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Summary

Mass spectrometry based proteomics has now matured into a technology that enables
routine identification and quantification of the expressed proteome and their post-
translational modifications to an unprecedented depth. Due to the massive amount
of data being generated in a relatively short time, data analysis poses next challenge
in the field demanding parallel development of an efficient computational platform.
The overall aim of the projects described in this thesis is to reduce the time taken for
such computational analysis and to improve the interpretation of shotgun proteomics

experiments using high-confidence analysis.

A central step in this endeavor was the development and implementation of our
novel peptide search engine termed Andromeda (article 2.1). Integrated in the existing
data analysis pipeline MaxQuant, Andromeda now enables high confidence identifi-
cation of peptides using the raw data acquired on state of the art mass spectrometry
instruments. Since the search engine is developed in-house it provides flexibility to
tailor peptide identification to innovations not only in the protein quantification, but
also in instrumentation and hardware. For instance, it allowed us to use the recent
improvement in mass accuracy for better confidence in the identification of peptides.
Additionally, we are now able to accommodate large databases and to assign and score
complex patterns of post-translational modifications, such as highly phosphorylated
peptides. Using several large-scale datasets we proved that our search engine is at least
comparable with the commercially available software such as the widely used Mascot
program. In contrast to existing software Andromeda is freely available and runs also

on a normal desktop computer.

The developments in the mass spectrometry instrumentation have led to generation
of thousands of MS/MS spectra per hour and reliable interpretation of these spectra can
be achieved only by automated analysis using sophisticated software. Apart from the
regular fragment series explained by most peptide search engines, a MS/MS spectrum
contains plenty of unassigned peaks resulting from various fragmentation types. To
increase the confidence in the peptide identifications of Andromeda, we apply domain

knowledge in the interpretation of peptide fragment spectra using a computer-based
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‘Expert System’” (article 2.2). The goal of this approach was to find at least for all high
abundant peaks a valid explanation. This bioinformatics application was designed for
biologists to help them understand the complex mechanisms involved in peptide frag-
mentation by manual inspection of their data. This rule-based system represents a
combination of theoretical understanding and a collection of heuristic problem-solving
strategies that experience has shown to be effective. To estimate the risk of false an-
notations, we calculated a false discovery rate (FDR) for the used set of rules. With
this expert system we were able for the first time to statistically verify, based on thou-
sands of fragment spectra, the peptide fragments obtained by higher energy induced

collisional dissociation (HCD) a new fragmentation method(article 2.3).

For large-scale projects in proteomics, such as clinical studies, the amount of time
needed for analysis can be an essential bottleneck. This project was focused on reduc-
ing the processing time of MaxQuant by enhancements on the software and hardware
side (article 2.4). Various sections in the MaxQuant pipeline underwent refactoring
that otherwise performed poorly and are now executed in parallel. This parallelization
has a dramatic effect when the hardware provides multiple central processing units
(CPUs) such as on a computer cluster. Surprisingly, a hardware configuration which
is optimized for high input and output (I/O) workload is equally efficient in faster
data processing when compared to a computer cluster with high number of processors.
This investigation uncovered important principles in computational analysis required

towards our final aim of complete coverage of the human proteome.

Together, the projects presented in this thesis provide a substantial advancement in
computational proteomics, which in turn will advance the proteomics workflow and

accelerate biological and biomedical discoveries.
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Zusammenfassung

Massenspektrometrie basierte Proteomforschung hat sich zu eine Technologie entwi-
ckelt, die Identifizierung und Quantifizierung des momentanen Proteomes und desen
Modifikationenen, in noch nie da gewesener weise routineméfsig ermdglicht. In diesem
Feld, stellt die innerhalb kurzer Zeit generierten und zunehmend gréfier werdende Da-
tenmengen, eine neue Herausforderung fiir die Datenverarbeitung dar, welche die Ent-
wicklung einer effizienten Computerplattform notwendig macht. Das grofse Ziel der
Projekte die in dieser Arbeit beschrieben werden, ist die Zeit fiir die Datenauswertung
zu reduzieren und die Interpretation von ,Shotgun”-Experimenten in der Proteomfor-

schung durch glaubwiirdige Analyse zu optimieren.

Ein zentraler Schritt in diesen Bemiihungen, war die Entwicklung und Implemen-
tierung unser neuartigen Peptidsuchmaschine Andromeda (Artikel 2.1). Eingebunden
in unsere Analysepipeline MaxQuant erlaubt Andromeda die zuverldssige Identifizie-
rung von Peptiden durch Rohdaten von modernen Massenspektrometern. Dadurch
das die Suchmaschine von uns entwickelt wird, gibt es uns die Flexibilitdt die Pepti-
deidentifikation abzustimmen, auf neue Innovationnen nicht nur im Bereich Protein-
quantifizierung sondern auch auf Neuerungen in der Gerdte und Computer Technolo-
gie. Zum Beispiel erlaubte es uns die neueste Verbesserung in der Massengenauigkeit
fiir eine bessere Korrektheit in der Peptididentifizierung zu nutzen. Des Weiteren, sind
wir nun auch in der Lage extrem grofse Datenbanken zu benutzen und komplexe Mu-
ster von post-translationalen Modifikationen zu identifizieren und zu bewerten, wie
beispielsweise extrem phosphorylierte Peptide. Durch die Verwendung vieler grofer
Datensitze konnten wir beweisen, das unsere Suchmaschine zu mindestens vergleich-
bar ist mit kommerzielle erhéltlicher Software, wie beispielsweise Mascot. Im Gegen-
satz zu bereits existierender Software ist Andromeda frei erhéltlich und lauft auch auf

gewohnlichen Biirorechnern.

Die Gerdteentwicklungen in der Massenspektrometie hat dazu gefiihrt das tausen-
de von MS/MS Spektren innerhalb einer Stunde generiert werden kénnen und zu-
verldssige Interpretation dieser Spekten nur durch Automatisierung der Analyse durch

fortgeschrittene Software erreicht werden kann. Ausgenommen von der regulédren Frag-
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Zusammenfassung

mentierungsserie welche von den meisten Peptidsuchmaschinen erklédrt werden kann,
enthélt ein MS/MS Spektrum eine Menge unerklédrte Signale welche von verschiede-
nen Fragmentierungsarten kommen. Um die Zuverldssigkeit der Peptididentifizierung
durch Andromeda zu stirken, wenden wir ein rechnerbasiertes Expertensystem fiir die
Interpretation von Peptidfragmentspekten an (Artikel 2.2). Das Ziel dieses Ansatzes
ist zu mindest fiir die prominenten Signale eine Erkldrung zu finden. Die bioinforma-
tische Anwendung wurde als Hilfestellung fiir Biologen entwickelt, um die komple-
xen Mechanismen die in der Peptidfragmentierung durch manuelle Inspektion Ihrer
Daten zu zeigen. Das regelbasierte System reprasentiert eine Kombination von theori-
schen Erkenntnissen und einer Sammlung von heuristischen Losungsansétzen, welche
in der Praxis bestédtigt wurden. Um die Risiken fiir falsche Erkldrungen abzuschétzen
zu konnen, haben wir eine Fehlerquote (FDR) fiir unsere Regelbasis berechnet. Mit dem
Expertensystem waren wir durch die Automatisierung zum ersten mal in der Lage sta-
tistisch anhand von tausenden Fragementspekten zu iiberpriifen, welche Peptidfrag-

mente in der neuen Fragmentierungsmethode ,HCD” zu finden sind (Artikel 2.3).

Fiir Projekte mit hohem Durchsatz in der Proteomforschung, wie beispielsweise kli-
nische Studien, kann die Zeit fiir die Auswertung eine wesentliche Schwachstelle sein.
Dieses Projekt hatte das Ziel, die Datenauswertung durch unserer MaxQuant Programm
durch Verbesserungen auf Software- und Hardwareseite, zu beschleunigen(Artikel 2.3).
Hier wir der Uberarbeitungsprozess fiir Bereichen in der MaxQuant Programmablauf
beschrieben, die vorher sehr langsam waren und nun gleichzeitig ausgefiihrt werden.
Diese Parallelisierung hat eine bedeutenden Effekt, wenn die Hardware mehrere Pro-
zessoren enthilt, wie beispielsweise ein Computercluster. Uberraschenderweise, ist
Hardware welche fiir nur fiir die viele Schreib- und Leseauslastung optimierte wur-
de vergleichbar mit einem Computercluster der Gegensatz dazu viele Prozessoren hat.
Diese Projekt erdffnete wichtige Erkenntnisse in der Datenauswertung welche notwen-
dig waren um unserem Ziel der kompletten Vermessung des menschlichen Proteomes

ndher zu kommen.

Zusammengefasst, haben die Projekte die in dieser Doktorarbeit vorgestellt werden,
wesentlichen zur Verbesserung der Datenverarbeitung in der Proteomforschung bei-
getragen, was sich als Vorteil in der Proteomforschungsablauf auswirkt und somit die

Entdeckung neuer biologischer oder medizinischer Ansétze ermoglicht.
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1 Introduction

1.1 Historical Background

A comprehensive understanding of complex biological systems requires the identifi-
cation and functional characterization of its key components. In-depth analyses on a
global systems wide scale have first been done in the field of genetics. The success of
the Human Genome Project'? has provided a blueprint for the gene-encoded proteins
potentially active in all of the approximately 230 cell types that comprise the human
body?®. However, in the following years it quickly became clear that mapping static
genomes is not sufficient to decipher the biology of the mammalian cell. A complete
understanding of cellular function requires quantification of global messenger ribonu-
cleic acid (mRNA) and protein levels as well as post-translational modifications and

protein-protein interactions (chapter 1 from Hein et al *).

The first genome-wide method for expression analysis was the large-scale hybridiza-
tion of mRNA to complementary sequences immobilized on chips. Despite their ubig-
uity and tremendous usefulness, microarrays have certain limitations. Besides the lack
of reproducibility across platforms and laboratories®, the nonquantitative nature in pre-
dicting the amount of change in the active mature protein, are problematic. Proteins are
almost always the effectors of biological functions, but protein levels depend not only
on the levels of the corresponding messages but also on a host of translational controls
and regulated degradation®’. These factors may be just as important as increased syn-
thesis of mRNA and they cannot be measured directly by microarrays or the new deep

sequencing technologies.

Proteomics is the systematic study of the many and diverse properties of proteins
in a parallel manner with the aim of providing detailed descriptions of the structure,
function and control of biological systems in health and disease. Advances in methods
and technologies have catalyzed an expansion of the scope of biological studies from
a single protein to proteome-wide measurements. The word proteomics, a chimera of
the words, proteins and genomics, was invented by Professor Mark Wilkins in the early
1990s.
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The technological basis of most current proteomics studies is biological mass spec-
trometry (MS), first catapulted to mainstream prominence with the development of
the electrospray® and MALDI” ionization techniques'’. This advance made biological
molecules readily amenable to mass spectrometry and garnered the Chemistry Nobel
Prize in 2002!. Fueled by substantial advances in instrumentation, sequence databases,
specialized software, and innovative methodologies, the field has quickly transformed
into a high-throughput analytical tool for the identification and quantification of hun-
dreds to thousands of proteins per experiment.

Yet we still have limited knowledge regarding the majority of the approximately

20,500 protein-coding human genes discovered through the Human Genome Project'?.

As an extension of the genome project, the aim of the Human Proteome Project®!314
is to map the entire human protein set, mainly using MS based proteomics. In 2008,
the first complete proteome of the model organism yeast was published®. Most re-
cently, high performance but robust MS instruments have further increased the power
of MS-based proteomics and researchers succeeded in identifying 10,000 proteins from
a human cancer cell line'®”. However, based on the UniProt database content, about
30% of these genes lack stringent experimental evidence at the protein level, and for
many others there is very little information related to protein abundance levels, sub-
cellular localization, and function®. High-throughput proteomics experiments produce
large volumes of complex data that would address some of these shortfalls but this
also requires sophisticated computational analyses. As such, the field of proteomics of-
fers many challenges for data interpretation. Mass spectrometry based proteomics has
undergone an immense development within the last decades'®. Due to its high sensitiv-
ity and speed it now vastly outperforms traditional methods like Edman degradation
or two-dimensional gel electrophoresis for sequencing proteins or analyzing complex
protein mixtures. In terms of protein identification and quantification, MS-based pro-
teomics has grown into a comprehensive technology, applicable even to complex pro-

tein mixtures of higher organisms.

In order to streamline the description of the methods to follow, I next introduce some
important mass spectrometry concepts and terminology that will be used throughout
this thesis.



1.2 Mass spectrometry

1.2 Mass spectrometry

The basic principle of mass spectrometry is to generate ions from either peptides and
proteins by any suitable method, to separate these ions by their mass-to-charge ratio
(m/z), and to detect them qualitatively and quantitatively by their respective m/z and

abundance.

Components of a mass spectrometer

A mass spectrometer consists of an ion source, a mass analyzer and a detector which oper-
ated under high vacuum conditions. To measure its molecular mass, a molecule must
be ionized. This happens in the ion source of the mass spectrometer. However, pro-
teins and peptides are polar, nonvolatile, and thermally unstable species that require
an ionization technique that transfers an analyte into the gas phase without extensive
degradation. Therefore, the ion source can be based either on electro-spray ionization
(ESI)*, which is appropriate for liquid samples; or on matrix assisted laser desorption
ionization (MALDI)?, which is appropriate for samples that have been mixed with a
matrix and crystallized on a metallic plate. The discoveries of ESI and MALDI were
the introduction of soft ionization methods that allow for proteins and peptides to be
analyzed by MS.

Mass analyzers are an integral part of each instrument because they can store ions and
separate them based on their mass-to-charge ratios. Ion trap (IT), Orbitrap, and ion
cyclotron resonance (ICR) mass analyzers separate ions based on their m/z dependent
resonance frequencies, quadrupoles (Q) use m/z stability in a radio frequency (RF)
field, and time-of-flight (TOF) analyzers use flight time. Hybrid mass spectrometers
have been built that combined more than one mass analyzer to answer specific needs

during analysis?!.

The detector measures the value of an indicator quantity and thus provides data for
calculating the abundances of each ion present. The detector records either the charge
induced or the current produced when an ion passes by or hits a surface. Mass spec-
trometers do not measure mass directly, but rather the mass-to-charge ratio. Hence the

measurements obtained are dependent on the charge state(s) of the molecule®.

Each mass analyzer has defining properties, such as resolution, mass accuracy, scan
rate, mass range, and sensitivity. The terms resolution and resolving power are de-
rived from optical spectroscopy. Older publications around 1920-1940 always refer to

R as resolving power. During the years there was some confusion about the terms and
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Figure 1: Mass resolving power and mass resolution. (A) Two equal-magnitude mass spectral
peaks of equal width. The mass resolving power is the peak width at half-maximum peak
height Amg, representing is the minimum mass difference to separate the two peaks. (B) The
mass resolution is a performace parameter of a mass analyzer. The isotope pattern in green

measured in low resolution compared to the high resolution in blue.

since 2006 they are defined by the international union of pure and applied chemistry
(IUPAC). Mass resolving power Am = my — m; usually refers to the ability of separat-
ing two narrow mass spectral peaks (see figure 1A). Mass resolution R = (- is defined
as the fraction of a designated mass m divided by the minimum peak width Am nec-
essary for separation at mass m. A specific m/z value and also the method like 10%
valley or 50% valley or full width at half maximum (FWHM) generally specified. On
current state of the art instruments, resolution is usually a large number (up to 2,000,000
for ICR FI-MS) and is useful for evaluating mass analyzer performance because it is a
measure of quality over a wide range of m/z (see figure 1B). Very high mass resolving

power enables ions of different elemental composition to be distinguished.

The mass accuracy refers to the deviation between the actual (calculated) and the ex-
perimentally determined mass of a compound and it is dependent on the resolution of
the mass analyzer?. Mass accuracy is usually measured in parts per million (ppm), a
dimensionless quantity, or in milli mass units. The ppm concept is important because
experimental data often contains a linear systematic error that reaches an absolute max-
imum at higher masses?*. Acquisition speed refers to the time frame of the experiment
and ultimately is used to determine the number of spectra per unit time that can be
generated. The mass range is the range of m/z values amenable to analysis by a given
analyzer. As illustrated in figure 2 the mass precision of a peak from liquid chromatog-
raphy coupled to mass spectrometry (LC-MS) is related to the number of scans. With
increasing number of scans defining a eluting peak, the number of data points available

for determination of the precise mass increases. This also has an direct influence on the
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Figure 2: Mass precision Contour plots of whole elution profiles of the peak, in which the mass
precision is dependent on the number of scans. The dotted line indicates the positions of the
the individual peak centroids. With increasing number of scans the number of data points for

determination of the precursor mass increases.

MS instruments in proteomics

The basic components of mass spectrometers are to some extent independent of each
other, and as such it is possible to combine the different technological aspects to pro-
duce different types of mass spectrometers?. There are three broad categories of mass
analyzers: the scanning and ion-beam mass spectrometers, such as TOF and quad-
rupoles, respectively; and the trapping mass spectrometers, such as IT, Orbitrap, and
Fourier transform (FT)-ICR analyzers. The scanning mass analyzers like TOF are usu-
ally interfaced with MALDI to perform pulsed analysis, whereas the ion-beam and
trapping instruments are frequently coupled to a continuous ESI ion source. The fol-
lowing instrument configurations are the most widely used solutions in the field of
proteomics today?®: ion traps such as the linear ion trap (LIT), triple quadrupoles (TQ),
linear trap quadrupole (LTQ)-Orbitrap hybrid instrument, LTQ-FTICR, and the TQ-
FTICR hybrid instruments Q-TOF and IT-TOF.

Ever since its introduction by Thermo Fisher Scientific in 2005, our laboratory has
used instruments with the Orbitrap as the central element. The Orbitrap mass ana-
lyzer?® features high resolution (routinely up to 150,000), high mass accuracy (from 2
to 5 ppm), a mass-to-charge range of 6000, and a dynamic range greater than 10,000%°.
When coupled to an LTQ ion trap, the hybrid instrument has the advantages of both
high resolution and mass accuracy of the Orbitrap and the speed and the sensitivity

of the LTQ. Similarly to ICR instruments, the Orbitrap use a fast Fourier transform
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(FFT) algorithm to convert the time-domain signal at the detector into a mass-to-charge
spectrum. The LTQ-Orbitrap gained rapid acceptance because it offered resolution and
mass accuracy comparable to the LTQ-FTICR at a lower price tag and a lower mainte-

nance cost, enabling for proteomic applications for a broad user base.

In proteomics tandem mass spectrometry (MS/MS or MS?) is used to obtain sequence
information by breaking the peptide at different bonds between the constituent amino
acids. For example in collision induced dissociation (CID) and higher energy collision
dissociation (HCD), the kinetic energy which is converted to internal energy by colli-
sion of protonated ions with a neutral gas (helium, nitrogen or argon), which results in

bond breakage.

electrospray ion source linear ion trap HCD collision cell

A b e et

Orbitrap

Figure 3: Schematic of the LTQ Orbitrap Velos MS instrument. This instrument is equipped
with an ESI ion source and a linear ion trap that functions either only mass selection or also
as the mass analyzer in case of low resolution CID MS/MS. The additional collision cell is
attached to provide HCD fragmentation. Ions are transfered to the C-trap for accumulation®
and injected as an ion package into the Orbitrap to obtain high resolution spectra. [Adapted

from Olsen et al 3°]

The first hybrid instrument, which combined the LTQ ion trap with the Orbitrap was
the LTQ Orbitrap?'. In this instrument, the linear ion trap was used for CID fragmen-
tation and analysis of fragment ions. The following instrument, the LTQ Velos® (see
tigure 3), had a separate collision cell. In this device the HCD fragmentation takes place
and the fragment ions are then injected into the Orbitrap mass analyzer. Unlike the LTQ
Orbitrap where only tandem spectra were acquired by low-resolution CID, spectra of
the follower are obtained preferable in high-resolution HCD. To use the high resolution
on both MS and MS? levels is called a ‘high-high’ strategy®® and it results in higher pep-
tide identification rates and a better confidence in these identification. An advantage
of the "low-high” strategy on LTQ Orbitrap instruments is that fragmentation events
can in principle be performed in parallel with the high resolution measurements of the

precursor ions in the Orbitrap analyzer.
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Recently, two new Orbitrap instruments were introduced by Thermo Fisher Scien-
tific: The Q Exactive is the first benchtop proteomics instrument?. In this instrument
the linear ion trap is replaced by a quadrupole, in which this device is used only as
a mass filter and not as mass analyzer. With this structural alteration the instrument
has lost the capability for CID fragmentation. However, the acquisition time for HCD
spectra decreased enormously and is now comparable in terms of speed to CID. Impor-
tantly, the instrument is much simpler and gains all the advantages in targeted acqui-
sition that are usually associated with quadrupole instruments. The Orbitrap Elite is
also a instrument of the new generation and here the size of the Orbitrap was reduced

from 30 mm to 20 mm?%*

. This compact Orbitrap has the advantage that the spectra
can be acquired with twice the resolution than before. Both new instruments gain from
a enhanced Fourier transformation algorithm, which by itself doubles resolution by

including phase information®.
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1.3 Shotgun proteomics

The term ‘shotgun proteomics’ is the protein equivalent to shotgun sequencing in ge-
nomics in which the deoxyribonucleic acid (DNA) is sheared and sequenced, followed
by alignment of small overlaps®. This ‘bottom-up’ peptide sequencing approach is the
most popular and widely used technique when tackling high-complexity samples for
large-scale analyses?. The first step after protein purification is to cleave proteins into
peptides using a sequence-specific protease. A challenge in sample preparation is that
not all proteins are soluble under the same conditions and many detergents interfere

with the mass spectrometric analysis®.

The mass spectrometer is most efficient at obtaining sequence information from pep-
tides up to 20 residues long. This is one reason why peptides, and not intact proteins
are more commonly measured. In addition, the sensitivity of the mass spectrometer for
proteins is much lower than for peptides. One reason for this is that the combinatorial
effect due to isoforms and modifications and the absence of sequence information make
the identification almost unsolvable®. Nevertheless, in the ‘top-down’ approach®* it
is now possible to derive partial sequence information from intact proteins. Top down
sequencing is used for identification purposes or the analysis of protein modifications
in the context of the entire protein molecule. This technique reaches its limitation with
increasing number of proteins in a sample, which make it not applicable for a large

proteome.

Experimental setup

MS-based proteomics can deal with a wide variety of input materials, from prokaryote
or eukaryote cells to entire tissues and body fluids. For this reason the object of investi-
gation is nearly always a protein mixture*. These mixtures range in complexity from
hundreds of proteins in affinity purifications (because of their inevitable background)
to more than 10,000 different proteins in complete mammalian proteomes. The main
technological goal of MS-based proteomics is the accurate characterization of as many
proteins as possible in these mixtures*®. A regular shotgun proteomics experiment pro-

ceeds in three steps, as illustrated in figure 4.

From proteins to peptides

A key step in shotgun proteomics is the digestion of proteins into peptides using a pro-

teolytic enzyme (optionally, using multiple different enzymes).For this purpose trypsin,
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Figure 4: Overview of shotgun proteomics data production. The three steps - cleaving proteins
into peptides, separation of peptides using liquid chromatography, and tandem mass spectro-

metric analysis - are described in the text. [Adapted from Nobel et al 4]

which cleaves peptides on the carboy-terminal side of arginine and lysine residues, is
most often used. Most of the resulting peptides are within the preferred mass range
for sequencing and they should also have no or just a few internal trypsin sites (missed
cleavages)™. The protein digestion step is often followed by a selective peptide enrich-
ment or depletion strategy designed to capture peptides having certain specific prop-

erties of interest (e. g. phosphorylated peptides)°'.

Reduction of complexity

In our laboratory ESI is exclusively used as ionization method, which produces ions
from a solution. To reduces the complexity at the ion source, the peptide mixture is
separated by nano scale high-performance liquid chromatography (HPLC) column®
The HPLC uses a solvent gradient of increasing organic content to separate the peptide
species based on a particular chemical property (e. g., their hydrophobicity)*. After
separation, the eluting peptides are ionized by the ESI and proceed into the mass spec-
trometer. The single dimension of peptide separation that is provided by an HPLC
column may not provide sufficient resolution if highly complex protein mixtures are
analyzed. In this case, the probe can be divided at the protein- or at the peptide level
into fractions, which produces less complex mixtures®. Furthermore, the analysis is
thereby subdivided into several independent analysis runs, which increases confidence
in database identification and it increases the dynamic range of the measurement (the
difference between the most abundant and least abundant proteins can be identified in

an experiment)>2.

Within the mass spectrometer

Peptides, as they elute from the reverse phase column at a particular time (retention

time) are ionized and transfered into the gas phase. After ionization the peptides are
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detectable for the mass spectrometer. For sequencing two rounds of mass spectrometry

are performed (see figure 5).
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Figure 5: Tandem mass
spectrometry (MS/MS).

(A) Total ion current (TIC)
- that is the sum of all ion
intensities from all mass
spectra recorded
during the LC-MS run -

as a function of time. (B)

being

Precursor-ion (MS!) scan
depicting peptide ions aris-
ing from peptides eluting
and electro sprayed at a
certain time point.  The
insert shows the isotopic
distribution of a specific
peptide ion. A clear sepa-
ration of individual isotope
masses is indicative of a
high resolution instrument.
(C) Fragment spectrum of
the peptide ion of interest.
Distinct mass increments
between individual peaks
allow for partial or complete
deduction of the amino acid

[Adapted from
53]‘
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In the first round of mass spectrometry, all peptide ion species eluting from the col-

umn are introduced into the instrument. The resulting full scan, also called MS! or

survey scan, consists of mass-to-charge ratios and intensities of all peptide ions elut-

ing at this time point. Based on the survey scan, the acquisition software of the mass

spectrometer picks a preset (typically 5-20) number of peptides and proceeds to isolate

each one of them. Selected peptide ions (precursor or parent ions) are broken down

into smaller pieces (fragment ions) in the collision cell of the MS instrument. This is

10



1.3 Shotgun proteomics

called a data driven or data dependent topN method.

Fragmentation of peptides is usually achieved by collision with inert gas atoms, like
in CID>* or HCD®, or chemical reactions with radicals in the gas phase as in electron
transfer dissociation (ETD)*. Bond breakage mainly occurs through the lowest energy
pathways - that is, cleavage of the amide bounds®~®. Note that fragments will only be
detected if they carry at least one charge. Figure 6 explains how peptides fragment and
how their fragment ions are designated. Briefly, the resulting ions are called 4, b or c-
ions when the charge is retained at the amino-terminal (N-terminal) fragment or x, y or
z-ions when it is retained at the carboxy-terminal (C-terminal) fragment. This nomen-
clature was first proposed by Roepstorff and Fohlman™, and subsequently modified
by Johnson et al .

Y7 X6 Y6 76 Vs ~Ya ~Y3 Y2 s C terminus
of Ry | | Of Rs | of Rs | 0! Re
i Lo HY i tH i 1 H i
HoN H i TN H N H N | OH
N NN N | N | N
Ho ] | H | | H | P H H
R1 10! [Rs | O{ Rs | Oo{ R7 | o]
N terminus ay” by” ¢ b3~ by~ bs” be” b,
O R2 R4 o} Re (0] Rs
H H H
w LT e Toa LT AT .
N . ﬁ/\N w/\N
WU Y o O O
R4 0 R3 0 Rs 0 R7 0
b;ion ysion

Figure 6: Peptide fragmentation. Ions are labeled consecutively from the amino terminus (N-
terminus) am, bm and cy,. If the ions contain the carboxyl terminus (C-terminus) they are named
Zn, Yn and X,. The subscript of the ions (n or m) indicates the number of residues in the fragment.
The subscript of the R groups in the figures represents the side chain of the amino acid at that

position. [Adapted from Steen et al 38]

The appearance of the ion types dependents on the type of fragmentation. For in-

stance in CID and HCD fragmentation, mostly b and y series are expected, and ETD

50,61

produces predominantly ¢ and z ions>”*'. Fragmentation pattens are also strongly de-

pendent on the chemical and physical properties of the amino acids and the primary

62;63

structure of the peptide®~*. While the chemistry involved in peptide fragmentation is

still not completely understood, the mobile proton model is currently the most widely

accepted framework to describe the dissociation process %

. Moreover, different frag-
mentation pathways of protonated peptides have been extensively investigated and
modeled with respect to both kinetic and thermodynamic aspects®®. The inspection of

the generated fragment ions by HCD is part of my thesis and is further described in

11
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article 2.3 on page 56. During the fragmentation process, each amino acid sequence is
typically cleaved once, so cleavage of the population results in a variety of observed
prefix and suffix sequences. The acquired tandem mass (MS/MS or MS?) spectrum is
a list of m/z values and intensities of all the fragment ions generated by fragmenting
an isolated precursor ion. The fragmentation pattern encoded by the MS/MS spectrum

allows identification of the amino acid sequence of the peptide that produced it¥.

