEP1 densities for different values of u
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3.4. Skew Exponential Distribution
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Figure 3.5.: Influence of the different parameters on the SEP1 distribution

where ¢ is the density of a standard Gaussian distribution. Then, following |(O’Hagan
and Leonard (1976), Y ~ SEP1(0,1,r,2) has a standard skew normal distribution

Y ~ SN(0, 1, v) with density

fr(w]0,1,v) = 2¢(y)®(vy),

where @ is the distribution function of a standard Gaussian distribution. Using the

transformation y +— ££

£ it follows that Y ~ SN(u, o,v) has a skew normal distribution.

The skew normal distribution still belongs to the class of Azzalini’s type 1 distributions,
such that the mean and variance can be calculated as

E[Y]=p+o-sign(v)
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3. Distributions

and

Var [Y] = o2 (1 - W(f—fﬂ)) ,

compare also |Stasinopoulos et al.| (2008).

SN densities for varying v
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Figure 3.6.: Density plot of skew normal distributions

Figure [3.6] shows the density of skew normal distributions with different v values. For
v = 0 the skew normal distribution is an ordinary Gaussian distribution. Extreme values
for v in both directions lead to more skewed distributions.

3.5. Summary

The Gaussian and t-distribution are standard and well studied distributions. Especially
regarding computing time their implementation is very fast. The zero-inflated Gaussian
and zero-inflated t-distribution had to be implemented manually. But since we could make
use of the already implemented continuous version calculation time is very acceptable
as well. The skew exponential power type 1 distribution is part of the gamlss package
and hence did not need to be implemented. However, no closed form for the distribution
function is known to us or the authors of the gamlss package. Hence numerical integration
is used, making the calculation (very) time-consuming.
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4. Application of GAMLSS

After having introduced some theory about GAMLSS this and the following sections are
dedicated to model fitting and simulation studies.

We apply GAMLSS to an insurance portfolio of 6 lines of business. For five lines of
business (LoB 1 - 5) with continuous distribution we will examine dependencies in a later
chapter. For those five lines of business data is available for 21 years on a yearly basis,
such that there are 231 observations for each line of business. For one line of business
(LoB 6) a zero-inflated distribution is used. For this line of business which is analyzed in
this section, only 20 years on a yearly basis of data is available, such that there are 210
observations.

While the chain ladder method needs cumulative payments, the GAMLSS is indifferent
to which data is used. We could use cumulative or incremental payments as well, but
there are several problems when using them. For instance data is not inflation adjusted,
possibly leading to a natural increase of paid losses among calendar years. Another point
is that business changes over time. The insurance company could write more policies and
in general this would lead to higher payments (in total, not necessarily per contract). Or
the other way around, leading to decreasing payments. To detrend data we use a ratio
which we call paid-to-premium ratio.

Definition 4.1: Let
S={Sikli=1,....on, k=1,...,n+1—14}
be a triangle with incremental payments. Let
P:={Pyli=1,...,n,k=1,....,n+1—14}

be a triangle with cumulative earned premiums. Then

Sik
Py

PtP; = i=1,....,n,k=1,...,n+1—1 (4.1)

is called (incremental) paid-to-premium ratio.

Because premiums are earned only once at the beginning of the contract, a triangle with
incremental premiums would only have premiums in the first column and zeroes in all
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4. Application of GAMLSS

other columns. A triangle with cumulative earned premiums then means to carry forward
the premium of the first column, compare Table [£.1]

Accident | Development Lag k Accident Development Lag k
Year ¢ 1 2 3 4 Year ¢ 1 2 3 4
1 1000 0 O 0 1 1000 1000 1000 1000
2 1100 0 0 2 1100 1100 1100
3 1800 0 3 1800 1800
4 1200 4 1200

(a) Incremental earned premiums (b) cumulative earned premiums

Table 4.1.: Triangles with incremental and cumulative earned premiums

Since premiums stay constant in each row, we can drop the index k, so that P; is the
earned premium for accident year ¢ for all development lags.

Note: In this thesis we will only use earned premiums and no written premiums. We
use the term ’premiums’ henceforth and mean earned premiums. Readers familiar with
insurance products notice that premiums can be earned also at later development lags for
certain lines of business. However, data used in this thesis includes only lines of business
for which the whole premium is earned at the beginning of the contract and premium
triangles are of the form shown in Table [.1] O

By using the premium as an exposure, certain unusual observations for a triangle with
incremental payments may vanish. E.g. for the line of business with premiums as in
Table [4.1] if there were high payments for accident year 3 at both development lags, this
would no longer be suspicious, since a much higher premium has been earned for this
accident year. Higher premiums in general refer to more written policies and hence more
claims can occur.

Another in insurance companies more often regarded ratio, is the loss ratio. Besides the
raw payment for the claim, the loss ratio includes possible adjustment expenses. But due
to lack of availability of adjustment expenses in our data set, we will not consider the
loss ratio.

We then need one or more distributions for the PtP ratios and a set of covariates. The set
of covariates is rather small and consists of development lag, accident year and implied
be them calendar year.

Which distribution should be used is a bit more complicated. Neglecting for a moment
the distributions introduced in Chapter [3| the gamlss package which we use for model
fitting provides more than 30 distributions. Clearly, a preselection has to be done since
fitting models for all distributions is neither possible nor reasonable due to restrictions of
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4.1. Modeling the Location Parameter

the distributions (i.e. discrete/continuous distributions or different support). Hence we
need to find a set of suitable distributions at the beginning.

The first question we have to answer is whether to use a discrete, continuous or mixed
distribution. Recall that for the line of business analyzed in the following there are 210
observations from 20 years available. An excerpt of the data set is shown below.

> lob6.datal1:5,]

DevLag AYear CYear PtP.Ratio

7 1 1992 1992 0.3224859
8 1 1993 1993 0.3539408
9 1 1994 1994 0.3639705
10 1 1995 1995 0.3452195
11 1 1996 1996 0.3247802

While a discrete distribution is not reasonable for PtP ratios we count the observed
zeroes to choose between a continuous and a mixed distribution.

> sum(lob6.data$PtP.Ratio == 0)
[1] 24

24 out of 210 observations are zero (or in relative terms roughly 11.4%). That clearly is
too much to assume a continuous distribution for Y. We need a zero-inflated distribution
and some of them have been implemented in the gamlss package like a zero-adjusted
inverse Gaussian distribution. But observe

> sum(lob6.data$PtP.Ratio < 0)
[1] 46

i.e. 46 of 210 observations are negative. This disqualifies mixed distribution with support
on the positive real numbers only. Thus we need a mixed distribution with enough mass
on 0 and support on the whole real line. The zero-inflated Gaussian and zero-inflated
t-distribution in Chapter |3 are two examples for that kind of distribution. Hence we can
use both of them but need to decide which of them is the preferred one later.

4.1. Modeling the Location Parameter

Having found a set of distributions we examine influences of the different covariates.
We start with influences on the location parameter. This is particularly of interest since
for both the zero-inflated Gaussian and the zero-inflated t-distribution the location
parameter p is closely related to the mean. The mean can be used as an estimator for
unknown future ratios and hence payments.
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4. Application of GAMLSS

Development Lag

We expect a strong dependence of PtP ratios on development lags because that is what
we know from other methods like chain ladder. And we are mainly interested in how
claims develop in the future.

PtP ratio development PtP ratio develoy for high develor lags
o o
5 |
o
© |
o o
’~ o o o
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(a) PtP ratios decrease for increasing (b) Detailed excerpt of (a) for high
development lags development lags

Figure 4.1.: Development of PtP ratios for LoB 6. Although PtP ratios seem to be almost
constant for higher lags in (a) they are not as one can see in (b)

Figure shows PtP ratios plotted against development lag. We see a strong decrease in
PtP ratios and even for higher development lags (Figure [£.1(b)) ratios are not constant.
Obviously development lags have a high influence and we will incorporate this by using a
polynomial on development lag. The degree has to be specified during residual analyses,
but as starting point we set the degree to 5.

Note: Other models (compare e.g.Shi and Frees| (2011))) let the development lag enter as
a factor. We don’t follow this approach since this would increase the number of parameters
significantly. While we start with 6 parameters (polynomial plus intercept), a model with
development lags as factors would have 20 parameters. %

Accident Year

Although hoping to have excluded most of accident year effects by working on PtP ratios
this has to be verified.

Figure shows no obvious trend among accident years, only the scale becomes smaller
for increasing development lags. There are some extreme values at each lag but not for
the same accident year. We therefore do not use accident year at this point of the process.
We will investigate in this again after we fit a first model and check residuals.
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4.2. Model Fitting
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development lag 4

Figure 4.2.: Development of PtP ratios among accident year for the first four development

lags

Calendar Year

Since calendar year effects are even harder to detect than accident year effects we do
not include the calendar year at this stage. Like for accident year we will check for an

influence later on the residuals of the model.

4.2. Model Fitting

The gamlss package allows modeling of up to four parameters in its current implementation.
We could continue to examine influences of the covariates on the scale and shape
parameters in a similar way. However, we do not favor this. Then it would very difficult to
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4. Application of GAMLSS

relate certain observations in the model checking process to a specific parameter. Another
reason is that when modeling the first or the first two parameters well, there may be no
necessity to model more parameters at all. For this we have to check residuals and thus
need to fit a model first. And finally we want to find a good model for the mean which
depends strongly on the location parameter p for most distributions. To not entirely
exclude other parameters, a constant will be estimated for them.

The studies for development lag and accident year influence suggest a model of the form
Y ~ ZIG(u = poly(DevLagy,5),0 = 1,v = 1) (ZIG 1)
or
Y ~ ZITF(u = poly(DevLagy,5),0 = 1, v =1,7 = 1). (ZITF 1)

Note that while for the ZIG v models the probability of Y being zero, 7 models that
probability for the ZITF.
First we fit a model with zero-inflated Gaussian distribution.

> ptp.gamlss.zig <- gamlss(PtP.Ratio ~ poly(DevLag, 5), sigma.formula="1,
+ nu.formula=~1, family=ZIG(), method=mixed(), data=lob6.data)

-454.9138
-454.9138

GAMLSS-RS iteration 1: Global Deviance
GAMLSS-CG iteration 1: Global Deviance

Some notes on the options used here:
e PtP.Ratio stands for the paid-to-premium ratios, DevLag for the development lag
e The poly() function chooses orthogonal polynomials by default

e The formulas for sigma.formula and nu.formula don’t need to be stated if they
are not different from a constant

e method allows choosing either a Cole-Green algorithm, a Rigby-Stasinopolous
algorithm or a mixture of both of them, compare (Righy and Stasinopoulos, 2005,
Section 5). While results using either the CG or RS algorithm don’t differ much if
they converge, sometimes only one of them can be used to assure convergence at
all.

> summary(ptp.gamlss.zig)

ok ook ok K K ook K ok K ok ok K ok K ok ok K ook K ok K ook K ok K ok ok K ook K ok ok ok Kok K ok ok K ok KK ok kK
Family: c("ZIG", "ZeroInflGaussian")

Call:
gamlss(formula = PtP.Ratio ~ poly(Devlag, 5), sigma.formula = ~1,
nu.formula = “1, family = ZIG(), data = lob6.data, method = mixed())
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Fitting method: mixed()

4.2. Model Fitting

Mu link function: identity
Mu Coefficients:
Estimate Std.
(Intercept) 0.05676 0.0
poly(DevLag, 5)1 -1.02813 0.0
poly(DevLag, 5)2  0.94717 0.0
poly(DevLag, 5)3 -0.75042 0.0
poly(DevLag, 5)4 0.47802 0.0
poly(DevLag, 5)5 -0.22550 0.0
Sigma link function: log
Sigma Coefficients:
Estimate Std. Error
(Intercept) -3.043 0.05185
Nu link function: identity
Nu Coefficients:
Estimate Std. Error
(Intercept) 0.1143 0.02195
No. of observations in the fit:
Degrees of Freedom for the fit:
Residual Deg. of Freedom:
at cycle:
Global Deviance: -454.9138
AIC: -438.9138
SBC: -412.1369

Error t value Pr(>ltl)
03628 15.648 8.766e-37
59102 -17.396 3.648e-42
56125 16.876 1.424e-40
63017 -11.908 3.620e-25
71075 6.726 1.723e-10
66491 -3.392 8.347e-04
t value Pr(>(tl])
-58.69 7.987e-132
t value Pr(cltl)
5.205 4.615e-07
210
8
202
1

>k 5k >k 3k 3k 3k 5k >k 3k 3k 3k 5k >k 5k 3k 3k 5k %k 5k 3k 3k 5k 5k 5k >k 3k 3k >k 5k >k 3k 3k 5k 5k >k 3k 3k 3k 5k %k 5k >k 3k 5k %k 5k >k 3k 3k %k 5k >k %k 3k %k 5k >k %k 5k %k >k %k %k 5k %k >k %

We assume the reader is familiar with model fitting in R for linear models or generalized
linear models and hence is familiar with the summary function for these models. Having a
look at the summary for the GAMLSS we see that all parameters are significant. Beside
parameter estimates the corresponding link functions for the different parameters are
printed. This is important when comparing parameter estimates of different models with
possibly different link functions. For this model 8 parameters have been used: 1 for the

intercept + 5 for polynomial + 1 for

o+ 1 for v.

We have a look at residuals to check model assumptions. In the gamlss package normalized
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4. Application of GAMLSS

quantile residuals are used. For observation 7 = 1, ..., n normalized quantile residuals
are defined as

where
U; = F(yz‘él)

In words, observation y; is transformed to u; € [0, 1] using the cumulative distribution
function F' of the underlying distribution with estimated parameters from the GAMLSS.
Then the inverse cumulative distribution function of a standard normal variate is applied
to u; to get 7;. While this seems to be not very intuitive at first sight, it has the advantage
that 7;, ¢ = 1,...,n, should then be approximately standard normal distributed. Any
deviation from this can be seen in a Q-QQ normal plot.

Against Index Normal Q-Q Plot
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uals against index quantile residuals

Figure 4.3.: Both plots show a very bad fit for the ZIG model

Figure shows a plot of normalized quantile residuals against the index and a Q-Q
normal plot of them. Obviously this shows a very bad fit. The normalized quantile
residuals are neither normal distributed nor does the plot against the index look well, i.e.
shows no pattern.

Note: To fit a GAMLSS to triangle data, data has to be aligned differently. We chose
to sort the data by development lag first and accident year afterward. An example for
small 3x3 triangle is shown in Table [£.2]
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4.2. Model Fitting

Index Devlag AYear PtP.Ratio

1 1 1 0.52
2 1 2 0.55
3 1 3 0.59
4 2 1 0.31
5 2 2 0.23
6 3 1 0.12

Table 4.2.: Example how the index ¢ has to be read (3x3 triangle)

Hence the index ¢ runs among the columns of the triangle for one development lag after
another. Looking at Figure (a), the first 21 observations refer to development lag 1,
the next 20 to development lag 2, etc. &

We fit the same model with zero-inflated ¢-distribution and compare the residual plots in
Figure [£.4]

> ptp.gamlss.zitf <- gamlss(PtP.Ratio ~ poly(DevLag, 5), sigma.formula="1,
+ tau.formula="1, family=ZITF(), method=RS(100),
+ control=gamlss.control(trace=F), data=lob6.data)

A note on the gamlss options: We used the RS algorithm (with up 100 iterations)
only and deactivated printing the deviance at each iteration by setting control =
gamlss.control(trace = F).

