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Zusammenfassung

Die vorliegende Arbeit ergänzt die Theorie zu Pair-Copula-Konstruktionen (PCCs) basierend

auf regulären Vines (R-vines) in einigen Aspekten. PCCs für Modelle mit sowohl diskreten

als auch kontinuierlichen eindimensionalen Randverteilungen werden entwickelt, und es wird

gezeigt wie Likelihood-Funktion, Score-Funktion und die beobachtete Fisher-Informations-

matrix berechnet werden können. Damit PCCs greifbar für statistische Schlussfolgerun-

gen und Modellwahl bleiben, trifft man üblicherweise eine vereinfachende Annahme für die

Copulas der bedingten Verteilungen: Es wird angenommen, dass diese Copulas nicht von

den Werten der Variablen, auf die bedingt wird, abhängen. In dieser Arbeit werden alle

Archimedischen Copulas vom vereinfachten Typ identifiziert, gezeigt, dass die student’sche

t-Verteilung die einzige Scale Mixture von Normalverteilungen ist für welche die Annahme

gilt, und eine Technik demonstriert um den benötigten Stichprobenumfang zur Unterschei-

dung einer multivariaten Verteilung von einer nahen vereinfachten PCC zu bestimmen. Da

einige Anwendungen auf Finanzzeitreihen die Modellierung von zeitlichen Veränderungen

in Abhängigkeiten notwendig machen, wird weiter ein Markov-Switching Modell entwickelt,

welches es erlaubt solche Veränderungen zu studieren. Dieses Modell wird auf einen Daten-

satz mit US-Wechselkursen angewendet, für den Stressphasen an den Märkten, welche mit

Veränderungen in Abhängig-keiten einhergehen, bestimmt werden. Um die Vorteile von PCCs

für Daten mit sowohl diskreten als auch kontinuierlichen Zufallsvariablen aufzuzeigen, wird

eine weitere Anwendung auf Daten von der “Second Longitudinal Study of Aging” (LSOA

II) betrachtet. In dieser wird die Prävalenz von chronischen Krankenheiten untersucht, um

das Verständnis von Komorbiditäten zu erweitern.





Abstract

This thesis extends the theory of regular vine (R-vine) pair copula constructions (PCCs) in

several aspects. We develop PCCs for models with both discrete and continuous univariate

marginal distributions and illustrate how the likelihood function, score function, and observed

information matrix can be computed. To keep PCCs tractable for inference and model selec-

tion one usually makes a simplifying assumption for the copulas of conditional distributions:

we assume that these copulas do not depend on the values of the variables which are con-

ditioned on. We find all Archimedean copulas which are of the simplified type, show that

Student’s t distribution is the only scale mixture of Normals for which the assumption holds

and demonstrate a technique to assess the sample size required to distinguish a multivariate

copula from a nearby simplified PCC. Since some applications in finance require to model

variations in dependence over time we develop a Markov switching R-vine model which allows

to study these changes. This model is applied to a data set of US exchange rates, for which

we determine periods of market stress associated with changes in dependence. To illustrate

the advantages of PCCs for data with both discrete and continuous variables we consider a

further application to data from the Second Longitudinal Study of Aging (LSOA II) where we

analyze the prevalence of chronic conditions to broaden our understanding of comorbidities.
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Introduction

While many problems in mathematics are hundreds of years old (Boyer and Merzbach 2011)

most statistical methods being used by practitioners of various fields today have been devel-

oped rather recently. With the upcoming of ever more powerful computers and information

technology, the amount of data being collected has increased drastically, pushing demand for

new statistical methods. Being not limited to methods where results can be obtained through

calculations with pen and paper, but using sophisticated numerical optimization and Monte

Carlo techniques, allows for ever more complex and comprehensive models to be applied to

real world problems.

With more data becoming accessible, one area which has received considerable attention

in the last years is the modeling of multivariate dependencies between observations or random

variables. The mathematical “language” which has been developed to describe dependence

structures is the theory of copulas. Despite attracting criticism both from a theoretical point

of view (Mikosch 2006) and for its (inappropriate) use in some areas of finance (Salmon 2009,

“The formula that killed Wall Street”) the concept of copulas is still on the rise. While

computational capabilities allow for more sophisticated applications, the main mathematical

merit of the copula concept is that it allows to develop a systematic understanding of depen-

dence beyond linear correlations (Embrechts et al. 2002). Today, many classes of copulas are

available, each having its strengths in specific applications. A comprehensive overview in the

context of economic forecasting has been provided by Patton (2012).

In this thesis, we will focus on a particular class of copulas, so-called regular vine (R-

vine) pair copula constructions (PCCs), which are popular because they break the complex

problem of specifying a d-dimensional dependence model down into choosing a decomposition

and then specifying bivariate copulas. Under some assumptions, this class provides a highly

flexible and tractable model in moderate dimensions (typical applications are in dimensions

3 to 50, Heinen and Valdesogo (2009) propose a vine-based model in dimension d = 100).

We will extend the existing theory of PCCs in several aspects. While previous research

focused either on the “standard” case of purely continuous random variables (Aas et al.

2009) or on multivariate discrete models (Panagiotelis et al. 2012), we present a systematic

approach to PCCs where some margins are discrete and some are continuous. We will show

how the likelihood, score function and observed information can be computed for R-vine

PCCs and answer theoretical questions regarding the so-called “simplifying assumption”. In

particular, we will investigate how restrictive it is to assume that the copulas of conditional



distributions do not depend on the values of variables that are conditioned on, and which

well-known multivariate models are simplified PCCs of this kind. Since some problems in

finance require the modeling of dependence structures varying over time, we will then study

a Markov switching (MS) R-vine copula model in which the dependence structure depends

on a latent state variable. We will apply this model to a data set of US exchange rates where

we identify crisis periods. To illustrate the capabilities of the R-vine PCC model for mixed

discrete and continuous variables, we will study a data set from the Second Longitudinal

Study of Aging (LSOA II). The general outline and contribution of each chapter is as follows.

Chapter 1 presents mathematical notation and concepts which will be required through-

out this thesis. In particular, the concepts of copulas and multivariate measures of dependence

are introduced, and we provide the necessary graph theoretic background for the R-vine tree

structures which will be used. To motivate the concept of PCCs, a three dimensional example

is discussed in detail.

Chapter 2 introduces R-vine PCCs for discrete and continuous marginal distributions

and is based on material from Stöber et al. (2012). This copula model, which generalizes

those of Panagiotelis et al. (2012) for discrete data and Aas et al. (2009) for continuous data

has two important advantages over existing models. First, R-vine PCCs result in highly flex-

ible dependence structures since different and (possibly) asymmetric bivariate copulas can be

combined in one distribution. This allows to model asymmetries and in particular asymmetric

tail dependencies (Joe et al. 2010) which are beyond the scope of e.g. the symmetric mul-

tivariate normal and Student’s t distributions. Second, in the presence of discrete marginal

distributions, the approach presented here has significant computational advantages since it

requires only the evaluation of bivariate instead of higher dimensional copula functions. Fur-

thermore, the number of required evaluations of copula functions to calculate the probability

mass function (pmf) grows only quadratically with the number of discrete variables. This

is a significant improvement compared to calculating the pmf for a given high dimensional

copula by taking differences where the number of function evaluations increases exponentially

(Panagiotelis et al. 2012). This makes parameter inference in a maximum likelihood frame-

work feasible where competing models have to be fitted in a computationally more intense

Markov chain Monte Carlo (MCMC) framework. We will show how the likelihood compu-

tations for R-vine PCCs can be implemented in computer code and develop algorithms to

evaluate also the score function and observed information matrix. For the purely continuous

setup, the algorithms have been made available in the R-package VineCopula (Schepsmeier

2



et al. 2012).

In Chapter 3, which is taken from Stöber et al. (2013), we proceed by reviewing the sim-

plifying assumption for PCCs, i.e. that the copulas of conditional distributions do not depend

on the values of variables that are conditioned on. This assumption has also been studied by

Hobæk Haff et al. (2010) and Acar et al. (2012a). Our main results are to show that the only

multivariate Archimedean copulas of the simplified type are those in the MTCJ copula family

and that the only multivariate scale mixture of Normals fulfilling the simplifying assumption

is the Student’s t distribution. To investigate how severe violations of the simplifying as-

sumption are in practice, we introduce a technique based on the Kullback-Leibler divergence

which allows to assess the necessary sample size to distinguish a multivariate distribution

from a nearby distribution which satisfies the simplifying assumption.

Chapter 4, which is based on material from Stöber and Czado (2013), considers a general

Markov switching model based on R-vine copulas (MS-RV model) for which we develop effi-

cient inference techniques. Using the full flexibility of R-vine PCCs, we go beyond the copula

model considered by Chollete et al. (2009). For fast parameter estimation and scalability to

high dimensions, we develop an approximative Expectation - Maximization (EM) algorithm

based on the sequential estimation technique of Aas et al. (2009) and Hobæk Haff (2013). We

do also consider inference in a Bayesian setup, where we develop an MCMC algorithm which

also allows to compute credible intervals for the probability of being in a certain regime at

a given point of time. This allows us to quantify the uncertainty in the time-variability of

dependence for given data which is not possible for most existing models. Since in many con-

texts we will not have prior knowledge about the data on which the selection of appropriate

R-vine structures and corresponding pair-copulas can be based we will also introduce a simple

model selection heuristic based on the work of Dißmann et al. (2013) for time-constant R-vine

copulas. While most of this thesis is concerned with modeling only the dependence structure

or the copula, assuming that the marginal distributions are known or pre-specified, we will

also consider a model where both the marginal time series and the dependence structure are

subject to changes in regime in this section. We will extend the EM procedure to estimate

parameters for this joint model.

In Chapters 5 and 6 we apply the developed models to two real-world data sets. In

Chapter 5, which is based again on Stöber and Czado (2013), we consider an application of

the MS models developed in Chapter 4 to a data set of US exchange rates. After the 2007/2008

financial crisis, regulators worldwide have recognized the fact that financial time series exhibit

different behavior in situations of market stress and introduced new requirements for risk

models of financial institutions addressing this issue. In addition to Value at Risk (VaR),

3



European banks are now required to report a stressed VaR (European Banking Authority

2012, SVaR), for which the risk model has to be calibrated using a period of significant stress

to the banks portfolio. To detect appropriate “crisis” periods, we will present an extensive

investigation of MS models for the dependence structure among the exchange rates in our

data set. Since most practitioners will not only be interested in the dependence structure, we

will further apply the joint model in which both the marginal time series and the copula are

switching jointly. Using out-of-sample predictive logscores, we illustrate that the considered

MS models produce more accurate forecasts than constant models during times of market

stress.

Chapter 6 is taken from Stöber et al. (2012). Here, we analyze data from the second

longitudinal study of aging (LSOA II), containing information on the absence/presence (dis-

crete outcome) of five chronic conditions (arthritis, hypertension, heart disease, stroke and

diabetes) and the body mass index (BMI, continuous outcome), requiring both discrete and

continuous marginal distributions. As the population is aging in the US and most of the

developed world, improved conditions and medical methods have contributed to substan-

tially higher life expectancies. Nevertheless, as a consequence of improved survival rates for

previously fatal diseases, also the proportion of adults afflicted with chronic conditions has

increased substantially. The chronic conditions on which we have information in our data

set are often studied in an isolated setting and clinical practice guidelines are based on such

studies. However, the elderly are likely to develop comorbid conditions, i.e. suffer from more

than one chronic condition at the same time. Here, we consider a joint modeling framework

to improve our understanding of comorbidities.
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Chapter 1

Preliminaries

In this chapter, we will state necessary preliminaries for what we will consider in the remainder

of this thesis.

1.1 Notation

A d-dimensional random vector is denoted by X1:d = (X1, . . . , Xd), for observations from this

distribution we write x1:d = (x1, . . . , xd). We do further write XI = {Xi|i ∈ I} for a set I of

indices, in particular, X(1:d)\h, for h ∈ 1, . . . , d, refers to the vector where the variable with

index h has been removed from X1:d. Here, 1 : d = {1, . . . , d}.
If nothing else is mentioned, we shall denote the corresponding cumulative distribution func-

tion (cdf) by F1:d(·) and the density, which we will usually assume to exist, by f1:d(·). The

conditional distribution function of XI given XJ = xJ , where I, J are non-overlapping sub-

sets of {1, . . . , d}, is FI|J(·|xJ) with corresponding density fI|J(·|xJ). If I has more than one

element, then the copula corresponding to this conditional distribution is CI;J(·|xJ), with

density cI;J(·|xJ).

For a discrete variable Xj , j ∈ 1, . . . , d , we do also write Fj(xj,0) := Fj(xj), and Fj(xj,1) for

the left-hand limit of Fj at xj to simplify notation. In the case of Xj ∈ Z, where Z denotes

the integers, this corresponds to Fj(xj,1) = Fj(xj − 1). The corresponding probability mass

function (pmf) is denoted by pj .

For a differentiable function f : Rd 7→ R, (R is the field of real numbers, the field of rational

numbers is denoted by Q) we denote the i-th partial derivative by ∂if , i.e.

∂if(x1, . . . , xi, . . . , xd) =
∂f(x1, . . . , zi, . . . , xd)

∂zi

∣∣
zi=xi

.

For g : R 7→ R, we will write g′ for the first derivative and g(k) for the kth derivative.

For a set S, P(S) is the power set (i.e. the set of all subsets) and #S is the number of

elements s in S. We denote the indicator function on the set by 1S , it is defined by

1S(s) =

1 s ∈ S

0 s 6∈ S
.
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Closely related is the signum function sgn(·) for a real number x, which is defined as

sgn(x) =


−1 x < 0

0 x = 0

1 x > 0

.

To express logical statements we will use ∧ (and), ∀ (for all) and ∃ (exists).

For a sample (xi,t)i=1,...,d;t=1,...,T , the empirical distribution functions are given by F̂i(y) =∑T
t=1 1{z|z≤y}(xi,t)

/
T , and the standardized ranks are ûi,t = T F̂i(xi,t)

/
(T + 1).

Finally, Ran(F ) denotes the range of a function F , i.e. for F : A 7→ B, Ran(F ) = {F (a)|a ∈
A}. If F is invertible, then the inverse is F−1. If F is an increasing but not invertible function

on the real line then F−1(y) = inf{x ∈ R : F (x) ≥ y}, y ∈ R is its generalized inverse.

1.2 Copulas and multivariate dependence

The central mathematical objects in this thesis are copulas.

Definition 1.2.1. A d-dimensional copula is a cumulative distribution function in d-dimen-

sions such that the univariate marginal distributions are uniform on [0; 1].

Let F1:d be the cdf of a d-dimensional probability distribution and denote the marginal

distribution functions by F1, . . . , Fd. Then the following theorem allows to specify F1:d in

terms of the univariate margins and a copula C1:d.

Theorem 1.2.2 (Sklar (1959)). For every distribution function F1:d with univariate marginal

distributions F1, . . . , Fd there exists a copula C1:d, such that

F1:d(x1, . . . , xd) = C1:d(F1(x1), . . . , Fd(xd)). (1.1)

If F1, . . . , Fd are continuous, then C1:d is unique. Otherwise, C is uniquely determined on

Ran(Fi)× · · · ×Ran(Fd).

If the distribution F1:d is absolutely continuous with respect to the standard Lebesgue

measure on Rd and has density f1:d and marginal densities f1, . . . , fd, then (1.1) can be

rewritten in terms of the densities as

f1:d(x1, . . . , xd) = c1:d(F1(x1), . . . , Fd(xd)) · f1(x1) · . . . · fd(xd). (1.2)

While Definition 1.2.1 and Theorem 1.2.2 are given for the (unconditional) distribution of a

random vector X, they can be extended to the conditional distribution of X|Y = y (Patton

6
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2006). In this case, Sklar’s theorem guarantees the existence of a conditional copula CX;Y(·|y),

depending on y, such that the conditional distribution function of X given Y = y is given by

FX|Y(x|y) = CX;Y

(
F1|Y(x1|y), . . . , Fd|Y(xd|y)

∣∣∣y) . (1.3)

Here, we write CX;Y for the copula corresponding to a conditional distribution to clearly

distinguish it from the conditional distributions of a multivariate copula. To further clarify

the notation which we will use throughout this thesis, let us consider the special case of a

bivariate conditional distribution of variables (X1, X2) given X3:d = x3:d. Here, the joint

distribution function is

F1,2|3:d(x1, x2|x3:d) = C1,2;3:d

(
F1|3:d(x1|x3:d), F2|3:d(x2|x3:d)

∣∣∣x3:d

)
, (1.4)

with corresponding density function

f1,2|3:d(x1, x2|x3:d) = c1,2;3:d

(
F1|3:d(x1|x3:d), F2|3:d(x2|x3:d)

∣∣∣x3:d

)
· f1|3:d(x1|x3:d) · f2|3:d(x2|x3:d).

(1.5)

Similarly, the conditional density of X1 given X2 = x2 and X3:d = x3:d is given by

f1|2:d(x1|x2:d) = c1,2;3:d

(
F1|3:d(x1|x3:d), F2|3:d(x2|x3:d)

∣∣∣x3:d

)
· f1|3:d(x1|x3:d). (1.6)

In particular in the special case of two dimensions, copulas have been studied by many authors

and a variety of literature is available (see e.g. the books by Joe (1997) and Nelsen (2006)).

An overview of many bivariate copula families and their derivatives, which will be important

for algorithms developed later in this thesis, is given by Schepsmeier and Stöber (2012). The

families we will consider in this thesis include the Gaussian/Normal, Student’s t, Gumbel,

Clayton/MTCJ and Frank family. Their parameterizations will be chosen as in Schepsmeier

and Stöber (2012).

1.2.1 Measures of dependence

While it is necessary to specify the copula to fully determine the dependence structure of a

random vector, we will often use dependence measures which do only depend on the copula,

and not on the marginal distributions, to summarize observations. The two measures we will

mostly use in this thesis are Kendall’s τ rank correlation and the notion of tail dependence.

However, many more multivariate measures of association are available and a comprehensive

overview, from which also the following definitions are taken, is given in Joe (1997). We will

always assume that the limits in the definitions exist and refer to the given literature for a

discussion of when this applies.

7
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Definition 1.2.3. Let F1,2 be a continuous bivariate distribution function and let (X1, X2),

(X ′1, X
′
2) be independent random vectors with distribution F1,2. Then Kendall’s τ is

τ = 4

∫
R2

F1,2(x1, x2)dF1,2(x1, x2)− 1. (1.7)

This is equivalent to the probability of observing two concordant pairs minus the probability

of observing two discordant pairs

τ = P ((X1 −X ′1)(X2 −X ′2) > 0)− P ((X1 −X ′1)(X2 −X ′2) < 0).

Expression (1.7) is invariant under strictly increasing transformations of the marginal

variables. Hence, Kendall’s τ can be written in terms of the corresponding copula C1,2,

τ = 4

∫
[0;1]2

C1,2(u1, u2)dC1,2(u1, u2)− 1.

For a sample of observations xt = (x1,t, x2,t), t = 1, . . . , T , with positive weights ωt, an

estimator of Kendall’s τ is

τ̂ω1:T (x1:T ) =
T (T − 1)/2√(

T (T−1)
2 − n1

)(
T (T−1)

2 − n2
) 1∑T−1

i=1

∑T
j=i+1 ωiωj

T−1∑
i=1

T∑
j=i+1

d1
i,jd

2
i,jωiωj ,

where dki,j = sgn(xk,i − xk,j), k = 1, 2, and nk is the number of tied pairs with dki,j = 0 (see

Pozzi et al. (2012) for further references and computer code for this estimator). For equal

weights ωt = ωt′ , ∀t, t′, this is the usual estimator with adjustment for ties:

τ̂(x1:T ) =
1√(

T (T−1)
2 − n1

)(
T (T−1)

2 − n2
) T−1∑

i=1

T∑
j=i+1

d1
i,jd

2
i,j .

Definition 1.2.4. Let X = (X1, X2) be a random vector with marginal distributions F1 and

F2. X has upper tail dependence if

λU = lim
u→1−

P (X1 > F−1
1 (u)|X2 > F−1

2 (u)) > 0,

and no upper tail dependence if λU = 0. Similarly, X has lower tail dependence if

λL = lim
u→0+

P (X1 ≤ F−1
1 (u)|X2 ≤ F−1

2 (u)) > 0,

and no lower tail dependence if λL = 0.

Again, this definition is invariant under strictly increasing transformations and we have

λL = lim
u→0+

C1,2(u, u)

u
, λU = lim

u→1−
=

1− 2u+ C1,2(u, u)

(1− u)
.

For a more general multivariate notion of tail dependence we refer to Joe et al. (2010).

8
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1.2.2 Inference

We will always consider the case where a d-variate distribution is specified in terms of d

marginal densities fi(·|θi) with parameters θi and a copula density c1:d(·|θcop) with param-

eters θcop. Hence, for observations (xt)t=1,...,T of independent and identically distributed

(i.i.d.) random variables with this distribution, the likelihood function ` is given by

`(θ1, . . . ,θd,θcop|x1:T )

=
T∏
t=1

[
c1:d

(
F1(x1,t|θ1), . . . , Fd(xd,t|θd)

∣∣∣θcop) · f1(x1,t|θ1) · . . . · fd(xd,t|θd)
]
,

and the natural way to perform inference is to either apply the maximum likelihood principle

or to specify a prior distribution on the parameters θ1, . . . ,θd,θcop and then proceed under the

Bayesian paradigm. Since this requires a joint maximization with respect to all parameters or

the calculation of the joint posterior distribution, respectively, the necessary computations can

become very demanding in high dimensions. To circumvent these challenges, other estimation

methods have been developed in the literature - a comprehensive overview is given by Patton

(2012). In the following, we quickly summarize two methods which separate the estimation

of marginal parameters from the estimation of the copula parameters.

1.2.2.1 Inference functions for margins

If the marginal distributions and the copula do not share parameters, i.e. θ1, . . . ,θd and

θcop can all be specified independently, Joe and Xu (1996) propose to perform estimation

in two stages. On the first stage, the marginal dependence parameters θi are estimated by

maximizing the marginal likelihood functions

`i(θi|x1:T ) =
T∏
t=1

fi(xi,t|θi), i = 1, . . . , d.

Subsequently, θcop is estimated by maximizing the pseudo likelihood function

`cop(θcop|x1:T , θ̂1, . . . , θ̂d) =

T∏
t=1

c1:d

(
F1(x1,t|θ̂1), . . . , Fd(xd,t|θ̂d)

∣∣∣θcop) ,
where θ̂1, . . . , θ̂d are the estimated parameters obtained on the first stage. Also if x1:T are

not observations of i.i.d. random variables but have a time series structure, this two step

procedure can be applied analogously as long as the parameters of the marginal time series

models and the dependence model are fully independent. While this multiple step estimation

procedure is obviously asymptotically less efficient than full maximum likelihood estimation,

9
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it is asymptotically consistent and allows to fully disentangle the dependence structure from

the marginal distributions also for parameter estimation. Note that this inference method is

known more generally also as multi-stage maximum likelihood estimation (see for example

White (1996)).

1.2.2.2 Maximum pseudo likelihood estimation

If sufficient data is available and only the dependence structure is of interest, Genest et al.

(1995) propose to go one step further and estimate the marginal distributions non paramet-

rically. In the case of i.i.d observations, an estimator for the copula parameter is obtained by

maximizing the pseudo likelihood function

`cop(θcop|û1:T , θ̂1, . . . , θ̂d) =

T∏
t=1

c1:d

(
û1,t, . . . , ûd,t

∣∣∣θcop) ,
where ûi,t, i = 1, . . . , d are standardized ranks (see Section 1.1). In general, this is called a

semi-parametric estimation procedure. In particular, semi parametric estimation can help to

avoid estimation bias which can be induced in parametric estimation of copula parameters

if marginal distributions are severely misspecified (Kim et al. 2007). Similar methods in the

presence of a time series structure have been considered by Chen and Fan (2006). In both

cases, the obtained estimates for the copula parameters are asymptotically consistent. In

particular, while we will work with fully parametric models within the scope of this thesis,

this illustrates that multi step estimation is generally feasible in the context of copula models.

1.3 Scoring rules and model selection criteria

In this section, criteria which we will apply for model comparison are introduced.

1.3.1 Log predictive score

Scoring rules, as considered by Gneiting and Raftery (2007), “assess the quality of proba-

bilistic forecasts, by assigning a numerical score based on the predictive distribution and on

the event or value that materializes”. In particular, the logarithmic score or log predictive

score is popular. For a predictive density f(·) and an observed value of x it is defined as

LogS(f,x) = ln(f(x)). (1.8)

We will use this scoring rule to analyze the out-of-sample performance of our models. A

comprehensive overview of scoring rules is given by Gneiting and Raftery (2007).

10
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1.3.2 AIC/BIC

Two of the most commonly used information criteria for model selection are AIC and BIC

(see e.g. Burnham and Anderson (2004) for an extended discussion). The Akaike information

criterion (AIC) (Akaike 1974) is an in-sample measure of goodness-of-fit. Similar to the log

predictive score it is based on the log-likelihood of a statistical model. However, since it is an

in-sample measure, an additional punishment term is introduced to prevent overfitting. For

a statistical model with density f(·;θ), where θ ∈ Θ contains k parameters, and independent

observations xt, t = 1, . . . , T , the AIC is given by

AIC(f,x1:T ) = 2k − 2

T∑
t=1

ln(f(xt; θ̂)),

where θ̂ is the maximum likelihood estimator of θ in Θ. In some settings, we will want to

weight observations according to their relative relevance. In this case, for positive weights

ωt, t = 1, . . . , T , which sum to one, a weighted AIC can be calculated as

AICω1:T (f,x1:T ) = 2k − 2
T∑
t=1

ωt ln(f(xt; θ̂)),

where θ̂ is minimizing the weighted AIC. While the penalty term for the number of parameters

in the AIC does not depend on the sample size, the penalty term in the Bayesian information

criterion (BIC) (Schwarz 1978) does. It is given by

BIC(f,x1:T ) = ln(T )k − 2

T∑
t=1

ln(f(xt; θ̂)),

which puts a stronger penalty on the number of parameters. When used as a model selection

criterion, this leads to more parsimonious models.

1.4 Graph theory: regular vine tree sequence

The common tool used to organize the PCCs, which are at the core of this thesis, is the

graph theoretic construct of an R-vine tree sequence. Therefore, we will consider some basic

notions of graph theory, which are required throughout the manuscript, in this section and

explain how R-vine tree sequences can be described in a convenient matrix notation. The

matrix notation as we consider it here has been developed by Dißmann et al. (2013) and

Dißmann (2010) building on earlier work by Morales-Nápoles (2011). We will only give the

most important definitions which are required in this thesis. Readers interested in graph

theory as such or in a more detailed introduction to graph theoretical concepts and algorithms

11
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should consult the classical work of König (1936) or Thulasiraman and Swamy (1992) for a

more recent overview. The definitions presented here follow Dißmann et al. (2013) and

Bedford and Cooke (2002) and our notation is close to Czado (2010).

The basic object in graph theory is a graph consisting of nodes and edges.

Definition 1.4.1. A graph is an ordered pair G = (N,E) comprising a set of nodes N and

a set of edges E ⊆ P(N). Here, each element e ∈ E is a two-element subset of N, i.e. e ⊆ N ,

#e = 2.

A path in G is a sequence (e1, . . . , en), ei ∈ E, ei 6= ej, i, j ∈ 1, . . . , n, such that

∀(ei, ei+1), i ∈ 1, . . . , n− 1 : ∃ni ∈ N, (ni ∈ ei)∧ (ni ∈ ei+1), i.e. a sequence of edges in which

consecutive edges share a common node. If for each each pair of nodes (na, nb), na 6= nb there

exists a path (e1, . . . , en), such that na ∈ e1 and nb ∈ en, the graph is called connected. It is

called acyclic if such a path does not exist for na = nb.

A tree is connected, acyclic graph.

The graph theoretical object which is central in this thesis is a set of trees (a forest) which

are connected by the following conditions.

Definition 1.4.2. A regular vine (R-vine) tree sequence on d elements is an ordered

set of trees V = (T1, . . . , Td−1), Ti = (Ni, Ei), i ∈ 1, . . . , d− 1, such that

(i) N1 = {1, . . . , d} (Tree 1 has nodes 1, . . . , d).

(ii) For i ∈ 2, . . . , d− 1, Ni = Ei−1 (The edges of tree i become the nodes in tree i+ 1).

(iii) For i ∈ 2, . . . , d − 1, ∀e = {a, b} ∈ Ei : #(a ∩ b) = 1 (If two nodes in tree i are joined

by an edge, the corresponding edges in tree i− 1 must have a common node (proximity

condition)).

The edges of the R-vine tree structure V will later correspond to conditional distribution

functions and their corresponding copula. To clarify this, we require some further notation.

Definition 1.4.3. For an edge e = {j, k} ∈ Ei in an R-vine tree sequence, the complete

union Ae is defined as

Ae :=
{
j ∈ N1|∃ e1 ∈ E1, . . . , ei−1 ∈ Ei−1 : j ∈ e1 ∈ . . . ∈ ei−1 ∈ e,

}
.

The conditioning set of e is De := Aj ∩ Ak and the conditioned sets associated with e

are given by Ce,j := Aj \ De and Ce,k := Ak \ De. We will often write j(e) := Ce,j and

k(e) := Ce,k. The constraint set CV of an R-vine V is defined as

CV =
{
{{j(e), k(e)}, De}|i ∈ 1, . . . , d− 1, e ∈ Ei, e = {j, k}

}
.

12
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Since the constraint set contains all information required to reconstruct the R-vine V, it is

common practice to use the constraint set to denote edges of V. By induction, the conditioned

sets are singletons, i.e. #j(e) = #k(e) = 1 (Bedford and Cooke 2002). To shorten notation,

the elements of the constraint set are usually given as follows: the numbers in j(e) and

k(e) are separated by a comma and given to the left of a “|” sign, with the numbers in De

appearing on its right.

An example of an R-vine tree sequence is drawn in Figure 1.1. Here, 2, 3|1 represents

the edge {{1, 2}, {1, 3}} in set notation. The complete union of this edge is {1, 2, 3}, since

1 ∈ {1, 2} ∈ {{1, 2}, {1, 3}}, 2 ∈ {1, 2} ∈ {{1, 2}, {1, 3}} and 3 ∈ {1, 3} ∈ {{1, 2}, {1, 3}}.
Also, since {1, 2} ∩ {1, 3} = {1}, {1} is the conditioning set, while {2}, {3} represent the

conditioned sets.

This tree sequence can be represented by a 8 × 8 lower triangular matrix M as follows:

We choose the member of one of the conditioned sets of the edge in T7, e.g. 8, and write

it down as the (1, 1) element of a matrix M. Now, we go through the edges where 8 is in a

conditioned set from tree T7 to tree T1 and write down the elements which are in the other

conditioned set in the first column of the matrix. The edge in T7 is (7, 8|1, 2, 3, 4, 5, 6), so 7

becomes the (2, 1) element of M , 2 becomes the (3, 1) element since (2, 8|1, 3, 4, 5, 6) ∈ E6, et

cetera. We obtain 

8

7

2

3

6

4

1

5


, (1.9)

and delete all the edges where 8 is in a conditioned set from the vine. This leads to a reduced

vine only containing variables 1, . . . , 7 with which we can proceed analogously until we end

up with a matrix

M =



8

7 7

2 2 6

3 3 2 5

6 4 3 2 4

4 1 4 3 2 3

1 5 1 4 3 2 2

5 6 5 1 1 1 1 1


, (1.10)

and have deleted all edges from the original tree sequence. The matrix M is called R-vine
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Figure 1.1: An R-vine tree sequence in eight dimensions with corresponding elements of

the constraint set as edge indices.

T1 2 1 5 6 7

3 4 8

1,2 1,5 5,6 6,7

1,3
1,4 5,8

T2 1,2 1,3 1,4 1,5 5,6 6,7

5,8

2, 3|1 3, 4|1 4, 5|1 1, 6|5 5, 7|6
1, 8|5

T3 2, 3|1 3, 4|1 4, 5|1 1, 6|5 5, 7|6

1, 8|5

2, 4|1, 3 3, 5|1, 4 4, 6|1, 5 1, 7|5, 6
4, 8|1, 5

T4 2, 4|1, 3 3, 5|1, 4 4, 6|1, 5 1, 7|5, 6

4, 8|1, 5

2, 5|1, 3, 4 3, 6|1, 4, 5 4, 7|1, 5, 6
6, 8|1, 4, 5

T5 2, 5|1, 3, 4 3, 6|1, 4, 5 4, 7|1, 5, 6

6, 8|1, 4, 5

2, 6|1, 3, 4, 5 3, 7|1, 4, 5, 6
3, 8|1, 4, 5, 6

T6 3, 8|1, 4, 5, 6 2, 6|1, 3, 4, 5 3, 7|1, 4, 5, 6
2, 8|1, 3, 4, 5, 6 2, 7|1, 3, 4, 5, 6

T7 2, 8|1, 3, 4, 5, 6 2, 7|1, 3, 4, 5, 6
7, 8|1, 2, 3, 4, 5, 6

matrix, and by construction it fulfills the properties specified in Definition 1.4.4.

Definition 1.4.4. A lower triangular matrix M = (mi,j)j=1,...,d,i≥j where mi,j ∈ {1, . . . , d}
is called R-vine matrix if

(i) {mi,i, . . . ,md,i} ⊂ {mj,j , . . . ,md,j} for 1 ≤ j < i ≤ d (The entries of a selected column

14
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are also contained in all columns to the left of that column).

(ii) mi,i 6∈ {mi+1,i+1, . . . ,md,i+1} (The diagonal entry of a column is not contained in any

column further to the right).

(iii) For all i = d − 2, . . . , 1 and k = i + 1, . . . , d there exist (j,l) with j > i and l > j such

that {
mk,i, {mk+1,i, . . . ,md,i}

}
=
{
mj,j , {ml,j ,ml+1,j , . . . ,md,j}

}
or{

mk,i, {mk+1,i, . . . ,md,i}
}

=
{
ml,j , {ml+1,j , . . . ,md,j ,mj,j}

}
.

(This corresponds to the proximity condition).

To reconstruct the R-vine tree sequence in Figure 1.1 from the R-vine Matrix M in

(1.10), we start with adding nodes 1, . . . , 8 to tree T1. The edges connecting these nodes are

determined from the diagonal elements and row 8 of the matrix: In column 7, 2 is on the

diagonal and 1 in the last row, we add an edge (1, 2). For column 6 of the matrix edge (1, 3)

is added, while (1, 4) is added for column 5 and so on. Having reconstructed tree T1, we

proceed in a similar fashion with the diagonal elements and row 7 of the matrix, to determine

the conditioned sets of edges in T2. The edges in T2 must also have one element in the

conditioning set which is determined by row 8 to fulfill the proximity condition. For column

1, we add an edge (8, 1|5) to tree T2. By iterating through the remaining columns and rows

and determining constraint sets analogously the complete tree sequence is reconstructed.

Since the number of possible R-vines in d dimensions is huge (d!/2 · 2(d−2
2 )) (Morales-

Nápoles 2011), many authors consider the subclasses of drawable vines (D-vines, left panel

of Figure 1.2) or canonical vines (C-vines, right panel of Figure 1.2).1

Definition 1.4.5. An R-vine tree sequence V = (T1, . . . , Td−1) is called

• D-vine tree sequence if ∀i = 1, . . . , d− 1, n ∈ Ni : # {e ∈ Ei|n ∈ e} ≤ 2.

• C-vine tree sequence if ∀i = 1, . . . , d− 1 : ∃n ∈ Ni : # {e ∈ Ei|n ∈ e} = d− i.

1.5 Decomposing a three dimensional distribution

To illustrate the general principle of PCCs, let us consider a three dimensional example with

variables X1:3 = (X1, X2, X3) ∈ R3.

1. The C-vines are called canonical since they are the easiest to sample, while the drawable vine probably

owes its name to the fact that its tree structure has the closest resemblance to a picture of wine grapes on a

vine (Kurowicka and Cooke 2006).
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Figure 1.2: A D-vine (left panel) and C-vine (right panel) tree sequence in four dimensions.

