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Introduction 

Computer developments reduce the limitations on the size of the chemical systems that can be 

treated. However, to take advantage of the achievements in computer technology, it is re-

quired to adapt the electronic structure codes of computational chemistry. Furthermore it is 

necessary to reduce the computational cost as much as possible, for example by reducing the 

number of iterations of internal loops (e.g., in a self-consistent field calculation) as well as for 

external calls of the program (if special geometries are searched so that the electronic struc-

ture have to be calculated several times). 

Computer architecture develops steadily. The most popular description of the trend is 

Moore’s law, which predicts that the number of transistors in an integrated circuit will double 

every two years.1 This exponential trend seems to be correct for the past. Increase can also be 

found in memory bandwidth. However what can be seen in recent years and will be even 

more pronounced in the future of the computer architecture is a change towards parallel pro-

cessing. Parallel programs could ideally reach speedups linear with the number of applied 

cores. In reality perfect parallelization is hardly possible, due to communication between the 

processes, which might include transfer of a large amount of data, and inefficient paralleliza-

ble parts in a program. Recall Amdahl’s law.1 Time requirements on one or several cores pro-

vide the scaling factor of the program; the term “granularity” is used in parallel processing to 

define the ratio of the amount of computation to the amount of communication. The scaling 

factor and the granularity are important quantities for characterizing the quality of the parallel 

properties of a program. 

The scaling factor of a quantum chemistry program depends on the size of the system. 

For an efficient program, for which the communication overhead increases slower than the 

computation effort due to the increasing system size, a large palladium cluster, for example, 

will run more efficiently for a larger number of cores than a small palladium cluster. Quantum 

chemistry programs, like ParaGauss,2-6 were often initially developed several years ago. They 

were adapted to the computer architecture available at that time and the parallelization strate-

gies designed for them. They were extended steadily. If the size of the particle, which pro-

vides the surface on which the reaction takes place, should be extended from 75 atoms to 

more realistic sizes of several hundred atoms, the computational requirements will significant-

ly increase. To prevent the real time required for the calculations to increase likewise, the 

code should scale well up to several hundred cores, even thousand cores and more. This re-
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quires that the structure of large parts of the code ParaGauss has to be changed as it was ini-

tially not created for using such large numbers of cores. 

Quantum chemistry codes provide approximate solutions to the electronic Schrödinger 

or the relativistic Dirac equation of molecular systems.6-8 These equations determine the ener-

gy of a system and its many-electron wave function (or electron density). The wave function 

of the atomic nuclei is usually neglected by treating the nuclei in the Born–Oppenheimer ap-

proximation.7 The electronic wave function of a molecular structure is in most cases searched 

in an iterative process, called the self-consistent field (SCF) cycle.  

The current thesis includes improvements on the parallelization of quantum chemistry 

calculations by developing a general parallelization library. This library describes a method 

for dynamically distributing similar tasks, fit for the expected growth in core numbers, and is 

a significant part of the current thesis. The library is used for example for the task distribution 

of the integral calculations, both in the pre-SCF and the post-SCF part. In the pre-SCF part 

these are integrals over combinations of orbital basis functions, which are used to build the 

Hamiltonian matrices in the SCF cycle. They can be calculated beforehand and dominate the 

computation time of the pre-SCF part. In the post-SCF part the first- and second-order deriva-

tives of the energy with respect to the positions of the nuclei have to be calculated. This in-

volves integrals like in the pre-SCF part, only with different sizes and values. There are two 

kinds of these integrals, one kind is calculated numerically over a grid, the other is calculated 

analytically. The numerically solved integrals generate several tasks of nearly equal computa-

tional effort. The analytically solved integrals are calculated in tasks of varying computational 

effort, requiring therefore a dynamical distribution of the tasks for an effective parallel calcu-

lation. Speeding up the evaluation of the calculation of one geometry structure is one contri-

bution of the current thesis. For the SCF cycle which gets harder to converge with increasing 

system size, several convergence accelerators are available (in ParaGauss). The current thesis 

describes the implementation of a new accelerator, the second contribution for increasing the 

speed up of a single-point calculation. 

The most interesting (molecular) structures on the potential energy surface required for 

describing a chemical reaction are the (local) minima and first-order saddle points. The min-

ima represent initial, intermediate, and final states of a reaction. The saddle points connect-

ing two of these minima, often called transition states, are important for determining reac-

tion pathways. The energy difference of a transition state to the preceding local minimum is 

used to calculate the reaction probability and to estimate the velocity of a chemical trans-

formation. Thus it is crucial to determine the corresponding transition states of a reaction. 
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These structures are harder to find than those of minima. The special requirements on the 

structure and the fact that often a special transition state out of many possible ones is 

searched, belonging to a given reaction path, makes this a challenging task for specialized 

programs. A toolbox of routines, called ParaTools, was created for that task. It consists of 

several routines which are useful for searching transition states. 

This set of tools can not only be used in combination with ParaGauss but also with 

other quantum chemistry codes that deliver energy and gradients of the energy. Some rou-

tines require the calculation of the energy and its nuclear displacement gradients for various 

structures, known at the same time. These calculations are processed in parallel. As “embar-

rassing parallel” tasks, such a procedure scales better than using only the parallelization 

within the quantum chemistry programs. The implementation and development of routines 

for ParaTools, also for parallel execution, were done in the context of the current thesis. 

One example illustrating the use of the improvements of the current thesis is taken from 

the field of catalysis. Heterogeneous catalysts are often found in the shape of nano-sized ac-

tive particles on a mostly inert support. Many theoretical studies of catalytic reactions neglect 

the support material and concentrate on the active particles.9 Even with these simplifications it 

is not possible, due to the high complexity of the systems, to describe exactly these particles 

on which the reactions should occur. Calculations on computers are limited in the size of the 

systems treated not only by the approximations used in the theory, but furthermore in calcula-

tion time and hardware restrictions regarding the size of the molecules. For example the theo-

retical study of Yudanov et al.9 was carried out for a model particle of 79 atoms instead of 300 

to 3000 as proposed by the experimentalists.10 The reduction in particle size and the additional 

symmetry reduction applied,9 allow extensive studies with accurate results at the cost of using 

a model that is simpler than the system treated by the experimentalists. It is another goal of 

the current thesis that the size of test systems can be increased to large values while accurate 

results in extensive studies shall become feasible. 

The thesis is structured as follows. The first part of this thesis describes the algorithm of 

the general parallelization library, which replaces the previous one for parallelizing the inte-

grals in the pre- and post-SCF parts. Considering different computer architectures there are 

two variants available. This part also includes a study on the performance of the methods for 

different computer architectures. The performance of the integral parts in the pre- and post-

SCF is also explored. Additionally this part includes tests on a newly implemented integral 

part, the so called four-center integrals.11 
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The second part is about accelerating the convergence of the SCF cycle with the “direct 

inversion in iterative subspace” (DIIS) method.12 This well established method was imple-

mented as an addition and compared to the methods already existing in ParaGauss. 

The third part is about extensions to the ParaTools framework, which is a toolbox of 

routines intended, among other things, mainly for transition state search. ParaTools included 

already several methods for searching for a reaction path, the results of which can be used to 

locate approximately a transition state. These methods were improved and extended. However 

the main focus of the extension of ParaTools was in adding local transition state search meth-

ods. Together with existing reaction path methods, these new methods can be combined to 

very efficient two-step approaches. Furthermore, this part of the thesis includes a large test of 

various combinations of the two-step approach on systems inspired by recent investigations 

that were carried out by the group of Prof. Rösch.13 
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Part I: Parallel Processing 

1. Parallelization in the Density Functional Method 

1.1 Basics of the Density Functional Method 

The current section describes some basics of quantum chemistry programs, especially those 

using the density functional method. The main focus is on tasks of these programs which can 

be easily parallelized. 

For quantum chemistry programs the Schrödinger equation, or when considering relativ-

istic effects, the Dirac equation, are the fundamental equations. These equations describe the 

energetics and the distribution of the electrons (and in principle also of the nuclei) of atoms 

and molecules.7 The programs provide the energy as a result, and via its first-order derivative, 

the gradients of the energy, which is used to optimize the positions of atomic nuclei. Even the 

Schrödinger equation, as the simpler one of them, cannot be solved analytically for other than 

the simplest cases. Therefore there are several approximations involved in the methods used 

by quantum chemistry programs. Among the most common methods are the Hartree–Fock 

method14 and the density functional theory method.7 The program ParaGauss,2-6 the focus of 

the investigations of this part of the thesis, exclusively uses density functional theory. It con-

tains also the possibility for including relativistic effects by the Douglas–Kroll–Hess method.8, 

15-16 These contributions do not change the principle structure of the program. Thus even 

though the following description restricts itself to the non-relativistic case the effects of the 

parallelization are also present in relativistic calculations. 

Researchers often are interested in the stationary states of a system which leads to time-

independent equations. A common approximation, the Born–Oppenheimer approximation,7 is 

that the structure of a molecule, given by the positions of the atomic nuclei, is fixed and only 

the electronic wave function is to be calculated. The resulting electronic Schrödinger equation 

is transformed into an eigenvalue equation: 

 Ĥ EΨ = Ψ   (1.1) 

with the differential operator, Ĥ , the Hamiltonian which acts on the many-electron wave 

function Ψ of the system.  Using the symbol ZA for the charge of the nucleus A and atomic 

units, the standard Hamiltonian is7  

 2
, ,

1 1 1ˆ
2 2 | || |

A
i i i A i j

i ji A i j

Z
H

≠

−
−

= − ∇
−

+∑ ∑ ∑
r r r r

. (1.2) 
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Here, ( / , / , / )x y z∇ = ∂ ∂ ∂ ∂ ∂ ∂ ; the vector αr  designates the location of particle α  where 

α  refers to electron j or a nucleus A. The many-electron wave function Ψ belonging to the 

lowest energy E represents the ground state of the system. In Hartree-Fock and Kohn–Sham 

theory one approximates the many-electron wave function Ψ of a system of N electrons as 

Slater determinant of N (“occupied”) one-electron wave functions (orbitals) ϕk. Density func-

tional theory introduces an energy expression that depends only on the electronic density 

function ( )ρ r  which, in the Kohn–Sham approach, is generated from N occupied orbitals: 

 
2

( ) ( )
k

k

ρ ϕ=∑r r  (1.3) 

The orbitals ϕk. are generated by solving the Kohn–Sham equation which has the form of a 

one-electron Schrödinger equation, analogous to Eq. (1.1), except with the one-electron Ham-

ilton operator: 

 2
KS xc| | | |

1 ( )ˆ ' ( )
2

A

AA

d
Z

h v
ρ

= − − +
′

∇ +
′− −

∑ ∫
r

r r
r r r r

 (1.4) 

 
The exchange-correlation (xc) potential xc )(v r  cannot be calculated exactly because the 

underlying energy contribution Exc is known only approximately. Only for this reason the 

Kohn–Sham equation 

 HS i i iϕ ϕ=h ε  (1.5) 

is not an exact equation. 

In a well-established strategy for solving the Kohn–Sham problem, one represents orbit-

als ϕk. as linear combinations of ansatz functions χi, so-called “basis functions”:14 

 k i iki
cϕ χ=∑    

A popular choice relies on Gaussian-type basis function, that comprise a Gaussian radial part.5 

This choice of functions admits efficient (analytical) procedures for evaluating most of the 

resulting so-called “matrix elements”, i.e. scalar products of pertinent parts of the Hamiltonian 

sandwiched between two arbitrary basis functions. For instance, the matrix elements of the 

kinetic energy operator are: 

 2 21 1

2 2
| | ( )( ) ( )ij i j i jt dχ χ χ χ∇= − = − ∇∫ r r r    

Eventually, these matrix elements are collected in a square matrix t. This is an example of a 2-

center integral because the basis functions involved may be located on (at most) two atomic 

centers. Four-center integrals arise when one treats the Coulomb interaction of between the 

electrons: 
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  ( ) ( ') ( ) ')/ | | d d '(
i j k l

ij kl χ χ χ χ ′= −∫ ∫ r r r r r r r r  (1.6) 

In an approximate treatment of the electron-electron Coulomb interaction, three-center inte-

grals occur.17 Only integrals of the exchange-correlation potential and have to be evaluated in 

numerical fashion. A strategy of adequate accuracy employs a superposition of atom-centered 

grids.18-19 Analogous to the matrix t of the kinetic energy operator one constructs a Kohn–

Sham matrix hKS with all terms of the operator in Eq. (1.4).  

In the analytical evaluation of integrals one treats so-called “batches”, where all matrix 

elements involving the basis functions of a so-called “shell” are evaluated in one procedural 

task. A shell index i represents all functions χi that share a single Gaussian exponent (radial 

part) and the same angular momentum (angular part), but differ in the projection of the angu-

lar momentum.  