Importantly, the mass accuracy and resolution of the MS analyzer have a significant
effect on the information content of the spectrum, which is of great importance for the
subsequent peptide identification step®. The accuracy with which an MS instrument
can measure peptide ion m/z values ranges from as precise as several parts per million
(ppm) in the case of high mass accuracy instruments such as the Orbitrap, to more than
500 ppm in case of low mass accuracy instruments. Similarly, the mass resolution of the
instruments governs the ability to accurately determine the charge state of the peptide
ion. The ability to isolate precursor ions for MS/MS sequencing within a narrow win-
dow around a particular m/z is dependent on the instrument. Even in high-resolution
MS, the selection of the precursor ion for fragmentation is always performed with low
resolution (typically a few Th) to ensure adequate sensitivity for MS/MS. In complex
mixtures, this results in frequent co-fragmentation of co-eluting peptides with similar
masses. These ‘chimerical’ MS/MS spectra® can be detrimental for identification of
the peptide of interest, especially if the co-fragmented peptide is of comparable inten-
sity. Co-fragmentation generally reduces the number of peptides identified in database
searches and poses special problems for reporter fragment based quantification meth-

ods because both peptides contribute to the measured ratios®.

Improvements in MS instrumentation have led to tremendous growth in the field of
proteomics. For instance high-resolution is necessary to resolve overlapping isotopic
distributions and identify the charge state. In addition, developments in accurate mass
measurement dramatically improve identification confidence and limit search space
leading to faster data processing. In general, if an instrument is correctly calibrated,

high resolution can provide ppm mass accuracy®.

12
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1.4 Computational analysis

The data amounts is shotgun proteomics studies can often add up to hundreds of giga-
bytes. The ability to generate such large volumes of information has correspondingly
increased the pressure on the downstream data processing algorithms and pipelines®.
Indeed, the data processing was in the past a considerable bottleneck in proteomics

experiments, lagging behind developments in the other areas of proteomics research.

Developments in last years have produced efficient algorithms for the different steps
of informatics analysis”’, which can be subdivided into two major areas. The first part
covers the evaluation of the raw mass spectrometry data up to a list of all identified
proteins. In the second part, whole data sets have to be analyzed from a functional
point of view, leading to biologically interpretable results. This thesis mainly deals

with the first part.

Preparing data for search

The effectiveness of peptide identification algorithms is limited by the quality of the in-
put spectra. The dominant ions in fragment spectra of peptides are often b-, y-ions and
their derivatives resulting from the cleavage of the peptide bonds. However, MS/MS
spectra typically contain many more peaks”!. These result not only from isotope vari-
ants and multiply charged replicates of the peptide fragmentation products but also
from unknown fragmentation pathways, chemical contaminations or from noise gener-
ated by the electronic detection system?2. The presence of this background complicates
spectrum interpretation. Consequently, an efficient preprocessing of MS/MS spectra
can increase the sensitivity of peptide identification at reduced file sizes and run time

without compromising its specificity.

Whereas MALDI mass spectra typically contain singly charged ions, ESI generate
multiply charged fragment ions®, which have the advantage of shifting heavy ions into
lower m/z ranges where they are more easily detectable’’”2. The problem is that the
multiple charged ions can complicate the spectrum by causing replicates of otherwise
identical ions at different charge states. In general, these multiply charged signals occur
as isotope clusters. For the purpose of spectrum interpretation, peak replicates originat-
ing from different charge states have to be unified. Indeed, most of the common peptide
search engines prefer simplified fragment spectra with singly charged ions without iso-
tope patterns. One first step for preprocessing is therefore to detected multiply charged

peak clusters, which are removed and converted into a singly charged mono-isotopic

13
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peak that is added to the spectrum. This reliable data filtering is desirable without

suppressing any signals or losing mass accuracy”2.

Another preprocessing step is to identify a subset of peaks in a given MS/MS spec-
trum that is suited to be submitted to the following analysis pipeline”. Since most pep-
tide search engines have a optimum number of peaks per spectrum, different problem-
specific techniques have been developed to filter the fragment spectra by intensity. For
example the simplest MS/MS filter method (e.g. Hansen et al 7*), “top X intensity’, sorts
all ions in a MS/MS scan by decreasing intensity and only keeps the first X ions. If
there are less than X ions, all existing ions are selected. A more advanced approach is
filter of “top X intensity in a window of 100 Da’, which selects the Top X most intensive
peaks within 100 m/z intervals in its default setting’”. Among all peaks within this
window, only the top X most intense peaks are retained for further analysis. The static
window 100 Da is selected in such a way that per interval the fragments of one amino

acid residue is covered on average.

One additional point for a successful peptide search is to improve the quality of the
information about the intact peptide. Here the focus is on enhancing the information
retrieved from the MS! scans. Especially with high resolution data it generally is pos-
sible to identify the precursor charge state with near certainty”. Of main importance
is the exact precursor mass and this can be for instance be improved by recalibration in

the time and m/z-range*”.

Assemble peptide fragments

The interpretation of the preprocessed MS data and identification of the peptides is
a central element in the computational pipeline’®. The spectrum identification prob-
lem is difficult to solve primarily because of noise in the observed spectra. In general,
the x-axis of the observed spectra is known with relatively high precision and accu-
racy. However, in any given spectrum, many expected fragment ions will fail to be ob-
served, and the spectrum is also likely to contain a variety of additional, unexplained
peaks. These unexplained peaks may result from unusual fragmentation events, in
which small molecular groups are shed from the peptide during fragmentation, or from
contaminating molecules (peptides or other small molecules) that are present in the
mass spectrometer along with the target peptide species. This topic will be discussed
in article 2.2 on page 44. In general, peptide identification is performed by correlating
acquired experimental MS/MS spectra with theoretical spectra predicted for each pep-

tide contained in a protein sequence data base or against spectra from a spectra library.
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Alternatively, peptide sequences can be extracted directly from the spectra, i.e., without
referring to a sequence database for help (de novo sequencing approach). There are also
hybrid approaches, such as those based on the extraction of short sequence tags (3-5

residues long) followed by database searching””.

De novo identification With complete fragmentation information, it is in principle
possible to determine the peptide sequence from the spectrum (de novo sequencing).
The most intuitive technique might would be to directly ‘read off” the sequence infor-
mation from the acquired MS/MS spectrum (see in figure 7). Such spectrum interpreta-
tion relies on the occurrence of ladders of fragments in the spectrum. These occur when
a peak in a spectrum corresponding to the nth fragment ion is followed by subsequent
peaks corresponding to fragment ions that contain the n + 1, n + 2, and in general n
+ x residues. The distance between these consecutive peaks will then correspond to
the mass of a single (perhaps modified) amino acid residue, allowing the sequence to
be determined. Even with complete fragmentation, defining the peptide sequence is
not a simple task. Due to the b-y ambiguity of backbone fragmentation peaks and the
distracting presence of ‘noise peaks’, which may include doubly charged ions, internal

fragments, and neutral losses, as well as true chemical noise.
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Figure 7: De novo peptide sequencing. The figure depicts, how the peptide sequence ESTLH-
LVLR can be derived by de novo from a fragmentation ladder. Starting at the m/z value of
175.119 which represents the mono isotopic mass of arginine (R) + the carboxy terminus (OH).
The next residue can be inferred from the delta mass of 113.084 which matches to the mono
isotopic mass of leucine (L) or isoleucine (I). Note that one can generally not distinguish be-
tween I and L in MS®. The ladder of fragment ions can be follow up to the serine (S). Finally,
the N-terminal amino acid can be calculated by subtracting intact peptide mass from the last

fragment mass.
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De novo sequencing is an important approach in the case of organisms with unse-

8

quenced or only partially sequenced genomes”. In those cases, tools such as MS-

79-82 can assist with the downstream anal-

BLAST and similar approaches or extensions
ysis of the de novo derived peptide sequences to infer the identities of the sample pro-
teins. In addition, the database search compared with de novo approach is in the first
instance not able to handle wide spread deviations from the database sequence such as
mutations or unexpected modification. There are a number of de novo sequencing pro-
grams including PEAKS® and PepNovo?®!. Fragmentation is rarely complete, so even
the best de novo sequencing programs are less sensitive than database search programs.
In comparison to database search, a de novo algorithm typically find a correct partial
sequence with 6 or more residues, in 60 to 90 percent of the spectra if the input data is
of good quality®. De novo sequencing is not widely used for large scale data analysis
because it is computationally intensive and requires high quality MS/MS spectra, and

even then does not always guarantee that the peptide can be found reliably.

Database search approaches Sequence database searching remains the dominant me-
thod for assigning peptide sequences to MS/MS spectra. In cases where the spectrum
contains no recognizable fragment series at all to define some parts of the sequence,
database searching is the only option. The basic concept of such search programs it
to take as input the experimental MS/MS spectrum and compare it against theoreti-
cal fragmentation spectra generated for peptides from the searched protein database
(see figure 8). Importantly, the comparison is performed not against all possible pep-
tide sequences, but against a much smaller set of candidate peptides deriving from
the database. The candidate peptide list is generated by the program using in silico
database digestion and application of several criteria. The most important of these
criteria are the parent ion mass tolerance, enzyme digestion constraint (e.g. allowing
tryptic peptides only), and which if any post-translational or chemical modifications
are allowed. Additional search parameters include the type of fragment ions expected
in the spectrum (e.g. y and b ions in HCD), and the fragment ion mass tolerance. The
output from the program is a list of peptide spectrum matches (PSM), ranked according

to the search score.

The search score essentially measures the degree of similarity between the experi-
mental MS/MS spectrum and the theoretical spectrum. Three basic approaches® have
been used to determine a match between a spectrum and sequence: autocorrelation
between calculated and theoretical spectrum (first used in SEQUEST?®®), extraction of a

short sequence with flanking mass values (first implemented by PeptideSearch””) and
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Figure 8: Peptide identification by database search. An acquired MS/MS spectrum is corre-
lated against theoretical spectra constructed for each database peptide that satisfies a certain set
of database search parameters specified by the user. A scoring scheme is used to measure the

degree of similarity between the theoretical and actual spectra. [Adapted from Nesvizhskii et
al 86]

probability-based matching between calculated and theoretical spectra (pioneered in
Mascot?) matching. Note that in almost all search engines only the m/z values and

not the relative intensity of the fragment ions are compared*’.

The basis of the probability-based this approach, is to calculate the chance that the
observed match between the experimental data set and each sequence database entry is
a random event. Andromeda, a novel implementation of this approach, is exclusively
used in our and many other laboratories. The basis of this approach, is to calculate the
probability that the observed match between the experimental data set and each se-
quence database entry is a chance event. In Andromeda, the most intense ion peaks are
extracted within windows of 100 Th, matched with expected fragment masses and the
chances of random matches are calculated by means of a binomial distribution function
(for more details see article 2.1). The match with the lowest probability to be random is
reported as the best match. The score of the match is reported as the negative logarithm
of this probability. Whether the best match is also statistically significant depends on
the size of the database.

One of the many challenges of large-scale proteomics experiments is to find the cor-
rectly identified peptides while maintaining control over false positive identifications?".
Current methods can never definitively prove that a result is true®?, but an appropriate
choice of algorithm can provide a measure of the statistical risk that a result is false, i.e.,

the statistical significance®. The determination of a correct identification is often done
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as a subjective assessment based on manual inspection of parameters like the number
of MS/MS ions explained by the proposed peptide sequence, biochemistry rules (e.g.,
the proline rule®*), delta mass values between the measured peptide and the proposed
peptide sequence and predicted versus measured peptide retention®®. This determi-
nation becomes less subjective with high mass accuracy measurements, but for most
investigators, nominal mass accuracy from ion trap mass spectrometers has been typ-
ical in the past®. In the beginning days of proteomics, the lack of control for false
positive identifications led to many reports with incorrectly identified proteins, lack of
statistical estimates of false positive error rates in the report and missing details on the

search parameters used for identified peptides.

The false discovery rate (FDR), rigorously defined as the proportion of significant
results that are expected to be false discoveries in a claimed set of findings, is now
routinely used”. The dominant method for calculating the FDR is the ‘target-decoy’
approach®. This strategy is based on appending reversed, randomized or shuffled
sequences to the original (target) database before performing the search. Then these
artificial (decoy) sequences are used to evaluate the portion of false positive among all
positive identifications. A simple and powerful way to create a decoy database is to
simply reverse each protein in the original database and perform an in silico digestion.
With some small adoptions, the reverse transformation preserves amino acid frequen-
cies, protein and (approximate) peptide length distributions as well as approximate
mass distributions of theoretical peptides®. The decoy technique works at both the
peptide and protein levels, so that one can send the decoys through a succession of
tools (for example, database search, significance analysis, and protein assembly) in or-
der to measure the false discovery rate of the complete pipeline®”. A FDR cutoff can
then be set to limit the maximum number of accepted false-positive matches. Typical
cutoff values range between 1 and 5 %, which means that a small portion of any iden-
tified peptides will be incorrect. If a large database is searched, these will typically be

proteins with a single peptide hit, also called ‘one-hit wonders’.

Protein sequence databases Generally the database used for identification should be
as inclusive as possible, to allow finding the proteins that have been measured. How-
ever, searching large databases also reduces the sensitivity of peptide identification by
introducing more false identifications (the likelihood of obtaining a high scoring ran-
dom match increases with increasing database size)”®®. Because of this, the choice of
the protein database plays an important role in MS data identification. The most com-

monly used protein sequence databases® for searching MS/MS spectra include
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1. Entrez Protein database from the US National Center for Biotechnology Informa-

tion (NCBI)

Reference Sequence (RefSeq) database from NCBI

UniProt, consisting of SWISS-PROT and its supplement, TTEMBL

4. International Protein Index (IPI) database, maintained by the European Bioinfor-

W N

matics Institute

Databases vary in terms of their completeness, degree of redundancy and quality of se-
quence annotation. Entrez Protein is the most complete database; however, it contains
many redundant sequences (partial mRNAs, sequencing errors and so forth), and the
entries are not as accurately annotated as those in SWISS-PROT or RefSeq®.The Inter-
national Protein Index (IPI)*® was founded in 2001 to cover the gaps in gene predictions
between different databases and to provide non-redundant complete sets of sequences
for search with MS data. Due to the enormous effort for manual curation and prob-
lems with the identifier stability, IPI was closed in 2011. The standard in use today
are the complete proteome databases of UniProtKB/SWISS-PROT**"1"! which was in-
troduced in 2006, and also contains manually annotated representation of all protein
coding genes. However, this protein knowledge base consists of two sections: First,
SWISS-PROT, which is manually annotated and strives to provide a high level of an-
notations (such as the description of the function of a protein, its domains structure,
post-translational modifications, variants, etc.), a minimal level of redundancy and
high level of integration with other databases. Second, T'TEMBL, a computer-annotated
supplement of SWISS-PROT that contains all the translations of EMBL nucleotide se-
quence entries not yet integrated in SWISS-PROT and therefore not reviewed. These
two databases are developed by the SWISS-PROT groups at the Swiss Institute of Bioin-

formatics (SIB) and at the European Bioinformatics Institute (EBI).

The choice of the sequence database for MS analysis depends on the goal of the ex-
periment. For many organisms, multiple sequence databases are available. In most
cases, using a better annotated database such as UniProt of RefSeq should be suffi-
cient. When the identification of sequence polymorphisms is particularly important,
one may attempt to perform searches against a larger database such as Entrez Pro-
tein’®. Search algorithm which use huge sequence databases with much redundancy
are also computer intensive and such searches should be done using only high quality
MS/MS spectra.

Modified proteins During peptide search the size of the database is also affected by
the number of allowed modifications. It is possible that some amino acids are modified

(post-translational or chemical modifications), resulting in mass shifts. Such changes in
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mass need to be taken into account to correctly compute theoretical MS/MS spectra.

The simplest cases are fixed modifications, e.g. carbamidomethyl cysteine (+57.0214
Da). All cysteine residues in protein are assumed to be alkylated and the nominal
amino acid mass is replaced by a shifted mass in all computations. A fixed modifi-
cation assumes that every instance of that residue has been modified, so there is no

computational overhead to the search, and the score will not be adversely affected.

By contrast, variable modifications are not present systematically. A variable mod-
ification is defined by the mass difference to the unmodified amino acid and its lo-
calization is in most cases restricted to one amino acid. The database is extended by
the modified versions of the peptides containing the specified amino acid during the
search. The level of complexity becomes even more dramatic if one considers that the
number of combinations of possible modification states for a protein increases more
than exponential. For example a protein with two modification can be in four states

102 This dramatic effect

and a protein with ten modification sites can have 1024 states
on the search space markedly increase the search time and the FDR. In practice it is
therefore not feasible to allow many diverse variable modifications. Instead the num-
ber of modification sites is restricted to an appropriate number when searching MS
data against a database. The settings are also dependent on the sample preparation, for
instance oxidation of methionine residues (+15.9949 Da) or acetylation of the peptide
N-terminus (+42.0105 Da) are expected to occur during by the normal workflow. In
cases were a specific post-translational modification (PTM) e.g. phosphorylation is the
key element of a study, the modification is enriched by biochemical methods during

sample preparation and has to be specified in the peptide search®'.

From peptides to proteins

Since most biologist are interested in the proteins present in their samples, the next
step in the bottom-up approach is to map the identified peptides to their proteins of

103 1104 The ultimate

origin ™. However, this “protein inference problem’ is far from trivia
goal of inferring protein identities based upon peptide assignments remains a chal-
lenge, even when statistical models are employed for validating those assignments.
Most of the problems associated with protein identification are caused by so-called de-

generate peptides shared by multiple proteins!'®

; see figure 9 for an example. Such
cases often occur in eukaryotic databases, which contain homologous and redundant
entries, and make it difficult to infer the particular corresponding protein(s) present in

the original sample!®. When two or more sequences in the database are identified on
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the basis of the same peptides, it is impossible to know with certainty which protein is
present in the sample!®. Protein assembly tools typically rank proteins by confidence,
treating distinct peptides as independent evidence of the presence of a protein, but
discounting duplicate identifications. These tools output ‘protein groups’, rather than
single proteins, in the case that the peptide identifications do not distinguish between
homologous proteins®.

The pioneering software called Protein Prophet!®

initially groups all assigned pep-
tides according to their corresponding proteins in the database. Once grouping is com-
plete, the assigned peptides corresponding to an individual protein, and their prob-
abilities, must be combined to compute a single protein confidence measure that is
effective at distinguishing the correct from incorrect protein identifications. A particu-
lar challenge in that regard is the detection of correct protein identifications with only
a single corresponding assigned peptide in the data set, since the majority of incorrect

protein identifications also have only one corresponding peptide.

protein A — 1 L =0 4
protein B 1 L =0

protein C - I

protein D 1 I {37

Figure 9: Issues in protein identification. Four proteins (A, B, C, D) are identified by four
distinct peptides (box). Although B and D are different, it is impossible to ascertain which
molecule is present, as both have been identified by the same (shared) peptides. A variation
is shown in C. Protein A shares three peptides with B and D, and two with C, but also has a

unique fourth peptide. From this information it can concluded that D is in the sample.

Protein quantification

Protein identification is only the first step and quantification is necessary for most bi-
ological studies to estimate the protein concentration in a sample. Especially system-
wide or systems biology studies require the capability to quantify proteins of the cell
from large-scale proteomics experiments. The overall goal of such measurements is to
obtain a snapshot of concentrations of proteins associated with different states, such as
healthy or diseased. The various methods in MS-based proteomics (see figure 10) to
estimate the protein concentration can be divided in two groups, relative and absolute

quantitative proteomics.

The most popular approaches for relative quantification are based on labeling pro-

teins or peptides in at least on of the compared samples with compounds enriched
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metabolic chemical spike-in
labeling labeling labeling label-free

cell tissue —‘—

proteins | | |
| Ll

peptides
| Sl A S

MS data
| | | | |

data analysis

Figure 10: Collection of common quantitative workflows in MS-based proteomics. Green
boxes and orange boxes represent two experimental conditions. Horizontal lines indicate when

samples are combined. Dashed lines indicate the points at which experimental variation and

thus quantification errors can occur. [Adapted from Bantscheff et al 197]

in stable heavy isotopes of hydrogen, carbon, nitrogen or oxygen '

. These labeling
techniques exploit the fact that labeled molecules behave almost identically during
chromatographic separation, ionization and in the mass analyzers. In metabolic la-
beling, the label is introduced to the whole cell or organism in vivo, through the growth
medium. In contrast, in chemical labeling the label is added to proteins or tryptic pep-
tides through chemical derivatization or enzymatic modification in vitro, after sample

collection.

A popular metabolic labeling method is stable isotope labeling by amino acids in cell
culture (SILAC)'™. In SILAC, essential amino acids such as arginine and lysine are
provided in ‘light” and ‘heavy’ forms to the two cell populations and are incorporated
into each protein after a few cell doublings, leading to a well-defined mass difference.
‘Chemical labeling” makes use of externally introduced isotopic or isobaric reagents.
Examples for the first category include dimethyl labeling'® and isotope-coded affin-
ity tags (ICAT)'"'!. Isobaric mass tagging, illustrated by isobaric tag for relative and
absolute quantification(iTRAQ)!'?, differs from the methods described above in that
labeled peptides have exactly the same mass and are thus indistinguishable in the sur-
vey spectra. In this case, the different mass tags separate only upon fragmentation
and quantitation relies on the intensity ratios of so-called reporter ions in the fragment

spectra.

Although protein relative quantification using labeling strategies has been success-
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fully used in many studies, these techniques also have several limitations, for instance
in the number of samples that can be directly compared, side products generated dur-
ing labeling, costs of reagents and so on. Consequently, there is much interest in meth-
ods that do not require isotope labels and that rely on direct comparison of peptide sig-
nals across different experiments. These so-called ‘label-free” methods offer a simpler
sample preparation and direct comparison of multiple samples. In its most primitive
form, the number of peptide fragmentation events is taken as an estimate of the amount
of protein. This spectral counting technique is used to provide a semi-quantitative
measure of protein abundance®” but has been found to often result in imprecise or ir-
reproducible data'®. In contrast to spectral counting, common label-free methods are
based on the comparison of normalized intensities from two separate runs. Intensity-
based label-free quantification is more powerful, but requires careful and reproducible
sample preparation techniques along with sophisticated software. This approach does
not require continually re-identifying peptides in every sample under study because it
decouples profiling from identification and subsequently links the profiling and iden-
tification data sets in silico via accurate m/z and retention time. The most common

readouts are extracted ion chromatograms (XIC) of the parent ion.

Relative quantification by its nature cannot provide information about absolute pro-
tein abundance. Especially in a medical context, knowing absolute amounts of disease-
specific biomarkers can provide diagnostic information of high relevance'*. Also,
modeling approaches require absolute molecule numbers to quantitatively describe
dynamic systems. Absolute measurements of protein concentrations can be achieved
with ‘spiked synthetic peptides’, as in AQUA!™ or by artificial proteins derived from
detected peptides, as in QconCAT !¢, and “Absolute SILAC" .

23



1 Introduction

1.5 MaxQuant - Software environment

As described before, the data analysis typically involves several steps and is not con-
tined solely to peptide identification by a peptide search engine. There are only a few
software environments that provide data analysis in a single environment performing
all or most of the steps from acquired raw data to final protein lists. Examples are
the Trans-Proteomic Pipeline'’”, OpenMS Proteomics Pipeline® or Skyline”. These
efforts were usually not directed at high-resolution data of the type readily attainable
today and they did not approach the quality of a skilled human expert. Our own labo-
ratory has developed the MaxQuant computational proteomics environment, which is
freely available to academic and commercial users and which has been widely adopted
by the community. MaxQuant” is a set of algorithms that efficiently and robustly ex-
tracts information from raw MS data and allows very high peptide identification rates
as well as high-accuracy protein quantification for several thousand proteins in com-
plex proteomes. MaxQuant takes advantage of high resolution data such as those ob-
tained by Orbitrap instruments and employs algorithms that determine the mass pre-
cision and accuracy of peptides individually. This leads to greatly enhanced peptide

mass accuracy that can be used as a filter in database searching®.

The analysis pipeline (see figure 11) consists on five main tasks: feature detection,

recalibration, peptide identification, protein group assembly and writing tables.
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Figure 11: MaxQuant Tasks of the MaxQuant analysis pipeline grouped in five mayor parts.

The first MaxQuant version, published in 2008, focused on quantification by sta-
ble amino acid isotope labeling (SILAC)'%2!. Later on quantification options were
extended with the implementation of quantitation using chemical labeling (such as
iTRAQ) and a sophisticated label-free algorithm. The MaxQuant environment origi-
nally used the popular Mascot peptide search engine to match tandem mass spectra to
possible peptide sequences. This was later replaced by Andromeda, our in-house de-
veloped search engine. For more information see article 2.1 on page 29. The MaxQuant
software was initially developed for instruments of Thermo Fisher Scientific, and in
contrast to other computational tools, MaxQuant is using the pure raw file from the
instrument as input. One advantage of this is that no information is lost due to conver-

sion as often happens when using a general open file format (such as mzXML).
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Feature detection The first element in the pipeline is the detection of the peptide fea-
tures. In contrast to other software, MaxQuant makes use of all three dimensions (3D),
meaning m/z range, abundance and retention time, rather than single MS! scans, to
take maximum advantage of high resolution and mass accuracy (see figure 12A). For
the boundary construction of all peaks a gaussian peak shape is fitted into the m/z-
retention time plane (see figure 12B). This is followed by the determination of the iso-
tope patterns using undirected graphs with the detected peaks as vertices. The result
are thousands of features which represents the eluted peptides and are defined as the

3D peak shape of the isotope pattern (see figure 12C).
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Figure 12: Feature detection. (A) The 3D ré‘l;:resentation of the isotope pattern of a feature. (B)
Signals eluting from the column are drawn with color-coded intensity, decreasing from green
over yellow to white. After peak detection a clear isotope pattern is represented by the pink
shape. To the right, a peak is shown in detail, in which the centroids are displayed as dotted
line. (C) Visualization of all MS runs in one experiment where retention time in minutes is
depicted along the Y axis and m/z along the X axis. An optional layer enables the visualization

of all detected features using varying colors.

In case of heavy isotopic labeling the next step is to detect label pairs (light-heavy) or

even multiplets (for example light-medium-heavy). For this tasks the algorithm looks
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for shifted isotope patterns, according to the mass shift expected for a maximum of
two labeled amino acids. The requirements of a potential labeled peptide multiplet are
equal charge states and sufficient intensity correlation over elution time. Additionally
in each of these cases the multiplets need to have the same atomic composition which
is ascertained by convolution of the measured isotope patterns with the theoretical pat-
terns of the difference atoms. For normalization reasons the resulting isotope pattern
are scaled to each other, which then yields the fold-change between labeled peptides.
Additionally, the median logarithm of the entire set of all normalized peptide ratios is
shifted to zero. This normalization is done for each LC-MS run separately and is nec-
essary to correct for unequal protein loading. It relies on the reasonable assumption
that the majority of proteins show no differential regulation. Already at this stage, the
quantification step for peptides with isotopic label can be performed, without knowing

their identity.

Using the full information of all MS scans belonging to a 3D peaks has several ad-
vantages compared to the information from a single MS! scan. For example, the pep-
tide mass is precisely determined from all full scans of the elution profile from the
peptide feature using their averaged intensity-weights. The complete 3D peak clus-
ter also improves the accuracy of quantification. A priori knowledge of the label state
allows searching with fixed modification for labeled peptides. In this way, the informa-
tion about label state and the precise peptide mass enhance the later peptide database

search.

The last task in feature detection is the preparation of the peak list for the peptide
database search. For this purpose the tandem spectra are preprocessed, which involves
converting peaks from profile to centroid mode, transformation of isotope patterns to
one peak including the transfer to single charge state and finally the filtering of the top

x (x is dependent on the resolution) most abundant peaks per 100 Th window.

Mass recalibration Small changes in the instrument changes its behavior over time
and for instance temperature drift can lead to noticeable changes in mass accuracy.
This results in a systematic mass errors'?. To compensate for drifts in instrument cali-
bration, a compound of known mass is often employed . This ‘lock mass’ provides an
internal mass standard in every spectrum. The source of this compound can come from
a separate ion source or the compound can be mixed with the analyte. One problem
with this approach is that the internal standard can interfere with the analyte, yield
low abundant signals that are difficult to pick up, especially in the presence of high

abundant samples. The electrospray process itself enables the usage of chemicals from
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the laboratory air as internal standard. In the LTQ-Orbitrap family special components
present in the laboratory air are isolated, mixed with the sample ions and measured.
This technique is used to automatically adjust the mass scale in real time®. However,
the entire procedure of adding the lock mass and recalibration can have a negative

effect on cycle time.

These practical problems are sidestepped in MaxQuant through the use of a so called
‘software lock mass’'?. Here the complexity of typical peptide mixtures in proteomics
is employed to eliminate the requirement for a physical lock mass. Since we integrated
our own search engine Andromeda, an initial peptide search can be performed at larger
mass tolerances, resulting in a large number of identified peptides. These data points
are used to apply a nonparametric calibration curve determined from the difference
in observed versus calculated peptide mass. The software lock mass corrects mass
errors both on the retention time scale and on the m/z axis. In this way sub-ppm mass
accuracy can be obtained even without lock mass injection during the data acquisition,

with none of the experimental cost of a physical lock mass'?.