Against Index Normal Q-Q Plot
| A |
[ % o N °
o %Ooggo? ° .
© o oo 0o % o000 o o
| <] & 0 oO s
% o 00, % o S
R R e T L -
2 0 0o P2 @ ®o 4 o g—
§ & © B o & o P 3
© o | ° OOOD%;%D o~
1 o 1
00 o
¥ A Y 1
T T T T T T T T T T T T
0 50 100 150 200 -3 -2 -1 0 1 2 3
Index i Theoretical Quantiles
(a) Plot of normalized quantile resid- (b) Q-Q normal plot of normalized
uals against index quantile residuals

Figure 4.4.: Residual plots of the ZITF 1 model show better a fit than for the ZIG 1
model

Figure 4.4 shows the improvement by using a zero-inflated ¢-distribution. The Q-Q normal
plot for the ZIG indicated that PtP ratios follow a distribution with heavier tails than
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4. Application of GAMLSS

the Gaussian distribution. The zero-inflated ¢-distribution captures this behavior and the
Q-Q normal plots looks better. But the plot of normalized quantile residuals against the
index still does not look well as patterns are observable.

Remark: The algorithms respect rules for estimated parameters up to a certain level.
E.g. the degree of freedom of a t-distribution should always be positive. This restriction
is implemented and no negative degree will be estimated. But we also need to ensure
existence of the first two moments and hence a degree of freedom of at least 2. Checking
the parameter estimates of the ZITF model we see that this is not fulfilled. The degrees
of freedom in this model are

> ptp.gamlss.zitf$nu.fv[[1]]
[1] 0.6569353

which is even smaller than 1 and not even the mean exists. Thus when observing such
situations we have to fix ¥ manually at 2 + ¢, € > 0, such mean and variance exist. We
decided to fix v in these cases at v = 2.1 =: 2%. The model becomes

Y ~ ZITF(u = poly(DevLagy,5),log(c) = 1,v:=2% 7 =1). (ZITF 2.1)
To fix the degrees of freedom in R, we use the model

> ptp.gamlss.zitf2.1 <- gamlss(PtP.Ratio ~ poly(DevLag, 5), sigma.formula="1,
+ tau.formula = ~1, family=ZITF(), method=RS(100),
+ control=gamlss.control (trace=F), nu.start=2.1, nu.fix=T, data=lob6.data)

which leads to different residual plots (see Figure . Especially the Q-Q normal plot
shows the bad influence of fixing the degree of freedom at a higher level than estimated.
Though note that it still looks better than using a zero-inflated Gaussian distribution.

%

Figure (a) shows big differences for the variation among the index. While the spread
for the first 100 indices is big, it is very small for indices 100 - 140 and gets bigger

afterward. Thus we need to model the second parameter o which is able to capture this.
We fit a third model

Y ~ ZITF (1 = poly(DevLagy, 5),1og(c) = poly(DevLagy, 5),

ZITF 2.2
v=2" 1= 1), ( )

where a polynomial of degree 5 is used for o with a log link function. The log link ensures
that we only get positive fitted values for o. Furthermore we fix v at 2% := 2.1.

> ptp.gamlss.zitf2.2 <- gamlss(PtP.Ratio ~ poly(DevLag, 5),
+ sigma.formula="poly(DevLag, 5), tau.formula=~1, family=ZITF(), method=RS(100),
+ control=gamlss.control(trace=F), nu.start=2.1, nu.fix=T, data=lob6.data)
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Figure 4.6.: Residual plots of the ZITF 2.2 model

The residual plots are shown in Figure 4.6/ and see the improvement by modeling the scale
parameter. Residuals with index greater than 70 seem to scatter around zero uniformly.
Also the Q-Q normal plot shows a better fit, especially in the upper tail.

Note: While in this case the improvement can be visualized well this might not always
be the case. We then need a statistics to measure goodness of fit. For GAMLSS goodness
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4. Application of GAMLSS

of fit is measured in terms of the global deviance,

GD = —21() = —221(91) = —221n(f(yi|9i)).

Note that here the complete log-likelihood including all terms is used while for GLM
it is not in general. Then goodness of fit is then measured by the Schwarz Bayesian
criterion,

SBC = GD + In(n) - df,

where df is the total effective degree of freedom used in the model. The model with lower
SBC is then the better one. In contrast to the AIC (Akaike’s information criterion) the
SBC penalizes the number of parameters heavier through the second term. Since the
number of parameter can grow rapidly for GAMLSS, we think this is more suitable for
our purposes. &

For the two models the SBC is

> ptp.gamlss.zitf2.1$sbc
[1] -674.4351

and

> ptp.gamlss.zitf2.2$sbc
[1] -1032.481

confirming that the model with explicitly modeled scale parameter is much better. But
the model ZITF 2.2 still shows a lack of fit, especially for the first indices, i.e. the first
development lags. We therefore add factors for the first four development lags to the
model. Analyses showed that in this case parameters for the polynomial on development
lag are not significant so we drop them. The model for the PtP ratios is then

Y ~ ZITF(u = DevLagy, + (DevLagy = 1) + (DevLagy, = 2)
+ (DevLagy, = 3) + (DevLagy = 4),

log(o) = poly(DevLagy,5), (ZITF 2.3)
v=2",
T=1),

where (DevLagy, = x) is a factor on development lag for lag z:

1 Jifk==x

DevLag, = x) =
( Ik ) {O ,else
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4.2. Model Fitting
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Figure 4.7.: Residuals plots of the ZITF 2.3 model

One may surely argue that using factors for all development lags could lead to an even
better fit. Then to go further one could use factors for all development lags for the
scale parameter as well and even add factors for the accident year. But then we were
in a situation we wanted to omit because we would have a model with more than 50

parameters on 210 observations.
The plots in Figure 4.7/ show a better fit than for model ZITF 2.2 for the first development
lags. The latest model ZITF 2.3 has

> ptp.gamlss.zitf2.3%df.fit
[1] 13

degrees of freedom which is the same as for model ZITF 2.2

> ptp.gamlss.zitf2.2$df.fit
[1] 13

But obviously there is still some need to improve the model when looking at the variation,
which is bigger for later accident years.

So far we haven’t analyzed the pattern of zeroes in the triangle at all. Recall that for the
ZITFE 7 models the probability of Y being zero. Estimating a constant means to assign
the same probability to all cells in the triangle. This does not make much sense, since
naturally there won'’t be a lot of zeroes for the first development lags but possibly more
for higher development lags.

However, simple counting of zero-observations among development lags is not useful to
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4. Application of GAMLSS

get an idea of the behavior of 7. Instead we divide the number of zero-observations by
the total number of observations per development lag. In formulas this is

n+l—k
]-Ptpj’k:()
=1

J

—, k=1,...,n.
n+1—k Y ? 7n

Z =

Share of zeroes per development lag

1.0

Share z

0.4

0.2

0.0

T T T 1
5 10 15 20

DevlLagy

Figure 4.8.: Zeroes appear only for later accident years

Figure [4.8 shows a plot of z;, against development lag. No zeroes occur for lags less than
9 and afterward they seem to follow a quadratic trend (neglecting the latest development
year which has only one observation). We incorporate this by adding a new covariate
called ’adjusted development lag’, which is defined as

0 DevLag, < 8
Adj.DevLagy =  EURATE = (4.2)
DevLag, —8 ,Devlagy > 8
We then use a polynomial of degree 2 on this covariate to model 7:
Y ~ ZITF(u = DevLagy + (DevLagy, = 1) + (DevLagy, = 2)
+ (DevLagy = 3) + (DevLag = 4),
log(o) = poly(DevLagy, 5), (ZITF 2.4)

v=2",

logit(t) = poly(Adj.DevLagy, 2)),
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Figure 4.9.: Residuals plots of the ZITF 2.4 model

where logit states that a logit-link is used for 7. This is necessary to ensure that all fitted
values for 7 are between 0 and 1.

Figure [4.9 shows the residuals plots for model ZITF 2.4. It is not easy to see the
improvement in the plot of residuals against the index. Here it is useful to have the SBC,
which dropped by more than 50 and shows an improvement.

> ptp.gamlss.zitf2.4$sbc - ptp.gamlss.zitf2.3$sbc
[1] -54.30414

On the other side the Q-Q normal plot looks worse than before. To improve the model
further, recall that we have data which is normally analyzed in triangles. We can use this
information an arrange residuals in a triangle which can help to identify patterns which
are not observable in the plot against the index or the Q-Q normal plot. Such a plot is
shown in Figure [£.10]
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1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

-0.1506 -0.6939
0.3295 -0.0986
0.4743 0.0407
0.1986 -0.6836
-0.1156 2.1642
- -0.0649
0.0192 1.29
-1.1113 2.0381
1.7917 1.3639
-0.5733 -0.377
1.0304 0.9207
-0.7582 -1.4738
-1.093 -1.2143
-0.5694 -1.1214
-1.19 -0.9618
0.7349 -0.2286
1.5733 1.2418
-0.2906 1.1721
0.1152 0.5854

0.6601

0.7715

1.5167

-1.0557

-0.6108

-0.089

—-0.6464

0.5952

0.7809

-0.5722

—0.8399

1.032

-0.4163

—0.4575

0.3298

—0.2781

0.5252

-0.1202

0.5463

-0.1414

1.1304

-0.3866

0.8215

1.2288

-1.0187

1.6634

0.3294

-0.2565

-1.0137

0.707

-0.8536

-0.4854

0.0832

-0.3314

0.2385

-0.1276
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0.4375 -3.1433 0.1988 1.5932 -0.1029 -3.0593 -0.0534 -0.074
0.2273 0.0651 -0.0822 1.848 -1.2074 0.3418 -2.7515 -0.0503
-1.2766 -1.4044 0.1145 -0.0873 0.3278 -0.055 -2.0246 -1.5177
0.2636 0.5452 0.3467 0.1479 0.2656 0.272 0.1845 0.0098
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1.5844 0.3675 0.0166 -0.1365 0.2585 1.8109
0.0278 -1.5783 0.1928 -0.0776 -

0.1796 -1.1937 -0.159 -0.2594

-0.1626 -2.1576 -0.4372

0.409 -1.597

0.8177

13

-0.0845

-1.2024

-0.0331

—0.0331

-1.4764

-1.1295

-1.3662

—-1.0381

14

0.1233

-0.7677

-0.9661

-0.0058

0.5359

0.0119

-0.2857
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-0.3558

-0.3423

-0.3784
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-0.0751
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Figure 4.10.: Residuals arranged in triangular form help to identify outliers
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4.2. Model Fitting

In Figure [4.10 residuals are arranged in triangular form. Recall that normalized quantile
residuals are shown here. The coloring indicates whether the residuals fall below the
(theoretical) 1%-quantile (light grey), above the 99%-quantile (dark grey) or in between
(white). We can’t see any obvious patterns, i.e. increasing residuals among accident years
or calendar years. But for accident year 1993 at development lag 17 we see the huge
negative outlier. Having a look at the underlying data set we detect a very unusual PtP
ratio. Thus we decide to model this ratio by a factor on this cell. Note that we could
have excluded the data entry as well. The second observation we make is that accident
year 1997 has 3 negative outliers. Since residuals for this accident year take positive and
negative values, a factor on accident year 1997 for o is used.

Furthermore Figure 7?7 shows unusually low variances for development lags 3 and 4 a big
variance for lag 6. We include this by factors on those lags for o. Note that we focus on
the first development lags more than on later ones. This is because they influence the
prediction of future claims more than later development lags and thus it is important to
model them well.

We added all new covariates successively and checked residuals and significance of
parameters at each step. Hence some covariates dropped out like while some other entered
the model. Our final model for this line of business is

Y ~ ZITF (u = poly(DevLagy,2) + (DevLagy = 1) + (DevLagy = 2)

+ (DevLagy, = 3) + (DevLagy = 4)
+ (DevLagy, = 17 & AY ear; = 1993),

log(o) = poly(DevLagy,5) + (DevLagy, = 5) (ZITF 2.5)
+ (DevLagy = 6) + (AY ear; = 1997),
v=2"

Y

logit(T) = poly(Adj.DevLagy, 2))

The residuals in Figure [£.11](a) are scattered around 0 almost arbitrary. Only some
outliers at higher development lags occur. Since focus lies on the first development lags
we accept them. The Q-Q normal plot looks much better than for the last model (ZITF
2.4). Tt still does not look perfect, which is mainly to due to restriction of the degrees of
freedom. Improvements can also be seen when calculating the SBC

> ptp.gamlss.zitf2.5$sbc
[1] -1279.507

which decreased by

> ptp.gamlss.zitf2.58sbc - ptp.gamlss.zitf2.4$sbc

[1] -49.17096
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Against Index Normal Q-Q Plot

Quantile Residuals
0
|
oo
ol
0¥
[l
s
6!
%
®
ooo%
#
&
%
®
d
Sample Quantiles

Index i Theoretical Quantiles

(a) Plot of normalized quantile resid- (b) Q-Q normal plot of normalized
uals against index quantile residuals

Figure 4.11.: Both plots show a good fit for ZITF 2.5

In total we needed

> ptp.gamlss.zitf2.5%df.fit

[1] 20

degrees of freedom to model this line of business.

4.3. Results

Model ZITF 2.5 is the final model for this line of business since residuals show no pattern,
the Q-Q normal plot shows no huge lack of fit and the SBC is smallest among all SBC’s
calculated in this section for this model. To interpret the model we start with explaining
the model for each parameter separately. We have used a zero-inflated t-distribution
which has four parameters:

p: The final model for p is

64

p ~ poly(DevLagy2) + (DevLagy = 1) + (DevLagy = 2) + (DevLagy, = 3)
+ (DevLagy, = 4) + (DevLagy = 17 & AY ear; = 1993).

That means it is enough to estimate PtP ratios using a quadratic trend on the
development lag and account for the first four development lags by using factors on
these lags. The term for accident year 1993 at lag 17 is necessary to model the very
unusual PtP ratio there.

In Figure [£.12) we see that estimates for p are in line to what we have seen at the
beginning of this section. p is related to the mean in the way that E [Y] = (1 —7)u.



4.3. Results

PtP ratio development PtP ratio development for high development lags
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(a) Estimated p’s (solid line) describe (b) For higher lags the fit looks well.
development of PtP ratios well The dashed line shows the fit for
quad accident year 1993

Figure 4.12.: Estimated values for p for all accident years but 1993 (solid line) and for
accident year 1993 (dashed line) fit well

Thus neglecting 7, a decreasing p for increasing development lags means that we
expect the PtP ratios to decrease. It can further be seen that the huge outlier for
accident year 1993 at lag 17, caused by a large negative payment, is modeled by
the factor.

o: The final model for o is

log(o) ~ poly(DevLagy,5) + (DevLag, = 5)
+ (DevLagy, = 6) + (AY ear; = 1997).