This strategy of representing the Kohn–Sham orbitals as linear combination of basis 

functions turns the solution of the Kohn–Sham equation into a generalized algebraic eigenval-

ue problem of a symmetric matrix:  

 KS =h C SCε  (1.7) 

The coefficients cik of orbital ϕk are collected in column k of the square matrix C, the corre-

sponding eigenvalues εk in the diagonal matrix εεεε, and the “metric” matrix S contains the over-

lap matrix elements: 

 
| ( ) ( )

ij i j i j
S dχ χ χ χ= = ∫ r r r

   

Eq. (1.7) only superficially has the form of a linear eigenvalue problem. In fact this is a non-

linear equation because the Kohn–Sham Hamiltonian (matrix) hKS depends on the solution 

vectors ck as the Coulomb potential and the exchange-correlation potential depend on the elec-

tron density . Therefore, Eq. (1.7) has to be solved iteratively in the SCF cycle, compare 

Chapter 8. Still, it is possible to store several types of integrals to reduce the computational 

effort. 

Depending on whether the spin is considered explicitly, orbitals can be occupied with 

one, two, or zero electrons each. The orbitals are divided in occupied and unoccupied ones, by 

selecting in which orbitals the electrons should be put. It is possible to choose different occu-

pations of the orbitals, given by the occupation numbers n. The ground state is defined as the 

combination with minimal total energy. The occupied orbitals are further used to build the 

density matrix Tn=D C C . (Here, n is a diagonal matrix that holds the corresponding occupa-

tion numbers.) Matrix D  represents the electron density in terms of the orbital basis. 

( )ρ r
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To avoid calculating four-center integrals (using the density created from the orbitals di-

rectly) one often employs an approximate charge density 
i ih uρ =∑ɶ  represented by its own 

basis vectors ui. The affected integrals are reduced to three-center integrals, decreasing the 

computational effort required for generating the Kohn–Sham matrix. The charge fit coeffi-

cients hi which minimize the Coulomb norm of difference between the density of electrons 

and the approximated density expansion in the auxiliary basis are used to efficiently construct 

the Coulomb contribution to the KS-matrix.5, 17  

The simplest expression for calculating the charge fit coefficients is derived from mini-

mizing the Coulomb norm of the density difference ρ ρ− ɶ : 

 1 2 1 2 2 1 2
,

( ( ) ( ) /)[ ( )]ij j i j ik kji

j k j

d d u cG h cχ χ= −∑ ∑∫ r r r r r r r  (1.8) 

 This equation uses the matrix G, with the following elements:  

 1 2 1 2 1 2[ ]| ( ) ( ) / ( )
ij i j i j

u d uG u d u= = −∫ r r r r r r  (1.9) 

Additional terms might be added to the right hand side to ensure that both ρ  and ρɶ  integrate 

to the same number of electrons.20 Furthermore it might be preferable to determine only the 

change in the charge fit coefficients 
i

hδ  to the preceding iteration old
ih .21  

1.2 Parallelizable Tasks in a Quantum Chemistry Program 

This section discusses some tasks of a quantum chemistry program which can be easily and 

efficiently parallelized. The integral parts described in Section 1.1 are well suited for being 

processed in parallel. There are usually many integrals. Individual analytical integrals can be 

calculated fast, thus it does not make too much sense to handle them separately by a distribu-

tion procedure over the processes. Therefore their evaluation is combined in “batches” which 

contain several of them. The batches correspond to tasks for the processes, taking various 

amounts of time.  

The integrals, which are calculated numerically, also comprise several tasks. A certain 

function has to be evaluated on each grid point, and the resulting values eventually have to be 

summed up to obtain a complete integral. This procedure is also organized in “batches” which 

comprise the evaluation of the function and the summation of the resulting values on a block 

of grid points. Blocks are chosen of equal length, except for the last, smaller block. 

The number of tasks in the various integral parts depends on the chosen accuracy of the 

calculation (especially for the numerical grid integration) and the size of the system (for the 

analytical integrals the k-center integrals scale with Nk for N atoms). The time of computing 

these tasks can be a significant part of the overall computation time, depending on the chosen 
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basis set, the approximation and, especially, the system size. For Pt38 in Subsection 6.6 the 

four-center integrals require already about 98% of the time for the SCF cycle. 

Every task of the analytical or numerical integral parts is independent of the others and 

can be calculated on any of the cores. ParaGauss calculates them already in parallel, the nu-

meric integration with a method, distributing them evenly to the processes, and the two- and 

three-center integrals with a master-slave concept, see Section 2.2.22 During the work of this 

thesis, these original parallelization concepts of the various integral parts have been replaced 

by a newly implemented dynamic load balancing strategy, using a work stealing algorithm, 

see Section 2.3. The four-center integrals, which recently were introduced in ParaGauss,11 

have been parallelized with this strategy from the beginning. 

The next section (Section 1.3) gives an overview of how quantum chemistry programs 

handle parallelization, especially for the integral parts. In Chapter 2 various parallelization 

strategies are introduced. Chapters 3 and 4 describe the newly implemented strategy in detail, 

starting with an overview of important facts for the realizations of the different variants in 

Chapter 3 and describing details of the realization in Chapter 4. 

1.3 Parallel Processing in Quantum Chemistry Programs 

The trend of quantum chemistry calculations is directed towards increasing system sizes. Ad-

ditionally, more complex and larger basis sets promise results which are more accurate.  

To calculate large systems with quantum chemistry codes using an increasing number of 

cores is essential. Although large algorithmic differences exist, quantum chemistry codes fol-

low in principle similar schemes. The Hartree–Fock method and the density functional theory 

face the same challenges related to parallelizable tasks. Both methods contain an SCF cycle 

and require the calculation of multi-center integrals. These integrals are quite demanding with 

respect to computer time and therefore parallelization for them promises a good speedup. 

Quantum chemistry codes also contain several parallelizable parts related to the SCF cy-

cle, for which different strategies have been tried.23 Several communication strategies are used 

for quantum chemistry codes, like parallel virtual machine (PVM)24 or OpenMP.25 But most 

methods nowadays usually rely on MPI which provides a widely available standard.26 

Serial codes5, 27 have been replaced by new codes that explicitly consider the challenges 

of parallelization.4, 28 For other programs parallel implementations and their performance also 

have been reported.29-33 Some codes were developed to run on a specific computer architec-

ture, like low-power 64-bit accelerator technology of ClearSpeed running in parallel with the 

host CPU34 or  when graphic processing units (GPUs) are used to calculate the Coulomb po-

tential.35 Ramdas et al.36 even suggested developing a special-purpose computer for Hartree–
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Fock programs, considering the special challenges of these programs. Taylor and Bauschli-

cher37 discussed already in 1987 about how quantum chemistry codes may efficiently work in 

parallel on CRAY computers of that time.  

Standardized interfaces38 might help to exchange easily both, the method how to execute 

the tasks as well as the way the tasks are distributed. However these interfaces are not that 

useful for existing codes, as they would require large restructuring. Many quantum chemistry 

codes distribute the tasks statically39-41 or with a master-slave concept.42-44 

Regarding the need of growing numbers of cores and limits of the methods mentioned 

(see Sections 2.1 and 2.2), it makes sense to take a general look at methods for distributing 

tasks. Load balancing, thus distribution the load due to the task resource requirements on the 

processes, can be achieved in a number of ways.45-46  

Another point is related to the question of storing or recalculating the integrals, required 

for the SCF loop.47 Which strategy is more efficient depends on the computer architecture. In 

our case it might be required that at least some of the integrals will be recalculated in every 

cycle. This is particularly true for four-center integrals because they (formally) scale for N 

atoms with N4.  

2. Parallelization Strategies 

The parallelization strategies are used to distribute the tasks on the processes if the calculation 

is done in parallel. There are different kinds of tasks. The expected time requirement of each 

task might be unknown. However for the parallelization strategies it is usually advantageous if 

they are at least known to a certain degree. In this regard it is most interesting how the time 

requirements of different tasks are related to each other. The easiest approach is when the 

tasks require all the same time but parallelization strategies can also benefit from an uneven 

expected time requirement. The numerical integrals, already mentioned in Chapter 1, can be 

handled by tasks which all are expected to take (essentially) the same time. The analytical 

integrals of Chapter 1 have different time requirements per task and times can only very ap-

proximated be estimated. Often, only the information is available which of two tasks is ex-

pected to take longer. 

Parallelization is a broad field which cannot be covered completely in the present dis-

cussion. This work discusses parallelization strategies which can be used for quantum chemis-

try programs.1 Parallelization strategies which will be further explored should be general 

enough to be used for different parts of ParaGauss. The two-electron integrals, which are 

some of the most demanding tasks for parallelization of ParaGauss, are the first application of 
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the new strategies. The newly implemented algorithm is a work stealing algorithm, see Sec-

tion 2.3, which tries to be only as complex as required to execute this kind of tasks, but oth-

erwise remains as simple as possible.  

Several existing libraries for parallelization, like Scioto,48 include already code for this 

purpose. They usually provide additional complexity to our requirements, like the possibility 

to create new tasks at runtime. The disadvantage of these libraries is that in order to run cor-

rectly they require large restructuring of existing code. Rather it is desirable that the library 

can be called by the code upon request to provide identifiers for the tasks. However, in fact 

the library demands that the tasks are called as functions by their own code. For example, the 

tasks must not involve any global variables. As the algorithm is supposed to be used for an 

existing huge code, ParaGauss,2, 4 integrating such kind of work stealing libraries is rather 

difficult. Furthermore using such an existing library introduces many restrictions on further 

extensions of ParaGauss, which require work stealing, like the already mentioned ban on 

global variables. Therefore it was decided to create a new work stealing library especially for 

ParaGauss, which features a simple interface and can be easily integrated into existing code.  

Parallelization was included in ParaGauss from the beginning but the various parts were 

parallelized by separate strategies. This makes it possible to consider only selected parts at a 

time, having to deal with a bunch of independent tasks instead of several parts with dependen-

cies allowing one to concentrate on one part at a time. There are some further simplifications 

related to the tasks of the new library. The number of tasks is known before processing starts 

and stays fixed during the whole calculation. All tasks are of the same kind; the data they re-

quire are available for every process, thus there is no preference for some tasks to special pro-

cesses. There is no order required, in which the tasks have to be performed; in fact, there is no 

dependency at all between them. The results of all tasks have to be present only at the end of 

the corresponding program part, the so-called overall task. Therefore the processes have to 

wait for each other, justifying to look at the overall task separately without bothering what 

should happen afterwards. The parallelization library does not exchange the results of the 

tasks; instead the tasks themselves include distributing the results, which are collected after all 

the tasks have been finished. These restrictions are common to quantum chemistry programs 

but do not apply to the programs examined by computer scientist. 

 All parallelization strategies, which will be discussed, share the following general inter-

face. The software allows executing each task by every process, as every process has the start 

information for all tasks. In the following a “task ID”, an integer number, is enough to identi-

fy a specific task. These identifiers are also the only information required to be interchanged 
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between the processes (except some data related to the termination of the parallelization algo-

rithm). To simplify the notation the task ID will not be mentioned explicitly. Thus “stealing a 

task” means to steal the ID of that task, while executing a task always implies that a process 

has to select the task belonging to a given task ID. In the following the processes will be 

called worker. A worker might share some resources with other workers. It might further con-

sist of several parts, run on several cores or comprise several threads.  

After considering parallelization strategies in general the following section describes the 

basics for various relevant parallelization strategies. 

2.1 Static Distribution 

The simplest way to distribute the tasks for parallel calculation is to distribute them in ad-

vance and let every worker run its own share. With every worker knowing the number of tasks 

and workers as well as its worker ID (the process ID provided by MPI) it is possible to pro-

ceed with using the communication exclusively for sharing the results. This completely re-

moves the communication overhead due to distributing the tasks, independent of the number 

of workers the tasks are performed on. The essential overhead of the part containing these 

tasks is due to the imbalance of the time spent for working on the tasks by the different work-

ers. This strategy cannot be beaten if the time requirements (relative to each other) for every 

task are known and used to create a distribution where all process have as much as possible 

the same time requirement for their tasks. For example if all tasks are supposed to be of the 

same size an ideal distribution would be to have the same number of tasks on every worker. In 

cases where the time requirement per task is not known this strategy cannot be used efficiently 

and for approximated time requirements but of different size the quality of the approximation 

is important. But even for ideal tasks the computers on which they are running might prevent 

that the expected time requirements represent the real required time. This is for example the 

case for heterogeneous clusters, where machines with different performance are used. The 

machine itself might take some of its CPU time for its own processes resulting in different 

load for the processes, causing imbalance. If not all machines or CPUs are affected in the 

same way, this results in further imbalance. In all these cases a static distribution is not able to 

react and is forced to run with idle time on the faster workers. Therefore it is desired to have 

some kind of regulation of the task distribution, which considers the current status of the ma-

chines as well as the imbalance between the time requirements of the various tasks.  