Peptide identification The precursor mass obtained by the recalibrated survey spec-
tra together with the MS/MS spectra are then subjected to a database search employing
the integrated search engine Andromeda. False discovery rates (FDR) are estimated by
searching against a concatenated target-decoy database as explained above®!?*. This
database contains all true protein sequences, concatenated with reversed versions of
these sequences. To avoid spurious correlations because half of the reversed tryptic
peptides have the same mass as the forward sequence, we also swap every arginine
and lysine with the preceding amino acid in the reversed sequences. This approach
still retains the local amino acid relations - leading to the same length and mass distri-
bution of peptides. After the database search, the list of top fifteen peptide candidates is
sorted according to their peptide score or p-score and filtered for consistency with a pri-
ori information, retaining the best scoring one. By default a 1% FDR is applied, which
means the peptide list is cut at 1% reverse hits. For this purpose, peptides are ranked
according to their individual peptide posteriori error probability (PEP)!?, which is de-
pendent on the identification score and on the peptide length. The PEP, also known
as the ‘local FDR’, represents the probability that a given PSM is incorrect, given the

distribution of all the PSMs with same amino acis length in the experiment®2.

Due to the complexity of peptide mixtures and the relatively low resolution of pre-
cursor isolation, two peptides are frequently ‘co-fragmented’. These ‘chimerical’ MS/MS

spectra® can be detrimental for identification of the peptide of interest, especially if the

27



1 Introduction

co-fragmented peptide is of comparable intensity. Co-fragmentation generally reduces
the number of peptides identified in database searches and poses special problems for
reporter fragment based quantification methods because both peptides contribute to

the measured ratios.

The novel second peptide identification algorithm (see article 2.1) turns this problem
into an advantage by adding a additional peptide search. Signals coming from the al-
ready identified peptide are removed. The remaining fragment peaks are submitted to
anew database search with the precursor mass from the peptide that was not intention-
ally targeted for MS/MS. Note that due to statistical reasons, a separate FDR is applied

for peptides coming from the second peptide search.

Protein group assembly The FDR controlled peptide identifications are used to as-
semble protein groups. For this, peptides are distinguished into unique peptides (pre-
sent in only one group), group unique peptides and non-unique peptides (present in
more than one group). Non-unique peptides are assigned to the protein group with the
most peptides for quantification (razor peptides). Thereby overestimation of protein
identifications is prevented. The list of proteins is sorted according to the protein PEP
and by default cut at 1% false positives. The protein PEP is calculated as the product of
the individual peptide posterior error probabilities. The protein ratios are calculated as
the median of the SILAC peptide ratios.

Write tables In the last section of MaxQuant the results of the previous steps are com-
bined and provided as several text files. This output tables can be used for downstream
analysis using different statistical packages such as R'% or Perseus'?. The Viewer soft-
ware, part of the MaxQuant environment, enables further inspection of the MaxQuant
identifications. In this software, the cross references are used to connect several of the
output tables. Also the visualization of the LC-MS data such as contour plot (see fig-
urel12C) or annotated MS/MS spectra, is made possible by this program.
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2 Results

New technological developments in the field of proteomics generally have the goal to
improve on the one hand the number of identified proteins to maximize the coverage
of the proteomic sample, and on the other hand prove the correctness of the result.
Furthermore the time needed for this analysis is also an important consideration. The

following articles made contribution to all three areas.

2.1 article 1 - Andromeda: A Peptide Search Engine

Integrated into the MaxQuant Environment

Jirgen Cox, Nadin Neuhauser, Annette Michalski, Richard A. Scheltema, Jesper V.
Olsen and Matthias Mann
Journal of proteome research 2011, 10, 1794-1805

The peptide search is the central element in computational shotgun proteomics. A
widely used program for this, is the Mascot search engine®. This program is imple-
mented as client-server application and is commercial available, which means that the
exact algorithms used are not publicly known. As an alternative to this ‘black box’
situation, we decided to develop our own search engine Andromeda that would be
free of these restrictions. In contrast to Mascot, it can handle data with arbitrarily high
fragment mass accuracy and is therefore able to assign and score complex patterns of

post-translational modifications, such as highly phosphorylated peptides.

Andromeda can be run independently as a standalone version. In this case, the user
is required to perform the downstream statistical processing, so as to rigorous control
the protein false discovery rate. More usually, Andromeda run as an integral part of
the MaxQuant platform. The MaxQuant pipeline performs several search cycles (initial
search, main search and second peptide search), which enables analysis of large data

sets in one workflow on a desktop computer.
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In Andromeda, we chose a probability based approach for peptide identification, us-
ing binomial distribution probability and defining a so-called p-score. This score orig-
inated from the determination of the localization probability in modified peptides'?®
and was already used from the beginning of MaxQuant for ranking the peptide can-
didates. We perform a rigorous comparison of the above mentioned Mascot software
with our new search engine on several large-scale data sets. Indeed, the paper also
demonstrates the ability of Andromeda to accurately handle many modifications of the

same peptide.

A key advantage of Andromeda is its extensibility. For example, proteomics with
high accuracy MS and MS/MS data (high-high mode), is becoming increasingly com-
mon. Andromeda, in contrast to Mascot, allows arbitrarily accurate MS/MS require-
ments specified in ppm. Similarly, Mascot precludes identification of SILAC pairs if
the same amino acid can bear a fixed and a variable modification. Apart from describ-
ing the score we have also made the actual code used in Andromeda available with
this publication. Both the standalone and also the integrated MaxQuant version of An-

dromeda, is freely available.

One of my specific contributions was “AndromedaConfig’ a user interface to specify
allowed modifications, enzymes and databases. The user can add novel modifications
by their elemental composition and amino acid sites. Compared to the common used
UNIMOD interface, the user can also specify for each modification, the neutral losses of
each individual amino acid separately as well as so-called diagnostic ions. Itis also pos-
sible to enter modifications that are interpreted as labels by MaxQuant, such as SILAC
states. In the configuration program new cleavage rules of known or new enzymes can
be defined as well. Since the rules have to be specified by regular expressions, which
can be error prone, the program has a verification utility assuring that the correct cleav-
age rules are used. For the extraction of the identifier of a FASTA file, the Andromeda
software has to know the parsing pattern. The user can achieve this by adding new
protein databases via the AndromedaConfig interface. Similar to the enzyme specifi-
cation, regular expression are employed in the configuring process of new databases.
The user can select from a number of pre-configured parse rules or enter a new reg-
ular expression. Again, this can be tested on the current FASTA file within the user
interface. All changes made are stored in XML files (modifications.xml, enzymes.xml
and databases.xml), which are located in the configuration folder of the Andromeda or
MaxQuant software. When using Andromeda in the MaxQuant pipeline, the defini-
tion of modifications, enzymes and databases, has to be completed before opening the

graphical user interface.
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In addition I developed a web server for searching individual spectra using An-
dromeda. The scoring results of the 15 best peptide candidates can be inspected by the
annotated spectrum for the highest scoring and all other candidate peptide sequences.

In this standalone web server, the submission is limited to five peak lists to avoid over-

load.
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ABSTRACT: A key step in mass spectrometry (MS)-based proteomics is
the identification of peptides in sequence databases by their fragmentation
spectra. Here we describe Andromeda, a novel peptide search engine using
a probabilistic scoring model. On proteome data, Andromeda performs as
well as Mascot, a widely used commercial search engine, as judged by
sensitivity and specificity analysis based on target decoy searches.
Furthermore, it can handle data with arbitrarily high fragment mass
accuracy, is able to assign and score complex patterns of post-translational
modifications, such as highly phosphorylated peptides, and accommo-
dates extremely large databases. The algorithms of Andromeda are
provided. Andromeda can function independently or as an integrated
search engine of the widely used MaxQuant computational proteomics
platform and both are freely available at www.maxquant.org. The combi-
nation enables analysis of large data sets in a simple analysis workflow on a
desktop computer. For searching individual spectra Andromeda is also 0 100 200 300 400 500
accessible via a web server. We demonstrate the flexibility of the system by Andromeda score
implementing the capability to identify cofragmented peptides, signifi-

cantly improving the total number of identified peptides.

Mascot score
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KEYWORDS: tandem MS, search engine, spectrum scoring, post-translational modifications, mass accuracy, collision induced
dissociation, higher-energy collisional dissociation, Orbitrap

H INTRODUCTION quantitative data. It includes peak detection in the raw data,
quantification, scoring of peptides and reporting of protein
groups.”’ MaxQuant takes advantage of high resolution data
such as those obtained by the linear ion trap—Orbitrap instru-
ments and employs algorithms that determine the mass precision
and accuracy of peptides individually. This leads to greatly
enhanced peptide mass accuracy that can be used as a filter in
database searching.*> MaxQuant was also specifically designed to
achieve the highest possible quantitative accuracy in conjunction
with stable isotope labeling with amino acids in cell culture
(SILAC).**** Using high resolution data combined with indivi-
dualized mass accuracies and robust peptide and protein scoring
results in high peptide identification rates of typically 50% and
even higher on SILAC peptide pairs.*' This was an important
foundation for the quantification of the first complete model
proteome, that of budding yeast.*®

Mass spectrometry (MS)-based proteomics is becoming a
commonly used technology in a wide variety of biological
disciplines." ® In a “shotgun” format, very complex peptide
mixtures are produced by enzymatic digestion of protein mix-
tures, which are analyzed by hquld chromatography followed by
tandem mass spectrometry 8 Per LC—MS/MS run, thousands
of MS and MS/MS scans are acquired, often producing gigabytes
of high resolution data per day and per mass spectrometer.
Computational proteomics has become a key research area,
dealing with the challenges of how to most efficiently extract
protein identification and quantification results from the raw
data. Both the proteomics community and the bioinformatics
community have dealt with many areas of this novel field, and
there is already a large hterature outlining and reviewing the
general tasks involved,” "’ particular computational as;)ects of
the field'®™>* and integrated data analysis pipelines.”

In this context, our group has developed the MaxQuant

environment, a computational proteomics workflow that ad- Received:  October 23, 2010
dresses the above tasks with a focus on high accuracy and Published: January 21, 2011
WACS Publications ©2011 American chemical Society 1794 dx.doi.org/10.1021/pr101065j | J. Proteome Res. 2011, 10, 1794-1805
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The MaxQuant environment originally used the Mascot
peptide search engine36 to match tandem mass spectra to
possible peptide sequences. Mascot together with SEQUEST*’
are commonly used search tools in proteomics today. However,
there are many others including Protein prospector,”® ProbID,*
X!Tandem;*® OMSSA,* ProSight42 and Inspect43 (see
Nesvizhskii et al. for a review'*). Mascot takes a probability based
approach to match sequences from a database to tandem mass
spectra.®® Because it is a commercial program the exact algo-
rithms it employs are neither known nor available for modifica-
tion. Furthermore, Mascot is implemented in a client-server
configuration, which imposes practical restrictions for some
applications such as real-time searches. We therefore set out to
develop a new search engine that would be free of these
restrictions. We aimed at performance at least on par with
Mascot, which has become a “gold standard” in proteomic
analysis, and robustness for scaling up to extremely large and
complex data sets. In combination with MaxQuant, the new
search engine would then enable analysis of complex data sets on
desktop machines by any proteomics researcher or biologist
wishing to employ proteomics.

Database searching with fragment mass spectra typically fol-
lows one of three approaches:*** (i) deriving a partial or full
peptide sequence with associated mass information (first imple-
mented by PeptideSearch*® and graph theory based de novo
methods*’), (i) autocorrelation between the experimental and
a calculated spectrum (first used in SEQUEST) or (iii) calculating
a probability that the observed number of matches between the
calculated and measured fragment masses could have occurred by
chance (pioneered in Mascot). We chose the probability based
approach based on the binominal distribution probability and
started from a score that we had originally developed for analyzin
MS? data for which no search software was available at the time.*
This score has already been used for ranking the peptides in
MaxQuant searches from the beginning and it also determines the
localization probability of modifications in peptides.*®

In this paper, we describe the architecture of the Andromeda
search engine and its scoring function. We perform a rigorous
comparison against the Mascot search engine on several large-
scale data sets. The ability of Andromeda to accurately handle
many modifications of the same peptide is demonstrated. Due to
the complexity of peptide mixtures in shotgun proteomics and
the relatively low resolution of precursor isolation, two peptides
are frequently ‘cofragmented’ and there are algorithms that try to
identify them from mixture spectra.** ~>> We demonstrate the
flexibility of the Andromeda search engine by implementing a
novel second peptide identification algorithm.

B MATERIALS AND METHODS

Benchmark Data Sets

Raw data from 84 LC—MS runs was taken from Luber et al,>
alabel-free proteome study of mouse dendritic cells to a depth of
5780 proteins. Cell subpopulations were obtained by FACS
sorting, proteins were separated by 1D SDS-PAGE and digested
with trypsin. Peptides from the gel pieces were analyzed on a
nanoflow HPLC system connected to a hybrid LTQ-Orbitrap
mass spectrometer (Thermo Fisher Scientific).

As a phosphoproteomics benchmark data set we took the raw
data from 117 LC—MS runs produced in a phosphatase knock-
down analysis.** Drosophila Schneider SL2 cells were differen-
tially SILAC labeled as pairs with Lys-8/Arg-10 and Lys-0/Arg-0.

Proteins were separated by 1D SDS-PAGE and digested with
trypsin or in solution digested without gel separation. Peptides
were subjected to TiO, chromatography and strong cation
exchange chromatography and analyzed on a nanoflow HPLC
system connected to a hybrid LTQ-Orbitrap (Thermo Fisher
Scientific). For the analysis, we used only those MS/MS spectra
that were acquired on a recognized SILAC pair. Modifica-
tions due to labeling with Lys-8 and Arg-10 can then be taken
as fixed.

The benefits of second peptide analysis were investigated
using data that was acquired on an LTQ-Orbitrap Velos. Briefly,
HelLa cell lysate was in solution digested with trypsin, the peptide
mixture was separated on a nanoflow HPLC system and analyzed
using a data-dependent “top 10” method. Several runs were
acquired with varying isolation windows. The precursor ions
were isolated in selection windows of 1, 2, 4, 8, 16, and 32 Th
followed by HCD fragmentation and high resolution data
acquisition of the MS/MS spectra in the Orbitrap.

Data Preparation

MaxQuant, version 1.1.1.25, generated peak lists from the
MS/MS spectra for the database searches. For the low-resolution
MS/MS spectra recorded in “centroid” mode the 6 most
abundant peaks per 100 Th mass intervals are kept for searching.
High-resolution profile MS/MS data is deconvoluted (deiso-
toping and transfer of all fragment ions to single charge state)
before extraction of the ten most abundant peaks per 100 Th. All
statistical filters in MaxQuant like peptide and protein false
discovery rates and mass deviation filters were disabled in order
to score all submitted MS/MS spectra. Peptide masses were
recalibrated by MaxQuant prior to both Andromeda and Mascot
searches. For the Mascot search (using Mascot server version
2.2.04), peak lists written out by MaxQuant were converted to
mgf format, the standard Matrix Science data format. Oxidation
of methionine and N-terminal protein acetylation were used
as variable modifications for all searches. A mass tolerance of
6 ppm was used for the peptide mass. To make Mascot and
Andromeda searches comparable, we did not use the individual
peptide mass tolerances in MaxQuant. A tolerance of 0.5 Th was
used for matching fragment peaks produced by CID. The HCD
fragment ion data used in the co-fragmentation study were
searched with a 20 ppm window in Andromeda. A maximum
of two missed cleavages were allowed in all searches. The
“instrument” parameter was set to “ESI-TRAP” in the Mascot
search. Mascot and Andromeda scores were matched to each
other based on raw file name and scan number.

The search was performed against a concatenated target-
decoy database with modified reversing of protein sequences as
described previously.”' Mouse and human data was searched
against the respective IPI databases,>® version 3.68, while the
drosophila data was searched against protein sequences from
flybase®® version 5.24.

Search Engine Configuration

In Andromeda, the user specifies allowed peptide and protein
modifications, enzymes used for protein cleavages and the
protein sequence databases to be searched in the program
AndromedaConfig.exe. Modifications are specified by their ele-
mental composition. Neutral losses and diagnostic ions can be
specified separately for each type of amino acid with the
modification in question. Modifications that are interpreted as
labels by MaxQuant can be defined here, such as SILAC labels.
Searches with semispecific enzymes are supported as well, where

1795 dx.doi.org/10.1021/pr101065j |. Proteome Res. 2011, 10, 1794-1805
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Table 1. Most Important Regular Expressions Defining How
Protein Identifiers Are Extracted from the Headers of Fasta
File Entries

regular expression description
>(%) Everything after “>”
>([*]) Up to first space

SIPL([™\] .]*)
>(gi\|[[0—9]*)

IPT accession
NCBI accession

>(["\t]*) Up to first tab character
>\ Uniprot identifier
a. . ) b
Data acquisition .

Standalone Andromeda

4 )
MaxQuant

9
9
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Figure 1. Three Andromeda configurations: (a) integrated in Max-
Quant, (b) standalone search engine, and (c) web server.

only one peptide terminus needs to be a cleavage site according
to the given protease digestion rule while the other terminus can
be an arbitrary position in the protein. An unspecific search is also
supported where both of the peptide termini can be arbitrary
positions in a protein. Parse rules for regular expressions as
defined in the Microsoft .NET framework (msdn.microsoft.
com/en-us/library/ a224scfc.aspx) are used to define how a
protein identifier is extracted from the header line of a FASTA
database file entry. Some of the most important regular expres-
sions can be found in Table 1.

Input and Output Formats
Input files for peak lists and parameter values as well as output
files for peptide identifications and a tentative protein list are all

34

human-readable text files. Parameter files have the ending
“.apar” and contain a list of key-value pairs where each pair is
separated by a “=” sign. Expressions used for modifications,
labels, enzymes and databases must have been defined previously
in the AndromedaConfig.exe program. Peak list files have the
extension “.apl” and can consist of arbitrarily many spectra, one
following the other, each spectrum entry being enclosed by
“peaklist start” and “peaklist end” lines. Some key-value pairs
with peaklist-specific parameters are followed by two columns of
numbers containing the m/z and intensity values. The peptide
result files (“.res”) contain up to 15 candidate peptide matches
for each peak list. For each candidate the peptide sequence,
modification state, score, mass, mass deviation and all corre-
sponding protein IDs are given.

Software Availability

MaxQuant with Andromeda as the integrated search engine
can be downloaded from www.maxquantorg. A standalone
version of Andromeda is available at www.andromeda-search.
org. The source code is provided as Supporting Information 1.
Both applications require Microsoft NET 3.5, which is either
already installed with Microsoft Windows or can be installed as a
free Windows update. The Andromeda web server can be
accessed at www.biochem.mpg.de/mann/tools/ for a limited
number of submissions of MS/MS spectra. Andromeda has been
written in the programming language C#, using the Microsoft
NET framework version 3.5.

B RESULTS

Andromeda is a search engine based on a probability calcula-
tion for the scoring of peptide —spectrum matches. A version of it
is fully integrated into the MaxQuant quantitative proteomics
platform. Hence, all the data processing from the acquired raw
data to the list of quantified peptides and proteins can be
performed in a single end-to-end workflow (Figure la). In
addition to the regular search Andromeda can be used in different
contexts: for example in MaxQuant it is used for determining the
mass-dependent recalibration function based on a preliminary
database search, and for the identification of one or more
cofragmented peptides (see below). We also provide a stand-
alone version of Andromeda that produces scored peptide candi-
dates, given a collection of MS/MS peak lists and a parameter file
(Figure 1b). In this option, many of the statistical processing
algorithms that are part of MaxQuant are not applied to the data
and the reported list of identified proteins is only tentative
without rigorous control of protein false discovery rate (FDR).
The output consists of a raw list of scored peptide candidates per
spectrum together with the protein list. Furthermore, there is a
web server version of Andromeda for the submission of a limited
set of spectra (Figure 1c), www.biochem.mpg.de/mann/tools/.
In addition to the scoring results of the 15 best peptide
candidates, the annotated spectrum can be inspected for the
highest scoring and all other candidate peptide sequences.
Despite these alternative uses, we anticipate that Andromeda
will most commonly be employed as the search engine for
MaxQuant.

Indexing Peptides and Proteins

To efficiently score an MS/MS spectrum it is important to be
able to quickly retrieve all candidate peptides that have a suitable
calculated precursor mass within a given tolerance. First we
generate a list of all peptides obtained by the specified digestion

1796 dx.doi.org/10.1021/pr101065j |. Proteome Res. 2011, 10, 1794-1805
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index that resides in memory points to equally sized blocks of peptide entries, which are kept on disk. (c) Similar structure for the list of all combinations
of peptide sequence and variable modifications. Index and disk entries are sorted by the peptide mass to allow for quick retrieval of all peptide candidates

within a given mass interval.

rule from the protein sequences considering all possible combi-
nations of preset variable modifications. At this stage we are only
interested in the peptide masses, therefore only the number but
not the positions of the modifications are important. The list of
all of these peptides is sorted by mass for quick search access,
which only grows slowly with increasing size (proportional to the
log of the number of peptides for a binary search). The number of
peptides with specific modifications can become very large, either
when searching in an extended protein sequence database or by
specifying many variable modifications. One common setting is
to search the human IPI database including reverse sequences
and common contaminants digested with trypsin and allowing
for up to two missed cleavages. The number of modifications to
consider can also grow rapidly. For example, in a phospho-

proteomic experiment with triple SILAC labeling of lysine and
arginine, one may simultaneously deal with phosphorylation of
serine, threonine and tyrosine, Lys4, Lys8, Arg6, Argl0O and
oxidation of methionine as variable modifications. (This is the
case for those MS/MS spectra where the SILAC state could not
be determined prior to the database search; otherwise the
modification state of Arg and Lys are set by MaxQuant.) For
the human IPI database and including the reversed sequences,
this corresponds to a list of 174 618 protein sequences resulting
in 7837653 peptide sequences and 76 937 183 modification-
specific peptides (without taking modification positioning into
account). These numbers can become even larger, for example in
cases where one wants to search against a six-frame translation of
the whole genome.
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Figure 3. Schematic of the peptide scoring algorithm. The upper left branch shows the calculation of the theoretical fragment ion masses while the right
branch indicates the processing of the experimental MS/MS spectra. In particular, all ion types that are used for the scoring can be found in the table on
the left. The final score involves an optimization of the number of highest intensity peaks that are taken into account per 100 Da m/z interval and over the

inclusion of modification-specific neutral losses.

We therefore wished to be able to handle protein sequence
information without limitation on the sizes of calculated protein
and peptide lists. Our goal was to work within the memory limits
of 32-bit operating systems, which is around 1.6 GB from within
the Microsoft .NET framework. The data structures for the
search engine have to have an even smaller memory footprint
since other data might be required to be in memory at the same
time. Obviously the full modification-specific peptide list is too
large to keep in memory and it has to reside on the hard disk (or
solid state disk for improved performance). This is also true for
the peptide and protein lists because unlimited scalability is
desired. Only an index for each of the files is kept in memory,
which contains positions of the records relative to the beginning
of the file. These memory indices can already exceed the memory
limitations for very large numbers of peptides. Therefore the
index points to beginnings of blocks of elements in the file with a
suitably chosen block size such that the lengths of the indices in
memory never exceed a fixed size. In Figure 2, the structure of
these lists and the relationships between memory and files
residing on the hard disk are shown for proteins, peptides and
modification-specific peptides. The records always contain in-
dices to the respective items in the hierarchy above, assuring easy
navigation from a candidate peptide to all the proteins that it
occurs in. The modification-specific peptide list is the one that is
directly accessed in database searches. It is sorted by mass, which
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allows quick retrieval of peptides within the given mass window.
Protein and peptide list are instead sorted alphabetically by
protein name and peptide sequence, respectively.

Scoring Model

The probabilistic score employed in Andromeda is derived
from the p-score that was introduced for the identification of MS*
spectra.*® Given a peptide sequence together with a configura-
tion of fixed and variable modifications for that peptide, first the
theoretical fragment ions are calculated (Figure 3). For CID and
HCD the list of theoretical fragment ion masses always contains
the singly charged b- and y-ions. If the precursor charge is greater
than one, the doubly charged b- and y-ions are added. In case of
low resolution ion trap MS/MS spectra the charge state of
fragments usually cannot be determined. The calculated doubly
charged m/z values are then added explicitly if it is desired to
match more highly charged fragments. For high-resolution MS/
MS the charge state can be assigned to a fragment if more than
one isotopic peak is detected. For these cases we remove peaks of
fragments with charge higher than 1 from the spectrum and
reintroduce them into the spectrum as singly charged fragment
ions. If there are several charge states for a fragment their
intensities are added, taking account of the fact that signal is
proportional to charge in the Orbitrap analyzer. We noticed that
even for high-resolution MS/MS data, where charge state

8 dx.doi.org/10.1021/pr101065j |J. Proteome Res. 2011, 10, 1794-1805
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detection is possible in general, it is beneficial to consider doubly
charged b- and y-ions as well. This is because for lower mass
fragments sometimes only the monoisotopic peak is detectable
precluding charge state determination and hence also the trans-
formation to charge state one. For example assuming that the
elemental composition of fragments follows the averagine
model®” the ratio between the '*C and monoisotopic peak
intensities for a fragment of 400 Da is 4.6:1. For less abundant
fragments this can obviously lead to nondetection of the *C peak
while the monoisotopic peak is above the noise level.

Calculated peaks corresponding to water and ammonia losses
are only offered for matching as singly charged ions in those cases
where the main b- and y-ion fragment is present and contains the
amine-, amide- or hydroxyl-containing amino acid side-chains
that tend to lead to the respective side chain loss. Modification-
specific losses are configurable in the program AndromedaCon-
fig, which is included in the MaxQuant distribution. The above-
mentioned modification-specific neutral losses, as well as ions
that are diagnostic for the presence of a particular modification of
an amino acid type can be freely configured there. For example,
the loss of phosphate from a phosphorylated serine or threonine
is much more likely than from a tyrosine, which instead produces
a highly specific immonium ion at mass 216.0426 (see, e.g., Steen
et al.**). If Andromeda is used within MaxQuant, the report for
each modification site includes presence or absence of a diag-
nostic peak in the MS/MS spectrum. The score is calculated once
including configurable neutral losses and once excluding them
and the maximum of the two scores is chosen. (Note that all
scoring procedures are carried out identically for sequences from
the reverse database, so they do not introduce a bias.)

The first step in the actual calculation of the score is to count
the number of matches k between the n theoretical fragment
masses and the peaks in the spectrum. The higher k is compared
to n, the lower the chance that this happened by chance.*®
Because there are many signals in MS/MS spectra, including
many low intense noise signals, the number of peaks in a defined
mass interval—here 100 Th, which is the typical distance
between consecutive members of fragment series (average mass
of amino acids)—are limited to a maximum number. The
parameter q is defined as the number of allowed peaks in the
mass interval and it is needed to calculate the probability of a
single random match. If the difference between calculated and
measured masses is less than a predefined value, a match is
counted. This can be done with an absolute mass tolerance
window specified in Th or a relative mass window specified in
ppm. While the former is appropriate for ion trap spectra, the
latter is more suitable for high-resolution FT-ICR or Orbitrap
spectra.

The Andromeda score is calculated as —10 times the loga-
rithm of the probability of matching at least k out of the n
theoretical masses by chance as shown in Figure 3. This is slightly
different from Olsen et al,*® where the probability of matching
exactly k out of n theoretical masses is determined. The formula
used here is more similar to a definition of a p value for the null
hypothesis that there is no similarity between the theoretical
mass list and list of the spectrum masses. In particular, the score
has the desirable property to vanish for k = 0. The calculation of
the probability is only approximate since the probability for a
single random match is taken to be /100, which is exact if there
was only one possible match per nominal mass. For high
resolution MS/MS data the true random match probability is
considerably less than this and the true score would be higher but

more complicated to calculate. However, this simplification is
conservative as it decreases the calculated score and is justified by
the excellent performance of the search algorithm on high-
accuracy MS/MS data.

The intensities of the peaks in the MS/MS spectra are
indirectly taken into account by calculating the score for all
values for q (number of peaks per 100 Th) up to the specified
maximum. The best of these scores for varying q is selected.
Therefore two spectrum-sequence comparisons with the same
values for n and k can result in different scores depending on the
intensities of the matched peaks. Generally, the score is higher if
the matches are among the more intense peaks because the
optimal value of g will be lower (see formula in Figure 3).
However, we have found it crucial that this intensity weight-
ing is not done on the overall intensity scale over the whole
spectrum, but that it is restricted to local mass regions (e.g.,
the 100 Th mass range intervals.). This compensates for
underlying global peak density distributions which typically
favor small fragment masses.