For o a polynomial of degree 5 was necessary plus factors for development lags 5
and 6 a factor for accident year 1997. Recall that we used a log link for o to ensure
positive values for o and the R function poly fits orthogonal polynomials.
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Fitted Values for o
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Figure 4.13.: Plot of fitted values for o on log-scale

Figure shows a plot of fitted values for o for all accident years but 1997 whose
slope is shifted upwards because of the factor. Fitted values are plotted on a log
scale to ease identifying the slope. A decreasing trend is observable with an ’edge’
for development lag 6 and an increasing trend for very high development lags. This
is possibly caused by the few observations for those lags.

v: v is fixed at 2.1 for all observations. This is the smallest degree of freedom we could
use to ensure existence of the variance.

T: 7 is model by
logit(T) ~ poly(Adj.DevLagy,2),

a polynomial of degree on the adjusted development lag, defined in (4.2)).

A plot of 7 against development lag is given in Figure [£.14] Fitted values 7 match
the observed probabilities z; well. For development lags less than 9 we exclude
the possibility of being zero by having 7 = 0. The quadratic curve used afterward
has its maximum at lag 16 with a probability for the PtP ratio being 0 of 60%.
Instead of using the adjusted development lag one could have used the original
development lag well. This would then have led to probabilities greater than zero
also for development lags less than 9 and smoother curve.

Recalling that neither mean nor variance of the zero-inflated ¢-distribution are functions of
only one parameter we can’t make statements about them by solely analyzing parameters
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Figure 4.14.: Fitted values 7, and observed probabilities z

individually. Estimated mean and variance for the zero-inflated ¢-distribution are given
by

ik = (1 — 7ik) ik

and

A~

N A A Vik N A A
Vig = (1 —Tik) <012k > kl_ 5+ M?,k) — (1= Tip)*fiz g,
Z?

compare Section Since, beside from two factors, neither mean nor variance depend
on the accident year, we drop the index i. We can then compare estimated means and
variances per development lag to the empirical versions, given by

my = ——— PtP; k=1.... —1.
mk,‘ TL+1—]{I ; ],k,‘a 9 ,n
and
-2 R 9 B B
/Uk_n_k; (Ptljjvk mk‘) 5 k—l,...,n 1.

Figure [1.15](a) shows a good estimation of the mean in each development lag. Variances
for the first three development lags are estimated much higher than they should as
Figure .15(b) suggests. Since we didn’t use factors for the first development lags like
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Empirical and estimated mean Empirical and estimated variances
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Figure 4.15.: Empirical and estimated means and variances for model ZITF 2.5

we did for the mean, this could be caused by the polynomial which might not able to
capture the development well.

This ends the chapter about model fitting. We have shown how to develop a model for a
certain line of business and determine successively better models. The final model is still
no perfect model but we stress that this is mainly driven by our restriction for v. We
also showed that detailed analyzing and understanding of the data is necessary to find a
good model. Thus it takes much more time and effort to estimate a model than using
e.g. the chain ladder method or a generalized linear model. The next chapter shows how
limited chain ladder method and GLMs in certain scenarios are and why the GAMLSS is
the better model.

At the end of this section we show an overview of all models fit for this line of business.
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Model

Distr.

Parameter

Polynomials

Factors

No. Parameters

SBC

721G 1

Z1G

=3
S =

poly(DevLag,5)
1
1

8

-412.1369

ZITF 1

ZITF

=
\_/\9/7: Ay

—
Q

a9

—~
<

poly(DevLag,5)
1
1
1

-737.5843

ZITF 2.1

ZITF

% 5
S8 =y

poly(DevLag,5)
1

2.1 (fixed)

1

-674.4351

ZITF 2.2

ZITF

o —
© B
S8 =y

poly(DevLag,5)
poly(DevLag,5)
2.1 (fixed)

1

13

-1032.481

ZITF 2.3

ZITF

=3
D=4

—
o
o
—~
<
~— —

DevLag
poly(DevLag,5)
2.1 (fixed)

1

DevLag 1,2,3,4

13

-1176.032

ZITF 2.4

ZITF

=3
Q=4

—_
Q
]
—~
<
~— — —

logit (7

DevLag
poly(DevLag,5)

2.1 (fixed)
poly(Adj.DevLag,2)

DevLag 1,2,3,4

15

-1230.336

ZITF 2.5

ZITF

=

=
Q

[S—
@}
OS]
—~
X
SN—

logit(7)

poly(DevLag,2)

poly(DevLag,5)
2.1 (fixed)
poly(Adj.DevLag,2)

DevLag1,2,3,4,
DevLag 17 & AYear 1997
DevLag 5,6, AYear 1997

20

-1279.507

Table 4.3.: All models for LoB 6
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5. Comparison of Models

The GAMLSS introduced in the last section is a very complex model. From a practioner’s
point of view one may raise the question if it is really necessary to use such a model.
In this chapter we want to show with some easy examples why we think it is necessary.
At the beginning we will give an example where the statistical model is superior to the
deterministic chain ladder method. Then we examine why especially a GAMLSS is more
suitable than a generalized linear model, which has been used by [Shi and Frees| (2011)).
We recall that the chain ladder method needs (cumulative) paid losses, whereas the
generalized linear model used by [Shi and Frees (2011)) and the GAMLSS we use need
paid-to-premium ratios.

5.1. Accident Year Effects

Consider the following first two columns of a loss triangle given as in Table 5.1} Because
we focus on these two columns and do not use other columns of the complete loss triangle,
we omitted these.

Accident | Development Lag k Accident | Development Lag k
Year ¢ 1 2 Year ¢ 1 2
1 50 115 1 50 65
2 60 127 2 60 67
3 65 140 3 65 75
4 70 150 4 70 80
5 75 170 5 75 95
6 80 175 6 80 95
7 80 170 7 80 90
8 70 140 8 70 70
9 70 130 9 70 60
10 65 - 10 65 -
(a) Cumulative losses Cj (b) Incremental losses .S;

Table 5.1.: First two columns of a loss triangle

Furthermore assume the premiums are given as in Table
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5. Comparison of Models

Accident | Premium
Year ¢
1 310
2 330
3 350
4 375
5 390
6 430
7 460
8 430
9 450
10 440

Table 5.2.: Premiums P;

Then the age-to-age factors I}, 7 =1,...,9, and Paid-to-Premium ratios
PtP;1,1=1,...,10, PtPs,i=1,...,9, can be calculated as in Table [5.3

Accident | Age-to-Age Factor Accident | Development Lag k

Year ¢ 1-2 Year ¢ 1 2

1 2.300 1 0.161 0.210

2 2.117 2 0.182 0.203

3 2.154 3 0.185 0.214

4 2.143 4 0.186 0.213

5} 2.267 5) 0.192 0.244

6 2.188 6 0.186 0.221

7 2.125 7 0.174 0.196

8 2.000 8 0.163 0.163

9 1.857 9 0.156 0.133
10 - 10 0.148 -
(a) Age-to-Age factors F; ; (b) PtP ratios PtP;

Table 5.3.: Age-to-Age factors Fj; and PtP ratios PtP,

Figure shows a non-linear trend for the age-to-age factors (used for the chain ladder
method) and the Paid-to-Premium ratios (used for the GAMLSS) at the first development
lag among the accident years. We could perform a very small analysis for the accident
year 9. We store the data in a data frame and estimate factors in R. An excerpt of the
first two rows of the data frame is shown below.

> acc.ex[1:2,]
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5.1. Accident Year Effects

Age-to-Age factors for development 1-2 PtP Ratios at first development lag

23
1
0.19
1

22
1
0.18
1

241
0.17
1

2.0
0.16
1

1.9

0.15
1

Accident Year i Accident Year i

Figure 5.1.: Strong non-linear trend in both data sets

Premiums Cum.Paid.Lagl Cum.Paid.Lag2 AtA.Factor.1.2 PtP.Ratio.Lagl

1 310 50 115 2.300 0.161
330 60 127 2.117 0.182
PtP.Ratio.Lag2
1 0.210
0.203

The chain ladder factor using only the first 8 accident years is

> round (sum(acc.ex$Cum.Paid.Lag2[1:8])/sum(acc.ex$Cum.Paid.Lag1[1:8]),3)
[1] 2.158

and thus 2.158/1.857 — 1 &~ 16% higher than the observed one. Even excluding several
accident years by using a volume weighted average of say the last 5 years still leads to an
overestimation of the observed value. The GAMLSS is more flexible and allows explicit
modeling of effects like these. Figure [5.1] shows an approximately quadratic trend with
negative slope. Hence including a polynomial on the accident year of degree 2 as covariate
will lead to much better results. Depending on the behavior in the following development
lags one could use an overall polynomial (of degree 2 or maybe even more). Or if this
non-linear trend appears only for the first lag one could use and interaction of polynomial
and development lag 1. Performing a simple linear regression with a polynomial on
accident year AYear of degree 2

> AYear <- c(1:8)
> acc.lm <- 1m(PtP.Ratio.Lagl[c(1:8)] poly(AYear,2, raw=TRUE),
+ data=acc.ex)

leads to an estimate of

> acc.lm$coefficients J*J, ¢(1,9,81)

)



5. Comparison of Models

[,1]
[1,]1 0.1431964

and thus a relative difference of 0.143/0.156 — 1 ~ —8.2%. Note that a linear model is a
special case of the GAMLSS and thus can be fitted in R either using a standard 1m-fit or
a gamlss-fit.

There are several more scenarios which can cause problems to the chain ladder method.
Beside a trend, unusual accident years cannot be represented properly. Caused for instance
by a catastrophe one accident year could behave very different from the other ones. While
the volume weighted average will smooth the development, the GAMLSS allows explicit
modeling of such an accident year using a factor for this accident year. Additionally
the GAMLSS can not only model the average level (i.e. measured by mean) but also a
different variation (i.e. measure by variance). Suppose a line of business with first two
columns like in Table [5.4] Again we omitted other columns because we don’t consider
them here.

Accident | Development Lag k Accident | Development Lag k
Year @ 1 2 Year @ 1 2
1 55 115 1 55 60
2 60 125 2 60 65
3 65 130 3 65 65
4 70 155 4 70 85
5 75 140 5 75 65
6 80 185 6 80 105
7 80 145 7 80 65
8 70 164 8 70 95
9 70 120 9 70 50
10 65 - 10 65 -
(a) Cumulative losses C; (b) Incremental losses .S;

Table 5.4.: First two columns of a loss triangle

Furthermore assume the premiums are given as in Table [5.5]
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5.1. Accident Year Effects

Accident | Premium
Year ¢
1 320
2 345
3 390
4 390
5 480
6 440
7 533
8 375
9 490
10 340

Table 5.5.: Premiums P;

Then the age-to-age factors F;;, ¢ =1,...,9, and Paid-to-Premium ratios
PtP;,,i=1,...,10, PtP,5, i =1,...,9, can be calculated as in Table [5.6]

Accident | Age-to-Age Factor Accident | Development Lag k

Year ¢ 1-2 Year ¢ 1 2

1 2.091 1 0.172 0.188

2 2.083 2 0.174 0.188

3 2.000 3 0.167 0.167

4 2.214 4 0.179 0.218

5 1.867 5 0.156 0.135

6 2.312 6 0.182 0.239

7 1.812 7 0.150 0.122

8 2.357 8 0.187 0.253

9 1.714 9 0.143 0.102
10 - 10 0.197 -
(a) Age-to-Age factors Fj (b) PtP ratios PtP;,

Table 5.6.: Age-to-Age factors F;; and PtP ratios PtP;;, k =1,2

Figure [5.2] shows that both development factors and PtP ratios stay at the same level
but their variation increases with increasing accident years. For accident year 9 the chain
ladder method based upon the first eight years estimates a development factor of

> round(sum(acc.ex.2[1:8,3]) / sum(acc.ex.2[1:8,2]1),3)

(1] 2.09
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5. Comparison of Models

Age-to-Age factors for development 1-2 PtP Ratios at first development lag

23
1

22
1
0.18
1

F
19 20 21
PP,
015 016 0.17
| | |

1.8

0.14
1

17

Accident Year i Accident Year i

Figure 5.2.: Variation increases with increasing accident years

and hence overestimates the observed value by approx. 22%. For the GAMLSS we have
the choice of using the accident year as covariate for the mean as we did in the first
example. But we can see that the average PtP ratio stays the same (around 0.17), meaning
that there is no trend observable. However, the GAMLSS allows explicit modeling of the
scale parameter. Hence we fit a GAMLSS with a Gaussian distribution with constant
location parameter and linear trend in the scale parameter, called o:

PtPy ~ N (u=1,log(c) = AY ear;)
In this case o models the standard deviation and we use a log link for o.

> acc.ex.2.GAMLSS <- data.frame(cbind("AYear"=c(1:8),
+ "PtP.Ratio.Lagl"=acc.ex.2[1:8,5]))

> acc.gamlss.2 <- gamlss(PtP.Ratio.Lagl~1, sigma.formula="AYear, family=NO,
+ control=gamlss.control (trace=F), data=acc.ex.2.GAMLSS)

Predicting the ratio at accident year 9 yields

> round(predict(acc.gamlss.2, newdata=9),3)
[1] 0.172

which is approx. 0.172/0.143 — 1 &~ 20% higher than the observed value. What appears to
be only a small improvement compared to the chain ladder method turns out to be a big
one when using the fact the the GAMLSS is a statistical model. It specifies a complete
distribution for each entry, so in this case we receive a Gaussian distribution for each
entry. By including a linear trend for the second parameter, i.e. the standard deviation,
later accident years can have a different standard deviation (and hence variance) than
earlier ones. The estimated parameters for the o-model are
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5.2. Calendar Year Effects

> acc.gamlss.2$sigma.coef

(Intercept) AYear
-6.9097326  0.4508798

The estimated parameter for accident year has a positive sign, meaning that later accident
years will have a larger standard deviation than earlier accident years, see Figure |5.3|

Distribution at accident year 5 Distribution at accident year 9

---- Observed Value ™~ ---- Observed Value
GAMLSS Estimate GAMLSS Estimate

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
PtPs 4 PtPg 4

Figure 5.3.: The Gaussian distribution has a much standard deviation for accident year
9 than for accident year 5

The figure shows the huge difference between the classic chain ladder method and the
GAMLSS approach. While the chain ladder method provides only a point estimate, the
GAMLSS provides a distribution and hence a possibility to measure uncertainty and
risk. The Gaussian distribution at accident year 9 shows much higher standard deviation
than at accident year 5. Because of that any estimate between say 0.1 and 0.25 seems to
be reasonable for accident year 9 while for accident year 5 the interval is much smaller.
When looking at the area close to 0 for accident year 9 we can also see some support
there and the probability for a negative PtP ratio is

> pNO(0, mu9, sigma9)
[1] 0.001443618

While a negative PtP ratio clearly makes no sense for the first development lag, it does
for the later ones and offers the possibility of including refunds into the model.

5.2. Calendar Year Effects

Beside estimates of ultimate losses, insurance companies are often interested in estimates
of next year’s cash flow. The cash flow can be estimated using the chain ladder or
GAMLSS method. We define next calendar year’s cash flow as follows.