1 2 3 4

1, 2 2, 3 3, 4

1, 3|2 2, 4|3

T1

T2

T3

1, 2 2, 3 3, 4

1, 3|2 2, 4|3

1, 4|2, 3

1

2

3

4

1, 2

1, 3

1, 4

2, 3|1 3, 4|1

T1

T2

T3

1, 2

1, 3

1, 4

2, 3|1

2, 4|1
3, 4|1, 2

1.5.1 Continuous case

If X1:3 has joint density f1:3 with marginal densities f1, f2, f3, we obtain the following de-

composition by conditioning:

f1:3(x1, x2, x3) = f1|2,3(x1|x2, x3) · f2|3(x2|x3) · f3(x3). (1.11)

Using Sklar’s theorem (Theorem 1.2.2), we can subsequently decompose the conditional den-

sities in (1.11). Let us first consider the distribution of X1 and X3 given X2 = x2 for some

x2 ∈ R. To simplify the following calculations, as well as inference and model selection pro-

cedures which we will introduce later, we will assume that the conditional copula C13;2 does

not depend on x2. (This is called simplifying assumption, for a discussion see Remark 2.1.1

and Chapter 3.) For the conditional densities in (1.11), this means that

f1|2,3(x1|x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2)) · f1|2(x1|x2),

f2|3(x2|x3) = c2,3(F2(x2), F3(x3)) · f2(x2),
(1.12)

and similarly, f1|2 is given by

f1|2(x1|x2) = c1,2(F1(x1), F2(x2)) · f1(x1).

Using the copulas C1,2 and C2,3, the conditional distribution functions F1|2 and F3|2, which

are required to evaluate the densities in (1.12), can be expressed as

F1|2(x1|x2) =
∂F1,2(x1, x2)

∂x2

/
f2(x2) =

∂C1,2(F1(x1), F2(x2))

∂x2

/
f2(x2)

= ∂2C1,2(F1(x1), F2(x2)), and

F3|2(x3|x2) = ∂1C2,3(F2(x2), F3(x3)).

(1.13)
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The joint density is therefore given in terms of bivariate copulas and marginal distributions:

f1:3(x1, x2, x3) =c13;2

(
∂2C1,2(F1(x1), F2(x2)), ∂1C2,3(F2(x2), F3(x3))

)
· c2,3(F2(x2), F3(x3)) · c1,2(F1(x1), F2(x2)) · f3(x3) · f2(x2) · f1(x1).

1.5.2 Mixed discrete and continuous case

The same principle also applies if X1, X2, X3 are not all continuous. For example, let us

consider two continuous variables X̃1 ∈ R, X̃3 ∈ R with densities f̃1, f̃3 and one discrete

variable X̃2 ∈ Z with pmf p̃2. For the decomposition into bivariate building blocks, we

start with the (generalized)2 joint density of X̃1:3 = (X̃1, X̃2, X̃3). Given the cumulative

distribution function F̃1:3 of X̃1:3, it is given by

f̃1:3(x1, x2, x3) =
∂2

∂x1∂x3

(
F̃1:3(x1, x2, x3)− F̃1:3(x1, x2 − 1, x3)

)
,

while the generalized density f̃2 of X̃2 is its pmf f̃2(.) = p̃2(.). By conditioning, the joint

density can be decomposed similarly as in the continuous case, we obtain

f̃1:3(x1, x2, x3) = f̃1|2,3(x1|x2, x3) · f̃2|3(x2|x3) · f̃3(x3). (1.14)

Using Sklar’s theorem, the terms in (1.14) can be decomposed similarly as for f1:3:

f̃1|2,3(x̃1|x̃2, x̃3) = c̃1,3;2(F̃1|2(x̃1|x̃2), F̃3|2(x̃3|x̃2)) · f̃1|2(x̃1|x̃2),

f̃2|3(x̃2|x̃3) = F̃2|3(x̃2|x̃3)− F̃2|3(x̃2 − 1|x̃3)

= ∂2C̃2,3(F̃2(x̃2), F̃3(x̃3))− ∂2C̃2,3(F̃2(x̃2 − 1), F̃3(x̃3)),

f̃1|2(x̃1|x̃2) =
∂

∂x̃1
F̃1|2(x̃1|x̃2) =

∂

∂x̃1

(
F̃1,2(x̃1, x̃2)− F̃1,2(x̃1, x̃2 − 1)

F̃2(x̃2)− F̃2(x̃2 − 1)

)

=
∂

∂x̃1

(
C̃1,2(F̃1(x̃1), F̃2(x̃2))− C̃1,2(F̃1(x̃1), F̃2(x̃2 − 1))

F̃2(x̃2)− F̃2(x̃2 − 1)

)

=

(
∂1C̃1,2(F̃1(x̃1), F̃2(x̃2))− ∂1C̃1,2(F̃1(x̃1), F̃2(x̃2 − 1))

F̃2(x̃2)− F̃2(x̃2 − 1)

)
· f̃1(x̃1).

where we write C̃ij for the copula corresponding to F̃ij . We see that F̃1|2(x̃1|x̃2) is given by

F̃1|2(x̃1|x̃2) =
C̃1,2(F̃1(x̃1), F̃2(x̃2))− C̃1,2(F̃1(x̃1), F̃2(x̃2 − 1))

F̃2(x̃2)− F̃2(x̃2 − 1)
, (1.15)

2. With generalized density, we mean the density of X̃1:3 w.r.t. the product measure on the respective

supports of the marginal variables. For discrete margins with values in R this is the counting measure on the

set of possible outcomes, for continuous margins we consider the Lebesgue measure in R.
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and the expression for F̃3|2 follows analogously. Thus, f̃1:3(x̃1, x̃2, x̃3) can again be expressed

in terms of only the marginal distributions and the bivariate copulas C̃1,2, C̃2,3 and C̃1,3;2:

f̃1:3(x̃1, x̃2, x̃3) =c̃1,3;2

(
C̃1,2(F̃1(x̃1), F̃2(x̃2))− C̃1,2(F̃1(x̃1), F̃2(x̃2 − 1))

F̃2(x̃2)− F̃2(x̃2 − 1)
,

C̃2,3(F̃2(x̃2), F̃3(x̃3))− C̃2,3(F̃2(x̃2 − 1), F̃3(x̃3))

F̃2(x̃2)− F̃2(x̃2 − 1)

)
·
(
∂2C̃2,3(F̃2(x̃2), F̃3(x̃3))− ∂2C̃2,3(F̃2(x̃2 − 1), F̃3(x̃3))

)
·
(
∂1C̃1,2(F̃1(x̃1), F̃2(x̃2))− ∂1C̃1,2(F̃1(x̃1), F̃2(x̃2 − 1))

F̃2(x̃2)− F̃2(x̃2 − 1)

)
· f̃3(x̃3) · f̃1(x̃1).

1.5.3 Margins with discrete and continuous components

As a last example, let us now consider the case where X̄1, X̄3 are continuous and the distri-

bution of X̄2 is a mixture between a continuous density g on R and point masses on Q. In

this case, the generalized density of X̄2 can be represented as

f̄2(x̄2) = p · g(x̄2) + (1− p)
∑
q∈Q

(
1{q}(x̄2) · ωq

)
,

where ωq ∈ [0; 1] is the point mass on q ∈ Q, p ∈ [0; 1], and
∑

q∈Q ωq = 1.

While the conditional density f̄1|2,3 is again decomposed as

f̄1|2,3(x̄1|x̄2, x̄3) = c̄1,3;2(F̄1|2(x̄1|x̄2), F̄3|2(x̄3|x̄2)) · f̄1|2(x̄1|x̄2),

we distinguish two cases for f̄2|3 and f̄1|2. Denoting the left hand limit of the distribution

function F̄2 in x̄2 by F̄2(x̄2,1), we obtain

f̄2|3(x̄2|x̄3) =

c̄2,3(F̄2(x̄2), F̄3(x̄3)) · f̄2(x̄2) x̄2 6∈ Q

∂2C̄2,3(F̄2(x̄2), F̄3(x̄3))− ∂2C̄2,3(F̄2(x̄2,1), F̄3(x̄3)) x̄2 ∈ Q
,

f̄1|2(x̄2|x̄2) =

c̄1,2(F̄1(x̄1), F̄2(x̄2)) · f̄1(x̄1) x̄2 6∈ Q(
∂1C̄1,2(F̃1(x̄1),F̃2(x̄2))−∂1C̄1,2(F̄1(x̄1),F̄2(x̄2,1))

F̄2(x̄2)−F̄2(x̄2,1)

)
· f̄1(x̄1) x̄2 ∈ Q

,

and the corresponding expressions for F̄2|3 and F̄1|3 follow similarly by treating X̄2 as a

continuous variable for x̄2 6∈ Q and as a discrete variable for x̄2 ∈ Q. This means, that the

expression for the joint density f̄1:3 will be the same as for f1:3 if x̄2 6∈ Q and the same as for

f̃1:3 if x̄2 ∈ Q, replacing F̃2(x̃2 − 1) by the more general expression F̃ (x̃2,1) for the left-hand

limit.
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1.5.4 Corresponding R-vine

The R-vine tree sequence corresponding to this example is given in Figure 1.3. The first

tree has the marginal variables as nodes and edges between 1 and 2 and between 2 and 3 to

represent the copula functions C1,2 and C2,3. The second tree contains the edges from the

first tree as nodes and an edge between them to represent the conditional copula C1,3;2.

Figure 1.3: The trees representing the three dimensional example.

1 2 3
1,2 2,3

T1

1,2 2,3
1, 3|2

T2

1.6 Software

Most computations in this dissertation have been performed using the statistical software

package R (R Development Core Team 2011). In particular, the computations in Section 5.1

have been performed using R 2.8.1 on Linux and Mac OS X, while the newer versions R 2.12

(Windows) and 2.15 (Mac) have been used for the results in Sections 6 and 5.2 as well as

Model (4) in 5.1.

The basic methods for R-vine copula models, such as likelihood computation and model

selection, are publicly available in the R package VineCopula (Schepsmeier et al. 2012) which

is available on CRAN. The computations for Section 5.2 (and Model (4) in 5.1) have been

performed using VineCopula 1.1, while a prerelease version was used for Section 5.1. The

modifications to the VineCopula package which are required to handle the data set with

discrete and continuous variables in Section 6 are not publicly available at the time of writing

this thesis.

Because of continuous developments in the software packages on CRAN and the basic R

software, using different R versions and/or future versions of R packages might possibly yield

different results.
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Chapter 2

Pair copula constructions and regu-

lar vines

Since pair copula constructions, although often considered as a very recent development in

statistical modeling, have more than 15 years of history with contributions by many authors

over the last years, we start this chapter with a brief historical and literature overview.

The idea of constructing a multivariate dependence model from bivariate copulas as build-

ing blocks goes back to a groundbreaking paper of Joe (1996), developing “a class of m-variate

distributions with given [univariate] margins and m(m-1)/2 dependence parameters”. This

is motivated as constructing a distribution with the same number of parameters, and thus a

similar flexibility in realizable dependence structures, as the multivariate normal distribution,

but with “properties that the family of multivariate normal distributions does not have”, such

as tail-dependence. The particular construction he describes is what would later be called a

D-vine structure. While focussing on dependence properties such as the tail dependence of

bivariate marginal distributions (which has been generalized in Joe et al. (2010)), Joe also

discusses simulations (see Stöber and Czado (2012) for a recent overview) and derives sev-

eral basic properties. Of particular importance for the inference methods which have been

developed later is the property he calls “densities without integrals”: given the distribution

functions, conditional distribution functions and densities of bivariate copulas in the PCC,

the multivariate likelihood can be expressed in terms of those functions only, without any

integrals. This applies for all R-vine copulas. This property is the main reason for the com-

putational attractiveness of R-vine models as compared to other graphical ways of specifying

a dependence structure such as non-Gaussian directed acyclic graphs (DAGs) (Bauer et al.

2012). While this makes PCCs not only a very flexible but also a highly tractable model he

admits that these features are paid for by the lack of permutation symmetry and the fact

that not all marginal distributions are in the same family (bivariate marginal distributions

can in fact be very non-standard, see Stöber and Czado (2012)). By outlining all important

features of PCCs, Joe (1996) provided the basis for further developments in the field, and

many details which are mentioned shortly have regained interest in recent years.

While the theoretical foundations go back to Joe (1996), the graphical structure of regular
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vines which have become the “face” of PCCs has been introduced by Bedford and Cooke

(2001); Bedford and Cooke (2002). In their papers, Bedford and Cooke develop the R-vine

as a set of connected trees which can be used to specify distributions in a framework of

expert judgement. In particular, they derive a general expression for the density of a PCC

specified on an R-vine and extensively discuss the special case of a multivariate normal

distribution. In this case, choosing a specific R-vine corresponds to choosing a set of partial

correlations in [−1; 1]. As they show, these fully specify the correlation structure while

having the appealing property that there are no restrictions on these partial correlations to

ensure that the correlation matrix is positive semi-definite (this allows to use vines to specify

distributions on the set of correlation matrices, see Lewandowski et al. (2009)).

This discussion has been extended in the book by Kurowicka and Cooke (2006), where

the chapter on PCCs is centered on their relationship to correlation and rank correlation

matrices. While not all rank correlation matrices can be realized using the dependence

structure of a multivariate normal distribution, Kurowicka and Cooke show that all rank

correlation specifications on an R-vine can in fact be realized in this way. Expressing a

correlation matrix in terms of partial correlations on a vine, they also consider completing

correlation matrices where some entries are missing and “repairing” misspecified, i.e. not

positive semidefinite, correlation matrices. Perhaps even more importantly, they also discuss

a first heuristic approach to infer a rank correlation vine from a given multivariate data set

and extensively discuss sampling from an R-vine distribution.

The seminal paper of Aas et al. (2009) builds on the publications by Bedford, Cooke,

Kurowicka and Joe but presents what the authors call a more “practical” approach to the

theory. They illustrate their methods with an application to financial data, preparing the

ground for many publications inferring PCCs from real world data.

Since then, many applications have been considered and four workshops on theory and

applications of PCCs have been held in Delft, Oslo and Munich and a collection of papers

from these has been published in Kurowicka and Joe (2011). Among the contributions in this

book, we want to highlight in particular the chapter by Morales-Nápoles (2011) on counting

the number of possible vine structures. The matrix notation for R-vines which is developed

here has provided the basis for the algorithmic likelihood calculation and simulation of general

R-vine distributions in Dißmann et al. (2013). While authors had usually restricted the class

of R-vines to the subclass of C-Vines or D-Vines before, the algorithms and model selection

heuristics developed by Dißmann (2010) made the whole class of R-vine copulas accessible.

The computational techniques presented by him have been developed further and have been

made available to practitioners and researchers in the R-package VineCopula (Schepsmeier
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et al. 2012).

While the aforementioned literature considers PCCs for distributions where all univariate

marginal distributions are continuous, the principle is more general. Panagiotelis et al. (2012)

provide a pioneering discussion of D-vine based PCCs for discrete data, which we will build

upon for the presentation of PCCs in this thesis.

In the remainder of this chapter, we consider PCCs for distributions where some uni-

variate marginal distributions are continuous and some of the marginal variables are discrete

(Subsection 2.1). This discussion is taken from Stöber et al. (2012). Having introduced the

pair copula decompostion, we will develop algorithms for the calculation of the likelihood,

score function and observed information in Subsection 2.2. These algorithms are taken from

Stöber and Schepsmeier (2013), and are developed only for the case of R-vine copulas with

continuous margins for notational simplicity. They are available also for the mixed discrete

and continuous margins case, and we will hint at necessary modifications in the text.

2.1 PCCs for discrete and continuous margins

There are two basic approaches to pair copula constructions in d dimensions: Joe et al. (2010)

starts from the marginal distributions, and proceeds by subsequently “glueing” them together

using copula functions. By making appropriate choices to ensure that the distributions com-

bined at each level of the construction are compatible, this leads to a joint distribution of d

variables. Starting with marginal distribution functions F1, . . . , Fd, his constructions proceeds

roughly as follows. First, the distributions are combined to bivariate distribution functions

by assigning copulas Ci,i+1, i = 1, . . . , d.

F1,2(x1, x2) := C1,2 (F1(x1), F2(x2))

F2,3(x2, x3) := C2,3 (F2(x2), F3(x3))

F3,4(x3, x4) := C3,4 (F3(x3), F4(x4))

...

(2.1)

These bivariate distributions are combined to three-dimensional distributions by assigning a

copula Ci,i+2;i+1(·, ·;xi+1), i = 1, . . . , d−2, to the conditional distribution of (Xi, Xi+2) given

Xi+1 = xi+1. By integration, we obtain the three dimensional cdfs Fi,i+1,i+2.

F1,2,3(x1, x2, x3) :=

∫ x2

−∞
C1,3;2(F1|2(x1|z2), F3|2(x3|z2); z2) dF2(z2)

F2,3,4(x2, x3, x4) :=

∫ x3

−∞
C2,4;3(F2|3(x2|z3), F4|3(x4|z3); z3) dF3(z3)

...

(2.2)
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By choosing copulas Ci,i+1, Ci,i+2;i+1, Ci,i+3;i+1,i+2, . . . , this ensures that the marginal dis-

tributions of the k dimensional distributions which are combined to a k + 1 dimensional

distribution at each step are compatible. In particular, the F23 margins of the cdfs F123 and

F234 obtained in Equation (2.2) are identical. Since this construction is based on (condi-

tional) distribution functions, it is obvious that it works for general distributions and does

not require absolute continuity of the distributions with respect to the Lebesgue measure. In

particular, the marginal distributions can correspond to discrete random variables and have

point masses.

Remark 2.1.1. Also note that in general the copula functions Ci,i+k;i+1,...,i+k−1 can depend

on the values of the variables Xi+1, . . . , Xi+k−1. To simplify notation in the following chap-

ters, we will suppress this dependence of the conditional copulas on the values of the variables

which are conditioned on in notation. In fact, it is a common assumption made for inference

purposes that conditional copulas Ci,j;D do not depend on the values of {Xk|k ∈ D}, i.e. that

conditional copulas are constant. This assumption will be discussed in Chapter 3.

For inference purposes, we will also require the densities of PCCs. To derive these, it is

illustrative to follow the approach taken by Aas et al. (2009) and start with a d-dimensional

random vector X1:d = (X1, . . . , Xd) with density f1:d(x) = f1:d(x1, . . . , xd) which we will

decompose into an expression involving only bivariate copulas and the marginal distributions.

Here, we allow for the marginal distributions of Xj , j = 1, . . . , d to be either discrete or

continuous. Therefore, the corresponding density f1:d is not with respect to the standard

Lebesgue measure, but with respect to the product measure of measures on the respective

support of the marginal variables. For discrete variables, this measure is the counting measure

on the set of respective outcomes. For example, if the discrete variables take values in Q we

consider the counting measure on Q. For continuous margins, the respective measure is the

Lebesgue measure on R. This restriction to purely discrete and purely continuous marginal

distributions is made only for notational convenience. A similar decomposition is possible

if marginal distributions are mixtures of discrete and continuous distributions (e.g. zero-

adjusted Gamma). In this case, when decomposing the density function at x1:d, a variable

Xj is to be treated as a discrete variable if P (Xj = xj) > 0 and as a continuous variable

otherwise, as illustrated in the example in Section 1.5.3.

By subsequent conditioning, we can factorize f1:d into conditional densities,

f1:d(x1:d) = f1|2:d(x1|x2:d) · f2|3:d(x2|x3:d) · . . . · fd(xd). (2.3)

We will now further decompose the densities fj|(j+1):d(xj |x(j+1):d) in this expression. For

this, we choose a variable Xh, with j < h ≤ d.
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Xj continuous, Xh continuous

In the case where Xj and Xh are both continuous, we obtain the relationship

fj|(j+1):d(xj |x(j+1):d) = cj,h;(j+1):d\h
(
Fj|(j+1):d\h(xj |x(j+1):d\h, Fh|(j+1):d\h(xh|x(j+1):d\h)

)
· fj|(j+1):d\h(xj |x(j+1):d\h),

(2.4)

from the conditional version of Sklar’s theorem for densities (Equation (1.6)).

Xj discrete, Xh discrete

If Xj and Xh are both discrete, as it is the case in Panagiotelis et al. (2012), we have

fj|(j+1):d(xj |xj+1, . . . , xd) = P (Xj = xj |X(j+1):d = x(j+1):d)

=
P (Xj = xj , Xh = xh|X(j+1):d\h = x(j+1):d\h)

P (Xh = xh|X(j+1):d\h = x(j+1):d\h)

=

∑
ij=0,1

∑
ih=0,1(−1)ij+ihP (Xj ≤ xj,ij , Xh ≤ xh,ih |X(j+1):d\h = x(j+1):d\h)

P (Xh = xh|X(j+1):d\h = x(j+1):d\h)

=
1∑

ij ,ih=0

(−1)ij+ih
Cj,h;(j+1):d\h

(
Fj|(j+1):d\h(xj,ij |x(j+1):d\h), Fh|(j+1):d\h(xh,ih |x(j+1):d\h)

)
fh|(j+1):d\h(xh|x(j+1):d\h)

= cj,h|(j+1):d\h · fj|(j+1):d\h(xj |x(j+1):d\h),

(2.5)

where we have shortened the notation by defining

cj,h;(j+1):d\h :=

=

1∑
ij ,ih=0

(−1)ij+ih
Cj,h;(j+1):d\h

(
Fj|(j+1):d\h(xj,ij |x(j+1):d\h), Fh|(j+1):d\h(xh,ih |x(j+1):d\h)

)
fh|(j+1):d\h(xh|x(j+1):d\h)fj|(j+1):d\h(xj |x(j+1):d\h)

.

(2.6)

This is the discrete equivalent of the copula density in the continuous case. We will now

derive similar expressions for the case where either Xj or Xh is discrete.
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Xj discrete, Xh continuous

If Xj is discrete and Xh is continuous, we can write the conditional pmf as

fj|(j+1):d(xj |x(j+1):d) = P (Xj = xj |X(j+1):d = x(j+1):d)

=
∂

∂xh
Fj,h|(j+1):d\h(xj,0, xh|x(j+1):d\h)− ∂

∂xh
Fj,h|(j+1):d\h(xj,1, xh|x(j+1):d\h)

=

1∑
ij=0

(−1)ij∂2Cj,h;(j+1):d\h(Fj|(j+1):d\h(xj,ij |x(j+1):d\h), Fh|(j+1):d\h(xh|x(j+1):d\h))

= cj,h;(j+1):d\h · fj|(j+1):d\h(xj |x(j+1):d\h),

(2.7)

where we define as in the discrete case

cj,h;(j+1):d\h :=

=
1∑

ij=0

(−1)ij
∂2Cj,h;(j+1):d\h(Fj|(j+1):d\h(xj,ij |x(j+1):d\h), Fh|(j+1):d\h(xh|x(j+1):d\h))

fj|(j+1):d\h(xj |x(j+1):d\h)
.

(2.8)

Xj continuous, Xh discrete

If Xj is continuous and Xh discrete, we obtain

fj|(j+1):d(xj |x(j+1):d) =
∂

∂xj
Fj|(j+1):d(xj |x(j+1):d)

=
∂

∂xj

[
P (Xj ≤ xj , Xh = xh|X(j+1):d\h = x(j+1):d\h)

P (Xh = xh|X(j+1):d\h = x(j+1):d\h)

]

=
1∑

ih=0

(−1)ih
Fj,h|(j+1):d\h(xj , xh,ih |x(j+1):d\h)

fh|(j+1):d\h(xh|x(j+1):d\h)

=
1∑

ih=0

(−1)ih
∂1Cj,h;(j+1):d\h(Fj|(j+1):d\h(xj |x(j+1):d\h), Fh|(j+1):d\h(xh,ih |x(j+1):d\h))

fh|(j+1):d\h(xh|x(j+1):d\h)

· fj|(j+1):d\h(xj |x(j+1):d\h) = cj,h|(j+1):d\h · fj|(j+1):d\h(xj |x(j+1):d\h),

(2.9)

where we write

cj,h;(j+1):d\h :=

=

1∑
ih=0

(−1)ih
∂1Cj,h;(j+1):d\h(Fj|(j+1):d\h(xj |x(j+1):d\h), Fh|(j+1):d\h(xh,ih |x(j+1):d\h))

fh|(j+1):d\h(xh|x(j+1):d\h)
.

(2.10)

Using Expressions (2.4) - (2.9), the joint density in (2.3) can be rewritten as a term involving

the copula densities, or density equivalents, cj,h|(j+1):d\h and conditional densities fj|(j+1):d\h.

Subsequently, the conditional densities can be decomposed again until we end up with an

expression involving only bivariate copula densities, or their equivalents, and densities of the
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marginal variables. In the arguments of the copula densities however we require conditional

distribution functions Fj|(j+1):d\h and Fh|(j+1):d\h. The conditional distribution functions

Fj|(j+1):d can be expressed using copulas in a similar way as the conditional densities above.

If Xh is continuous, we have

Fj|(j+1):d(xj |x(j+1):d)

= ∂2Cj,h;(j+1):d\h
(
Fj|(j+1):d\h(xj |x(j+1):d\h, Fh|(j+1):d\h(xh|x(j+1):d\h)

)
,

(2.11)

cf. (1.13), and for discrete Xh it follows from Equation (1.15) that

Fj|(j+1):d(xj |x(j+1):d)

=
1∑

ih=0

(−1)ih
Cj,h;(j+1):d\h

(
Fj|(j+1):d\h(xj |x(j+1):d\h), Fh|(j+1):d\h(xh,ih |x(j+1):d\h)

)
fh|(j+1):d\h(xh|x(j+1):d\h)

.
(2.12)

Expressions (2.11) and (2.12) apply for both discrete and continuous Xj . Similar relationships

do of course apply for the conditional cdfs Fj|(j+1):d\h and Fh|(j+1):d\h.

While the construction in (2.1) and (2.2) is also valid for other choices of copulas than

Ci,i+1, Ci,i+2;i+1, . . . , and the decomposition in (2.4) - (2.12) works for all permutations of

variables and choices of h at each level, some restrictions do apply: In particular, for the

construction of Joe (1996) we must ensure that the marginal distributions are compatible

when combining k dimensional distributions to a k + 1 dimensional distribution. Also, we

want to preserve the “densities without integrals” property. This means that when combining

distributions Fj:d\h and F(j+1):d with a copula Cj,h;(j+1):d\h we need to make sure that copulas

Cj,k;(j+1):d\{h,k} and Ch,l;(j+1):d\{h,l}, k, l ∈ (j+1) : d\h are available such that the conditional

cdfs Fj|(j+1):d\h and Fh|(j+1):d\h can be determined by recursions as in (2.11) and (2.12)

without integrations.

Equivalently, we can completely decompose the multivariate distribution using (2.4) -

(2.12) and then ask whether the “densities without integrals” property holds if we only know

the parametric forms of the copula functions appearing in the decomposition and the marginal

distributions. In general, this will not be true if we do not make an intelligent choice for the

indices h in (2.4) - (2.9). As shown by Bedford and Cooke (2001); Bedford and Cooke (2002)

making such choices is equivalent to requiring the copula indices above to correspond to edge

indices in an R-vine tree sequence as defined in Section 1.4. For an R-vine tree sequence

V = (T1, . . . , Td−1) with edge sets E1, . . . , Ed−1, the density f1:d is then given by

f1,...,d(x1, . . . , xd)

=

d∏
i=1

fi(xi)

d−1∏
i=1

∏
e∈Ei

cj(e),k(e);D(e)(Fj(e)|D(e)(xj(e)|xD(e)), Fk(e)|D(e)(xk(e)|xD(e))).
(2.13)
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The proximity condition for the tree sequence will guarantee that the required copulas

to calculate the conditional distribution functions, and ultimately the density, without inte-

grations are available. We will illustrate this in the next section where we state algorithmic

procedures to calculate the likelihood function as well as the score function and observed

information for a PCC defined on an R-vine tree sequence.

2.2 Likelihood, score function and observed information

This section is mainly taken from Stöber and Schepsmeier (2013). Since PCCs contain bi-

variate copulas as their building blocks, the likelihood functions, (conditional) distribution

functions and their derivatives will be required for the bivariate copulas on the R-vine in order

to apply the algorithms. A comprehensive overview of bivariate copulas, also considering all

required derivatives, is given by Schepsmeier and Stöber (2012). The algorithms are publicly

available in the R-package VineCopula (Schepsmeier et al. 2012). Being interested mainly

in the copula structure, we assume that all marginal distributions are uniform and denote

an observation on the unit hypercube [0; 1]d by u1:d. Extending the algorithms, which are

presented here, to the case of both discrete and continuous margins and calculating deriva-

tives also with respect to parameters of marginal distributions is relatively straightforward

by replacing all relations with their discrete-continuous equivalents. However, the notation

will be unnecessarily complex which is why only the simplest case is presented here.

We use the matrix notation developed in Section 1.4. In addition to storing the edges

of the R-vine tree sequence, we will also store the corresponding pair copula families (we

call this set B) and their parameters θ. For illustration purposes, we consider the R-vine in

Figure 1.1 with corresponding R-vine matrix

M =



m1,1

m2,1 m2,2

m3,1 m3,2 m3,3

m4,1 m4,2 m4,3 m4,4

m5,1 m5,2 m5,3 m5,4 m5,5

m6,1 m6,2 m6,3 m6,4 m6,5 m6,6

m7,1 m7,2 m7,3 m7,4 m7,5 m7,6 m7,7

m8,1 m8,2 m8,3 m8,4 m8,5 m8,6 m8,7 m8,8


=



8

7 7

2 2 6

3 3 2 5

6 4 3 2 4

4 1 4 3 2 3

1 5 1 4 3 2 2

5 6 5 1 1 1 1 1


∈ R8×8. (2.14)

For this R-vine, the corresponding parameters and copulas are stored in matrices
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θ =


. . .

. . . θ4,m6,5|m7,5,m8,5

. . . θ4,m7,5|m8,5
θ3,m7,6|m8,6

. . . θ4,m8,5 θ3,m8,6 θ2,m8,7

 =


. . .

. . . θ4,2|1,3

. . . θ4,3|1 θ3,2|1

. . . θ4,1 θ3,1 θ2,1

 ∈ R8×8,

B =


. . .

. . . B4,m6,5|m7,5,m8,5

. . . B4,m7,5|m8,5
B3,m7,6|m8,6

. . . B4,m8,5 B3,m8,6 B2,m8,7

 =


. . .

. . . B4,2|1,3

. . . B4,3|1 B3,2|1

. . . B4,1 B3,1 B2,1

 ∈ R8×8.

Here, θ1,2 and B1,2 are the (8, 7) elements and the 8th column is left empty for notational

convenience. Note that the diagonal of M is sorted in descending order which can always

be achieved by relabeling the nodes. From now on, we will assume that all matrices are

”normalized” in this way as this allows to simplify notation. Therefore we have mi,i = d−i+1.

Also, we use the 8-dimensional example throughout the remainder of this chapter.

2.2.1 Computation of the likelihood function

To evaluate the (log-) likelihood function (see Equation (2.13)) of an R-vine model, we require

the conditional distiributions Fj(e)|D(e) and Fk(e)|D(e), evaluated at a d-dimensional vector of

observations (u1, . . . , ud), as arguments of the copula density cj(e),k(e);D(e) corresponding to

edge e. To develop a programmable algorithm, we will also store these values in two matrices:

V direct and V indirect. In particular, we calculate

V direct =



. . .

. . . F4|m6,5,m7,5,m8,5

. . . F4|m7,5,m8,5
F3|m7,6,m8,6

. . . F4|m8,5
F3|m8,6

F2|m8,7

. . . u4 u3 u2 u1


∈ R8×8, (2.15)

V indirect =



. . .

. . . Fm6,5|m7,5,m8,5,4

. . . Fm7,5|m8,5,4 Fm7,6|m8,6,3

. . . Fm8,5|4 Fm8,6|3 Fm8,7|2

. . .


∈ R8×8. (2.16)

Here, Fi|D := Fi|D(ui|uD) and the last row and column of V indirect are left empty for

notational convenience. Note that, for each pair-copula term cj(e),k(e);D(e) in (2.13), the
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corresponding terms of V direct and V indirect involving Fj(e)|D(e) and Fk(e)|D(e) can be easily

determined by applying (2.11). When being able to evaluate

c4,m6,5;m7,5,m8,5(F4|m7,5,m8,5
(u4|um7,5 , um8,5), Fm6,5|m7,5,m8,5

(um6,5 |um7,5 , um8,5))

we do also obtain

F4|m6,5,m7,5,m8,5
(u4|um6,5

, um7,5
, um8,5

) =

= (∂1C)4,m6,5;m7,5,m8,5
(F4|m7,5,m8,5

(u4|um7,5
, um8,5

), Fm6,5|m7,5,m8,5
(um6,5

|um7,5
, um8,5

)) and

Fm6,5|4,m7,5,m8,5
(um6,5 |u4, um7,5 , um8,5) =

= (∂2C)4,m6,5;m7,5,m8,5
(F4|m7,5,m8,5

(u4|um7,5
, um8,5

), Fm6,5|m7,5,m8,5
(um6,5

|um7,5
, um8,5

)).

With all such conditional distribution functions being available, the copula terms in (2.13)

corresponding to the next tree T4 can be evaluated. Following the notation in Aas et al.

(2009), we write h(·, ·|Bk,i, θk,i) for the conditional distribution function corresponding to a

parametric family Bk,i with parameter θk,i, where Bk,i and θk,i denote the (k, i)th element

of the matrices B and θ, respectively. For this, we assume that all copulas are exchangeable

such that we do not have to distinguish between conditioning on the first and second variable,

h(u1, u2|Bk,i, θk,i) = ∂1C(u2, u1|Bk,i, θk,i) = ∂2C(u1, u2|Bk,i, θk,i).

In this notation, we obtain for example that

F4|2,1,3(u4|u2, u1, u3) = h(F4|1,3(u4|u1, u3), F2|1,3(u2|u1, u3)|B4,2|1,3, θ4,2|1,3)

= h(vdirect6,5 , vindirect6,6 |B6,5, θ6,5).

To write an algorithm for evaluating the likelihood function, we must further decide whether

the arguments in each step (i.e. F4|3,1(u4|u3, u1), F2|3,1(u2|u3, u1) in the example) have to

be picked from the matrix V direct or V indirect. For this, we exploit the descending order

of the diagonal of M . From the structure of V direct, we see that the first argument of the

copula term with family Bk,i and parameter θk,i is stored as the (k, i)th element vdirect
k,i of

V direct. To locate the second entry, let us denote M̃ = (m̃k,i|i = 1, . . . , d; k = i, . . . , d), where

m̃k,i := max{mk,i, . . . ,md,i} for all i = 1, . . . , d and k = i, . . . , d. The second argument, which

is Fmk,i|mk+1,i,...,md,i(umk,i |umk+1,i
, . . . , umd,i) must be in column (d − m̃k,i + 1) of V direct or

V indirect by the ordering of variables. If m̃k,i = mk,i, the conditioned variable umk,i has

the biggest index and thus the entry we are looking for must be in V direct. Similarly, if

m̃k,i > mk,i, the variable with the biggest index is in the conditioning set and we must choose

from V indirect.

Example 2.2.1 (Selection of arguments for c4,2;1,3). As an example for how this procedure

selects the correct arguments for copula terms in the R-vine distribution let us consider the
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copula c2,4;1,3 in our example. The corresponding parameter θ4,2|1,3 is stored as θ6,5, thus we

are in the case where i = 5 and k = 6. Since m̃6,5 = max{m6,5,m7,5,m8,5} = max{2, 3, 1} = 3

and m̃6,5 = 3 > 2 = m6,5 we select as second argument the entry vindirectk,(d−m̃k,i+1) = vindirect6,6 =

F2|1,3(u2|u1, u3). This and vdirect6,5 = F4|1,3(u4|u1, u3) which we have already selected are the

required arguments.

These sequential selections and calculations are performed in Algorithm 2.2.1, which

was developed in Dißmann (2010) and Dißmann et al. (2013). It iterates over the edges in

the R-vine tree sequence V, subsequently calculating the likelihood and the corresponding

conditional distribution functions for each bivariate copula associated with the vine.

Algorithm 2.2.1 Log-likelihood of an R-vine specification.

Require: d-dimensional R-vine specification in matrix form, i.e., M , B, θ, set of observations

(u1, . . . , ud).

1: Set L = 0.

2: Set (vdirect
d,1 , vdirect

d,2 , . . . , vdirect
d,d ) = (ud, ud−1, . . . u1).

3: Let M̃ = (m̃k,i|i = 1, . . . , d; k = i, . . . , d) where m̃k,i = max{mk,i, . . . ,md,i} for all i =

1, . . . , d and k = i, . . . , d.