The inclusion of additional information like peptide length,
number of modifications or of missed cleavages can aid the
specificity of peptide assignments to spectra. Ideally this is done
in a data-dependent manner in which different weights for
different classes of peptides can be derived from the data by
machine learning in a Bayesian framework. We wished to include
such a weighting of peptide classes into the score while retaining
abasic search engine score that is deterministic and only depends
on the spectrum being scored rather than the ensemble of all
other spectra. To capture the dependence of the score on peptide
mass and on the number of modifications we introduced a fixed
additive component to the Andromeda score, which depends on
the number of modifications and is a linear function of the mass.
The specific values are determined in a manner that adjusts the
distributions of reverse hits from a target-decoy search so that
they become equal. The net effect of this procedure is to
minimize the FDR for a given cutoff value, because it does not
depend on peptide mass and modification state any longer. We
used a large data set of MS/MS spectra and incorporated the
specific weights into the scoring function. A data-dependent
Bayesian scoring can still be applied to the output of the
Andromeda search engine. For instance, MaxQuant additionally
performs a peptide length dependent Bayesian analysis in a data
dependent manner.*'

Comparison to the Mascot Search Engine

Mascot™ is a widely used standard for database searching and
most other search engines have been compared to Mascot.
Therefore we investigated how Andromeda compares to Mascot
in terms of scoring of peptide-spectrum matches. As the exact
details of the Mascot scoring system are not known, we com-
pared the performance of Andromeda vs Mascot empirically on
very large sets of proteomic data.

In Figure 4a, we plot the Mascot score against the Andromeda
score for a data set of 732287 MS/MS spectra derived from a
label-free mouse proteome measurement as described in Materi-
als and Methods. For each MS/MS spectrum the highest scoring
peptide is taken which is not necessarily the same for the Mascot
and the Andromeda scoring. In Figure 4b, the fraction of cases for
which the top-scoring Andromeda and Mascot peptide se-
quences coincide is displayed as a histogram depending on the
Andromeda score. As can be seen, above an Andromeda score
of 100 the top-scoring peptides coincide in almost all cases.

1799 dx.doi.org/10.1021/pr101065j |. Proteome Res. 2011, 10, 1794-1805

37



article 1

Journal of Proteome Research

a.
o
=5
-
o
321
- +
o
Q1
-
Y o
g &
2 o
9 21
a
£s
o
3]
o
<3
o
3]
o4
0 100 200 300 400 500
Andromeda score
95%90%  75% 50% 0%
LI I i ]
b.
o
—_ o
§ —
1]
vd &
=E]
B o
38 ©
e o
8% €
o £
£s g
2
<
100 200 300 400 500
Andromeda score
C.
-
o
L o
58
ey
[
>
[o
2 8
T o
(]
Ry}
£ g
o
o
o
0 0.2 0.4 0.6 0.8 1.0

Coverage

Figure 4. (a) Andromeda vs Mascot score for a data set of 732 287 MS/
MS spectra derived from a label-free mouse proteome measurement.”
The score for the top-scoring peptide for each MS/MS spectrum is
shown which is not necessarily the same peptide sequence for the
Mascot and the Andromeda identification. The color code indicates the
percentage of points that are included a region of a specific color. (b)
Histogram of the percentage of cases in which the top-scoring Andro-
meda and Mascot peptide sequences are equal as a function of
Andromeda score. For the comparison leucine and isoleucine were
treated as the same amino acid. (c) False discovery rate as a function of
coverage for the same data set calculated based on the reverse hits from
the target-decoy search.

Of the recorded MS/MS spectra, 89.1% correspond to unmodi-
fied peptides and most of the identified modified peptides have
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an oxidized methionine. The point density is indicated by the
color code in Figure 4a which encodes the percentage of points
that are included a region of a specific color. For example, the
yellow line in Figure 4a encloses 95% of all data points. This
visualization allows the visual detection of outliers (like a two-
dimensional data plot), while at the same time retaining informa-
tion about the density of points that would normally only be
visible in a 3D data plot. It is immediately apparent from the
figure that the scores correlate well overall. There are no distinct
populations of peptides that are only identified by one of the
search engines. A linear regression results in the equation M =
0.311 * A — 32.231, where M is the Mascot score and A the
Andromeda score, with an R? value of 0.708. This indicates that
Andromeda scores are generally about 3-fold larger than Mascot
scores. However, this does not indicate a 3-fold larger confidence.
The statistical power is better determined by calculating coverage
and false discovery rates as a function of score threshold as is
done below. A rough conversion between Andromeda and
Mascot scores can be performed by a division by three or
application of the regression line. Note that there are only very
few and dispersed outliers on either side; of the order of tens of
spectra out of the total of more than 700 000. Furthermore, there
are virtually no high-scoring outliers near either axis, indicating
an absence of spectra that were ranked highly with one method
but scored close to zero with the other. This demonstrates that
no populations of peptides would be lost entirely by employing
one score or the other.

Next we compare the performance of the Andromeda and
Mascot search engines as a function of False Discovery Rates
estimated as the number of hits from the reverse database divided
by the number of forward hits at any given minimum score. The
sensitivity of the database search is defined as the number of
accepted forward hits relative to the total number of forward hits
at the same score. Mascot and Andromeda have very similar
characteristics over the whole range of FDRs, in particular
including the often used 1% FDR rate (Figure 4b). This shows
that the two scores are very close in discriminatory power.

Scoring of Phosphopeptides

Figure Sa shows the same type of plot as in Figure 4a but for a
data set that is enriched for phosphopeptides. Of the recorded
586 883 MS/MS spectra in Figure Sa, 27.4% have one or more
phosphorylations. Outliers are visible in the region of high
Andromeda and low Mascot score and most of them correspond
to peptides with three to five phosphorylation events. Figure Sb
displays the MS/MS spectrum of a peptide with five phospho-
rylation sites that has a Mascot score of 5.2 and an Andromeda
score of 199.3. The y-series coverage is almost complete with
most fragments occurring with a neutral loss of a phosphate
molecule. An FDR coverage curve for the phosphopeptide data
set is depicted in Figure Sc. The performances of Mascot and
Andromeda are similar over the entire range with an advantage
for Andromeda in the high specificity region. At the typical
operation point of 1% FDR results are very close. We speculate
that the better scoring in the region of higher specificity may be
due to a better matching of spectra of phosphopeptides in
Andromeda due to more comprehensive combinatorics of
positioning of phospho-groups on the available serine, threonine
and tyrosine sites in the peptide sequences, including a more
complete offering of neutral losses. During the Andromeda
search we offer up to 1000 positionings of variable modifications
within any given peptide which is exhaustive for most situations.

1800 dx.doi.org/10.1021/pr101065j |. Proteome Res. 2011, 10, 1794-1805
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Figure 5. (a) Andromeda vs Mascot score for 586,883 MS/MS spectra from the phospho-proteome data by Hilger et al.>* (b) Annotated MS/MS
spectrum of the peptide SHpSLSpSMIpSNApSSpTMR. Mascot and Andromeda produce the same top-scoring peptide sequence with a Mascot score of
5.2 and an Andromeda score of 199.3. (c) False discovery rate as a function of coverage for the same data set calculated in the same way as in Figure 4c.

In MaxQuant, the top-scoring peptide is furthermore rescored
with essentially exhaustive positioning of modifications. We
merely restrict the combinatorics to 100000 possibilities to
exclude the rare instances where single peptides cause long
calculation times due to “combinatorial explosion”. In Supple-
mentary Figure 1 (Supporting Information), the same data as in
Figure Sa is shown six times—each time highlighting another
population of top-scoring peptides with a fixed number of
phosphorylations. Peptides with higher phosphorylations tend
to have many data points in the high Andromeda score but low-
to-moderate Mascot score region further indicating that Andro-

meda performs better on highly phosphorylated peptides.

Identification of Second Peptides

Even in high-resolution MS, the selection of the precursor ion
for fragmentation is always performed with low resolution
(typically a few Th) to ensure adequate sensitivity for MS/MS.
In complex mixtures, this results in frequent cofragmentation of
coeluting peptides with similar masses. These ‘chimerical’ MS/

1801

MS spectra®® can be detrimental for identification of the peptide
of interest, especially if the cofragmented peptide is of compar-
able intensity. Co-fragmentation generally reduces the number of
peptides identified in database searches and poses special pro-
blems for reporter fragment based quantification methods be-
cause both peptides contribute to the measured ratios.

However, this situation can be turned to an advantage if both
peptides can be identified. In particular, this presents the
opportunity to identify peptides that have not been targeted
for MS/MS and to obtain two or more peptide identifications
from a single MS/MS spectrum. Although this problem has been
addressed before,*”>* to our knowledge it has not been adopted
in mainstream search engines yet. Here we describe a second
peptide identification algorithm that we have integrated into the
Andromeda/MaxQuant workflow.

To illustrate the principles of our algorithm, Figure 6a shows
an LC—MS map, where 3D peaks are indicated as lines marking
the peak boundaries. The blue isotope pattern has been selected
for fragmentation at the position of the cross on the

dx.doi.org/10.1021/pr101065j |J. Proteome Res. 2011, 10, 1794-1805
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Figure 6. Second peptide identification. (a) LC—MS map of the sequenced (blue) and cofragmented (green) peptide described in the main text. The
blue peptide has been selected for fragmentation at the position of the cross. The red rectangle indicates the isolation window. (b) MS/MS spectrum
leading to the identification of both peptides. Fragments of the two peptides are indicated in blue and green, respectively. The blue peptide is identified in

the conventional database search while the green peptide has been identified as “second peptide”.

monoisotopic peak of that peptide. The red rectangle indicates
the region from which ions have been isolated for fragmentation.
Clearly the peptide corresponding to the green isotope pattern
that has not been selected for sequencing intersects with the
isolation rectangle. Therefore its fragments should be present in
the MS/MS spectrum as well. The actual fragment spectrum is
shown in Figure 6b where the fragments originating from the
targeted and identified peptide (blue isotope pattern) are
indicated in blue. This process is repeated for the entire LC—
MS/MS run. For every 3D MS isotope pattern that has not been
selected for sequencing the algorithm checks whether it inter-
sects with the isolation window of any MS/MS spectrum. If this is
the case then the fragments in this MS/MS spectrum that have
already been assigned to a peptide sequence during the main
Andromeda search are subtracted. The remaining fragments are
submitted to a new database search with the precursor mass from
the peptide that was not targeted for MS/MS. The collection of
these “subtracted” peak lists is submitted to Andromeda in the
same way as in a conventional search. However, the results of this
second peptide search are further processed with their own
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peptide length based posterior error probability and precursor
mass filtering. Since these spectra are on average of lower quality
than the original MS/MS spectra we have found it to be crucial
that they have their own data-dependent statistical model for
peptide identification. The resulting peptides are then accepted
up to a 1% FDR and integrated into the usual protein identifica-
tion and quantification workflow.

The HCD data set used for testing (see Materials and
Methods) was acquired with a total isolation width of 4 Th for
every MS/MS spectrum. The identification rate for the set of
second peptide spectra is much lower compared to the normal
MS/MS identification rate of 50%. Nevertheless, since the
number of the second peptide spectra is quite high compared
to normal MS/MS spectra considering cofragmentation still
leads to a considerable increase in peptide identifications. In
our example, the number of identified peptide features increased
by 10.7% by the inclusion of second peptide identifications.
The gain in the number of identified peptides depends on the
isolation width for the acquisition of MS/MS spectra. For instance,
at an isolation width of 2 Th we observe that the increase

1802 dx.doi.org/10.1021/pr101065j |. Proteome Res. 2011, 10, 1794-1805
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in identified peptides through second peptide identifications is
only 5.7%. The relative gain is larger at increased isolation
width because the average number of additional peptides
within the window increases. However, the chance to identify
the main peptide decreases due to the mixing of the spectrum
with fragments from other peptides. The dependence of the
number of peptide identifications for conventional and second
peptides is shown in Supplementary Figure 2 (Supporting
Information).

Hl DISCUSSION AND OUTLOOK

Here we have described Andromeda, a novel search engine
for matching MS/MS spectra to peptide sequences in a database.
Andromeda can either be used in a stand-alone mode or—more
typically—as part of the MaxQuant environment. Apart from an
optimal scoring model our intention was to develop a very robust
architecture with unlimited scalability. We have demonstrated
this on large scale data sets with hundreds of thousands of
spectra. Andromeda has been “stress tested” in ongoing studies
and has been the default search engine in our laboratory for some
time. A practical advantage of the MaxQuant/Andromeda com-
bination is that it runs locally on the user’s computer. This
eliminates client-server set up and communication issues. The
computational proteomics pipeline starting from raw data files to
reported protein groups and their quantitative ratios now appears
unified to the user. Despite the local search architecture, proces-
sing speeds are generally not different from the previous Max-
Q_uant/Mascot environment in which Mascot was run on an
external server. Furthermore, we have added a separate module
called Perseus (www.maxquant.org), which performs bioinfor-
matic analysis of the output of the MaxQuant/Andromeda
workflow. Perseus is already available and in use*® and completes
the pipeline for computational proteomics analysis but will be
described in a future publication (Cox et al,, in preparation).

The scoring function at the heart of Andromeda is built on a
simple binominal distribution probability formula (Figure 3),
which we have previously used in scoring MS* spectra and
localizing PTMs.>® Andromeda divides the MS/MS spectrum
into mass ranges of 100 Th. In each of these ranges the number of
experimental peaks offered for matching is dynamically tested in
an intensity prioritized manner.

False discovery rates for the same initial probability score can
still depend on the number of modifications and on the mass of
the peptide. This is accounted for in Andromeda by an additive
component to the score. Comparison to Mascot on very large
data sets reveals very few outliers—in particular almost no
peptides are exclusively identified by one of the two search
engines. Furthermore, the coverage of identified peptides at any
given FDR is likewise similar, including at the generally used
operating point of 1% expected false positives. We did notice
improved identification of heavily modified peptides in Andro-
meda compared to Mascot, which we attribute to the more
exhaustive combinatorial analysis of placing PTMs on all possible
amino acids. As the Mascot search engine has become one of the
standards in proteomics, equivalent performance fulfills the goal
that we had set for the development of Andromeda and likely
implies favorable comparison to other search engines as well.
Apart from describing the score we have also made the actual
code used in Andromeda available for inspection with this
publication (Supporting Information 1).

A key advantage of Andromeda is its extensibility. For
example, proteomics with high accuracy MS and MS/MS data
(high—high mode®), is becoming increasingly common. An-
dromeda, in contrast to Mascot, allows arbitrarily accurate MS/
MS requirements specified in ppm. Similarly, Mascot precludes
identification of SILAC pairs if the same amino acid can bear a
fixed and a variable modification. This causes a substantial loss of
quantification information, for example in the analysis of lysine
acetylated peptides61 because all MS/MS spectra of lysine-
acetylated peptides that were sequenced on the heavy SILAC
partner will not be identified by Mascot. All these quantitative
ratios are retrieved in the MaxQuant/Andromeda workflow.

More generally, additional scoring modes can be added to
Andromeda. We demonstrated this by implementing a second
peptide identification algorithm into the MaxQuant/Andromeda
workflow. For each isotope cluster that is detected in the LC—
MS data but that was not targeted for fragmentation the
algorithms checks if the precursor isotope pattern intersects
the selection window of any MS/MS event. If so, fragment ions
belonging to the identified peptide are subtracted and the search
is repeated with the cofragmented peptide in a statistically
rigorous way. As demonstrated here, this leads to an appreciable
increase in peptide and protein identifications in complex
mixtures. As another example, special algorithms are necessary
for peptide identification in data independent MS/MS where the
whole mass range is fragmented.&’63 Using the MaxQuant/
Andromeda infrastructure our group recently developed an
implementation of this principle on the Exactive instru-
ment, which consists only of an Orbitrap analyzer with HCD
capability.**

In conclusion, we have developed, described and tested a
robust and scalable search engine that in combination with
MaxQuant represents a powerful and unified analysis pipeline
for quantitative proteomics, which is freely available to the
community.
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2.2 article 2 - Expert System for Computer Assisted
Annotation of MS/MS Spectra

Nadin Neuhauser, Annette Michalski, Jiirgen Cox, and Matthias Mann
Mol Cell Proteomics 2012, 11, 1500-1509

As described before, the main method to identify a peptide by a MS/MS spectrum
is by comparing the observed with a theoretical spectrum. Probability based search
engines - like Mascot or Andromeda - use mainly the regular fragment series such as
b- and y-ions for this purpose. However, peptide fragmentation is far from trivial and
some peaks can not be described by common backbone breakage, regardless of the
identification score. If some high abundant peaks are not explained by conventional
fragmentation rules, the user may doubt the identification. In principle the remain-
ing ions can be explained by peptide fragmentation rules described in the specialized
literature, but this would require substantial expertise and effort. For this reason we
wanted to give novices in the area of peptide fragmentation a tool to find a explana-
tions for - at least - all high abundant peaks. This tool is a so-called “Expert System” and
it supports beginners and advanced users alike with specialized knowledge from the
mass spectrometric fragmentation part of their experiments. For the latter, it can also
be used to focus on unusual fragmentation events, perhaps leading to the discovery of
new fragmentation rules. This would be especially valuable in case of modified pep-
tides, which often have complicated fragmentation spectra. Using a rule base technique
has the advantage that the extension of the knowledge is also possible for researchers
without a background in computer science. It also enables exclusion of particular rules

from the existing knowledge base.

The knowledge base of the Expert System consists of fragmentation rules for tryptic
HCD spectra that are known from the literature or by intensive testing of hypotheses
(for more details see next article). Differently from a human expert, in our approach
we can estimate the risk of false annotation by calculating a FDR for the rule set using
well controlled high-throughput projects with thousands of spectra interpretations. For
this purpose, I devised a novel approach in which the FDR is calculated by counting
the false annotations of inserted independent peaks into a spectrum. A measurement
about the completeness of the annotation is the intensity coverage, which represents
the percentage of peak intensities explained by the Expert System. I showed that the
Expert System can significantly increase the intensity coverage from 58% with regular

annotation to 98%, while the chance for a false positive annotation is below 5%.
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So far, the annotation by the Expert System is not part of the search engine score
nor does it have any influence on the peptide identification. One reason for this is that
increasing the number of possible fragment types would lower the score for statisti-
cal reasons. This is because the likelihood of observing all fragment types is not the
same. However, Andromeda and the Expert System were developed at the same time
and this meant that knowledge gained through the Expert System helped to improve
Andromeda. For example, Andromeda uses backbone fragments that have lost wa-
ter (H,O) or ammonia (NH;3) when the peptide sequence contains specific basic amino
acid residues. This is common knowledge, but it became part of Andromeda, only after

statistical relevance was shown by investigations with the Expert System.

The Viewer software - which was partly developed by me - is part of the MaxQuant
framework and allows the user to manually inspect the quality of all identified MS/MS
spectra using the Expert System. To full fill the publication criteria of some journals'®,
these spectra can be efficiently exported to bitmap images (png, jpg) or also vector
graphics (pdf). Additionally a web service exists where a user can submit an individ-
ual spectrum - together with the peptide sequence - to inspect the annotation by the
Expert System independent from the MaxQuant environment. I have developed the
knowledge base in cooperation with my co-author Annette Michalski. My responsibil-
ity were all computational tasks including the implementation of knowledge base and

the Expert System.
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Expert System for Computer-assisted
Annotation of MS/MS Spectra*s

Nadin Neuhausertq], Annette Michalskitq], Jirgen Coxt, and Matthias Mannt§

An important step in mass spectrometry (MS)-based pro-
teomics is the identification of peptides by their fragment
spectra. Regardless of the identification score achieved,
almost all tandem-MS (MS/MS) spectra contain remaining
peaks that are not assigned by the search engine. These
peaks may be explainable by human experts but the scale
of modern proteomics experiments makes this impracti-
cal. In computer science, Expert Systems are a mature
technology to implement a list of rules generated by in-
terviews with practitioners. We here develop such an Ex-
pert System, making use of literature knowledge as well
as a large body of high mass accuracy and pure fragmen-
tation spectra. Interestingly, we find that even with high
mass accuracy data, rule sets can quickly become too
complex, leading to over-annotation. Therefore we estab-
lish a rigorous false discovery rate, calculated by random
insertion of peaks from a large collection of other MS/MS
spectra, and use it to develop an optimized knowledge
base. This rule set correctly annotates almost all peaks of
medium or high abundance. For high resolution HCD data,
median intensity coverage of fragment peaks in MS/MS
spectra increases from 58% by search engine annotation
alone to 86%. The resulting annotation performance sur-
passes a human expert, especially on complex spectra
such as those of larger phosphorylated peptides. Our
system is also applicable to high resolution collision-in-
duced dissociation data. It is available both as a part of
MaxQuant and via a webserver that only requires an
MS/MS spectrum and the corresponding peptides se-
quence, and which outputs publication quality, annotated
MS/MS spectra (www.biochem.mpg.de/mann/tools/). It
provides expert knowledge to beginners in the field of
MS-based proteomics and helps advanced users to focus
on unusual and possibly novel types of fragment
ions. Molecular & Cellular Proteomics 11: 10.1074/mcp.
M112.020271, 1500-1509, 2012.

In MS-based proteomics, peptides are matched to peptide
sequences in databases using search engines (1-3). Statisti-
cal criteria are established for accepted versus rejected pep-

From the tDepartment of Proteomics and Signal Transduction,
Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152
Martinsried, Germany
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tide spectra matches based on the search engine score, and
usually a 99% certainty is required for reported peptides. The
search engines typically only take sequence specific back-
bone fragmentation into account (.e. a, b, and y ions)
and some of their neutral losses. However, tandem mass
spectra—especially of larger peptides—can be quite com-
plex and contain a number of medium or even high abun-
dance peptide fragments that are not annotated by the search
engine result. This can result in uncertainty for the user—
especially if only relatively few peaks are annotated—be-
cause it may reflect an incorrect identification. However, the
most common cause of unlabeled peaks is that another pep-
tide was present in the precursor selection window and was
cofragmented. This has variously been termed “chimeric
spectra” (4-6), or the problem of low precursor ion fraction
(PIF)" (7). Such spectra may still be identifiable with high
confidence. The Andromeda search engine in MaxQuant, for
instance, attempts to identify a second peptide in such cases
(8, 9). However, even “pure” spectra (those with a high PIF)
often still contain many unassigned peaks. These can be
caused by different fragment types, such as internal ions,
single or combined neutral losses as well as immonium and
other ion types in the low mass region. A mass spectrometric
expert can assign many or all of these peaks, based on expert
knowledge of fragmentation and manual calculation of frag-
ment masses, resulting in a higher degree of confidence for
the identification. However, there are more and more practi-
tioners of proteomics without in depth training or experience
in annotating MS/MS spectra and such annotation would in
any case be prohibitive for hundreds of thousands of spectra.
Furthermore, even human experts may wrongly annotate a
given peak—especially with low mass accuracy tandem mass
spectra—or fail to consider every possibility that could have
resulted in this fragment mass.

Given the desirability of annotating fragment peaks to the
highest degree possible, we turned to “Expert Systems,” a
well-established technology in computer science. Expert Sys-
tems achieved prominence in the 1970s and 1980s and were
meant to solve complex problems by reasoning about knowl-

1 The abbreviations used are: PIF, Precursor Intensity Fraction;
FDR, False Discovery Rate; MS/MS, Tandem mass spectrometry;
HCD, Higher Energy Collisional Dissociation; PEP, Posterior Error
Probability; PDF, Portable Document Format; IM, immonium ion; SC,
side chain fragment ion; Th, Thomson.
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Fic. 1. Basic concept of the Expert System. A, An Expert System is constructed by interviewing an expert in the domain (here peptide
fragmentation and the accumulated literature) and devising a set of rules with associated priority and dependence on each other. The
knowledge base contains the rules whereas the rule engine is generic and applies the rules to the data. B, Data are automatically processed

following the steps depicted.

edge (10, 11). Interestingly, one of the first examples was
developed by Nobel Prize winner Joshua Lederberg more
than 40 years ago, and dealt with the interpretation of mass
spectrometric data. The program’s name was Heuristic
DENTRAL (12), and it was capable of interpreting the mass
spectra of aliphatic ethers and their fragments. The hypothe-
ses produced by the program described molecular structures
that are plausible explanations of the data. To infer these
explanations from the data, the program incorporated a the-
ory of chemical stability that provided limiting constraints as
well as heuristic rules.

In general, the aim of an Expert System is to encode knowl-
edge extracted from professionals in the field in question. This
then powers a rule-based system that can be applied broadly
and in an automated manner. A rule-based Expert System
represents the information obtained from human specialists in
the form of IF-THEN rules. These are used to perform oper-
ations on input data to reach appropriate conclusion. A ge-
neric Expert System is essentially a computer program that
provides a framework for performing a large number of infer-
ences in a predictable way, using forward or backward
chains, backtracking, and other mechanisms (13). Therefore,
in contrast to statistics based learning, the “expert program”
does not know what it knows through the raw volume of facts
in the computer’s memory. Instead, like a human expert, it
relies on a reasoning-like process of applying an empirically
derived set of rules to the data.

Here we implemented an Expert System for the interpreta-
tion for high mass accuracy tandem mass spectrometry data
of peptides. It was developed in an iterative manner together
with human experts on peptide fragmentation, using the pub-
lished literature on fragmentation pathways as well as large
data sets of higher-energy collisional dissociation (HCD) (14)
and collision-induced dissociation (CID) based peptide iden-
tifications. Our goal was to achieve an annotation perform-

ance similar or better than experienced mass spectrometrists
(15), thus making comprehensively annotated peptide spectra
available in large scale proteomics.

EXPERIMENTAL PROCEDURES

The benchmark data set is from Michalski et al.? Briefly, E. coli,
yeast and Hela proteomes were separated on 1D gel electrophoresis
and in gel digested (16). Resulting peptides were analyzed by liquid
chromatography (LC) MS/MS on a linear ion trap - Orbitrap instrument
(LTQ Velos (17) or ELITE (18), Thermo Fisher Scientific). Peptides were
fragmented by HCD (14) or by CID, but in either case fragments were
transferred to the Orbitrap analyzer to obtain high resolution tandem
mass spectra (7500 at m/z 400). We scanned tandem mass spectra
already from m/z 80 to capture immonium ions as completely as
possible. Data analysis was performed by MaxQuant using the An-
dromeda search engine (8, 9). Maximum initial mass deviation for
precursor peaks was 6 ppm and maximum deviation for fragment ions
for both the search engine and for the Expert System was 20 ppm.
MaxQuant preprocessed the spectra to be annotated by the Expert
System in the same way as it does for the Andromeda search engine:
Peaks were filtered to the 10 most abundant ones in a sliding 100 m/z
window, de-isotoped and shifted to charge one where possible. From
this data, sequence-spectra pairs were selected that had a certainty
of identification of 99.99% PIF values (7) larger than 95% and that
were sequence unigue (more than 16,000 peptides).

The Expert System was written in the programming language C#,
using the Microsoft .NET framework version 3.5 and the Workflow.
Activities library, which contains a rule engine to implement an Expert
System (Microsoft Corporation, Redmond, WA).

MaxQuant contains the Expert System as an integrated option in its
Viewer—the component that allows visualization of raw and anno-
tated MS data. MaxQuant can freely be downloaded from www.
maxquant.org. It requires Microsoft .NET 3.5, which is either already
installed with Microsoft Windows or can be installed as a free Win-
dows update. In our group we have implemented the Expert System
both on a Windows cluster and in a desktop version. Additionally, we
provide an Expert System web server, which can be accessed at

2 Michalski, A., Neuhauser, N., Cox, J., and Mann, M., unpublished
data.
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www.biochem.mpg.de/mann/tools/. Although MaxQuant allows the
Expert System annotation of arbitrary numbers of MS/MS spectra, the
webserver is currently limited to the submission of one MS/MS spec-
trum at a time. After upload of a list of peaks with m/z value and their
intensities—together with the corresponding peptide sequence—the
spectrum with all annotations is displayed. This can then be exported
in different graphical formats.

RESULTS AND DISCUSSION

Construction of the Expert System—Human experts per-
form a generic set of tasks when solving problems such as the
interpretation of an MS/MS spectrum. These rules have to be
codified in the Expert System, mainly in the form of a series of
IF-THEN rules. Fig. 1 shows the major steps involved in build-
ing and using the Expert System. It is important to acquire all
relevant rules to interpret MS/MS spectra as comprehensively
as possible. However, to avoid over-annotation leading to
false positives (see below), the number of rules and their
interactions should not become too large. This balance was
struck by evaluating the performance of different set of rules
on large data sets in conjunction with human experts.

Rules were encoded in a table-like structure, where they
could be activated, deactivated or modified. To create the
knowledge base, the extent of interactions of the rules also
had to be determined—for instance, which combination of
neutral losses to allow. After iterative construction of the
knowledge base, the rule engine then applied the encoded
knowledge to MS/MS spectra and displayed the result to the
user (Fig. 1A). The processing steps that are performed on the
raw MS and MS/MS spectra are shown in Fig. 1B (see also
EXPERIMENTAL PROCEDURES). Note that the workflow is
entirely automated and that user interaction is possible but
not required. Arbitrary numbers of annotated spectra of pep-
tides of interest can be produced as interactive screen images
or high resolution, printable PDF files. The Expert System is
very fast, and 16,000 spectra can be annotated in less than
four hours on a desktop system.