79



5. Comparison of Models

Accident Development Lag k
Year @ 1 2 3 4 5)
1 Sii Sig Sz Sia Sis

2 Soq S22 Saz Saa Sap
3 Ss1 Sz S33 Ssg

4 Sin Si2 Sags

5 Ss1 Ss2

Table 5.7.: Cash Flow for calendar year 6 (bold incremental paid losses)

Definition 5.1: Let S be a loss triangle with incremental payments. Then the cash
flow for calendar year n + 1 is defined as

Spt1:= 825 +S3p1+ ...+ Spo = Zsk,n—i-Q—k-
k=2

S1nt1 1s not part of the cash flow since the chain ladder method assumes all accident
years to be fully developed by development lag n. An illustration of the cash flow can be
found in Table 5.7

Having a long data history there may arise problems of distortions caused by inflation. To
examine influence of inflation on the estimates, we consider two data sets: one has been
manually deflated while the other one has not. As a measure of inflation we used the
consumer price index (CPI). We then applied the chain ladder method and the GAMLSS
to both data sets without the latest diagonal, i.e. the latest calendar year. Details about
the data and the GAMLSS used for this comparison can be found in Appendix [A.T]

We estimated the next calendar year’s cash flow and compared results to the observed
cash flow. In Table (£.8] the relative differences between the estimated cash flows and the
observed cash flows are shown.

rel. difference (deflated data) rel. difference (inflated data)
Chain Ladder 0.3548 0.3338
GAMLSS -0.2877 -0.2877

Table 5.8.: GAMLSS estimates are closer to the observed ones than chain ladder estimates

For both data sets the GAMLSS estimate is closer to the observed one. As outlined
in Appendix the GAMLSS is the same for both data sets. While chain ladder
overestimates the cash flow by approx. 35.5% and 33.4%, the GAMLSS underestimates
the cash flow by approx. 28.8%. The chain ladder method performs slightly better when
applied to the data with inflation effects in this example, but the difference between the
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two chain ladder estimates is rather small. Hence we continue to work with original data
and leave inflation effects in the data.

Note at this point we neglected the different outcomes between overestimation and
underestimation, which is of interested for insurer and will be discussed in more detail in
the later chapters.

5.3. Dependencies

While the last two sections focused on a single line of business, one goal of this thesis
is to examine dependencies across several lines of business in a portfolio. Also, similar
results could have been achieved with a generalized linear model. To show why a GLM is
not a suitable model to analyze dependencies, we consider Paid-to-Premium ratios of
two lines of business. To measure dependencies we need the term of correlation.

Definition 5.2: Let X and Y be univariate random variables with finite variances o%,
0%.. Then Pearson’s rho is defined as

_ Cov[X,Y] E[XY]-E[X]E[V]
XY = e NN

Definition 5.3: Let X and Y be univariate random variables and X' andY' be inde-
pendent copies of X and Y, respectively. Then Kendall’s taw is defined as

7(X,Y) [(X—X’)(Y—Y’) > 0] —P [(X—X')(Y—Y’) <0

—P
—E [sign ((X XY - Y’))] .

Both measures take values in [—1,1] with p(X,Y) = 0 = 7(X,Y) if X and Y are
independent. Pearson’s rho is widely used and thus often named Pearson correlation or
just correlation. But Pearson’s rho can only describe linear dependencies and is sensitive
to outliers. For both cases a rank correlation like Kendall’s tau is more meaningful. A
rank correlation makes use of the ranks of observations, i.e. a permutation of the vector
of observations such that for the ordered vector x(;y < ... < x(,) holds. Two examples
where Pearson’s rho is not meaningful can be found in Section [7.4]

A scatterplot of PtP ratios for two lines of business is given in Figure [5.4] We can see
that the relation between both lines of business seems to be almost linear and we could
look at the empirical correlations between both lines of business.

> round(cor (LoB1$PtP.Ratio, LoB2$PtP.Ratio, method="pearson"),3)

[1] 0.689
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Scatterplot of two lines of business
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Figure 5.4.: A simple scatterplot shows a strong functional relation between both lines
of business

> round(cor (LoB1$PtP.Ratio, LoB2$PtP.Ratio, method="kendall"),3)
[1] 0.606

Pearson’s coefficient of correlation of 0.689 indicates moderate positive (linear) relation
between both lines of business. Kendall’s tau of 0.606 is slightly smaller.

But considering the scale of PtP ratios problems when using Pearson’s coefficient arise.
The ratios do not behave linearly for increasing development lags and it is very question-
able if the PtP ratios come from a normal distribution. Both are requirements to use
Pearson’s coefficient in a meaningful way. Hence we do prefer rank correlation coefficients
like Kendall’s tau. Henceforth we only consider Kendall’s tau as a measure of correlation.

Having a correlation of roughly 0.606 still indicates strong dependence between both
lines of business. The question is if it makes sense to speak of dependence between lines
of business based upon this data, i.e. the PtP ratios. Ratios from both lines of business
are incremental ratios. So naturally, ratios at the first development lags will be much
higher than at the later ones.

While this does not affect rank correlation too much, accident year effects and calendar
year effects as introduced in the last sections do. New rules by the government could
lead to higher payments and thus higher ratios across all lines of business from a certain
calendar year on. Hence a high correlation between two lines of business may not be due
to their natural dependence only but distorted by external influences.

We therefore follow the approach presented by |Shi and Frees (2011) to examine dependen-
cies among residuals of the corresponding statistical models. They fit ordinary generalized
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linear models to the data; a log-normal model and a gamma model. By doing so they
argue to have modeled all dependencies caused by external effects and what remains is
the true dependence between the lines of business.

Although this is an interesting idea, we think it is not enough to use GLMs as we will
show in the following.

Using a generalized linear model, independent of which specific model, leads to modeling
the mean (with a certain link function). Especially we assume variance homogeneity. To
examine this, we use the same triangle as Shi and Frees| (2011)).

We fit the same to GLM to the data. PtP ratios of commercial auto are modeled by a
Gamma model with accident year and development lag as factors. PtP ratios of personal
auto are modeled by a log-normal model with the same covariates. The summary can be
found in the Appendix [A.2] We could not exactly reproduce the model for Commercial
Auto, but parameter estimates are very close to the original ones. Residual plots for
Personal Auto is shown below in Figure [5.5

Normal Q-Q Plot Against Index
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(a) Q-Q plot for Personal Auto model (b) Residuals against index

Figure 5.5.: Q-Q plot shows no lack of fit for Personal Auto GLM, but plot against the
index does

The Q-Q plot for Personal Auto looks very similar to the Q-Q plot in (Shi and Frees),
2011}, Figure 3). Parameter estimates are the same (compare Appendix [A.2). [Shi and
Frees| (2011) argue that it is a reasonable model. But when analyzing the residuals in
a different way, things change. Figure (b) for the first development lag an upward
trend for increasing accident years. For lags 2, 3 and 4 a downward trend is visible. And
finally, variance increases with increasing development lags. Thus we think this is not an
appropriate model and further analyses on the residuals are not meaningful.
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We fit a GAMLSS to the same data set. For Personal Auto the model is

PtP, ~ LOGNO(M = poly(DevLagy,4) + CYear;
+ (DevLagy, = 3) + (DevLagy, = 4),
o = (DevLag, = 1)),

with a log-normal distribution and identity link functions on both parameters.

Normal Q-Q Plot Against Index
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(a) Q-Q normal plot of normalized (b) Plot of normalized quantile resid-
quantile residuals uals against index

Figure 5.6.: Residual plots for Personal Auto GAMLSS

The Q-Q plot in Figure is much smoother than for the GLM and residuals scatter
randomly around zero. Both plots suggest that the GAMLSS is a better model for this
line of business. Furthermore, the GAMLSS only needs 9 parameters and thus 10 less
than the GLM.

The model for Commercial Auto is

PtP,;;, ~ Gamma(log(p) = poly(DevLagy, 3) + (CY ear; = 1996)
+ (CYear; = 1997) + (DevLagy = 1) : poly(AY ear;, 2),
log(o) = CYear,),

which has 12 instead of 19 parameters. Comparing the GLM with the GAMLSS in
Figure and Figure [5.8] we see the improvement in both plots. One can see a pattern
for the GLM in the plot of residuals against the index. Residuals from calendar year
1996 are always very high, residuals from calendar year 1997 very low. The GAMLSS
accounts for this by using a factor on these calendar years and no pattern is observable.
The Q-Q plot shows a much better fit in the tails and comparing the values for the
Schwarz-Bayesian criterion we see a huge drop from -175.35 to -282.87.
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Figure 5.7.: Residual plots for Commercial Auto GLM
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(a) Q-Q normal plot of normalized
quantile residuals
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(b) Plot of normalized quantile resid-
uals against index

Figure 5.8.: Residual plots for Commercial Auto GAMLSS

So in both cases the GAMLSS is a much better model than the GLM. Even more
important, the GLM shows some lack of fit and hence should not be used for further

residual analyses.
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Figure 5.9.: Scatterplots of residuals from both approaches

For the scatterplot in Figure note that residuals have been transformed to normalized
residuals and take values in [0, 1]. It is difficult to see any relation between Commercial
Auto and Personal Auto from these plots. Hence we calculate the correlation (Kendall’s
tau) of the residuals. For residuals from the two GAMLSS it is

> cor(pnorm(Comm.GAMLSS$resid) ,pnorm(Pers.GAMLSS$resid), method="kendall")
[1] 0.1609428

whereas the correlation of residuals from the GLMs is

> cor (pnorm(Comm.GLM$resid) ,pnorm(Pers.GLM$resid), method="kendall")
[1] -0.07814079

Note that the GLMs have been estimated in the GAMLSS framework but remain GLMs.
The correlation between both approaches is very different. For the GLM we have a
negative correlation (which is in line with [Shi and Frees (2011))) while there is a positive
correlation for the GAMLSS. Hence interpretation of results strongly depends on the
model and will be very different. Considering residuals from the GLM one could argue
that a small diversification effect is present and hence the portfolio reserve could be
smaller than the sum of individual reserves. However, the GAMLSS leads to the opposite
result, i.e. that the portfolio reserve should be even higher than the sum of individual
reserves.

But having in mind that the GLM shows some lack of fit, the correlation from the GLM
is not very meaningful. On the other side the GAMLSS for both lines of business fit well
and hence also interpretation of the correlation of residuals is reasonable.
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Summary

We showed that using a statistical model enables us to incorporate accident year and
calendar year effects much better than the chain ladder method. Since we use Paid-to-
Premium ratios for the GAMLSS, inflation effects are not present. Among statistical
models we gave in insight why we think a GAMLSS is superior to standard GLM for
modeling PtP ratios. It is very important to check model assumptions and analyze
residuals in multiple ways. It also makes sense to use continuous covariates rather than
factors to keep the number of parameters low, especially for small triangles

Therefore GAMLSS will be used in the following sections for all lines of business to ensure
that the chosen models are indeed appropriate. Dependence can then be analyzed on the
residuals of those models.
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6. Future Claims Analysis

Goal of this chapter is to analyze the ability of the GAMLSS of predicting future claims.
As a benchmark we compare results to the chain ladder method. To analyze future claims
we

e restrict the data set by excluding the latest calendar year

e fit a GAMLSS to the restricted data set and apply the chain ladder method to the
restricted data set

e predict the next calendar year with both methods
e compare predicted values to observed values.

This procedure is motivated by the fact that it provides a relative easy way to check the
short term prediction power of both methods. And estimating PtP ratios or paid losses
for the next calendar year is important for an insurer since that is an estimate for next
calendar year’s cash flow which can have an effect e.g. on business decisions. The cash
flow for calendar year n + 1 is defined as

n
Sn—i—l = E Sk,n—l—?—ka
k=2

compare Definition [5.1]

Clearly, the cash flow for year n + 1 depends on things happening in calendar year n + 1.
Unusual events in that year could result in a cash flow that is very different from the
predicted one. To minimize risk of wrong inference caused by an unusual calendar year,
we do not compare only one cash flow but six. Data is available until 2011 and we estimate
cash flows for calendar years 2006 to 2011.

As mentioned at the beginning of the last section data until 2011 includes 231 observations.
Excluding the last calendar year reduces the data set to 210 observations, on which the
GAMLSS model is fitted and chain ladder factors are calculated. An overview of the
amount of observations available for each cash flow estimation is shown in Table [6.1]
For the chain ladder method we only need to apply the chain ladder method to smaller
triangles. For the GAMLSS it would have been eligible to do so as well. However, it
turns out that more work has to be done here. One reason is that some covariates simply
cannot enter a model. Suppose a model has been fit using data until 2007. Then there is
no sense in using a factor for accident year 2008 for a parameter. But when using data
until 2010 the factor might be needed.

89



6. Future Claims Analysis

Data until Number of obs. Predict cash flow for
2005 120 2006
2006 136 2007
2007 153 2008
2008 171 2009
2009 190 2010
2010 210 2011

Table 6.1.: Number of available observations.

We also observed some convergence problems for smaller triangles. This was probably
caused by the attempt to fit too complex models to data with too few observations. Note
that for the smallest triangle, i.e. data until 2005, only 120 observations are available. Thus
for each line of business models for each restricted data set had to be fitted separately.
Giving detailed explanations of each model would go beyond the scope of this thesis.
Hence summarized results about the models can be found in the appendix.

Another point we would like to address is the question which is an appropriate estimate
for unknown S, ; in the GAMLSS framework. For each observation S, i,k =1,...,n,
the GAMLSS estimates a distribution. A natural suggestion could be to use the mean
of the distribution. Since all observations are assumed to be independent the cash flow
could be estimated as

A

Sn+1 =K [Sn+1] =K

Zsi,n-i-Q—i] nd- ZE [Sinto—il -
i—2 i—2

While this makes sense for symmetric distributions it is not necessarily meaningful for
skewed distributions. Then other statistics like median or mode make more sense. But in
contrast to the mean, e.g. the median of a sum of random variables is not the sum of
medians of the single random variables. And since we have used complex distributions
such as the skew exponential power type 1 distribution it would be difficult to find an
analytic expression for the median.

Thus, for calendar year n + 1, we simulate L = 5000 cash flows SﬁLH, l=1,...,L,and
examine the predictive distribution. To simulate a cash flow, random number from the
underlying distribution in each cell of the diagonal are drawn and summed up. For the
set of 5000 cash flows empirical mean, median and quantiles are available. Depending on
the shape of the distribution further analyses have to be done, separately for each line of
business and each calendar year.
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6.1. Line of Business 1

6.1. Line of Business 1
We start with the first line of business. The six models are shown in Table [B.1.1l For all

six models a SEP1 distribution has been used with constants v and 7. For u and o the
formulas vary between the different models.

Relative differences from observed cash flows by calendar year

B Chain Ladder Estimate
O GAMLSS Emp. Mean
_ O GAMLSS Emp. Median

0.3

0.2

0.1

g
!