With static distributions, one has to take care that the load on all workers is as similar as 

possible. The tasks can be handled by a round robin method, which distributes the tasks in 

turns.49 For an implementation of the “single-determinant” (or “exact”) exchange of a density 
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functional theory hybrid method the static distribution was first balanced using a cost approx-

imation for the expected task time requirement and starting with the second SCF loop by us-

ing real costs of the previous iterations. This way Guidon et al. achieved good performance 

also for batches of different computational cost.50 Also the three-center electron repulsion 

integrals, which have different sizes, might be redistributed after every loop, as done by Cal-

aminici et al..51 Even if the distributed tasks are well balanced, either by the mentioned strate-

gy or by choosing a method were all tasks are of the same size, like hierarchical cubature for 

the exchange-correlation matrix52 it cannot be prevented that idle time is left, as the distribu-

tions cannot be adapted to external circumstances such as varying computational resources.39  

The static distribution cannot be used efficiently if the time requirements per task are 

uneven or unknown. The strategies of Guidon et al.50 and Calaminici et al.51 are only useful if 

the tasks are recalculated in every iteration. In ParaGauss the two- and three-center integrals 

are only calculated once for the SCF-cycle in a pre-SCF part. As the expected time require-

ments are known only very roughly the static distribution cannot be used for them. 

2.2 Master-Slave Strategy 

In the master-slave concept next to the workers (often also called “slaves”) which execute the 

tasks, a master (e.g. a process or a thread) is used to distribute the tasks of the part among the 

worker. The master can be one of the workers, which does the master task as some extra 

work, or it can do exclusively the distribution. In the simplest realization every worker who 

runs idle sends a message to the master requesting new work. The master returns the ID of 

some tasks which have not been computed yet. This method has been used for several parts in 

the original implementation of ParaGauss, for example the distribution of the two- and three-

center integrals.3-4, 6 

The advantage of this strategy is that the workers know all the time where to get new 

work. It is also very easy to determine when all the work is completed, which is the case when 

the master cannot provide further tasks. The disadvantage, on the other hand, is that the mas-

ter can easily become a bottleneck for large core numbers or small time requirements for sin-

gle tasks. This might even be the case, when he does not work himself, but only distributes the 

tasks for the others. In this special case there is the additional disadvantage that one of the 

workers is effectively removed. It is possible to compensate parts of the drawback, for exam-

ple by sending several tasks at once, thus reducing the granularity, which will unburden the 

master a bit. It is also possible to distribute a part of the tasks statically before the balancing 

starts, thus removing the large bottleneck at the beginning, when all workers need tasks at the 

same time. Still this cannot completely prevent the bottleneck, which will still appear if the 
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number of cores is large enough. Thus for only a small number of workers the master-slave 

concept might be a valid approach but if one aims for several hundred workers simultaneously 

a different strategy should be applied. Other parallelization strategies follow a more decentral-

ized approach, which should remove these limitations.  

The performance of master-slave variants for distributing tasks is influenced by a large 

number of factors, like the choice of the order in which the loops over the indices of the multi-

center integrals are calculated in parallel.53 The master can also be represented by a global 

counter,54-55 which might be used only for the two-electron integrals.56 Master-slave variants 

can easily reach a communication overhead. For example Ferrighi et al. found that their Har-

tree–Fock code DALTON usually scales well up to 64 cores but for some examples generates 

already notable communication overhead.42  

2.3 Work Stealing 

In a work stealing algorithm all processes are allowed to steal tasks from other workers to get 

tasks to work on. In our case they are allowed to steal from all other processes. There is no 

more a central instance responsible for distributing the tasks. 

A work stealing algorithm starts with a static distribution of all tasks to be treated. Only 

when one of the workers runs idle, it tries to get new tasks. Therefore the algorithm is sup-

posed to be stable,57 i.e. the sum of the load of all cores is bounded from above for all core 

numbers. In the master-slave method it was obvious where the worker has to look for new 

tasks, but for the work stealing process a different algorithm has to be used. A simple ap-

proach is that a worker randomly selects one of the other workers. It is a disadvantage that 

nothing prevents many or even all workers trying to steal at the same time from the same 

source. This should be seen in relation to the small probability that this happens and to the fact 

that no further communication is required for the workers to arrange who tries to steal from 

whom.  

Kumar et al. compared this strategy to several other stealing approaches by Kumar in 

theory and experiments.58 They found that the strategy of random choice of other workers 

works well on various machines. There were two other strategies, which also were performing 

well. One of the methods considered the specific computer architecture, on which the test 

were done, by stealing only among its nearest neighbors. The third strategy (called GRR-M)58 

was performing similarly well, requiring a more complicated algorithm which reduces the 

chance that several cores want to steal at the same time from the same core by using a global 

counter, for deciding from which process to steal next. This was combined with a message 

combining strategy for the requests, considering the specific hardware, it should run on. As 
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the intended implementation should be as simple as possible and be usable on different com-

puter architectures, the strategy of randomly selecting the other worker was used in the pre-

sent case to find the source for stealing.  

The main challenge for the work stealing algorithm is to detect when all tasks are fin-

ished. Even if none other worker was found to be able to provide new tasks, this does not 

mean that there is no other worker with pending tasks somewhere. Also, it is required that a 

worker, who found out that there are no tasks left, is still present to handle requests from other 

workers who have not yet found out that all tasks have been finished. 

3. General Considerations of Implementation of Work Stealing 

The main issue is that workers (as source of a stealing request) should be able to steal pending 

tasks from other workers (as targets of stealing requests) while these workers are working. In 

principle it is possible to create an interrupt routine for the targets which checks whether some 

sources want to steal something and then returns to their own work. However this would 

complicate the interface. Creating a work stealing with an interface which does not require 

such an interrupt routine is nice for inserting it into any existing code and makes it highly re-

usable. Yet, it demands a better way than by interrupt routine to detect whether some source 

worker is trying to steal from a target as checking this only when new tasks are taken for the 

target makes the stealing very unpractical.  

Two solutions of this issue were considered: remote memory access (RMA) objects 

(Section 3.2) and multi-threading (Section 3.3). The first one can, at least in case of a suitable 

computer architecture, avoid the interrupt of the target of the stealing, while the second one 

moves the duty of finding an appropriate time for interrupt to the thread scheduler. Both 

methods have advantages and disadvantages, depending on the computer architecture, the 

MPI implementation, and the software environment. The methods are easily exchangeable at 

compilation time. The library, which contains these routines, will in the following often be 

referred to as dynamic load balancing (DLB) library. Dynamic load balancing is an umbrella 

term, which implies work stealing.  

The work stealing algorithm requires a lot of communication between the processes. 

Due to the wide availability of implementations, which follow the standard of the Message 

Passing Interface (MPI), the implemented code builds on features of this standard, more pre-

cisely on features of the MPI standard Version 2.2.26 
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3.1 General Interface 

The main routines of the work stealing library are dealing with a part containing several tasks. 

This overall part is finished after all the tasks contained have been finished. The tasks are as-

signed a consecutive number, the task ID. These task IDs are used for the interface with the 

work stealing library. They can be “loaded” into the library — for this the library requires 

only the number of available tasks — and are provided on request to the workers ready to 

work on the related tasks. The worker can request only one task or n tasks at once. In the latter 

case it will get always up to n tasks, the number can be smaller than n if there are less task 

available on the current worker. Zero tasks will be returned by the DLB library when that 

overall part has been completed. The “stealing” of tasks is done internally in the DLB library. 

To simplify things, task IDs are always processed sequentially. Every worker has at most one 

interval of consecutively numbered tasks available. The worker is only allowed to start steal-

ing when its storage is empty.  

 

 

Scheme 3.1: Example code of a calculation with DLB. The four functions of the DLB inter-
face are shown: dlb_init(), dlb_setup(), dlb_give_more() and dlb_finalize(). The actual work 
on task i is depicted as work(i). 

The program, for example ParaGauss, using the DLB routines needs to use only four 

functions, cf. Scheme 3.1. Initialization, dlb_init(), and termination, dlb_finalize(), of the 

DLB code ensure that the resources are only available when they are really required. Several 

initializations and terminations are possible during execution of one program, but it is also 

possible to call several times a task distribution of DLB between initialization and termination 

of DLB. Task distribution of DLB is started with the setup function, dlb_setup(), which passes 

the number of tasks to the DLB library. DLB then distributes the tasks statically and prepares 

everything to allow stealing. Another function, dlb_give_more(), is used to request one or 

more tasks for a given worker. The worker provides the tasks IDs (required for identifying the 

call dlb_init (MPI_COMM_WORLD)  ! initialization 

 

call dlb_setup (N)     ! start a run of DLB 

! with N tasks 

  do while [dlb_give_more (n, tasks)]  ! request for up to 

          ! n new tasks 

    do i = tasks(1) + 1, tasks(2) 

      call work(i)           

    enddo                                 

  enddo                                    

 

call dlb_finalize ()    ! termination 
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tasks) as an interval ( ),a b , representing all task IDs k with a bk< ≤ . In case there are no 

further tasks to provide the worker waits until it was able to steal some or to detect global 

termination. The return value of dlb_give_more() indicates termination. 

Generally, the tasks are evenly distributed over the workers at the beginning. That does 

not require any communication as every worker knows the total number of tasks and workers 

available. This allows a static distribution of all tasks at setup, without any communication. 

For test purpose, a different distribution of tasks at the beginning might be used, but this is not 

part of the production version. The tasks with the smaller task IDs are returned first. This is 

the case for the workers taking tasks they will process and for the stealing from another work-

er. The order in which the tasks are executed has an effect when the tasks are of different size 

and ordered by the supposed size. The workers steal always about half of the other workers 

tasks.  

3.2 Using Remote Memory Objects 

The principle idea of using remote memory objects for the work stealing algorithm is straight 

forward. Each worker assigns a globally accessible remote memory access (RMA) object and 

stores all its task IDs into this object. When a worker starts to work on a task, it removes the 

corresponding task ID from the RMA object. The workers can get tasks from any of the RMA 

objects, thus “stealing” some from another worker.  

MPI-2 supports remote memory access routines. However, the realization and the quali-

ty of implementation of these routines varies between MPI implementations. One potential 

difficulty is an efficient implementation of the MPI lock for the remote memory area, thus the 

feature which allows other processes to read and write exclusively on this area. The MPI 

standard allows that MPI implementations use the following restriction to simplify the imple-

mentation: the owner of the RMA-area may need to perform some MPI routines at the time, 

when another worker gets the lock of the RMA object.26 Using this restriction is especially 

tempting for single-threaded implementations, like the OpenMPI implementation.59 This 

would be hardly better than waiting for the other worker to enter the dlb_give_more() routine, 

unless the actual task processing also involves MPI communication. 

A challenge for the implementation is due to the way the routines are realized in the 

MPI library. It is impossible to implement a read-modify-write operation using the MPI rou-

tines because the RMA area of one worker can be locked by any of the workers. While a 

worker holds the lock it has exclusive access to the area by using the routines MPI_PUT(), 

MPI_GET() and MPI_ACCUMULATE(). However it is illegal to access the same part of the 
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RMA area with different routines during one access epoch, for example between the calls of  

MPI_WIN_LOCK() and MPI_WIN_UNLOCK().26 This prevents the read-modify-write() 

routine and makes it impossible to create a straight forward implementation of the RMA vari-

ant. 

Despite these complications, the RMA variant is conceptually still rather simple. Some 

computer architectures provide hardware support for the RMA, which is easy if they have a 

central memory. One of those machines was the HLRB-II of the LRZ computing center.60 The 

system was recently replaced, but tests on HLRB-II indicated that the RMA variant is very 

effective on such a type of machine, see Subsection 5.1.1 and Chapter 6. 

3.3 Multi-Thread Variant 

For the multi-thread variant one helper thread is created which handles the stealing and termi-

nation part of the algorithm, while the main thread does the actual work. The other thread 

solely cares about the work distribution, sending on request from other workers’ helper 

threads messages with stolen tasks. The communication regarding the distribution of tasks can 

be better steered when one uses several threads per worker. The thread management is done 

automatically by the operating system. The main thread is automatically frequently switched 

to the helper thread, thus allowing work stealing to interrupt the work. No interrupt routines 

have to be placed into the task processing code. The threads are realized by POSIX threads 

which are widely available and standardized.  