4: for i = d− 1, . . . , 1 do {Iteration over the columns of M}
5: for k = d, . . . , i+ 1 do {Iteration over the rows of M}
6: Set z1 = vdirect

k,i

7: if m̃k,i = mk,i then

8: Set z2 = vdirect
k,(d−m̃k,i+1).

9: else

10: Set z2 = vindirect
k,(d−m̃k,i+1).

11: end if

12: Set L = L+ ln(c(z1, z2|Bk,i, θk,i)).
13: Set vdirect

k−1,i = h(z1, z2|Bk,i, θk,i) and vindirect
k−1,i = h(z2, z1|Bk,i, θk,i).

14: end for

15: end for

16: return L

Remark 2.2.2. By modifying step 14 of Algorithm 2.2.1 to maximize the likelihood of the

copula c(·, ·|Bk,i, θk,i) with respect to θk,i, we obtain what is called the stepwise parameter

estimation algorithm for R-vine copulas. This type of step-wise estimation has first been

considered by Aas et al. (2009) and a discussion of its asymptotic properties is given by
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Hobæk Haff (2013). In particular, it is shown that this procedure is asymptotically consistent

and asymptotic efficiency can be achieved in certain special cases. While in general maximum

likelihood estimation of R-vine copula parameters results in a high-dimensional numerical

maximization problem, this procedure allows to estimate R-vine parameters by solving only

one dimensional maximization problems. Simulation studies show that the loss in efficiency

is not big for most applications (see e.g. Hobæk Haff (2012)).

2.2.2 Computation of the score function

In this section we develop an algorithm to calculate the derivatives of the R-vine log-likelihood

with respect to copula parameters and thus the score function of the model. Throughout the

remainder of this chapter, we will assume that all occurring copula densities are continuously

differentiable with respect to their arguments and parameters. Further, we assume that the

copula parameters are all in R, the extension to two or higher dimensional parameter spaces

is straightforward but makes the notation unnecessarily complex.

To determine the log-likelihood derivatives, we will again exploit the hierarchical structure

of the R-vine copula model and proceed similarly as for the likelihood calculation. The

first challenge which we must overcome to develop an algorithm for the score function is

to determine which of the copula terms in Expression (2.13) depend on which parameter

directly or indirectly through one of their arguments. Following the steps of the log-likelihood

computation and exploiting the structure of the R-vine structure matrix M , this is decided

in Algorithm 2.2.2.

For example, for parameter θ4,2|1,3, we have k = 6, i = 5, and g = {1, 2, 3, 4}. Therefore,

the copula terms in Expression (2.13) which depend on θ4,2|1,3 are those involving the copulas

c5,2;1,3,4, c6,2;1,3,4,5 c7,2;1,3,4,5,6, c8,2;1,3,4,5,6 and c8,7;1,2,3,4,5,6. In particular, for c8,2;1,3,4,5,6, we

have h = {1, 2, 3, 4, 5, 6, 8} in Algorithm 2.2.2, such that g ⊂ h, which means that the

corresponding likelihood term depends on θ4,2|1,3. In contrast, for c7,3|1,4,5,6, we determine

that h = {1, 3, 4, 5, 6, 7}, and therefore #(g ∩ h) 6= #g since 2 6∈ h. This means that the

likelihood term in Expression (2.13) corresponding to c7,3;1,4,5,6 cannot depend on θ4,2|1,3

by the “densities without integrals” property since the X2 margin in any conditional cdf

calculated using c4,2;1,3 would have to be integrated out.

Knowing how a specific copula term depends on a given parameter, we can proceed with

calculating the corresponding derivatives. Before we explain the derivatives in detail let

us start with an example where two of the three possible cases of dependence on a given

parameter are illustrated.
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Algorithm 2.2.2 Determine copula terms which depend on a specific parameter.

The input of the algorithm is a d-dimensional R-vine matrix M with elements (ml,j)l,j=1,...,d

and the row number k and column number i corresponding to the position of the

parameter of interest in the parameter matrix θ. The output will be a matrix C

(with elements (cl,j)l,j=1,...,d) of zeros and ones, a one indicating that the copula term

corresponding to this position in M will depend on the parameter under considera-

tion.

1: Set g := {mi,i,mk,i,mk+1,i, . . . ,md,i}
2: Set cl,j := 0 l, j = 1, . . . , d

3: for a = i, . . . , 1 do

4: for b = k, . . . , a+ 1 do

5: Set h := {ma,a,mb,a,mb+1,a, . . . ,md,a}
6: if #(g ∩ h) == #g then

7: Set cb,a := 1

8: end if

9: end for

10: end for

11: return C

Example 2.2.3 (3-dim). Let x1 ∼ F1, x2 ∼ F2, x3 ∼ F3 and u1 = F1(x1), u2 = F2(x2),

u3 = F3(x3), then the joint density can be decomposed as

f123(x1, x2, x3) = f1(x1)f2(x2)f3(x3) · c1,2(u1, u2|θ1,2) · c2,3(u2, u3|θ2,3)

· c1,3;2(h1,2(u1, u2|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)

The first derivatives of ln f123 with respect to the copula parameters θ1,2, θ2,3 and θ1,3|2 are

∂(ln f123(x1, x2, x3))

∂θ1,2
=
∂θ1,2c1,2(u1, u2|θ1,2)

c1,2(u1, u2|θ1,2)

+
∂1c1,3;2(h1,2(u1, u2|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)

c1,3;2(h1,2(u1, u2|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)
· ∂θ1,2h1,2(u1, u2|θ1,2),

∂(ln f123(x1, x2, x3))

∂θ2,3
=
∂θ2,3c2,3(u2, u3|θ2,3)

c2,3(u2, u3|θ2,3)

+
∂2c1,3;2(h1,2(u1, u2|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)

c1,3;2(h1,2(u1, u2|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)
· ∂θ2,3h2,3(u2, u3|θ2,3) and

∂(ln f123(x1, x2, x3))

∂θ1,3|2
=
∂θ1,3|2c1,3;2(h1,2(u1, u2|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)

c1,3;2(h1,2(u1, u2|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)
,

respectively.
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The first case, which occurs in our example, is that the copula densities c1,2 and c2,3

depend on their respective parameters directly. For a general term involving a copula cU,V ;Z

with parameter θ,

∂

∂θ
ln
(
cU,V ;Z

(
FU |Z(u|z), FV |Z(v|z)|θ

))
=

∂
∂θ

(
cU,V ;Z

(
FU |Z(u|z), FV |Z(v|z)|θ

))
cU,V ;Z

(
FU |Z(u|z), FV |Z(v|z)|θ

)
=
∂θcU,V ;Z

(
FU |Z(u|z), FV |Z(v|z)|θ

)
cU,V ;Z

(
FU |Z(u|z), FV |Z(v|z)|θ

) .

(2.17)

Further, like for c1,3;2, a cU,V ;Z term can depend on a parameter θ through one of its argu-

ments, say FU |Z(u|z, θ):

∂

∂θ
ln
(
cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z)

))
=

=

∂cU,V ;Z(FU|Z(u|z,θ),FV |Z(v|z))
∂FU|Z(u|z,θ)

cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z)

) · ∂
∂θ
FU |Z(u|z, θ)

=
∂1cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z)

)
cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z)

) · ∂
∂θ
FU |Z(u|z, θ).

(2.18)

Finally, in dimension d ≥ 4, both arguments of a cU,V ;Z copula term can depend on a

parameter θ. In this case,

∂

∂θ
ln
(
cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

))
=
∂1cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

)
cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

) · ∂
∂θ
FU |Z(u|z, θ)

+
∂2cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

)
cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

) · ∂
∂θ
FV |Z(v|z, θ).

(2.19)

We see that the derivatives of copula terms corresponding to tree Ti in the vine will involve

derivatives of conditional distribution functions which are determined by tree Ti−1. Thus, it

will be convenient to store their derivatives in matrices S1direct,θ and S1indirect,θ related to

the matrices V direct and V indirect which have been determined during the calculation of the

log-likelihood together with the terms

ln
(
cj(e),k(e);D(e)(Fj(e)|D(e)(uj(e)|uD(e)), Fk(e)|D(e)(uk(e)|uD(e)))

)
=: %j(e),k(e)|D(e),

for each edge e in the R-vine V, which can also be stored in a matrix V values:

V values =



. . .

. . . %4,m6,5|m7,5,m8,5

. . . %4,m7,5|m8,5
%3,m7,6|m8,6

. . . %4,m8,5 %3,m8,6 %2,1

. . .


∈ R8×8 (2.20)
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In particular, we will determine the following matrices:

S1direct,θ =



. . .

. . . ∂
∂θF4|m6,5,m7,5,m8,5

. . . ∂
∂θF4|m7,5,m8,5

∂
∂θF3|m7,6,m8,6

. . . ∂
∂θF4|m8,5

∂
∂θF3|m8,6

∂
∂θF2|1

. . .


∈ R8×8 (2.21)

S1indirect,θ =



. . .

. . . ∂
∂θFm6,5|m7,5,m8,5,4

. . . ∂
∂θFm7,5|m8,5,4

∂
∂θFm7,6|m8,6,3

. . . ∂
∂θFm8,5|4

∂
∂θFm8,6|3

∂
∂θF1|2

. . .


∈ R8×8 (2.22)

S1values,θ =



. . .

. . . ∂
∂θ%4,m6,5|m7,5,m8,5

. . . ∂
∂θ%4,m7,5|m8,5

∂
∂θ%3,m7,6|m8,6

. . . ∂
∂θ%4,m8,5

∂
∂θ%3,m8,6

∂
∂θ%2,1

. . .


∈ R8×8 (2.23)

Here, ∂
∂θFi|D := ∂

∂θFi|D(ui|uD) and the last rows are left empty for notational convenience.

The terms in S1direct,θ and S1indirect,θ can be determined by differentiating (2.11) similarly

as we did for the copula terms in (2.17) - (2.19). For instance, we have

∂

∂θ
FU |V,Z(u|v, z, θ) =

∂

∂θ

(
hU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z)

))
= ∂1hU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z)

)
· ∂
∂θ
FU |Z(u|z, θ)

= cU,V ;Z

(
FU |Z(u|z, θ), FV |Z(v|z)

)
· ∂
∂θ
FU |Z(u|z, θ),

if the copula term depends on θ through the first argument and

∂

∂θ
hU,V |Z

(
FU |Z(u|z), FV |Z(v|z, θ)

)
=

= ∂2hU,V |Z
(
FU |Z(u|z), FV |Z(v|z, θ)

)
· ∂
∂θ
FV |Z(v|z, θ),

if the copula term depends on θ through the second argument. The complete calculations

required to obtain the derivative of the log-likelihood with respect to one copula parameter

θ are performed in Algorithm 2.2.3.

Algorithm 2.2.3 Log-likelihood derivative with respect to the parameter θk̃,̃i.

The input of the algorithm is a d-dimensional R-vine matrix M with maximum matrix M̃

and parameter matrix θ, and a matrix C determined using Algorithm 2.2.2 for a parameter
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θk̃,̃i positioned at row k̃ and ĩ in the R-vine parameter matrix θ. Further, we assume the

matrices V direct, V indirect and V values corresponding to one observation from the R-vine

copula distribution, which have been determined during the calculation of the

log-likelihood, to be given. The output will be the value of the first derivative of the copula

log-likelihood for the given observation with respect to the parameter θk̃,̃i.

1: Set z1 = vdirect
k̃,̃i

2: Set s1directk,i := 0, s1indirectk,i := 0, s1valuesk,i := 0, i = 1, . . . , d; k = i, . . . , d

3: if mk̃,̃i == m̃k̃,̃i then

4: Set z2 = vdirect
k̃,d−m̃k̃,̃i+1

5: else

6: Set z2 = vindirect
k̃,d−m̃k̃,̃i+1

7: end if

8: Set s1direct
k̃−1,̃i

= ∂
θk̃,̃i
h(z1, z2|Bk̃,̃i, θk̃,̃i)

9: Set s1indirect
k̃−1,̃i

= ∂
θk̃,̃i
h(z2, z1|Bk̃,̃i, θk̃,̃i)

10: Set s1values
k̃,̃i

=
∂
θk̃,̃i

c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

11: for i = ĩ, . . . , 1 do

12: for k = k̃ − 1, . . . , i+ 1 do

13: if ck,i == 1 then

14: Set z1 = vdirectk,i , z̃1 = s1directk,i

15: if mk,i == m̃k,i then

16: Set z2 = vdirectk,d−m̃k,i+1, z̃2 = s1directk,d−m̃k,i+1

17: else

18: Set z2 = vindirectk,d−m̃k,i+1, z̃2 = s1indirectk,d−m̃k,i+1

19: end if

20: if ck+1,i == 1 then

21: Set s1valuesk,i = s1valuesk,i + ∂1c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃1

22: Set s1directk−1,i = s1directk−1,i + ∂1h(z1, z2|Bk,i, θk,i) · z̃1

23: Set s1indirectk−1,i = s1indirectk−1,i + ∂2h(z2, z1|Bk,i, θk,i) · z̃1

24: end if

25: if ck+1,d−m+1 == 1 then

26: Set s1valuesk,i = s1valuesk,i + ∂2c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃2

27: Set s1directk−1,i = s1directk−1,i + ∂2h(z1, z2|Bk,i, θk,i) · z̃2

28: Set s1indirectk−1,i = s1indirectk−1,i + ∂1h(z2, z1|Bk,i, θk,i) · z̃2

29: end if
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30: end if

31: end for

32: end for

33: return
∑

k,i=1,...,d s1
values
k,i

In particular, this algorithm allows to replace finite-differences based numerical maximization

of R-vine likelihood functions with maximization based on the analytical gradient. In a

numerical comparison study across different R-vine models in 5-8 dimensions this resulted in

a decrease in computation time by a factor of 4-8.

2.2.3 Computation of the observed information

Based on the algorithm for the score function introduced in the previous section, we will

now present an algorithm to determine the Hessian matrix corresponding to the R-vine log-

likelihood function.

Again, the derivatives of conditional distribution functions and copula log-likelihoods will

be stored in matrices. Considering a derivative with respect to bivariate copula parameters

θ and γ associated with the vine, it is clear that the expressions for the derivatives of the

log-densities in this case will contain second derivatives of the occurring h-functions. Thus,

our algorithm will determine the following matrices:

S2direct,θ,γ =

. . .

. . . ∂
∂θ∂γF4|m6,5,m7,5,m8,5

. . . ∂
∂θ∂γF4|m7,5,m8,5

∂
∂θ∂γF3|m7,6,m8,6

. . . ∂
∂θ∂γF4|m8,5

∂
∂θ∂γF3|m8,6

∂
∂θ∂γF2|1

. . .


∈ R8×8

(2.24)

S2indirect,θ,γ =

. . .

. . . ∂
∂θ∂γFm6,5|m7,5,m8,5,4

. . . ∂
∂θ∂γFm7,5|m8,5,4

∂
∂θ∂γFm7,6|m8,6,3

. . . ∂
∂θ∂γFm8,5|4

∂
∂θ∂γFm8,6|3

∂
∂θ∂γF1|2

. . .


∈ R8×8

(2.25)
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S2values,θ,γ =



. . .

. . . ∂
∂θ∂γ %4,m6,5|m7,5,m8,5

. . . ∂
∂θ∂γ %4,m7,5|m8,5

∂
∂θ∂γ %3,m7,6|m8,6

. . . ∂
∂θ∂γ %4,m8,5

∂
∂θ∂γ %3,m8,6

∂
∂θ∂γ %2,1

. . .


∈ R8×8 (2.26)

Here, ∂
∂θ∂γFi|D := ∂

∂θ∂γFi|D(ui|uD). Since not all entries in (2.15), (2.16) and (2.20)

depend on both θ and γ, not all entries in (2.24) - (2.26) will be non-zero and required in the

algorithm. Employing Algorithm 2.2.2 to obtain matrices Cθ and Cγ corresponding to the

parameters θ and γ, respectively, we see that the second derivatives of all elements where the

corresponding matrix entry of either Cθ or Cγ is zero clearly vanish. As before, the terms in

S2direct,θ,γ and S2indirect,θ,γ can be determined by differentiating the conditional distribution

functions (Equation (2.11)). The details of these calculations and the recursive algorithm

to determine second derivatives of the log-likelihood function are given in Appendix A. A

simulation study performed in Stöber and Schepsmeier (2013) illustrates that the standard

errors and confidence intervals computed using the results of this algorithm are appropriate.

With the algorithms presented in this chapter the required calculations for an application

of PCCs to real world data sets can be performed in statistical software. Before we develop

and apply concrete statistical models, however, we will provide an in-depth discussion of the

simplifying assumption for PCCs in the following chapter.
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Chapter 3

The simplifying assumption

As we have noted in the introduction to PCCs (see Remark 2.1.1), a commonly made as-

sumption to keep PCCs tractable for inference is that conditional copulas do not depend on

the values of variables that are conditioned on. This will be discussed on more detail in this

chapter, which is taken from Stöber et al. (2013).

The simplifying assumption was previously studied by Hobæk Haff et al. (2010), providing

first illustrative examples, and by Acar et al. (2012a), demonstrating for a particular data

set and choice of parametric families that the simplifying assumption can be restrictive. The

question for which classes of multivariate models the assumption is applicable however has

remained unsolved. In this chapter, we fill this gap by studying the conditional copulas of the

general classes of Archimedean (Section 3.1) and elliptical (Section 3.2) copulas. Here, we

will show that the only Archimedean copulas in dimension d ≥ 3 which are of the simplified

type are those based on the Gamma Laplace transform or its extension, while Student’s t

copulas are the only ones arising from a scale mixture of Normals. These results illustrate

that from a theoretical perspective, the simplifying assumption can be very restrictive. To

assess its relevance in practical applications, we will develop a technique to assess the dis-

tance of a multivariate distribution from a nearby distribution that satisfies the simplifying

assumption in Section 3.3. We will also discuss the increased flexibility by keeping the simpli-

fying assumption only for parts of the distribution and introducing for example time-varying

parameters.

3.1 Archimedean copulas

In this section, we characterize the Archimedean copulas that are simplified PCCs. A d-

dimensional Archimedean copula is given by

C1:d(u1, . . . , ud) = ϕ
( d∑
j=1

ϕ−1(uj)
)
, (3.1)

for an Archimedean generator function ϕ ∈ Ld. Here, Ld is the class of d-monotone functions

ϕ : [0,∞) 7→ [0, 1], which are strictly decreasing on [0, inf{s, ϕ(s) = 0}] (with ϕ(0) = 1,

ϕ(∞) = 0) and differentiable on [0,∞) up to order d − 2, such that (−1)jϕ(j) ≥ 0, j =
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1, . . . , d − 2, and where further (−1)d−2ϕ(d−2) is non-increasing and convex (McNeil and

Nešlehová 2009; Joe 1997; Müller and Scarsini 2005). These copulas have the appealing

property that the conditional distribution function is given in a simple analytical form which

facilitates the study of their properties. Let us consider a Gamma random variable with

shape parameter p, rate parameter b, density

fΓ(x; b, p) =
bp

Γ(p)
xp−1e−bx,

mean p/b and variance p/b2. For θ = 1/b = 1/p, the Laplace transform (LT) is

ϕΓ(s; θ) =

∫ ∞
0

e−sxfΓ(x; 1/θ, 1/θ)dx = (1 + θs)−1/θ, θ ≥ 0.

The Archimedean copula corresponding to this LT as generator function is called MTCJ1

copula. From the form of the conditional distributions derived in Takahasi (1965) it is

obvious that the copulas corresponding to bivariate conditional margins of the MTCJ copula

are again MTCJ copulas. In particular, the MTCJ copula is the copula of the multivariate

Burr’s distribution which is closed under conditioning. The above Gamma LT family extends

to Archimedean generators in Ld (for the generalized MTCJ family)

ϕΓ(s; θ) = (1 + θs)
−1/θ
+ , θ ≥ − 1

d− 1
, where (x)+ = max{0, x}. (3.2)

Mesfioui and Quessy (2008) show that the conditional generator when conditioning on m

variables becomes

ϕm(s; θ) =

(
1 +

sθ

mθ + 1

)−(mθ+1)/θ

+

. (3.3)

For θ ≥ −1/(d−1), we have θ/(mθ+1) ≥ −1/(d−1−m), so the parameter range is consistent,

and the (generalized) MTCJ copula is a simplified PCC where all bivariate building blocks

are MTCJ with corresponding choice of parameters. In fact, it is the only multivariate

Archimedean copula that constitutes a simplified PCC.

Theorem 3.1.1. A d-dimensional Archimedean copula is a simplified PCC if and only if its

generator is in the family (3.2).

1. This copula is also called Clayton copula due to its appearance in (Clayton 1978). It is the copula of the

multivariate Pareto distribution (Mardia 1962) and of the multivariate Burr distribution (Takahasi 1965). It

was first mentioned as a multivariate copula in Cook and Johnson (1981) and as a bivariate copula in Kimeldorf

and Sampson (1975). The extension to negative dependence was given in Genest and MacKay (1986) for the

bivariate case and in Joe (1997, pp. 157-158) for the multivariate case. Since many properties were discovered

studying the corresponding distribution function and Cook and Johnson (1981) mentioned its general form

we call it MTCJ copula.
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Proof. Because the proof is more intuitive, we first outline the case where ϕ is the LT of a

positive random variable. In this case, there is a representation of the copula as a mixture of

powers. The mixture distribution from which the Archimedean copula arises can be written

as (cf. Joe (1997, p. 86)):

F1:d(x1:d) =

∫ ∞
0

d∏
j=1

[G(xj)]
α dFA(α) =

∫ ∞
0

d∏
j=1

[G(xj)]
α fA(α)dα,

where FA is the cdf of a positive random variable A, with corresponding density fA, and

F (x) =

∫ ∞
0

[G(x)]αdFA(α) = ϕA(− lnG(x))

is the common univariate cdf with ϕA being the LT of A. Without loss of generality we can

assume that F (x) = x on [0, 1]. Then, F1:d(x1:d), xj ∈ [0, 1], j = 1, . . . , d is a copula. Also

G(x) = exp{−ϕ−1
A (x)} on [0, 1] is differentiable. With g = G′, the marginal cdf of the last k

variables and its density are:

F(d−k+1):d(x(d−k+1):d) =

∫ ∞
0

[
d∏

i=d−k+1

G(xi)

]α
fA(α)dα,

f(d−k+1):d(x(d−k+1):d) =
∂k

∂xd−k+1 · · · ∂xd
F(d−k+1):d(x(d−k+1):d)

=
d∏

j=d−k+1

[
g(xj)

G(xj)

] ∫ ∞
0

αk

[
d∏

i=d−k+1

G(xi)

]α
fA(α)dα,

and the conditional cdf of the first d− k variables given the last k is:

F1:(d−k)|(d−k+1):d(x1:(d−k)|x(d−k+1):d) =
∂kF (x1, . . . , xd)

∂xd−k+1 · · · ∂xd

/
f(d−k+1):d(x(d−k+1):d)

=

∫∞
0

∏d−k
j=1 [G(xj)]

α · αk∏d
i=d−k+1 [G(xi)]

α fA(α)dα∫∞
0 αk

∏d
i=d−k+1 [G(xi)]

α fA(α)dα

=

∫ ∞
0

d−k∏
j=1

[G(xj)]
α · fA?(α)dα,

where

fA?(α) =
αk
∏d
i=d−k+1 [G(xi)]

α fA(α)∫∞
0 βk

∏d
i=d−k+1 [G(xi)]

β fA(β)dβ
∝ αkeα

∑d
i=d−k+1 ln(G(xi))fA(α).

In this case, the density of A? has the same parametric form as the density of A if the density

of A has parameters θ and η and can be expressed as

fA(α; η, θ) = e−αηαθ−1h(α)/C(η, θ), (3.4)
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where h is a positive-valued function (it is not absorbed in the αθ−1 term only if it is a

non-power function) and C(η, θ) is a (finite) normalizing constant. From above, A? has

the same parametric form with parameters (η −∑d
i=d−k+1 lnG(xi), θ + k). The conditional

copula does not depend on xd−k+1, . . . , xd only if η is a rate (or reciprocal scale) parameter,

since Archimedean copulas are invariant to scale changes of the mixing distribution (Mai and

Scherer 2012, p. 60). For η to be a rate or inverse scale parameter of (3.4) only, h(α) must

be a power of α. Hence fA is a Gamma density, and F1:d(x1:d) is a MTCJ copula.

For the general case, where ϕ ∈ Ld is not necessarily a LT, we prove the result by

construction of a functional equation: Let

C1:d(u1, . . . , ud) = ϕ
( d∑
j=1

ϕ−1(uj)
)

be an Archimedean copula. Let (U1, . . . , Ud) be a random vector associated with this distri-

bution. Suppose ϕ has support [0, s0) where s0 = inf{s, ϕ(s) = 0} is infinite for a Laplace

transform, but could be finite for ϕ ∈ Ld which is not a Laplace transform. The case of finite

support implies that ϕ(s) = 0 for s ≥ s0. Let F1···d−1|d(u1, . . . , ud−1|ud) = ∂C(u1, . . . , ud)/∂ud

be the conditional distribution given Ud = ud. We will show now that the copula for this

is another Archimedean copula, say based on ψ, where ψ ∈ Ld−1. By differentiation, with

h = −ϕ′ and a = ϕ−1(ud) ∈ [0, s0) with 0 < ud ≤ 1,

F1:(d−1)|d(u1, . . . , ud−1|ud) = h
( d∑
j=1

ϕ−1(uj)
) /

h(a),

with jth (1 ≤ j ≤ d − 1) margin Fj|d(uj |ud) = h(ϕ−1(uj) + a)/h(a) =: vj . Note that h

is monotonically decreasing, continuous, and convex by definition of Ld. Hence ϕ−1(uj) =

h−1(vjh(a))−a for 1 ≤ j ≤ d−1 and the copula of the conditional distribution of U1, . . . , Ud−1

given Ud = ud is:

C1:(d−1);d(v1, . . . , vd−1; a) = h
(d−1∑
j=1

h−1(vjh(a))− (d− 2)a
)
.
/
h(a) (3.5)

Defining s := ψ−1(v; a) = h−1(vh(a)) − a and v := ψ(s; a) = h(s + a)/h(a), this is a

Archimedean copula

ψ(ψ−1(v1; a) + · · ·+ ψ−1(vd−1; a); a)

with generator function ψ(·, a). As ud → 1, a = ϕ−1(ud) → 0, and h(0) = −ϕ′(0) can

be positive or infinite but not 0, by the definition of ϕ. Also, h is differentiable except at a

countable number of points with h′ continuous and increasing except at the countable subset,
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and right derivatives exist for all points where h is finite (Rockafellar 1970, Theorems 23.1

and 25.3).

Consider first the case where h(0) is finite and positive, and h′(0) is finite. If h is not

differentiable everywhere, h′(0) and all derivatives in the following can be considered as right

derivatives. The copula of the conditional distribution does not depend on ud or a if and

only if there is a continuous differentiable scale function γ(a) > 0 such that γ(0) = 1 and

ψ(s; a) = h(s+ a)/h(a) = ψ(sγ(a); 0) = h(sγ(a))/h(0); 0 ≤ s < s0.

Writing the above functional equation in h as h(s+a)h(0) = h(a)h(sγ(a)) and differentiating

with respect to a yields

h′(s+ a)h(0) = h′(a)h(sγ(a)) + h(a)h′(sγ(a)) sγ′(a).

With a = 0 if follows that

h′(s)h(0) = h′(0)h(s) + h(0)h′(s) sγ′(0).

Rewriting this equation as

h′(s) =
h′(0)

h(0)[1− sγ′(0)]
h(s),

we conclude that the right derivative h′ is continuous and thus h is differentiable. The above

differential equation has solution h(s) = h(0)[1−sγ′(0)]α where α = −h′(0)/[h(0)γ′(0)]. Since

h = −ϕ′ must be decreasing, there are 2 possibilities

(i) s0 =∞, γ′(0) < 0, α < 0, or

(ii) γ′(0) > 0, s0 = 1/γ′(0), α > 0.

By integrating h over s we obtain ϕ(s) = (1−sγ′(0))1+α
+ , since ψ(0) = 0. In case (i), we must

have α < −1 and in case (ii), 1 + α ≥ d− 1 in order for ψ ∈ Ld (see also Joe (1997, pp. 157-

158)). In case (i) the obtained generating function has support on [0,∞) and corresponds to

the ”standard” MTCJ copula, whereas case (ii) with bounded ϕ yields the generalized MTCJ

copula.

If h′(0) or h(0) is infinite, the above is modified as follows. Let 0 < ε < s0. There is a

continuous differentiable scale function γ(a) > 0 such that γ(ε) = 1 and

ψ(s; a) = h(a+ s)/h(a) = ψ(sγ(a); ε) = h(sγ(a) + ε)/h(ε).

Cross-multiplying and differentiating the above with respect to a, and then setting a to ε

yields

h′(ε)h(s+ ε) = h(ε)[1− sγ′(ε)]h′(s+ ε), 0 < s < s0 − ε.
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This has solution h(s+ ε) = h(ε)[1− sγ′(ε)]α where α = −h′(ε)/[h(ε)γ′(ε)] so that ψ(s; ε) =

h(s+ ε)/h(ε) = [1− sγ′(ε)]α. The conclusion is the same as above, because after integrating

h to get ϕ, one would conclude that this leads to ϕ′(0) and ϕ′′(0) being finite.

This adds a further aspect making the MTCJ copula unique2 among Archimedean copulas.

Using different parameters than those obtained using Equation (3.3) in a PCC setup, i.e.

PCCs with MTCJ copulas with freely chosen parameters as building blocks, we obtain a

natural extension of the MTCJ copula, permitting different dependence for different bivariate

marginals.

3.2 Elliptical copulas

In this section, we characterize the elliptical copulas that have all conditional distributions

in location-scale families. The location scale family of a random vector X ∈ Rd is the set{
aX + b|a ∈ R+

0 ,b ∈ Rd
}

. We show that not all elliptical copulas are simplified PCCs and

characterize the scale mixtures of Normals which are of the simplified type. By referring to a

d-dimensional elliptical copula we mean a copula arising from an elliptical distribution such

as the multivariate Normal or Student’s t distribution. Following Cambanis et al. (1981), a

multivariate distribution is elliptical if its characteristic function has the form

φX(t;µ,Σ) = Ψ(t′Σt)eit
′µ,

for Ψ : R+
0 7→ R, µ ∈ Rd, and positive definite Σ ∈ Rd×d. If the distribution has a density,

this implies that it is given by

fX(x) = |Σ|−1/2g
(

(x− µ)′Σ−1(x− µ)
)
,

for a generator function g : R+
0 7→ R+

0 , which can be uniquely determined from Ψ. For the

two examples we mentioned, the generator functions have the form

gGauss,d(t) =
1

(2π)d/2
e−t/2, gStudent’s−t,d,ν(t) =

Γ
(
ν+d

2

)
Γ
(
ν
2

)
(νπ)d/2

·
(

1 +
t

ν

)−(ν+d)/2

,

and lead to simplified PCCs.

Theorem 3.2.1. The multivariate Gaussian distribution and the multivariate Student’s t

distribution are PCCs of the simplified form.

2. The MTCJ copula also is the only Archimedean copula invariant under truncation, in the sense that for

a rv U ∼ C, C also is the copula of U|U ≤ a, a ∈ [0, 1]dim(U) (Ahmadi Javid 2009).
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For the Gaussian distribution this is quite obvious since all conditional distributions are

again Gaussian and do depend on the values of the variables that they are conditioned on only

through their mean, i.e., they all are in the same location family. For Student’s t distribution

the covariances also depend on these values, but only through a scaling factor such that all

conditional distributions remain in the same location-scale family. Since changes of location

and scale do not affect the copula of a multivariate distribution, this implies that Student’s t

distribution is a simplified PCC. For clarification, we derive the explicit form of the copulas

corresponding to bivariate conditional distributions in Appendix C. Just as for the MTCJ

copula, changing the degrees of freedom in the bivariate building blocks of the PCC leads to

a natural extension of the multivariate Student’s t distribution in which different bivariate

conditional margins can have different degrees of freedom.

While the copulas corresponding to these distributions are the most popular examples

they also have a unique position within the class of elliptical distributions as the following

theorems show.

Theorem 3.2.2. Let us assume that the generator function g(·) of the density of a d-

dimensional elliptical distribution is differentiable. Then, the conditional distributions remain

within the same location-scale family for all values of the variables that are conditioned on,

if and only if

(a) the support of g is R and the distribution is the multivariate Student’s t (or Pearson

type VII) distribution or in its limiting case the multivariate Normal distribution or

(b) g has compact support and g(t; ζ) = (1 − t)ζ+, for ζ > 1 up to rescaling (the Pearson

type II distribution which is sometimes called “inverted t distribution” (Dickey 1967)).

Proof. The proof is similar to that for Archimedean copulas in that the same functional equa-

tion can be obtained. Without loss of generality, let us consider the case of a d-dimensional

elliptical distribution with zero means and zero correlations. In this case, for some generator

functions gd and gk, the density of the distribution is given by

f1:d(x1:d) = gd(x
2
1 + . . .+ x2

d), with marginal density

f(d−k+1):d(x(d−k+1):d) = gk(x
2
d−k+1 + . . .+ x2

d).

For f1:(d−k)|(d−k+1):d(x1:(d−k)|x(d−k+1):d) we obtain

f1:(d−k)|(d−k+1):d(x1:(d−k)|x(d−k+1):d) =
gd(x

2
1 + . . .+ x2

d)

gk(x
2
d−k+1 + . . .+ x2

d)
.
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For this distribution to be in the same location-scale family irrespective of the values of

xd−k+1, . . . , xd, we must have that for given
∑d

i=d−k+1 x
2
i 6=

∑d
i=d−k+1 x

?
i

2 there exists

γ(x(d−k+1):d,x
?
(d−k+1):d) such that

f1:(d−k)|(d−k+1):d(γ(x(d−k+1):d,x
?
(d−k+1):d) · x1:(d−k)|x?(d−k+1):d)

∝ f1:(d−k)|(d−k+1):d(x1:(d−k)|x(d−k+1):d).

With x?(d−k+1):d = 0, a =
∑d

i=d−k+1 x
2
i , t =

∑d−k
i=1 x

2
i and δ(a) = 1/γ(x(d−k+1):d,0) this

implies that

gd(t+ a) = ξ(a) · gd
(

t

δ(a)

)
, (3.6)

where ξ(a) equals gk(a) times a constant depending on a, and ξ(·), δ(·) are differentiable

scale functions. Since gd(0) = 0 if and only if gd(a) = 0 for all values of a, we must have

gd(0) > 0. Using t = 0 in Equation 3.6, we conclude that gd(0) is finite. Thus, we can define

h(t) := gd(t)
gd(0) and obtain from Equation 3.6 that

h(t+ a) = h(a) · h
(

t

δ(a)

)
.

Using that δ(0) = 1 by the definition of δ, differentiation with respect to a yields

h′(t+ a) = h′(a) · h
(

t

δ(a)

)
+ h(a) · h′

(
t

δ(a)

)
·
(−tδ′(a)

δ(a)2

)
,

and for a = 0 this implies

h′(t) = h′(0) · h(t) + h′(t) · (−t · δ′(0)).

In other words, the function h must fulfill the differential equation

(1 + βt)h′(t) = αh(t),

where α = h′(0), β = δ′(0). From this, we obtain for β > 0 that h(t) = (1 + βt)α/β

which corresponds to the elliptical generator of a Pearson type VII (scaled Student’s t)

distribution. For h to yield a well defined density in d dimensions, α
β must be given in the

form α
β = −(ν + d)/2, ν > 0, to ensure integrability with respect to td/2−1.

For β < 0, h(t) = (1 − βt)α/β+ , which leads to a well-defined density for α
β > −1 and is

differentiable and thus a valid solution for α
β > 1.