-0.1
1

-0.2
L

2006 2007 2008 2009 2010 2011

Figure 6.1.: Chain ladder estimates, empirical means and empirical medians from

GAMLSS models for LoB 1

Figure [6.1] shows relative deviations of chain ladder estimates and empirical means and
empirical medians of GAMLSS simulations from the observed cash flows. Both methods
underestimate the observed cash flow three times and overestimate it three times. While
for 2006, 2007 and 2010 estimates from both methods are close to each other, there
are bigger differences for the other calendar years. But it is not clear from this plot
what causes the differences to the observed cash flow for each method, why results differ
between methods or how significant differences between estimates of both estimates are.
To answer these questions Figure [6.2] shows density plots for all six estimated cash flow
distributions. To maximize readability for each cash flow distribution axes vary between
plots. It shows

e what shape the distribution has

e whether the mean or the median should be used for GAMLSS

e how big differences between estimated cash flows are.
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6.1. Line of Business 1

There are a couple of observations that can be made for the calendar years.

2011:

2010:

2009:

2008:

2007:

The chain ladder estimate is approximately 16% below the observed cash flow for
calendar year 2011. Both, mean and median from the GAMLSS are much lower and
underestimate the observed paid loss by approx. 30%. So both methods strongly
underestimate the observed paid loss for this calendar year.

The density is right-skewed such that the median would be the more conservative,
i.e. higher estimate. We see that the observed cash flow is even beyond the empirical
95%-quantile.

To find out what caused this huge differences we have to look at the underlying
data set. Clearly, big differences for the first development lags have a big influence
on the total difference since paid losses are much higher in absolute terms for these
lags.

Checking the data shows that an unusually high PtP ratio is observable for accident
year 2010 at lag 2. The development factor for this year is also higher than the
chain ladder factor, but not that extreme. Thus the chain ladder method performs
better in this case. But none of the methods was able to forecast such an unusual
loss.

Within the GAMLSS framework, the probability that a cash flow greater or equal
to the observed cash flow occurs is only 2% and hence very rare scenario.

Again the density plot shows a slightly right-skewed distribution. In contrast to
the first case estimates for calendar year 2010 with data until 2009 are much closer
to the observed cash flow. Chain ladder estimate, GAMLSS mean and median all
underestimate the observed cash flow by less than 10%. The chain ladder estimate
is slightly below the GAMLSS estimate.

The underlying data has no noticeable observations for calendar year 2010, so
differences arise from the methods. Note at this point that the outlier for calendar
year 2011 can be neglected since we forecast only one period.

In contrast to estimates for 2010 and 2011, estimates for 2009 from both methods
overestimate the observed loss. The chain ladder method overestimates it by roughly
16% and the GAMLSS by 34%. We see a very symmetric distribution, hence mean
and median are almost the same. No outlier could be detected in the data. Thus
one should prefer the chain ladder estimate in this case.

Again we see very symmetric distribution and empirical mean and median are both
at 13%. Here the GAMLSS outperforms the chain ladder method whose estimate
is about 40% higher than the observed cash flow. The reason for that is a very low
development factor for accident year 2007 while the PtP ratio for that year is not
noticeable.

Mean and median of the almost symmetric distribution are both at approx. 26%
which is slightly below the chain ladder estimate (31%). Both estimates strongly
overestimate the observed cash flow although data gives no obvious explanation for
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6. Future Claims Analysis

this. PtP ratios and development factors for calendar year 2007 are slightly lower
than for previous years such that the big difference is caused by the sum of all the
smaller differences.

2006: Chain ladder estimate, GAMLSS mean and median are all very close to the observed
cash flow. They are only 2-3% below the observed cash flow. So for this calendar
year both methods yield very good estimates.

After examining the six plots no method can be preferred. Three times chain ladder
estimates is closer to the observed cash flow, three times mean or median of the GAMLSS
is closer. For the GAMLSS differences between the mean or median are rather small,
only for the cash flows of calendar year 2010 and 2011 they are visible. While the big
differences for calendar year 2011 (GAMLSS) and for calendar year 2008 (chain ladder)
were caused by unusual observations, differences for other calendar years seem to arise
from the methods. For chain ladder explanations are mainly of the type 'observed factor
is higher/lower than estimated one’. It is not that easy for the GAMLSS. In complex
models many things influence the estimation of future PtP ratios and detailed analyses
are necessary to fully understand what causes the differences. There might also be a
trade off between a model which yields good estimations of cash flows on other models
which fit better in general, so model choice is can be difficult.
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6.2. Line of Business 2, 3, 4 and 5

Analyses for all other lines of business could be done in a similar way. However, we don’t
present detailed results for each lines of business. We only show results for another line
of business, line of business 3. Here the GAMLSS outperforms the chain ladder method
and does so not by chance. Figures and models for lines of business 2, 4 and 5 can be

found in Appendix [B.2] [B.4] and [B.5]

The six models for line of business 3 can be found in the Table [B.3.11

Relative differences from observed cash flows by calendar year

ﬁrﬁPL
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|

-0.05

1

-0.10

B Chain Ladder Estimate
@ GAMLSS Emp. Mean
0O GAMLSS Emp. Median

-0.15
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Figure 6.3.: Chain ladder estimates, empirical means and empirical medians from
GAMLSS for LoB 3

Figure [6.3] shows that the GAMLSS mean and median are closer to the observed cash
flows than chain ladder estimates for all calendar years. Although, in contrast to line of
business 1, the scale is smaller (relative differences to not exceed -20%, the difference
between GAMLSS and chain ladder method is remarkable. When looking at the data set
we find a situation as described in Figure [5.1]
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Figure 6.4.: Observed age-to-age factors 1-2 (a) and PtP ratios for development lag 2 (b)
for line of business 3

Figure (a) shows the individual age-to-age factors for each accident year from develop-
ment lag 1 to lag 2 of data until 2009. The chain ladder estimate, based upon all but
the latest accident year (in this data set 2009), is lower than the observed one. Note
that although the relative difference between the estimated and observed factor is rather
small, the relative difference between the estimated and observed incremental paid loss
is much higher. When forecasting one period the relative difference between estimated
incremental payment and observed incremental payment is

T VR € Ve & Y W O s Bk 0 & VS R /= el S
M S Cik = Cig—1 (Fig—1—1)Cig Fip,—1 7

where Fj;_; is the observed age-to-age factor and f,f_’:l the estimated factor from the
restricted data set. This obviously is not the same as just the relative difference of the
chain ladder factor and observed age-to-age factor,

rCL
k—1
Fo= —1.

Especially for Fj;_; and fkcfl close to 1 the difference between 7"1'[, , and 7“5 » Will be huge.
Although Figure (a) shows a relative difference of age-to-age factors of only roughly
750002 = —1.8%, the relative difference of incremental payments is 13,59, = —5%. Since
age-to-age ratios are much bigger than 1 (around 1.5 - 1.6), 1y and 75,49 5 are not too
different. For other lines of business with smaller development factors 1-2 or for later
age-to-age factors the difference can be much higher.

We also see a functional relation between accident year and age-to-age factor which could
be described as a quadratic trend. However, the chain ladder method cannot account for
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6.2. Line of Business 2, 3, 4 and 5

this and only estimates a constant factor (dotted line). So in this case the chain ladder
method cannot estimate the development factor properly.

In contrast to that the GAMLSS estimate is much closer to the observed paid loss.
Figure [6.4b) shows the observed PtP ratios at development lag 2. The estimated PtP
ratio is only 1% below the observed one and hence much closer to it than the chain ladder
estimate to the development factor. In contrast to chain ladder estimates the relative
difference of PtP ratios is equal to the relative difference of incremental paid losses since

I Si,k P/ZS\PZ'JC . P’I"Z' ﬁt\Pi,k
T = — = —_— [ A
Sk PtP,y - Pr; PtPy,

where PtP,;, is the observed Paid-to-Premium ratio, Igﬁjm its estimate and Pr; the
premium for accident year 7. So the difference can directly be seen in Figure [6.4]b).
Furthermore the dotted line shows the estimated PtP ratios for the second development
lag and we see that the curve describes the actual observations well. Here a linear trend
on the accident year for development lag 2 on p and a polynomial of degree 4 on accident
year for all development lags for o has been used, compare Table [B.3.1]

The same observations for chain ladder estimates and GAMLSS estimates can be made
for all parts of the cash flow for this calendar year. Similarly the huge differences between
chain ladder and GAMLSS estimates for the other calendar years are mainly caused by
this fact. This explains why the GAMLSS outperforms the chain ladder method for this
line of business so much.

Summary

We showed in this section how well chain ladder method and GAMLSS can estimate
next calendar year’s cash flow. We paid special attention to the point estimates of both
methods. While for line of business 1 results were mixed, the GAMLSS outperformed
chain ladder tremendously for line of business 3. One may raise the question why this is
not the case for all lines of business. The GAMLSS is much more powerful and ideally
should perform better for all lines of business. But it still is a statistical model which
depends on the underlying data. We have seen for line of business 1 that a couple of
outliers are in the data set. Hence it is no surprise that the GAMLSS can’t model these
outliers well. On the other side, if data follows a pattern like for line of business 3, we
showed that a GAMLSS can lead to much better estimates than the chain ladder method.
Hence no method can be preferred in all cases and detailed analyses of underlying models
and data sets are required to choose the best and most reliable method.

Beside the absolute values of the relative differences it is also important to distinguish
between differences with positive or negative signs. A positive sign means the cash
flow was overestimated. In that case the insurer would have accounted for more losses
than eventually occurred. Underestimation is much more risky and could lead to serious
problems for an insurer. So one might not always prefer the method with the smallest
absolute value of relative differences but the one which is more conservative, i.e. more
likely to overestimate losses.
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Dependence Analysis

Beside estimates for next calendar year’s cash flow the main goal of reserving still is to
estimate reserves, i.e. all future obligations. As mentioned in earlier chapters we don’t
assume further changes of claims after the last development lag. Thus the reserve for
accident year ¢ is defined as

RZ‘I: zn: Si,ka 222,,71

k=n+2—1i

Both methods, chain ladder and GAMLSS, yield estimates of unknown future payments
and therefore of the reserves. Similar as for cash flow analyses the chain ladder estimates
include no information about uncertainty. Hence bootstrapping is commonly used in
insurance companies to obtain predictive reserve distributions and measures of uncertainty
like the mean squared error of prediction. Bootstrapping has been introduced in Chapter
The GAMLSS on the other side provides predictive distributions for each unknown future
payment but not for the sum of them. While in some cases, i.e. if all payments follow
a Gaussian distribution, the sum of those random variables can easily be determined,
this is not the case for distributions like the skew exponential power type 1 distribution.
Since this distribution has been used a couple of times, a different technique is necessary.
We used a similar approach as for the predictive cash flow distributions in the last
section and simulated 2000 sets of future payments. But in contrast to the cash flow
projection we incorporated parameter uncertainty. This is necessary since the chain ladder
bootstrapping incorporates parameter uncertainty as well and otherwise result would not
be comparable. To also incorporate parameter uncertainty, new loss triangle have been
generated from random numbers of the underlying distributions. The GAMLSS have
been refitted and future payments have been estimated as predictions of the GAMLSS.

Predictive distributions of reserves can then be estimated per accident year or for the
whole line of business. It is often not necessary to analyze each accident year separately
since the final reserve is allocated to the whole line of business. Therefore only a short
analysis of reserves by accident is done on the following pages. Especially predictive
distribution are only considered for the total reserve. Details about the models used for
reserve estimation can be found in the appendix.
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7.1. Line of Business 3

For reserve estimation a GAMLSS with SEP1-distribution has been used for this line
of business. Details about the fit can be found in Appendix [B.3.2] In Section [6.2] cash
flow analyses showed that the chain ladder method tends to underestimate cash flows for
this line of business. Hence we expect the chain ladder reserve estimates to be smaller
than GAMLSS reserve estimates. Nevertheless the variation of estimates can behave very
differently and strongly depends on the models used. We illustrate this in Figure [7.1],
where the estimated ultimate losses per accident year are shown together with empirical
quantiles, indicating variation of estimates. Beside variation of ultimate loss estimates,
trends could be detected in such a plot.

Estimated ultimate losses by accident year (CL)

—e— Est. Mean
10% / 90% quantile
-- 25% / 75% quantile

&
T T T T
1995 2000 2005 2010
Accident Year
Estimated ultimate losses by accident year (GAMLSS)
—e— Estimated Mean
10% / 90% quantile
-- 25% / 75% quantile
&

T T T T
1995 2000 2005 2010

Accident Year

Figure 7.1.: Ultimate loss estimates for both methods (LoB 3)
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Figure shows estimated ultimate losses from both methods by accident year. Recall
from Chapter [I], that ultimate losses are estimated by

Cin=Cing1—i + R, i=2,...,n.

Both plots show very similar behavior in terms of the mean, with a bigger difference
only for accident year 2011, where the GAMLSS estimates a much higher ultimate loss
than the chain ladder method. This is in line to what we have seen in Section There
the chain ladder method underestimated especially the first development lags, i.e. the
first claims for the latest accident year(s). Because these estimates have the biggest
influence on the estimated ultimate loss, this causes the difference. The bands between
the 10% and 90% quantile (grey) or 25% and 75% quantile (dark grey) don’t differ too
much in terms of width for older accident years. But the light grey band, covering the
area between the 1% and 99% quantile, is much wider for GAMLSS estimates than
chain ladder estimates for recent accident years. So GAMLSS estimates for unknown
future claims vary a lot more than chain ladder estimates in this case. Note that when
considering reserves instead of ultimate losses the variation of estimates will be the same.

We combine the results of individual accident years by summing up all simulated unknown
future payments. Here we are especially interested in the total reserve distribution and
not the total ultimate loss distribution.

Est. Densities of LoB 3

---- CL
— GAMLSS

Total Reserve

Figure 7.2.: Estimated densities for line of business 3

Figure shows estimated densities of total reserves from chain ladder bootstrapping
and GAMLSS simulation. Reserves are relative to and centered around the estimated
total reserve from the GAMLSS simulation. The mean of chain ladder bootstrapping

101



7. Reserve Estimation and Dependence Analysis

GAMLSS CL
Mean 0.0000 -0.1152
Variance 0.0142  0.0030

Table 7.1.: LoB 3 Total reserve statistics

estimates is 11.52% smaller than the mean of GAMLSS estimates. Furthermore the
variation around the mean is much bigger in the GAMLSS model than in the chain ladder
model, see Table [7.I} The variance of the predictive distribution is the mean squared
error of prediction that we introduced in Chapter [ We have a lot more uncertainty
about the actual reserve estimate in the GAMLSS. Hence a business decision could be to
add a margin on top of the reserve to reduce risk.

Against the background of Section we believe that the GAMLSS estimate is more
suitable than the chain ladder estimate in this case since the chain ladder method tends to
underestimate claims even more than the GAMLSS. Especially for the last accident year
the accident year reserve estimates are very different and affect the predictive distribution
of the total reserve heavily. But since also the GAMLSS tends to underestimate cash
flows one might think of using an even higher reserve in the end.

7.2. Line of Business b

A detailed description of the GAMLSS for line of business 5 can be found in Ap-
pendix [B.5] For reserve estimation, a Gaussian distribution has been used to model data
(Section [B.5.2). It is the only line of business where a common distribution could be used.
Analyses of cash flow estimates showed that the chain ladder method tends to underesti-
mate cash flows more than the GAMLSS model, compare Figure [B.5.1] Hence we expect
ultimate loss and total reserve estimates from the GAMLSS model to be higher than
estimates from the chain ladder method.