As the threads sometimes need to use the same resources, e.g., the storage area for the 

tasks belonging to the current worker, one has to consider thread safety. Thread safety means, 

for example, that it has to be ensured that at a given time only one of the threads accesses the 

shared memory and that the threads do not work with data which has been changed, unnoticed 

by the other threads. This is also required for the MPI routines, especially as working on a 

task usually includes distribution of the results with MPI routines. Thus even if the routines of 

the work stealing process would ensure thread safety for their own routines, one still has to 

consider that the main thread might include arbitrary MPI communication. The MPI-2 stand-

ard introduces four thread safety levels, depending on which threads carry out MPI communi-

cation (e. g., at the simplest thread level only the main thread of each process is using MPI 

communication while at the highest thread level all threads can use MPI communication at the 

same time). However, MPI implementations are not required to provide all thread safety lev-

els. If it is requested to initialize MPI with an unavailable thread level, it may provide the rou-

tines of another, higher or lower, thread safety level. Therefore having an MPI implementa-

tion which follows the MPI-2 standard does not guarantee thread safety under all circum-
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stances. Some implementations provide the thread safety for hybrid programming in separate 

libraries to link the program with,61-62 or by separate packages.63 These separate routines are 

not always as well tested as the single threaded ones, they might also not yet be optimized for 

good performance.64 Thus the thread-based DLB is not automatically superior to the RMA 

variant, Section 3.2. It is not even assured to work with arbitrary MPI-2 implementation, 

while the RMA variant should always be able to work correctly, even if not always effective-

ly.  

3.4 Termination Algorithm 

The termination detection can be implemented in the same way for both the RMA and the 

multi-threaded variant. 

Termination is detected by comparing the amount of finished tasks against the complete 

number of tasks. Besides the number of tasks a worker has still to do, it keeps the number of 

tasks it has already done but not yet reported. The parts corresponding to completed work are 

reported when a worker gets passive by having finished the last of its current task list. The 

number of finished tasks has to be collected somewhere.65 One of the workers, called termina-

tion master in the following, is selected for this additional task. But if all finished tasks are 

collected at this worker there will be a large amount of additional work for it, which might 

cause imbalance. Therefore finished tasks are collected in a two-step approach. As the algo-

rithm starts with the tasks already distributed, each of the workers can collect the reported 

tasks for its share of tasks. Therefore, finished tasks will be first reported to the worker for 

which they were originally assigned. When a worker detects termination of its share, it reports 

this in the second step to the termination master. The global termination is reached after each 

worker has reported termination of its share. Subsequently all workers will be informed by the 

termination master that the end of the overall task has been reached. 

The algorithm is a modification of the so-called credit distribution and recovery algo-

rithm, which was designed for a more general case.65 The original description mentions a 

challenge which does not appear for the current case as it is related to the fact that tasks might 

create new tasks during run time. 

4.  Details of the Implementation 

4.1 Remote Memory Variant 

In the RMA implementation of the work stealing algorithm the principal idea, as described in 

Section 3.2, is that a globally accessible RMA object contains an interval with the task ID 
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range, which have not yet been selected for calculation. The tasks are put into the storage in 

the dlb_setup() routine, cf. Section 3.1. The termination detection and the stealing are done in 

the routine dlb_give_more(), which has the main duty to provide valid tasks to the calling 

process. Scheme 4.1 describes how this routine is implemented. The process first tries to get 

some tasks from its (own) local storage. When there are no more tasks in storage it starts 

stealing from others. To detect that it can start to steal, it is required to use an “unsafe” read. If 

the number of stolen tasks is larger than the requested number, the remaining tasks are written 

back into its own storage (by an “unsafe” write). Notice that a try_read_modify_write() func-

tion has to be used for getting tasks, as a read-modify-write cannot be reasonable implement-

ed, see Section 3.2. The unsafe functions are required for the same reason. The safe and un-

safe functions, and especially the user lock required for their implementation, are described in 

detail in Subsection 4.1.1. That subsection contains also the explanations for the special re-

quirements for these routines.  

 

 
Scheme 4.1: The RMA variant of dlb_give_more(). It requests up to n tasks (provided as in-
put) at once. 

procedure dlb_give_more (n, tasks) 

   do while (own storage is not empty (found out by unsafe 

read)) 

    try_read_modify_write (own storage, up to n tasks 

       to work directly on) 

    if trial succeeded  

   exit loop 

 endif 

  enddo 

  if no valid tasks provided 

    do while (no termination detected) 

    select a target to steal from 

   try_read_modify_write( target, tasks) 

   if stealing had succeeded 

     exit loop 

   endif 

 enddo 

    if there are valid tasks 

      abstract up to n tasks to work directly on 

   put remaining new tasks in own storage (by unsafe 

       write) 

 endif 

  endif 

  return whether there are new tasks and the tasks to 

       work directly on 
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4.1.1 The User Lock 

In the RMA implementation of the work stealing algorithm, there are three routines which 

handle the access to the ID list in the RMA area. Two of them are so-called “unsafe” routines 

where the worker reads or changes the content without having to respect the user lock. The 

third routine corresponds to trying to take some tasks out of the storage, either through steal-

ing or through local access (by accessing own memory) to start calculating them. This routine 

corresponds to a try-read-modify-write routine. These three routines are required for an effi-

cient implementation of the dlb_give_more() function, see Scheme 4.1.  

A so-called user lock on the storage area is used to ensure that always only one worker 

holds this lock and is therefore allowed to change the contents of the locked area. It is imple-

mented by expanding the RMA area of the task storage with a user lock area. This area con-

tains an integer number for every worker differentiating between “on” and “off”. It is required 

to have storage for every worker as the worker will have to write into its own storage and read 

the storage of all other workers at the same time. This is only possible if storage sections do 

not overlap, compare Subsection 3.2.  

The user lock works as follows. A worker that wants to access the memory, has to get 

first an MPI lock. While it holds the lock it reads out the memory (except its own user lock 

area) and sets his user lock area to “on”. If no other worker has its user lock set to “on” the 

current worker got the lock and is allowed to use the content of the locked area. Having fin-

ished the current worker has to get once more the MPI lock and release the lock by setting the 

complete user lock area to “off”. During this MPI lock it might also write back the tasks for 

the storage if it has changed the content. For the try-read-modify-write() routine the worker 

would divide the interval of tasks it got from the storage and write back the interval of the 

tasks which it has not stolen. When a worker finds the user lock “on”, it retreats and tries 

anew. If it was for its own RMA area, it continues trying to get the same lock, otherwise it 

selects a new target to steal from. A similar lock has been described for file read and write 

access realized with MPI.66  

The unsafe functions, unsafe write and unsafe read, access the RMA area without re-

specting the user lock. While any worker can do an unsafe read on the RMA area of a source, 

only the source itself is allowed to do an unsafe write.  

4.1.2 Deadlocks and Ensuring Finalization 

This subsection will discuss some details of the implementation, which are necessary to en-

sure that the RMA variant performs well and ultimately completes. The principal termination 
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detection has already been described in Section 3.4. The number of finished tasks (reported by 

the worker who finished them) is compared against the number of initially distributed tasks. 

However there are some details required for the RMA variant to work correctly.  

A drawback of the approach via a user lock is that the user lock does not provide fair-

ness. A fair lock would guarantee that a worker will eventually get the user lock. This cannot 

even be ensured if a worker is allowed to retry as often as it wants. One might expect that eve-

ry requesting worker will get the lock from the MPI routines sometimes, but this is independ-

ent of the requirements for getting the user lock. Thus, even with expecting the MPI lock from 

the MPI routines to be fair about deciding who gets the MPI lock, the user lock is not fair. 

Because MPI does not know about the user lock and every worker can only try to get the user 

lock, the user lock cannot be made fair. 

Not being able to guarantee that one special worker will get the user lock on a special 

source worker is the major drawback of the implementation. It could not even be ensured for 

the workers to get the lock on their own task storages. The workers would be able to perform 

their action on their own storage within an access period of MPI to the storage but they are 

still forced to respect the user lock. Therefore, without the usage of the unsafe read and unsafe 

write functions, a competitive situation might occur which prevents the algorithm to finish at 

all. 

With the unsafe read the workers find out if a storage is empty. As a failed remote 

worker will always try another target, this is only performed by the source itself, which is not 

allowed to try to get its tasks from other workers until its own task storage is empty. This is 

especially required as a worker will only report the completed tasks if the storage is empty. 

Then the worker attempts to steal new tasks. This is required to ensure that the overall task 

will terminate. 

The unsafe write is related to the fact that a worker would steal more than its current re-

quired share. Then it has to allow other workers to eventually steal from its new tasks. It 

therefore requires access to its own storage area to store the tasks. Thus it is again possible to 

get a competitive situation. Other workers, wanting to steal from the source, could get all the 

time the user lock and the source would not be able to continue calculating the stolen tasks, as 

it could not write back the additional ones. Then these tasks will never be carried out. This is 

prevented by restricting the try-read-modify-write routine. A worker, finding a task storage 

empty, is not allowed to change the storage, but will only reset the user lock. Only the owner 

of the area is allowed to add new tasks, thus it can insert tasks without having to get the user 

lock (only by having the lock from MPI). It is important that the owner alone, with an unsafe 
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write, will overwrite the task storage. The worker currently having the user lock has to reset 

the remaining part of the RMA area. Then the next worker, wanting to steal after the lock was 

released, will find the new tasks of the owner of the storage. 

A worker finding only one task in a storage, of which it was going to steal from, will 

take this task. A worker who has stolen some tasks removes the tasks it can execute immedi-

ately before writing the other tasks into its own storage. This is required to prevent that a task 

is stolen by another worker without ever being executed. Thus if a worker got some tasks, 

irrespective of the origin, it has to process at least one of them immediately. 

4.2 Multi-Thread Variant 

In the simplest model of the multithreaded variant a single further thread is used. This helper 

thread will handle all communication associated with work stealing. Thus the main thread, the 

actual worker, has only a limited relation to the work stealing process, namely it has to extract 

new tasks from the storage object, as in a static variant. However, it is only allowed to return 

without any tasks when the helper thread signals global termination. Then again it has to wait, 

if it found an empty storage, till the other thread releases it. The helper thread handles work 

requests from other workers and sends out its own. In addition it sends and receives messages 

regarding the termination algorithm, thus about the number of tasks others have done for it 

and whether its own initial number of tasks are finished. 

4.2.1 Thread Safe Objects and Scheduling 

Several objects have to be used by both threads of a worker. The most prominent of them is 

the storage object that contains the IDs of the remaining tasks. A second object is the number 

of tasks finished since the last report. This is used by the main thread to communicate the 

number of tasks it has completed, information that required by the helper thread when sending 

the correct number of finished tasks to its owner. Both objects can be secured with the same 

lock to avoid deadlocks, which could happen in cases where several locks are used in different 

order.1 The lock secures two additional flags which contain information about the current sta-

tus of one thread required by the other thread. One is used by the helper thread to communi-

cate the termination to the main thread. The other tells the helper thread whether the main 

thread is active or just waiting. This is required for the management of the time distribution 

for the two threads. Both flags are only set by one of the threads and read by the other, while 

the other objects are read and written by both threads. It is crucial that these objects are in the 

lock area. For example, when the main thread finds no new tasks in the storage, it checks for 

termination. Then an object of POSIX, called a condition, is used to send this thread in the 
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background until the helper thread signals that the condition is met. The helper thread releases 

the main thread from waiting when it found new tasks or after it set the termination flag. If the 

helper thread would be allowed to access the termination flag without lock the two mentioned 

actions might just happen after the main thread checked the flag but before started waiting. 

Then the main thread would wait forever, as the helper thread has terminated afterwards.  

It is not obvious for the thread scheduler, handling the switching between the threads, 

whether the threads need to work on an equal footing or one of them should be favored. In 

fact the main thread should be favored in cases where there is still work left while the helper 

thread should be favored after the worker runs out of tasks. The latter can be achieved with a 

condition, provided by the POSIX threads. The worker thread can wait till the helper thread 

signals that the condition has been met either by having found new tasks for the main thread 

or by having learned about global termination.  

 

Scheme 4.2: Thread variant of the procedure dlb_give_more(). The lock of the POSIX thread 
library, which can be used for the threads access to some variables, is called a mutex. The 
procedure requests n tasks at once. 

The test if there are messages to be received is done with a non-blocking MPI routine, 

thus the tasks of the helper thread in one of its cycles are easily achieved. The helper thread 

then uses a sleep command to wait for an appropriate time before he starts all over again in 

cases when the worker thread did not signal (by an object secured by the lock), that it has no 

work left. In this case the helper thread would remain active and increases the time to check 

procedure dlb_give_more (n, tasks) 

  lock mutex 

    do while (no valid tasks and no termination) 

   try to get up to n tasks from storage 

   if got no tasks 

         set flag to tell helper thread that worker thread  

is waiting 

  condition function 

    do atomically 

      unlock mutex 

      start waiting for call of helper thread 

           end atomically 

    receive call of helper thread 

    lock mutex 

        endif       

  enddo  

   unlock mutex 

   return whether there are new tasks and the tasks  

to work directly on 
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for messages about new tasks. The best duration the helper thread has to wait may depend on 

the sizes of the tasks and the computer architecture; it may have to be adjusted for a given 

computing platform. For the machines, used for the performance tests in the Chapters 5 and 6 

a time of 0.001 s was providing reasonable results. The dlb_give_more() function is sketched 

in pseudo-code in Scheme 4.2. 