By integration, we obtain that the generator function for lower-dimensional margins

gd−l(t) is proportional to (1 − βt)
α/β+l/2
+ . Therefore, also the conditional distributions of

the lower-dimensional margins remain within the same location-scale family for all values of

the conditioning variables.
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Here, case (b) can be seen as an analogue to the extension of the MTCJ to negative

dependence. The proof that Student’s t distribution is a simplified PCC relied on the fact

that in this case, conditioning only affects the location and scale of the distribution. Theorem

3.2.2 shows that the t-distribution is the only elliptical distribution where this proof strategy

is successful. Just as the MTCJ copula can be constructed using a Gamma mixture, also

Student’s t distribution arises from the multivariate Normal distribution using a Gamma

mixture for the square of the inverse scale parameter. For the distribution function of the

MTCJ copula, we have

CMTCJ(u1:d; θ) =

∫ ∞
0

d∏
i=1

[GMTCJ(ui; θ)]
α fΓ(α; 1, 1/θ)dα,

where GMTCJ(·; θ) = exp
{
− (ϕΓ}−1 (·; θ)

)
is a cdf on [0, 1], cf. Joe (1997, p. 86), while

ft,d(x1:d;R, ν) = (2π)−d/2|R|−1/2

∫ ∞
0

wd/2 exp{−1
2wx′R−1x}fΓ(w; ν/2, 2/ν) dw,

holds for the density of a multivariate Student’s t distribution (Cornish 1954). When only

considering scale mixtures of Normals, i.e. mixtures of random variables of the form aX, where

a ∈ R+
0 and X has a multivariate normal distribution, we obtain the following theorem.

Theorem 3.2.3. Consider a d-dimensional scale mixture of Normals with correlation matrix

Σ which is a simplified PCC

(a) in d ≥ 4 or

(b) for all positive definite correlation matrices Σ,

then the mixing distribution is the Gamma distribution.

Proof. A general scale mixture of Normals in dimension d can be written as (X1, . . . , Xd) =

(Z1, . . . , Zd)/
√
W where W is a random variable on (0,∞) with density fW , and (Z1, . . . , Zd)

is multivariate Gaussian with zero mean vector and covariance matrix Σ. Without loss of

generality, we can assume that all diagonal entries of Σ are 1, i.e., Σ is a correlation matrix.

This implies for the d-variate generator gd of the distribution of (X1, . . . , Xd) that

|Σ|−1/2gd(x
′Σ−1x) = (2π)−d/2|Σ|−1/2

∫ ∞
0

wd/2 exp{−1
2wx′Σ−1x}fW (w) dw.

Similarly, if Σk is the leading k×k matrix of Σ, and xk = (x1, . . . , xk)
′, then by marginalizing

out the last d− k components we get

|Σk|−1/2gk(x
′
kΣ
−1
k xk) = (2π)−k/2|Σk|−1/2

∫ ∞
0

wk/2 exp{−1
2wx′kΣ

−1
k xk}fW (w) dw.
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Hence, the univariate margin is

f1(x1) = g1(x2
1) = (2π)−1/2

∫ ∞
0

w1/2 exp{−1
2wx

2
1}fW (w) dw.

In the equation above, the density fW could be replaced with dFW in a Stieltjes integral.

However, this would not affect the remainder of this proof; we omit it for notational conve-

nience. Note that

g1(0) = (2π)−1/2E [W 1/2], gd(0) = (2π)−d/2E [W d/2].

Let G be the cdf corresponding to the marginal generator g1. Then, the copula density

corresponding to gd is

c1:d(u1, . . . , ud; gd,Σ) = |Σ|−1/2 gd(x
′Σ−1x)

g1([G−1(u1)]2) · · · g1([G−1(ud)]2)
(3.7)

with xj = G−1(uj). From this general form of the copula density, we will obtain two equations

for the moments of the mixing variable W which will lead to necessary conditions on the

conditional distributions of simplified PCCs in the elliptical class. Directly from (3.7) we get

that

c1:d(0.5, . . . , 0.5; gd) = |Σ|−1/2 gd(0)

gd1(0)
= |Σ|−1/2 E [W d/2]

E d[W 1/2]
. (3.8)

This means that if W1,W2 are two different mixing variables, then the copula densities with

fixed Σ are different unless the necessary condition of

E [W
d/2
1 ]

E d[W
1/2
1 ]

=
E [W

d/2
2 ]

E d[W
1/2
2 ]

holds. To derive a second equation, let us consider

c1:d(0.5, . . . , 0.5, u; gd) = |Σ|−1/2 gd(αx
2)

gd−1
1 (0)g1(x2)

(3.9)

where α ≥ 1 is the (d, d) element of Σ−1 and x = G−1(u). Note that α is not a scaling factor

of the marginal distribution but a function of the correlation matrix. In particular, we can

obtain all α ≥ 1 from correlation matrices of the form

Σα =


Id−2 0 0

0 1
√

1− 1
α

0
√

1− 1
α 1

 ,

where Id−2 is the (d − 2) × (d − 2) identity matrix. Using ∂x/∂u = 1/g1(x2), we determine

the first derivative of (3.9) with respect to u as

|Σ|−1/2

[
αg′d(αx

2)

gd−1
1 (0)g1(x2)

− gd(αx
2)g′1(x2)

gd−1
1 (0)g2

1(x2)

]
· 2x

g1(x2)
.

48



CHAPTER 3. THE SIMPLIFYING ASSUMPTION

After taking the second derivative with respect to u and then setting x = 0 (u = 0.5), all

terms are 0 except

lim
x→0
|Σ|−1/2

[
ag′d(αx

2)

gd−1
1 (0)g1(x2)

− gd(αx
2)g′1(x2)

gd−1
1 (0)g2

1(x2)

]
· 2

g2
1(x2)

= 2|Σ|−1/2

[
αg′d(0)

gd+2
1 (0)

− gd(0)g′1(0)

gd+3
1 (0)

]

= (2π)−1|Σ|−1/2

[
−αE (W (d+2)/2)

E d+2(W 1/2)
+

E (W d/2)E (W 3/2)

E d+3(W 1/2)

]
.

(3.10)

Let us now consider the analog for conditional densities. Let f1···d(x) be the density of

(X1, . . . , Xd) and let f1 be the density of X1 or any Xj . Let

f1:(d−1)|d(x1, . . . , xd−1|xd) = f1:d(x)/f1(xd).

For this, we decompose x′Σ−1x as (x∗)′Σ−1
11·2x

∗ + x2
d where x∗ = (x1 − σ1dxd, . . . , xd−1 −

σd−1,dxd)
′ and Σ11·2 is the conditional covariance matrix of (Z1, . . . , Zd−1) given Zd. Writing

the conditional densities in mixture form,

f1:d(x) =

∫ ∞
0

wd/2φd(xw;R) fW (w) dw

= (2π)−d/2|Σ|−1/2

∫ ∞
0

wd/2 exp{−1
2wx′Σ−1x}fW (w) dw

= (2π)−d/2|Σ11·2|−1/2

∫ ∞
0

wd/2 exp{−1
2wx∗′Σ−1

11·2x
∗} exp{−1

2wx
2
d}fW (w) dw,

and

f1(xd) = (2π)−1/2

∫ ∞
0

w1/2 exp{−1
2wx

2
d}fW (w) dw,

so that

f1:(d−1)|d(x1, . . . , xd−1|xd) =

a(xd)(2π)−(d−1)/2|Σ11·2|−1/2

∫ ∞
0

w(d−1)/2 exp{−1
2wx∗′Σ−1

11·2x
∗}fW ∗(w) dw

(3.11)

is a scale mixture with mixing density fW ∗(w;xd) = w1/2 exp{−1
2wx

2
d}fW (w)/a(xd), where

a(xd) is a normalizing constant. We denote the random variable with this density by W ∗(xd).

For d ≥ 3, Equations (3.8) and (3.11) imply that a necessary condition for the copula

corresponding to the distribution of X1, . . . , Xd−1 given Xd = xd to be independent of xd is

that ∫∞
0 wd/2 exp{−1

2wx
2
d}fW (w) dw ·

( ∫∞
0 w1/2 exp{−1

2wx
2
d}fW (w) dw

)d−2

(∫∞
0 w exp{−1

2wx
2
d}fW (w) dw

)d−1

=
E [{W ∗(xd)}(d−1)/2]

E d−1[W ∗1/2(xd)]

(3.12)
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is a constant over xd. Similarly, we obtain from (3.10) that

|Σ|−1/2

[
−αE (W ∗(xd)

(d+1)/2)

E d+1(W ∗(xd)1/2)
+

E (W ∗(xd)
(d−1)/2)E (W ∗(xd)

3/2)

E d+2(W ∗(xd)1/2)

]
, (3.13)

must be equal to a constant β(α). To rewrite these equations, let t = 1
2x

2
d ≥ 0 and let V be a

random variable with density fV (v) proportional to v1/2fW (v). Let Vt be a random variable

with density proportional to e−tvfV (v); this is a Laplace transform tilt of the density of V

with normalizing constant ϕV (t), the LT of V at t. Note that Vt has finite positive integer

moments for t > 0 and V0 = V .

Then, (3.12) can be rewritten as

∫∞
0 v(d−1)/2 exp{−vt}fV (v) dv ·

( ∫∞
0 exp{−vt}fV (v) dv

)d−2

(∫∞
0 v1/2 exp{−vt}fV (v) dv

)d−1
=

E [V
(d−1)/2
t ]

E d−1[V
1/2
t ]

, (3.14)

which must be constant over t ≥ 0, while (3.13) leads to

|Σ|−1/2

[
−αE (V

(d+1)/2
t )

E d+1(V
1/2
t )

+
E (V

(d−1)/2
t )E (V

3/2
t )

E d+2(V
1/2
t )

]
, (3.15)

which, for all t ≥ 0, must be equal to a constant β(α). This implies the following recursive

relationship for the moments of Vt: if we know that (3.14) is constant for d = k and d = 4,

then it is also constant for d = k+ 2. Thus, it is sufficient to show that (3.14) is constant for

d = 3 and d = 4, or d = 3 and d = 5.

Let us now consider case a), where the copula C is a simplified PCC in d ≥ 4. From the

three-dimensional marginal distributions, we obtain that (3.14) is constant for d = 3. By

conditioning on X4 = x4, X3 = x3, we conclude with a similar calculation as for (3.11) that

E[V 2
t ] · E2[V

1/2
t ]

E3[Vt]
= const.

This, together with (3.14) being constant for d = 3 implies that (3.14) is constant for d = 5

and thus for all d ≥ 3.

In case b), where the copula is a simplified PCC for all Σ, we know that for a three-

dimensional marginal distribution, (3.15) holds for all α ≥ 0:

−αE [{W ∗(x3)}4/2]

E 4[W ∗1/2(x3)]
+

E [{W ∗(x3)}2/2]E [{W ∗(x3)}3/2]

E 5[W ∗1/2(x3)]
= β(α)|Σ|1/2.

Thus, E [V 2
t ]/E 4[V

1/2
t ] and E [Vt]E [V

3/2
t ]/E 5[V

1/2
t ] must be constants over t. Together with

(3.14) being constant in t for d = 3, this means that (3.14) is constant for d = 4 and thus for
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all d ≥ 3. Note that, more precisely, we only require two different values of α in (3.15) for

the argument above.

Summing up, we obtain that with m = (d− 1)/2 the moments of Vt are connected to the

moments of V via

E [V m
t ] = am(t)E [V m]

for all t > 0, m = 1, 1.5, 2, 2, 5, . . ., where a(t) = E 2[V
1/2
t ]/E 2[V 1/2].

With all of the positive integer moments of V and Vt existing, the Laplace transforms of

V and Vt, for 0 ≤ s ≤ st, where the constant st may depend on t, can be written as

ϕV (s) = 1 +
∞∑
i=1

(−1)iE [V i]si/i!,

ϕVt(s) = 1 +
∞∑
i=1

(−1)iE [V i
t ]si/i! = 1 +

∞∑
i=1

(−1)iE [V i]siai(t)/i!.

Hence ϕVt(s) = ϕV (sa(t)) in a neighborhood of 0 for the Taylor series expansion of the

LTs about 0. By Feller (1971, Section VII.6), the Taylor series in a positive neighborhood

of 0 uniquely determines the distribution. Hence Vt = a(t)V for t > 0. That Laplace

transform tilting of the density leads to a scale-changed random variable, implies that V has a

Gamma density (Marshall and Olkin 2007, p. 576, Theorem 18.B.6). Hence, also W is Gamma

distributed, and the corresponding scale mixture is the multivariate t-distribution.

In particular, for other scale mixtures of Normals the generator function of conditional

distributions will depend on the value of variables that they are conditioned on. A simple

example for such a distribution would be a two point mixture of Normal distributions having

the same correlation matrix, but where Σ1 = γΣ2 for a positive constant γ. This contradicts

the claim made in Example 4.1 of Hobæk Haff et al. (2010) that all elliptical distributions

are simplified PCCs.

It turns out that this deviation from the simplifying assumption cannot be detected by

looking at conditional correlations or the popular Kendall’s τ measure only. Cambanis et al.

(1981) showed that the conditional correlation coefficient is equal to the partial correlation

for elliptical distributions, and Lindskog et al. (2003) demonstrated that the relationship

between the correlation coefficient ρ and Kendall’s τ for the Normal distribution holds for all

atom-free elliptical distributions.

τ =
2

π
arcsin(ρ).

This means that, for elliptical distributions, the values of Kendall’s τ corresponding to bi-

variate conditional distributions are independent of the variables that are conditioned on.
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3.3 Effects of the simplifying assumption

In this section we consider practical implications of the theoretical limitations of simplified

PCCs. We illustrate how simplified PCCs approximate general distributions and discuss how

they can be extended when the simplifying assumption is inappropriate.

3.3.1 Trivariate extension of the Farlie-Gumbel-Morgenstern copula

Even though it is not a plausible model for data, we start by studying the trivariate extension

of the Farlie-Gumbel-Morgenstern (FGM) copula, which is given by

C1:3(u1, u2, u3; θ) = u1u2u3[1 + θ(1− u1)(1− u2)(1− u3)],

for θ ∈ [−1; 1]. This example is illustrative because here results can be obtained analytically.

For uj = 1, j ∈ {1, 2, 3}, the term in brackets is equal to 1, thus all bivariate marginal

distributions are independence copulas. This is a classical example of a distribution where

bivariate measures of dependence fail to detect the dependence. The density function of this

copula family is

c1:3(u1, u2, u3; θ) = 1 + θ(1− 2u1)(1− 2u2)(1− 2u3).

Since the bivariate marginals are independence copulas, this is also the form of the conditional

distribution of (U1, U2) given U3 = u3 and the corresponding copula, i.e.

f1,2|3(u1, u2|u3; θ) = c1,2;3(u1, u2|u3; θ) = c1:3(u1, u2, u3; θ).

This is a bivariate FGM copula with parameter η(u3) = θ(1 − 2u3). To approximate this

3-dimensional copula using a simplified PCC, we follow the suggestions by Hobæk Haff et al.

(2010). In a first step, we match the bivariate marginal distributions, i.e. C12 and C23 are

independence copulas. Subsequently, the conditional copula C12;3 will be approximated by a

copula of the same parametric family

cFGM (u1, u2|η) = 1 + η(1− 2u1)(1− 2u2),

but with constant parameter η minimizing the expected Kullback-Leibler (KL) distance from

the true distribution:

η̂ = argminηKLθ(η), where

KLθ(η) =

∫
[0;1]3

c1,2;3(u1, u2|u3) ln

(
c1,2;3(u1, u2|u3)

cFGM (u1, u2|η)

)
du1du2du3

=

∫
[0;1]3

c1,2;3(u1, u2|u3) ln

(
1 + θ(1− 2u1)(1− 2u2)(1− 2u3)

1 + η(1− 2u1)(1− 2u2)

)
du1du2du3.
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. Evaluating the partial derivatives with respect to η,

∂ηKLθ(η) = −
∫

[0;1]3

(
1 + θ

3∏
i=1

(1− 2ui)

)
(1− 2u1)(1− 2u2)

1 + η(1− 2u1)(1− 2u2)
du1du2du3,

∂2
ηKLθ(η) =

∫
[0;1]3

(
1 + θ

3∏
i=1

(1− 2ui)

)
(1− 2u1)2(1− 2u2)2

(1 + η(1− 2u1)(1− 2u2))2
du1du2du3,

we obtain that ∂ηKLθ(η)|η=0 = 0 and ∂2
ηKLθ(η) > 0, i.e. the minimum of the KL distance

is attained for η = 0. This means that, in this case, the closest approximation is the 3-

dimensional independence copula. The average conditional copula C?1,2;3, C?1,2;3(u1, u2) =∫ 1
0 C1,2;3(u1, u2|u3)du3 is also the independence copula. The quality of the simplified approx-

imation can be assessed in terms of the KL distance. To convert the KL distance between two

copulas into a more interpretable measure, we can consider the sample size needed to distin-

guish between the two models using a likelihood ratio statistic at confidence level 1−α = 0.95.

For an approximating copula c?1:3 the KL distance to the true model c1:3 is

∆(c?1:3; c1:3) =

∫
[0;1]3

c1,2,3(u1, u2, u3) ln

(
c1,2,3(u1, u2, u3)

c?1,2,3(u1, u2, u3)

)
du1du2du3 ≥ 0.

Assuming data (ui)i=1,...,N from C123 to be given, an estimator for ∆(c?1:3; c1:3) is

∆̂N (c?1:3; c1:3) :=
1

N

N∑
i=1

ln

(
c1,2,3(u1i, u2i, u3i)

c?1,2,3(u1i, u2i, u3i)

)
.

√
N(∆̂N (c?1:3; c1:3)−∆(c?1:3; c1:3)) is asymptotically normal with variance σ(c?1:3; c1:3)2,

σ(c?1:3; c1:3)2 =

∫
[0;1]3

c1,2,3(u1, u2, u3) ln

(
c1,2,3(u1, u2, u3)

c?1,2,3(u1, u2, u3)

)2

du1du2du3,

assuming that σ(c?1:3; c1:3)2 is finite (Central Limit Theorem). If C123 is the data generating

process, we expect ∆̂N (c?1:3; c1:3) to be positive for a finite sample. Thus, the required sample

size to achieve a probability of P (∆̂N (c?1:3; c1:3) > 0) ≥ 1− α, α ∈ (0, 1), i.e.

P (∆̂N (c?1:3; c1:3) > 0) = P

(√
N(∆̂N (c?1:3; c1:3)−∆(c?1:3; c1:3))

σ(c?1:3; c1:3)
>
−
√
N∆(c?1:3; c1:3)

σ(c?1:3; c1:3)

)
≈ Φ

(√
N∆(c?1:3; c1:3)/σ(c?1:3; c1:3)

)
≥ 1− α,

is Nα(c?1:3; c1:3) > σ(c?1:3; c1:3)2Φ−1(1− α)/∆(c?1:3; c1:3)2.

For the trivariate extension of the FGM copula, this sample size N needed to distinguish

between the true and the approximating model is given in Figure 3.1. The dependence is

strongest for θ = ±1, and this is where the KL distance of the simplified PCC approximation
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Figure 3.1: KL distance ∆ (left), sample size N needed to distinguish the models in a

likelihood ratio test (middle) and relative difference in Value-at-Risk (right), for the trivariate

FGM extension and the approximation by the independence copula.
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from the true distribution is largest. The KL sample size needed to distinguish between the

two distributions at confidence level 0.95 is 253 for θ = ±1; for |θ| < 1 several thousand

observations can be necessary.

Another important measure for the quality of an approximation are the implications

for the relative difference in portfolio Value-at-Risk (VaR). For a trivariate meta-normal

distribution with standard normal margins and the FGM copula, the relative difference due

to the simplifying approximation is illustrated in the right panel of Figure 3.1.

3.3.2 Multivariate 1-factor model

The simplifying assumption corresponds to the extremal case where conditional dependence

does not vary as the values of the conditioning variables change. For the other extreme, we

believe that a general class of models to consider are factor models constructed from sums of

non-negative random variables. Factor models and their implied copulas have been proposed

and studied by several authors in the literature including McNeil et al. (2005); Li (2000);

Hull and White (2004, 2006) and Oh and Patton (2012). The 1-factor case generically has

the form:

Xj = Z0 + Zj , j = 1, . . . , d, (3.16)

where Z0, Z1, . . . , Zd are independent random variables. Consider a conditional distribution

such as X1, . . . , Xk|Xk+1 = xk+1, . . . , Xd = xd and suppose that the Z’s are all non-negative.

As xk+1, . . . , xd all go to 0, the conditional dependence in X1, . . . , Xk is close to independence

because the conditioning event implies that Z0 is close to 0. As xk+1, . . . , xd all go to ∞, the

conditional dependence in X1, . . . , Xk is strong because the conditioning event implies that

54



CHAPTER 3. THE SIMPLIFYING ASSUMPTION

Z0 is large with high probability. Note that the positivity of the Z’s is a major reason for

this. If the Z’s can take positive and negative values it is not clear whether the simplifying

assumption will be violated, it holds when the Z’s are Gaussian.

Trivariate Gamma 1-factor model

As a concrete example, let us consider the trivariate Gamma factor model

Xj = Z0 + Zj , j = 1, . . . , 3,

where Z0, . . . , Z3 are independent Gamma random variables with respective shape parameter

pj (and rate b = 1). Marginally, Xj is Gamma(ηj , 1) with ηj = p0 + pj . Further, Z0/Xj

and Xj are independent random variables, and Z0/Xj ∼ Beta(p0, pj) (Lukacs 1955). Given

X3 = x3, this implies that a stochastic representation for (X1, X2) is (Z?0 +Z1, Z
?
0 +Z2) where

Z?0/x3 is an independent Beta(p0, p3) random variable. The Beta distribution has density

fβ(x; p0, pj) = B(p0, pj)
−1xp0−1(1 − x)pj−1, where B(p0, pj) is a normalizing constant (the

beta function), mean E[Z0/Xj ] = (p0 + pj)/pj and variance V ar[Z0/Xj ] =
p0pj

(p0+pj)2(p0+pj+1)
.

Hence,

Var[X1|X3 = x3] =
x2

3p0p3

(p0 + p3)2(1 + p0 + p3)
+ p1,

Var[X2|X3 = x3] =
x2

3p0p3

(p0 + p3)2(1 + p0 + p3)
+ p2,

Cov[X1, X2|X3 = x3] =
x2

3p0p3

(p0 + p3)2(1 + p0 + p3)
,

Cor[X1, X2|X3 = x3] =
1√(

1 + p2(p0+p3)2(1+p0+p3)
x23p0p3

)(
1 + p1(p0+p3)2(1+p0+p3)

x23p0p3

) .
(3.17)

The conditional correlation is increasing in x3 from 0 to 1 (Figure 3.2), which means that no

conditional distribution is close to satisfying the simplifying assumption. In this model,

fj3(xj , x3) =

∫ min(xj ,x3)

0
fΓ(xj − z; 1, pj)fΓ(x3 − z; 1, p3)fΓ(z; 1, p0)dz, j = 1, 2,

f1:3(x1:3) =

∫ min(x1:3)

0
fΓ(x1 − z; 1, p1)fΓ(x2 − z; 1, p2)fΓ(x3 − z; 1, p3)fΓ(z; 1, p0)dz,

which can be evaluated using adaptive integration. Thus, the density c1:3,

c1:3(u1, u2, u3) =
f1:3(F−1

1 (u1), F−1
2 (u2), F−1

3 (u3))∏3
i=1 fi(F

−1
i (ui))

,

can be evaluated using only 1-dimensional numerical integrations. From the stochastic repre-

sentation of (X1, X2) as (Z?0 +Z1, Z
?
0 +Z2) we obtain the densities and distribution functions
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by convolution as follows:

fj|3(yj |x3) =

∫ min(
yj
x3
,1)

0
fΓ(yj − x3b; 1, pj)fβ(b; p0, p3)db, j = 1, 2,

Fj|3(yj |x3) =

∫ min(
yj
x3
,1)

0
FΓ(yj − x3b; 1, pj)fβ(b; p0, p3)db, j = 1, 2,

f12|3(y1, y2|x3) =

∫ min(
y1
x3
,
y2
x3
,1)

0
fΓ(y1 − x3b; 1, p1)fΓ(y2 − x3b; 1, p2)fβ(b; p0, p3)db,

F12|3(y1, y2|x3) =

∫ min(
y1
x3
,
y2
x3
,1)

0
FΓ(y1 − x3b; 1, p1)FΓ(y2 − x3b; 1, p2)fβ(b; p0, p3)db.

We will now approximate the copula density c1:3 with a simplified PCC of the form

c?1:3(u1, u2, u3) = c13(u1, u3) c23(u2, u3) c?12;3(C1|3(u1|u3), C2|3(u2|u3)),

c?1:3(u1, u2, u3) = c12(u1, u2) c23(u2, u3) c?13;2(C1|2(u1|u2), C3|2(u3|u2)) or

c?1:3(u1, u2, u3) = c12(u1, u2) c13(u1, u3) c?23;1(C2|1(u2|u1), C3|1(u3|u1)),

where Cj|3(uj |u3) = Fj|3(F−1
j (uj)|F−1

3 (u3)), j = 1, 2. Here, the average conditional copula

of X1, X2 given X3 = x3, which is also the copula one tries to estimate from data under the

simplifying assumption, is

c?1,2;3(u1, u2) =

∫ 1

0
c1,2;3(u1, u2|u3)du3,

where

c1,2;3(u1, u2|u3) =
f1,2|3

(
F−1

1|3
(
u1|F−1

3 (u3)
)
, F−1

2|3
(
u2|F−1

3 (u3)
) ∣∣∣F−1

3 (u3)
)

f1|3

(
F−1

1|3
(
u1|F−1

3 (u3)
) ∣∣∣F−1

3 (u3)
)
f2|3

(
F−1

2|3
(
u2|F−1

3 (u3)
) ∣∣∣F−1

3 (u3)
) .

After transformation back to Gamma margins, this integral can be computed numerically us-

ing Gauss-Legendre quadrature. Similar relationships apply for c13;2 and c23;1, and c?1,3;2(u1, u3)

and c?2,3;1(u2, u3) are obtained by permutation of indices. For some representative parameter

values in the 1-factor Gamma convolution model, the sample sizes N corresponding to the

distance of the approximate models of the true model are given in Table 3.1. They have been

obtained by evaluating ∆ and σ2 via Monte Carlo integration.

The approach here for comparing a multivariate distribution to a nearby simplified PCC

approximation also applies to higher-dimensional multivariate distributions including the

Gamma factor model, but the calculations would be much more time-consuming. For dimen-

sions d ≥ 4, because there are many different PCCs and permutations of variables for which

the simplifying assumption can be applied, the order of magnitude of sample sizes needed
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Table 3.1: KL sample size N needed to differentiate the Gamma factor model from a PCC

approximation with 95% confidence using a likelihood ratio test for some representative pa-

rameter vectors. KL sample sizes N are computed via Monte Carlo approximation of the

integrals, and we report them to 2 significant digits. ρ̄ is the average conditional correla-

tion, ρ̄ij;k =
∫∞

0 ρij;k(xk) fk(xk) dxk, and SD its expected variation over the range of the

conditioning variable.

p0 p1 p2 p3 PCC approximation for

C12;3 C13;2 C23;1

ρ̄12;3(SD) N ρ̄13;2(SD) N ρ̄23;1(SD) N

1 1 1 1 0.244(0.205) 140 0.244(0.205) 140 0.244(0.205) 140

1 4 4 4 0.151(0.105) 830 0.151(0.105) 830 0.151(0.105) 830

1 1 1 4 0.376(0.183) 200 0.150(0.146) 300 0.150(0.146) 300

3 1 2 3 0.440(0.177) 160 0.337(0.171) 210 0.201(0.141) 290

4 1 2 3 0.477(0.169) 160 0.366(0.164) 220 0.216(0.135) 310

5 1 2 3 0.503(0.161) 180 0.386(0.158) 220 0.226(0.129) 310

Figure 3.2: Conditional correlation in the trivariate Gamma 1-factor model for parameters

p1 = 1, p2 = 1, p3 = 1 and p0 = 1.
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to distinguish a multivariate distribution and a “best-fitting” PCC need not be smaller than

those for the trivariate Gamma factor model. Algorithms, such as in Dißmann et al. (2013)

(see also Sections 4.1.4 and 6.2.1) for fitting high-dimensional R-vine PCCs, find good-fitting

models based on sequential optimization criteria.

3.3.3 Non-simplified PCCs

The results presented in this chapter illustrate that the simplifying assumption for PCCs

cannot be made in practical applications without some loss of generality. While for some

models, the closest approximating PCC of the simplified type is virtually indistinguishable

from the true model for typical data sizes, the difference can be significant for other models.

In particular, the impact of a simplified model on the interpretation of results should be

evaluated in empirical work and test for the simplifying assumption will need to be developed.

For a given order of variables in the PCC and parametric bivariate copulas, such tests can

be based on likelihood ratios as in Acar et al. (2012b).

To illustrate a simple but non-rigorous diagnostic check for the applicability of the sim-

plifying assumption for the dependence structure of a given data set, let us consider the

exchange rate data which will be analyzed in Chapter 5.1. A detailed description of this data

set can be found in Section 5.1.1. We calculate the rank correlation between pairs of variables,

conditioning on the corresponding values of a third variable being in a certain quantile of its

distribution. To obtain a measure of uncertainty for these conditional values of Kendall’s τ ,

we use a non-parametric bootstrap, where the data is resampled with replacement 500 times.

The resulting boxplots are shown in Figure 3.3. The upper panel shows the variability in τs

between the GBP/USD and CAD/USD exchange rates for different deciles of the EUR/USD

exchange rate returns. One would probably attribute it to random variations, and with the

given data size also the the Kendall’s τ between the EUR/USD and CAD/USD rate for dif-

ferent deciles of GBP/USD returns presented in the mid panel does not give a clear indication

for a violation of the simplifying assumption. However, the conditional τ values in the mid

panel appear to depend quadratically on the deciles of the conditioning variable. Quadratic

patterns like this are characteristic for mixture models as we illustrate in the lower panel of

Figure 3.3 where a similar exercise was carried out for a simulated data set from a mixture

of two trivariate normal distributions with correlations 0.9 and −0.3 respectively, which rep-

resents an extreme case of a mixture distribution with different strengths of dependence in

both components.
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Figure 3.3: upper panel: conditional Kendall’s τ rank correlation between the returns

of the USD/EUR and USD/CAD exchange rate, where we condition on the returns of the

USD/GBP being in a given decile of the distribution.

middle panel: conditional Kendall’s τ rank correlation between the returns of the

USD/EUR and USD/CAD exchange rate, where we condition on the returns of the USD/GBP

being in a given decile of the distribution.

lower panel: conditional Kendalls’s τ for 1000 observations from a 50%:50% mixture of two

trivariate normal distributions with correlations 0.9 and −0.3 respectively.

The boxplots are obtained using a non-parametric bootstrap.
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If simplified PCCs are found to be inappropriate, the dependence on the values of the

variables that are conditioned on can be modeled for the parameters of bivariate copulas in

the PCC. When there is no a priori knowledge for how the dependence parameter should be

influenced, non-parametric methods as in Acar et al. (2012a) can be applied. While this is

fairly straightforward when conditioning on just one variable, it raises the question of how

interactions should be included when conditioning on multiple variables. For the elliptical and

Archimedean distributions which we studied in Sections 3 and 4, we observe the following:

For elliptical distributions, the Kendall’s τ of conditional distributions does not depend

on the values which are conditioned on. The conditional distribution however can depend

on these variables. Assuming zero means and correlations, the conditional distributions of

X1, . . . , Xk−1) given Xk = xk, . . . , Xd = xd will only depend on a =
∑d

i=k x
2
i . If for an

elliptical family the generator function gk(·) in dimension k is monotonically decreasing (as

for the multivariate Normal or Student’s t distribution, and generally if k ≥ 2, see Joe

1997, Section 4.9), this implies in particular that the conditional distribution only depends

on gk(x
′
k:dΣ

−1
k:dxk:d). For this reason, one might consider to make the dependence parameter

of conditional copulas depend on the likelihood of observations that are conditioned on, for

data where the distribution appears to be close to the elliptical family. However, since the

values of Kendall’s τ must not be affected - which are closely related to parameter values

for most bivariate parametric families - keeping the simplifying assumption will always be a

close approximation in these cases.

For an Archimedean copula with generator function ϕ, we have observed that when con-

ditioning on realizations Xk = xk, . . . , Xd = xd the conditional distribution will only depend

on a =
∑d

i=k ϕ
−1(xi) (see Equation (3.5)). In particular, this implies that it only depends

on ϕ(a), which is the cdf of Xk, . . . , Xd, evaluated at Xk = xk, . . . , Xd = xd. Thus, for data

exhibiting dependence behavior close to that of the Archimedean class, we recommend to

consider analyzing dependence of the conditional copulas on this joint probability.

While a mixture of different (simplified) copulas for different values of the conditioning

variables yields the general non-simplified case, other mixture type models can be more intu-

itive in certain applications. This includes models where the parameters of a simplified copula

are not constant over the whole dataset, but are varying over time in the context of financial

time series. Examples for this were studied by Patton (2006) and Bartram et al. (2007),

who consider models where the dependence parameter of the conditional copula depends on

previous realizations of the time series, or Almeida and Czado (2011), who consider depen-

dence of the parameter on an underlying AR(1) process. A discussion of how time-varying

parameters can affect dependence measures is given by Manner and Segers (2011). A mixture
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model of this kind, where simplified PCCs are mixed according to a latent Markov process,

is introduced in the next chapter and applied in Chapter 5.1. This model implies that the

copula of the multivariate time series at each point in time is given by a discrete mixture of

simplified PCC’s, which will usually be of non-simplified form as for the mixture of Normals.
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Chapter 4

Regime switching models

In this chapter, which is based on material from Stöber and Czado (2013), we will consider a

general regime switching model using R-vine copulas to describe the dependence structure.

Markov switching (MS), also called regime switching or hidden Markov models (Hamilton

1989), are time series models which allow for two or more distinct regimes. These regimes can

be thought of as different states of the business cycle, the monetary policy, the economy, or

more generally the world. Which regime is present at a particular point of time is governed

by an underlying hidden Markov process. While there is a huge range of univariate or low di-

mensional applications of Markov switching models (Pelletier 2006; Garcia and Tsafack 2011;

Chauvet and Hamilton 2006; Cerra and Saxena 2005; Hamilton 2005), their full potential for

the modeling of a multidimensional set of underlyings and indices as it is required e.g. in the

risk management of financial institutions has not yet been explored.

Here, we develop a model which can appropriately describe characteristics of financial

data such as asymmetric dependence and tail dependence (Longin and Solnik 2001; Ang and

Chen 2002). These are outside the world of the non tail-dependent Gaussian and symmetric

Student’s t distributions. In particular, we go beyond the Markov switching copula model of

Chollete et al. (2009) in that we use the full flexibility of R-vine models. This superior flexi-

bility will allow us to use truncation techniques (see Brechmann et al. (2012) and references

therein), leading to a parsimonious parametrization of the model.

The chapter is divided in two sections. In the first section, we consider a regime switching

model for the copula structure, assuming that we know the marginal distributions. Subse-

quently, we will consider a model where both the marginal distributions and the copula

depend on the latent state in the second part.

4.1 Regime switching copulas

We start by considering a Markov switching R-vine (MS-RV) copula model. In this section,

we will develop an approximative Expectation - Maximization (EM) type procedure in the

Maximum Likelihood (ML) framework which allows for fast parameter estimation and is

scalable to high dimensional applications. The algorithm is based on the sequential estima-

tion procedure developed by Aas et al. (2009), which has been shown to be asymptotically
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consistent by Hobæk Haff (2013). To address the issue of quantifying uncertainty, we further

consider parameter inference for a prespecified MS-RV model in a Bayesian setup. For this,

the algorithm of Min and Czado (2010), who consider Bayesian inference for a structural

subclass of R-vine copulas, is generalized and extended to incorporate inference about the

underlying Markov structure. In particular, we do also compute credible intervals for the

probability of being in a given regime at a given point of time. While most existing models

for time-varying dependence do not allow to quantify the uncertainty in the time variability

of parameters, our Bayesian estimation procedure enables us to do so. The applicability and

performance of our procedures for parameter estimation will be demonstrated in a simulation

study. An application to exchange rate data is considered in Section 5.

The remainder of this section is structured as follows: We start with a general introduc-

tion to MS copula models in Subsection 4.1.1. Subsection 4.1.2 illustrates the calculation of

the likelihood function in the presence of latent state variables and we consider parameter

inference in the frequentist and the Bayesian setup in Subsections 4.1.2.1 and 4.1.2.2, respec-

tively. The simulation study in Subsection 4.1.3 demonstrates that the estimation procedures

work for simulated data. Subsection 4.1.4 presents a heuristic to select appropriate R-vine

copula structures.