Estimated ultimate losses from both methods behave very similarly (Figure [7.3)). It
is difficult to see a difference for the estimated means but the estimate for accident
year 2011 from the GAMLSS simulation is slightly higher than the estimate from chain
ladder bootstrapping. Estimates from the chain ladder bootstrapping vary more for older
accident years, but for accident year 2011 the GAMLSS estimates spread wider around
the estimated mean. Noticable is the wider spread around the mean for the GAMLSS at
accident year 2003.

From these plots we don’t expect the predictive reserve distributions to differ a lot. Also
noticable is the observation that estimated ultimate losses from both lines of business
decrease with increasing accident years. But the underlying data shows the same trend,
i.e. a shrinking business for this line of business. Hence the observed trend is not caused
by a lack of fit but in line with the underlying data.
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Estimated ultimate losses by accident year (CL)
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Figure 7.3.: Ultimate Loss estimates for both methods (LoB 5)

In Figure [7.4] predictive distributions of reserves are very similar between both methods.
The empirical mean varys only slightly between both methods, which is caused by the
different reserve estimate for accident year 2011.
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Est. Densities of LoB 5

---- CL
— GAMLSS
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Figure 7.4.: Estimated densities for line of business 5

Statistics for both distribution are not too different, as the plot suggests. The empricial

GAMLSS CL
Mean 0.0000 -0.0380
Variance 0.0014  0.0009

Table 7.2.: LoB 5 total reserve statistics

mean from chain ladder bootstrapping is only 3.8% below the GAMLSS estimate. But
again the empirical variance of the GAMLSS is greater than the one from chain ladder
bootstrapping, although not as extreme as in for line of business 3. Since the chain
ladder method tends to underestimate cash flows more than the GAMLSS, we prefer
the GAMLSS model for this line of business. In contrast to line of business 3 the choice
for one of the method almost mainly affects the amount of reserves which is put pack,
because variances are not as different as for LoB 3.
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7.3. Other Lines of Business

We summarize results for the other three lines of business briefly:

LoB1:

LoB2:

LoB4:

Estimates of ultimate losses by accident year are similar for all accident years but
2011 (Figure [B.1.7). For this year GAMLSS estimates are much higher and vary a
lot more than chain ladder bootstrapping estimates. Thus the resulting predictive
total reserve distribution from the GAMLSS model has a higher mean and much
bigger variance than the one from chain ladder bootstrapping. Recalling results
from Section [6.1], cash flows estimated by chain ladder method and GAMLSS where
sometimes higher and sometimes lower than observed cash flows. Since cash flow

estimation for calendar year 2011 shows significant underestimation, one could tend
to choose the GAMLSS.

Estimated ultimate losses are very similar for both methods for older accident
years (Figure [B.2.7)). But the chain ladder bootstrapping estimates spread much
wider around the estimated means and thus the predictive reserve distribution has
a slightly higher variance than the one from the GAMLSS model. he estimated
total reserve from chain ladder bootstrapping is only roughly 6.5% below the
GAMLSS estimate. We also have to take observations from the cash flow analysis
into account. The GAMLSS tends to overestimate losses while the chain ladder
tends to underestimate them. Hence a value between both total reserve estimates
makes sense.

The GAMLSS estimates much higher reserves for all accident years, especially for
the more recent accident years. Variation of estimates is not too different between
both methods, but still the GAMLSS shows greater variation. Looking at the
predictive distributions, the estimated mean from chain ladder bootstrapping is
more than 30% below the one from GAMLSS, see Figure [B.4.7 The cash flow
analysis as shown in Appendix however gives no obvious explanation for this
huge difference. Both methods tended to overestimate cash flows with none of
them exceeding the other one for all calendar years. Here it is difficult to name the
better model, so further research would have to be done here. On the other side,
volume of this line of business compared to other lines of business in this portfolio
is rather small. Hence an over- or underestimation of the reserve does not have a
big influence on the total portfolio reserve.

7.4. Joint Reserve Estimation

So far estimation of reserves, either by accident year or total reserves per line of business
has been done independently of results from other lines of business. That means total
reserves for a portfolio can be estimated by summing up reserves of the different lines
of business. This approach assumes that claims for each line of business are totally
independent from other lines of business. While this is easy to model and estimate, it
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7. Reserve Estimation and Dependence Analysis

might not represent the given situation adequately. Maybe there is a dependence among
different lines of business which affect the total reserve of a portfolio. This could either
lead to higher portfolio reserves when there is a positive dependence or to lower portfolio
reserves when there are diversification effects present. To examine dependencies among
lines of business we follow the approach outlined in Section and based upon Shi and
Frees (2011). We have seen in Chapter [4] that for all lines of business GAMLSS with
explicitly modeled scale parameter were necessary. In Section this lead to a very small
correlation between lines of business, which possibly could be neglected at all. There we
also introduced two measures of dependence, Pearson’s rho and Kendalls’ tau. To follow
up on the question why Pearson’s rho is a good measure only in some situations, we give
two examples where Pearson’s rho fails. Kendall’s tau does not have the same drawbacks
since the dependence is measured on ranks of observations and not on observations and
hence is more robust (e.g. against outliers).

Example (Non-Linear Dependence): Let X ~ N (0,1), i.e. let X be standard nor-
mal distributed. Then the first four moments of X are

0
E[X?] =1
E [X 3] =0
E[X'] =3
Let furthermore Y be a random variable defined as Y := X?2. Obviously Y strongly
depends on X since it is a monotonic function of X. However, Pearson’s rho for X and
Y is
EXX?*-E[X]E[X?] 0-0

NN

Although a functional dependence is present, Pearson’s rho is not able to capture it
because it is a non-linear dependence between the two random variables. &

p(X,Y) = p(XwXQ) =

The second example uses the empirical versions of Pearson’s rho and Kendall’s tau. Let
(xi,yi), @ = 1,...,n, be n pairs of observations from (X,Y’). Then Pearson’s rho (the
sample correlation) is calculated as

(56~—:v )

_\/ S ap

where & = 12:62 and § = + Zyl are the sample means of X and Y, respectively.
=1 =1
The empirical version for Kendall’s tau uses the number of concordant and discordant

||M:
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7.4. Joint Reserve Estimation

pairs. Let (x;,y;), i = 1,...,n, be n pairs of observations from (X,Y). For i # j two
pairs (z;,y;) and (z;,y;) are said to be

(i) concordant if
(xi > z; and y; > yj) or (xZ < zjandy < yj)
(ii) discordant if
(xi > z; and y; < yj) or (xZ < zj; and y; > yj)
(iii) tied if
(xi # z;and y; = yj) or (:E, =z; and y; # yj) or (xZ =uz;and y; = yj).
Let

Neon = # concordant pairs

Ngyis = # discordant pairs

N,y = # tied pairs with tie in the x’s
Ny, = # tied pairs with tie in the y’s.

Then Kendall’s tau is calculated by

Ncon - Ndis
\/Ncon + Ndis + Nxt\/Ncon + Ndis + Nyt.

7(X,)Y) =

Example (Outlier): Let x and y be two vectors of length 1000. Let the first 999 entries
of both vectors be random numbers from a standard normal distribution and let the
1000th entry be 10000.

> x <= c(rnorm(999), 10000)
> y <= c(rnorm(999), 10000)

Then Pearson’s rho is

> cor(x,y, method='pearson')
[1] 0.9999897

while Kendall’s tau is

> cor(x,y, method='kendall')

[1] -0.0162002
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7. Reserve Estimation and Dependence Analysis

The outlier distorts Pearson’s rho heavily. Here Kendall’s tau is much more robust than
Pearson’s rho since it is a rank correlation, i.e. only the number of concordant and
discordant pairs are used for the calculation but not the z- and y-values themselves.

These two examples showed that Pearson’s rho is not a good dependence measure in
every situation. Since even some more problems can arise when using Pearson’s rho we

use Kendall’s tau to examine dependencies among lines of business.
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Figure 7.5.: Scatterplot and Kendall’s tau’s of residuals

Figure shows a scatterplot of residuals from the GAMLSS in the upper triangle.
The lower triangle shows Kendall’s tau for each pair of lines business. Surprisingly all
values are very close to zero, suggesting that residuals of the GAMLSS models are almost
independent between lines of business. Only between line of business 3 and 5 there seems
to be a dependence with Kendall’s tau being 0.104. For all other pairs of lines of business
correlation is rather small. Note that four negative estimates occur and diversification

effects could appear when modeling joint reserve estimates.
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7.5. Portfolio Reserve

Figure suggests that dependencies among different lines of business in this portfolio
don’t seem to be present when looking at residuals of the GAMLSS models. But concluding
that the lines of business are completely independent is too premature. For each model
between 21 and 24 parameters had been used, 9 - 11 solely for modeling the scale
parameter. By that almost every systematic pattern in data has been captured by the
models. Hence residuals should not include any pattern and correlation between residuals
of different lines of business is expected to be very small or not present at all.

7.5. Portfolio Reserve

As outlined in the last section observed Kendalls’s tau’s are very small. Almost no
dependence is present in this setup and thus there is no need to fit a copula model to
incorporate dependencies. The use of a copula model would not affect the joint ultimate
losses and reserves a lot.

We therefore follow the traditional way of summing up reserves from all lines of business
in the portfolio to gain the portfolio reserve. While this is similar to what one would do
with chain ladder estimates of reserves, the preconditions are very different. The chain
ladder method simply assumes independence of different lines of business in a portfolio
and no checks to verify this are done. In contrast to that, we incorporated dependencies
and examined them on residuals of the GAMLSS. Not till we showed that dependencies
among residuals are very small we used the assumption of having independent lines of
business in the portfolio.

Figure shows ultimate losses of the portfolio by accident year. Except for the peak in
accident year 2002 the curves look very similar to the ones from line of business 5 (see
Figure . This is caused by the fact that line of business 5 has much more volume
than all other lines of business, i.e. more premiums and claims. Hence ultimate losses of
this small portfolio are dominated by line of business 5. As shown in Appendix the
peak for accident year 2002 is caused by line of business 1.
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7. Reserve Estimation and Dependence Analysis

Estimated ultimate losses by accident year (CL)

—e— Est. Mean
10% / 90% quantile
- 25% / 75% quantile

&
T T T I
1995 2000 2005 2010
Accident Year
Estimated ultimate losses by accident year (GAMLSS)
—e— Est. Mean
10% / 90% quantile
- 25% / 75% quantile
S

T T T T
1995 2000 2005 2010

Accident Year

Figure 7.6.: Ultimate loss estimates for both methods of the portfolio

Since line of business 5 has the biggest influence on ultimate claims, we expect the

density plot of total reserves to look similar to Figure Figure [7.7] shows at least some
similarities for the shape of the densities. But the empirical variance differs a lot more

than for LoB 5.
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7.5. Portfolio Reserve

Est. Densities of Portfolio

--e- CL
— GAMLSS

15
|

10

Density

T T T T T
-0.2 -0.1 0.0 0.1 0.2

Total Reserve

Figure 7.7.: Estimated densities for portfolio reserve

GAMLSS CL
Mean 0.0000 -0.1786
Variance 0.0060  0.0005

Table 7.3.: Portfolio total reserve statistics

The empirical mean of estimated reserves from chain ladder bootstrapping is 17.86%
below the empirical mean of estimated reserves from the GAMLSS simulations. The
variance is much bigger for the GAMLSS (about 12 times). This is mainly caused by the
huge standard deviation from line of business 1.

Hence there is a big difference between both methods. The estimate from chain ladder
bootstrapping is 17.86% below the GAMLSS estimate. Although this is a big difference in
absolut values, it is basically that is just a number the insurance company would have to
write in their book. The more interesting result is, that the variance is much greater and
hence uncertainty and risk is much bigger than the chain ladder bootstrapping suggests.
This could lead to problems for the company if the ultimate loss is higher than expected.
Hence it would have been even more eligible to have diversification effects in the portfolio
and reduce variation. Anyway, the insurance company would need to think of actions
to take to be able pay higher losses than expected. They are much more probable when
using a GAMLSS rather than the chain ladde method and the company would have to
be prepared for that.
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8. Conclusion and Outlook

In this thesis we introduced generalized additive models for location, scale and shape
as a statistical model for loss triangles. They allow for explicit modeling of the scale
parameter, which is often closely related to the variance. By that a better fit than with
generalized linear models can be achieved and it is necessary to rather use a GAMLSS
than GLM in many situations.

Inference about ultimate losses and reserves is possible in this setup and can be compared
to established methods like the chain ladder method. As for generalized linear models,
predictive distributions can be obtained and uncertainty can be measured. Complex
distributions like zero-inflated distributions or the SEP1 distribution allow for a maximum
of flexibility and guarantee that each line of business can be modeled in the best possible
way. Estimates of next calendar year’s cash flow were closer to the observed cash flows for
the GAMLSS in many cases. But no general trend was observable and it depends on the
underlying data set which method should be used. Predictive ultimate loss distributions
from the GAMLSS had a greater variance in most cases. Hence uncertainty is greater
when using a GAMLSS on the one hand side. On the other side this can be a warning,
such that ultimate losses can be much higher than current methods like the chain ladder
method suggest.

We examined dependencies of lines of business in an insurance portfolio among residuals of
the GAMLSS. Since Kendall’s tau was rather small, we argue that not much dependence
of lines of business is present in the portfolio. Therefore we conclude that dependencies
in an insurance portfolio are secondary if each lines of business is modeled properly by a
GAMLSS. This implicates that portfolio reserves can be estimated in a similar way as
for the chain ladder method by summing up reserves of individual lines of business.

For the dependence analysis we have not considered all available lines of business. For
other lines of business zero-inflated distributions were necessary and a different approach
to examine dependencies would be required. Then dependencies in a bigger portfolio
could be analyzed and different outcomes are possible. Hence the approaches and findings
presented in this thesis can serve as a starting point to analyze loss triangles and
dependencies within a big insurance portfolio. The GAMLSS plays a key role as a more
sophisticated statistical model than the generalized linear model and thus can improve
analyses, results and business decisions significantly.
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A. Inflation and Dependence Models

A.1. Inflation
This section gives details about the two GAMLSS used in Section [5.2]

The triangle with incremental payments used in this section has a claims history of 26
years. Inflation effects are present and the triangle has been manually deflated using a
consumer price index. The chain ladder method has been applied to both triangles in the
known way to estimate the cash flow. Here, the cash flow is defined as

Spt1 =520+ S3-1+ ...+ Sno.
S1n+1 1s not part of the cash flow since no payment after the last development is expected.