The IF-THEN constraints of our Expert System can be di-
vided into four major parts (Fig. 2). At first the Expert System
calculates any specific backbone fragments (a, b, and y-ion
series), the charged precursor ion, the immonium ions as well
as side chain fragments in the low-mass region and places
them into a queue. In the second part of the workflow every
element in this queue is filtered with respect to the actual
MS/MS spectrum. Even if there is a peak corresponding to a
calculated item in the queue, it may still be filtered out
(symbolized by missing annotations after the filter in Fig. 2).
For instance, a b, ion is only allowed in very restricted
circumstances.

In the third step, neutral losses and internal fragments for
the filtered values are calculated and added to the queue.
They are then subjected to the same filtering rules as in step
2. Step 3 is iterative, as several subsequent neutral losses
may be allowed.

database
sequence

ACPDICAK M

D) |

84.0651;
b1 bz b" 860965,

147.0587;
Y1 Y2 Yn 147.1128;
IMI

NS

@ match

PD l
CA
PDI
i C b> b,
Y1 Y2 Yn
IM1
@ ‘ Y.
mi Y bn
b, sz

Fic. 2. Work flow of the Expert System. ® From the database
sequence of the peptide identified by the search engine, a list of
possible fragment ions is created. @ Peaks from the measured spec-
trum are compared with the possible fragments and preliminarily
annotated if they pass the rules of the Expert System. ® Neutral
losses and internal fragments are generated from the candidate,
annotated peaks and exposed to the Expert System rules. @ Potential
conflicts are resolved via the priority of the annotations and peaks are
labeled. Note that possible internal fragment ‘CA’ is crossed out
because the b, ion has the higher priority.

In the fourth and last step each potential annotation is given
a priority. If there is more than one possible annotation, the
one with the highest priority is chosen (i.e. the one that trig-
gered the rules with higher priority). However, in this case the
Expert System provides a pop-up (or “tool-tip”) containing the
other possibility when hovering the mouse over the peak.
(This can still happen if the FDR is properly controlled and is
then typically caused by two different chemical designations
for the same ion; or by different ions with the same chemical
composition, such as small internal fragments with different
sequence but the same amino acids).

Determining a False Discovery Rate for Peak Annotation—
Use of a very high threshold for peptide identification
(99.99%) ensured that virtually none of the peptides in our
collection should be misidentified. However, when building
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Fic. 3. Calculation of false discovery rate for peak annotations. A, The upper panels represent a large number of identified MS/MS
spectra from which annotated peaks are drawn to form a large peak collection of possible fragment masses. From each identified spectrum
in the data set, 10 random fragments are inserted and the number of annotations by the Expert System is counted. This process is repeated
500 times for each peptide. B, Median FDR as determined in A as a function of peptide length distinguished by the mass difference of fragment
ion and theoretical mass. The FDR for peak annotation rises with peptide length and is strongly dependent on the mass difference. Box plot
at the bottom shows that 50% of the peptides were between 12 and 18 amino acids long. The box plots on the right summarize the range of
FDR values regardless of peptide length. C, Graph of the median FDR as a function of peptide length but separated by intensity classes of the
false annotated fragment peaks. Most false positives come from the low abundant peaks (blue) rather than the medium (green) or high
abundance fragment peaks (yellow). D, Same plot as above but differentiated by the fragment ion type of the false positives. Getting lower
number of false positives from regular fragment annotations (blue), compared with internal fragment (green) and neutral loss annotations

(vellow).

Molecular & Cellular Proteomics 11.11

1503

49



article 2

Expert System for Annotation of MS/MS Spectra

A. yi2 yi Y10 Yo Y8 | y7 | Y6 | ys | Y4 | Y3 o Y1
A A G A T T A N | T Q A | E Q M R
b: | _b: | _bi |_bs be by b bo
199 identification score 136.17 intensity coverage 34%
PEP 1.1 e-21 peak coverage 24%
PIF 97%
80
3
c bs
©
el
c
=]
£ 60
2 ys
K
[
14
40
6
b2 ba Y
20 yi y4
y? Yo fo  yn
b{ | b Ay Y
00 e
0 w}‘ LD H“HHM“\‘H‘I \‘\ 1! \‘u\\u‘\\\‘\‘ . |‘\ L ‘M‘ 1
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
m/z
yi2 yn Yio Yo ys | y7 | Ye | Ys | Y4 | VA ox yi
A A G A T T A N | T Q A | M R
b | bs | ba | b be b bs bo
bs
100+ intensity coverage 87%
peak coverage 61%
b2 AC:AT
80-{ A
3 b . :
5 3 TN b
=] ' oo | " 1
2 !
2 )
2 60 ‘
2 : ' L : | ys
3 ; : bs | i
2 SGR G ‘ ‘ ‘ ‘ ‘ TTAN QAl% TTANI|
o] M1 IR 0 N Y
100 200 300 400 500
y7
ye ‘
20 y4 ys |
; | Yo yipo yn
‘ ‘ ‘ ‘ ‘ | be | TANITQAIFQ e
0,‘”\‘|H‘H\‘H\H} ‘ “H‘l“‘l“‘u\‘h \\\‘\‘L\ L ‘h“\
100 200 300 400 500 600 700 800 1000 1100 1200 1300 1400 1500 1600 1700

Fic. 4. Example spectra before and after Expert System annotation. A, Based on the search engine result, 34% of the fragments by peak
intensities and 24% by peak number are explained, whereas the Expert System almost completely annotates the spectrum (for further
explanation see main text). Posterior Error Probability (PEP) a statistical expectation value for peptide identification in Andromeda. Apart from
the large fraction of a-, b-, and y-ions (pale blue/dark blue/red) and ions with neutral losses (orange), one can find internal fragment ions (purple)
and in the low mass region one immonium ion of Isoleucine (green) and a side chain loss from arginine (turquoise). B, Expert System annotation
of a phosphorylated peptide. Apart from the internal ions, several phosphorylation-related fragment ions were found. The asterisk (*) denotes
loss of H304P with a delta mass of 97.9768 from the phosphorylated fragment ion.

the Expert System, we noticed that it was still possible to
over-interpret the MS/MS spectra. This was initially surprising
to us because our large scale data set had good signal to
noise and peaks was only candidates for annotation when
their calculated mass was less than 20 ppm from the ob-
served mass. The over-interpretation became apparent through
conflicting annotations for the same peak, and was typically

caused by a combination of rules, such as several neutral losses
from major sequence specific backbone or internal ions. Be-
cause conflicting or wrong annotations would undermine the
entire rational for the Expert System, we devised a scheme to
stringently control the false discovery rate for peak annotation.

The false discovery rate (FDR) is meant to represent the
percent probability that a fragment peak is annotated by

1504

50

Molecular & Cellular Proteomics 11.11



Expert System for Computer Assisted Annotation of MS/MS Spectra

Expert System for Annotation of MS/MS Spectra

B. yi3* yi2* yn* y10* yo* ys* y7* Y6 | ys | ya | Y3 | y2 | Y1
\" P D E E E N E E S D N E K
b2 bs b bs be bz bs
1909 dentification scpre 117.2 intensity coverage 37%
PEP 1.24 e peak coverage 26%
PIF 98%
80
[0
2
©
b=l
c
3
2 e0q
= . ys®
5 e
x
40
yor
y3
. v -
y1 ys* . Y
20— yio0™
| y2 bs ba
b1 Y4 5 Yy * bAE
| P L VY .
od L H‘\H“HIJ‘\H‘HH‘!‘“\‘M'\ \“‘H“H\“\‘\‘
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
m/z
| y13* y127 yi® yi0* yo* ys* y7* Y6 | ys | ya | y3 | y2 | y1
b
\' P D E E E N E E S D N E K
b2 bs ba bs be b7 bs
100-| PD intensity coverage 89%
peak coverage 71%
80
8 PDE
c
3
c
=3
R
g , -
k] ’ & * 8
& ¥ v2 ¥ A
iy R
‘ PDEEENE yor
i yTS
204 iy] o yio0*
IME| il | PDEEENEE ;
ih ve i Sl yn* yi2*
0o bl | |
o Il “‘H\‘\‘\\“‘H‘ ‘ L Al
100 800 900 1000 1100 1200 1300 1400 1500 1600 1700
m/z

FiG. 4—continued

chance because its mass fits one of the Expert System rules
for the peptide sequence. To calculate a proper FDR, we
therefore needed to provide a set of background peaks that
would represent false positives when they are labeled by the
Expert System. Producing realistic background peaks turned
out to be far from trivial because they need to have possible
masses that can in principle be generated from peptide se-
quences and they need to be independent of the sequence of
the peptide in question. The principle of our solution to this
problem is shown in Fig. 3A. From the large data set under-
lying this study, we collect the m/z values of all annotated
peaks, except those coming from immonium or side chain

ions. They were stored in a large peak collection of several
million entries, together with the respective peptide se-
quences and the relative intensity of the peak. For each spec-
trum in which we wanted to determine the FDR, we then
inserted a random set of 10 peaks from the collection, where
after we checked if the sequence of the selected peaks was
independent from the sequence of the current spectrum. If
one of the inserted peaks overlapped with an existing peak, it
was discarded. By definition these 10 peaks represent pos-
sible peptide fragments and, because they are chosen ran-
domly from millions of other peaks, they collectively represent
a good approximation to a true background set. This would
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Fic. 5. Expert System performance on a large data set. Median sequence coverage by summed fragment ion intensity is plotted as a
function of identification score. Statistics is based on more than 16,000 spectra. For every identification score, the Expert System adds a large
proportion of explainable peaks. Box plot below the graph indicates that 50% of peptides in the set have an Andromeda score between 98
and 140. Box plots on the right indicate the range of values for the intensity coverage for standard and Expert System annotation.

not be the case for permutation of the sequence of the pre-
cursor in question, for instance, because many of the frag-
ment peaks in permutated sequences are identical. Whenever
the Expert System annotated one of these peaks, it was
counted as a false positive. To find the number of repeats
necessary to obtain a stable FDR for this procedure, we chose
a set of spectra and simulated a thousand times on each one.
We found that the FDR was constant after 500 iterations. For
the final FDR calculation, for each spectrum we added a
different set of 10 random peaks from the collection and
repeated this 500 times. This was then applied to each of the
more than 16,000 pure (high PIF) spectra in the large scale
data set.

Beyond providing a solid FDR estimate for each rule set,
this procedure also allowed us to identify the rules or rule
combinations that were responsible for miss-annotation, i.e.
the rules that falsely annotated the inserted peaks. These
mostly turned out to be chains of subsequent neutral losses.
In conjunction with detailed evaluation of the frequency of ion
types, we iteratively designed an optimal rule set (supplemen-
tal Table S1). For instance, neutral losses from a particular
amino acid were allowed if they occurred in more than five
percent of the fragment sequences that contained that amino
acid. Likewise, of a set of about 42 possible neutral side chain
losses, only six were sufficiently important to retain them in
the Expert System. The Figs. 3B-3D show the results of the
median FDR as a function of the peptide length based on this
final rule set. The overall FDR—indicated in red—is the same
in all plots and shows a clear growing trend in the number of

false positives with the length of the peptides. For small
peptides of 12 amino acids or less, the FDR was less than
2.1% and all peptides in the range investigated had a peak
annotation FDR of less than 5%. With these settings, the
annotations are correct in more than 97% of the cases for the
vast majority of MS/MS spectra. The Expert System could of
course be pruned to provide a lower FDR by narrowing the
mass tolerance window; however, this would come at the ex-
pense of discarding correct annotations. To explore the influ-
ence of mass accuracy on potential false positive annotations,
we repeated these calculations with required mass deviations
no larger than 5 ppm or no larger than 10 ppm. As can be seen
in Fig. 3B, this further reduced possible errors to less than
1%, or less than 0.3%, respectively. This highlights the value
of high mass accuracy in unambiguously identifying fragment
mass identity.

Furthermore, peaks with a low signal to noise are more
likely to be miss-annotated than more intense peaks. In Fig.
3C we sorted the peak intensity of the false positives into
three intensity classes (Fig. 3C). The median FDR of peaks
with high or medium abundance are only 0.1 or 0.5%. For low
abundance peaks it is higher but still with a median of no more
than 2.1%.

Next we separately investigated the FDR as a function of
peptide length for the different fragment ion types. As can be
seen in Fig. 3C, regular ions and internal fragments contribute
very little to overall false annotation (0.4 and 0.5%), whereas
neutral loss ions are wrongly annotated in 1.8% of the case or
even more.
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Performance of the Expert System—Fig. 4 shows an illus-
trative example of an HCD fragmented peptide before and
after Expert System evaluation. The peptide was identified
with an Andromeda score of 136 and posterior error proba-
bility (PEP) of 1.1E-21 (the corresponding Mascot score was
83). The spectrum features an uninterrupted b-ion series from
b, to by and an uninterrupted y-ion series from y; to y,,,
together covering the entire peptide sequence. Despite this
unambiguous identification, the peaks used by the search
engine to identify the peptide only accounted for 35% of the

summed intensity of the peaks in the fragmentation spectrum.
Coverage by number of explained peaks was even lower at
24% (allowing up to 10 peaks per 100 Th in the measured
spectrum see EXPERIMENTAL PROCEDURES). There is a
series of high abundance, high m/z fragments as well as a
large number of low abundance peaks in the low and me-
dium m/z range that are unexplained by the search engine.
After annotation by the Expert System, this situation
changes entirely. The high m/z series is revealed to be a
prominent loss of CH,SO from oxidized methionine. The low
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mass ions are neutral losses, internal fragments and com-
binations between them and they were unambiguously and
correctly assigned. Altogether, the Expert System ac-
counted for almost all prominent ions and explained a total
of 88% of the ion current. Manual annotation of this spec-
trum would have been possible but would have been very
time consuming.

Interpretation of phosphorylated peptides, especially large
ones, is more difficult than that of unmodified peptides. Fur-
thermore, accurate placement of the phosphorylation site can
be challenging. We used literature knowledge (19, 20) and the
results of a large-scale investigation into the fragmentation of
phosphorylated peptides to derive suitable fragmentation
rules for the Expert System. This led to an additional six rules,
which were easily integrated, illustrating the extensibility of
the Expert System. Fig. 4B depicts an example annotation of
the relatively complex fragmentation spectra typical of phos-
phorylated peptides. The large ion series from the low mass
range to about mass 1000 is caused by an extensive and
uninterrupted internal ion series starting from the proline in the
second position of the peptide sequence. As these internal
fragments contain several glutamines, they lead to additional
water and ammonia losses. However, there are also newly
annotated fragments resulting from neutral losses in addition
to loss of the phosphorylation site. Moreover, the neutral loss
of HPO; is annotated.

Large-scale Evaluation of the Performance of the Expert
System—We used the population of 16,000 spectra with high
PIF—identified with a false discovery rate of 0.01% by the
search engine—and annotated them automatically using the
Expert System. For each spectrum we calculated the intensity
coverage obtained by the fragments used by the search en-
gine and the fragments explained by the Expert System.
Higher scoring fragmentation spectra would be expected to
have a larger fraction of their ion current annotatable than
lower scoring peptides. Fig. 5A shows a plot of the median of
these values for all search engine scores. A total of 95% of
these Andromeda scores are within a range of 96 to 138. Here
the median intensity coverage by standard annotation varies
from 55% at 96 to 64% at 138. The Expert System, in con-
trast, annotated between 86 and 89% of the total ion current
in the fragment spectra of the same peptides. This repre-
sents an average increase of 28%. There was only a small
percentage of peptides that were lower scoring than 96 and
for these the increased annotation percentage of the Expert
System was even larger (34%). Interestingly, even in very
high scoring HCD fragment spectra there are still many
peaks not directly annotated by the search engine. For
these, the average increase of annotated ion current be-
cause of the Expert System was still 23%.

The rule set of the Expert System was derived from HCD
data. However, HCD and CID appear to produce similar ion
types, although with different abundances. We therefore
tested if the derived rule set was also applicable to high

resolution CID data. This was indeed the case, and a total of
85% of the ion current in high resolution CID spectra ex-
plained by the Expert System, although in CID spectra a
higher percentage (79%) of the peaks are already accounted
for by standard ion types. Therefore we conclude that the
Expert System can be used equally well for high resolution
HCD and CID data although the benefits for CID are not as
large as they are for HCD.

Webserver for Expert System Annotation of Spectra—The
Expert System is now part of the Viewer component of Max-
Quant, which is freely available at www.maxquant.org. In this
environment, the Expert System can annotate arbitrarily large
data sets of identified peptides and visualize and export them
in different graphical formats such as PDF. Additionally, we
established a webserver to make the Expert System available
to any proteomics scientist, regardless of the computational
workflow that he or she is using. The webserver is located at
http://www.biochem.mpg.de/mann/tools/and its graphical in-
terface is shown in Fig. 6. The user needs to supply a mass
spectrum in the form of an m/z and peak intensity list as well
as the sequence of the identified peptide (Figs. 6A, 6B). Com-
mon modifications and their position in the sequence can also
be specified. The webserver then provides an annotation of
the spectrum within the stated mass tolerance as shown in
Fig. 6C. The graph is scalable to enable detailed study of
complex fragmentation spectra. Mass deviations in ppm (cal-
culated mass — measured mass) can also be depicted. This
annotated spectrum can be downloaded in a number of
graphical formats for use in publications.

CONCLUSION AND OUTLOOK

Here we have made use of Expert Systems—a well-known
technology in computer science—to automatically but accu-
rately interpret the fragmentation spectra of identified pep-
tides. We have shown that the Expert System performs very
well on high mass accuracy data, annotating the large major-
ity of medium to high abundance peaks. For HCD spectra it
explains on average 28% more of the peak intensities than the
search engine results alone. We derived a rigorous false pos-
itive rate, ensuing that less than 5% of peaks can be miss-
annotated—this rate is even lower for spectra with at least
median scores and fragment ion intensities of at least mod-
erate abundance. The rule set was derived by iterative inter-
pretation of large HCD data set but we show that the Expert
System is equally applicable to high resolution CID spectra.

We envision different uses for the Expert System: For be-
ginners in MS-based proteomics, it enables efficient training
in the interpretation of MS/MS spectra without requiring much
input from a specialist. For advanced users, it allows focusing
on unusual and potentially novel types of fragments. One
caveat is that the Expert System currently cannot explain
fragment peaks that belong to cofragmented precursors; a
very common occurrence that we deliberately avoided here
by selecting only pure MS/MS spectra. This limitation can be
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addressed if both precursors are identified and communi-
cated to the Expert System. Such a feature might be partic-
ularly useful for instruments that allow deliberate multiplexing
of precursors, which leads to complex MS/MS spectra (21).

The Expert System has been in routine use in our laboratory
for a number of months. During this time we have found that
it provides helpful confirmation of the identification of the
peptide and the identity of the previously unlabeled fragment
ions. This is particularly welcome in the case of complicated
spectra of important peptides, such as the ones regulated in
the biological function in question. Compared with a human
expert, the principal advantages of the Expert System are its
speed, its ability to check for all supplied rules in a consistent
manner as well as its rigorously controlled false positive rate.
Obviously, the Expert System is limited to the knowledge
supplied whereas an experienced mass spectrometrist can go
beyond these rules and discover the origin of novel fragmen-
tation mechanisms.

As we have shown here, Expert Systems can readily be
applied to problems in computational proteomics. Given their
relative ease of implementation, they may become useful in
other areas in MS-based proteomics, too.
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of Tryptic HCD Spectra

Annette Michalski, Nadin Neuhauser, Jiirgen Cox, and Matthias Mann
Journal of proteome research 2012, 11, 5479-5491

For many years, collision induced dissociation (CID) has been the workhorse of tan-
dem mass spectrometry?’, breaking the analyte into characteristic fragments in order
to provide structural information. Here we take a closer look at the recently developed
higher energy collision induced dissociation (HCD) fragmentation technique. In con-
trast to CID in ion trap instruments, HCD is almost always acquired in high resolution
and with high mass accuracy, which can even enable determination of elemental com-
position especially in the low mass region. To characterize the fragmentation pattern

obtained by HCD, a significant number of spectra had to be considered.

Here we investigate a large-scale analysis to find out what is the difference between
CID and HCD and which fragment ions can be found in HCD spectra. In order to
automate this process, this investigation accrued in context of the development of the
Expert System (article 2). Using this computational support it was then possible to
apply novel and already known fragmentation rules to determine several thousands of
high quality peptide spectrum matches. For this I was implementing a program that
automates the spectrum interpretation and provides the results in tables which were

used for further statistical analysis.

One observation during the development process was that co-fragmenting peptides
occur quite often. A measurement of the pureness in MS/MS spectra is the precursor
intensity fraction (PIF) reporting the percentage of the picked precursor in the selection
window. The fact that a multiple peptide species can be a source for interfering peaks
was already known, but the observed magnitude of this effect caused us to perform

further investigations. Michalski et al %

asked how often peptides are close enough
in mass and retention time to elute in the same selection window, and which influence
this has on peptide identification. As a result these observations also prompted us
to develop the ‘second peptide search’” in Andromeda. For further investigations, the
datasets in this study where filtered to contain only pure representations of fragment

spectra (PIF >95%).

Most of the peptide fragments found in this investigation are already known from

57,131

the literature especially from extensive research on CID fragmentation . Butwe also
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evaluated fragmentation mechanism known from other fragmentation techniques and
inferred new hypotheses. For instance, a list of possible neutral losses were generated
by taking chemical aspects into consideration. For practical and statistical reasons, the

list was reduced to contain only a few significant candidates.

In contrast to CID, which has the low mass cutoff, HCD spectra contains more signals
in the lower mass range. This has an positive effect for reporter ion based quantification
like iTRAQ or TMT. Additionally, immonium ions and side chain losses can be found
in the lower mass area. Due to its higher energy, internal fragments are frequently

observed, which is not common in CID spectra obtained in ion trap.

While the original aim of this study was to find new fragmentation types, we con-
cluded that CID and HCD fragmentation are in fact quite comparable in their fragmen-

tation behavior.
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ABSTRACT: Modern mass spectrometry-based proteomics can produce millions * # © a0

of peptide fragmentation spectra, which are automatically identified in databases _* I

using sequence-specific b- or y-ions. Proteomics projects have mainly been :* L T
performed with low resolution collision-induced dissociation (CID) in ion traps §* £ T o ot

and beam-type fragmentation on triple quadrupole and QTOF instruments. =~ *
Recently, the latter has also become available with Orbitrap instrumentation as —
higher energy collisional dissociation (HCD), routinely providing full mass range Pund PlcNe )
fragmentation with high mass accuracy. To systematically study the nature of HCD
spectra, we made use of a large scale data set of tryptic peptides identified with an
FDR of 0.0001, from which we extract a subset of more than 16 000 that have little
or no contribution from cofragmented precursors. We employed a newly
developed computer-assisted “Expert System”, which distills our experience and
literature knowledge about fragmentation pathways. It aims to automatically
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annotate the peaks in high mass accuracy fragment spectra while strictly controlling the false discovery rate. Using this Expert
System we determined that sequence specific regular ions covering the entire sequence were present for almost all peptides with
up to 10 amino acids (median 100%). Peptides up to 20 amino acid length contained sufficient fragmentation to cover 80% of
the sequence. Internal fragments are common in HCD spectra but not in high resolution CID spectra (10% vs 1%). The low
mass region contains abundant immonium ions (6% of fragment ion intensity), the characteristic a,, b, ion pair (72% of spectra),
side chain fragments and reporter ions for peptide modifications such as tyrosine phosphorylation. B- and y-ions account for only
20% of fragment jons by number but 53% by ion intensity. Overall, 84% of the fragment ion intensity was unambiguously
explainable. Thus high mass accuracy HCD and CID data are near comprehensively and automatically interpretable.

KEYWORDS: tandem mass spectrometry, fragmentation mechanisms, shotgun proteomics, ion types, CID, HCD, Expert System,

spectrum annotation

B INTRODUCTION

Rapid technological development of mass spectrometric
instrumentation in conjunction with advanced bioinformatics
analysis capabilities now allow relativelgr streamlined and in
depth analysis of proteomic samples.' > Modern proteomics
projects routinely generate millions of fragmentation spectra,
making entirely automated software tools a necessity. These
include search engines that match MS/MS spectra to the most
probable peptide sequence in a database, typically relying on
sequence-specific backbone fragments, referred to as “regular
jons” in this article, as well as associated neutral losses.*
However, there are many other fragment ions in tandem mass
spectra, and it has been argued that detailed interpretation of at
least the more abundant peaks should be a requirement for
confident peptide assignment.® Likewise, detailed understand-
ing of the fragmentation process and discovery of potential new
fragment types requires knowledge of the identity of the
majority of fragmentation peaks.

While there are many different ways to fragment peptides, in
proteomics collision-induced fragmentation has by far been the
most frequently used technique (for a recent tutorial of peptide
fragmentation and spectrum interpretation, see ref 6). While
there are differences in how the ions are activated, the general
ion types are the same and are summarized in Figure 1. The

v ACS Publica‘tions © 2012 American Chemical Society
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backbone fragments are designated as g, b, ¢ for N-terminal and
%, y, z for C-terminal types depending on the cleavage position
on the peptide backbone.”'® A full series of either b- or y-type
ions in principle allows reading out the entire amino acid
sequence from a fragment ion spectrum. In collision-induced
fragmentation techniques, cleavage of the peptide bond is
preferred, but labile post-translational modifications such as
phosphorylation or glycosylation also partially or (rarely)
completely detach. While the chemistry involved in peptide
fragmentation is still not completely understood, the mobile
proton model is currently the most widelZ accepted framework
to describe the dissociation process.'”'* Moreover, different
fragmentation pathways of protonated peptides have been
extensively investigated and modeled with respect to both
kinetic and thermodynamic aspects."®

In addition to the standard backbone ions, tandem mass
spectra can contain many additional fragment ions."*
Numerous studies of peptide dissociation behavior have been
carried out to investigate the abundance and structure of ion
types such as internal ions, immonium ions or neutral losses
from these (Figure 1).*'® Some programs such as Protein
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Figure 1. Cleavage sites of the peptide backbone giving rise to N-terminal a-, b- or c-type ions and the corresponding C-terminal x-, y- or z-type ions,
respectively. The most prominent cleavage in CID and HCD fragmentation happens at the peptide bond. The boxes below represent the most
frequent ion types of collision induced fragmentation processes; the color code provides their origin in the peptide sequence.

Prospector provide comprehensive lists of produced ion types
for different fragmentation mechanisms and instrument types
and even consider the latter for scoring of tandem mass
spectra.'” Furthermore, special types of ions have been
characterized, for instance, b, ions of N-terminally acetylated
ions,'® ¢, ions in case glutamine is the second amino acid from
the N-terminus,'*° specific side chain losses such as from
oxidized methionine>® and many more. Finally, novel
fragmentation processes continue to be discussed controver-
sially, such as the extent of scrambling of b-ions due to their
formation of a cyclic peptide structures followed by random
cleavage, which could interfere with determination of the
correct amino acid sequence from the data.”>~>°

Furthermore, the observed types of fragment ions in a
tandem mass spectrum depend on the instrument type. Triple
quadrupole and quadrupole time-of-flight (TOF) fragmenta-
tion are beam-type dissociation processes,26 where primary
fragments retain kinetic energy and are therefore more likely to
fragment again in the multiple collision conditions typical of
these instruments. In 3D or 2D ion traps the excitation and

5480

activation step is only applied to the selected precursor mass.
Any primary fragmentation product is off-resonance with the
applied radio frequency and therefore usually remains intact.
When collision-induced dissociation is performed in ion traps
(often primarily associated with CID fragmentation), the low
mass fragments are typically not retained, leading to a low mass
cutoff in the tandem mass spectra.’’

Higher energy collisional dissociation (HCD), first described
in 2007, made beam type fragmentation available on the
Orbitrap analyzer platforms.”® Recently, HCD fragments have
also been analyzed at low resolution in an ion trap”®*° but are
in general always detected in the Orbitrap analyzer at high
resolution and mass accuracy. Since the introduction of the
LTQ Orbitrap Velos mass spectrometer, which features
improved sensitivity and HCD capability compared to its
predecessors, routine acquisition of tandem mass spectra in the
Orbitrap analyzer has become feasible.’' This approach is
termed “high—high” strategy because both the full scans (MS)
and the fragment ion scans (MS/MS) have high resolution and
high mass accuracy in comparison to previous strategies with

dx.doi.org/10.1021/pr3007045 | J. Proteome Res. 2012, 11, 5479—5491
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acquisition of CID scans (MS/MS) in the ion trap (“high—
low”).** Note that high—high strategies have been the default in
quadrupole-TOF instruments for many years; however, this did
not necessarily imply high mass accuracy in the MS/MS mode,
primarily due to issues with ion statistics. Because of the
dedicated collision cell, HCD fragment ion spectra cover nearly
the entire mass range and are therefore particularly suitable for
observing the low mass region, which contains an a,/b, pair,
immonium ions, fragments resulting from the amino acid side
chains as well the reporter ions'® used for quantification in the
TMT or iTRAQ methods.** > Importantly, high mass
accuracy of fragment ions helps to unambiguously annotate
the fragment ion peaks. Especially in the low mass region, an
accurate mass measurement may even uniquely determine the
elemental composition of the fragment.