The variant can be further modified to work with blocking MPI routines. However, as 

tests in Subsection 5.1.1 will demonstrate, the variant with non-blocking MPI routines is the 

superior one of the two. Therefore, unless stated otherwise in the following, the thread variant 

will refer to the variant just described.  

4.2.2 Deadlocks and Ensuring Finalization 

As there is only one lock used in the thread-based implementation of the algorithm, in order to 

prevent deadlocks of the lock, worker and helper threads only have to ensure that they release 

the lock before they go into the background. 

A second implementation detail, required for avoiding deadlocks and communication 

loops, is to prevent that the last task in storage is not stolen. Different from the RMA variant, 

the thread variant is allowed to do this as POSIX ensures that the main thread gets the lock to 

the thread save area at some time. This prevents the situation where a task is stolen mutually 

without ever being executed.  As helper threads and main threads compete for the lock of the 

storage, it would be possible, in principle, that always the helper threads get the lock when the 

last task is in the storage and the main threads get the lock after the helper threads have al-

lowed other helper threads to steal the task. Reserving the last task might not be ideal as the 

worker to whom the task currently belongs might just have started a long task. However other 

solutions to this challenge, like ensuring that a task might be stolen only a given number of 

times, would be much more complicated. As the helper thread works independently of the 

main thread, it is also not possible without complicating the algorithm to ensure that the 

worker will work at least on the first of the stolen tasks, as it was done in the case of the RMA 

implementation, see Subsection 4.1.2.  

4.2.3 Ghost Messages 

After the termination has been detected, there is still some communication ongoing, primarily 

due to the workers that are still trying to steal from each other. It is not possible just to aban-

don pending communications in a reliable fashion, as some of the messages might be just “on 

the way” and therefore cannot be canceled. These messages might be received later on, with-

out the sender expecting them. These messages are called “ghost messages”. All the affected 



5. Performance of Work Stealing 

-  26  - 

messages belong to the stealing algorithm; all other messages send by DLB were part of the 

termination procedure and therefore have already arrived. This challenge did not occur for the 

RMA variant as the one-sided stealing communication was finished automatically after termi-

nation was detected.   

When the message signaling global termination arrives, the receiving helper thread may 

still have one ongoing request for work. To avoid ghost messages one has to make sure that 

every message will be received. This requires a modification in the message sending and es-

pecially for the termination algorithm. Messages, which request new tasks, go along with an 

identifier (an integer number). After the global termination was announced to a worker, it re-

sponds with a message to the global environment that contains identifier and target of its last 

request for work. The global environment collects all these messages and provides the other 

workers in a global communication algorithm of MPI with this information. Afterwards every 

worker is able to determine which other workers have sent it their last request. Having stored 

the identifier of the last message from every worker, a worker can determine whether the mes-

sage has already been received or not. Therefore it is able to determine how many messages 

regarding pending work requests it has to wait for. After there are no more messages in trans-

it, that belong to the of the current DLB epoch, the worker terminates completely.  

5. Performance of Work Stealing 

To determine the performance of the work stealing algorithm, several test examples were con-

sidered. The evaluation of the method will concentrate on a single DLB epoch on the example 

of the software ParaGauss. The times were measured as differences of time stamps, which use 

the function MPI_WTIME(), providing elapsed wall clock time.26 Integral parts, already men-

tioned in Chapter 1 as application area, of three example cases were chosen.  

The speedup of a parallel calculation is given by the time requirements on one core di-

vided by the time requirements of the calculation on p cores 1 / pt t . Dividing this ratio by the 

number of cores one gets the efficiency 
pε . The efficiency ideally is 1 (or 100%). This hap-

pens when the total CPU time is the same on 1 core and p cores and thus no loss of time oc-

curred. This is equivalent to an ideal speedup by the number of cores used. 

5.1 Plain Test with Simple Task Set 

Using a simple task set is a test of the DLB routines alone, removing any effect which might 

be specific to a real-world calculation. However this allows one to focus on the effects of 

DLB and provides a better control over the tested features. To spend CPU, a task is invoked 
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where a simple operation is carried out repeatedly many times. The operations are supposed to 

keep the CPUs busy, which should, for example, prevent the helper threads from using the 

time reserved for working. On the other hand, it is not that easy to define the time require-

ments for such a task. Therefore the average time requirement is different on various ma-

chines. Both DLB variants were tested on various machines for comparison, to examine dif-

ferent computer architecture.  

With small changes to the stealing process, the thread variant can be used to mimic a 

master-slave variant, where the helper thread of one worker is doing the master’s work. In 

fact, at the beginning the complete task interval is assigned to one worker and all other work-

ers steal exclusively from this worker. A smaller fraction than usual is stolen: instead of send-

ing half of the available tasks, the master only sends a fraction of 1/p of the available tasks. 

Instead of the usual termination algorithm the helper thread, which is the master, sends the 

global termination message if it cannot provide further tasks. This method is not the same as 

an optimized master-slave method and does not correspond to the master-slave method ap-

plied in ParaGauss, but it should be able to provide a trend for such an approach.  

For testing purposes it is also possible to start with the worst possible initial distribution 

of the tasks. For this, all tasks were put on a single worker instead of evenly distributing them. 

In the current example there are no MPI operations other than the ones of the work stealing 

algorithm.  

5.1.1 Tests on HLRB-II 

The supercomputer HLRB-II is an SGI Altix 4700 machine.60 It has 512 cores per compute 

partition. The connection was realized via a NUMAlink 4 with a bandwidth of 6.4 GByte/s. 

The MPI version, given as default and used for the current tests, is the MPI implementation of 

ParaStation.63 On average a task required 0.15 seconds. 

The two DLB variants were tested with both, the best (which is also the default) and the 

worst distribution of the tasks. Additionally a second variant of the thread variant, using 

blocking MPI routines (these MPI routines will be only finished when a message has been 

arrived) was tested on this machine. For this method the MPI routine has to decide when and 

for how long the helper thread has to wait for a message to arrive. A second helper thread is 

used for sending the task requests which is steered completely by waiting for conditions. Un-

fortunately even for a multi-threaded implementation, the blocking routines can be aggressive 

in a given MPI implementation. Thus, they will check as often and as long as possible wheth-

er they find anything to receive. In this way, they will find new messages as soon as possible, 

but the price is that the thread with the MPI call spends a lot of process time. MPI routines 
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optionally can be less aggressive. For example they can perform a system call when no mes-

sage was received, this can allow another process to use the CPU.67 As default this option, 

making the polling passive, was used for the thread method. The thread method with blocking 

MPI routines can also mimic a master-slave variant.  

The elapsed times on one processor for all calculations are summarized in Table 5.1. 

The standard deviation of the elapsed time over 5 runs was for all process numbers below 2 

seconds. However, for very short overall timings this uncertainty was larger than the value 

itself. Therefore the values have to be considered as information on a trend. Only for the cal-

culations with 1024 tasks the standard deviation was nearly always below 6%. The elapsed 

times for up to 64 cores were used to calculate the efficiencies, depictured in Table 5.1. The 

RMA variant shows nearly almost perfect scaling (Table 5.1). There is hardly any difference 

between the cases with worst and best starting distribution. Thus, this variant redistributes the 

tasks efficiently on this kind of computer architecture. Of the variants with threads the one 

with non-blocking MPI routines surprisingly is more efficient. While the variant with block-

ing MPI routines shows differences between the performance of the scenario with best and 

worst starting structure, these effects are hardly visible for the variant with non-blocking MPI 

routines. Hence, MPI, if set to passive polling on blocking operations, is not very efficient in 

finding the messages. It is more efficient to have a loop, which is set by the user to passive 

with help of some wait functions as it is done in the thread variant with non-blocking MPI 

routines. 

Figure 5.1 shows the speedup of the RMA variant and the thread variant with non-

blocking MPI on HLRB-II. The RMA variant shows essentially ideal speed-up. An exception 

occurs for a single result at 16 cores of the calculation with best start distribution of 128 tasks, 

where the speedup, 10.9, is unexpectedly small. The exception may have been due to an un-

fortunate behavior of the machine during the test. The thread variant with non-blocking MPI 

routines is performing worse. The differences between the two start distributions are visible 

starting from 8 processes (Figure 5.1 right panel). Only for large numbers of tasks it stays near 

the ideal line. This confirms that the RMA variant of DLB is the right choice on HLRB-II. 

The reason for the difference is most certainly the hardware support for the RMA objects on 

HLRB-II. 

In case of the equal start distribution (best) there was hardly any stealing, thus a static 

variant would also produce results of the same quality than the RMA and the thread variants. 

A static variant might be even superior as it does not produce any communication overhead. 
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However if the distribution is not ideal, the thread variant and especially the RMA variant are 

superior as seen by the successful redistribution for the worst start distributions. 

Table 5.1: Elapsed real time (on one core) in seconds and efficiency for the RMA, the thread 
variant (2 Th.) and the thread variant with two helper threads (3 Th.) as well as Master-slave 
variants to both thread variants. All timings are averages over 5 runs. The initial distribution 
of the tasks was either the best possible (b), with tasks distributed as even as possible, or the 
worst possible (w) with all tasks on one core. Calculations were carried out for up to 64 cores.  

Method Number  Time efficiency for given number of cores 
 of tasks in s 2 4 8 16 32 64 

RMA w 1024 157.0 1.00 1.00 1.00 1.00 1.00 0.99 
RMA b 1024 157.2 1.00 1.00 1.00 1.00 0.96 0.99 
3 Th. w 1024 157.1 0.98 0.90 0.76 0.56 0.37 0.22 
3 Th. b 1024 157.1 0.99 1.00 0.99 0.96 0.96 0.93 
3 Mast. 1024 157.2 0.99 0.91 0.84 0.70 0.43 0.18 
2 Th. w 1024 157.2 1.00 1.00 0.98 0.94 0.89 0.71 
2 Th. b 1024 157.2 1.00 1.00 1.00 0.99 0.99 0.86 
2 Mast. 1024 157.2 1.00 0.99 0.95 0.82 0.52 0.20 
RMA w 512 78.5 1.00 1.00 1.00 1.00 0.99 0.97 
RMA b 512 78.6 1.00 1.00 0.99 1.00 1.00 0.98 
3 Th. w 512 78.6 0.96 0.84 0.63 0.43 0.26 0.14 
3 Th. b 512 78.6 1.00 0.99 0.98 0.95 0.64 0.87 
3 Mast. 512 78.6 0.97 0.84 0.73 0.56 0.29 0.10 
2 Th. w 512 78.6 1.00 0.99 0.98 0.87 0.72 0.52 
2 Th. b 512 78.6 1.00 1.00 1.00 0.99 0.97 0.94 
2 Mast. 512 78.6 1.00 0.98 0.91 0.69 0.35 0.11 
RMA w 128 19.8 1.01 1.01 1.01 1.00 0.99 0.91 
RMA b 128 19.6 1.00 1.00 1.00 0.68 0.98 0.91 
3 Th. w 128 19.8 0.88 0.57 0.36 0.21 0.10 0.06 
3 Th. b 128 19.8 0.99 0.96 0.94 0.62 0.75 0.10 
3 Mast. 128 19.8 0.93 0.62 0.48 0.27 0.10 0.03 
2 Th. w 128 19.7 0.99 0.98 0.79 0.56 0.59 0.24 
2 Th. b 128 19.7 1.00 1.00 0.99 1.00 0.99 0.95 
2 Mast. 128 19.7 0.99 0.94 0.73 0.36 0.12 0.03 
RMA w 32 4.9 1.00 1.00 0.94 0.97 0.92 0.31 
RMA b 32 4.9 1.00 1.00 0.99 0.97 0.92 0.42 
3 Th. w 32 5.1 0.62 0.36 0.17 0.09 0.04 0.02 
3 Th. b 32 5.1 0.95 0.91 0.47 0.13 0.05 0.02 
3 Mast. 32 5.1 0.63 0.36 0.29 0.10 0.03 0.01 
2 Th. w 32 4.9 0.96 0.88 0.70 0.35 0.22 0.09 
2 Th. b 32 4.9 1.00 0.99 1.00 0.99 0.38 0.10 
2 Mast. 32 4.9 0.98 0.80 0.40 0.12 0.03 0.02 

 

Both master-slave variants start to get problems with more than 16 cores and show no 

further scaling. Even with 1024 tasks the time requirement was growing for 64 cores com-

pared to 32 cores for these variants. One has to consider that the present incarnation of the 

master-slave variant is only an adaption of the work stealing variant, which has not been much 
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optimized. It is possible to improve it further, e.g. by removing the worker thread of the core 

which carries out the duties of the master. However the limitations are not completely remov-

able. The bottleneck might be shifted to higher core numbers by these improvements but like-

ly it will not disappear. 