The GAMLSS models Paid-to-Premium ratios which don’t need to be deflated. Inflation
effects cancel down automatically and hence only one GAMLSS needs to be fitted:

PtP.Ratio; j, ~ SEPl(ui,k = poly(DevLagy, 3) + poly(AY ear;, 3)
+ (DevLagy, = 1) 4+ (DevLag, = 2)
+ (DevLagy, = 3) + (DevLagy, = 4)
+ (DevLagy, = 7) + (DevLagy = 8)
log(o;) = poly(DevLagy,4) + AY ear;
+ (DevLagy, = 3) + (DevLag, = 4),
+ (DevLagy, = 7) + (DevLagy = 8),
+ (AY ear; = 1986),
Vik = 1,
log (%) = 1)-

The model uses a skew exponential power type 1 distribution and has 25 parameters.
Residual plots shown in Figure and show no lack of fit.
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Figure A.1.1.: Residuals Plots for GAMLSS applied to Paid-to-Premium ratios
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A.2. Dependence

A.2. Dependence

In this section we give some details about the two GLMs and GAMLSS used in Section 5.3

Triangles are given as in Table and Table Both triangles include 10 years of

history and thus 55 observations. Premiums are used to calculate the Paid-to-Premium
ratios and fit GLMs and GAMLSS to the PtP ratios.
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Accident | Premium Development Lag k e
Year i 2 3 4 5 6 7 8 9 10 —_
1] 4,711,333 | 1,376,384 1,211,168 535,883 313,790 168,142 79,972 39,235 15,030 10,865 4,086 Eb
2 15,335,525 | 1,576,278 1,437,150 652,445 342,694 188,799 76,956 35,042 17,089 12,507 %
3| 5,947,504 | 1,763,277 1,540,231 678,959 364,199 177,108 78,169 47,391 25,288 S
416,354,197 | 1,779,698 1,498,531 661,401 321,434 162,578 84,581 53,449 ©
516,738,172 | 1,843,224 1,573,604 613,095 299.473 176,842 106,296 =
6 | 7,079,444 | 1,962,385 1,520,298 581,932 347,434 238,375 -
717,254,832 | 2,033,371 1,430,541 633,500 432,257 e
8 | 7,739,379 | 2,072,061 1,458,541 727,098 e
9 | 8,154,065 | 2,210,754 1,517,501 &
10 | 8,435,918 | 2,206,886 =
&
Table A.2.1.: Commercial Auto (incremental paid losses) §
&
N
Accident | Premium Development Lag &
Year 1 2 3 4 5 6 7 8 9 10
1| 267666 33,810 45,318 46,549 35,206 23,360 12,502 6,602 3,373 2,373 778
2 | 274526 37,663 51,771 40,998 29,496 12,669 11,204 5,785 4,220 1,910
3| 268161 40,630 56,318 56,182 32,473 15,828 8,409 7,120 1,125
4| 276821 | 40,475 49,697 39,313 24,044 13,156 12,595 2,908
) 270214 37,127 50,983 34,154 25455 19,421 5,728
6 | 280568 | 41,125 53,302 40,289 39,912 6,650
7| 344915 57,515 67,881 86,734 18,109
8| 371139 61,553 132,208 20,923
9| 323753 | 112,103 33,250
10 | 221448 | 37,554

Table A.2.2.: Personal Auto (incremental paid losses)



A.2. Dependence

The summaries for both models are shown below. For Personal Auto parameter estimates
are the same as in Shi and Frees (2011), while for Commercial Auto small differences can
be seen.

Personal Auto:

The following object(s) are masked _by_ '.GlobalEnv':

AYear
sk sk ok sk ok ok sk ok ok sk ok ok sk ok sk sk ok sk sk ok s ok ok s ok sk sk ok ok sk ok sk sk ok sk sk ok sk ok ok s ok sk sk ok ok sk ok sk sk ok sk sk ok s ok ok s ok ok sk ok ok ook sk ok

Family: c("LOGNO", "Log Normal")

Call:
gamlss(formula = Personal.Auto ~ as.factor(DevLag) + as.factor(AYear),
sigma.formula = "1, family = LOGNO(mu.link = "identity",
sigma.link = "identity"), data = shifrees, method = RS(1000),
control = gamlss.control(mu.step = 0.01, sigma.step = 0.01,
gd.tol = 100))

Fitting method: RS(1000)

Mu link function: identity
Mu Coefficients:
Estimate Std. Error t value Pr(>ltl)

(Intercept) -1.13674 0.04284 -26.5341 3.145e-25
as.factor(DevLag)2 -0.22443 0.04182 -5.3672 4.873e-06
as.factor(DevLag)3 -1.04691 0.04373 -23.9393 1.053e-23
as.factor(DevLag)4 -1.64405 0.04582 -35.8779 8.923e-30
as.factor(DevLag)5 -2.25397 0.04831 -46.6550 8.492e-34
as.factor(DevLag)6 -3.01297 0.05147 -58.5432 2.664e-37
as.factor(DevLag)7 -3.67129 0.05575 -65.8565 3.997e-39
as.factor(DevlLag)8 -4.49346 0.06211 -72.3521 1.386e-40
as.factor(DevLag)9 -4.91091 0.07302 -67.2511 1.891e-39
as.factor(DevlLag) 10 -5.91342 0.09851 -60.0300 1.090e-37
as.factor(AYear)1989 -0.03273 0.04182 -0.7828 4.389e-01
as.factor(AYear)1990 -0.02844 0.04373 -0.6503 5.196e-01
as.factor(AYear)1991 -0.13087 0.04582 -2.8559 7.082e-03
as.factor(AYear)1992 -0.17467 0.04831 -3.6156 9.100e-04
as.factor(AYear)1993 -0.17446 0.05147 -3.3899 1.709e-03
as.factor(AYear)1994 -0.17295 0.05575  -3.1023 3.723e-03
as.factor(AYear)1995 -0.22337 0.06211 -3.5966 9.601e-04
as.factor(AYear)1996 -0.24436 0.07302 -3.3463 1.927e-03
as.factor(AYear)1997 -0.20417 0.09851 -2.0727 4.542e-02

Sigma link function: identity
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A. Inflation and Dependence Models

Sigma Coefficients:
Estimate Std. Error t value Pr(cltl)
(Intercept) 0.08865 0.008458 10.48 1.259e-14

No. of observations in the fit: 55
Degrees of Freedom for the fit: 20
Residual Deg. of Freedom: 35

at cycle: 6

Global Deviance: -435.1066
AIC: -395.1066
SBC: -354.9599

3k 3k 3k 5k >k >k 3k 3k 3k 5k %k >k 3k 3k 5k >k %k >k 5k 3k 5k >k %k >k 3k 3k >k >k %k 5k 3k 3k >k >k %k >k 5k 3k >k >k %k >k 5k >k >k >k %k >k 5k >k >k >k %k >k %k >k >k >k %k >k %k >k >k *k *k >k k

Commercial Auto:
The following object(s) are masked _by_ '.GlobalEnv':

AYear
sk sk ok ok sk ok ok sk ok sk ok ok sk sk ok s ok ok s ok ok sk ok sk sk ok sk sk ok sk sk ok s sk ok s ok ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok s ok ok sk ok sk sk ok sk ok ok sk ok ok sk

Family: c("GA", "Gamma")

Call:
gamlss(formula = Commercial.Auto ~ as.factor(DevLag) + as.factor(AYear),
sigma.formula = 1, family = GA("inverse", sigma.link = "identity"),
data = shifrees, method = RS(100), control = gamlss.control(mu.step = 0.01,
sigma.step = 0.01, gd.tol = 100))

Fitting method: RS(100)

Mu link function: inverse
Mu Coefficients:
Estimate Std. Error t value Pr(>ltl)

(Intercept) 5.80444 1.1037 5.25892 6.796e-06
as.factor(DevLag)2 -0.84210 0.8284 -1.01652 3.162e-01
as.factor(DevLag)3 0.32628 0.9769 0.33434 7.401e-01
as.factor(DevLag)4 3.33201 1.3383 2.48970 1.754e-02
as.factor(DevLag)5 11.58664 2.4515  4.72629 3.457e-05
as.factor(DevLag)6 20.65723 3.9465  5.23436 7.329e-06
as.factor(DevLag)7 42.16133 7.8151 5.39485 4.476e-06
as.factor(DevLag)8 87.34475 17.3573 5.03216 1.362e-05
as.factor(DevLag)9 120.26302 28.7967 4.17628 1.797e-04
as.factor(DevLag)10  338.23097 110.25671  3.06766 4.082e-03
as.factor(AYear) 1989 0.66382 1.4242 0.46609 6.440e-01
as.factor(AYear)1990 -0.33100 1.3107 -0.25254 8.021e-01
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A.2. Dependence

as.factor(AYear) 1991 1.08012 1.4747 0.73244 4.686e-01
as.factor(AYear) 1992 1.05580 1.4742 0.71618 4.785e-01
as.factor(AYear) 1993 0.56420 1.4220 0.39678 6.939e-01
as.factor(AYear)1994 -0.18798 1.3446 -0.13981 8.896e-01
as.factor (AYear) 1995 -0.39760 1.3624 -0.29185 7.721e-01
as.factor (AYear) 1996 -0.88923 1.4178 -0.62718 5.345e-01
as.factor(AYear) 1997 0.09234 2.1965 0.04204 9.667e-01

Sigma link function: identity
Sigma Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.322 0.03019 10.67 6.609e-15

No. of observations in the fit: 55
Degrees of Freedom for the fit: 20
Residual Deg. of Freedom: 35

at cycle: 6

Global Deviance: -255.497
AIC: -215.497
SBC: -175.3504

sk sk sk ok ok ok ok sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk s sk ok ok ok s sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok

Residuals plots for the GLMs and GAMLSS are shown in Figure and Figure [A.2.2]
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PtP.Ratio
Log Normal

mu model: ~as.factor(DevLag)+as.factor(AYear)
sigma model: ~1
nu model: NA
tau model: NA

mu :-1.14 (identity)
sigma : 0.09 (identity)
nu: ()

au : ()

G.Deviance : -435.11
SBC : -354.96

PtP.Ratio

Log Normal

mu model: ~poly(DevLag, 4) + as.factor(DevLag == 3)+CYear
sigma model: ~as.factor(DevLag == 1)
nu model: NA
tau model: NA

mu :24.41 (identity)
sigma : 0.13 (identity)
nu: ()
tau: ()
G.Deviance : -435.55
SBC : -399.48
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Figure A.2.1.: GLM and GAMLSS for Personal Auto
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PtP.Ratio

Gamma

mu model: ~as.factor(DevLag)+as.factor(AYear)
sigma model: ~1
nu model: NA
tau model: NA

mu:5.8 (inverse)
sigma : 0.32 (identity)
nu: ()
tau: ()

G.Deviance : -255.5
SBC : -175.35

PtP.Ratio

Gamma

), 3) + as.factor(CYear == 1996) + as.factor(CYear == 1997)+as.factor(De

sigma model: ~CYear
nu model: NA
tau model: NA

mu:-2.56 (log)
sigma : —-227.62 (log)
nu: ()
tau: ()

G.Deviance : -330.96
SBC : -282.87
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Figure A.2.2.: GLM and GAMLSS for Commercial Auto
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B. Exhibits per Line of Business

B.1. Line of Business 1

Line of business 1 is a mid-sized line of business. Data is available for 21 years and has
just a few peculiarities. Paid claims for accident year 2002 are much higher than for all
other accident years, but development is similar to other accident years. There are only
some negative payments but no zero-payments.

B.1.1. Cash Flow Analysis

Cash flow analysis shows very mixed results for this line of business, see Figure A
detailed discussion of results can be found in Section [6.11

Relative differences from observed cash flows by calendar year

B Chain Ladder Estimate
O GAMLSS Emp. Mean
O GAMLSS Emp. Median

0.3
|

0.2

0.1

g
!

-0.1
1

-0.2
L

2006 2007 2008 2009 2010 2011

Figure B.1.1.: Chain ladder estimates, empirical means and empirical medians from
GAMLSS models for LoB 1
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Model Distr. Parameter | Polynomials Factors Interactions
2005 SEP1 i | poly(DevLag,2) DevLag 1,2,3
In(o) | poly(DevLag,4), poly(AYear,2) | AYear 2002, DevLag 3
vl
In(7) | 1
2006 SEP1 i | poly(DevLag,2) DevLag 1,2,3 (DevLag 3):poly(AYear,2)
In(o) | poly(DevLag,4), poly(AYear,2) | AYear 2002, DevLag
3,7
vl
In(7) | 1
2007 SEP1 i | poly(DevLag,2) DevLag 1,2,3,4,5 (DevLag 3):poly(AYear,3)
In(o) | poly(DevLag,4), poly(AYear,2), | AYear 2002, DevLag 3
(CYear)?, poly(CYear,2)
vl
In(r) | 1
2008 SEP1 1 DevLag 1,2,3,4,5 (DevLag 3):AYear
In(o) | poly(DevLag,4), poly(AYear,2), | AYear 2002, De-
(CYear)® vLag6,12
vl
In(7) | 1
2009 SEP1 i | poly(DevLag,2) DevLag 1,2,3,4,5 (DevLag 3):poly(AYear,3)
In(o) | poly(DevLag,4), poly(AYear,2), | AYear 2002, DevLag 3,
(CYear)® CYear 2008
vl
In(7) | 1
2010 SEP1 1 DevLag 1,2,3,4,5 (DevLag 3):poly(AYear, 2),

In(o)

v

In(7)

poly(DevLag,4), poly(AYear,2)

1
1

AYear 1997,2002, De-
vLag 3, CYear 2008

(DevLag 2):poly(AYear, 2)

Table B.1.1.: All six models for LoB 1
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Figure B.1.3.: Residuals plots for LoB 1 (CYear 2007 & 2008)
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B. Exhibits per Line of Business

Est. Density for Cash Flow 2011 (Data 2010) Est. Density for Cash Flow 2010 (Data 2009)
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Figure B.1.5.: Predictive distributions for LoB 1
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B.1. Line of Business 1

B.1.2. Latest Model & Reserving

The model using most recent data is

PtP.Ratio; j, ~ SEPl( pu = DevLagy + (DevLagy, = 1+ (DevLagy, = 2)
+ (DevLagy, = 3) + (DevLagy = 3) : poly(AY ear;,2),
In(o) = poly(DevLagy, 4) + poly(AY ear;, 2) + poly(CY eary, 2)
+ (AYear; = 2002) + (DevLagy, = 3) + (C'Year; = 2008),
v=1,

In(r) = 1).

Residuals show no lack of fit:
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Figure B.1.6.: Residual plots for Line of Business 1

Statistics of reserve distributions for lines of business 1:

GAMLSS CL
Mean 0.0000 -0.8425
Variance 0.5433  0.0003

Table B.1.2.: LoB 1 total reserve statistics
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B. Exhibits per Line of Business

Estimated ultimate losses by accident year (CL)
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Figure B.1.7.: Ultimate loss estimates and estimated total reserve densities (LoB 1)
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B.2. Line of Business 2

B.2. Line of Business 2

B.2.1. Cash Flow Analysis

Cash flow analysis (see Figure shows that while the GAMLSS tends to overestimate
the claims, chain ladder tends to underestimate. Absolute values of chain ladder estimates
are smaller than absolute values of GAMLSS estimates for four years. Hence one could
argue that the chain ladder method is more appropriate than the GAMLSS. We argue
that underestimation of losses is more risky for an insurer than overestimation. Thus we
think the GAMLSS provides more conservative and ’better’ estimates of the cash flows.