4.1.1 Markov switching copula models

We focus on multivariate statistical models based on general MS models introduced by

Hamilton (1989). Since for now we are interested only in the copula structure, we want a

model for the multivariate financial time series {Ut = (U1,t, . . . , Ud,t), t = 1, . . . , T}, where

{Ui,t, t = 1, . . . T} is i.i.d. uniform, using an MS approach. In this context, the dependency

among Ut depends on a hidden latent state variable St, which takes on only finitely many

values k = 1, . . . , p. These are called regimes and represent the different states of the econ-

omy. As is usual in the MS approach we assume that St, t = 1, . . . , T is a homogeneous

Markov chain (MC) in discrete time. For simplicity, we restrict to a first order MC, which is

characterized by its transition matrix P with elements Pk,k′ := P (St = k′|St−1 = k).

We use an R-vine copula to model the dependency of Ut in regime k (St = k). The

Markov switching R-vine (MS-RV) copula for ut is now fully characterized by specifying

conditional densities as follows:

c(ut|(V,B,θ)1,...,p, St) =

p∑
k=1

1{k}(St) · c(ut|(V,B,θ)k). (4.1)

The complete MS-RV copula model is thus given in terms of p R-vine copula specifications

and the transition matrix P which contains the parameters of the underlying Markov chain.
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For inference, we will always assume the R-vine structures Vk and corresponding sets of

copulas Bk, k = 1, . . . , p, to be given and thus suppress them in the following notation. The

MS R-vine copula is then described by its parameters

θ′ = (θ′cop,θ
′
MC) = ((θ′1, . . . ,θ

′
p),θ

′
MC),

where the subscript ”cop” stands for copula parameters and ”MC” for parameters needed for

the transition matrix P . While this model does not include switching margins, the switching

copula regimes induce serial dependence. Given previous realizations it will be more or less

likely that the hidden variable St assumes a specific state. The individual marginal time

series (Ui,t)t=1,...,T however are i.i.d. uniform for i = 1, . . . , d.

4.1.2 Inference for Markov switching models

The first challenge in developing inference methods for MS models is that we are faced

with unobserved latent variables. In order to derive an expression for the full likelihood

of u1:T = (u1, . . . ,uT ), we consider a decomposition of their joint density f(u1:T |θ) into

conditional densities:

f(u1:T |θ) = f(u1|θ) ·
T∏
t=2

f(ut|u1:(t−1),θ) =

[
p∑

k=1

f(u1|S1=k,θk)P (S1=k|θMC)

]

·
T∏
t=2

[
p∑

k=1

f(ut|St=k,θk) · P (St=k|u1:(t−1),θMC)

]
,

(4.2)

where f(ut|St = k,θk) is known from (4.1) for t = 1, . . . , T . The unconditional probabilities

P (S1 = k) are known from the stationary distribution of the MC, which we assume to exist.

To obtain the state prediction probabilities Ωt|t−1 ∈ Rp = Rp×1 with elements(
Ωt|t−1(θ)

)
k

:= P (St=k|u1:(t−1),θ) for k = 1, . . . , p

we can apply the filter of Hamilton (1989). Assuming Ωt−1|t−1 to be given, we calculate

Ωt|t−1(θ) = P ′ · Ωt−1|t−1(θ) and

Ωt|t(θ) =
Ωt|t−1(θ)� (f(ut|St = k,u1:(t−1),θk))k=1,...,p∑p
k=1

(
Ωt|t−1(θ)

)
k
� f(ut|St = k,u1:(t−1),θk)

,

and obtain all probabilities which are required to evaluate the density (4.2) recursively. The

operator � denotes componentwise multiplication of two vectors. Similarly, the probability(
Ωt|T (θ)

)
st

:= P (St = st|u1:T ,θ), to which we will refer as the ”smoothed” probability of

being in state st at time t, can be determined by applying the following backward iterations.(
Ωt|T (θ)

)
st

=

((
P ·

Ωt+1|T (θ)

Ωt+1|t(θ)

)
�Ωt|t(θ)

)
st

, (4.3)
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where also the division is to be understood componentwise.

Because of the latent state variables and the resulting dependence between parameters,

direct maximization of the likelihood for given (Vk,Bk), k = 1, . . . , p, is analytically not

possible and numerically difficult. In the following, we discuss a frequentist and a Bayesian

approach to make inference for this kind of model tractable.

4.1.2.1 EM algorithm for MS-RV models

Hamilton (1990) proposed to overcome the problems in maximum likelihood estimation for an

MS model by using an EM type (Dempster et al. 1977) algorithm. This algorithm iteratively

determines parameter estimates θl, l = 1, 2, . . . , which converge to the ML estimate for

l → ∞. To avoid technical difficulties when dealing with the stationary distribution of

the Markov chain, we will not determine the probabilities P (S1=k) from the stationary

distribution of the Markov chain here but include them as additional parameters of the model.

Therefore, the parameter vector θl is given by (θl)′ = ((θlcop)
′, (θlMC)′) where θlMC consists of

the initial state probabilities (P (S1 = k)l)k=1,...,p and the transition matrix P l with elements

P li,j = P (St = j|St−1 = i)l. This will make the inference problem computationally much

more tractable and has the additional merit of allowing for the possibility of a permanent

change in regimes, i.e. absorbing states of the Markov chain. Let us consider the expected

pseudo likelihood function Q(θl+1; u1:T ,θ
l) for θl+1, given observations u1:T and the current

parameter estimate θl, which is defined as

Q(θl+1; u1:T ,θ
l) :=

∫
S1:T

ln
(
f(u1:T ,S1:T |θl+1)

)
P (S1:T |u1:T ,θ

l)

∝
T∑
t=1

∫
S1:T

ln
(
f(ut|St,θl+1

cop )
)
· P (S1:T |u1:T ,θ

l)

+

∫
S1:T

[
T∑
t=2

ln
(
P (St|St−1,θ

l+1
MC)

)
+ ln(P (S1)l+1)

]
· P (S1:T |u1:T ,θ

l),

(4.4)

where
∫
S1:T

g(S1:T ) :=
∑p

s1=1 . . .
∑p

st=1 g(S1 = s1, . . . , ST = sT ) for an arbitrary function g

of S1:T . The algorithm iterates the following steps:

(i) Expectation: Obtain the smoothed probabilities Ωt|T (θl) (compare Equation 4.3) of

the latent states S1:T = (S1, . . . , ST ) given the current parameter vector θl.

(ii) Maximization: Maximize Q(θl+1; u1:T ,θ
l) with respect to θl+1.
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Using the Markov property of S1:T , Kim and Nelson (2006) show that the maximum of the

pseudo likelihood is attained at

P l+1
i,j =

∑T
t=1 P (St = j, St−1 = i|u1:T ,θ

l)∑T
t=1 P (St−1 = i|u1:T ,θ

l)
,

similarly P (S1=k)l+1 = P (S1 = k|u1:T ,θ
l), k = 1, . . . , p. In contrast to the model origi-

nally considered by Hamilton (1990), where all maximization steps could be performed an-

alytically, this is not possible for the maximization with respect to the copula parameters

θl+1
cop in our case. This means that, while θl+1

MC can be obtained directly, the maximization

of Q(θl+1; u1:T ,θ
l) with respect to θl+1

cop has to be performed using numerical optimization

methods. Since a d-dimensional R-vine copula specification, in which each pair copula has k

parameters, contains d(d− 1)/2 · k parameters, this is computationally still very challenging.

To circumvent this problem, we can exchange the joint maximization with respect to θl+1
cop

with the stepwise maximization procedure of Aas et al. (2009) which is modified to weight

each observation by P (St = st|u1:T ,θ
l).

We call this the stepwise EM-Algorithm. Since tree-wise estimation of copula parameters

is asymptotically consistent (Hobæk Haff 2013), this constitutes a close approximation to

the ”proper” EM-Algorithm. While there are theoretical results on the convergence of the

EM-Algorithm shown by Wu (1983), we loose these properties with our approximation. All

limit theorems however do rely on proper maximization at each step of the algorithm. This

is almost impossible to guarantee in our case where we are faced with high dimensional

optimization problems and have to rely on numerical techniques. While all existing models

for time-varying dependence structures in high dimensions suffer from the computational

burden for numerical estimation, we do only need to maximize the likelihoods of bivariate

copulas in this tree-wise procedure. This reduces computation time and avoids the curse of

dimensionality. The obtained estimate we denote by(
θ̂

EM
)′

=

((
θ̂

EM

cop

)′
=

((
θ̂

EM

1

)′
, . . . ,

(
θ̂

EM

p

)′)
,
(
θ̂

EM

MC

)′)
.

4.1.2.2 Gibbs sampling for the MS-RV model

Having derived an approximative ML procedure for our MS copula, we will now consider

Bayesian estimation methods, which will enable us to quantify the uncertainty in parameter

estimates. In particular, credible intervals (CIs) and posterior standard deviations are de-

termined naturally while the uncertainty in ML parameter estimates is very hard to assess

in this context. Building on ideas of Albert and Chib (1993), the Gibbs sampler which we

develop consists of updates for the copula parameters, the Markov chain parameters and the

67



CHAPTER 4. REGIME SWITCHING MODELS

latent state vector, respectively. Iterating through all three outlined update steps will yield

a sample

(
(θr,MCMC)′,Sr,MCMC

1:T

)
=
((((

θr,MCMC

1

)′
, . . . ,

(
θr,MCMC
p

)′)
,
(
θr,MCMC

MC

)′)
,Sr,MCMC

1:T

)
,

for r = 1, . . . , R, where R is the number of realizations.

Update of copula parameters In order to complete the model specification in a Bayesian

framework, we first have to specify prior distribution for each component of θcop. Following

Min and Czado (2010), we assume uniform priors for all copula parameters in the model. For

bivariate copula families where the parameter range is not compact, we restrict its support to

some finite interval to avoid numerical instabilities for very small or large parameter values.

If for all bivariate copulas there is a one-to-one correspondence between parameter values and

Kendall’s τ given in closed form, uniform priors for τ can be considered as an alternative.

Furthermore, we can use a uniform prior for the correlation matrix of the model if all bivariate

building blocks are Gaussian or Student’s t copulas, cf. Lewandowski et al. (2009). Since

the conditional distributions of the copula parameters given the remaining parameters are

not available we use a Metropolis-Hastings (MH) update here. There are several choices

for proposal distributions available. Min and Czado (2010) use a modification of standard

random walk proposals where the normal distribution is truncated to the parameter support,

while proposal variances are tuned to achieve suitable acceptance rates. This leads to poor

acceptance rates in some cases with strong dependencies and to high autocorrelations in

general. To overcome these problems, we consider a two point mixture of a random walk

proposal with an independent normal distribution at the mode of the likelihood function

for each parameter. The modes are approximated by the stepwise estimation procedure for

R-vines and the standard errors are obtained from the inverse Hessian. Both distributions

are assigned a weight of 0.5. Independence proposals centered around the mode have been

proposed by Gamerman and Lopes (2006) and have been applied in a context similar to ours

by Czado et al. (2011). While there are parameter constellations where pure random walk

proposals are more favorable than independence proposals and vice versa, simulation studies

showed that the chosen mixture distribution works well for all settings.

Update of Markov chain parameters For this, we will assume independent Dirichlet

distributions as prior distributions for the rows of the transition matrix P , i.e.

(Pk,k′)k′=1,...,p ∼ Dirichlet
(
(αk,k′)k′=1,...,p

)
,
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for k = 1, . . . , p. The conditional posterior distribution of the transition probabilities in P ,

given the other parameters, depends only on the latent state vector S1:T . Here, the likelihood

function

l(P |S1:T ) =

p∏
k=1

p∏
k′=1

p
nk,k′

k,k′ ,

where nk,k′ denotes the number of transitions from state k to state k′ in S1:T is multinomial.

Since the Dirichlet and the multinomial distribution are conjugate distributions (see Kotz

et al. (2000)), also the conditional posterior distributions are Dirichlet distributions with

parameters αposteriork,k′ = αk,k′ + nk,k′ . From these we can sample directly.

Update of the latent state vector We follow the approach by Kim and Nelson (1998)

to update S1:T jointly assuming independent non informative priors and decompose

P (S1:T |u1:T ,θcop,θMC) = P (S1:T |u1:T ) = P (ST |u1:T ) ·
T−1∏
i=1

P (St|St+1,u1:T ).

This allows to generate ST from P (ST |u1:T ) and St for t = T − 1, . . . , 1 from

P (St|u1:T , St+1) ∝ P (St+1|St)P (St|u1:t),

where P (St|u1:t) = Ωt|t(θ) can again be determined using the Hamilton filter. Note that in

order to obtain the convenient conjugate prior for the elements of the transition matrix in

the Gibbs update of the Markov chain parameters, the prior distribution for the initial value

S1 which is required for the Hamilton filter must be independent of of θcop, e.g. uniform.

This is similar to the frequentist setup where we included the initial probabilities P (S1=k) as

additional parameters to be estimated. Robustness studies however show that the influence

of this prior distribution on the joint posterior is negligible which is why most authors ignore

this (see Albert and Chib (1993) and Kim and Nelson (1998)). We will follow their suggestions

and do not discuss the choice of this prior distribution any further.

4.1.3 Simulation study

This section gives the results of a simulation study which has been performed in order to

demonstrate the ability of the developed Bayesian inference procedure to capture the true

model in simulated data. We consider two regimes and 5 parameter setups, see Table 4.1.

In all scenarios we set the Markov parameters to P (St = 1|St−1 = 1) = 0.95 and P (St =

2|St−1 = 2) = 0.9, the corresponding prior distributions are chosen to be uniform. For each

scenario, we simulate a time series with 800 four dimensional observations. Keeping the (true)
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R-vine structure and copula families we used for simulations, we obtain a posterior estimate

for the parameters as follows:

(i) Starting values for the EM algorithm: Fit the copula parameters for each regime to the

whole data set using the stepwise estimation procedure, and cluster the observations

according to their likelihood values. Re-fit to the 400 observations which have the

highest log likelihood.

(ii) Starting values for MCMC: Obtained using the stepwise EM algorithm.

(iii) Obtain 1000 independent MCMC samples from the posterior distribution of the param-

eters. A burn-in period is discarded and the chain is sub-sampled according to what

Kass et al. (1998) call ”effective sample size” (cf. Carlin and Louis (2009)).

Table 4.1: The two columns on the left define the models we consider in simulation scenarios

(1) - (5). The copulas in Regime 1 (Regime 2) are chosen to be Gumbel (Gaussian) copulas

and we provide the values of Kendall’s τ corresponding to the chosen copula parameters. The

empirical coverage probabilities on the righthand side are based on 120 data sets from each

scenario.

coverage probability

conditional Kendall’s τ 90% CI 95% CI

Gumbel D-Vine (Regime 1) Gauss C-Vine (Regime 2) sym. HPD sym. HPD

(1)

τ43|21 = 0.4 τ41|23 = 0.4

92% 92% 94% 94%τ42|1 = 0.6, τ32|1 = 0.6 τ42|3 = 0.6, τ31|2 = 0.6

τ41 = 0.8, τ31 = 0.8, τ21 = 0.8 τ43 = 0.8, τ32 = 0.8, τ21 = 0.8

(2)

τ43|21 = 0.4 τ41|23 = 0.1

89% 89% 92% 92%τ42|1 = 0.6, τ32|1 = 0.6 τ42|3 = 0.2, τ31|2 = 0.2

τ41 = 0.8, τ31 = 0.8, τ21 = 0.8 τ43 = 0.3, τ32 = 0.3, τ21 = 0.3

(3)

τ43|21 = 0.1 τ41|23 = 0.4

85% 84% 92% 93%τ42|1 = 0.2, τ32|1 = 0.2 τ42|3 = 0.6, τ31|2 = 0.6

τ41 = 0.3, τ31 = 0.3, τ21 = 0.3 τ43 = 0.8, τ32 = 0.8, τ21 = 0.8

(4)

τ43|21 = 0.1 τ41|23 = 0.1

75% 75% 82% 93%τ42|1 = 0.2, τ32|1 = 0.2 τ42|3 = 0.2, τ31|2 = 0.2

τ41 = 0.3, τ31 = 0.3, τ21 = 0.3 τ43 = 0.3, τ32 = 0.3, τ21 = 0.3

(5)

τ43|21 = 0.3 τ41|23 = 0.3

85% 85% 92.8% 93%τ42|1 = 0.5, τ32|1 = 0.3 τ42|3 = 0.5, τ31|2 = 0.3

τ41 = 0.7, τ31 = 0.5 τ21 = 0.3 τ43 = 0.7, τ32 = 0.5, τ21 = 0.3

For example, if we have 5000 observations after discarding the burn-in period, and esti-

mate an average effective sample size over the copula parameters of 1000, we take every 5th
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observation to obtain an approximately independent sample of 1000 observations.

From the obtained samples, we estimate 90% and 95% symmetric (sym.) and highest

posterior density (HPD) credible intervals (CIs) for the copula parameters and check whether

all true copula parameters lie within these intervals. The procedure was repeated 120 times

for each scenario with results reported in Table 4.1. Relative bias and mean squared error

(MSE) for two selected scenarios are given in Appendix B. For all parameter setups, except

Scenario 4, we observe about 90% (95%) frequentist coverage. Scenario 4 corresponds to low

dependence in both regimes, thus the regimes are less distinguishable. Therefore, with clearly

distinguishable regimes the outlined procedure is able to identify the true model.

4.1.4 R-vine copula model selection

In order to apply the previously discussed inference procedures, suitable R-vine copula models

for all regimes must be selected in a pre-analysis. This means, that we have to identify a tree

structure and subsequently select corresponding bivariate copulas.

If there is a natural order of the marginal variables as for example for the longitudinal

data considered in Smith et al. (2010), this information can be incorporated in the model

selection by choosing a corresponding tree structure. For a given structure, bivariate pair

copula families can be selected using goodness-of-fit tests, information criteria like the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC, see Section 1.3.2), or

exploratory data analysis using contour plots and lambda functions (see Schepsmeier (2010)

for a comparison). If the variables do not have a natural ordering, we need to apply heuristics

like the procedure developed by Dißmann et al. (2013).

For regime switching models, the situation is more challenging since we do not want

to determine one copula structure for the whole data set but we need to select an R-vine

copula for each regime. For data sets with a natural ordering of the marginal variables this

information can again be incorporated in the model selection. But if there is no such ordering,

an analogue of the Dissmann procedure will be required. If we have additional information

about the data which allows, for each regime, to identify a period of the data set where

this regime should be dominant, the R-vine copula models can be chosen by applying the

algorithm of Dißmann et al. (2013) to these subsets. This will be demonstrated for exchange

rates in Section 5 where we use a rolling window analysis to determine appropriate periods.

Oftentimes however, we will want to run an unsupervised algorithm which selects appro-

priate models automatically. For this, the model selection heuristics for R-vine copulas can

be combined with the EM-algorithm for regime switching models. Instead of maximizing the

pseudo likelihood function Q(θl+1; u1:T ,θ
l) with respect to the copula parameters, we will
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select a new copula model for each possible state, weighting the observations according to

the smoothed regime probabilities P (S1:T |u1:T ,θ
l) in the model selection. For a given regime

k with weight vector P (S1:T = k|u1:T ,θ
l) the model selection heuristic of Dißmann et al.

(2013) can be adapted as follows.

(i) For each pair of variables estimate the corresponding value of Kendall’s τ from the

copula data set. For weighted observations, this Kendall’s τ statistic can be estimated

using the algorithm of Pozzi et al. (2012), see Section 1.2.1.

(ii) Create a fully connected graph which consists of the marginal variables as nodes and

where an edge is added between every pair of variables.

(iii) Associate to each edge the absolute value of the corresponding (weighted) Kendall’s τ

statistic as edge weight.

(iv) Determine the maximum spanning tree (MST), i.e. find a tree which maximizes the

sum of edge weights using for example the algorithm of Prim (1957).

(v) For each edge in the resulting tree select a parametric bivariate copula from a catalogue

of bivariate copula families and estimate its parameters. A possible selection criterion

is AIC/BIC in which the observations are weighted according to P (S1:T = k|u1:T ,θ
l),

see Section 1.3.2. To achieve more parsimonious models, a bivariate independence test

as in Genest and Favre (2007) can be used to pre-test for independence.

(vi) Proceed similarly until all trees and corresponding copulas are selected.

The expectation and model selection step are then iterated until the change in the resulting

model likelihood in each step falls below a certain limit.

4.2 Regime switching copulas and marginal distributions

While the copula of a continuous multivariate distribution is independent of the marginal

distributions by definition, it is this independent treatment of marginal distributions and

the dependence structure which has attracted critics in the past (Mikosch 2006). Even more

so for Markov Switching models, switches in the marginal distribution might influence the

estimation of the dependence structure, and a two-step analysis might therefore be biased.

To address these issues, we will consider a model where both marginal time series and the

dependence structure are subject to changes in regime. While we will have to rely partially

on step-wise estimation procedures for reasons of computational tractability, we will allow
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for dependence between regime changes in different marginal time series and the copula and

estimate the transition probabilities jointly.

We will conduct a small simulation study comparing the results of a joint estimation to a

pure two-step procedure in which marginal Markov switching models are fitted first and the

copula is subsequently estimated from transformed residuals.

4.2.1 Model setup

While we have discussed a pure copula model with uniform marginal distributions in Section

4.1, both the marginal time series models and the copula will depend on the latent process

(St)t=1,...,T here. To keep the model tractable for inference, we choose a regime switching

Gaussian model for the margins. While this is a comparably simple model, it can still replicate

the important features found in empirical financial data such as skewness, excess kurtosis,

autocorrelation of returns and volatility clustering (Timmermann 2000). We will outline the

estimation procedure for the case of a pure Gaussian model without autoregressive (AR)

structure (an AR structure can be incorporated easily by using OLS regression on previous

observations instead of just estimating the means in each step, cf. Hamilton (1990)). The

dependence will again be described by an R-vine copula with regime switching tree structure,

families and parameters. Formally, the model we are considering is given as follows. For

i = 1, . . . , d, t = 1, . . . , T and St ∈ {1, . . . , p},

Xi,t = µi,St + σi,Stεi,t, εi,t
i.i.d∼ N(0, 1),

and hence the joint distribution function in state St is given by

F1:d(xt|St) = C

(
Φ

(
x1,t − µ1,St

σ1,St

)
, . . . ,Φ

(
xd,t − µd,St

σd,St

) ∣∣∣VSt ,BSt ,θSt) .
In general, this allows for p distinct parameter sets for each marginal distribution and p

distinct R-vine copulas. While we expect that each marginal time series and the dependence

structure can be described by a moderate number of regimes, we want to allow for regime

switches to occur at different times for different margins. We therefore consider pi regimes

Si,t for (Xi,t)t=1,...,T and pc copula dependence regimes Sc,t, and

S′t = (S1,t′ , . . . , S
′
d,t, S

′
c,t)

i.e. the state space of the joint model consists of all p = pc ·
∏d
i=1 pi combinations of marginal

and dependence regimes. The joint distribution function in state St becomes

F1:d(xt|St) = C
(
F1(x1,t|θ1,S1,t), . . . , Fd(xd,t

∣∣∣θd,Sd,t)|VSc,t ,BSc,t ,θc,Sc,t)
= C

(
Φ

(
x1,t − µ1,S1,t

σ1,S1,t

)
, . . . ,Φ

(
xd,t − µd,Sd,t

σd,Sd,t

)∣∣∣VSc,t ,BSc,t ,θc,Sc,t
)
.
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For given R-vine tree structures V1, . . . ,Vpc and pair copulas B1, . . . ,Bpc , the joint Markov

switching is parametrized by

θ′ = (θ′cop,θ
′
1, . . . ,θ

′
d,θ
′
MC) = ((θ′c,1, . . . ,θ

′
c,pc), (θ

′
1,1, . . . ,θ

′
1,p1), . . . , (θ′d,1, . . . ,θ

′
d,pd

),θ′MC),

where θcop are the copula parameters, θi the marginal parameters for time series (Xi,t)t=1,...,T

and θMC consists of the independent probabilities in the transition matrix. When assuming

that all marginal time series and the dependence structure switch regimes at the same time,

this model and the following algorithm can be modified setting Si,t = Sc,t = St, i = 1, . . . , d.

4.2.2 Inference and EM algorithm for the joint model

We will now discuss how the EM algorithm for the RV-MS model is adapted for the joint

Markov Switching model. We assume the R-vine tree structures and pair copulas to be fixed

and we estimate the model parameters θ. For observations x1:T , the expected pseudo log

likelihood function for the step l + 1 estimate θl+1 given θl and the data (Equation (4.4)) is

Q(θl+1; x1:T ,θ
l) :=

∫
S1:T

ln
(
f(x1:T ,S1:T |θl+1)

)
P (S1:T |x1:T ,θ

l)

∝
T∑
t=1

∫
S1:T

ln
(
f(xt|St,θl+1

cop ,θ1, . . . ,θd)
)
· P (S1:T |x1:T ,θ

l)

+

∫
S1:T

[
T∑
t=2

ln
(
P (St|St−1,θ

l+1
MC)

)
+ ln(P (S1)l+1)

]
· P (S1:T |x1:T ,θ

l)

=
T∑
t=1

p1∑
s1,t=1

· · ·
pd∑

sd,t=1

pc∑
sc,t=1

ln
(
c
(
F1(x1,t|θ1,s1,t), . . . , Fd(xd,t

∣∣θd,sd,t)∣∣∣θc,sc,t))P (St=st|x1:T ,θ
l)

+
T∑
t=2

p∑
st,st−1=1

ln(P l+1
st−1,st)P (St=st, St−1 =st−1|x1:T ,θ

l)

+

p∑
s1=1

ln(P (S1 =s1)l+1)P (S1 =s1|x1:T ,θ
l)

+
T∑
t=1

p1∑
s1,t=1

ln
(
f1(x1,t|θ1,s1,t)

)
P (S1,t = s1,t|x1:T ,θ

l) + . . .

+
T∑
t=1

pd∑
sd,t=1

ln
(
fd(xd,t|θd,sd,t)

)
P (Sd,t=sd,t|x1:T ,θ

l).

Clearly, the parameters θl+1
MC of the Markov chain (i.e. the transition matrix and the initial

state probabilities) can be estimated independently from the copula and marginal parameters
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and the maximum is again attained at

P l+1
i,j =

∑T
t=2 P (St = j, St−1 = i|u1:T ,θ

l)∑T
t=2 P (St−1 = i|u1:T ,θ

l)
,

and P (S1 = k)l+1 = P (S1 = k|u1:T ,θ
l), k=1,. . . ,b. The remaining step l+ 1 parameters can

be estimated either by maximizing Q(θl+1; u1:T ,θ
l) jointly with respect to θcop,θ1, . . . ,θd or

by using a weighted analogue of the inference functions for margins procedure and estimating

the marginal parameters in a first step before estimating the copula parameters. To keep the

model computationally tractable, we propose to proceed in this multi step fashion, since it

allows to compute θ̂
l+1

1 , . . . , θ̂
l+1

d in closed form (Kim and Nelson 2006),

µl+1
i,ki

=

∑T
t=1 xi,tP (Si,t = ki|x1:T ,θ

l)∑T
t=1 P (Si,t = ki|x1:T ,θ

l)
,

σl+1
i,ki

=

√√√√√∑T
t=1

(
xi,t − µl+1

i,ki

)2
P (Si,t = ki|x1:T ,θ

l)∑T
t=1 P (Si,t = ki|x1:T ,θ

l)
, i = 1, . . . , d, k = 1, . . . , pi.

Given the marginal parameters estimated in this first step, the estimation of θl+1
cop reduces to

the maximization problem considered in Section 4.1.2 and we will again employ the stepwise

estimation algorithm for R-vine copulas to keep numerical computations tractable.

4.2.3 Simulation study

This section presents the result of a simulation study, comparing the estimator defined by the

EM algorithm of Section 4.2.2 to the estimator defined by estimating the marginal Markov

switching models using EM end then applying the algorithm of Section 4.1.2.1 to the pseudo

observations

ui,t = F (xi,t|θi,xi,1:(t−1)),

i = 1, . . . , d. While we expect to observe dependence between the Markov chains (Si,t)t=1,...,T ,

(Sc,t)t=1,...,T in real world data, joint modeling of the transition matrix significantly increases

the number of parameters. To check whether the joint modeling approach improves parameter

inference, we consider a three dimensional example. In total, we explore 4 simulation setups.

In setups 1 and 2 the number of regimes is p1 = 3 and p2 = p3 = pcop = 2. Since the

transition probabilities from each state must sum to one, the number of parameters of the

transition matrix is
∑3

i=1 pi(pi−1)+pcop(pcop−1) = 12 (linear in the number of dimensions)

under independence. It increases to
(∏3

i=1 pi · pcop
)(∏3

i=1 pi · pcop − 1
)

= 552 (exponential

in the number of dimensions) when modeling the full transition matrix. In setups 3 and 4,
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all marginal time series and the copula will share a common state variable, i.e. the number

of regimes is p = 2.

The model parameters of our 4 simulation setups are defined in Table 4.2. Since the choice

of different copula families should not influence the performance of the considered estimation

procedures, we decide to conduct the simulations in a Gaussian setup. Other copula families

could easily be incorporated.

To induce dependence between the Markov chains in setups 1 and 2, we build the joint

transition matrix which we consider in the simulation setup by sequential conditioning. Here,

Pcop =

0.9 0.1

0.1 0.9

 , PS1
3,n =

0.9 0.1

0.1 0.9

 , PS2
3,n =

0.95 0.05

0.05 0.95

 , P3,s =

0.2 0.8

0.8 0.2

 ,

PS1
2,n =

0.9 0.1

0.1 0.9

 , PS2
2,n =

0.95 0.05

0.05 0.95

 , P2,s =

0.2 0.8

0.8 0.2

 ,

P1,n =


0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9

 , P1,s =


0.2 0.4 0.4

0.4 0.2 0.4

0.4 0.4 0.2

 ,

Table 4.2: Model parameters in the simulation setup. N indicates the use of a

bivariate Normal copula, the copula parameters are given in terms of Kendall’s

τ . Here, for example (c13)1 refers to the 1, 3 copula in regime 1, while (c13)2 is

the copula in regime 2.

µ1 µ2 µ3 σ1 σ2 σ3

m
ar

gi
n

s

S
et

u
p

1
,2 X1 0 0 0 0.1 0.2 0.4

X2 0.1 0.2 0.1 0.15

X3 0 0 0.1 0.2

m
a
rg

in
s

S
et

u
p

3,
4 X1 0 0 0.1 0.4

X2 0.1 0.2 0.1 0.15

X3 0 0 0.1 0.2

(c23|1)1 (c13)1 (c12)1 (c23|1)2 (c13)2 (c12)2

co
p

u
la

s Setup 1,3 (N,0.41) (N,0.41) (N,0.41) (N,0.06) (N,0.06) (N,0.06)

Setup 2,4 (N,0.41) (N,0.41) (N,0.41) (N,0.19) (N,0.19) (N,0.41)
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and the joint model is defined as follows:

P (Scop,t+1 = j|Scop,t = i) = (Pcop)i,j ,

P (S3,t+1 = j|S3,t = i, Scop,t+1 = Scop,t) =
(
P
S1(S2)
3,n

)
i,j
,

P (S2,t+1 = j|S2,t = i, S3,t+1 = S3,t) =
(
P
S1(S2)
2,n

)
i,j
,

P (S1,t+1 = j|S1,t = i, S2,t+1 = S2,t) = (P1,n)i,j ,

P (S3,t+1 = j|S3,t = i, Scop,t+1 6= Scop,t) = (P3,s)i,j ,

P (S2,t+1 = j|S2,t = i, S3,t+1 6= S3,t) = (P2,s)i,j ,

P (S1,t+1 = j|S1,t = i, S2,t+1 6= S2,t) = (P1,s)i,j ,

where matrices with superscript S1 (S2) correspond to simulation setup 1 (setup 2). This

means, that if the dependence regime does not change (Scop,t+1 = Scop,t), the probability of

observing a regime change for the marginal distribution of X3 is 0.1 (Matrix PS1
3,n) for setup 1

and 0.05 (Matrix PS2
3,n) for setup 2. If the dependence regime changes (Scop,t+1 6= Scop,t), the

probability of observing a regime change for the marginal distribution of X3 is 0.8 (Matrix

P3,s. Similarly, the transition probability for the marginal regime of X2 (X1) depends on

whether we observe a change for S3 (S2).

In setup 3, the transition matrix for the shared state variable is the same as PS1
3,n, while

PS2
3,n is used for setup 4.

For all setups, the simulation was run 100 times for a typical data size of T = 1000. We

keep the true number of regimes and R-vine structures with copula families which we have

used for the simulations. Starting values for the EM algorithms are obtained by fitting a

constant model for the whole data set first. Observations are then clustered according to

their likelihood, and the model is re-fitted to the observations in the upper-half (for two

regimes) / upper-third (for three regimes) to determine starting values for the first regime.

These data points are then removed and we proceed similarly until starting values for all

regimes are determined.

In setups 1 and 2 we explore the two-step approach and estimation using the joint EM

algorithm where we estimate the full transition matrix. In setups 3 and 4, the joint EM

algorithm is restricted to enforce S1,t = S2,t = S3,t = Sc,t. The observed bias and root mean

squared error (RMSE) for the model parameters are reported in Table 4.3 and Table 4.5 for

setups 1,2 and setups 3,4, respectively.

As the parameter estimates for setups 1 and 2 reveal, the observed bias and RMSE of

the joint estimation procedure are close to those of the two-step estimation approach. Also

the correct classification rate (Table 4.4), which is given by the number of observations
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Table 4.3: Observed bias and RMSE (in brackets) for the model parameters in setups 1 and 2

of the simulation study.

two-step

µ1 · 102 µ2 · 102 µ3 · 102 σ1 · 102 σ2 · 102 σ3 · 102

m
a
rg

in
s

S
et

u
p

1 X1 −0.5 (2.4) 0.3 (2.0) 0.1 (2.7) −2.3 (3.4) −3.4 (5.1) −1.3 (3.3)

X2 −0.3 (1.0) 0.6 (2.6) −0.3 (0.9) −0.2 (0.8)

X3 −0.1 (0.9) 0.0 (0.8) −0.1 (1.1) 0.1 (1.1)

m
a
rg

in
s

S
et

u
p

2 X1 0.1 (2.1) 0.1 (1.8) 0.2 (2.4) −1.8 (2.7) −2.7 (4.5) −0.5 (3.5)

X2 −0.1 (0.9) 0.3 (1.6) −0.1 (0.7) −0.1 (0.7)

X3 0.0 (0.7) 0.0 (0.9) −0.0 (0.7) 0.1 (0.8)

(τ23|1)1 · 102 (τ13)1 · 102 (τ12)1 · 102 (τ23|1)2 · 102 (τ13)2 · 102 (τ12)2 · 102

co
p

u
la

s Setup 1 −4.5 (5.7) −3.6 (5.1) −5.8 (6.9) −0.7 (4.7) −0.4 (4.1) −0.6 (3.7)

Setup 2 −2.4 (6.3) −1.2 (5.6) −3.2 (6.4) −1.3 (4.7) −2.5 (6.2) −6.6 (7.7)

joint

µ1 · 102 µ2 · 102 µ3 · 102 σ1 · 102 σ2 · 102 σ3 · 102

m
ar

gi
n

s

S
et

u
p

1 X1 −0.5 (2.8) 0.3 (3.0) 0.2 (2.9) −2.5 (3.5) −3.0 (4.7) 0.2 (3.0)

X2 −0.6 (1.0) 2.5 (3.4) −0.2 (0.7) −0.7 (1.3)

X3 −0.0 (1.0) 0.0 (1.1) −0.3 (1.1) 1.0 (1.4)

m
ar

gi
n

s

S
et

u
p

2 X1 0.2 (2.3) 0.3 (2.6) 0.3 (2.6) −1.8 (2.7) −2.1 (4.3) 0.5 (3.5)

X2 −0.2 (0.7) 1.1 (2.0) −0.2 (0.6) −0.3 (0.9)

X3 0.0 (0.7) 0.1 (1.0) −0.2 (0.7) 0.8 (1.2)

(τ23|1)1 · 102 (τ13)1 · 102 (τ12)1 · 102 (τ23|1)2 · 102 (τ13)2 · 102 (τ12)2 · 102

co
p

u
la

s Setup 1 4.8 (7.4) 4.8 (6.9) 5.1 (7.5) −2.3 (6.7) −4.3 (7.6) −1.7 (6.0)

Setup 2 3.9 (7.9) 4.0 (6.5) 2.7 (6.5) −0.2 (5.5) −3.2 (6.7) 1.6 (5.5)

Table 4.4: Average correct classification rate in setups 1 and 2 of the simulation

study in [%], the standard deviation is given in brackets.

two-step joint

S1 S2 S3 Scop S1 S2 S3 Scop

Setup 1 56 (7) 71 (3) 75 (4) 78 (3) 56 (6) 73 (3) 72 (4) 75 (4)

Setup 2 62 (9) 80 (3) 83 (3) 72 (9) 65 (8) 84 (3) 82 (3) 72 (6)
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for which the estimation procedure assigns the highest probability to the true regime they

were simulated from, is similar. It is influenced mainly by the number of regimes (higher

classification rate in the presence of two regimes than for three regimes) and the persistence

of the regimes (higher persistence in simulation setup 2).