 

Figure 5.1: Speedup of several of the examples from Table 5.1, which were run on HLRB-II. 
For 1024, 128 and 32 tasks (color going from dark to light) the start distributions were taken 
as worst case (circles) or best case (diamonds). Left panel: work stealing variant with RMA; 
right panel: thread variant with non-blocking MPI routines. For orientation the ideal speedup 
is given as dashed line.  

The difference between active and passive MPI scheduling strategies for the thread vari-

ant with blocking MPI routines can be seen in Table 5.2. For the standard setting of MPI on 

HLRB-II the blocking MPI routines wait for events by spinning in a loop.67 With standard 

settings the thread variant with blocking MPI routines requires roughly twice the run time, 

except for worst-case examples on large numbers of cores. This holds especially for the case 

where the tasks have been initially distributed in the best way. For the worst case the limita-

tions for higher core numbers become visible although this was not the case for the method 

with non-blocking MPI routines. 

Table 5.2: Elapsed times (in s on one core) of the DLB thread variant with blocking MPI on 
HLRB-II for 1024 tasks  and efficiency on various numbers of cores. The MPI was either tak-
en as it was (standard) or the polling was made passive.  

MPI Distr. Time   2 4 8 16 32 64 
Standard worst 314.6 0.99 0.98 0.91 0.8 0.62 0.41 
Standard best 315.0 0.99 0.99 0.96 0.93 0.86 0.71 
Passive worst 157.1 0.98 0.90 0.76 0.56 0.37 0.22 
Passive best 157.1 0.99 1.00 0.99 0.96 0.96 0.93 

 



Part I: Parallel Processing 

-  31  - 

Of the two thread variants the one with non-blocking MPI routines can be seen to per-

form better. Even when the MPI routines were allowed to check for messages in an aggressive 

way, the speedup of the variant with three threads was still worse. The computation times 

with passive MPI routines are even better. The computer architecture should have an effect in 

the performance difference between the RMA and the thread variants. However this effect is 

expected to be similar for the various thread variants. Only the different scheduling of the 

MPI threads should affect the performance, but this effect seems always in favor of the variant 

with non-blocking MPI routines. The speedup of the method with blocking MPI routines 

should be best if the threads with MPI functions poll aggressively. However the speedup is 

still not comparable to the variant with non-blocking MPI, (Table 5.2). Thus, as it is possible 

to work efficiently with a method, where the helper thread is steered explicitly, namely the 

method with non-blocking MPI. Further studies will be restricted on this method. 

On HLRB-II the thread variant is nearly comparable with the RMA approach. However, 

especially for a small number of tasks and large core numbers, the differences become nota-

ble. This illustrates the fact that HLRB-II is especially well suited for the RMA variant, hav-

ing hardware support for the RMA objects. 

5.1.2 Tests on a Nehalem Linux Cluster 

The Nehalem cluster contains two 4-core Nehalem Xeon E5540 processors per node. The 

nodes were connected by a 1 Gbit Ethernet. OpenMPI version 1.4.2 was used, compiled with 

MPI threads enabled (to allow thread safety levels up to MPI_THREAD_MULTIPLE, the 

highest possible thread level). Tasks required on average 0.33 seconds. 

 

Figure 5.2: Speedup for the same examples as in Figure 5.1, only this time run on the Neha-
lem cluster. 
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The elapsed times for the calculations on one core are summarized in Table 5.3 which 

compares the RMA variant, the thread variant, and a master-slave modification of the thread 

variant. Additionally the efficiencies of 2 to 64 cores for the variants are also provided. The 

standard derivations of the elapsed times, used for calculation this measurement, were for all 

but the case with 32 tasks smaller or equal to 10%, for the two cases with highest numbers of 

tasks, 1024 and 512, at most ~5%.  

Table 5.3: Elapsed real time (on one core) for the RMA and the thread variant as well as a 
Master-slave variant. All timings are averages over three calculations. The starting distribu-
tion of the tasks was either as even as possible, the best start distribution (b), or all tasks on 
one core, the worst start distribution (w). Times (in seconds) were calculated for 1 to 64 cores. 

Method Number  Time efficiency for given number of cores 
 of tasks in s 2 4 8 16 32 64 

RMA w 1024 327.1 0.99 0.97 0.91 0.72 0.69 0.42 
RMA b 1024 331.3 1.01 0.99 0.98 0.81 1.02 0.98 
Th. w 1024 316.2 1.01 1.02 1.00 0.84 0.98 0.94 
Th. b 1024 315.5 0.99 0.99 0.99 0.87 0.98 0.95 
 Mast 1024 313.9 1.00 0.98 0.97 0.74 0.52 0.21 

RMA w 512 164.3 0.98 0.96 0.83 0.64 0.54 0.37 
RMA b 512 163.6 0.99 0.99 0.96 0.79 1.00 0.94 
Th. w 512 158.6 1.01 1.02 1.00 0.83 0.95 0.88 
Th. b 512 159.9 1.01 1.01 1.00 0.84 0.98 0.93 
 Mast 512 159.4 1.00 1.01 0.93 0.65 0.37 0.12 

RMA w 128 40.4 0.95 0.84 0.61 0.42 0.26 0.13 
RMA b 128 42.0 1.00 0.99 0.95 0.79 0.88 0.85 
Th. w 128 39.3 0.99 0.99 0.95 0.74 0.78 0.61 

Th. b 128 39.6 0.99 1.00 0.96 0.79 0.87 0.71 
 Mast 128 39.5 1.02 0.95 0.75 0.33 0.12 0.03 

RMA w 32 10.2 0.87 0.63 0.37 0.18 0.11 0.06 
RMA b 32 10.1 0.96 0.94 0.86 0.46 0.77 0.06 
Th. w 32 10.0 1.00 0.97 0.85 0.62 0.46 0.22 
Th. b 32 9.8 0.99 0.96 0.86 0.63 0.60 0.21 
 Mast 32 9.6 0.97 0.81 0.39 0.12 0.03 0.01 

 

The Nehalem cluster does not provide any hardware support for RMA implementations. 

Thus it was expected that the thread variant is performing better than the RMA variant, as is 

confirmed by the results in Table 5.3. Notable is especially the large difference between the 

RMA calculations with the best and with the worst start distribution of tasks. On the other 

hand, especially for large numbers of tasks there is hardly any difference visible between the 

results of the best and the worst starting distribution of the tasks for the thread approach 

(Table 5.3). This indicates that the RMA implementation cannot steal as fast as the thread 

variant on the computer architecture under discussion. The performance of the master-slave 

variant is comparable to the other methods for small core numbers. If more than 8 cores are 
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used, the efficiency of the master-slave variant drops significantly. The performance of all 

methods drops for more than 8 because for up to 8 cores everything takes place on one node, 

whereas for larger numbers of cores several nodes (up to 8 for the case with 64 cores) have to 

be used. This result reflects the fact that intra-node communication is much faster than com-

munication between different nodes. Still, the thread variant succeeds in providing efficiencies 

of around 90% on 64 cores for 512 tasks.  

The speedup of the RMA and the thread variant for some selected calculations as shown 

in Figure 5.2 emphasizes again that the thread variant is performing much better than the 

RMA variant on the Nehalem cluster and is even performing well for small numbers of tasks.  

5.1.3 Tests on LRZ Linux clusters and SuperMIG 

Scaling tests were also carried out on the test clusters ICE68 and MPP69 and the migration sys-

tem SuperMIG,70 for the successor SuperMUC of the HLRB-II machine.60 Results of the av-

erages for the elapsed times can be found in Appendix A. 

The ICE cluster68 contains the same processors as the Nehalem cluster but uses an In-

finiband interconnect. For the tests the MPT implementation71 of MPI was used. In contrast to 

the previous tests, the size of the tasks was varied by choosing randomly how often one of the 

loops has to be performed, compare Section 5.1. The tasks lasted between 0.1 and 0.4 s, the 

average was around 0.24 seconds. Tests were done again for different numbers of tasks, large 

ones with 1024 and 512 tasks and small ones with 32 and 128 tasks. Tests were carried out on 

1 to 16 cores. All methods tested, RMA and thread variant, as well as a static distribution, 

scaled very nicely. There are hardly any differences between the worst and the best starting 

distribution visible, thus the task redistribution in both cases is rather efficient. This is most 

certainly related to the MPI implementation as for the Nehalem Linux Cluster with the same 

cores larger differences were already visible for 8 cores and a larger task size (Subsection 

5.1.2). The thread variant always uses a bit more time than the RMA variant, however it 

scales better. As there is also an overhead in the case of a single core this can be attributed 

most certainly to the time sharing with the helper threads, while the RMA variant is not bur-

dened by this kind of overhead. As this effect is not visible on other machines, it might be also 

related to differences in the implementations of MPI thread levels. The speedup between 8 

and 16 cores is less than ideal. Here the factor plays a role that for 16 cores the calculations 

have to be performed distributed over two nodes. 

The MPP cluster is another of the testing clusters of LRZ.69 It has 16 cores per node and 

the nodes communicate via Infiniband. The MPI implementation provided by Intel was used; 

it is provided as an alternative to the default MPI version on many of the LRZ’s computers.72 



5. Performance of Work Stealing 

-  34  - 

The same tests as for the ICE cluster were undertaken, the time per task was 0.4 s on average 

for the DLB calculations (but only 0.3 s for the static variant). 

The results for this cluster show a preference of the thread variant over the RMA vari-

ant, see Appendix A. Even for 1024 tasks (the calculations with the longest run time) the dif-

ference between the best and the worst starting distribution for the RMA variants is visible for 

larger core numbers. The speedup is comparable for the static and the thread variant. The 

thread variant with the best starting distribution is always a bit better than the static variant, 

the same holds for the thread variant with worst starting distribution for the larger numbers of 

tasks. The timings are not directly comparable as the overall working times for the static vari-

ant are significantly smaller. This can be related to the fact that this variant was not using any 

communication of MPI. None of the other machines used showed this behavior so far. This is 

an artifact of the simple example as calculations on real systems would also require MPI. 

The migration system SuperMIG70 for the new system SuperMUC of LRZ provides an 

even more interesting example. SuperMIG is composed of Westmere-EX Intel Xeon E7-4870 

10C processors with 40 cores per node and Infiniband interconnect. Calculations with 1 to 80 

cores were performed. All calculations with up to 32 cores used one node only, but also on 

two nodes the various methods, RMA, thread and static variant, were all rather efficient for 

larger numbers of tasks, see Appendix A. With roughly taking 5 seconds for 80 cores the 

speedup was still around 60 in most cases. The variance of the task length was small enough 

to yield for the static task distribution variant an equally good scaling as for work stealing. 

The changes between the performances of the worst and the best starting distribution lead to 

the conclusion that the thread variant is more efficient in redistributing the tasks than the 

RMA variant. Therefore the variant with threads will be used for further tests and application 

calculations on this machine. 

5.2 Numerical Integrals  

 

Figure 5.3: Octahedral structure of a palladium cluster with 19 atoms. 

As first computational chemistry application of the DLB algorithm the numerical inte-

grals of the exchange-correlation (XC) functionals in ParaGauss (working on a multicentered 
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grid) are taken.18-19 This part has to be called once in every SCF iteration of the Kohn–Sham 

method. It has to be called once again in the post-SCF part if also the gradients of the energy 

with respect to atomic coordinates are of interest. This special case requires more computa-

tional effort.  

For a test of the numerical XC integral parts an octahedral palladium cluster with 19 atoms in 

D4h symmetry was selected (Figure 5.3) ParaGauss uses symmetry: the number of symmetry 

inequivalent atoms is only 5. The Slater exchange73 was used (with the prefactor of 2/3)74-75 

for the exchange part of the XC integrals, the correlation part was expressed by the Vosko-

Wilk-Nusair (VWN) functional.76 The basis sets are provided in Appendix H. 

The computational effort of the numerical integrals depends on the number of grid 

points to be treated for each symmetric inequivalent atom. Using a tight mesh, there are 78470 

such points to be dealt with. ParaGauss provides some vector parallelization in these calcula-

tions. In our example a worker choses to process up to 128 points at once as a single task. For 

the post-SCF calculation all these points have to belong to the same atom, therefore it might 

happen several times that a worker has to process fewer grid points in the last task for a spe-

cific atom, but this example requires more than 600 individual tasks. Additionally it is possi-

ble for DLB to divide tasks at the end to increase balancing. 