Relative differences from observed cash flows by calendar year

0.15
|

B Chain Ladder Estimate
O GAMLSS Emp. Mean
O GAMLSS Emp. Median

0.10
1

0.05
1

ol ]

0.00
1

-0.05
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Figure B.2.1.: Chain ladder estimates, empirical means and empirical medians from
GAMLSS models for LoB 2
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Model Distr. Parameter | Polynomials Factors Interactions
2005 SEP1 i | poly(DevLag,3), AYear
In(o) | DevLag, poly(AYear,3) DevLag1,2, AYear 1991
vl
In(7) | 1
2006 SEP1 i | poly(DevLag,3)
In(o) | poly(DevLag,4), poly(AYear,3) | DevLag 3,4,
AYear 1991,2000
vl
In(7) | 1
2007 SEP1 u | poly(DevLag,3)
In(o) | poly(DevLag,5), poly(AYear,3) | AYear 1991,2000, De-
vLag 3,4
vl
In(r) | 1
2008 SEP1 i | poly(DevLag,3) DevLag 3
In(o) | poly(DevLag,4), poly(AYear,3) | AYear 1991,2000,
CYear 2004,2008, DevLag 2
vl
In(7) | 1
2009 SEP1 i | poly(DevLag,4) DevLag 3
In(o) | poly(DevLag,5), poly(AYear,4) | AYear 1991,1993, DevLag 2
vl
In(r) | 1
2010 SEP1 i | poly(DevLag,4), poly(AYear,3) | DevLag 3
In(o) | poly(DevLag,4), poly(AYear,5) | DevLag 2
7
In(7) | 1

Table B.2.1.: All six models for LoB 2
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Figure B.2.3.: Residuals plots for LoB 2 (CYear 2007 & 2008)
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B. Exhibits per Line of Business
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Figure B.2.5.: Predictive distributions for LoB 2



B.2.2. Latest Model & Reserving

The model using most recent data is

PtP.Ratio ~ SEPl(

B.2. Line of Business 2

= DevLag + (DevLag = 1) + (DevLag = 2)
+ (DevLag = 3) 4+ (DevLag = 3) : poly(AYear,2),
In(o) = poly(DevLag,4) + poly(AY ear, 2) + poly(CY ear, 2)
+ (AY ear = 2002) + (DevLag = 3) + (CYear = 2008),

v=1,

In(r) = 1).
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Figure B.2.6.: Residual plots for Line of Business 2

Statistics of reserve distributions for lines of business 2:

GAMLSS
Mean 0.0000
Variance 0.0100

Table B.2.2.: LoB 2 total reserve statistics
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B. Exhibits per Line of Business

Estimated ultimate losses by accident year (CL)

—e— Estimated Mean
10% / 90% quantile
- 25% / 75% quantile

Cin

T
2005 2010

2000

1995
Accident Year

Estimated ultimate losses by accident year (GAMLSS)

—e— Estimated Mean
10% / 90% quantile
- 25% / 75% quantile

Cin

2010

2000

2005

1995
Accident Year

Estimated densities of total reserves

Density
2
1

0.0

-0.4
Total Reserve

Ultimate loss estimates and estimated total reserve densities (LoB 2)

Figure B.2.7.
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B.3. Line of Business 3

B.3. Line of Business 3

B.3.1. Cash Flow Analysis

Cash flow analysis (see Figure [B.3.1]) shows that chain ladder always underestimates cash
flows. This situataion has been described in detail in Section [6.21

Relative differences from observed cash flows by calendar year

B Chain Ladder Estimate
_| @ GAMLSS Emp. Mean
O GAMLSS Emp. Median

0.00
|

-0.05

1

-0.10

-0.15

2006 2007 2008 2009 2010 2011

Figure B.3.1.: Chain ladder estimates, empirical means and empirical medians from
GAMLSS models for LoB 3
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Model Distr. Parameter | Polynomials Factors Interactions
2005  SN1 i | poly(DevLag,4) DevLag1,2,
AYear > 2003
In(o) | poly(DevLag,3), poly(AYear,4) | DevLag2, AYear,1994
vl
7 | 2 (fixed)
2006  SN1 w | poly(DevLag,4) DevLag 1) (DevLag1):AYear,
(DevLag 2):AYear
In(o) | poly(DevLag,4), poly(AYear,4)
vl
(In(7)) | 2 (fixed)
2007  SN1 i | poly(DevLag,4) DevLag 1,2, (DevLag | (DevLag 1):AYear
2 & AYear > 2004)
In(o) | poly(DevLag,4), poly(AYear,4)
vl
7 | 2 (fixed)
2008  SN1 i | poly(DevLag,4) DevLag 1,2,3,5 (DevLag1):AYear,
(DevLag2):AYear
In(o) | poly(DevLag,3), poly(AYear,4) | AYear 1991
vl
7 | 2 (fixed)
2009  SN1 i | poly(DevLag,4) DevLag 1,2,3,5 (DevLag1):AYear,
(DevLag2):AYear
In(o) | poly(DevLag,3), poly(AYear,4) | AYear 1991
vl
7 | 2 (fixed)
2010  SN1 i | poly(DevLag,4) DevLag 1,2,3,5 (DevLag1):AYear,

In(o)

X

poly(DevLag,3), poly(AYear,4)
1
2 (fixed)

AYear 1991

(DevLag2):AYear

Table B.3.1.: All six models for LoB 3
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B. Exhibits per Line of Business
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Density
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Figure B.3.5.: Predictive distributions for LoB 3



B.3.2. Latest Model & Reserving

The model using most recent data is

PtP.Ratio ~ SN1<

Quantile Residuals 1,

B.3. Line of Business 3

p = poly(DevLag,4) + (DevLag = 1) + (DevLag = 2)

+ (DevLag = 3) + (DevLag = 5)
+ DevLag = 1) : AYear + (DevLag = 2) : AY ear,
In(o) = poly(DevLag, 3) + poly(AY ear,4) + (AY ear = 1991),

v=1,

T = Z(ﬁxed)).

Against Index

100 150 200

Index

(a) Plot of normalized quantile resid-

Statistics of reserve distributions for lines of business 3:

uals against index

Sample Quantiles

Normal Q-Q Plot

Theoretical Quantiles

(b) Q-Q normal plot of normalized
quantile residuals

Figure B.3.6.: Residual Plots for Line of Business 3

GAMLSS CL
Mean 0.0000 -0.1152
Variance 0.0142  0.0030

Table B.3.2.: LoB 3 total reserve statistics
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B. Exhibits per Line of Business

Estimated ultimate losses by accident year (CL)

—e— Estimated Mean
10% / 90% quantile
- 25% / 75% quantile

&
1995 2000 2005 2010
Accident Year
Estimated ultimate losses by accident year (GAMLSS)
—e— Estimated Mean
10% / 90% quantile
- 25% / 75% quantile
&

T T T
1995 2000 2005 2010

Accident Year

Estimated densities of total reserves

---- CL
— GAMLSS

© - |
= ;
2 < -
=
o
a

o 4

o - -

T T T T T

Total Reserve

Figure B.3.7.: Ultimate loss estimates and estimated total reserve densities (LoB 3)
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B.4. Line of Business 4

B.4. Line of Business 4

B.4.1. Cash Flow Analysis

Cash flow analysis shows that chain ladder over-estimates the cashflow for all years. The
GAMLSS does so for four years and a big under-estimation for cash flow of calendar year
2010. The data shows no outlier here, so this seems to be an unusual estimate of the
GAMLSS. So for this line of business without further research the chain ladder method
might be the better choise because it is more constant in estimating the cash flows.

Relative differences from observed cash flows by calendar year

0.08
|

B Chain Ladder Estimate
O GAMLSS Emp. Mean
O GAMLSS Emp. Median

0.06
1

0.04

0.02
1

0.00

-0.02

2006 2007 2008 2009 2010 2011

Figure B.4.1.: Chain ladder estimates, empirical means and empirical medians from
GAMLSS models for LoB 4
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0ST

Model Distr. Parameter | Polynomials Factors Interactions
2005 SEP1 u | poly(DevLag,5), poly(AYear,3) | DevLag 2,3, CYear 2005
In(o) | poly(DevLag,2) AYear 1991
vl
7 | 1.5 (fixed)
2006 SEP1 i | poly(DevLag,5), poly(AYear,3) | DevLag2,3,
CYear 2005,2006
In(o) | poly(DevLag,2) AYear 1992, DevLag 12
vl
7 | 1.5 (fixed)
2007 SEP1 u | poly(DevLag,5), poly(AYear,3) | DevLag 2,3, CYear 2004 (DevLag 2):AYear,
(DevLag 3):AYear
In(o) | poly(DevLag,4) AYear 1991
vl
7 | 4 (fixed)
2008 SEP1 p | poly(DevLag,5), poly(AYear,3) | DevLag 2,3 (DevLag 3):AYear
In(o) | poly(DevLag,2) DevLag 2 (DevLag4):AYear
vl
7 | 3 (fixed)
2009 SEP1 i | poly(DevLag,5), AYear DevLag 2,3 (DevLag 2):AYear,
(DevLag 3):AYear
In(o) | poly(DevLag,4), AYear AYear 1991, CYear 2005
vl
7 | 3.4 (fixed)
2010 SEP1 i | poly(DevLag,5), poly(AYear,3) | DevLag 2,3 (DevLag 2):AYear,

B
SRS

poly(DevLag,4)
1
2.5 (fixed)

DevlLag 2, AYear 1991

(DevLag 3):AYear

Table B.4.1.: All six models for LoB 4
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PtP.Ratio

Skew exponential power (Azzalini type 1)

3) + poly(DevLag, 5) + as.factor(DevLag == 2) + as.factor(DevLag == 3)+
sigma model: ~poly(DevLag, 2)+as.factor(AYear == 1991)

nu model: ~1
tau model: NA

mu :0.04 (identity)
sigma : -5.72 (log)
nu : 7.08 (identity)
tau : 1.5 (fixed)

G.Deviance : -1113.7
SBC : -1032.32

PtP.Ratio

Skew exponential power (Azzalini type 1)

.ag, 5) + as.factor(DevLag == 2) + as.factor(DevLag == 3) + as.factor(CYe
1 model: ~poly(DevLag, 2) + as.factor(AYear == 1991)+as.factor(DevLag =

nu model: ~1
tau model: NA

mu :0.04 (identity)
sigma : -5.94 (log)
nu : 3.44 (identity)
tau : 1.5 (fixed)

G.Deviance : -1281.75
SBC : -1188.41

Quantile Residuals

Quantile Residuals
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Figure B.4.2.: Residuals plots for LoB 4 (CYear 2005 & 2006)
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Figure B.4.3.: Residuals plots for LoB 4 (CYear 2007 & 2008)
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Figure B.4.4.: Residuals plots for LoB 4 (CYear 2009 & 2010)
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B. Exhibits per Line of Business

Est. Density for Cash Flow 2011 (Data 2010) Est. Density for Cash Flow 2010 (Data 2009)
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Figure B.4.5.: Predictive distributions for LoB 4
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B.4. Line of Business 4

B.4.2. Latest Model & Reserving

The model using most recent data is

PtP.Ratio ~ SEP1< p = poly(DevLag, 5
+ (DevLag =1

In(o) = poly(DevLag, 3

+ (DevLag =3

v=1,

T = 2.8(ﬁxed)>.

+ AY ear + (DevLag = 3)

: poly(AYear,2) + (DevLag = 2) : AY ear,
+ poly(AY ear,2) + (DevLag = 2)

+ (CYear = 2002),

~— — — ~—

Against Index Normal Q-Q Plot
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Figure B.4.6.: Residual plots for Line of Business 4

Statistics of reserve distributions for lines of business 4:

GAMLSS CL
Mean 0.0000 -0.3309
Variance 0.0020  0.0006

Table B.4.2.: LoB 4 total reserve statistics
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B. Exhibits per Line of Business

Estimated ultimate losses by accident year (CL)
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Figure B.4.7.: Ultimate loss estimates and estimated total reserve densities (LoB 4)
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B.5. Line of Business 5

B.5. Line of Business 5

B.5.1. Cash Flow Analysis

Figure [B.5.1 shows that except for the first cash flow chain ladder under-estimates all
cash flows. The GAMLSS under-estimates the cash flows for all calendar years but not
as strong as chain ladder. Data show that development factors increase for increasing
accident years, causing an under-estimation when using the chain ladder factors. Thus
we think the GAMLSS model is the better model in this case.

Relative differences from observed cash flows by calendar year

B Chain Ladder Estimate
O GAMLSS Emp. Mean
O GAMLSS Emp. Median

0.00
|

-0.05

-0.10

2006 2007 2008 2009 2010 2011

Figure B.5.1.: Chain ladder estimates, empirical means and empirical medians from
GAMLSS models for LoB 5
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Model Distr. Parameter | Polynomials Factors Interactions
2005 NO i | poly(DevLag,5), poly(AYear,4) | DevLag 1,2, AYear 1999
In(o) | poly(DevLag,5), poly(AYear,2) | DevLag 2, CYear 2003, De-
vLag > 6
2006 NO i | poly(DevLag,5) DevLag 1,2,3,7, AYear 1999,
AYear > 2002
In(o) | poly(DevLag,5), poly(AYear,2) | DevLag 2, CYear 2003, De-
vLag > 6
2007  NO i | poly(DevLag,5) DevLag 1,2,3,7
In(o) | poly(DevLag,5), poly(AYear,2) | DevLag 2
2008 NO i | poly(DevLag,5) DevLag 1,2,3,7
In(o) | poly(DevLag,5), poly(AYear,2) | DevLag 2
2009 NO u | poly(DevLag,5) DevLag 1,2,3,7
In(o) | poly(DevLag,5), poly(AYear,2) | DevLag 2
2010 NO i | poly(DevLag,5) DevLag 1,2,3,7
In(o) | poly(DevLag,5), poly(AYear,2) | DevLag 2

Table B.5.1.: All six models for LoB 5.
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B. Exhibits per Line of Business
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Figure B.5.5.: Predictive distributions for LoB 5



B.5. Line of Business 5

B.5.2. Latest Model & Reserving

The model using most recent data is

PtP.Ratio ~ NO( p = poly(DevLag,5) + (DevLag = 1) + (DevLag = 2)

+ (DevLag = 3) + (AY ear = 2003),
In(o) = poly(DevLag,5) + poly(AY ear,2) + (DevLag = 2)

+ (AYear = 1999) + (AYear = 2004)).
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Figure B.5.6.: Residual plots for Line of Business 5

Statistics of reserve distributions for lines of business 5:

GAMLSS CL
Mean 0.0000 -0.0380
Variance 0.0014  0.0009

Table B.5.2.: LoB 5 total reserve statistics
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B. Exhibits per Line of Business

Estimated ultimate losses by accident year (CL)
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Figure B.5.7.: Ultimate loss estimates and estimated total reserve densities (LoB 5)
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accident year, [
age-to-age factors, [9)

calendar year, []

cash flow,

chain ladder factor, [I3]
chain ladder factors, [9]
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correlation
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Pearson’s rho, [7§

development lag, (]
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distribution
(standardized) ¢,
Gaussian, [34]
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Generalized Additive Model for Location,
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generalized linear model, [10]

global deviance,

IBNER reserve, [0]
IBNR reserve, [0
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loss triangles,
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