In setups 3 and 4, however, where the marginal time series and the copula all share a

common state variable, the situation is different. Here, in particular the bias and RMSE of

copula parameter estimates is reduced for the joint estimation algorithm (Table 4.5). Also

the classification rate improves to 97% and 98% in setups 3 and 4, respectively (Table 4.6).

Comparing the results for setup 3 and setup 4, we see that the higher persistence of regimes

in setup 4 again improves our estimators.

Therefore, when being interested in estimating the parameters corresponding to different

regimes and correctly classifying observations, the analysis can be conducted in the simpler

two-step setup when the dependence between the different state variables is not too strong

instead of estimating the high number of parameters in the full transition matrix. When we

expect perfect dependence between the state variables, however, using the restricted joint

EM algorithm for one common state variable greatly improves the estimation results.
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Table 4.5: Observed bias and RMSE (in brackets) for the model parameters in setups 3 and 4

of the simulation study.

two-step

µ1 · 102 µ2 · 102 σ1 · 102 σ2 · 102

m
a
rg

in
s

S
et

u
p

3 X1 0.0 (0.5) 0.2 (1.9) 0.0 (0.5) 0.0 (1.6)

X2 −0.2 (0.9) 0.1 (1.4) −0.2 (0.9) −0.1 (1.4)

X3 0.0 (0.6) 0.0 (1.1) 0.0 (0.6) −0.1 (1.1)

m
a
rg

in
s

S
et

u
p

4 X1 0.0 (0.5) 0.1 (1.9) 0.1 (0.4) 0.1 (1.3)

X2 −0.1 (0.7) 0.2 (1.0) −0.1 (0.4) −0.1 (0.6)

X3 −0.1 (0.6) 0.1 (1.0) −0.1 (0.5) −0.2 (0.9)

(τ23|1)1 · 102 (τ13)1 · 102 (τ12)1 · 102 (τ23|1)2 · 102 (τ13)2 · 102 (τ12)2 · 102

co
p

u
la

s Setup 3 −2.8 (4.7) 16.8 (17.0) 8.3 (8.8) −1.0 (2.7) −3.6 (4.5) −2.9 (3.9)

Setup 4 −0.5 (3.6) 12.0 (12.5) 5.4 (6.3) −2.6 (4.0) −6.6 (7.6) −8.5 (9.2)

joint

µ1 · 102 µ2 · 102 σ1 · 102 σ2 · 102

m
ar

gi
n

s

S
et

u
p

3 X1 0.0 (0.4) 0.2 (1.9) 0.1 (0.4) 0.0 (1.4)

X2 0.0 (0.5) 0.1 (0.8) 0.0 (0.3) 0.0 (0.5)

X3 0.0 (0.4) −0.1 (1.1) 0.0 (0.3) 0.1 (0.6)

m
ar

gi
n

s

S
et

u
p

4 X1 0.0 (0.4) 0.1 (1.9) 0.1 (0.4) 0.1 (1.3)

X2 0.0 (0.5) 0.1 (0.7) 0.0 (0.3) 0.0 (0.5)

X3 0.0 (0.5) 0.1 (1.0) 0.0 (0.3) 0.0 (0.7)

(τ23|1)1 · 102 (τ13)1 · 102 (τ12)1 · 102 (τ23|1)2 · 102 (τ13)2 · 102 (τ12)2 · 102

co
p

u
la

s Setup 3 0.1 (2.6) 0.5 (2.5) 0.4 (2.6) 0.4 (3.0) 0.4 (3.3) −0.1 (2.9)

Setup 4 0.1 (2.6) 0.4 (2.5) 0.2 (2.8) 0.4 (2.8) 0.4 (3.2) 0.1 (2.3)

Table 4.6: Average correct classification rate in setups

3 and 4 of the simulation study in [%], the standard

deviation is given in brackets.

two-step joint

S1 S2 S3 Scop S

Setup 3 91 (2) 80 (3) 80 (3) 85 (2) 97 (1)

Setup 4 95 (1) 87 (3) 87 (3) 84 (3) 98 (1)
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Chapter 5

Application 1: Multivariate regime

switching model of US exchange rates

In this section, we will apply the MS model of Section 4. The section is based on Stöber and

Czado (2013). Arguably, misperceptions about extremal dependencies in credit portfolios or

between financial assets during economic downturns and market stress have been an impor-

tant cause of the recent financial crisis. In the reverberations of the 2007/2008 banking crisis,

regulating entities have turned their attention towards the fact that financial time series ex-

hibit different behavior under market stress. This has led to new requirements for financial

institutions addressing this issue. For European financial institutions, the European Banking

Authority (EBA) has introduced the Stressed Value at Risk (SVaR) in addition to the stan-

dard VaR measure (European Banking Authority 2012). Here, the underlying distributions,

which are assumed to calculate VaR, have to be calibrated using a period of significant stress

for the banks portfolio to appropriately reflect different behavior of time series during these

times.

In the literature on financial time series, different behavior during times of market stress

has long been recognized (e.g. in the seminal paper of Engle (1982) which shows that vari-

ances are not constant over time). MS models are time series models in which some model

parameters are state dependent. These different states of the Markov model fit nicely into

the regulatory framework requiring stressed and non-stressed market conditions to be incor-

porated in risk management. While SVaR models are often calibrated using an “intuitive”

stress period in the years 2007-2009, Markov models allow to automatically detect theses

stress periods.

In this section, we will present an extensive investigation of MS models for the dependence

structure in US exchange rates. We illustrate how suitable copula structures to describe

“normal” and “crisis” periods can be chosen based on intuition and prior knowledge of the

data and illustrate how dependencies tend to change during times of market stress. Using

DIC as a Bayesian criterion of model fit, we will demonstrate that the MS models we develop

provide a more accurate description of the dependence structure than a constant copula

model. Since practitioners will usually not be interested in the dependence structure of
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financial data alone, we will subsequently use MS models also for marginal time series and

illustrate briefly that marginal regimes tend to switch at the same time as dependence regimes

for US exchange rates. For the modeling of SVaR, we will be interested in determining a single

crisis period to estimate marginal distributions and the dependence structure. Therefore, we

will finally impose this restriction of having a single underlying regime variable. The results

suggest that using a crisis period from mid 2008 to mid 2009 is appropriate for US exchange

rates.

5.1 Markov Switching US exchange rate dependence

We start our application of MS models by focussing on modeling the dependence structure

of multivariate data. Hence, we apply a two step estimation approach as suggested by

Joe and Xu (1996). In the first step, appropriate parametric models for the marginal time

series are fitted separately and used to transform the standardized residuals to approximately

uniform margins. To this transformed data, we apply the copula model in the second step.

Before Bayesian or frequentist parameter inference for the MS-RV model can be conducted,

appropriate R-vine structures and sets of bivariate copulas for each regime need to be selected

in a preanalysis. To do so, we apply the heuristic model selection techniques as outlined in

Dißmann et al. (2013) and Brechmann et al. (2012) which select an R-vine tree structure

sequentially to capture the most important dependencies on the first trees.

Since we will be interested in detecting a stressed and a normal period, we assume the

presence of two regimes for models we consider here. Unless mentioned otherwise, the copula

families we will consider are the standard Gaussian (N) copula and the tail-dependent Gumbel

(G) copula. Since the Gumbel copula is not invariant with respect to rotations, we consider

its standard form and rotations by 90◦ (G90), 180◦ (survival Gumbel, SG) and 270◦ (G270),

respectively. For all models studied, we run the MCMC for 20000 iterations discarding

the first 1000 as burn-in, and keep every fifth observation to reduce autocorrelations. For

estimating quantiles of the posterior distribution, we further thin the output according to

what Kass et al. (1998) call ”effective sample size” (cf. Carlin and Louis (2009)). After this,

we end up with ca. 1000 approximately i.i.d. samples.

The section is structured as follows: Subsection 5.1.1 introduces the exchange rate data

we analyze, and an initial MS-RV model in which only the copula parameters are switching

is fitted in Subsection 5.1.2. To gain additional information about possible regime switches

also in the copula families we conduct a rolling window analysis in Subsection 5.1.2.1. Sub-

sequently, R-vine copula structures for the “crisis” regime are selected in Subsection 5.1.3.
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Subsection 5.1.4 presents findings of our analysis, and the in-sample fit of all analyzed MS-RV

models is compared in Subsection 5.1.5.

5.1.1 Data description

The data set consists of 9 exchange rates against the US dollar (USD), namely the Euro

(EUR), British pound (GBP), Canadian dollar (CAD), Australian dollar (AUD), Brazilian

real (BRL), Japanese yen (JPY), Chinese yuan (CNY), Swiss franc (CHF) and Indian rupee

(INR). The observed time period is from July 22, 2005 to July 17, 2009, resulting in 1007

daily observations and covering the default of Lehman Brothers and the 2007/2008 financial

crisis. The modeling of the one dimensional margins with appropriate ARMA-GARCH mod-

els and the transformation to copula data has been performed by Czado et al. (2012). The

distributions which have been chosen for the innovations of each time series and QQ plots

and the results of diagnostic Ljung-Box tests on the residuals are available in Schepsmeier

(2010, p. 91ff.). In total, we consider 6 models for the dependence structure of this data which

will be defined as we proceed, their defining tree structures and the allowed copula families

are listed in Table 5.1.

Table 5.1: R-vine models considered for the exchange rate data with tree structures V1, V2,

V3, copula families and parameters given in the appendix.

Defined in Regime 1 Regime 2 Copulas Copulas

Model Section (no crisis) (crisis) regime 1 regime 2 Parameters

(1) 5.1.2 V11 = V1 V12 = V1 mixed = mixed Table D.1

(2a)

5.1.3

V21 = V1 V22 = V2 N SG
Table D.2

(2a?) V21 = V1 V22 = V2 N SG, N
&

(2b) V21 = V1 V22 = V2 N G

(2c) V21 = V1 V22 = V2 N Student’s t
Table D.3

(3) 5.1.3 V31 = V1 V32 = V3 mixed 6= mixed Table D.5

5.1.2 R-Vine copula with switching parameters

As a first model, we consider a common R-vine copula structure for the two regimes but

with different parameters. To do so, we fit an R-vine with corresponding bivariate copulas

to the data using the procedure of Dißmann et al. (2013). Since the estimated pair-copula

parameters corresponding to higher trees indicate conditional independencies, we truncate
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the R-vine copula after the second tree, i.e. we associate all edges on higher trees with

independence copulas. The R-vine copula structure V1 resulting from this procedure is given

in the appendix. We call this model Model (1).

Figure 5.1 shows the probability P (St = 2|ũT , θ̂
EM

) that the hidden state variable St

indicates the presence of regime 2 plotted against time. While regime 1 is predominant

until around February 2007, regime 2 becomes more important during the later times of

the financial crisis. Analyzing the parameter estimates θ̂
EM

1 and θ̂
EM

2 (Table D.1 in the

appendix) for the two regimes, we find that regime 1 has stronger dependencies on the first

tree, whereas regime 2 has stronger dependencies on the second tree. In particular, regime

2 exhibits stronger conditional negative dependencies reflected by rotated Gumbel copulas,

thus creating a more asymmetric dependence structure.

Figure 5.1: Estimated probabilities of being in state 2 for Model (1). (solid: EM estimates,

dotted: Bayesian estimates) The estimates where additionally smoothed using an MA(7)

filter to make the differences more visible.
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In order to apply our Bayesian estimation procedure, we need to distinguish both regimes

to avoid model identification problems. For a detailed consideration of this issue we refer to

Frühwirth-Schnatter (2001). Using our observations with regard to the strength of dependence

in the two regimes identified by the EM-Algorithm, we define regime 1 to correspond to weaker

conditional dependence on the second tree and regime 2 to correspond to stronger dependence

on the second tree, compared by the sum of absolute values of Kendall’s τ corresponding to

parameters θr,MCMC

1 and θr,MCMC

2 . The resulting posterior probability estimates for the state

variable, i.e.

P̂ (St = 1|ũT ) :=
1

R

R∑
r=1

Sr,MCMC

t ,
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for R independent MCMC samples, are plotted as dotted points in Figure 5.1. These Bayesian

estimates follow those obtained from the EM algorithm closely while showing a slightly higher

degree of variability.

5.1.2.1 Rolling window analysis

Having identified parameter switches in an R-vine copula model for our data set, we will

now try to identify switches in the overall dependence structure. Since there is empirical

evidence that dependence structures can change in times of crisis (cf. Longin and Solnik

(1995), Ang and Bekaert (2002) or Garcia and Tsafack (2011)) and since tail dependencies

become more important in times of extremal returns, we want to select two different R-vine

copula structures. To do so, we start with a rolling window analysis, selecting and fitting

R-vine models to a rolling window of 100 data points. To reduce model complexity, we decide

to work again with truncated R-vines, resulting in a sufficiently flexible and parsimonious

model. The copulas on the first tree were chosen to be either all Gaussian, all Gumbel or

all survival Gumbel. The copulas on the second tree were set to Gaussian and the R-vines

were truncated after this second tree. The resulting rolling log likelihoods are given in the

left panel of Figure 5.2. For an AIC (BIC) comparison this is sufficient since the number of

parameters remains the same in all models considered.

We see that, while the range of overall likelihood estimates is similar, the Gaussian model

tends to give the best fit, i.e. highest log likelihood, (left panel of Figure 5.2) over the whole

data set. However, the survival Gumbel model starts to outperform the Gaussian model

towards the end of the observation period (right panel of Figure 5.2). Furthermore, the

survival Gumbel model, in which the exchange rates taken into consideration are assumed

to be lower tail dependent, tends to outperform the model with standard Gumbel copulas,

corresponding to upper tail dependence. This is in accordance with the observation that the

financial crisis during the observation period originated in the dollar area, quickly spreading to

the world economy but with different severity e.g. to other developed countries and developing

countries. Because of this, cash flows out of the dollar area, resulting in higher Foreign

Currency/US dollar exchange rates, tend to be less extremely correlated than cash flows into

the dollar area to settle liabilities denominating in US dollar, which results in more lower

than upper tail dependence.
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5.1.3 Identifying crisis regimes

Based on the observations from the rolling window analysis we will now define Models (2a)

- (2c) and (3). For Models (2a) - (2c) we incorporate our knowledge about the evolution of

the financial crisis into the model selection. They will be used to investigate the influence

of different tail dependence structures in the modeling of the exchange rate data. Since

restricting to a particular kind of tail dependence will make the MS-RV model look less

favorable as compared to classical models in terms of goodness of fit, we do further consider

Model (3). Here, we select tree structures in a semi-automatic way based on the rolling

window analysis and allow for all bivariate copula families, i.e. the Gaussian copula and all

rotations of the Gumbel copula.

For Models (2a) - (2c), we decide to select R-vine copulas as follows: For regime 1, the

tree structure (V1) is again fitted to the whole data set, but we use only Gaussian copulas

as bivariate building blocks. Since parameter estimates on the higher trees indicate weak

dependence, we truncate the R-vine copula after the second tree. To determine a second

structure (V2) we apply the procedure of Dißmann et al. 2013 to the time frame from July

10, 2008 to December 3, 2008 (first 100 days of the ”crisis” period indicated in Figure 5.2).

Doing so, we capture many high-impact events of the financial crisis. For the copulas on

Figure 5.2: Left-panel: log likelihood values resulting from fitting R-vines with normal

(solid), survival Gumbel (dashed) and Gumbel (dotted) copulas. Right panel: difference

between the values for the normal and survival Gumbel model, we indicate the period to

which the structure for Model (3) is fitted. The dates are the starting observations of the

rolling windows.
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the first tree associated to V2 we consider survival Gumbel copulas (strong dependence for

negative returns, Model (2a)), Gumbel copulas to capture dependencies in the upper tail

(Model (2b)) and Student’s t copulas to cover symmetric tail dependencies (Model (2c)).

The copulas corresponding to edges on the second tree are again chosen to be Gaussian

and we truncate after Tree 2. While the survival Gumbel model is preferred in the rolling

window analysis, we include Models (2b) and (2c) to investigate the impact of different tail

dependencies. The resulting smoothed probabilities for being in the non-Gaussian regime

using Models (2a) - (2c) are given in Figure 5.3.

For Model (3), the R-vine tree structure V3 together with the corresponding copulas for

the ”crisis” regime is selected by applying the stepwise selection procedure of Dißmann et al.

(2013) to the data points where the rotated Gumbel copula is outperforming the normal

copula in the rolling window analysis (July 10, 2008 to July 17, 2009, annotated with ”crisis”

in Figure 5.2). The R-vine structure for the ”normal” regime with corresponding copulas

as identified from the remaining data points (July 22, 2005 to July 9, 2008) coincides with

the structure for the ”normal” regime in Models (2a) - (2c), V1. While the pair copulas

corresponding to this tree structure were all chosen to be Gaussian before, we also allow for

all rotations of the Gumbel family here to make use of the full flexibility the MS-RV model

provides.

We employ the EM procedure for an initial fit of MS-RV models with the selected regimes.

Subsequently, a Bayesian analysis using the Gibbs sampler and prior assumptions of Section

4.1.2.2 is performed.

5.1.4 Empirical findings

While the overall strength of dependence modeled in the two regimes (judging by the fitted

values of Kendall’s τ , Appendix D.1) is similar for all models, the results for Model (2c)

with Student’s t copulas are close to the results of Model (1), whereas the other two differ

significantly. This was expected, since the model with t-copulas is close to a Gaussian copula

model with regime switching parameters. Analyzing the estimated Kendall’s τs further,

we find that in Model (2c) the τ between the JPY-USD and the INR-USD exchange rate

indicates negative dependence. Since the Gumbel and survival Gumbel family model positive

dependence, this cannot be captured in Model (2a) or (2b), respectively. Replacing the copula

for this bivariate margin by a Gauss copula (Model (2a?)), so that it captures the negative

dependence, does however not significantly change the posterior estimates of the hidden state

variable. This means that the observed difference in the behavior of Models (2a) and (2b)

as compared to Model (2c) cannot be explained by the lack of Gumbel and Gumbel survival
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copulas to allow for negative dependence. Instead, these models tend to be preferred during

specific times of high impact events of the financial crisis, where the bivariate dependence

structures are closer to a Gumbel copula, as indicated in the top panel of Figure 5.3 where

important events are annotated.

The probability of being in a given state at a given time is a function of the observations

from the multivariate time series ũT and the model parameters (θcop, a, b), i.e.

pt,i = P (St = i|ũT , a, b,θcop),

is determined by (4.3) for given (θcop, a, b). This means that we also obtain the posterior

distribution of the state probability pt,i, from which we can compute CIs (see Figure 5.3).

The obtained pointwise 90% credible intervals (CIs) are quite narrow for the models (2a) -

(2c) which shows that the time variations which are detected are in fact characteristics of the

data.

Figure 5.4 shows several marginal posterior density estimates for the copula parameters

in the crisis regime of Model (2a?). As we can see, the parameter value of τINR−JPY = 0

which would correspond to independence is nowhere near a 90 or 95% CI, the dependence

is significantly negative. For the copula between Brazil-US and China-US in contrast, the

parameter values in our posterior sample are all close to 0, which means that the two time

series are only weekly dependent or maybe independent.

5.1.5 Model comparison

Having discussed the stylized features of the investigated RV-MS models, we want to compare

them in terms of their fit. First, we rely on in-sample methods, and use our Bayesian Gibbs

sampling procedure to calculate the deviance information criterion (DIC) which has been

proposed by Spiegelhalter et al. (2002). Table 5.2 shows DIC values for all models under

investigation. For comparison, we also include an R-vine model without regime switches,

but where the vine tree structure has not been truncated after tree 2. The first two trees

of this structure correspond to Structure V1, it has been selected using Dißmann et al. 2013

for the full data set. To illustrate the performance of the unsupervised selection heuristic

introduced in Section 4.1.4, which is based on the EM algorithm and also on the algorithm

of , as compared to the manually selected regimes of this section, we further include Model

(4) which has been selected by this procedure. We refer to the selected “normal” and “crisis”

structures as V4n and V4c, respectively. The first and second trees of these structures together

with the chosen copula families and Kendall’s τs corresponding to posterior mean estimates

of the copula parameters are given in Appendix D.1.
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Figure 5.3: Smoothed probabilities that the hidden state variable indicates the non-

Gaussian regime. Models are from top to bottom: (2a), (2b), (2c). The solid lines correspond

to Bayesian MCMC estimates, the dotted lines to 90% CIs. High impact crisis events are

annotated in the upmost graph.
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Figure 5.4: Estimated posterior densities of Kendall’s τ in the crisis regime of Model (2a?)

with 90% CIs. The plotted densities correspond to the parameters of the (unconditional)

copulas associated to Tree 1 of the vine V2.
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Table 5.2: DIC values for the different (MS) R-vine models that have been considered.

Lower values indicate a better fit of the model to the data.

Model (1) (2a) (2a?) (2b) (2c) (3) (4) no MS

DIC -4398 -4280 -4312 -4199 -4346 -4430 -4666 -4146

Although the full R-vine model has 36 parameters and the MS-RV models where we use

truncated vines and one parametric pair copulas only have 32, even the worst MS-RV copula

outperforms the model without Markov structure, which clearly supports the use of models

with time-varying dependence. The DIC values further show that in terms of in-sample

fit, the model with standard Gumbel copulas in the crisis regime is outperformed by the

other models, which was to be expected from the rolling window analysis. Since the copulas

in Model (1) were chosen maximizing pairwise AIC, it outperforms the models where we

restricted the choice of copulas. The best-performing models however are Model (3), where

the copula families were chosen using pairwise AIC but the R-vine structure differs between

the regimes, and Model (4) which was selected by the heuristic of Section 4.1.4. While a

higher DIC value for Model (4) was expected since it contains less independence copulas,

the good performance of Model (3) shows that RV-MS models with switching vine structure

and parameters are more suitable for this kind of data than models where only the copula

parameters are switching.

It has been recognized in the past, that while MS models usually provide very good in-
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sample fit and help to describe and understand time variation patterns in data, they are

often not very good for forecasting (Engel 1994). However, for forecasting in a crisis period,

we would expect the MS model to outperform a constant model, since it explicitly allows

for structural breaks to occur and does not average over the whole past. To provide also a

out-of-sample measure of model fit, we further compared the MS copula model to a constant

R-vine model using one day ahead log predictive scores (see Section 1.3.1) for the period from

September 19, 2008 to February 17, 2009. This period consists of 100 business days, and we

compute the log predictive scores as follows: To select a suitable R-vine tree structure and

associated pair-copulas, we apply the model selection heuristic presented in Section 4.1.4 to

the period of July 22, 2005 to September 18, 2008. Then, we apply the EM-Algorithm to

estimate the model parameters and obtain a predictive density for the September 19 return,

from which we calculate the first out-of-sample log score. For comparison, we do also select

a constant R-vine tree structure using the algorithm of Dißmann et al. (2013) and calculate

the log score also for this model. Subsequently, the models are re-fitted to the data period

including September 19, and we calculate log predictive scores for the next business day. For

the 100 business days between September 19, 2008 and February 17, 2009, this results in an

average log predictive score of 2.10 for the MS model and 1.67 for the constant R-vine model.

This is in line with the DIC results and illustrates that at least in crisis periods MS models

can also be useful for econometric forecasting.

5.2 Regime switching marginal time series

In this section, we will fit MS models both for the marginal time series of the exchange

rate data and the copula. First, we will fit models using the two-step approach. Marginal

time series are fitted first, and the copula model is subsequently applied to the transformed

residuals. Subsequently, we will fit a joint model where all marginal time series and the

dependence structure switch states at the same time. The parameter estimates for both

models are given in Appendix D.2.

For the marginal exchange rate return time series, we consider simple MS Gaussian mod-

els, i.e. Markov switching means and volatilities. MS AR models have been investigated as an

alternative but the likelihood improvements did not justify the additional parameters being

included in the model. As expected, the MS Gaussian models outperform constant Gaussian

models also in out-of-sample comparison (Table 5.3). The resulting smoothed probabilities

of being in the crisis regime (which will be a high volatility regime for the marginal time se-

ries) is given in Figure 5.5 for the EUR/USD exchange rate and the copula, for the remaining
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marginal time series they are illustrated in Appendix D.2. Our results show that for all major

currencies the crisis periods are more or less identical, although some exchange rates move

to the crisis state already in the beginning of 2008 (e.g. CHF/USD) while others follow in

late 2008 (e.g. EUR/USD). Only for the currencies of countries with less developed financial

markets we see additional movements in the crisis probabilities, in particular for CNY, where

we see a pattern which is probably due to Chinese monetary interventions.

Fitting a copula model to the transformed residuals of the marginal time series using the

model selection heuristic of Section 4.1.4, we see that the results are similar to those for the

models fitted using marginal ARMA-GARCH models in Section 5.1.3. Since all marginals

and the copula are in “crisis” state from mid 2008 to early 2009, and since we would ideally

want to find one crisis period for the whole data, we do also fit a model with only one state

variable using the algorithm of Section 4.2.2. The resulting smoothed probability of being in

the crisis regime is plotted in the lower panel of Figure 5.5. While we observe more movements

in the crisis state probability pre 2008 than for most marginals, the joint model confirms that

mid 2008 - mid 2009 should be used as a crisis period for FX portfolios according to this

analysis.

Table 5.3: Average one day ahead log predictive scores for the marginal time series in the

exchange rate data (September 19, 2008 - February, 17 2009). The procedure for calculating

the predictive densities is the same as for the copula model in Section 5.1.5.

EUR GBP CAD AUD BRL CNY JPY CHF INR

MS 2.58 2.55 2.47 1.89 1.84 5.10 2.75 2.75 3.20

constant 1.54 0.76 1.11 −0.76 −0.34 4.70 2.21 2.26 2.66
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Figure 5.5: Upper panel: Smoothed probability of being in the crisis regime for the

EUR/USD exchange rate returns when analyzed separately of the other margins.

Middle panel: Smoothed probability that the copula between the 9 exchange rate returns

is in the crisis regime.

Lower panel: Smoothed probability that all individual time series and the dependence

structure are in the crisis regime.
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Chapter 6

Application 2: Comorbidity in the

second longitudinal study of aging

(LSOA II)

In this section, which is taken from Stöber et al. (2012), we will apply the R-vine copula model

for mixed discrete and continuous margins to a data set from the second longitudinal study of

aging (LSOA II, data is available from http://www.cdc.gov/nchs/lsoa/lsoa2.htm). The

section is structured as follows: First, we introduce the data set in Subsection 6.1. Our

statistical model introduced in Subsection 6.2 is based on generalized linear models (GLMs),

describing the distribution of the marginal variables for given covariates and an R-vine PCC

to describe the dependence structure. Results are presented in Subsection 6.3, Subsection

6.4 concludes and points out some limitations of our analysis.

6.1 Introduction and data description

Most countries in the developed world, and in particular the US where the LSOA II was

conducted have an aging population (Werner 2010; U.S. Census Bureau 2012). While the

advances in modern medicine have prolonged life expectancies and improved the outcome

of previously fatal diseases, this comes with a higher proportion of older adults living for

years with chronic conditions. The occurrence of chronic conditions was recorded in the

LSOA II among other data. Here, we will focus on six of the most common chronic con-

ditions: hypertension (hyp), diabetes (dia), arthritis (art), heart disease (hd), stroke (str),

and obesity/underweight via the body mass index (BMI). Information on the presence of

these conditions was collected at three times using standardized telephone interviews and

self-administered questionaires: the baseline interview was done in 1994-1996 (wave 1). The

same subjects had two consecutive follow-up interviews between 1997 and 1998 (wave 2),

and between 1999 and 2000 (wave 3). The time gaps between consecutive interviews varied

by individuals, but data was collected roughly in two year intervals. For more details on

how data was collected, we refer to the original study and Stöber et al. (2012). While the

http://www.cdc.gov/nchs/lsoa/lsoa2.htm


CHAPTER 6. APPLICATION 2: COMORBIDITY IN THE SECOND LONGITUDINAL
STUDY OF AGING (LSOA II)

aforementioned chronic conditions are all well-studied in the medical literature, proper treat-

ment can still be difficult since many patients develop “comorbid” conditions, which refers

to one or more chronic conditions occurring together with the primary condition (Table 6.1

presents an overview of the prevalence of comorbidities in our sample). However, clinical

practice guidelines are generally based on one isolated disease. Little information is available

considering care for multiple chronic conditions (Lugtenberg et al. 2011).

The aim of the study presented in this section is to analyze the prevalence of chronic

conditions in a systematic joint modeling framework and thus broaden our understanding of

comorbidities. This might help to identify promising avenues for further clinical research.

Ultimately the hope in multimorbidity research is that a better understanding of interactions

Table 6.1: Percentage of subjects with each condition who have another chronic

condition.

Wave 1

No. (%) With Comorbid Condition

Chronic No. of Hyper-

condition Subjects tension Diabetes Arthritis Obesity HD Stroke

Hypertension 893 192 (21.5)* 111 (12.4) 587 (65.7) 172 (19.3) 181 (20.3) 75 (8.4)

Diabetes 193 111 (57.5) 18 (9.3)* 140 (72.5) 51 (26.4) 59 (30.6) 19 (9.8)

Arthritis 1436 587(40.9) 140(9.7) 562(39.1)* 240(16.7) 285 (19.8) 92(6.4)

Obesity 336 172(51.2) 51(15.2) 240(71.4) 37(11)* 69(20.5) 16(4.8)

HD 434 181(41.7) 59(13.6) 285 (65.7) 69(15.9) 75 (17.3)* 47(10.8)

Stroke 139 75(54) 19(13.7) 92(66.2) 16(11.5) 47(33.8) 12(8.6)*

Wave 2

No. (%) With Comorbid Condition

Chronic No. of Hyper-

condition Subjects tension Diabetes Arthritis Obesity HD Stroke

Hypertension 1035 228( 22)* 147 ( 14.2) 682 ( 65.9) 157 ( 15.2) 220 ( 21.3) 55 (5.3)

Diabetes 237 147 (62) 22 (9.3) * 156 (65.8) 57 ( 24.1) 71 ( 30) 17( 7.2)

Arthritis 1470 682 ( 46.40) 156 (10.6) 523 ( 35.6)* 195 (13.3) 323 ( 22) 69 (4.7)

Obesity 282 157( 55.7) 57 (20.2) 195 ( 69.1) 31 ( 11)* 45 ( 16) 8( 2.80)

HD 441 220 ( 49.9) 71 (16.1) 323 ( 73.2) 45 ( 10.2) 50 ( 11.3 )* 40 ( 9.1)

Stroke 92 55 ( 59.8) 17 ( 18.5) 69 ( 75) 8 ( 8.7) 40 ( 43.5) 5( 5.4)*

Wave 3

No. (%) With Comorbid Condition

Chronic No. of Hyper-

condition Subjects tension Diabetes Arthritis Obesity HD Stroke

Hypertension 1115 239 (21.40)* 174( 15.60) 741 ( 66.50) 164( 14.70) 297 ( 26.60) 68 ( 6.10)

Diabetes 279 174 ( 62.40) 31 (11.10 )* 188 ( 67.40 ) 59 ( 21.10) 100 ( 35.80 ) 26 ( 9.30)

Arthritis 1482 741 ( 50) 188 ( 12.70) 478 (32.30)* 191 (12.90) 386 (26) 81 ( 5.50)

Obesity 268 164 ( 61.20) 59. (22 ) 191 (71.30) 23( 8.60 )* 57 (21.30) 9 (3.40)

HD 545 297( 54.50) 100 ( 18.30) 386 (70.80) 57(10.50) 70 (12.80)* 44 ( 8.10)

Stroke 116 68( 58.60) 26 (22.40) 81 (69.80) 9(7.80) 44. (37.90) 13 (11.20)*

1 For each pair of conditions, percentages are based on cases with no missing data on those two

variables. Percentages do not add to 100 because some patients have more than two conditions.
* Subjects with that condition only.
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and synergies between chronic diseases will help to facilitate prevention, diagnosis and treat-

ment, lower the financial burden on the health care system, and increase patients’ quality of

life (Schäfer et al. 2010).

To control for the effects of known risk factors, we include several covariates in our model.

Although many predictors might be potentially useful, we only concentrate on some of the

most common. The incidence of chronic diseases is known to increase with age; gender affects

the progression and prevalence of chronic diseases. Further, Fleischer et al. (2011) reported

association of a socioeconomic gradient for education and income with the risk factor profile

for chronic diseases. People coping with chronic diseases are particularly vulnerable to the

hazardous health effects of tobacco use. Smoking can exacerbate and complicate symptoms

of the chronic conditions. Therefore, sex, age, income, education, and smoking are included

in our analysis.

6.2 Multivariate model

In this section, we introduce the joint model for the six response variables controlling for

the covariates using GLMs and the copula paradigm. In a generic form, let Yijt be the

response/outcome of the i-th patient for chronic disease j at observation/wave t, with i =

1, 2, . . . , N , j = 1, 2, . . . , J and t = 1, 2, . . . , T . The covariates we consider in our analysis for

patient i, disease j and time observation t are accordingly denoted as xijt.

6.2.0.1 Generalized linear models

For all j, t, we assume that Yijt are independent and have distribution function

Fj(yijt|µijt, φj,t),

where the mean parameter µijt = hj(xijtβ
T
jt) is a function of the covariates and φjt is a

possible scaling parameter. In particular, for j corresponding to a continuous response vari-

able (the BMI in the data set which we will consider later), Fj can be the inverse Gaussian

distribution with distribution function

Fig(y|µ, φ) = Φ

(√
φ

y

(
y

µ
− 1

))
+ e

2φ
µ Φ

(
−
√
λ

y

(
y

µ
+ 1

))
,

and hj can be chosen as hj(.) = exp(.) (log-link). If j corresponds to a binary response

variable indicating the presence/absence of a chronic disease, a natural choice for Fj is the
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Bernoulli cdf with

Fb(y|µ) =


1 y ≥ 1

µ 1 > y ≥ 0

0 0 > y

.

Here, the canonical choice for the link function hj is hj = 1
1+e−(.) (logit-link). For the

selection and initial parameter estimation for marginal regression models we use the statistical

software package R (R Development Core Team 2011). To select the relevant covariates and

interactions from a given set of possible covariates we will apply the AIC (see Section 1.3.2).

To minimize this criterion, a stepwise procedure starting with a fully saturated model (i.e.

including all possible covariates and interactions) is applied, removing in each step the term

with the highest possible reduction in AIC until no further reduction is possible. To fit

the parameters of the GLMs, we apply iteratively reweighted least squares for maximum

likelihood estimation (Green 1984).

6.2.1 R-vine copula selection

Furthermore, we assume that for any t, the marginal distributions Fj are linked with a copula

function Ct. Hence, the joint distribution function for the outcome variables (Yi,1,t, . . . , Yi,J,t)

given covariates (xi1t, . . . ,xiJt) is given as

Ft(yi,1,t, yi,2,t, . . . , yi,J,t|xi1t, . . . ,xiJt)

= Ct(F1(yi,1,t|µi1t, φ1t), F2(yi,2,t|µi2t, φ2t), . . . , FJ(yi,J,t|µiJt, φJt)).
(6.1)

The copula function Ct will result from an R-vine PCC. To select an appropriate R-

vine structure and corresponding pair-copula families, the R-vine model selection procedure

pioneered by Dißmann et al. (2013) which we have already used in Section 4.1.4 is modified

as follows:

(i) For each pair of variables and each parametric pair copula family under consideration,

calculate the corresponding value of the Akaike information criterion (AIC) from the

copula data set. In a 3-dimensional example, we would calculate the AIC for the pairs

(1, 3), (2, 3) and (1, 2).