A new version of ParaGauss using DLB for the scheduling of the parallel calculation of 

the numerical integrals was compared against two older production versions of the ParaGauss 

version V3.1.5. Relevant for the tests was the fact that the two production versions, V3.1.5 

and V3.1.5 R, differed by a restructured grid integral part in the newer version; also the per-

centage of parallel context —the percentage of code which was shared by all worker—was 

increased. The only code difference between the more recent production version, V3.1.5 R, 

and the new version with DLB (V3.1.5 G-DLB) was in the part of the numerical integrals. 

Performance tests were executed on the Nehalem cluster (Subsection 5.1.2). Two different 

variants of DLB were applied. Both, the static backend implementation and the production 

version, V3.1.5 R, use essentially the same algorithm. The only difference is whether the stat-

ic distribution is done by the DLB library or by ParaGauss itself. The DLB variant with work 

stealing uses the thread variant, as this variant was shown to perform better than the RMA 

approach on the Nehalem cluster (Section 5.1).  

Good scaling is obtained for all methods for the instance of the numerical XC integral 

part, for calculating the XC energies in the SCF part. The results from the first iteration in 

which the integrals are calculated are considered here. There is no large difference between 

the timings for the production version V3.1.5 R and the two variants of DLB, see Table 5.4. 
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This shows that, on the one hand, the necessary change in the code to allow the usage of DLB 

is properly done without loss of efficiency and that, on the other hand, the dynamic variant 

can be also used efficiently for this part. The good scaling of the static variants is due to the 

homogenous computer architecture and the very homogenous size of the tasks. Thus, it is 

enough to see that the dynamic variant is always competitive. The overhead due to communi-

cation, mainly related to the termination algorithm, is invisibly small.  

Table 5.4: Elapsed real timings in seconds and efficiency for executing the numerical integra-
tion of the XC energy contributions in the SCF part of ParaGauss for the cluster Pd19 in Oh 
symmetry (Figure 5.3). Compared are two versions of ParaGauss, V3.1.5 and V3.1.5 R, 
against the version V3.1.5 G-DLB with both static and thread variant of DLB employed. 

Method Time 2 4 8 16 
PG: V3.1.5 8.2 0.99 0.98 0.98 0.95 

PG: V3.1.5 R 8.2 0.97 0.99 0.96 0.95 
STATIC 8.2 0.99 0.99 0.96 0.96 
Thread 8.2 1.00 1.01 0.95 0.86 

 

Time requirements in this part are of a factor of 8 smaller than in the case of the gradi-

ents of the XC energy with respect to the nuclear positions. For the calculation of the gradi-

ents of the XC energy on the numerical grid the corresponding time requirements are summa-

rized in Table 5.5. For this example the overhead due to communication of the thread variant 

is also invisible. The differences between the two variants are of the size of the standard devi-

ation. Thus, DLB can also be favorably applied to parallel calculations of tasks of known size 

which are homogenously distributed and where dynamic load balancing is not necessary. This 

feature of DLB allows rather wide application and thus allows one to simplify complex paral-

lel programs where thus far different parallel algorithms had been used. 

Table 5.5: Elapsed real timings in seconds and efficiency for the XC numerical gradient inte-
gral part in the post-SCF part of ParaGauss. Compared are two versions of ParaGauss, V3.1.5 
and V3.1.5 R, against the version V3.1.5 G-DLB with both static and thread variant of DLB 
employed, see also Table 5.4. 

Method Time 2 4 8 16 
PG: V3.1.5 66.8 0.50 0.50 0.50 0.49 

PG: V3.1.5 R 66.6 0.98 0.95 0.95 0.93 
STATIC 66.9 0.99 0.95 0.95 0.96 
Thread 67.2 0.96 0.97 0.96 0.91 

 

Noticeable is also the difference between the two production versions V3.1.5 and V3.1.5 

R in the post-SCF main part, see Table 5.5, (but not in the SCF XC part). The difference be-

tween the versions is some simplifications and a restructuration of the code, as preparation for 
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the change to use the DLB interface. This shows another advantage of the DLB interface: the 

complexity of the code is reduced (and so are chances for remaining errors in the code).  

5.3 Three-Center Integrals  

The three-center integral part of ParaGauss16, 69-71 present more challenge for the dynamic 

load balancing than the previous test case, as here the individual tasks have different sizes. 

One reason for this is that the indices of the three-center integrals according to which they are 

bundled in tasks belong to a shell, which may contain different numbers of Gaussian basis 

functions (Section 1.1). It is possible to estimate the computational time required to calculate 

such a task. For example for three- (and two-) center integrals an estimate is available using 

the number of symmetry-equivalent connections between the atoms, the number of different 

exponents in the primitive basis functions and the angular momentum of the chosen orbitals.77 

These estimates are used to rearrange the tasks in decreasing order of computational effort; 

they are the same for all invocations of the overall task.22, 77-79 

 

Figure 5.4: Structures of test systems for the calculation of three-center integrals.  

There are three different kinds of three-center integrals. The first appears when calculat-

ing the Coulomb energy with the fitting function approach (Section 1.1); it is called before the 

SCF cycle. The second kind is related to the first-order derivatives of the Coulomb potential 

with respect to the atomic positions, which is part of the gradients of the energy, and is calcu-

lated after the SCF cycle, thus post-SCF. If second-order derivatives of the potential energy 

are to be calculated analytically, the three-center integral routines are even called a third time 

for the corresponding integrals, again in the post-SCF part. The calls in the post-SCF part for 

the first- and second-order energy derivatives are done separately and also the results are col-

lected right after the DLB loop finished. Thus they can be examined separately. There are 
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large differences in the time requirements for the tasks between the different three-center inte-

gral parts, but as used for the time estimate, the order of size should not be changed much.  

In the following, three test examples will be discussed (Figure 5.4). Calculations were 

carried on the local Nehalem cluster; see Subsection 5.1.2. The basis sets for the atoms used 

in the examples are provided in Appendix H. 

5.3.1 Palladium Cluster with 19 Atoms 

 

Figure 5.5: Comparison of real and estimated times for the various tasks of the parallel calcu-
lation of three-center integrals for (a) the energy and (b) the gradients of the energy calcula-
tion of Pd19. Left panel: occurrence of tasks in time interval for real measurements (solid) and 
for the cost function (dashed). The results of the cost function were scaled with help of linear 
regression on the interval of the times. Right panel: real time against the estimated time (after 
scaling) for every task.  

Figure 5.5 shows the distribution and how well the estimated times fit the real timings for the 

Coulomb energy related call of the three-center integrals of Pd19 which has already been used 

as example in Section 5.2; see also Figure 5.4. Altogether there are 120 tasks, of which many 

are small and only few take longer than half a second to be computed. The cost function 

(which creates the estimates) provides the right trend, see Figure 5.5, but there is some scatter-
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ing around the real values visible as the function is not exact. The true values vary between 

1.5 and < 0.05 seconds; the estimated values have been scaled to fall into the same interval.  

Both distribution and fitting of the values is similar for the other call of the three-center 

integral module, for the gradients of the energy evaluation (Figure 5.5). The main difference is 

that the real times are between 5.4 and 0.07 seconds, but both trend and scattering are pre-

served.  

Table 5.6: Elapsed times in seconds and the efficiencies for different methods, the production 
version V3.1.6 C (with master-slave method) and three version of the ParaGauss version 
V3.1.6 A-DLB, with the three different DLB versions, static, thread and RMA. Calculations 
of Pd19 used 2 to 8 cores for efficiency calculations of the three-center integral part for the 
energy and gradient calculation. Averages were taken over three runs.  

Method Time 2 4 8 
Energy     
V3.1.6 C  25.9 0.87 0.73 0.67 
Static 25.8 0.88 0.66 0.58 
Thread 26.2 0.96 0.89 0.84 
RMA 25.2 0.94 0.86 0.67 
Gradients     
V3.1.6 C 85.2 0.86 0.78 0.75 
Static 84.2 0.95 0.77 0.74 
Thread 85.4 0.99 0.97 0.94 
RMA 83.6 1.00 0.94 0.82 

 

Table 5.6 compares the elapsed times and efficiencies of three-center integral parts when 

calculating the energy and the gradients of the energy. Four methods were compared: an old 

production version of ParaGauss, V3.1.6 C, and the developer version with DLB (V3.1.6 A-

DLB)), where for DLB the static, the RMA and the thread variant were employed. The effi-

ciency for up to 8 cores was not that good for all methods and the best value for the 8 cores 

was 0.94. But one has to consider that the three-center integral part contains more work than 

the dynamic load balancing loop, like preparations, finalizing and the results of the calculation 

have to be collected after the DLB loop has finished. This is different from for the simple test 

case of Section 5.1. On the other hand, the differences in timings are mainly due to the differ-

ences in the efficiency of the dynamic load balancing. The old production version, V3.1.6 C, 

still distributes with a master-slave variant.  

For all methods the tasks were ordered according to their approximated time require-

ment, starting from the largest. Thus the balancing at the end should be done with the smaller 

tasks. 

For the smaller example, the pre-SCF three-center integrals, the production version with 

the master-slave algorithm is superior to the static variant for 4 and 8 cores, Table 5.6. How-
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ever, both the thread and the RMA variant show a better performance. The more cores are 

used, the larger is the gap between the old and the new variants. Although the old variant was 

still useful and superior to a static distribution, the work stealing approaches are the best 

choice for the current calculations. Increasing the number of cores should further enlarge the 

gap between the two solutions. The thread variant is getting better than the RMA approach for 

increasing core numbers, confirming the result of the simple DLB tests that it is the best 

method on the Nehalem cluster (Subsection 5.1.2). The RMA variant only profits from a 

smaller overhead due to its implementation, thus starting with smaller elapsed time require-

ments. The speedup for the thread variant is always better than for the RMA variant. This gets 

even more noticeable for the second instance where three-center integrals are evaluated, at the 

post-SCF gradient of the energy calculation, see Table 5.6. The larger task size there benefits 

the thread variant which needs already for four cores less time than the RMA variant. The 

efficiency is also always much better for the thread than the RMA approach and is reaching 

even 0.94 instead 0.82, respectively, for 8 cores. The production version is hardly better than 

the static variant, in case of 4 cores they are both requiring 5 seconds more than the other two 

variants (Table 5.6). 

The performance is supposed to be strongly influenced by the molecule used as an ex-

ample. For the numerical integrals this effect might only concern the number of tasks and the 

time per task, but for the three-center integrals it can also affect the spectrum of computational 

times needed for the various tasks. In the following subsections, Subsections 5.3.2 and 5.3.2, 

two other examples are used to explore these effects. 

5.3.2 Palladium Cluster with 14 Atoms without Symmetry 

The scaling behavior of three-center analytic integral calculations was also examined for a 

palladium cluster of 14 atoms but without any symmetry constraints (Figure 5.4). This cluster 

is smaller than the cluster Pd19 just discussed. However, removing the symmetry constraints 

makes the size of this example larger, as there are now 903 instead of 120 tasks to consider. 

On the other hand the size of all tasks becomes nearly the same, see Figure 5.6. The time re-

quirement per task is decreasing. No task with a time requirement of more than a second oc-

curs in the energy calculations, and only 21 tasks are to be carried out in the part of three-

center gradients of the energy calculations. For the energy integrals there are even only 11 

tasks requiring over 0.5 seconds. 432 tasks were requiring below 0.1 seconds, nearly half of 

them, while for the gradient related integrals it was with 192 tasks already less. The small 

time requirements per task might also be the reason for the large differences between the dis-

tributions of real time and estimated time (Figure 5.6). 
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Figure 5.6: Distribution of the tasks for the three-center integrals of the Pd14 cluster in C1. 
The solid line refers to the real time distribution the dashed line to the approximated time re-
quirements, scaled on the same region than the real distribution. Left panel: the integrals for 
the energy calculation; right panel: the integrals for the force calculation. 

The dynamic load balancing algorithm is also requiring some time, the RMA variant for 

the remote memory access and the thread variant to handle the calls to the routine mutex re-

garding the locks on the storage area. This influences the scaling. The elapsed times and effi-

ciencies are shown in Table 5.7.  

Table 5.7: Elapsed times (seconds) and efficiency for the three-center integral calculations for 
the energy and the gradient of the energy of a Pd14 cluster calculation on 1 – 8 cores. Shown 
are the production version V3.1.6 C (with master-slave method) and three version of the 
ParaGauss V3.1.6 A-DLB version, with the three different DLB versions, static, thread and 
RMA. 