In contrast to ion trap CID data, high resolution HCD has
been relatively little studied. Although HCD ion types are
expected to recapitulate fragmentation rules known from older
CID type instruments, those have not been tested on large-
scale and high accuracy data. Here, we wished to take advantage
of the excellent signal-to-noise, dynamic range and mass
accuracy of HCD spectra on the Orbitrap analyzer to
systematically investigate features of HCD spectra. This was
facilitated by a rule-based “Expert System”, which was
developed in an iterative manner with this study and is
described elsewhere.®® This Expert System synthesizes well-
established knowledge about peptide fragmentation pathways
mechanisms. It is capable of annotating large-scale MS/MS data
sets based on the rules chosen by the researcher. We apply the
Expert System for a comprehensive statistical investigation into
the nature of HCD tandem mass spectra of tryptic peptides.

B EXPERIMENTAL PROCEDURES

Sample Preparation

Total cell extracts of E. coli, yeast and HeLa cells were separated
by 1D-SDS PAGE (4—12% Novex mini-gel, Invitrogen) in
three separate lanes. Colloidal Coomassie (Invitrogen) was
used for staining of the proteins before each lane was cut into 8
or 10 slices. All gel slices were subjected to reduction of the
proteins with 10 mM DTT in 50 mM ammonium bicarbonate
and subsequently alkylated with 5§ mM IAA in 50 mM
ammonium bicarbonate. In-gel digestion with 12.5 ng/uL
trypsin (Promega) in S0 mM ammonium bicarbonate was
carried out at 37 °C for 12 h followed by extraction of the
tryptic peptides with 3% TFA in 30% ACN.” Peptides were
loaded on Cyg StageTips38 before eluting them with 80% ACN
in 0.5% acetic acid prior to analysis.

HeLa cell lysate was digested according to the filter-aided
sample preparation (FASP) method.*® Briefly, the lysate was
solubilized in SDS-containing buffer and loaded onto Microcon
YM-30 devices (Millipore, Billerica, MA, USA) to remove SDS
and exchange it by urea. The protein mixture was alkylated with
50 mM iodoacetamide before urea was replaced with 20 mM
ammonium bicarbonate. The proteins were digested overnight
at 37 °C with trypsin (Promega) (1 pg of trypsin/100 ug of
protein). Peptides were collected from the filter after
centrifugation. For enrichment of phosphorylated peptides,
the mixture was acidified with trifluoroacetic acid to pH 2.7 and
ACN was added to a final concentration of 30%. Incubation
with TiO, beads*® (MZ Analysentechnik, Germany) prepared
in 30 mg/mL solution of dihydrobenzoic acid (Sigma) was
carried out for 30 min, before the beads were washed with 30%
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ACN and 3% TFA (twice) followed by two washes with 75%
ACN and 0.3% TFA. The phosphopeptides were eluted with
buffer containing 15% ammonium hydroxide and 40% ACN.
Finally, the eluted phosphopeptides were loaded on Cg
StageTips before they were eluted with 60% ACN in 0.5%
acetic acid prior to analysis.

LC—MS/MS Analysis

For the analysis of proteome samples, the peptide mixture was
separated on a C18-reversed phase column (15 cm, 75 ym ID,
packed in-house with ReproSil-Pur C;-AQ 3 pum resin, Dr.
Maisch GmbH). An Easy-nLC (Thermo Scientific, Odense)
with IntelliFlow system was used for sample loading and
operated at a constant flow rate of 250 nL/min during the 110
min linear gradient of 8—60% buffer B (80% ACN and 0.5%
acetic acid). A nanoelectrospray ion source (Thermo Scientific,
Odense) was used for online coupling to the LTQ Orbitrap
Velos mass spectrometer.31 Mass spectra were measured in
positive ion mode applying a data-dependent “top 10” method
for the acquisition of a survey scan followed by MS/MS spectra
of the 10 most abundant precursors. High resolution data was
acquired in the Orbitrap analyzer with a resolution of 30 000
(m/z 400) for MS and 7500 (m/z 400) for MS/MS scans. For
peptide fragmentation higher energy collisional dissociation
(HCD) was used applying a normalized collision energy of 40
eV. The minimal signal threshold required was set to 5000. The
target value in the Orbitrap analysis was 1 X 10° for the MS
scans and S X 10* for the MS/MS scans with 2 Th isolation
window and the first mass was set to 80 Th for HCD spectra.
Fragmented precursors were dynamically excluded from
targeting for 90 s. High resolution CID data was acquired on
an Orbitrap Elite (Thermo Scientific) the same parameters;
however, the resolution for MS scans was 120 000 (m/z 400)
and for MS/MS scans 15000 (m/z 400); the normalized
collision energy was set to 35 eV.

For the phosphoproteome data, the enriched peptide
mixtures were separated on a C,g-reversed phase column (20
cm, 75 um ID, packed in-house with ReproSil-Pur C;3-AQ 1.8
pm resin, Dr. Maisch GmbH) applying a 90 min linear gradient
of 5—30% buffer B (80% ACN and 0.1% formic acid) and
analyzed on the Orbitrap Elite instrument*' that was online-
coupled to an Easy-nLC 1000 (Thermo Scientific, Odense).
The MS data was acquired with resolution of 120 000 (m/z
400) and target value of 1 X 10° and MS/MS (HCD
fragmentation) with resolution of 15000 (11/z 400) and target
value of 5 X 10* in a data-dependent “top 15” method with a
dynamic exclusion of 30 s. The signal threshold was set to 5000
for an isolation window of 2 Th and the first mass of HCD
spectra to 80 Th. The collision energy was set to 35 eV.

Data Analysis

All spectra were processed with MaxQuant* version 1.2.5.2
using the Andromeda search engine® to search the MS/MS
spectra with trypsin specificity against the IPI human database
(version 3.68, 87061 entries) combined with 262 common
contaminants. We allow for up to 2 missed cleavages and N-
terminal acetylation and methionine oxidation were selected as
variable, carbamidomethylation of cysteine was selected as fixed
modification. For MS spectra an initial mass accuracy of 7 ppm
was allowed, and the MS/MS tolerance was set to 20 ppm for
fragment detection in the Orbitrap analyzer for high resolution
CID and HCD. A sliding mass window was applied to filter the
MS/MS spectra for the 10 most abundant peaks in 100 Th. For
identification, the peptide FDR was set to 0.0001. (The protein

dx.doi.org/10.1021/pr3007045 | J. Proteome Res. 2012, 11, 5479—5491
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Figure 2. Peak annotation by the Expert System. (A) Ranking of the six major ion types: intact precursor mass [M+nH]", regular ions, immonium
ions (IM), internal fragments, neutral losses and side chain fragments that are considered for peak annotation by the Expert System. (B) Average
intensity coverage of the total intensity of >100 000 MS/MS spectra by standard search engine annotation (Andromeda, red line) and by the Expert
System (black line) vs the precursor intensity fraction “PIF” provides a measure for the purity of precursor isolation. The high quality data set (16
000 spectra) that was selected for statistical investigation is highlighted in gray. (C) Typical MS/MS spectrum with PIF 0.99 annotated by the Expert
System reaching an intensity coverage of 87%. A zoom window displays the high mass accuracy of two fragment ion peaks.

FDR remained at the standard setting of 0.01, but protein
identifications were not directly used in this paper.) The
shortest peptide length was set to 6 amino acids, and the Max
Quant feature to treat the isobaric amino acids leucine and
isoleucine as indistinguishable for improved statics was
disabled. This setting ensures that either amino acid matches
the fragmentation spectrum as HCD in our setup cannot
distinguish them; however, side chain losses can then be
assigned correctly because the isoleucine/leucine ambiguity is
absent after database search. MaxQuant and Andromeda data
processing provides access to the peptide sequences that were
identified from the MS/MS spectra. Detailed annotation of the
MS/MS spectra was then carried out using the Expert
System.>® Results were further analyzed within the R scripting
and statistical environment.* Raw mass spectrometric data are
available at Tranche (www.proteomecommons.org) using the
following hash code:
pI20aLaSi7gPxUWNbesdXCgR17sWvMY6qVkHL
+MtWAO0QSsqn/UxZVSjk3KpFTfrmDYpf3y/Iv6WfaAi6-
HalLdZL0YocAAAAAAAAT7Q==
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M RESULTS AND DISCUSSION

Generation of a High Quality Data Set

To produce a diverse set of fragmentation spectra of tryptic
peptides, we separated proteomes of E. coli, yeast and HeLa
cells by one-dimensional gel electrophoresis, excised eight slices
and in-gel digested them (Experimental Procedures). This
generated a total of 24 complex peptide mixtures, which were
analyzed using a “high—high” strategy on a linear ion trap—
Orbitrap instrument (LTQ_Orbitrap Velos) using HCD as the
fragmentation method. For a smaller number of fractions, we
also employed CID fragmentation followed by high resolution
detection of fragments in the Orbitrap analyzer (Experimental
Procedures).

We wished to work with an extremely high quality set of
fragmentation spectra in order to enable us to unambiguously
attribute the observed fragments to the precursors. Therefore,
we set the false discovery rate (FDR) for peptide identification
by MaxQuant using the Andromeda search engine®* to
0.0001 rather than the customary 0.01. From our data set, we
obtained more than 100000 MS/MS spectra that were
identified with this very stringent criterion. We and others
have recently lntroduced the notion of the precursor intensity
fraction (PIF), chimeric or mixture MS/MS spectra,46 ad
which refers to the fact that precursor ions are frequently

dx.doi.org/10.1021/pr3007045 | J. Proteome Res. 2012, 11, 5479—5491
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Figure 3. Sequence information content in HCD and CID spectra (A) Median coverage of amino acids by y-type ions (red), b-type ions (blue) and
both together (black) in the upper panel. The boxplot displays the distribution of the peptide length within the data set (>16 000 spectra). The lower
panel shows the median length of the longest sequence tag based on y-type ions (red), b-type ions (blue) and both together (black). (B) Same as
(A) for a data set of 3290 high resolution CID spectra. The dashed gray line in the upper panel repeats the median amino acid coverage in HCD

from panel (A) for comparison.

cofragmented unintentionally in the analysis of complex
peptide mixtures. For our purposes we needed to minimize
the occurrence of coeluting precursor ions in the isolation
window so that they could not “contaminate” the MS/MS
spectra with unassignable peaks. This was achieved by only
retaining spectra with a PIF greater than 0.95. If there was more
than one spectrum for a particular sequence, the one with the
highest PIF was kept. Furthermore, we required the peptide
length to be smaller than 26 amino acids and the charge state to
be 2+, 3+ or 4+. These filters reduced the number of MS/MS
spectra to about 16000, which were nearly free of any
contaminating peaks and which represented a broad sampling
of typical tryptic peptides.

Computer-Assisted Annotation by the Expert System

We recently developed a computer Expert System,*® which is
now integrated into the Viewer component of the MaxQuant
software environment. Briefly, the Expert System features a
knowledgebase that was supplied with peptide fragmentation
mechanisms described in the literature (see Introduction) and
with knowledge gained from manual evaluation of small and
large-scale HCD data sets. These facts are implemented in a
rule-engine that assigns annotations to the peaks in the MS/MS
spectra. In order to avoid incorrect assignments, the Expert
System follows strict dependencies among its rules. We derived
a rigorous FDR for peak annotation, which made it possible to
derive a minimal yet relative comprehensive set of rules.*®
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Some MS/MS peaks can have an elemental composition that
corresponds to more than one ion type, and we have developed
a strict ranking of the possible annotations to address this
particular issue (Figure 2A). On the basis of the identified
peptide sequence, regular ions that result from cleavage of
peptide bonds (b- and y-type ions), a-type ions that derive from
the corresponding b-type ion by losing CO and c-type ions that
occur in specific cases,” are assigned the highest priority for
annotation. The chemical structures of regular ions and
immonium ions are different, and as a consequence, there is
no possible overlap between them. Therefore the order of
assignment is of no consequence, and they are treated with the
same priority. The second step covers annotations of neutral
losses and internal fragment ions; these types derive from
regular backbone ions. Importantly, neutral losses are specific
to N- or C-termini of fragments or to a single or several amino
acids. These are required to be contained in the peptide
sequence to allow an annotation. Internal fragment ions
originate from regular ions that have undergone a second
cleavage of the peptide backbone. The side chains of the amino
acids tryptophan (W), arginine (R) and lysine (K) are prone to
produce specific fragment ions that can carry a proton because
of the heteroatom in their chemical structure. Their mass is
sufficiently large (>100 Da) that they are recorded in HCD
fragment ion spectra as side chain fragment ions. They are
assigned a low priority because they are independent of any
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other ion type. Finally, incomplete fragmentation results in
protonated precursor ions remaining in the MS/MS spectra,
which are annotated as [M+nH]"".

The Expert System greatly improves on the number and
intensity coverage of assigned peaks in the fragmentation
spectra calculated by adding the signal for the 10 largest peaks
per sliding 100 Th window. Standard annotation by the
Andromeda search engine results in an intensity coverage of up
to 58% for pure spectra (PIF > 0.9S; highlighted in gray in
Figure 2B). Including the additional ion types that are covered
by the Expert System increased the intensity coverage to 84%.
With the Expert System in hand, we next annotated all of the
about 100 000 high scoring fragment spectra in the initial set.
This showed that even for impure MS/MS spectra (PIF less
than 0.5), the intensity coverage of assigned peaks in MS/MS
spectra was still above 50%. A typical MS/MS spectrum with a
high PIF precursor that was comprehensively annotated by the
Expert System is displayed in Figure 2C. Virtually all major
peaks are correctly annotated and fragment intensity coverage
reaches 87%. The figure also illustrates the mass accuracy
typically achieved in our experiment. Even though the lock
mass feature during data acquisition was enabled,** data
analyzed with Max Quant is routinely independently
recalibrated.*’

Sequence Related Information Content of HCD Spectra

The most important information imbedded in tandem mass
spectra relates directly to the amino acid sequence of the
peptide. Cleavage of all peptide bonds, resulting in b- and y-
type ion series, would in principle allow read out of the peptide
sequence from the MS/MS spectrum in two directions starting
from the N- or the C-terminus, respectively. Moreover,
combining the b- and y-ion series highlights complementary
b- and y-type ions pairs that together match the mass of the
unfragmented peptide. Complementary pairs provide strong
constraints for correct peptide identification and can be used in
scoring algorithms even of multiplexed spectra.*’

In our large collection of HCD data, we found nearly
universal evidence for such pairs. Typical spectra have the
prominent a,/b, pair (observed in 72% of the peptide
sequences) followed by at least a few more b-ions. Y-ion series
were very abundant in our spectra, especially in the middle
mass range (450—800 Da). For peptides that were not too long
(<20 amino acids), the low mass b-ion series almost always had
a corresponding, complementary y-ion series of high intensity.
These trends are well-known from triple quadrupole and
quadrupole time-of-flight spectra.

We next evaluated all 16 000 HCD spectra in the collection
(Figure 3A). Remarkably, for peptides up to 12 amino acids the
y-ion series alone provided for at least half of the sequences
complete sequence coverage (median 100%), indicating that
complete sequencing of such peptides even in routinely
acquired large-scale data sets is in principle possible. This
includes the order of the two first amino acids, which is
normally inaccessible because of the missing y,_; and b, ions
(see below). With increasing peptide length, the amino acid
coverage slowly drops to a median of 50% at a peptide length of
25 amino acids, which was the upper limit in our collection
(Figure 3A). The b-ion series, in contrast, remains at a constant
level, providing about 30% amino acid coverage independent of
the peptide length. Taking both ion series together yields
median amino acid coverage of 80% percent even for a peptide
length of 20 AA.
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Besides the percentage of the sequence that is covered by
backbone fragmentation, another important parameter is the
number of amino acids that can be read out from the MS/MS
spectrum as an uninterrupted gaxt of the sequence, ie., the
maximum sequence tags length.”’ A sequence tag of six amino
acids is generally unique in the human genome even without
added peptide mass information.*** In addition to peptide
identification, such stretches are useful for partial de novo
sequencing or homology searching. The lower panel in Figure
3A depicts the median sequence tag lengths based on the two
different ion series of the identified sequence. Peptides up to 10
amino acids contain a complete y-ion based sequence tag, but
above this length, the y, — 1 ion is often of too low intensity to
be recorded. Even small peptides contain short sequence tags of
three amino acids, which are sufficient for peptide identi-
fication. When combined with the y-ion series, the b-ion series
helps to increase the sequence tag length for peptides larger
than 14 amino acids. The largest median sequence tag length is
about 12 amino acids, and it starts to drop from a peptide
length of 16 amino acids.

We next compared the sequence related information content
of HCD with that of high resolution CID spectra both acquired
in the Orbitrap analyzer. A prominent difference is the much
larger contribution of the b-ion series in CID spectra (Figure
3B). This is due to the higher stability of b-ions in ion trap
fragmentation processes. Although lower than the y-ion series,
the b-ion series continued to provide a median of more than
50% sequence coverage up to a peptide length of 19 amino
acids. Nevertheless, the combined contribution from y-ions and
b-ions was slightly higher for HCD than for CID, which partly
reflects the more extensive fragmentation in beam type
instruments and the fact that ion series in CID spectra are
limited by the low mass cutoff that is inherent to ion trap
fragmentation. As a consequence, maximum sequence tag
length was likewise higher in HCD spectra.

We have previously investigated maximum sequence tag
lengths in low resolution CID spectra. In more than 85% of the
identified spectra sequence tags of at least three amino acids
and only in half of the spectra sequence tags of six or more
amino acids were detected.’> Despite the potential for
overcounting due to the lower mass accuracy, these sequence
tags were substantially shorter than tags from either high
resolution HCD or high resolution CID.

Neutral Loss Fragments in HCD

During collision-induced dissociation processes, peptides can
follow numerous fragmentation pathways and consequently
give rise to various ion types beyond those produced by the
typical peptide backbone cleavage. A large class of such ions are
those involving neutral losses from different fragment species.
These occur from nearly all ion types, however, the chemical
structures of the diverse ion types as well as the amino acid side
chains allow specific neutral losses (Figure 2A). In some cases,
these can result either from the peptide terminus or from one
of the side chains of the amino acids, and localization of the
origin is not straightforward. However, such losses can still be
unambiguously assigned to the fragment ion. We carried out a
systematic study considering 45 possible chemical compositions
that could formally occur as neutral losses from amino acid
residues. We then used our large scale data set to determine the
primary neutral losses for all of the fragments in the collection
that contained the amino acid in question. The median absolute
mass accuracy of all neutral losses is 2.7 ppm with 97.5% of the
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peaks within 5 ppm, therefore they can unambiguously be
connected to their precursor fragments. Only first neutral losses
which happened in at least 5% of the cases were considered and
encoded in the Expert System.>® Table 1 summarizes the

Table 1. Neutral Losses Considered by the Expert System
and Fraction of Spectra That Contain the Loss from the
Corresponding Amino Acid”

NH, 45% (N-term)  30% (N) 29% (Q) 21% (R)
H,0 48% (Cterm)  37% (S)  44% (T) 21% (D) 33% (E)
CcO 84%
(internal)”
Co, 5% (D)
CH,N, 8% (R)
CH;NO 29% (N) 20% (Q)
CH,O 5% (S)
CH,SO 89% (Mox)
CH, 5% (1)
CH,NO 9% (N) 6% (Q)
CH,0  26% (T)
CH,0, 6% (D) 6% (E)
C,H, 6% (L)
CHN, 6% (R)
C3HSO 6% (Mox)
C;H SO 12% (Mox)
C,H, 5% (L)
CHN 6% (W)
CHN  12% (W)

“Only examples allowing unambiguous localization of the origin of the
neutral loss were considered. “This ion is formally equivalent to an a-
type internal fragment.

observed frequencies of the primary neutral losses that occur in
different combinations in more than 270 000 fragments. While
b-type ions frequently lose a water molecule, the chemical
structure of y-type ions allows both water and ammonia losses.
These are by far the most frequent neutral losses. Furthermore,
acidic amino acids as well as serine and threonine are likely to
lose water. However, it was possible in about 48% of the cases
to assign the neutral loss to either a specific amino acid or the
C-terminus of the fragment, because there was only one
possible origin for the water loss. At least 33% of the spectra
from sequences that contain glutamic acid, serine or threonine
exhibit water losses from those amino acids. This is the case in
only 29% of spectra where the water loss can be confidently
assigned to aspartic acid. The rate of ammonia losses is
comparable to water losses and this also holds true for
confidently assignable losses from glutamine (29%), asparagine
(30%) and arginine (21%). Further frequently observed neutral
losses that are specific to certain amino acids include CH;NO
from glutamine (20%) and from asparagines (29%) or C,H,O
from threonine (26%). While other neutral losses may exist, our
large data set suggests that they are unlikely to occur at
substantial frequencies in HCD spectra.

Internal Fragments

Internal fragments in the MS/MS spectra are characteristic of
beam-type fragmentation because these result from ions
undergoing a second cleavage resulting in a C-terminal
carboxyl-group and an N-terminal oxazolone structure.'>>* In
our large-scale data set, the length of internal fragments varied
between two and more than 10 amino acids, depending on
peptide length. The majority of internal fragments, however,
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are shorter than five amino acids. Proline is most often the first
amino acid of an internal fragment since N-terminal cleavage is
very pronounced at this amino acid; this is called the proline
effect.>* However, we found that on the basis of peak presence,
rather than peak intensity, proline initiated internal sequences
were more than four times as common as those of the median
of other amino acids (Supporting Information, Figure S1A).
For cleavage at the C-terminal amino acid of an internal
fragment there is a slight preference for aspartic acid, glutamic
acid, glutamine, tryptophan and histidine (Supporting
Information, Figure S1B). Proline is the least common amino
acid at the C-terminus of internal ions.

Low Mass Region

HCD fragmentation takes place in a dedicated collision cell and
is not subject to the low mass cutoff of ion trap CID spectra,
therefore in principle allowing observation of the entire mass
range. In practice, HCD spectra are normally acquired from m/
z 100, but for a more extensive investigation of the low mass
region we acquired data in our study from m/z 80, which was
the lowest practical m/z without reducing the scan speed of the
instrument. Therefore our data set does not contain immonium
ions with an m/z lower than 80 Th.

Figure 4B displays the frequency of immonium ions in the
MS/MS spectra. The most prominent immonium ions
originate from phenylalanine (F), tryptophan (W) and tyrosine
(Y) and can be observed in at least 84% of all peptide
sequences containing the respective amino acid. This is due to
their chemical structure containing both a heteroatom and an
aromatic system that are prone to stabilize a positive charge and
for the same reason, the immonium ion of histidine (H) is
often present (70%). Carbamidomethylated cysteine (caC),
glutamine (Q) and glutamic acid (E) immonium ions (61, 52,
and 37%, respectively) can also be found relatively abundantly
in the spectra. Aspartic acid (D) and asparagine (N) produce a
significantly lower rate of immonium ions. Interestingly,
immonium ions of isoleucine (I) and leucine (L) are detected
in the MS/MS spectra with different frequencies. Immonium
ions of glycine (G), alanine (A), serine (S), proline (P), valine
(V) and threonine (T) are not observed in our, data as their m/
z is below 80 Th. Arginine (R) and lysine (K) represent special
cases due to their position at the N-termini of tryptic peptides.
A very frequently observed ion is the immonium ion of lysine
with an ammonia loss (IM K — NH,). In fact, this ammonia
loss often occurs even without immonium ion, and this was
therefore implemented as an exception to the strict require-
ment for a detected precursor fragment in the Expert System.
Immonium ions can be used to support the peptide sequence
assignment. In special cases, such as phosphotyrosine (pY),
immonium ions can be used as reporter ions to verify the
existence and the nature a phosphorylation site (see
below).>>%¢

Another fragment ion type in the low mass region are
fragment ions that result from cleavage of amino acid side
chains in which the molecular structure can stabilize a proton.
This is the case for some of the amino acids that contain a
nitrogen atom, such as arginine, lysine and tryptophan. The
chemical compositions of the side chain fragments and their
frequency of occurrence are displayed in Figure SC. Note that
these side chain fragments are different from the v-, w- and d-
type ions from high energy CID dissociation carried out on
TOF/TOF instruments.”””® In addition to the general ion
types, certain amino acid side chains follow different
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Figure 4. Statistics on the low mass region fragment ions from 16 000 MS/MS spectra. (A) Histogram of the length of all internal fragment ions in
purple; the fraction of internal fragment ions starting with proline is highlighted by light color. (B) Percentage of immonium ion (IM) occurrence if
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and Threonine were not considered, because their m/z value is lower than 80 Th. (C) Bar plot displaying the five most abundant side chain fragment
ions that are automatically assigned by the Expert System with their total number of occurrences within the data set and their chemical structures.

fragmentation pathways resulting in unusual ion types.
Lehmann and co-workers observed ¢, ions resulting from the
N-terminal amino acid of the peptide, if the second amino acid
is glutamine (Q).'”?>* Along these lines, we investigated
asparagine and carbamidomethylated cysteine and found the
same behavior for these two candidates. Furthermore, b, ions
are usually not observed because of their chemical instability.
However, we did observe b, ions from acetylation of
methionine, serine or alanine at the protein N-terminus. This
is thought to be due to stabilization of this fragment by the
acetyl group."®® Besides the qualitative information contained
in the variety of ion types of natural peptides, the low mass
region in HCD fragmentation also gives access to the reporter
ions for the TMT®' and iTRAQ>® quantification methods.>**®
The reporter ions of TMT and iTRAQ are at m/z 126.1277,
127.1248, 128.1344, 129.1315, 130.1411, 131.1382 and m/z
114.1112, 115.1146, 116.1116, 117.1150, respectively. Inves-
tigation of our large-scale and high accuracy data set revealed
no interfering ions of the same m/z. Therefore problems in
quantification by these methods are confined to cofragmenta-
tion of other labeled peptides rather than other ion types that
have the same mass as these reporter ions.

Global Composition of Tryptic HCD Spectra

The different ion types covered by the Expert System, such as
regular ions, neutral losses, internal fragments, immonium ions,
side chain fragments and the intact peptide mass [M+nH]"* by
their nature occur in MS/MS spectra with different frequencies
(Figure SA). However, for high confidence of peptide
identification it is predominantly the highly abundant MS/
MS peaks that are of interest. Figure SB displays the
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contribution of each of the ion types to the overall intensity
coverage: Regular ions (g, b, ¢ and y) account for 54% of total
MS/MS spectra intensity and peaks that result from neutral
losses for a further 15%. Immonium ions can originate from
several amino acids, and these signals are added as singly
charged peaks at defined masses in the low mass region.
Together, their mean contribution to the total intensity
coverage is 6%. Unlike immonium ijons, internal fragments
are spread over the low to middle mass range of the MS/MS
spectrum because they can be generated by any two cleavages
of the peptide backbone, and hence they are not as obvious in
tandem mass spectra. As described above, in HCD internal
fragment ions are frequently observed. However, their
abundance is lower than that of immonium ions or y-ions,
and together they contribute 10% to the total fragment
intensity. The protonated unfragmented peptide precursor only
has an average intensity coverage less than 1% in our data set.
Side chain fragments account for only 0.1% of total peaks and
an intensity coverage of less than 0.1% and are therefore not
displayed in the pie chart. The fraction of unannotated peaks
accounts for 44% on the basis of the 10 largest peaks per
hundred Th but only for 15% with regard to total intensity
coverage. This provides evidence that remaining peaks are
mainly of low abundance. Note that those, beyond potentially
being noise peaks, could also result from combinations of
multiple neutral losses without precursor fragments or similar,
which were not allowed by the Expert System to maintain a
strict false positive rate. Furthermore, cofragmentation of other
precursors still occurs in our data set to some degree. Together,
our data suggests that nearly all fragment peaks in HCD are

dx.doi.org/10.1021/pr3007045 | J. Proteome Res. 2012, 11, 5479—5491

65



article 3

Journal of Proteome Research

A.. number of peaks

B. intensity coverage

regular ions 20%
(a,bory)

neutral losses 20%

internal
fragments
13%

immonium
ions 2%

side chain
fragments 0.1%

[M+H]* 0.1%
no annotation 44%

C. number of peaks

regular ions 54%
(a, bory)

neutral losses 15%

internal
fragments 10%

immonium
ions 6%

side chain
fragments
0.1%

[M+H]* 0.4%
no annotation 15%

D. intensity coverage

regular ions 32%
(a,bory)

neutral losses 20%

internal
fragments.
4%

immonium
ions 0.2%

[M+H]*
< 0.001%

no annotation 44%

regular ions 72%

(a bory) neutral losses 10%

internal fragments 1%

no annotation
17%

[M+H]*
< 0.001%

immonium
ions < 0.01%

Figure S. Intensity distribution of different ion types. (A) Average proportions of the six major ion types in HCD spectra by peak count based on a
sliding mass window filtering for the 10 most abundant peaks per 100 Da; >16 000 tandem mass spectra. (B) Same as (A) but referring to the
intensity coverage of the MS/MS spectrum. (C and D) Same as (A) and (B) for >3200 high resolution CID tandem mass spectra for comparison to

the HCD ion type distribution.

explainable on the basis of current understanding of
fragmentation pathways.