(ii) Create a fully connected graph where the set of nodes N is the set of marginal variables

(ex: {1, 2, 3}), and the set of edges E contains an edge between every possible pair of

variables (ex: (1, 3), (2, 3) and (1, 2)). Associate to each edge the highest AIC value

which has been estimated for the corresponding variables in step (i) as edge weight.
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(iii) Using the algorithm of Prim (1957) determine the maximum spanning tree correspond-

ing to this graph, i.e. find a tree which maximizes the sum of edge weights (If the edge

weights which are determined for the pairs (1, 2) and (2, 3) in our example are bigger

than the weight of (1, 3), this is the tree T1 in Figure 1.3, i.e. the tree containing edges

(1, 2) and (2, 3)).

(iv) For each edge in the resulting tree, choose the family for which we had obtained the

highest AIC.

(v) For each pair of edges i, k|D and i, j|D sharing a common node, determine pseudo ob-

servations for the next tree by applying the conditional distribution functions Fk|i,D and

Fj|i,D (Equations (2.11) and (2.12)) to the data. In the likelihood algorithm provided in

Section 2.2, these are the values which are stored in matrices (2.15) and (2.16). Because

of the proximity condition, these are all pseudo observations which might be required.

(ex: (1, 2) and (2, 3) share 2, we compute F1|2 and F3|2) Proceed with the pseudo ob-

servations as in steps 1 to 4, while only considering edges which respect the proximity

condition in step 2, until all trees together with their copula types and parameters are

determined.

To decide which bivariate copula families to include in step (i) of the R-vine copula selec-

tion procedure and to demonstrate the superior predictive performance of our joint copula

model compared to independent regression models, we perform a 10-fold cross-validation

(see Arlot and Celisse (2010) for an overview of cross-validation procedures) as follows: The

data is randomly partitioned into 10 patient sets of (almost) equal size. In each step, we

leave out one of these subsets and apply the outlined variable selection procedure for the

marginal models, followed by the described model selection heuristic for the R-vine copula.

We consider 10 different sets of pair copula families for the R-vine copula selection as shown

in Table 6.2. More details on the bivariate copula families and parametrization we use can

be found in Schepsmeier and Stöber (2012). The prediction quality of the resulting models

for the remaining data set is then compared using the log predictive score (see Section 1.3.1

and Gneiting and Raftery (2007) for a review of scoring rules). Table 6.2 lists the sum of

log predictive scores for the 10 subsets where we subtracted the scores corresponding to the

benchmark independence model.

The independence model is outperformed for all choices of family sets. Further, we see

no indication of overfitting when more copula families are included, but a loss in predictive

performance when some are excluded, in particular for the Gaussian and Frank copula. For

this reason, we choose modelclass 9 with Gaussian, Frank, Clayton, Joe and Gumbel copulas
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Table 6.2: Differences of log predictive scores to the independence models for different sets

of copula families under consideration. We use the abbreviations N (Gauss), F (Frank), C

(Clayton), J (Joe) and G (Gumbel). An extensive discussion of bivariate copula families and

their properties can be found in Joe (1997) or Nelsen (2006).

Model class Families log predictive score

1 N 363.8

2 F 360.6

3 N, F 365.4

4 N, C 356.3

5 N, J 365.5

6 N, F, C 365.1

7 N, F, J 366.4

8 N, F, C, J 366.2

9 N, F, C, J, G 366.4

10 N, F, C, J, G + rotations by 90◦, 180◦ and 270◦ 366.2

for our further analysis since we believe it to offer the best compromise between flexibility,

predictive performance and computation tractability.

6.2.2 Selected joint model

For the whole data, the selected model is the following: For the GLMs, which we use for

the modeling of marginal response variables, the covariates are given in Table E.1 in the

appendix.

The dependence between these marginal models is then subsequently described using

a discrete-continuous R-vine copula, with R-vine structures and associated pair copulas as

shown in Figure E.1 and E.2 in the appendix. Comparison of the resulting model probabilities

with the observed probabilities indicates that the model can accurately describe the observed

dependence patterns.

Since the selection procedure of Section 6.2.1 selects the strongest dependencies (i.e. the

dependencies where the corresponding copula terms lead to the biggest improvements in the

joint likelihood) first. These are on the first trees of Figure E.1 and E.2. For the first tree T1,

copulas between BMI and diabetes, BMI and hypertension as well as heart disease and stroke

are selected for all three waves of observations. This shows that these are the most important

dependencies in the data. On the other hand, the copulas on higher trees correspond to
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weaker conditional dependencies which might even be close to conditional independence as

for the Gaussian copula on T5 for the baseline observations (ρ = 0.0749, with sd = 0.0551,

this corresponds to a p-value ≥ 0.1 and is non-significant).

In wave 2, a stronger dependence between heart disease and arthritis was observed as

compared to wave 1. This information can be indicative to predict future comorbidity at the

time of the baseline observation. We are not aware of any clinical literature investigating the

longitudinal association between heart disease and arthritis; this dynamic association would

be an interesting avenue for future research.

6.3 Results

Other than for purely continuous variables where the theoretical rank correlations and bivari-

ate tail dependencies associated with a copula model are usually good summary statistics for

the data, interpreting model results is more challenging in the presence of discrete outcomes.

(Nevertheless, the theoretical Kendall’s τ values corresponding to our parameter estimates in

the continuous setup are included in Figures E.1 and E.2 in the appendix, for readers familiar

with this parameterization.) Here, changes in strength of dependence can be expressed by

different copula families being selected. In particular, the limiting dependence behavior (for

large and small values of the continuous variable, respectively) of conditional distributions

is different across copula families. While our inference procedure yields point estimates and

standard errors for all model parameters and allows to compute p-values for the regression

parameters we omit listing these estimates here (they are given in Appendix E). Instead,

we compute conditional probabilities from our model to better understand the results. For

example, we explored the conditional probabilities of each chronic condition given BMI by

category of predictors such as age level. Here, conditional probabilities involving marginal

covariates are estimated as follows: Let xi be the vector of covariates for patient i, z1, z2 ∈ R

and Y the vector of outcomes. Then

P (Yhyp. = 1|BMI = z1, age ≤ z2) :=
∑

i|xi,age≤z2

P (Yhyp. = 1|BMI = z1,xi)

#{i|xi,age ≤ z2}
,

i.e. we average over all relevant covariate vectors in the population. When not conditioning

on marginal covariates, we have

P (Yhyp. = 1|BMI = z1) :=

N∑
i=1

P (Yhyp. = 1|BMI = z1,xi)

N
,

where N is the number of patients. Figure 6.1 depicts the relationship between a subject’s

BMI and the conditional probability of diabetes, arthritis and hypertension for the different
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time periods. The top, middle, and bottom rows represent the patients with hypertension,

diabetes and arthritis, respectively. The columns correspond to the different time periods; the

first column corresponds to the baseline, the second and third column to the first and second

follow-up, respectively. The different lines in each plot correspond to patients of different

ages. The solid line is the mean level for patients of age ≤ 72 at the beginning of the study,

the dashed for 72 < age ≤ 77, the dotted for 75 < age ≤ 78, and the dash-dotted for age

> 78. In Figure 6.1, we can see that higher probabilities of observing the three diseases

(hypertension, diabetes and arthritis) are associated with increasing BMI values.

Prevalence of diabetes given BMI First, the probability of diabetes (upper panel) is

almost linearly increasing with BMI for all three periods. This positive association between

diabetes and BMI (or obesity) has been reported for all ages (Nguyen et al. 2011) and it is

widely accepted that BMI is one of the strongest predictors for diabetes. Therefore, sustained

weight loss can bring a reduced risk of diabetes, as studied in Moore et al. (2000). Meanwhile,

it is interesting to note that the prevalence of diabetes is slightly lower for the oldest age group

in our sample, which might be explained by a decline in BMI which is generally observed

after about 60 years of age (Elia 2001).

Prevalence of arthritis given BMI A different trend is observed for the prevalence of

arthritis with respect to BMI: a family of S-shaped curves in the mid panel. This confirms

a general positive association between BMI and arthritis which has previously been reported

in studies for the overall population (Zakkak et al. 2009). However, these studies suggest a

stronger increase for the heavily obese (BMI > 40) as compared to the group with 30 <

BMI < 40 than we find in our sample. This different behavior which we observe might be

attributable to a general decline in physical activity in the elderly population, since physical

activity is associated both with obesity and with arthritis (Shih et al. 2006). For arthritis

(and hypertension), the gap in disease prevalence between elderly with high and low BMI

is reduced during the follow-ups compared to the baseline. This indicates that there are

more important risk factors other than BMI which broadly affect the probability of observing

arthritis among elderly. The influence of the age at the beginning of the study was most

significant for arthritis at wave 1: older age groups are more prone to suffering from arthritis.

This confirms the observation by e.g. Abyad and Boyer (1992) that arthritis increases with

age. However, during the follow-up, the conditional probability gap of the arthritis between

the oldest and youngest age group was not significant, which might be due to dropouts.

Overall, the effect of BMI on the probability of arthritis exceeds the age effect.
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Figure 6.1: Conditional probability of observing diabetes (upper panel), arthritis (mid

panel) and hypertension (lower panel), respectively, given a certain value for BMI. The first

column is the baseline; the second column is the first follow-up; the third column is the second

follow-up. The solid line is the mean level for patients with (age ≤ 72) at the beginning of

the study (dashed: 72 < age ≤ 75, dotted: 75 < age ≤ 78, dash-dotted: age > 78).
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Prevalence of hypertension given BMI Similar shapes are observable also for hyper-

tension in the follow-up surveys, although our model suggests an almost linear association

for baseline. Though systematic studies are scarce, a general increase of blood pressure with
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Table 6.3: The limiting behavior of conditional distribution functions ∂2C(u1, u2) corre-

sponding to well-known bivariate copula families (see Schepsmeier and Stöber (2012) for

details on the pair copula families and parametrization). These limiting distributions do also

appear in Cooke et al. (2011) and Hua and Joe (2012), where their relation to tail dependence

is studied.

Copula Family u2 → 0 u2 → 1

Clayton 1 (u−θ1 − 1)−(1+1/θ)

Gumbel 1 0

Joe (1− u1)θ−1 0

Frank eθ

eθu1
eθu1−1
eθ−1

eθu1−1
eθ−1

Gauss 1 0

BMI has been previously reported for elderly populations (Masaki et al. 1997). The change

to an S-shaped trend in the follow-ups might again be explainable by the general decline in

BMI with age. Although the difference between the age groups is non-significant especially

for the second follow-up, note that while the older age groups had a higher prevalence of

hypertension across all BMI levels at the baseline this trend is reversed in the follow-ups.

The shift in the shape of the conditional probability curve of hypertension is expressed in the

model by the fact that a Gaussian copula was selected for the baseline while a Frank copula

was chosen for the first and second follow-ups by the proposed model. The shape of the curve

is governed by the limits of the conditional distribution (Table 6.3). While the Frank copula

has a finite limit for arbitrarily small BMI values, the limit for the Clayton and Gaussian

copula is 1. Thus, the estimated probabilities continue to increase.

Prevalence of arthritis given BMI and other conditions Figure 6.2 leverages our joint

dependence model to show the complex dependence of the probability of observing arthritis

with BMI and other chronic conditions. The upper panel of Figure 6.2 shows the probability

of arthritis given BMI with the presence/absence of diabetes and the presence/absence of

hypertension, thus producing four different lines. This enables us to see the complete picture

of arthritis prevalence at the baseline and the follow-up periods. The top panel of Figure

6.2 indicates positive dependence between arthritis and the other two diseases (diabetes and

hypertension). When a subject had both diabetes and hypertension, the probability of having

arthritis was higher compared to a subject who suffers from only one or no chronic condition.

Likewise, the probability of having arthritis was higher with the obese people (BMI ≥ 30). In
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Figure 6.2: Upper panel: conditional probability of observing arthritis given BMI and other

chronic conditions: solid (diabetes, hypertension), dashed (diabetes, no hypertension), dotted

(no diabetes, hypertension), dash-dotted (no diabetes, no hypertersion).

Lower panel: probability of observing diabetes given BMI and other chronic conditions: solid

(heart disease, stroke), dashed (heart disease, no stroke), dotted (no heart disease, stroke),

dash-dotted (no heart disease, no stroke).
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addition, Figure 6.2 provides useful information when multiple chronic conditions are present

and their causal relationship is unclear. In the follow-up, some changes in terms of the impact

of hypertension and diabetes on the risk of arthritis were observed; in contrast to the baseline

observation, a person with hypertension faced a higher chance of developing arthritis than

one with diabetes provided that other conditions remained the same.

Prevalence of diabetes given BMI and other conditions The lower panel of Figure

6.2 presents the conditional probability of observing diabetes given BMI and two other chronic

conditions (heart disease and stroke). The probability of diabetes is not affected strongly by

the presence/absence of heart diseases and stroke when the BMI is low, however, as the BMI

level increases the probability of observing diabetes is getting larger depending on the presence
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of the cardiovascular diseases (CVD). Compared to the case when elderly have either heart

disease or stroke, the risk of diabetes jumped by more than 15% for obese patients with both

heart disease and stroke, indicating that diabetes is associated with CVD. We want to note

that caution is needed when interpreting probability plots since the displayed associations

do not imply causations. For instance, though we plotted the probability of diabetes given

presence/absence of CVD, diabetes is usually considered as the risk factor of CVD in medical

literatures. Our plots only serve as a reference to illustrate the multivariate association among

the diseases. To illustrate the merits of our method, we have presented results for several

variable groups in this chapter. Similar plots can be produced for all variable groups which

are of medical interest.

6.4 Conclusions

The aim of the study presented in this section was to help understanding comorbidity among

the elderly and give new clues about its pathways. We have fitted an R-vine PCC for

mixed discrete and continuous variables and demonstrated a model selection heuristic as

well as parameter inference in the maximum likelihood framework. Since PCCs allow to

combine different copula families, different limiting behavior of conditional probabilities for

the presence of diseases given the BMI could also be modeled. This improves the predictive

performance of the copula model compared to models where all bivariate families are the

same as cross-validation shows.

As a final note, we want to point out some limitations of our study, both considering

the available data and the statistical model. Currently unavailable information such as the

time elapsed since the diagnosis of chronic conditions may help to explain the pathways of

comorbidity more accurately in future research. Also, the response variables in our analysis

were collected in a self-report survey. Although the study of Kriegsman et al. (1996) impli-

cates that patients’ self-reports on chronic diseases are fairly accurate, the use of self-reported

diagnoses might have introduced systematic bias. In particular, Kriegsman et al. (1996) find

that self-reports on arthritis were often incorrect; using general practitioners information or

clinical interviews might be more reliable ways to obtain data. Also, the data set considered

in our analysis only included people who survived throughout all three waves. Dropouts due

to death would not be missing at random, which is another potential source of systematic

bias. Also, the longitudinal pattern in the LSOA II data was not modeled explicitly here.

While including informative dropouts and a systematic joint longitudinal modeling approach

could help to better understand the pathways and development of chronic conditions, this is
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beyond the scope of the current work. Finally, while the inference procedures demonstrated

here allow to estimate standard errors for parameter estimates, the model uncertainty cannot

be addressed. This could be done in a computationally more intense RJMCMC framework

(cf. Gruber et al. (2012)).
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Appendix A

Calculation of the observed informa-

tion in regular vine copula models

To derive an algorithm similar to Algorithm 2.2.3 which recursively determines all terms

of the second derivatives of the log-likelihood of an R-vine copula model with respect to

parameters θ, γ, we need to distinguish 7 basic cases of dependence on the two parameters

which can occur for a term cU,V ;Z

(
FU |Z(u|z), FV |Z(v|z)

)
.

Table A.1: 7 cases of how a term cU,V ;Z

(
FU |Z(u|z), FV |Z(v|z)

)
can depend on θ and γ.

cases dependence on θ γ Example: c7,3;1,4,5,6

case 1

through

FU |Z FV |Z θ7,4|1,5,6 θ6,3|1,4,5

case 2 FU |Z, FV |Z FV |Z θ4,1 θ6,3|1,4,5

case 3 FU |Z, FV |Z FU |Z, FV |Z θ4,1 θ5,1

case 4 FU |Z cU,V ;Z θ7,4|1,5,6 θ7,3|1,4,5,6

case 5 FU |Z, FV |Z cU,V ;Z θ4,1 θ3,7|1,4,5,6

case 6 FU |Z FU |Z θ7,4|1,5,6 θ7,1|5,6

case 7 cU,V ;Z cU,V ;Z θ7,3|1,4,5,6 θ7,3|1,4,5,6

Here, case 7 is relevant only for derivatives where θ = γ, since we assume that all bivariate

copulas occurring in the vine density have one parameter in R. Because of symmetry in the

parameters, all other possible combinations are already included in these cases, we only have

to exchange θ and γ. As an example let us consider the term corresponding to c7,3|1,4,5,6 in

our 8-dimensional example. Choices for θ and γ for which the 7 cases arise are listed in the

rightmost columns of Table A.1.

In case 1 we determine

∂2

∂θ∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, γ)

))
=
∂1∂2cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, γ)

) ·
(
∂

∂θ
FU|Z(u|z, θ)

)
·
(
∂

∂γ
FV |Z(v|z, γ)

)
−
(
∂

∂θ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, γ)

)))
·
(
∂

∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, γ)

)))
,

(A.1)



APPENDIX A. CALCULATION OF THE OBSERVED INFORMATION IN REGULAR
VINE COPULA MODELS

for case 2

∂2

∂θ∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

))
=
∂1∂2cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

) ·
(
∂

∂θ
FU|Z(u|z, θ)

)
·
(
∂

∂γ
FV |Z(v|z, θ, γ)

)
−
(
∂

∂θ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

)))
·
(
∂

∂γ
ln(
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

)))
+
∂2∂2cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

) ·
(
∂

∂θ
FV |Z(v|z, θ, γ)

)
·
(
∂

∂γ
FV |Z(v|z, θ, γ)

)
+
∂2cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ, γ)

) · ( ∂2

∂θ∂γ
FV |Z(v|z, θ, γ)

)
,

(A.2)

and case 3 yields

∂2

∂θ∂γ
ln(cU,V ;Z(FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)))

=
∂1∂2cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

) ·
(
∂

∂θ
FU|Z(u|z, θ, γ)

)(
∂

∂γ
FV |Z(v|z, θ, γ)

)
−
(
∂

∂θ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)))
·
(
∂

∂γ
ln(
(
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)))
+
∂1∂1cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

) ·
(
∂

∂θ
FU|Z(u|z, θ, γ)

)(
∂

∂γ
FU|Z(u|z, θ, γ)

)
+
∂1∂2cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

) ·
(
∂

∂θ
FV |Z(v|z, θ, γ)

)(
∂

∂γ
FU|Z(u|z, θ, γ)

)
+
∂1∂2cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

) ·
(
∂

∂θ
FU|Z(u|z, θ, γ)

)(
∂

∂γ
FV |Z(v|z, θ, γ)

)
+
∂2∂2cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

) ·
(
∂

∂θ
FV |Z(v|z, θ, γ)

)(
∂

∂γ
FV |Z(v|z, θ, γ)

)
+
∂1cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

) · ( ∂2

∂θ∂γ
FV |Z(v|z, θ, γ)

)
+
∂2cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z, θ, γ)

) · ( ∂2

∂θ∂γ
FV |Z(v|z, θ, γ)

)
.

(A.3)

Similarly, we have for case 4 that

∂2

∂θ∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z)|γ

))
=

(
∂

∂θ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z)|γ

)))
·
−∂γcU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z)|γ

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z)|γ

)
+
∂γ∂1cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z)|γ

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z)|γ

) ·
(
∂

∂θ
FU|Z(u|z, θ)

)
,

(A.4)
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and

∂2

∂θ∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

))
=

(
∂

∂θ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

)))
·
−∂γcU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

)
+
∂γ∂1cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

) ·
(
∂

∂θ
FU|Z(u|z, θ)

)
+
∂γ∂2cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

)
cU,V ;Z

(
FU|Z(u|z, θ), FV |Z(v|z, θ)|γ

) ·
(
∂

∂θ
FV |Z(v|z, θ)

)
,

(A.5)

for the fifth case. Finally,

∂2

∂θ∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z)

))
=
∂1∂1cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z)

) ·
(
∂

∂θ
FU|Z(u|z, θ, γ)

)
·
(
∂

∂γ
FU|Z(u|z, θ, γ)

)
−
(
∂

∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z)

)))
·
(
∂

∂θ
ln
(
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z)

)))
+
∂1cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z)

)
cU,V ;Z

(
FU|Z(u|z, θ, γ), FV |Z(v|z)

) · ( ∂2

∂γ∂θ
FU|Z(u|z, θ, γ)

)
,

∂2

∂θ∂γ
ln
(
cU,V ;Z

(
FU|Z(u|z), FV |Z(v|z)|θ, γ

))
=
∂θ∂γcU,V ;Z

(
FU|Z(u), FV |Z(v|z)|θ, γ

)
cU,V ;Z

(
FU|Z(u|z), FV |Z(v|z)|θ, γ

)
−
∂θcU,V ;Z

(
FU|Z(u), FV |Z(v|z)|θ, γ

)
· ∂γcU,V ;Z

(
FU|Z(u|z), FV |Z(v)|θ, γ

)
cU,V ;Z

(
FU|Z(u|z), FV |Z(v|z)|θ, γ

)2 .

(A.6)

Algorithm A.0.1 Second derivative with respect to the parameters θk̃,̃i and θk̂,̂i.

The input of the algorithm is a d-dimensional R-vine matrix M with maximum matrix M̃

and parameter matrix θ, and matrices C k̃,̃i, C k̂,̂i determined using Algorithm 2.2.2 for

parameters θk̃,̃i and θk̂,̂i of the R-vine parameter matrix. Further, we assume the matrices

V direct, V indirect and V values, the matrices S1direct,k̃,̃i, S1indirect,k̃,̃i and S1values,k̃,̃i and

S1direct,k̂,̂i, S1indirect,k̂,̂i and S1values,k̂,̂i to be given. The output will be the value of the

second derivative of the copula log-likelihood for the given observation with respect to

parameters θk̃,̃i and θk̂,̂i. Without loss of generality, we assume that î ≥ ĩ, and k̂ ≥ k̃ if î = ĩ.

1: if ck̂,̂i
k̃,̃i

== 1 then

2: Set m = m̃k̃,̃i

3: Set z1 = vdirect
k̃,̃i

, z̃1 = s1direct,k̂,̂i
k̃,̃i

4: if m == mk̃,̃i then

5: Set z2 = vdirect
k̃,d−m+1

, z̃2 = s1direct,k̂,̂i
k̃,d−m+1
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6: else

7: Set z2 = vindirect
k̃,d−m+1

, z̃2 = s1indirect,k̂,̂i
k̃,d−m+1

8: end if

9: Set s2direct
k̃−1,̃i

= 0, s2indirect
k̃−1,̃i

= 0, s2values
k̃,̃i

= 0

10: if k̃ == k̂ & ĩ == î then

11: Set s2direct
k̃−1,̃i

= ∂
θk̃,̃i
∂
θk̃,̃i
h(z1, z2|Bk̃,̃i, θk̃,̃i)

12: Set s2indirect
k̃−1,̃i

= ∂
θk̃,̃i
∂
θk̃,̃i
h(z2, z1|Bk̃,̃i, θk̃,̃i)

13: Set s2values
k̃,̃i

=
∂
θk̃,̃i

∂
θk̃,̃i

c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

− (s1values,k̂,̂i
k̃,̃i

)2

14: end if

15: if ck̂,̂i
k̃+1,̃i

== 1 then

16: Set s2values
k̃,̃i

= s1values,k̂,̂i
k̃,̃i

· −∂θk̃,̃ic(z1,z2|B
k̃,̃i,θk̃,̃i)

exp(vvalues
k̃,̃i

)
+

∂1∂
θk̃,̃i

c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

· z̃1

17: Set s2direct
k̃−1,̃i

= ∂1∂θk̃,̃ih(z1, z2|Bk̃,̃i, θk̃,̃i) · z̃1

18: Set s2indirect
k̃−1,̃i

= ∂2∂θk̃,̃ih(z2, z1|Bk̃,̃i, θk̃,̃i) · z̃1

19: end if

20: if ck̂,̂i
k̃+1,d−m+1

== 1 then

21: Set s2values
k̃,̃i

= s2values
k̃,̃i

+
∂2∂

θk̃,̃i
c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

· z̃2

22: if ck̂,̂ik+1,i == 0 then

23: Set s2values
k̃,̃i

= s2values
k̃,̃i

+ s1values,k̂,̂i
k̃,̃i

· −∂θk̃,̃ic(z1,z2|B
k̃,̃i,θk̃,̃i)

exp(vvalues
k̃,̃i

)

24: end if

25: Set s2direct
k̃−1,̃i

= s2direct
k̃−1,̃i

+ ∂2∂θk̃,̃ih(z1, z2|Bk̃,̃i, θk̃,̃i) · z̃2

26: Set s2indirect
k̃−1,̃i

= s2indirect
k̃−1,̃i

+ ∂1∂θk̃,̃ih(z2, z1|Bk̃,̃i, θk̃,̃i) · z̃2

27: end if

28: end if

29: for i = ĩ, . . . , 1 do

30: for k = k̃ − 1, . . . , i+ 1 do

31: Set m = m̃k,i

32: Set z1 = vdirectk,i , z̃k̂,̂i1 = s1direct,k̂,̂ik,i , z̃k̃,̃i1 = s1direct,k̃,̃ik,i , z̄1 = s2directk,i

33: if m == mk,i then

34: Set z2 = vdirectk,d−m+1, z̃
k̂,̂i
2 = s1direct,k̂,̂ik,d−m+1, z̃

k̃,̃i
2 = s1direct,k̃,̃ik,d−m+1, z̄2 = s2directk,d−m+1

35: else

36: Set z2 = vindirectk,d−m+1, z̃
k̂,̂i
2 = s1indirect,k̂,̂ik,d−m+1 , z̃k̃,̃i2 = s1indirect,k̃,̃ik,d−m+1 , z̄2 = s2indirectk,d−m+1

37: end if

38: Set s2valuesk,i = −s1values,k̂,̂ik,i · s1values,k̃,̃ik,i , s2directk−1,i = 0, s2indirectk−1,i = 0
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39: if ck̂,̂ik+1,i == 1 & ck̃,̃ik+1,i == 1 then

40: Set s2valuesk,i = s2valuesk,i + ∂1∂1c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i1 · z̃k̃,̃i1 + ∂1c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̄1

41: Set s2directk−1,i = s2directk−1,i + ∂1h(z1, z2|Bk,i, θk,i) · z̄1 + ∂1∂1h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i1 · z̃k̃,̃i1

42: Set s2indirectk−1,i = s2indirectk−1,i +∂2h(z2, z1|Bk,i, θk,i) · z̄1 +∂2∂2h(z2, z1|Bk,i, θk,i) · z̃k̂,̂i1 · z̃k̃,̃i1

43: end if

44: if ck̂,̂ik+1,d−m+1 == 1 & ck̃,̃ik+1,d−m+1 == 1 then

45: Set s2valuesk,i = s2valuesk,i + ∂2∂2c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i2 · z̃k̃,̃i2 + ∂2c(z1,z2|θk,i)
exp(vvaluesk,i )

· z̄2

46: Set s2directk−1,i = s2directk−1,i + ∂2h(z1, z2|Bk,i, θk,i) · z̄2 + ∂2∂2h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i2 · z̃k̃,̃i2

47: Set s2indirectk−1,i = s2indirectk−1,i +∂1h(z2, z1|Bk,i, θk,i) · z̄2 +∂1∂1h(z2, z1|Bk,i, θk,i) · z̃k̂,̂i2 · z̃k̃,̃i2

48: end if

49: if ck̂,̂ik+1,i == 1 & ck̃,̃ik+1,d−m+1 == 1 then

50: Set s2valuesk,i = s2valuesk,i + ∂1∂2c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i1 · z̃k̃,̃i2

51: Set s2directk−1,i = s2directk−1,i + ∂1∂2h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i1 · z̃k̃,̃i2

52: Set s2indirectk−1,i = s2directk−1,i + ∂1∂2h(z2, z1|Bk,i, θk,i) · z̃k̂,̂i1 · z̃k̃,̃i2

53: end if

54: if ck̂,̂ik+1,d−m+1 == 1 & ck̃,̃ik+1,i == 1 then

55: Set s2valuesk,i = s2valuesk,i + ∂2∂1c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i2 · z̃k̃,̃i1

56: Set s2directk−1,i = s2directk−1,i + ∂1∂2h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i2 · z̃k̃,̃i1

57: Set s2indirectk−1,i = s2directk−1,i + ∂1∂2h(z2, z1|Bk,i, θk,i) · z̃k̂,̂i2 · z̃k̃,̃i1

58: end if

59: end for

60: end for

61: return
∑

k,i=1,...,d s2
values
k,i
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Appendix B

Additional results from the simula-

tion study in Section 4.1.3

The following tables show the relative bias and relative MSE for the parameters of two selected

scenarios in the simulation study (Scenario 2 & Scenario 4). For comparison purposes all

copula parameters have been transformed to the Kendall’s τ level. Notice the large bias for

the posterior mean estimate of the second Markov chain parameter in Scenario 4 (Table B.2)

where identification issues where observed. In this case the Gibbs sampler with objective

priors fails to capture the underlying Markov structure correctly and the Bayesian procedure

needs to be started with strong subjective prior beliefs. In general, we observe that the

estimation error in the second and third tree is higher than on the first tree and that the

uncertainty in the Gumbel regime, from which less realizations are included in the data set,

is higher than in the Gaussian regime.

Table B.1: Scenario 2: Relative error of Kendall’s τ estimates (top figure) and relative

bias / MSE for the Gaussian regime (upper table) and the Gumbel regime (lower table),

respectively.
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43|12 42|1 32|1 41 31 21 41|23 42|3 31|2 43 32 21

−
0.

5
0.

0
0.

5
1.

0 Gaussian Regime Gumbel Regime

Gaussian regime τ43|12 τ42|1 τ32|1 τ41 τ31 τ21

relative bias -2.1 ·10−3 -1.7 ·10−3 7.2 ·10−4 -8.1 ·10−4 -1.1 ·10−3 -1.9 ·10−3

relative MSE 1.4 ·10−3 4.3 ·10−4 4.3 ·10−4 4.6 ·10−5 4.1 ·10−5 5.5 ·10−5

Gumbel regime τ41|23 τ42|3 τ31|2 τ43 τ32 τ21

relative bias 9.5 ·10−2 5.2 ·10−3 1.7 ·10−2 -1.1 ·10−2 -1.6 ·10−2 -1.0 ·10−2

relative MSE 1.3 ·10−2 7.2 ·10−3 5.6 ·10−3 3.3 ·10−3 3.2 ·10−3 3.6 ·10−3
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Table B.2: Relative error of Markov chain parameter estimates in Scenarios 2 (left figure)

and 4 (right figure), and relative bias / MSE for Scenario 2 (left table) and Scenario 4 (right

table).
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●

a b

−
0.

10
−

0.
05

0.
00

Relative error of MC parameter estimates (Scenario 2)

MC parameters a b

relative bias -3.7 ·10−3 -1.0 ·10−2

relative MSE 1.4 ·10−4 6.5 ·10−4
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a b

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

Relative error of MC parameter estimates (Scenario 4)

MC parameters a b

relative bias -9.7 ·10−2 -7.2 ·10−1

relative MSE 4.0 ·10−2 5.1 ·10−1

Table B.3: Scenario 4: Relative error of Kendall’s τ estimates (top figure) and relative

bias / MSE for the Gaussian regime (upper table) and the Gumbel regime (lower table),

respectively.
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43|12 42|1 32|1 41 31 21 41|23 42|3 31|2 43 32 21

−
2

0
2

4
6

8 Gaussian Regime Gumbel Regime

Gaussian regime τ43|12 τ42|1 τ32|1 τ41 τ31 τ21

relative bias 2.4 ·10−1 1.9 ·10−2 -2.6 ·10−2 -5.1 ·10−2 -3.7 ·10−2 -1.5 ·10−2

relative MSE 2.5 ·10−2 7.5 ·10−3 8.3 ·10−3 5.7 ·10−3 5.4 ·10−3 4.4 ·10−3

Gumbel regime τ41|23 τ42|3 τ31|2 τ43 τ32 τ21

relative bias 3.1 ·100 8.7 ·10−1 1.2 ·100 5.2 ·101 5.1 ·10−1 4.5 ·10−1

relative MSE 2.3 ·100 5.3 ·10−1 7.5 ·10−1 2.7 ·10−1 2.3 ·10−1 2.1 ·10−1
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Appendix C

Conditional copula of the Student’s

t distribution

Let us denote a d-dimensional Student’s t distribution with mean vector 0, correlation matrix

R and degrees of freedom ν is denoted as td(0, R, ν). Its pdf is ft,d(·;R, ν) and we write

Ft,d(·;R, ν) for the cdf. We consider a d-dimensional random vector X = (XA,XB) =

(X1, X2,XB), with A = {1, 2} and B={3, . . . , d}, distributed according to a multivariate

Student’s t distribution with ν degrees of freedom, mean µ = (µ1, . . . , µd)
T and scale matrix

R = (Ri,j)i,j=1,...,d =

 RA RAB

RTAB RB

 ,where RAB =

R1B

R2B

 , RA =

R11 R12

R21 R22

 .

Let us define

VA|B :=

R11 R12

R21 R22

−
R1B

R2B

R−1
B

(
RT1B RT2B

)
=:

 V1|B V12|B

V21|B V2|B

 ,

RA|B := diag(VA|B)−1/2 VA|B diag(VA|B)−1/2, γ(xB) :=

√
1 + (1/ν)xTBR

−1
B xB

(ν + d− 2)/ν
,

then we have for the conditional distribution of XA given XB = xB:

FA|B(xA|xB) = Ft,2

(
x1 − µ1|B(xB)√
V1|B · γ(xB)

,
x2 − µ2|B(xB)√
V2|B · γ(xB)

;RA|B, ν + d− 2

)
, (C.1)

cf. Nikoloulopoulos et al. (2009, Lemma 2.2). Taking x2 →∞ (x1 →∞) yields

F1|B(x1|xB) = Ft,1

(
x1 − µ1|B(xB)√
V1|B · γ(xB)

; ν + d− 2

)

F2|B(x2|xB) = Ft,1

(
x2 − µ2|B(xB)√
V2|B · γ(xB)

; ν + d− 2

)
,

(C.2)

so that we can now determine the corresponding copula:

C1,2;3:d(u1, u2) = C1,2;3:d(u1, u2|xB) = F12|3:d

(
F−1

1|3:d(u1|xB), F−1
2|3:d(u2|xB)|xB

)
= Ft,2

(
Ft,1

−1(u1; ν + d− 2), Ft,1
−1(u2; ν + d− 2);RA|B, ν + d− 2

)
,

where the additive constants and scaling factors in Equations (C.1) and (C.2) cancel. This is

a bivariate Student’s t copula with ν + d− 2 degrees of freedom and correlation matrix RA|B

and does not depend on xB anymore.
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Appendix D

Application 1: additional material

D.1 Exchange rate data: selected R-vines

This appendix lists the parameter estimates and copula structures corresponding to the MS

models considered in Section 5. For models (1) - (3) which are analyzed in detail in the

application section, we provide the selected R-vine tree structures, as well as parameter

estimates resulting from the EM algorithm and the Bayesian estimation procedure. To make

comparisons easier across different copula families, all parameters have been transformed to

the corresponding values of Kendall’s τ . As summary statistics for the posterior distributions

in the Bayesian setup we list the posterior mean estimates as well as the 5% and 95% quantiles.

D.1.1 Model (1)

Here, only the copula parameters are switching while tree structure (Figure D.1) and copula

families are common to both regimes.

Figure D.1: First and second tree of the tree structure V1 of Model (1). This structure

represents also the non-crisis regime in Models (2a) - (2c) and (3).
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Table D.1: Estimated Kendall’s τ for the first and second tree of Model (1).