We next repeated the same analysis as above for high
resolution CID spectra, which resulted in quite similar findings
for the number of peaks. As expected, the number of
immonium ions and internal fragments was drastically reduced
since ion trap fragmentation is not capable of retaining the low
mass region of the tandem mass spectra and their formation
requires double cleavage. Together with the higher preponder-
ance of high mass b-ions, this has the effect of increasing the
fraction of regular ions to 32% as compared to the 20% of HCD
fragmentation. On the basis of intensity coverage, this effect is
less pronounced (72% for CID compared to 54% for HCD).
Interestingly, using the Expert System the fraction of
unannotated peaks by intensity is very similar between CID
(17%) and HCD (15%).

Characteristics of Phosphorylated Peptides

Protein phosphorylation is among the most important and best
studied post-translational modifications and is almost always
located at serine, threonine or tyrosine in mammalian cells.
Because of its chemical nature, the phosphogroup -easily
detaches from serine and threonine during collision induced
fragmentation processes resulting in very characteristic and
abundant neutral loss peaks such as HPO; and H;PO,.
Furthermore, as already mentioned above, phosphotyrosine
leads to a unique and characteristic immonium ion with m/z
216.0426.
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We investigated large scale phosphorylation data with the
Expert System, incorporating rules for the above-mentioned
phosphospecific fragment ions. We found that the occurrence
of both neutral losses from phosphorylated serine is about four
times as high (65% for HPO; and 49% for H;PO,) as from
threonine (18 and 12%, respectively). Table 2 summarizes the
frequencies of these neutral losses. Their absolute number
reveals an average of three H;PO, losses and two HPO; losses
per spectrum.

Table 2. Fraction of 1157 Spectra of Modified Sequences
(Phospho STY) Containing Neutral Losses, Reporter Ions
from Phosphorylated Serine (S) and Threonine (T) or the
Characteristic X-Ion at Least Once”

—HPO, —H,PO, pS  pT  x,(ST)
S (1094) 65% (713) 49% (540) 29 279
T (585) 18% (103) 12% (68) 3

“The first column lists the total number of sequences that contain the
amino acid S or T at least once.

Finally, we investigated the frequency of x, ions pinpointing
the localization of a serine or threonine phosphor site in the
peptide sequence very recently described by Kelstrup et al.%>
Our data set consisting of 1157 spectra of phosphorylated
peptide sequences contains this characteristic x, ion in 279 of
the fragmentation patterns (24%).
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Figure 6. Annotated spectrum of phosphorylated peptide fragmented with HCD. (A) The phosphorylated peptide phSLENETLNK was identified
and annotated by the Andromeda search engine assigning regular ions and single neutral losses. (B) The Expert System was modified for
phosphorylated peptides to enable comprehensive annotation: Several additional neutral losses, internal fragments and immonium ions increase the

intensity coverage to 82%.

B CONCLUSION AND OUTLOOK

In 2007, beam-type fragmentation was introduced on Orbitrap
instrumentation. This HCD mode of fragmentation has
become especially popular since some limitations of ion source
brightness and ion extraction from the collision cell were
removed.’" In our group, for instance, both proteome and
PTM-based investigations are routinely done with HCD rather
than low or high resolution CID. This was one reason why it
was important to investigate the ion types that are produced by
HCD. However, even though the general dissociation
mechanisms operative in CID have been studied for
decades,*>** large data sets with very high quality thresholds
have previously not been studied. This was made possible here
by very stringent filtering of peptide fragment spectra on the
basis of identification score as well as near absence of
cofragmenting peaks. Most importantly, we developed and
made use of an Expert System, which annotated peptide peaks
with high comprehensiveness but low false positive rates.

Our investigation of HCD yielded a broad and quantitative
overview of the ion types produced. It turns out that HCD
spectra are somewhat more complex than CID spectra but that
the peaks are assignable to the same degree. The low mass
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region is particularly straightforward to interpret given the very
high resolution of the Orbitrap analyzer in this region, coupled
to the high mass accuracy, which generally allows determination
of the chemical composition of these fragments. The
information content of HCD spectra is mostly related to very
extensive series of y-ions, supplemented by relatively short
series of low mass b-ions. This is in contrast to ion trap CID
spectra, in which the high mass b-ions are also very prominent.
Nevertheless, the coverage of peptide sequence overall and in
particular with continuous ion series is somewhat higher in
HCD than it is in CID. Remarkably, for tryptic peptides up to
15 amino acids, the fragment contents is almost complete,
meaning that there is sufficient information in principle for de
novo sequencing or at least very long sequence tags.

Our quantification of the overall contribution of different ion
types to the entire MS/MS spectrum revealed that only a
relatively small proportion remains unassigned by the rules that
we have implemented into the Expert System. This proportion
would further shrink if noise and remaining cofragmentation
was further reduced and if the rules of the Expert System were
relaxed. This means that the ion types produced in HCD and
by extension by CID are already very well understood. New
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fragmentation pathways of standard peptides could of course be
discovered in the future, but it is unlikely that such ions would
contribute very much to the overall ion intensity. For modified
peptides, our Expert System and quantification of fragmenta-
tion frequencies could help to discover potential new fragment
types. In this connection, we have already demonstrated
straightforward extension of our approach to phosphorylated
peptides. In conclusion, we have here reported the most
extensive investigation into HCD of peptides and hope that the
results will be useful for both small and large scale investigation
of the proteome.
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Figure S1: Barplot displaying the number of internal fragments
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Since the data amount produced in proteomics laboratories is continuously increas-
ing, the aim of this project was to figure out how to accelerate our computational anal-
ysis platform MaxQuant. For this purpose there are two major focus areas: On the
one hand the algorithms in MaxQuant can be improved for instance by efficient paral-
lelization of processes in the pipeline. On the other hand we tested different hardware
setups beginning with a standard desktop computer, proceeding to an I/O optimized
high end computer up to a large-scale computer cluster to evaluate the best cost and

time efficient solution.

The goal of the software optimization was to adapt MaxQuant so that the software
can run efficiently on different hardware configurations. For this reason I first identified
the major bottlenecks of a standard proteome analysis. For instance the peptide search
was parallelized using the data decomposition technique, where the MS/MS spectra

are efficiently distributed and analyzed in parallel.

Concurrently to the parallelization, I adjusted MaxQuant to run on the computer
cluster of our institute, which consists of 44 nodes each with 8 virtual cores. Hereof
two of the nodes are taken only for job submission and the remaining 42 are allocated as
working nodes. Since, our analysis pipeline is restricted to the Windows operating sys-
tem the Windows Server HPC 2008 R2 is installed on all nodes. For running MaxQuant
on the computer cluster, I implemented an interface which handles the interactions
between the pipeline and the job handler of the cluster. The input, output and error
streams are redirected to the MaxQuant interface as well as to text files, which became
quite important during the developing and evaluating phase. Since the distribution of
the computational tasks is at the node not at the core level (-due to technical reasons),

they are packed in a way, that each node will handle eight parallel processes.

After efficient parallelization of the software, we compared different hardware set-

tings. A standard desktop computer with only four or eight central processing units
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(CPUs) has only a small fraction of the computational power of the cluster with 336
CPUs. This difference is clearly visible in the performance analysis - primarily for
larger datasets. We also included in our evaluation an I/O optimized computer where
the data is stored on a solid state disk (SSD). In comparison to the cluster, this configu-
ration was performing similarly, which is mainly explained by the high I/O demand of

MaxQuant. We conclude that in the future the I/O optimized hardware will be used.

On the computer cluster we then applied the new version of MaxQuant to determine
the coverage of protein groups mapped to the human protein coding genes. For this,
I collected six data sets from cell lines, cancer tissue and a body fluid of current high
quality measurements which resulted in more than 1000 LC-MS raw files. With the con-
ventional setup on a standard desktop computer, analysis of this large data set would
have taken many weeks, but the cluster finished this task in less than six days. As an
result we have identified more than 13,000 protein groups - corresponding to 12,000
coding genes, which is around 60% of the entire genome. Given the fact that 30% of
the gene coding regions have no stringent evidence at the protein level?, this is already
a substatial coverage from just af few experiments in a single laboratory. The reasons
why coverage was not higher still, are not clear at present. Perhaps a combination of
more specialized and distinct proteome sources and additional advances in proteomic

technology are required to approach complete coverage of the human genome.
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Abstract

Computational analysis of shotgun proteomics data can now be performed in a
completely automated and statistically rigorous way, as exemplified by the freely
available MaxQuant environment. The sophisticated algorithms involved and the
sheer amount of data translate into very high computational demands. Here we de-
scribe parallelization and memory optimization of the MaxQuant software with the
aim of executing it on a large computer cluster. We analyze and mitigate bottlenecks
in overall performance and find that the most time consuming algorithms are those
detecting peptide features in the MS1 data as well as the fragment spectrum search.
These tasks scale with the number of raw files and can readily be distributed over
many CPUs as long as memory access is properly managed. Here we compared the
performance of a parallelized version of MaxQuant running on a standard desktop,
an I/O performance optimized desktop computer (‘game computer’), and a cluster
environment. The modified gaming computer and the cluster vastly outperformed
a standard desktop computer when analyzing more than 1000 raw files. We apply
our high performance platform to investigate incremental coverage of the human
proteome by high resolution MS data originating from in-depth cell line and cancer

tissue proteome measurements.
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Introduction

The technology of mass spectrometry (MS)-based proteomics has been improving at
a very fast rate during the last two decades[1-4]. Advances in instrumentation have re-
duced acquisition time and increased resolution and sensitivity, which in combination
with the high resolving-power of current mass analyzers in both MS and MS/MS mode
have led to very large data sets. For instance, in our laboratory we routinely acquire
400,000 to 650,000 data-dependent MS/MS spectra for every quadrupole - Orbitrap in-
strument[5] per day, requiring approximately 14 GB of storage space. The growing file
size and number of raw files dramatically increases the burden on the computational
tools used to analyze these data[6]. This analysis is becoming so computationally inten-
sive that it can preclude processing on a standalone personal computer (PC) or make it

so slow that it prevents researchers from trying different scenarios or hypotheses[7].

Once the basic algorithms in the computational proteomics pipeline have been thor-
oughly optimized, overall performance improvements rely on better computational
hardware. In addition to faster processors, developments in computer science have in-
creasingly focused on the use of multiple processors in parallel. Parallelism as such has
been employed for many years, mainly in high-performance computing (HPC). With
parallel computing, computational problems are divided into smaller ones and solved
concurrently, distributing the computational effort in many cases over multiple CPUs
(central processing unit). This can be among multiple cores within a single processor, a
multiprocessor system or a network of computers - a so-called computing cluster. How-
ever, this new hardware requires parallelized algorithms, to benefit from the increased
hardware capacities. This is by no means trivial and most existing applications cannot
exploit multi-core systems yet. Typically only some parts of computational problems
can be completely parallelized and overall performance is frequently limited by access
to shared resources or communication between tasks. Despite these obstacles, the num-
ber of applications that use parallelization is gradually increasing. As an example from
bioinformatics on next-generation sequencing data, an algorithm for sequence align-
ment has recently been re-implemented using the principle of parallelization to use the
power of a multi-core environment[8]. The parallel algorithm had an analysis time 20

times faster than the non-parallelized (serial) version.

In computational proteomics, data analysis typically involves several steps and is not
confined solely to peptide identification by a peptide search engine such as Mascot[9].
There are few software solutions that aim to provide data analysis from acquired raw

data to final protein lists in a single environment. Examples are the Trans-Proteomic
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Pipeline[10], OpenMS Proteomics Pipeline[11] or Skyline[12]. Our own laboratory has
developed the MaxQuant computational proteomics framework, which is freely avail-
able to academic and commercial users and which has been widely adopted by the
research community[13, 14]. MaxQuant enables processing of raw MS data files, in-
corporates its own probabilistic search engine called Andromeda[15] and has recently
been supplemented by the extensible Perseus environment for statistical and func-
tional analysis[16]. To increase the performance of our analysis pipeline we here adapt
MaxQuant to exploit non-shared memory parallel computing, so it can be run on a
high-performance computer cluster. Due to the fact that many of the component tasks
are independent of each other, the MaxQuant pipeline could be substantially paral-
lelized. This led to dramatically increased performance, which we demonstrate here
by analyzing the coverage of the human genome by large-scale data sets from high res-
olution shotgun proteomics. We also compare performance of the cluster to intermedi-
ate hardware solutions such as high performance personal computers, which would be

economically accessible to all groups using state of the art proteomics.

Experimental Methods

Implementation of MaxQuant - Originally MaxQuant was developed to run on
desktop computers with one or multiple cores, which can support a semi-parallelized
instance of the software. The cluster instead has a large number of nodes, consisting of
multiple cores (see below). To keep MaxQuant independent from the hardware setup
during parallelization, the original implementation was refactored. This step left the
core algorithms for desktop and cluster versions identical, only differing in the way
that the single tasks in the analysis pipeline are called from the exchangeable frame-
work. For the desktop version the MaxQuant software itself is in charge of executing
the code at the correct time in the pipeline. For the cluster this control needs to be relin-
quished to a job manager, requiring a new interface that uses the Job Manager provided
by Windows HPC 2008 R2. MaxQuant automatically generates a job instance spanning
several tasks and passes the instance to the job manager, which then distributes the
tasks over all available nodes. The job manager is aware of all resources and takes care
of the task queue which can originate from different users. For this reason the graphical
interface of MaxQuant can be closed after submitting the job, in contrast to the desktop

version.

Next we set out to adapt MaxQuant to efficiently use the power of the high perfor-
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mance cluster. The principle units of parallelization are the raw files from the project to
be analyzed; and the basic structure is to allocate each raw file to a physical or virtual
core. In the desktop version, we had used multiple processes, which enabled semi-
parallelization because the number of cores is limited on a standard PC. The challenge

was therefore to correctly distribute the different tasks over several nodes.

The code in MaxQuant is structured in so-called ‘task groups” which are co-dependent
and have to run one after the other. As an example, detecting the features in MS1 scans
is a task group. Each of these task groups consists of several instances, where the num-
ber of instances is dependent on the number of raw files. As these instances can run
in parallel, we distribute them over the available nodes according to how many cores
are available on each node. The code executed on each of the nodes is the same as on
the desktop version. Implementing this basic parallelization initially led to low usage
of the computing power of the nodes, because only few of the necessary tasks truly ran

concurrently.

To enable more efficient parallelization we first identified the bottlenecks in perfor-
mance. In this process the poorly performing sections were iteratively identified that
could safely be executed in parallel. For instance, protein group assembly consumed a
disproportional amount of time (see Results and Discussion). Within this task group we
identified functionality that can run in parallel and split this task group into three new
task groups: ‘Prepare protein assembly’, ‘Assembling protein groups” and ‘Finish pro-
tein assembly’. Of these tasks, “Assembling protein groups’ can be broken up into many
small parts that can be executed in parallel (i.e. each protein group can be processed
independently); whereas the other tasks cannot be performed in parallel as they consist
of a single task. With this improvement we obtained an enormous speedup in this part
of the pipeline. This process was performed on the most time consuming task groups
in the pipeline. Compared to previous versions consisting of 22 task groups (Version
1.2.0.0) under default conditions we now have 38 task groups of which 20 groups are
parallelized. This division has the advantage that so called fallback positions are cre-
ated enabling partial processing where the researcher can for example reprocess a part

of the pipeline with different settings.

All of the parallelization improvements made for the cluster version also benefit the
normal PC version when many CPU cores are available. As a last step we identified
the major bottleneck for these types of machine, which turned out to be the input and
output (I/O) access to hard drives. To mitigate this bottleneck we optimized the hard-

ware as described below.
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Hardware setup - For performance benchmarking we used three different hardware
setups (see Table 1). As a representative normal desktop PC we used an Intel Core i7-
2600 processor with 3.4 GHz, 16 GB of RAM and 460 GB space on a conventional hard
disk drive (HDD) with a serial advanced technology attachment (SATA) connection
(purchased from Dell Computers). Since such a computer is meant to still be available
for normal office work, we use only 4 of the 8 virtual cores for processing the data
sets. Additionally we chose a high performance desktop computer, custom-built for
advanced video gaming, which is employed in our department for highly demanding
computations. This type of computer has the similar processor, but is equipped with 1
TB of solid state disks (SSD) configured in RAID 0 connected via a PCI-Express RAID
controller with a battery backup unit and full cache enabled. A RAID configuration is
providing a potential factor of two in read access speed as the data is duplicated on
both drives. The I/O optimized machine also uses faster memory (DDR3 1866 MHz
Quad Channel). This computer was purchased from Eclipse Computing, Ayrshire,
UK and costs two to three times the amount of a desktop computer designed for typ-
ical computational tasks (for current configuration employed in our department see
www.maxquant.org). We store our data on the solid state drive, which has a dramatic
effect on the crucial I/ O performance bottlenecks. These configurations were compared
to our Windows cluster equipped with 44 nodes, two of which are exclusively used to
submit MaxQuant jobs. Each node consists on an Intel Xeon E5540 processor with 2.53
GHz and 24 GB of RAM. For the global data storage we found it advantageous to install
a high performance general parallel file system (GPFS) with 10 TB of storage space on
a HDD using the SAS protocol.

Table 1: Key parameters of the three hardware platforms

standard desktop PC | high-end gaming PC computer cluster
computing . . . using 336 virtual
] using 4 virtual cores using 8 cores
capacity cores
computing 3.4 GHz, 16 GB of 3.4 GHz, 32 GB of 2.53 GHz, 24 GB of
power RAM RAM RAM
I/0 SSD, PCI Express HDD, SAS + GPFS
HDD, SATA .
performance RAID client

A 64-bit version of Windows 7 is installed on the standard desktop computer and

on the I/O optimized high end computer, whereas the cluster was run with a 64-bit
version of Windows HPC 2008 R2. The installation of the freely available Thermo MS

FileReader and .NET Framework 4.5 is necessary for all three platforms. For more
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information see www.maxquant.org/requirements.htm

We have also begun testing two rack mounted configurations with 64 logical pro-
cessors, where multiple cores share the same memory. Both machines have 128 GB of
memory (16x9 GB Dual Rank RDIMM) for 4 CPUs with 1600 MHz. The major differ-
ence for these two setups is that one is using 4 AMD processors (Opteron 6276 with
2.3 GHz) and the other is designed with 4 Intel processors (Intel Xeon E5-4640 with
2.4GHz). Additional a RAID Controller PERC H700 or PERC H710p with 1GB NV
cache is installed, respectively. The storage space is basically the same 6x 900 GB HDD
using SAS protocol. The operating system on both solutions is the Microsoft Windows
Server 2012 Standard 64-bit.

Datasets for human proteome analysis - To obtain a large dataset for evaluating the
performance of the different hardware setups, we combined raw files from different
published experiments from our group. In total we used data from in-depth proteomics
studies of 30 different cell lines17, 18 resulting in 763 raw files. To cover more of the
human proteome we also included raw files from two tissuel9, 20 and one body fluid
projects21. For the estimation of the measured human proteome we employed a total
of 1004 raw files from the studies listed in Table 2. For an estimation of the runtime
behavior of our application we tested five data sets with varying raw file numbers (6,
18, 198, 343 and 763 raw files) on the three different hardware setups.

Table 2: Key parameters of the three hardware platforms

raw
name enzyme type instrument ) scans
files
1 11 cell lines[17] trypsin | celllines | LTQ Orbitrap XL | 198 | 7,779,031
2 8 cell lines trypsin | cell lines Q Exactive 145 | 17,477,801
3 | breast cancer[18] | trypsin | celllines | LTQ Orbitrap XL | 420 | 7,448,447
4 | colon cancer - I[19] | trypsin tissue LTQ Orbitrap XL | 135 | 4,461,151
colon cancer - typsin _ _
5 tissue Q Exactive 24 | 2,000,864
11[20] lys-C
urinary proteome body _
6 lys-C . LTQ Orbitrap XL | 82 | 1,495,293
[21] fluid
1004 | 40,662,587

Data analysis - All data were processed with MaxQuant13 version 1.3.7.4 using An-

dromedal5 to search the MS/MS spectra with trypsin or LysC specificity against the

79



article 4

complete human dataset of the UniProt database22 (release January 2013, 87,638 en-
tries) combined with 262 commonly detected contaminants. We allow for up to two
missed cleavages and N-terminal acetylation and methionine oxidation were selected
as variable, carbamidomethylation of cysteine was selected as fixed modification. For
MS spectra an initial mass accuracy of 4.5 ppm was allowed and the MS/MS tolerance
was set to 20 ppm. A sliding mass window was applied to filter the MS/MS spectra
for the 10 most abundant peaks in 100 Th. For identification, the FDR at the peptide

spectrum matches (PSM) and protein level was set to 0.01.

Availability - The desktop version of MaxQuant as well as the special cluster version

are freely available at http://www.maxquant.org/downloads.htm

Results and Discussion

Many of the tasks in computational proteomics place very challenging demands on
the computational hardware. These demands can be thought of as a combination of
three different factors: (i) processing power of the computer chips or cores employed (ii)
the number of these cores and (iii) the speed of read and write operations. Importantly,
an improvement in any one can fail to improve the analysis time when other factors still
act as a bottleneck to the whole system. For example, extremely high processing speed
may be practically unimportant if reading of raw data or distribution to the relevant

cores is slow.

The processing power of single cores improves over the years. For setting up a com-
putational pipeline one typically selects the fastest and most cost effective version of
mainstream and mass produced products, such as Intel or AMD chips. The trend in
high-performance computing has been to group multiple processors together, both in
single chips and by connecting large numbers of chips (computing clusters). In prin-
ciple the computational capacity is multiplied by the number of chips, however, this
requires efficient parallelization of the software (discussed below). Furthermore, data
for processing needs to be available to the cores and intermediate results need to be
written out sufficiently fast so as not to slow down overall performance. This may re-
quire equipping the cores with large individual memory stores and advanced overall

memory management.

Given efficient hardware for computationally intensive tasks, the software needs to

be structured to take optimal advantage of the resources. In general, one tries to di-
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vide the computational workflow for one proteomic analysis (a ‘job’) into largely self-
contained units of ‘tasks’ that run independently as separate processes. With this strat-
egy, tasks normally do not communicate with each other. Designing a parallel work-
flow therefore involves ‘decomposition’, which entails breaking down a complex sys-
tem into smaller pieces, to find tasks that can run concurrently in parallel applications.
There are two major decomposition methods in parallel programming, functional and
data decomposition23. Functional decomposition requires a restructuring of the algo-
rithms into independent units, which can be very challenging. Data decomposition is
used more often, because it only requires a solid understanding of the data and how the
algorithms process it. In the context of computational proteomics data decomposition

can take the form of processing each of the raw files on a different core.

Once a significant fraction of the proteomic analysis pipeline is separated into in-
dependent tasks executed on different cores, it is crucial to minimize communication
between the cores. Likewise, the tasks of the different cores must be balanced, so that
ideally no single core does more work than the others. Furthermore, when working
with large amounts of data on a distributed computing system, the speed and latency
of the network can be a bottleneck. (This largely makes cloud computing solutions im-

practical in current computational proteomics.)

Implementing MaxQuant on a cluster

When MaxQuant was released in 2008, it was designed to be executed on conventional
desktop PCs. The requirements to run MaxQuant efficiently were to have sufficient
processing power and space on a local disk (see Figure 1A). Already in the original
release, the program was semi-parallelized using multiple processes. The user had to
enter the maximum number of threads to be used, depending on available virtual cores
and other uses of the computer14 (when the number of threads selected is the same or
higher than the number of available computing cores, the computer will become un-
responsive). In the new release, MaxQuant was extended to use a computer cluster,
where the processes are distributed over several computational nodes. A typical com-
puter cluster contains many nodes, ideally with the same configuration and a global
file system that is accessible from each of the nodes and where the data is stored (see
Figure 1B).

As shown in Figure 2A the computational pipeline, which appears as a single and
unified whole to the user, can conceptually be broken down into consecutive ‘task
groups’ were some can be parallelized and others not. Limiting factors for the per-

formance are (i) their demand on I/O speed, (ii) the CPU load of the particular compu-
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tations and (iii) the degree to which the task groups can be parallelized.

o B.
DESKTOP CLUSTER

General Parallel File
System (GPFS)

Local File
System ‘

Figure 1: Distinct hardware setups. (A) In the field of proteomics desktop computers with a
single (multicore) processor and data located on a local file system are generally used. (B) In
contrast a computer cluster has multiple nodes, where one node represents one desktop com-
puter. Additionally a global file system is required where the raw and meta data are stored and
is accessible from all nodes. Usually, the cluster has a remote location, such as in a large com-
puting center. In the figure we compare a quad core desktop computer with a cluster consisting

of 42 nodes and 336 cores, both running the Windows operating system.

The computational task groups of MaxQuant can be conceptualized as 14 fundamen-
tal groups, which we briefly summarize below (see Figure 2B). In the “initialize” phase
the raw files are verified for intactness and readability, additionally an index file for
each raw file is created containing scan meta-data that is accessed many times. The
next step - ‘feature detection” - extracts the peptide features present at the full scan
(MS1) level, typically peptide precursor masses. The detection of the 3D peaks (m/z
over the retention time) and of label pairs (typically SILAC-pairs) is also performed
here. In the following section we perform an initial search using the Andromeda search
enginelb to get a first list of identified peptides, which can be used in later steps. To
correct for any systematic mass errors occurring during data acquisition the initial list
of identifications is used to calculate mass calibration curves over time and m/z24. The
search is now repeated with the updated m/z values resulting in the final list of peptide
identifications, where for each fragmentation spectrum the up to 10 best scoring pep-
tide sequences are retained. After peptide identification, the peptide spectrum matches
(PSM) whose measured mass differences exceed the individually calculated mass toler-
ance are removed and the peptide identification with the next best score falling within
the mass tolerance is retained13. The peptide false discovery rate (FDR) is calculated on
this pre-filtered peptide list and peptide identifications below a specified threshold are

discarded. Since different peptide species resulting in very similar m/z values can elute
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/0 paralellization
Configuring - -
Testing files + ++
Finish Testing files - -
Feature detection ++ ++ ++
Combining apl files for first search +
Preparing searches +
MS/MS first search + ++ ++
8| Read search results for Recalibration +
9| Mass recalibration + ++ ++
MS/MS preapration for main search + ++ ++
Combining apl files for main search +
MS/MS main search + ++ +
13| Preparing combined folder -
14| Calculating masses + ++ ++
15| Correcting errors +++
Reading search engine results + ++ ++
Finish reading search results - ++ ++
Filter identifications (MS/MS) - ++ ++
Applying FDR ++
20| Assembling second peptide MS/MS ++ ++ ++
21| Combining apl files for second peptide search +
22| Second peptide search + ++ ++
Reading search engine results second peptide + ++ ++
Finish reading search results second peptide - ++ ++
Filtering identifications second peptide ++ ++
Applying FDR second peptide ++ - -
27| Reporter quantification ++ ++
28| Retention time alignment ++ + +
29| Matching between runs ++ + +
Prepare protein assembly - - -
Assembling protein groups + ++ ++
Finish protein assembly ++ + +
33| Updating identifications - ++ ++
34| Label-free normalization ++ + +
35| Label-free quantification + + +
36| Label-free collect + + +
37| iBAQ - - -
38| Estimating complexity ++ ++
39| Prepare writing tables - -
40| Writing tables ++ ++ ++
41| Finish writing tables + + +

B. tasks in computational proteomics

2 feature detection

4 mass recalibration

6  mass pre-calculations

8 second peptide search

10 RTalign & match runs

12 label-free
13 write table
14 other

C. performance on a desktop PC

initial search 7%
mass recalbration 6%

feature detection 18%

main search 20%

initialize 3%
write table 3%

. label-free 6%
mass pre-calcultations 8%

apply FDR 2% assemble proteins 5%

RT align & match runs 6%
apply FDR (SP) 5%

18 raw files

second peptide search 12%

Figure 2: Time spent on tasks and groups of tasks in the MaxQuant pipeline. (A) Detailed list of

task groups that are performed on the raw data in the course of a complete MaxQuant analysis.

For each of them the demands or suitability to I/O, computational power and parallelization

are indicated. (B) Task groups from A grouped into larger procedures. (C) Proportional times

consumed by the procedures from B. during a typical analysis of 18 raw files of approximately
20 GB per dataset (total of 133,110 high resolution MS scans and 514,912 high resolution MS/MS

scans).
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at the same time, multiple precursors can occur in the same selection window, leading
to fragmentation of several peptides in a single MS/MS spectrum. In cases where we
identified the intended precursor, a third Andromeda search attempts to also identify
the co-eluting and co-fragmented peptide. These additional peptides require a sepa-
rate FDR correction15. For replicates or comparison of different runs, a sophisticated
tree-based retention time alignment is performed. This alignment is used to transfer
peptide identifications to raw files were a particular feature is observed but not iden-
tified (“match between runs’ option in MaxQuant), increasing the number of identified
peptides per raw file and reducing missing values for quantification[17]. The next step
is to assemble the identified peptides to proteins. For this purpose we group proteins
that are identified by the same peptides in a user-configurable manner. Depending on
the user settings, label-free quantification is performed, correcting for systematic dif-
ferences in quantification between the raw-files. The last step is to write the results
to output tables, which can then be used for downstream analysis or loaded into the
‘Viewer’ part of MaxQuant for detailed visual inspection of the data. Notably, the out-

put of the calculations themselves can reach gigabytes.

The time spent on each of these task groups is strongly dependent on the number
and the size of the raw files. Figure 2C illustrates the percentages of the total time spent
on each task group for a typical project using a standard desktop computer (see Ex-
perimental Methods). The data set contains measurements of a fractionated cell line
in triplicate, giving rise to 18 raw MS files. Although most computation time is re-
quired for the peptide identification by the Andromeda search engine (initial search,
main search and second peptide search), this takes less than half of the total (39%). The
next largest item is the feature detection in these large data files (18%). Tasks like mass
recalibration (6%), applying the peptide FDR (7%), match-between runs including re-
tention time alignment (6%), label-free quantification (6%) and protein group assembly
(5%) are also time-consuming. If the number of cores is limited, many of these compu-

tational times grow directly with the size of the dataset, quickly becoming impractical.

We next illustrate the benefits of parallelization on the main peptide search proce-
dure. After preprocessing of the MS/MS spectra in MaxQuant the resulting fragment
spectra are sorted by their precursor peptide mass, which has important advantages
later on in the search. This task is not trivial, since the work should be distributed in
a way that all processes finish at the same time, to avoid slowing down the overall
pipeline with a single peak list file taking a disproportional amount of time to finish.
For this reason, we make the number of spectra in each peak list file dependent on the

peptide mass range to counterbalance the increasing combinatorial calculation time for
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peptides with higher mass. The first step in the Andromeda search is the creation of the
peptide sequence database with its associated peptide masses. The in silico digestion
of the proteins and the creation of database search indices is parallelized using multi-
threading of only one processor. Since we have split all spectra into independent peak
list files at this point, the following peptide search can be executed in separate, paral-
lel processes. This data decomposition is done in a similar manner for the initial and
second peptide search. We compared serial and parallel execution by running either
a single or 18 CPUs on the cluster. For the initial, main and second peptide search of
a dataset of 547,900 MS/MS spectra that are distributed into 18 peak list files we de-
creased the run time almost 7-fold (1.1 h for the parallel and 7.9 h for the serial search,

respectively).

Similarly to the peptide search tasks, we particularly concentrated our parallelization
efforts on feature detection, mass recalibration, FDR application, protein group assem-

bly and writing tables, constituting the major remaining bottlenecks.

Performance of desktop vs. cluster for data sets of variable size
In modern proteomics, large numbers of files are often analyzed together. These could
for instance be generated during in-depth analysis of a proteome with many fraction-
ation steps across several conditions. Furthermore, all files associated with a given
project spanning many months or even years are best analyzed together in MaxQuant
to guarantee overall comparability of results and to avoid inflation of the FDR[25]. Ide-
ally, the computational proteomics infrastructure should not pose a limitation to such
analyses. Here we investigate the gains of our optimization efforts using a computer
cluster consisting of 42 nodes with 8 virtual cores each, resulting in the potential for 336
parallel operations. We compare this setup to a conventional desktop PC with a com-
parable processor configuration, in which 4 parallel cores are dedicated to MaxQuant.
In Figure 3A the advantages of parallelization in terms of analysis time are visualized
by horizontal bars, consisting of individual tasks that represent the processing time for
each task group. If the task group can be parallelized, the bar is rotated vertically since
a group of files is now analyzed as fast as a single file. In cases with only few raw files
rotating these task groups vertically does not shorten the entire processing time appre-
ciably. However, for larger number of files, the savings become dramatic. To test this
on a specific example, we analyzed a small data set with 6 raw files and a large data
set with 763 raw files on both the desktop and the computer cluster (Figure 3B). For the
small data set, the saving in computation time were 41% (2.8 h vs. 1.7 h). However, for

the very large data set, processing time on the cluster was 5 day whereas the desktop
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calculation took almost 20 days (Suppl. Table 1).
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Figure 3: Comparison of the improvements by parallelization of different task groups. (A)
Conceptual visualization of the effects of parallelization of some but not all task groups on total
computing time. When only a few raw files need to be analyzed the gain is minimal, but with
extension of the dataset the time savings become dramatic. (B) Total run times of two different

datasets (6 vs. 763 raw files) with color coding of the different task groups.

Next, we systematically investigated the advantages of the computer cluster over
the desktop computer for increasing number of raw files. Because different raw files
can contain very different amounts of data, we scaled the x-axis in Figure 4A in scans
instead of raw files (one raw file contains generally between 3,500 and 21,000 scans, de-
pending on the instrument, gradient length and the chosen topN method). Recapitulat-
ing the results described above, a clear trend emerged, in which the saved computing
time was negligible for small datasets and increased drastically at very large data sizes.
We also plotted processing times for the different task groups separately (Figure 4B).
This revealed that feature detection benefited most from parallelization, followed by
the main peptide search. However, tasks like write out of the large output tables also
profit extensively from parallelization (in this case because MaxQuant needs to access

all the raw files in this task group, which is much faster in parallel mode).

Performance of an I/0O optimized desktop computer

Given the time expenditure of the MaxQuant task groups on the large data sets, it ap-
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Figure 4: (A) Computational time as a function of data to be processed. The x-axis is in units of

added MS scans in the individual raw files. (B) Same panel A, but for each task group separately.

peared that memory constraints during access to raw and intermediate data might play
just as large a role as total processing power (Figure 4). We tested this notion using a
custom-built computer that was optimized for applications such as high end gaming,
equipped with 1 TB of solid state disks configured in RAID mode (see Experimental
Methods). On this computer we used all 8 cores and processed small, medium and
very large data sets. As can be seen in Figure 5, the processing time per raw file was
very similar to that of the cluster, even for the very large data set. As the cluster has 336
cores and the I/O optimized high end desktop computer only 8, we conclude that the
benefits of parallelization accrue mainly from better I/O access, whereas computing
power is less of a limiting resource under these circumstances. In terms of expenditure,
this makes high-end computational resources readily accessible to a large number of

research groups lacking access to cluster computing facilities.

Incremental coverage of the human genome by large-scale data sets
Although the human genome has been sequenced more than ten years ago, it is still not
clear how many different gene products it specifies. Estimates for the number of pro-
tein coding genes have been shrinking over the last ten years, from initial values of over
40,000 to a recent one that finds 20,225 open reading frames with at least some associ-
ated experimental or bioinformatics evidence[26]. Definitive proof of protein coding
potential would be provided by solid data obtained by MS based proteomics. Accord-
ingly, one of the goals of the chromosome centric Human Proteome Project is to map

the entire human protein set to the set of protein-coding genes[27]. Currently, unam-
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Figure 5: Comparison of total analysis time for a small, medium and very large data set using

a desktop, I/O optimized, high end desktop and a computer cluster.

biguous protein level information is missing for up to 30% of human genes28. Here we
employ a large collection of high resolution mass spectrometric data to determine the
increase of coverage of the human genome as more and more experiments spanning
multiple human sample types for different conditions are combined. Due to the large
number of raw files involved, this task could not be carried out with a standard desktop

configuration but rather required computational advances as described above.

We have previously found that in-depth proteomic sequencing of human cancer cell
lines allows unambiguous identification of about 10,000 different protein groups us-
ing currently available technology[17, 29] and other groups have reported similar re-
sults[30, 31]. We therefore collected raw files from our laboratory from three deep cell
line proteome projects together covering 30 cell lines[17, 18] (Experimental Methods).
Furthermore, we added data from two recent studies of colon cancer tissues[19, 20] as
well as a representative of a body fluid proteome21. Together these data comprised a
collection of 1004 raw files, analyzed together on the cluster in a run time of only 5.5
days. At a 1% percent FDR at both peptide and protein levels, MaxQuant found a total
of 13,242 protein groups in the UniProt database. We identify 255,432 different tryptic
or LysC peptides, whereas 61,583 peptide sequences are unique within all proteins in
the fasta file. A protein group contains on average 14.9 unique peptides, whereas the
median is 9 (Figure 6A, Suppl. Table 2b). Just 1.9 or 3.6% of the proteome was identi-
tied with only one or only two peptides, respectively (Figure 6A). Sequence coverage

was on average 42% (41.2% median). To our knowledge, this is the largest collection of
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relatively uncharacterized E3 ligase RNF213 is also among the top 5 proteins. (B) Number of
proteins identified in the three cell line projects, two colon cancer projects and in the body fluid
proteome. (C) Total number of protein groups identified from the cell line, colon cancer and
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ent protein coding genes instead of protein groups (right).
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unique peptides reported so far. For the expressed proteome that was identified here,
close to half of the primary structure was therefore verified on average in this data set.
Matching all separately identified protein groups to the human genome yielded 12,112

genes, which is almost 60%, assuming a total number of 20,225.

The data analyzed above originated from three main sources - three different cell
line projects, two colon cancer tissue investigations and a study of the variability of
the urinary proteome (Table 2). The three cell line studies together identified more
than 13,000 different protein groups (Figure 6B). The depth of coverage in each project
depended on the technology used (long columns and Q Exactive, vs. shorter columns
and LTQ Orbitrap Velos mass spectrometers), but the main finding is that there is a very
large overlap among the cell line proteomes. Notably, despite a very large number of
raw files (420), the breast cancer cell line study added only 3% unique proteins to the
other two cell line projects. This reflects the advance in shotgun proteomics technology
and illustrates a general finding that accumulating large number of measurements by

itself does not necessarily lead to larger identified proteomes.

The large overlap in cell line proteomes agrees with previous findings that found re-
markably similarity in the identity - if not the abundance - of the expressed proteins[17,
32]. Naturally, the two cancer tissue proteomes have large overlap but interestingly
the number of proteins identified in this single in vivo source was 11,536 - not much
smaller than the total number from the different cell lines. The body fluid proteome
identified about 2000 protein groups, partially reflecting the higher dynamic range of

this proteome and the absence of fractionation.

Next we compared the cell line projects, colon cancer study and the body fluid study
(Figure 6C). Again we found a large overlap, and intriguingly the in-depth colon cancer
proteome only added 1% to the total identified proteome. This may reflect the fact that
nearly all these proteomes are of cancer origin, but it also highlights the fact that the
addition of tissue, per se, does not necessarily add many unique protein identifications.
Likewise, the urinary proteome only added very few new proteins, indicating that body
fluids may also not necessarily add substantially to overall coverage. When consider-
ing protein groups mapped to genes, we observe slightly smaller overall numbers, but
the proportional contribution of the individual proteome sources remains largely un-

changed (Figure 6C).

To study saturation properties of proteome coverage in large data sets in more detail,
we investigated how quickly proteome coverage was reached as a function of the num-
ber of experiments used as input. Since this depends on the order in which the projects

are added, we simulated the additional coverage from the analysis of the 1000 raw files.
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Figure 7: (A) Saturation curves of number of proteins identified when incrementally adding
experiments. The traces represent 100 different simulations. (B) Number of identified and dis-
tinguishable protein groups as a function of the number of identified protein coding genes (see

text for details).

Using 100 different combinations yielded the saturation curves shown in Figure 7A. In
some of the simulations, the final proteome coverage was essentially reached with less
than 5% of the total experiments. For instance, measurements with the Q Exactive and
long columns reached already 95% of the total protein identifications with only 91 raw
files. In each of the 100 simulations, nearly the final number of identified proteins was
obtained after a third to half of the experiments had been added. This analysis again
underscores that reaching a given depth depends more on the technology used than on

the cumulative number of analyses.

Finally, we investigated the relationship between identified protein groups and genes.
As can be seen in Figure 7B, at low numbers of identified genes the ratio between pro-
tein groups and genes is about one to one. Starting from 7000 genes, a larger number
of isoforms is added as a function of additional genes. This is because the increasing
depth of coverage necessary to identify many genes also concomitantly leads to in-

Creasing sequence coverage.
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Conclusion and Outlook

Here we have analyzed the different task groups comprising the computational pipe-
line in the MaxQuant environment. This revealed specific bottlenecks, which were re-
moved as far as possible. The resulting MaxQuant version is highly parallelized and
memory optimized. For small sets of MS raw files it performs very fast on both the
desktop or on a large cluster. For instance, in our laboratory we often analyze pro-
teomes with six fractions, each measured in 4 h gradients, which in triplicate experi-
ments results in 18 large raw files. These are processed in 7.6 h on a standard desktop
(using 4 virtual cores) and 4.9 h on the cluster (Suppl. Table 1). For very large data sets,
however, the cluster massively outperforms the desktop computer, to the extent that

some analyses are only practical on the cluster.

We had expected that spread the workload on multiple processors will be the best
solution and the processing time will be reduced by the number of processing units.
But in the course of improving the computational speed of MaxQuant, we also tested
an I/0O optimized high end desktop PC. Surprisingly, this configuration performed es-
sentially as well as the large cluster, at a small fraction of the costs and with much
less administration overhead. Therefore, our recommendation at this point is to invest
in this or similar configuration for laboratories or facilities with medium to large data
production. Close to 1000 raw files can still be efficiently processed in the standard

workflow in a matter of a few days.

What do these findings imply for potential bottlenecks in the computational analysis
of deep proteome data? As we have shown here, current data sets can easily be handled
on relatively inexpensive hardware. For the future, both the power of computational
hardware and the size of the data acquired in proteomic investigations will increase.
For instance, the number of MS and MS/MS scans used in standard acquisitions could
increase several fold over the next few years, just as it has over the last several years.
Countering this additional computational load, current desktop chips with 12 virtual
cores already exist, rather than the 8 cores employed here, and chips with 16 cores
are to be released shortly. Similarly, after initial submission of this manuscript, we
have installed two rack mounted solutions with 64 logical processors, from Intel and
AMD, respectively (see Experimental Methods). Both systems are essentially as easily
administered as PCs, but combine improvements due to fast and local memory with
increased number of computation units, and are still quite economical. In our initial
tests, they performed equally well to the I/O optimized PCs on small numbers of files

but were able to handle larger files sets without slow down.
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Based on these trends we expect that the computational demands of the standard
workflow for in depth shotgun proteomics can be comfortably handled for the foresee-
able future. However, specialized tasks, such as searches in six frame translations of
large genomes, and other extremely computing intensive tasks may benefit from large

clusters.

We applied the improvements in software and hardware to investigate the incremen-
tal contribution to coverage of the human genome from large-scale data sets generated
in our laboratory. This revealed that there is a large overlap in the identity of proteins in
different cell line proteomes as well as an in-depth measured human tissue proteome,
consistent with earlier findings. Together, the analysis of more than 1000 raw files iden-
tified more than 13,000 different protein groups, mapping to more than 12,000 of the
roughly human 20,000 protein coding genes. Interestingly, this depth could be reached
with a small subset of the raw MS data, namely the ones using the latest technology.
In contrast, hundreds of raw files obtained with a workflow from just a few years ago
made essentially no contribution to total identifications. The implications for current
efforts to map the entire proteome would be to focus on technology development for
in-depth measurements rather than predominantly on accumulation of large numbers

of data sets.

Acknowledgments: We thank our colleagues at the Max Planck Institute of Biochem-
istry for help and fruitful discussions, in particular excellent hardware and configura-
tion assistance by Mario Oroshi. We thank Martin Hoffmann and Bernhard Busch of
our institute’s computing center for help with the compute cluster. The research leading
to these results has received funding from the European Commission’s 7th Framework
Programme (grant agreement HEALTH-F4-2008-201648 / PROSPECTS).

References
1. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422,
(6928), 198-207.
2. Mallick, P; Kuster, B., Proteomics: a pragmatic perspective. Nat Biotechnol 2010, 28,
(7), 695-709.
3. Cox, J.; Mann, M., Quantitative, high-resolution proteomics for data-driven systems
biology. Annu Rev Biochem 2011, 80, 273-99.
4. Altelaar, A. F; Munoz, J.; Heck, A. J., Next-generation proteomics: towards an inte-
grative view of proteome dynamics. Nat Rev Genet 2012, 14, (1), 35-48.
5. Michalski, A.; Damoc, E.; Hauschild, J. P; Lange, O.; Wieghaus, A.; Makarov, A.; Na-

93



article 4

garaj, N.; Cox, J.; Mann, M.; Horning, S., Mass spectrometry-based proteomics using Q
Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol
Cell Proteomics 2011, 10, (9), M111 011015.

6. MacCoss, M. J., Computational analysis of shotgun proteomics data. Curr Opin
Chem Biol 2005, 9, (1), 88-94.

7. Mueller, L. N.; Brusniak, M. Y.; Mani, D. R.; Aebersold, R., An assessment of software
solutions for the analysis of mass spectrometry based quantitative proteomics data. ]
Proteome Res 2008, 7, (1), 51-61.

8. Galvez, S.; Diaz, D.; Hernandez, P,; Esteban, F. J.; Caballero, J. A.; Dorado, G., Next-
generation bioinformatics: using many-core processor architecture to develop a web
service for sequence alignment. Bioinformatics 2010, 26, (5), 683-6.

9. Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S., Probability-based protein
identification by searching sequence databases using mass spectrometry data. Elec-
trophoresis 1999, 20, (18), 3551-67.

10. Keller, A ; Eng, J.; Zhang, N.; Li, X. J.; Aebersold, R., A uniform proteomics MS/MS
analysis platform utilizing open XML file formats. Mol Syst Biol 2005, 1, 2005 0017.

11. Kohlbacher, O.; Reinert, K.; Gropl, C.; Lange, E.; Pfeifer, N.; Schulz-Trieglaff, O.;
Sturm, M., TOPP-the OpenMS proteomics pipeline. Bioinformatics 2007, 23, (2), e191-
7.

12. MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen,
B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. ]., Skyline: an open source docu-
ment editor for creating and analyzing targeted proteomics experiments. Bioinformat-
ics 2010, 26, (7), 966-8.

13. Cox, J.; Mann, M., MaxQuant enables high peptide identification rates, individ-
ualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat
Biotechnol 2008, 26, (12), 1367-72.

14. Cox, J.; Matic, L.; Hilger, M.; Nagaraj, N.; Selbach, M.; Olsen, J. V.; Mann, M., A
practical guide to the MaxQuant computational platform for SILAC-based quantitative
proteomics. Nat Protoc 2009, 4, (5), 698-705.

15. Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R. A.; Olsen, J. V.; Mann, M.,
Andromeda: a peptide search engine integrated into the MaxQuant environment. ]
Proteome Res 2011, 10, (4), 1794-805.

16. Cox, J.; Mann, M., 1D and 2D annotation enrichment: a statistical method integrat-
ing quantitative proteomics with complementary high-throughput data. BMC Bioin-
formatics 2012, 13 Suppl 16, S12.

17. Geiger, T.; Wehner, A.; Schaab, C.; Cox, J.; Mann, M., Comparative proteomic anal-

ysis of eleven common cell lines reveals ubiquitous but varying expression of most

94



High performance computational analysis of large-scale proteome datasets to assess

incremental contribution to coverage of the human genome

proteins. Mol Cell Proteomics 2012, 11, (3), M111 014050.

18. Geiger, T.; Madden, S. E,; Gallagher, W. M.; Cox, J.; Mann, M., Proteomic portrait of
human breast cancer progression identifies novel prognostic markers. Cancer Res 2012,
72,(9), 2428-39.

19. Wisniewski, J. R.; Ostasiewicz, P.; Dus, K.; Zielinska, D. E; Gnad, F.; Mann, M.,
Extensive quantitative remodeling of the proteome between normal colon tissue and
adenocarcinoma. Mol Syst Biol 2012, 8, 611.

20. Wisniewski, J. R.; Dus, K.; Mann, M., Proteomic workflow for analysis of archival
formalin fixed and paraffin embedded clinical samples to a depth of 10,000 proteins.
Proteomics Clin Appl 2012.

21. Nagaraj, N.; Mann, M., Quantitative analysis of the intra- and inter-individual vari-
ability of the normal urinary proteome. ] Proteome Res 2011, 10, (2), 637-45.

22. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nu-
cleic Acids Res 2012, 40, (Database issue), D71-5.

23. Mohammed, Y.; Shahand, S.; Korkhov, V.; Luyf, A. C. M,; van Schaik, B. D. C,;
Caan, M. W. A,; van Kampen, A. H. C.; Palmblad, M.; Olabarriaga, S. D. In Data De-
composition in Biomedical e-Science Applications, e-Science Workshops (eScienceW),
2011 IEEE Seventh International Conference on, 5-8 Dec. 2011, 2011; 2011; pp 158-165.
24. Cox, J.; Michalski, A.; Mann, M., Software lock mass by two-dimensional minimiza-
tion of peptide mass errors. ] Am Soc Mass Spectrom 2011, 22, (8), 1373-80.

25. Schaab, C.; Geiger, T.; Stoehr, G.; Cox, J.; Mann, M., Analysis of high accuracy,
quantitative proteomics data in the MaxQB database. Mol Cell Proteomics 2012, 11, (3),
M111 014068.

26. Clamp, M.; Fry, B.; Kamal, M.; Xie, X.; Cuff, J.; Lin, M. E; Kellis, M.; Lindblad-Toh,
K.; Lander, E. S., Distinguishing protein-coding and noncoding genes in the human
genome. Proc Natl Acad Sci U S A 2007, 104, (49), 19428-33.

27. Paik, Y. K,; Jeong, S. K.; Omenn, G. S.; Uhlen, M.; Hanash, S.; Cho, S. Y.; Lee, H. J.;
Na, K,; Choi, E. Y;; Yan, E; Zhang, F; Zhang, Y.; Snyder, M.; Cheng, Y.; Chen, R.; Marko-
Varga, G.; Deutsch, E. W.; Kim, H.; Kwon, J. Y.; Aebersold, R.; Bairoch, A.; Taylor, A. D.;
Kim, K. Y,; Lee, E. Y.; Hochstrasser, D.; Legrain, P.; Hancock, W. S., The Chromosome-
Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat
Biotechnol 2012, 30, (3), 221-3.

28. Legrain, P.; Aebersold, R.; Archakov, A.; Bairoch, A.; Bala, K.; Beretta, L.; Bergeron,
].; Borchers, C.; Corthals, G. L.; Costello, C. E.; Deutsch, E. W.; Domon, B.; Hancock, W.;
He, F.; Hochstrasser, D.; Marko-Varga, G.; Salekdeh, G. H.; Sechi, S.; Snyder, M.; Sri-
vastava, S.; Uhlen, M.; Hu, C. H.; Yamamoto, T.; Paik, Y. K.; Omenn, G. S., The human

proteome project: Current state and future direction. Mol Cell Proteomics 2011.

95



article 4

29. Nagaraj, N.; Wisniewski, J. R.; Geiger, T.; Cox, ].; Kircher, M.; Kelso, ].; Paabo, S.;
Mann, M., Deep proteome and transcriptome mapping of a human cancer cell line. Mol
Syst Biol 2011, 7, 548.

30. Beck, M.; Schmidt, A.; Malmstroem, J.; Claassen, M.; Ori, A.; Szymborska, A.; Her-
zog, F,; Rinner, O.; Ellenberg, J.; Aebersold, R., The quantitative proteome of a human
cell line. Mol Syst Biol 2011, 7, 549.

31. Munoz, J.; Low, T. Y,; Kok, Y. ].; Chin, A.; Frese, C. K,; Ding, V.; Choo, A.; Heck, A.].,
The quantitative proteomes of human-induced pluripotent stem cells and embryonic
stem cells. Mol Syst Biol 2011, 7, 550.

32. Lundberg, E.; Fagerberg, L.; Klevebring, D.; Matic, I.; Geiger, T.; Cox, ]J.; Algenas,
C.; Lundeberg, J.; Mann, M.; Uhlen, M., Defining the transcriptome and proteome in
three functionally different human cell lines. Mol Syst Biol 2010, 6, 450.

96



3 Conclusions and outlook

Analytical Mass spectrometry-based proteomics, specifically the shotgun approach, has
now reached a high level of maturity with respect to sample processing, data acquisi-
tion and data analysis®. Nevertheless, proteomics still lags behind other large-scale
approaches in biology and further technological advances are urgently needed. The
main goals are to increase throughput and spectra quality so that spatiotemporal di-
mensions, population parameters and the complexity of protein modifications can be
considered on a quantitative scale'®?. Traditionally, most proteomics analysis has been
carried out using relatively inexpensive ion trap instruments, which offer fairly low
precision and accuracy of mass determination. Higher resolution instruments, which
achieve precision better than 10 ppm, were previously expensive and rare. Indeed
with the introduction of new instruments such as the Orbitrap analyzer or improved
quadrupole time-of-flight mass spectrometers, high resolution instruments have be-
come much more commonplace®. However, the resulting data sets were very complex
and their analysis requires several steps from raw data processing, to database search,
statistical evaluation of the search result, quantitative algorithms and statistical analy-

sis of quantitative data'®.

In this thesis, I have alleviated some of these bottlenecks through development of
algorithms and robust and reliable software to analyze high-quality MS data. I con-
tributed to the novel peptide search engine Andromeda, which produces results at
least as good as the commonly used commercial Mascot software®. Despite the ex-
cellent performance of Andromeda in large-scale studies, generally half of the acquired
MS/MS spectra remain ‘unassigned” (i.e. without high confidence peptide identifi-
cation)®. This can have several reasons: constrained data base search parameters
(e.g. search for tryptic peptides only), the combinatorial problem caused by post-
translational modifications, spectra containing fragmentation ions originating from mul-
tiple peptides, single amino acid polymorphisms, and splicing isoforms and the com-
plexity of redundant peptides on peptide and protein identification'**'*2. With the An-
dromeda search engine MaxQuant is already able to identify co-fragmenting peptides

when the triggered precursor peptide was identified in a previous step. This second
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peptide search is routinely used in almost all experiment in our laboratory and con-
tributes around 10% additional identifications. For further increasing the identifica-
tion rate several approaches are under development. Most prominently the transfer of
identifications from on dataset (where the peptide was more abundant) to the dataset
under investigation (‘Match-between-runs’ feature in MaxQuant). The error tolerant
(or ‘blind”) database search is looking for peptides which occur in a modified version
of an already identified unmodified peptide'*3*. The incompleteness of the searched
protein sequence databases are likely to be at least partly solved by next generation se-

quencing of transcriptomes 10%13°

. In the meantime the computational pipeline could be
modified so that in addition to the database search, de novo sequencing is integrated for
unassigned MS/MS spectra. This multi-step approach would enable the detection of
novel peptides such as peptides with amino acid exchanges or those originating from

splice variants'32.

In this thesis I also introduced and implemented a computer-based Expert System,
which is used for automated annotation of high-resolution MS/MS spectra'®. T used
a knowledge base of peptides fragmentation rules, which was applied to complete the
annotation of thousands of spectra. We figured out that the fragmentation products
of HCD are comparable to CID and most of the fragmentation types were already

known by literature'’.

The rule set used for annotating the spectra was developed
in close contact with a human domain expert and it was stringently controlled by an
FDR approach. Currently, the output of the Expert System is used as an add-on to the
MaxQuant pipeline for manual inspection of the acquired MS/MS spectra and their
assigned peptide identifications. For instance, in cases where two or more peptides
are intentionally fragmented together (multiplexing), in-depth classification of which
fragment peak belongs to which peptide will help in the identification process'?®. By
removing peaks that belong to already identified peptides, the complexity of the mul-
tiplexed spectrum will be reduced and even low abundant fragment peaks of the co-

fragmented unidentified peptides can now be used for the identification.

Recent efforts in MS-based proteomics led to the archiving of data sets as large as
several million fragmentation spectra'®. For such large data amounts, the efficiency of
the computational analysis is an important practical consideration'®. In this thesis, I
have made great efforts to adapt MaxQuant to run efficiently on the currently available
hardware platforms!®. For this purpose, the bottlenecks in the pipeline were identi-
fied and alleviated - mainly by parallelization. For larger datasets, this parallelization
has a dramatic effect when more than the normal four CPUs are used for data analysis.

We tested several hardware configurations and conclude that machines with high I/O
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performance have the best effect in reducing the analysis time. We used the optimized
MaxQuant version to measure the current state of the proteome coverage of the hu-
man protein-coding genes and detected around 60% of the gene products. While this
is already an impressive coverage, given the fact that only a relatively small number
of projects contributed to it, new developments will be needed to identify proteins for
the entire human genome. On the technological side further instrumental advances are
likely needed, such as higher sensitivity for the detection of low abundant proteins,
improvements in the scan rate of the instrument side so that also low abundant peaks
are picked. Even more promisingly, the instrument can be made to pick peptides for
sequencing with the help of a software based “intelligent agent’'*. In this connection
an interesting consideration is that the scan speeds of the mass spectrometers increase,
the difference between targeted and discovery proteomics will become more and more
blurred®. It would be also a good idea to use rigorous statistical tests to select samples
that will contribute to additional coverage of the genome, in a way that is exemplified
our previous investigation (article 4) . Further on the computational side, enhancing
the proportion of peptides identified remains an important goal for computation pro-
teomics and in depth comparison of the de novo sequenced proteome with the genome

will likely reveal many novel biological phenomena.
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