Tree 1 GBP,EUR EUR,CHF CHF,JPY AUS,EUR AUS,BRL INR,AUS CAD,AUS CNY,INR

cop. fam. SG SG SG N G N N G

Regime 1

τ̂EM1 0.55 0.78 0.46 0.46 0.19 0.14 0.29 0.11

τ̂MCMC
1 0.56 0.79 0.47 0.46 0.18 0.14 0.28 0.13

5% quant. 0.53 0.77 0.43 0.43 0.14 0.10 0.24 0.09

95% quant. 0.60 0.81 0.50 0.49 0.23 0.20 0.32 0.17

Regime 2

τ̂EM2 0.44 0.58 0.24 0.41 0.45 0.26 0.44 0.07

τ̂MCMC
2 0.44 0.58 0.22 0.40 0.43 0.25 0.44 0.05

5% quant. 0.40 0.55 0.17 0.36 0.39 0.20 0.40 0.02

95% quant. 0.47 0.60 0.27 0.43 0.47 0.29 0.50 0.10

Tree 2
GBP,AUS| CAD,EUR| CAD,BRL| BRL,INR| CNY,AUS| JPY,EUR| CHF,AUS|

EUR AUS AUS AUS INR CHF EUR

cop. fam. G G SG 0 SG G270 G270

Regime 1

τ̂EM1 0.15 0.11 0.07 0.02 0.01 -0.06 -0.03

τ̂MCMC
1 0.15 0.11 0.07 0.01 0.02 -0.06 -0.03

5% quant. 0.10 0.07 0.03 -0.04 0.00 -0.10 -0.07

95% quant. 0.20 0.15 0.13 0.06 0.05 -0.02 -0.00

Regime 2

τ̂EM2 0.15 0.11 0.11 0.11 0.10 -0.31 -0.24

τ̂MCMC
2 0.16 0.13 0.11 0.11 0.11 -0.31 -0.24

5% quant. 0.10 0.08 0.04 0.06 0.07 -0.36 -0.28

95% quant. 0.21 0.17 0.17 0.16 0.16 -0.26 -0.19
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D.1.2 Models (2)

For Models (2a) - (2c), two R-vine tree structures have been selected. The R-vine V1, corre-

sponding to normal times, has again the structure displayed in Figure D.1, the second R-vine

(V2), is given in Figure D.2.

Table D.2: Estimated Kendall’s τ values corresponding to the first tree of Models (2a) -

(2c), respectively. For the t-copula used in Model (2c), the first parameter is Kendall’s τ , the

second gives the degrees of freedom (with νmax = 30).

”normal”, V1 GBP,EUR EUR,CHF CHF,JPY AUS,EUR AUS,BRL INR,AUS CAD,AUS CNY,INR

(2a) τ̂EM1 0.53 0.75 0.45 0.46 0.28 0.21 0.35 0.12

(2a) τ̂MCMC
1 0.56 0.78 0.45 0.48 0.24 0.21 0.33 0.15

5% quant. 0.52 0.75 0.41 0.45 0.19 0.17 0.29 0.10

95% quant. 0.60 0.80 0.49 0.51 0.29 0.25 0.36 0.20

(2b) τ̂EM1 0.54 0.75 0.44 0.47 0.29 0.22 0.35 0.12

(2b) τ̂MCMC
1 0.52 0.74 0.43 0.44 0.29 0.21 0.34 0.11

5% quant. 0.49 0.72 0.40 0.41 0.26 0.17 0.31 0.07

95% quant. 0.55 0.76 0.46 0.48 0.32 0.24 0.37 0.14

(2c) τ̂EM1 0.60 0.81 0.47 0.48 0.21 0.19 0.32 0.16

(2c) τ̂MCMC
1 0.60 0.80 0.47 0.49 0.21 0.21 0.31 0.17

5% quant. 0.57 0.79 0.44 0.46 0.16 0.17 0.27 0.13

95% quant. 0.62 0.82 0.51 0.52 0.26 0.22 0.35 0.22

”crisis”, V2 GBP,EUR EUR,CHF CHF,JPY JPY,INR AUS,GBP BRL,AUS BRL,CNY CAD,GBP

(2a) τ̂EM2 0.44 0.45 0.11 0.00 0.41 0.49 0.11 0.41

(2a) τ̂MCMC
2 0.42 0.52 0.22 0.01 0.37 0.47 0.07 0.37

5% quant. 0.36 0.47 0.11 0.00 0.30 0.41 0.01 0.29

95% quant. 0.49 0.56 0.30 0.02 0.44 0.53 0.13 0.43

(2b) τ̂EM2 0.37 0.37 0.10 0.00 0.32 0.41 0.08 0.36

(2b) τ̂MCMC
2 0.45 0.37 0.05 0.01 0.35 0.44 0.13 0.38

5% quant. 0.34 0.27 0.00 0.00 0.25 0.36 0.03 0.30

95% quant. 0.55 0.45 0.15 0.04 0.44 0.53 0.24 0.46

(2c) τ̂EM2 0.43, 10.8 0.58, 8.6 0.27, 7.9 -0.13, 30 0.37, 10.7 0.44, 5.9 0.06, 30 0.33, 30

(2c) τ̂MCMC
2 0.42, 14.2 0.56, 9.7 0.25, 9.8 -0.15, 21.4 0.35, 15.4 0.45, 9.3 0.05, 20.8 0.34, 21.8

5% quant. 0.38, 7.0 0.53, 5.6 0.21, 5.2 -0.21, 11.6 0.31, 7.0 0.45, 4.8 -0.01, 10.7 0.29, 11.0

95 % quant. 0.46, 25.7 0.60, 16.3 0.29, 18.3 -0.11, 29.2 0.40, 28.1 0.49, 19.0 0.11, 29.2 0.39, 29.3
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Table D.3: Estimated Kendall’s τ , corresponding to the second tree of (2a) - (2c).

”normal”, V1
JPY,EUR| AUS,CHF| AUS,GBP| CAD,EUR| CAD,BRL| INR,BRL| CNY,AUS|

CHF EUR EUR AUS AUS AUS INR

(2a) τ̂EM1 -0.14 -0.13 0.14 0.10 0.12 0.07 0.01

(2a) τ̂MCMC
1 -0.10 -0.08 0.13 0.10 0.11 0.06 0.00

5 % quantile -0.16 -0.14 0.09 0.06 0.07 0.01 -0.05

95 % quantile -0.02 0.00 0.18 0.14 0.15 0.10 0.04

(2b) τ̂EM1 -0.16 -0.14 0.15 0.10 0.12 0.07 0.01

(2b) τ̂MCMC
1 -0.17 -0.17 0.16 0.10 0.11 0.07 0.02

5 % quantile -0.21 -0.20 0.13 0.06 0.07 0.03 -0.02

95 % quantile -0.13 -0.13 0.20 0.13 0.14 0.11 0.06

(2c) τ̂EM1 -0.01 0.02 0.15 0.10 0.12 0.03 0.00

(2c) τ̂MCMC
1 -0.03 0.00 0.14 0.10 0.11 0.04 0.00

5 % quantile -0.08 -0.06 0.09 0.05 0.07 -0.01 -0.05

95 % quantile 0.03 0.05 0.18 0.15 0.16 0.09 0.04

”crisis”, V2
CNY,AUS| GBP,BRL| AUS,CAD| CAD,EUR| GBP,CHF| EUR,JPY| CHF,INR|

BRL AUS GBP GBP EUR CHF JPY

(2a) τ̂EM2 0.21 0.04 0.24 0.14 -0.22 -0.42 0.03

(2a) τ̂MCMC
2 0.17 0.04 0.28 0.15 -0.19 -0.36 0.07

5 % quantile 0.09 -0.03 0.19 0.07 -0.26 -0.45 0.01

95 % quantile 0.25 0.12 0.35 0.21 -0.13 -0.31 0.15

(2b) τ̂EM2 0.19 0.11 0.26 0.17 -0.16 -0.36 -0.02

(2b) τ̂MCMC
2 0.22 0.14 0.39 0.28 -0.14 -0.42 -0.02

5 % quantile 0.11 0.02 0.21 0.14 -0.23 -0.52 -0.10

95 % quantile 0.34 0.28 0.56 0.42 -0.04 -0.31 0.07

(2c) τ̂EM2 0.10 0.03 0.30 0.18 -0.15 -0.35 0.12

(2c) τ̂MCMC
2 0.11 0.04 0.30 0.18 -0.16 -0.36 0.11

5 % quantile 0.06 -0.01 0.25 0.12 -0.20 -0.40 0.05

95 % quantile 0.16 0.10 0.35 0.22 -0.11 -0.31 0.16
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Figure D.2: First and second tree of the ”crisis” R-vine structure V2 which we have chosen

for Model (2).
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D.1.3 Model (3)

The structure for the first regime is V1 with copulas selected by AIC, the tree structure for

the second regime is V3 (Figure D.3).

Table D.4: Estimated Kendall’s τ , corresponding to the first and second tree of the normal

regime in Model (3).

”normal”, V1 GBP,EUR EUR,CHF CHF,JPY AUS,EUR AUS,BRL INR,AUS CAD,AUS CNY,INR

cop. fam. SG N N N G N N G

(2a) τ̂EM1 0.51 0.76 0.49 0.45 0.22 0.16 0.30 0.11

(2a) τ̂MCMC
1 0.52 0.76 0.49 0.45 0.22 0.16 0.30 0.11

5 % quantile 0.49 0.75 0.46 0.42 0.17 0.12 0.26 0.07

95 % quantile 0.55 0.78 0.52 0.48 0.26 0.20 0.34 0.16

”normal”, V1
JPY,EUR| AUS,CHF| AUS,GBP| CAD,EUR| CAD,BRL| INR,BRL| CNY,AUS|

CHF EUR EUR AUS AUS AUS INR

cop. fam. G270 G 270 G G N N G

(2a) τ̂EM1 -0.09 -0.05 0.14 0.10 0.08 0.05 0.03

(2a) τ̂MCMC
1 -0.09 -0.05 0.14 0.11 0.08 0.04 0.04

5% quant. -0.14 -0.10 0.10 0.07 0.04 -0.01 0.01

95% quant. -0.04 -0.02 0.18 0.15 0.13 0.09 0.07
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Table D.5: Estimated Kendall’s τ , corresponding to the first and second tree of the crisis

regime in Model (3).

”crisis”, V3 CHF,EUR EUR,AUS GBP,AUS AUS,CAD AUS,BRL BRL,JPY INR,AUS CNY,INR

cop. fam. SG N N SG N G270 G G

(2a) τ̂EM1 0.54 0.42 0.42 0.50 0.52 -0.34 0.23 0.06

(2a) τ̂MCMC
1 0.55 0.40 0.41 0.49 0.52 -0.35 0.23 0.06

5% quant. 0.50 0.35 0.35 0.45 0.48 -0.40 0.16 0.00

95% quant. 0.58 0.44 0.46 0.53 0.56 -0.30 0.29 0.12

”crisis”, V3
CNY,AUS| INR,BRL| AUS,JPY| CAD,BRL| CAD,EUR| GBP,EUR| AUS,CHF|

INR AUS BRL AUS AUS AUS EUR

cop. fam. SG N G270 G G N N

(2a) τ̂EM1 0.10 0.11 -0.14 0.10 0.15 0.34 -0.32

(2a) τ̂MCMC
1 0.11 0.11 -0.17 0.13 0.16 0.34 -0.32

5% quant. 0.05 0.05 -0.24 0.05 0.10 0.28 -0.37

95% quant. 0.19 0.17 -0.10 0.19 0.22 0.41 -0.27

Figure D.3: First and second tree of the R-vine structure representing the ”crisis” regime

of Model (3). We refer to this structure as V3.
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D.1.4 Model (4)

The structures for the two regimes of Model (4) were selected using the model selection

heuristic outlined in Section 4.1.4. Other than for Models (1) - (3), we did not truncate after

the second tree, but allowed for copulas on all trees to be specified while employing bivariate

independence tests as a pre-test for parsimony. While the first and second trees (Figures D.4

and D.5) are similar for the “normal” and the “crisis” regime, the dependence regimes differ
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in the corresponding pair copulas (mainly Gaussian copulas for the first tree of the “normal”

regime and Gumbel copulas for the “crisis” regime). The higher trees are omitted for brevity

and since many of the associated copulas (9 in the “normal” regime and 16 in the “crisis”

regime) were chosen to be independence copulas.

Figure D.4: First and second tree of the R-vine structure representing the “normal” regime

of Model (4). We refer to this structure as V4n. The edge labels are the copula families and

the values of Kendall’s τ corresponding to posterior mean estimates.
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Figure D.5: First and second tree of the R-vine structure representing the ”crisis” regime

of Model (4). We refer to this structure as V4c. The edge labels are the copula families and

the values of Kendall’s τ corresponding to posterior mean estimates.
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The higher trees and corresponding parameter estimates are available upon request.
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D.2 Regime switching marginal distributions

In this section, we provide the remaining plots of smoothed “crisis” probabilities (Figures D.7 - D.6)

and the parameter estimates corresponding to the models fitted to the exchange rate data in Section

5.2. The marginal parameter estimates are given in Table D.6, Figures D.9 and D.9 give the selected

R-vine tree structures with selected copula families and corresponding parameter estimates being

annotated as edge labels.

Figure D.6: Smoothed probabilities of being in the “crisis” regime for the INR/USD and

CNY/USD exchange rates. For these time series, we observe less persistent regimes and a

higher fluctuation in the period before 2008 than for the other marginal time series.
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Figure D.7: Smoothed probabilities of being in the “crisis” (high volatility) regime from

top to bottom for the GBP/USD, CAD/USD and JPY/USD exchange rates.
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Figure D.8: Smoothed probabilities of being the “crisis” regime for the CHF/USD exchange

rate (top panel) the AUD/USD exchange rate (middle panel) and the BRL/USD exchange

rate (lower panel). For the BRL/USD exchange rate returns, we observe spikes of high “crisis”

probability already in 2005, 2006 and 2007.
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Figure D.9: First and second tree of the R-vine structure representing the “normal” regime

(upper panel) and the “crisis” regime (lower panel). The edge labels are the copula families

and the values of Kendall’s τ corresponding to the estimates of the two-step approach.

Tree 1

G,0.11

N,0.19

N,0.5
N,0.39

SG,0.29

N,0.61

N,0.8

N,0.42

CNY

INR

AUS
EUR

CAD

BRL

GBP

CHF

JPY

Tree 2

SG,0.05

N,0.08

G,0.13

N,0.13

N,0.18

I,0

G270,−0.06
AUS,INR

CNY,INR

EUR,AUS

CAD,AUS

AUS,BRL

EUR,GBP

EUR,CHF

JPY,CHF

Tree 1

N,0.21

N,0.39

SG,0.34

N,0.34

N,0.55

G,0.29

N,0.12

SG,0.38

BRL

INR

AUS

CAD

EUR

CHF

JPY

CNY

GBP

Tree 2

SG,0.07

G,0.09

G,0.09
N,−0.26

N,−0.25

I,0

N,−0.13

AUS,BRL

BRL,INR

CAD,AUS

EUR,AUS

EUR,CHF

JPY,CHF

EUR,CNY
EUR,GBP

The higher trees and corresponding parameter estimates are available upon request.
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Figure D.10: First and second tree of the R-vine structure representing the “normal” regime

(upper panel) and the “crisis” regime (lower panel). The Kendall’s τ values in the edge labels

correspond to the estimates for the joint model.

Tree 1

G,0.05

N,0.15 N,0.42

N,0.32

SG,0.25

N,0.55

N,0.74

N,0.44

CNY

INR

AUS

EUR

CAD

BRL

GBP

CHF

JPY

Tree 2

SG,0.03

N,0.07

G,0.09

N,0.11

N,0.13

I,0

G270,−0.14 AUS,INR

CNY,INR

EUR,AUS

CAD,AUS

AUS,BRL

EUR,GBP

EUR,CHF

JPY,CHF

Tree 1

N,0.19

N,0.49

SG,0.53

N,0.45

N,0.62

G,0.21

N,0.08

SG,0.45

BRL

INR

AUS

CAD

EUR

CHF

JPY

CNY

GBP

Tree 2

SG,0.13

G,0.06
G,0.16

N,−0.32

N,−0.28

I,0

N,−0.2

AUS,BRL

BRL,INR

CAD,AUS

EUR,AUS

EUR,CHF

JPY,CHF

EUR,CNY

EUR,GBP

The higher trees and corresponding parameter estimates are available upon request.
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Table D.6: Parameters estimated for the “normal” and the “crisis” regime of the marginal

time series obtained via separate application of MS models to all marginals (two-step) and

the model assuming a joint state variable (joint).

EUR GBP CAD AUD BRL CNY JPY CHF INR

tw
o-

st
ep

100µ1 -0.03 -0.01 -0.02 -0.05 -0.09 -0.01 0.02 -0.02 -0.01

100σ1 0.48 0.48 0.47 0.58 0.76 0.05 0.51 0.53 0.22

100µ2 0.03 0.07 0.02 0.14 0.46 -0.04 -0.10 -0.02 0.04

100σ2 1.09 1.26 1.19 2.05 2.87 0.21 1.08 1.04 0.77

jo
in

t

100µ1 -0.03 -0.02 -0.04 -0.05 -0.09 -0.02 0.01 -0.02 -0.01

100σ1 0.47 0.47 0.49 0.57 0.72 0.08 0.53 0.55 0.32

100µ2 0.03 0.09 0.08 0.12 0.15 -0.01 -0.09 -0.01 0.07

100σ2 1.05 1.19 1.19 1.93 2.11 0.18 1.12 1.06 0.88
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Appendix E

Application 2 (LSOA II model): pa-

rameter estimates

In this section, we provide the selected covariates and R-vine tree structures and the parameter

estimates for the model we have developed for the LSOA II data in Section 6. The covariates which

have been chosen using the AIC criterion for the marginal GLMs are given in Table E.1.

Figure E.1: The R-vine tree structure, pair copulas and corresponding parameter estimates

for the first wave of observations of the six response variables. Here, the pair-copulas are

parametrized in terms of the theoretical Kendall’s tau values which would result in the purely

continuous case.

BMIdia

hd

hyp

str art

T1

T2

T3

T4

T5

hd,str dia,hd dia,BMI hyp,BMI art,BMI

dia,str|hd hd,BMI|dia dia,hyp|BMI hyp,art|BMI

str,BMI|dia,hd hyp,hd|dia,BMI dia,art|hyp,BMI

hyp,str|dia,hd,BMI art,hd|dia,str,BMI

hyp,BMI (N, 0.13)dia,BMI (N, 0.16)

art,BMI (F, 0.11)
dia,hd (J, 0.06)

hd,str (J, 0.06)

dia,str|hd

(N, 0.09)

hd,BMI|dia

(F, 0.03)

dia,hyp|BMI

(N, 0.16)

hyp,art|BMI

(F, 0.07)

str,BMI|dia,hd

(N, -0.04)

hyp,hd|dia,BMI

(J, 0.03)

dia,art|hyp,BMI

(C, 0.14)

hyp,str|dia,hd,BMI

(J, 0.08)

art,hd|dia,str,BMI

(C, 0.09)

hyp,art | hd,dia,str,BMI

(N, 0.05)

Since we are dealing with data containing both discrete and continuous variables, the theoretical

Kendall’s rank correlations which would correspond to the estimated parameters in a continuous

setup give less information about the strength of dependence. The actual rank correlation values do

depend on the marginal distributions here and will be different for different sets of covariates. For

these reasons, we give all copula parameter estimates and corresponding standard errors using their

standard parameterizations in the tables below (see Schepsmeier and Stöber (2012)). For readers who

are more comfortable with the parameterization by Kendall’s τ values however, we include these in

Figures E.1 and E.2, which show the selected R-vine tree structures and corresponding copula families.
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Figure E.2: The R-vine structures which were selected for the follow-up interviews (top:

wave 2 and bottom: wave 3).

BMIdia

hd

hyp

str art

T1

T2

T3

T4

T5

hd,art hd,str dia,hd dia,BMI hyp,BMI

art,str|hd str,dia|hd hd,BMI|dia dia,hyp|BMI

art,dia|str,hd str,BMI|hd,dia hd,hyp|BMI,dia

art,BMI|str,dia,hd str,hyp|hd,BMI,dia

hyp,BMI (F, 0.12)dia,BMI (N, 0.16)

hd,art (C, 0.20)dia,hd (J, 0.06)

hd,str (F, 0.31)

art,str|hd

(C, 0.17)

str,dia|hd

(C, 0.27)

hd,BMI|dia

(N, -0.02)

dia,hyp|BMI

(G, 0.12)

art,dia|str,hd

(N, 0.02)

str,BMI|hd,dia

(F, -0.02)

hd,hyp|BMI,dia

(F, 0.08)

art,BMI|str,dia,hd

(F, 0.08)

str,hyp|hd,BMI,dia

(N, 0.11)

art,hyp | hd,dia,str,BMI

(C, 0.07)

BMIdia

hd

hyp

str art

T1

T2

T3

T4

T5

hd,str hd,art art,BMI hyp,BMI dia,BMI

str,art|hd hd,BMI|art art,hyp|BMI hyp,dia|BMI

str,BMI|hd,art hd,hyp|BMI,art art,dia|hyp,BMI

str,hyp|hd,art,BMI hd,dia|BMI,art,hyp

hyp,BMI (F, 0.12)dia,BMI (N, 0.14)

hd,art (C, 0.16)

art,BMI (F, 0.10)

hd,str (N, 0.14)

str,art|hd

(C, 0.13)

hd,BMI|art

(F, -0.04)

art,hyp|BMI

(C, 0.08)

hyp,dia|BMI

(J, 0.10)

str,BMI|hd,art

(F, -0.06)

hd,hyp|BMI,art

(C, 0.15)

art,dia|hyp,BMI

(F, 0.03)

str,hyp|hd,art,BMI

(F, 0.12)

hd,dia|BMI,art,hyp

(N, 0.15)

str,dia | hd,hyp,art,BMI

(J, 0.04)
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Table E.1: Included covariates and interaction terms. Covariates which were not selected

for all time points are marked in bold.

Baseline 1. follow-up 2. follow-up

BMI male, age, edu,

income, smoke,

male:edu, age:income,

age:smoke,

income:smoke

male, age, edu,

income, smoke,

male:edu, age:income,

age:smoke,

income:smoke

male, age, edu,

income, smoke,

male:edu, age:income,

age:smoke,

income:smoke

Hypertension male, age, edu,

income, male:age,

male:edu, edu:income

male, age, edu,

income, male:age,

male:edu,

age:income,

edu:income

male, age, edu,

income, male:age,

male:edu, edu:income

Diabetes male, age, edu,

income, smoke,

male:edu

male, age, edu,

income, smoke,

male:edu,

edu:income

male, age, edu,

income, smoke,

male:edu

Arthritis male, age, edu,

income, smoke,

male:age, male:edu,

male:income,

edu:income

male, edu, income,

smoke, male:edu

male, edu, income,

smoke, male:edu,

male:income

HD male, age, edu,

income, smoke,

male:age, age:smoke

male, age, edu,

smoke, male:age

male:edu, age:edu,

age:smoke,

income:smoke

male, age, edu,

smoke, male:age,

age:edu, age:smoke

Stroke male, age, income male, age, income,

smoke, male:age,

income:smoke

male, edu
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Table E.2: Estimates of copula parameters for the baseline and the first (f.-up1) and second

(f.-up2) follow-up, respectively. The numbers in brackets are the estimated standard errors

(std.). The corresponding copula families are given in Figure 3 and Figure 4.

parameter baseline (std.) f.-up1 (std.) f.-up2 (std.)

art,str|hd,dia,hyp,BMI 0.0749 (0.0551)

art,hd|dia,hyp,BMI 0.2173 (0.0780)

dia,str|hd,art,hyp,BMI 1.066 (0.0299)

dia,hd|art,hyp,BMI 0.2357 (0.0449)

hyp,art|str,hd,dia,BMI 0.1477 (0.0486)

hyp,str|hd,dia,BMI 0.1779 (0.0603)

hyp,str|hd,art,BMI 1.1365 (0.4073)

BMI,art|str,hd,dia 0.6926 (0.1516)

hyp,str|hd,dia,BMI 1.1461 (0.0409)

hyp,hd|art,BMI (0.0000) 0.3575 (0.0833)

art,dia|hyp,BMI 0.3215 (0.1230) 0.2842 (0.2769)

dia,art|str,hd 0.0377 (0.0462)

BMI,str|hd,art -0.5814 (0.3472)

BMI,str|hd,dia -0.0655 (0.0424) -0.1952 (0.3870)

hyp,hd|dia,BMI 1.0569 (0.0293) 0.6819 (0.2239)

hyp,dia|BMI 0.2424 (0.0468) 1.1434 (0.0321) 1.1914 (0.0427)

BMI,hd|art (0.0000) -0.3236 (0.1754)

art,hyp|BMI 0.6752 (0.1819) 0.1747 (0.0479)

BMI,hd|dia 0.2807 (0.1929) -0.0311 (0.0304)

dia,str|hd 0.1338 (0.0700) 0.7346 (0.4190)

art,str|hd 0.4236 (0.1894) 0.3084 (0.1592)

hyp,BMI 0.2046 (0.0253) 1.1202 (0.1494) 1.11 (0.1476)

art,BMI 0.9609 (0.1527) 0.8864 (0.1521)

BMI,dia 0.2415 (0.0363) 0.2458 (0.0337) 0.2175 (0.0322)

dia,hd 1.1162 (0.0307) 1.1211 (0.0303)

art,hd 0.5027 (0.0930) 0.3956 (0.0781)

str,hd 1.1108 (0.0317) 3.0662 (0.6099) 0.2219 (0.0552)
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Table E.3: Estimates of regression parameters for BMI, hypertension (hyp), diabetes (dia)

and arthritis (art). Columns correspond to baseline, first (f.-up1) and second (f.-up2) follow-

up, respectively. The standard errors (std.) and corresponding p-values (p.val.) are given in

brackets.

parameter baseline (std., p.val.) f.-up1 (std., p.val.) f.-up2 (std., p.val.)

BMI.intercept 4.1008 (0.1480, 0.00) 4.1544 (0.1489, 0.00) 4.2513 (0.1528, 0.00)

BMI.male -0.0767 (0.0270, 0.00) -0.0559 (0.0272, 0.04) -0.0641 (0.0280, 0.02)

BMI.age -0.009 (0.0019, 0.00) -0.0101 (0.0019, 0.00) -0.0115 (0.0019, 0.00)

BMI.edu -0.0096 (0.0015, 0.00) -0.0085 (0.0015, 0.00) -0.0094 (0.0015, 0.00)

BMI.income -0.0196 (0.0078, 0.01) -0.0181 (0.0079, 0.02) -0.0218 (0.0081, 0.01)

BMI.smoke -0.4173 (0.1123, 0.00) -0.4008 (0.1128, 0.00) -0.2765 (0.1161, 0.02)

BMI.male:edu 0.0077 (0.0021, 0.00) 0.0065 (0.0021, 0.00) 0.007 (0.0022, 0.00)

BMI.age:income 0.0002 (0.0001, 0.04) 0.0002 (0.0001, 0.06) 0.0002 (0.0001, 0.02)

BMI.age:smoke 0.0048 (0.0014, 0.00) 0.0045 (0.0014, 0.00) 0.0028 (0.0015, 0.05)

BMI.income:smoke 0.0027 (0.0010, 0.01) 0.0026 (0.0010, 0.01) 0.0026 (0.0011, 0.01)

BMI.lambda 1018.4743 (29.1238, -) 997.1133 (28.5142, -) 927.2608 (26.5108, -)

hyp.intercept -1.568 (0.9714, 0.11) 1.9823 (1.8848, 0.29) 0.2036 (0.9475, 0.83)

hyp.male 1.2926 (1.5542, 0.41) 3.3813 (1.6180, 0.04) 1.4553 (1.4943, 0.33)

hyp.age 0.0139 (0.0111, 0.21) -0.0264 (0.0235, 0.26) -0.0047 (0.0108, 0.67)

hyp.edu 0.0358 (0.0367, 0.33) 0.0121 (0.0361, 0.74) 0.0201 (0.0358, 0.57)

hyp.income 0.0374 (0.0251, 0.14) -0.1721 (0.1124, 0.13) 0.0402 (0.0240, 0.09)

hyp.male:age -0.035 (0.0199, 0.08) -0.0579 (0.0210, 0.01) -0.0367 (0.0192, 0.06)

hyp.male:edu 0.0838 (0.0298, 0.00) 0.051 (0.0284, 0.07) 0.079 (0.0281, 0.00)

hyp.age:income 0.0025 (0.0014, 0.07)

dia.edu:income -0.0047 (0.0021, 0.02) -0.003 (0.0020, 0.14) -0.0039 (0.0020, 0.05)

dia.intercept 2.865 (1.4146, 0.04) 2.4728 (1.4093, 0.08) 3.555 (1.2201, 0.00)

dia.male -0.9745 (0.5611, 0.08) -1.1107 (0.5693, 0.05) -0.6109 (0.4830, 0.21)

dia.age -0.0453 (0.0175, 0.01) -0.0512 (0.0162, 0.00) -0.0519 (0.0150, 0.00)

dia.edu -0.1329 (0.0323, 0.00) -0.0367 (0.0550, 0.50) -0.107 (0.0288, 0.00)

dia.income -0.0218 (0.0132, 0.10) 0.0404 (0.0379, 0.29) -0.0305 (0.0112, 0.01)

dia.smoke -0.2645 (0.1590, 0.10) -0.24 (0.1442, 0.10) -0.2115 (0.1342, 0.12)

dia.male:edu 0.1059 (0.0458, 0.02) 0.1215 (0.0471, 0.01) 0.085 (0.0393, 0.03)

art.edu:income -0.0055 (0.0032, 0.09)

art.intercept 0.8704 (1.0282, 0.40) 1.6874 (0.2360, 0.00) 1.688 (0.2375, 0.00)

art.male -2.4908 (1.5313, 0.10) -1.2162 (0.3521, 0.00) -1.0247 (0.3848, 0.01)

art.age 0.0147 (0.0116, 0.21)

art.edu -0.1168 (0.0402, 0.00) -0.0734 (0.0202, 0.00) -0.0799 (0.0207, 0.00)

art.income -0.0503 (0.0266, 0.06) -0.016 (0.0076, 0.04) -0.0097 (0.0089, 0.28)

art.smoke 0.1954 (0.0880, 0.03) 0.1681 (0.0871, 0.05) 0.15 (0.0872, 0.09)

art.male:age 0.0281 (0.0194, 0.15)

art.male:edu 0.0514 (0.0317, 0.11) 0.0619 (0.0273, 0.02) 0.0889 (0.0305, 0.00)

art.male:income -0.0422 (0.0171, 0.01) -0.0282 (0.0170, 0.10)
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Table E.4: Estimates of marginal parameters for heart disease (hd) and stroke (str) for the

baseline and the first (f.-up1) and second (f.-up2) follow-up, respectively. The numbers in

brackets are the estimated standard errors (std.) and corresponding p-values (p.val.).

parameter baseline (std., p.val.) f.-up1 (std., p.val.) f.-up2 (std., p.val.)

hd.edu:income 0.0036 (0.0021, 0.09)

hd.intercept -2.9038 (1.3315, 0.03) 5.2583 (3.3673, 0.12) 2.0884 (2.9508, 0.48)

hd.male 3.7663 (1.8113, 0.04) 1.8378 (1.9222, 0.34) 3.212 (1.6912, 0.06)

hd.age 0.0221 (0.0169, 0.19) -0.0836 (0.0436, 0.06) -0.0414 (0.0386, 0.28)

hd.edu -0.0333 (0.0184, 0.07) -0.5928 (0.2711, 0.03) -0.4357 (0.2376, 0.07)

hd.income -0.0146 (0.0097, 0.13) 0.008 (0.0121, 0.51)

hd.smoke -4.1742 (1.7500, 0.02) -5.4277 (1.8272, 0.00) -3.4623 (1.6127, 0.03)

hd.male:age -0.0429 (0.0239, 0.07) -0.0365 (0.0250, 0.15) -0.0393 (0.0223, 0.08)

hd.male:edu 0.0876 (0.0340, 0.01)

hd.age:edu 0.0071 (0.0035, 0.05) 0.0054 (0.0031, 0.08)

hd.age:smoke 0.0593 (0.0230, 0.01) 0.0823 (0.0232, 0.00) 0.0471 (0.0212, 0.03)

str.income:smoke -0.0373 (0.0164, 0.02)

str.intercept -4.8408 (1.4335, 0.00) -5.8913 (2.2146, 0.01) -2.6835 (0.3562, 0.00)

str.male 0.482 (0.1846, 0.01) 6.1507 (3.7395, 0.10) 0.5452 (0.1913, 0.00)

str.age 0.0314 (0.0180, 0.08) 0.0302 (0.0274, 0.27)

str.edu -0.0457 (0.0290, 0.12)

str.income -0.0315 (0.0139, 0.02) 0.0119 (0.0235, 0.61)

str.smoke 1.1686 (0.6097, 0.06)

str.male:age -0.0773 (0.0498, 0.12)

str.income:smoke -0.0652 (0.0331, 0.05)
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Stöber, J., and U. Schepsmeier. 2013. Estimating standard errors in regular vine copula

models. Forthcoming in Computational Statistics.
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Stöber, J., H. Joe, and C. Czado. 2013. Simplified pair copula constructions — limitations

and extensions. Journal of Multivariate Analysis 119:101–118.

Takahasi, K. 1965. Note on the multivariate burr’s distribution. Annals of the Institute of

Statistical Mathematics 17:257–260.

Thulasiraman, K., and M. N. S. Swamy. 1992. Graphs: theory and algorithms. New York,

NY, USA: John Wiley & Sons, Inc.

Timmermann, A. 2000. Moments of Markov switching models. Journal of Econometrics 96

(1): 75–111.

U.S. Census Bureau. 2012. Percent Distribution of the Projected Population by Selected Age

Groups and Sex for the United States: 2015 to 2060 (NP2012-T3). http://www.censu

s.gov/population/projections/files/summary/NP2012-T3.csv.

Werner, C. A. 2010. The older population: 2010. The US Census Bureau, 2010 Census briefs

9.

White, H. 1996. Estimation, inference and specification analysis. Econometric Society Mono-

graphs. Cambridge University Press.

Wu, C. F. J. 1983. On the convergence properties of the EM algorithm. The Annals of

Statistics 11 (1): 95–103.

Zakkak, J., D. Wilson, and J. Lanier. 2009. The association between body mass index and

arthritis among US adults: CDC’s surveillance case definition. Preventing Chronic Dis-

ease 6 (2): 14:1–14:11.

148

http://www.census.gov/population/projections/files/summary/NP2012-T3.csv
http://www.census.gov/population/projections/files/summary/NP2012-T3.csv

	Introduction
	Preliminaries
	Notation
	Copulas and multivariate dependence
	Measures of dependence
	Inference

	Scoring rules and model selection criteria
	Log predictive score
	AIC/BIC 

	Graph theory: regular vine tree sequence
	Decomposing a three dimensional distribution
	Continuous case
	Mixed discrete and continuous case
	Margins with discrete and continuous components
	Corresponding R-vine

	Software

	Pair copula constructions and regular vines
	PCCs for discrete and continuous margins
	Likelihood, score function and observed information
	Computation of the likelihood function
	Computation of the score function
	Computation of the observed information


	The simplifying assumption
	Archimedean copulas
	Elliptical copulas
	Effects of the simplifying assumption
	Trivariate extension of the Farlie-Gumbel-Morgenstern copula
	Multivariate 1-factor model
	Non-simplified PCCs


	Regime switching models
	Regime switching copulas
	Markov switching copula models
	Inference for Markov switching models
	Simulation study
	R-vine copula model selection

	Regime switching copulas and marginal distributions
	Model setup
	Inference and EM algorithm for the joint model
	Simulation study


	Application 1: Multivariate regime switching model of US exchange rates
	Markov Switching US exchange rate dependence
	Data description
	R-Vine copula with switching parameters
	Identifying crisis regimes
	Empirical findings
	Model comparison

	Regime switching marginal time series

	Application 2: Comorbidity in the second longitudinal study of aging (LSOA II)
	Introduction and data description
	Multivariate model
	R-vine copula selection
	Selected joint model

	Results
	Conclusions

	Calculation of the observed information in regular vine copula models
	Additional results from the simulation study in Section 4.1.3
	Conditional copula of the Student’s t distribution
	Application 1: additional material
	Exchange rate data: selected R-vines
	Model (1)
	Models (2)
	Model (3)
	Model (4)

	Regime switching marginal distributions

	Application 2 (LSOA II model): parameter estimates