Num. procs. Time 2 4 8 
Energy     
V3.1.6 C 103.0 0.58 0.51 0.38 
Static 109.1 0.81 0.66 0.45 
Thread 104.0 0.90 0.78 0.54 
RMA 103.0 0.86 0.70 0.53 
Gradients     
V3.1.6 C 245.5 0.86 0.78 0.68 
Static 253.5 1.00 0.99 0.54 
Thread 246.5 0.98 0.96 0.90 
RMA 244.7 1.01 1.00 0.89 

 

For the ParaGauss reference and the thread variant, the results of this example do not 

scale as well as for the Pd19 cluster in D4h symmetry (Subsection 5.3.1). For example the effi-

ciency on 8 cores for Pd14 and Pd19 and the energy related calculation by the thread variant 

was 0.54 and 0.84, respectively. The static variant does not suffer that much. Quite the contra-

ry, there are two facts which improve the performance of the static task distribution relative to 

the Pd19 cluster: the computational times between the tasks differ less, resulting in a better 
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static balance. The average time per task is decreasing, thus the time required by the other 

variants to decide which task to calculate next is getting more important. The best perfor-

mance results when one has to take only the subsequent value from an array, without any 

locks, as done in the static variant. The RMA variant is doing quite well too, even better than 

the thread variant. 

5.3.3 Anthranilic Acid 

All examples examined so far were Pd clusters with only one kind of atoms. A completely 

different example is the organic molecule anthranilic acid, see Figure 5.4. It contains four 

different types of atoms: carbon, oxygen, nitrogen and hydrogen This molecule leads to 1485 

tasks of three-center integrals. 

Table 5.8: Elapsed times (in s) and efficiency for various three-center integral parts with dif-
ferent methods on 1-8 cores. Shown are three versions of the ParaGauss version V3.1.6 A-
DLB, with the three different DLB versions, static, thread and RMA. 

Num. procs. Time 2 4 8 
Energy     
Static 58.9 0.92 0.81 0.49 
Thread 62.8 0.96 0.91 0.63 
RMA 59.9 0.91 0.80 0.57 
Gradients     
Static 344.3 0.99 0.95 0.71 
Thread 347.0 0.99 0.96 0.88 
RMA 348.1 1.00 0.96 0.84 
2. deriv.     
Static 2671.9 1.00 0.98 0.58 
Thread 2714.6 0.99 0.99 0.91 
RMA 2671.9 1.01 1.01 0.86 

 

The time requirements of them are quite different for the three parts where integrals of 

this type are calculated. For the energy part the tasks needed 0.04 s on average, lying between 

0.006 and 0.23 s. The gradient of the energy integrals had times between 0.04 and 1.73 s, with 

an average of 0.24 s. The three-center integrals of the second-order derivatives of the energy 

needed between 0.1 and 18.7 s each, with an average of 1.94 s. The distribution in all cases 

included a large amount of tasks, which were requiring only very short times, see Figure 5.7. 

However the estimates of the cost were not fitting as well as in case of the palladium cluster, 

see Figure 5.4: there are large differences between the real and the approximated values visi-

ble. With the use of different atom types the estimate function has to deal with more parame-

ter resulting in more possibilities for deviations to the real times. 
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Figure 5.7: Distribution and plots of the three-center integrals of the anthranilic acid. Left 
panel: occurrence of tasks in time interval for real measurements (solid) and for the cost func-
tion (dashed). The results of the cost function were scaled with help of linear regression on the 
interval of the times. Right panel: the real time against the approximated time (after scaling) 
for every task. (a) for the energy, (b) for the gradients of the energy and (c) for the analytical 
second-order derivative of the energy. 

The results show that the two dynamic variants are comparable to each other, see Table 

5.8. For few cores the efficiency of the static variant is also of the same order. 
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6. Large-Scale Testing on Four-Center Integrals 

6.1 Systems and Method  

 

Figure 6.1: A sketch of the time measurements of the four-center integral part on an example 
of seven tasks and three cores. The time progresses from top to bottom, every column indi-
cates a core. Setup and termination is done by all cores. In between every core calculates its 
tasks independently. There are two types of “lost” time: due to determining the next task and 
the imbalance at the end. The times for determining the next task include the complete time 
till the next task can be performed, therefore also the mapping of the task ID to the real task. 
The sketch displaces the distribution on the example of the thread DLB method. 

The following sections describe the procedure and the results of large-scale testing of the re-

cently constructed four-center integral part of ParaGauss.11 Calculations for the following 

tests were carried out on the HLRB-II cluster,60 which allows the use of large core numbers. 

As already mentioned in Section 5.1 HLRB-II has 512 cores per node, however only up to 

510 of them can be used for the performance tests. The DLB method used for the tests was 

always the method with remote memory access, which was found to be the superior of the two 

work stealing algorithm implementations for this hardware (Section 5.1). A static variant was 

used for comparison. 

The four-center integral part is the part with the largest size, among all the integral parts, 

regarding both the number of tasks and the computation time per task. Furthermore the code 

can be processed separately from ParaGauss. Not having to run always the complete electron-

ic structure program reduces the required time for testing this part. This makes this part well 
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suited for large real time tests of the work stealing algorithm. The analytical four-center inte-

grals are calculated using the MD2 algorithm,80-81 following the direct SCF approach.82 In the 

test runs only prescreening of the integrals was used to reduce the number of integrals to be 

calculated.83 Further improvements of the method to reduce the number of explicitly calculat-

ed integrals were not included.11 Some of the tasks, the ones where the first and the third as 

well as the second and the fourth indices where the same, were separated and calculated be-

forehand, as they are used for prescreening. The remaining tasks were calculated in a second 

loop, which is larger. The following performance tests concentrate on this second loop as 

overall task. After the first loop it was required to provide the results of it for all workers, al-

lowing them for every task to prescreen it. This was done by a global exchange, which sepa-

rates anyhow the two loops. 

Therefore putting a barrier before this block of the second loop for the tests should not 

change much and keep the results relevant for further production runs without the barrier. 

However it allows one to concentrate properly on only one application of the work stealing 

algorithm, as already done in the previous examples. The time between this barrier and the 

end of the work stealing loop can be divided into several types of timings, see the example 

sketch for three cores in Figure 6.1. During the setup phase the tasks are distributed and local-

ly stored. This phase is part of the overhead of the work stealing algorithm. As every core can 

do this on its own, independent of the distribution method applied, this effort should be negli-

gible. The true working times are the times spent in the routines to calculate the integrals. To 

optimize them is not part of the current investigation, thus there is no further division of tim-

ings needed. The gaps between these working times are part of the overhead, which should be 

avoided. They refer to the time when a new integral task is requested from the worker till the 

time when it starts the working routine again. The gaps include the time the work stealing 

algorithm requires to get a new task, which can usually not be neglected, as it involves read-

ing a locked area.  

Further contributions to this time are given by the fact that the DLB routine provides on-

ly a task ID, which has to be transformed into values or intervals of the four indices of the 

integrals, defining the computational task. This can take a varying amount of time depending 

on which method is used. Two methods are available. The integrals can just be distributed in 

the order of their running indices. A slower algorithm tries to consider the size of each task, 

which can be estimated by a cost function, similar as for the three-center integrals (Section 

1.1). The cost sorting is explained in Section 6.2 in detail. Already for moderately sized sys-

tems there are many more tasks than for the cases of three-center integrals. Therefore it is not 



6. Large-Scale Testing on Four-Center Integrals 

-  46  - 

feasible to store the task indices in a sorted list. The IDs of the four-center integrals calculated 

first in the four-center integral module are still nominally present in the list. As some tasks are 

removed by prescreening, the worker, which got their task ID, skips calculating them and 

switches to the next task ID. The times required for transforming the task ID in the ID of the 

indices are also included in the statistics. For both, work times and overhead times, the sum 

for each core is calculated. Between the calculation of the last task and the end of the overall 

task the workers spend additional overhead time, due to imbalance and the termination algo-

rithm. These times are lumped together. The core finishing last is supposed not to create any 

overhead time due to imbalance. Therefore, the smallest time measured formally as overhead 

due to imbalance is assigned to be the time of the termination overhead. The imbalance over-

head time of the other workers is reduced by the amount of time which has been identified in 

this way as termination time. All these times ( )
i

T p  are summed over all cores p up to the 

number n of cores used for the following observations.  
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Except the time spent on the actual calculation, the times for all other tasks are classified 

as overhead. The detailed timings described above allow defining a different kind of efficien-

cy besides to the usual one based on scaling. This efficiency compares the time )
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T  between the start and the end of the 

four-center integral module for the number of cores n.  
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In the following, this value will be referred to as work/elapsed time (W/ET) efficiency. For 

the examples where calculations with one core were also performed, it is also possible to pro-

vide besides the W/ET values the standard efficiency en, which uses the elapsed times for dif-

ferent core numbers. 
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Thus it is possible to compare the different efficiency results and to verify that the W/ET effi-

ciency W/ETe  is able to provide correct information about how efficient a specific calculation 

was. 

As in the other tests, see Chapter 5, the times were measured by MPI routines as elapsed 

wall clock time. 
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6.2 Task Sorting 

To sort the tasks according to the (expected) calculation time, an approach was used that dif-

fers from that employed for the three-center integrals to be used because maintaining a sorted 

list of tasks is too expensive for four-center integrals. Instead, a mapping of integral numbers 

onto the task was established.84 

Simple approaches for estimating the cost of a task use, among other things, the angular 

momentum li for every shell i.83 In the current context the contribution to the cost approxima-

tion related to the angular momentum was inspired by the solid harmonic tensor formalism.85-

86 This gives rise to a term 2 1
i

l +  in the cost estimation of shell i. Another factor per shell i is 

the number of basis functions ni (without considering contractions). As cost estimate C of a 

task the following expression was used: 
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. 
The two parameters ν  and µ  are taking care of the fact that the two contributions related to 

the angular momentum and the number of basis functions influence the time requirement for a 

task in different ways. The parameters were adjusted for the test cases H2O and UF6, the latter 

in two different basis sets. The values of the parameter were ν  ≈ 0.8 and µ  ≈ 1.5. The cost of 

a task is given as the product of the multiplied cost contributions of all its four indices. This 

rather rough approach to estimate the cost is sufficient in the current context as the sorting is 

done only approximately and only the trend of the task sizes is of interest. 

In the cost sorting algorithm the interval of the costs (logarithmic scale) is divided into 

cost windows of equal width to which the tasks are assigned. To find the task belonging to 

number n in the sorted sequence, the original task list is scanned skipping the tasks that fall 

outside of the current cost window. If the end of the list is reached, the next cost window is 

selected and the search is started again from the first element of the original list.  

The decision to which window a task belongs, that lies exactly at a border, was changed 

shortly after the tests. During the tests a task a with 
l r

b a b< ≤  belongs into the cost window 

of the interval ( ),l rb b , while for the current implementation it is required to fulfill 
l r

b a b≤ < . 

The different choices are depictured in Figure 6.2. This should not have a large effect on the 

current calculations. A realistic distribution of the tasks according to estimated times (together 
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with the real times) can be seen in Section 6.4 in the right panel of Figure 6.4 where also the 

borders for the cost windows are shown. This shows also that the time estimate by the cost 

function corresponds reasonably well to the real time to justify sorting according to the esti-

mated costs. Note that the copper clusters of Section 6.4 were not among the examples for 

adjusting the parameter.  

 

Figure 6.2: Example of cost sorting of tasks to task number. The example uses three cost 
windows. Left panel: unsorted tasks. Right panel: tasks sorted according to cost windows for 
performance tests (diamonds) and after the recent cost sort version (dot). The differences are 
due to changes in assigning the tasks, which are exactly on the border of a window. 

The algorithm needs some time to identify the next task to process. The average time per 

task for this identification increases especially if the sorted tasks are accessed in random or-

der. The cost sorting algorithm used for work stealing should encounter this regime only oc-

casionally, when the work on a newly stolen set of tasks is started. Still this algorithm produc-

es more overhead compared to a static variant. 

In order to justify the overhead due to the cost sorting algorithm it is required that for 

the static variant every worker possibly gets about the same amount of tasks from every cost 

window. This is realized by assigning the task numbers to the cores in turn. For the work 

stealing variant it is in addition very favorable if all workers start with large tasks.  

6.3 The Test Systems  

Seven copper clusters Cun (n from 4 to 20) were chosen as test systems. The atoms were ar-

ranged in regular structures, where the nearest-neighbor inter-atomic distances are ~2.5 Å. 

(The value of bulk Cu is 2.554 Å.87) The structures were inspired by studies on small copper 

clusters.88-89 The geometries of the copper clusters chosen are shown in Figure 6.3.  

As before the number of calculated tasks is reduced by prescreening of the four-center 

integrals. The task of the first loop and the screened tasks are not considered in the efficiency 
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measurement. For Cu10 and Cu20 some tasks were screened. Table 6.1 provides the total calcu-

lation times, obtained as the sum of the real times of all workers (elapsed times measured only 

while the tasks are being calculated). They are averaged over all calculations carried out with 

the system, thus over the various core numbers and methods, as the real working time should 

not be affected by the task distribution. This number is rather stable; the standard deviation for 

all examples is below 1%. The real working time increases strongly with increasing size of the 

system. Each task required approximately 1 second. 

 

Figure 6.3: Structures of the copper clusters used as test systems. a) Cu4, b) Cu6, c) Cu8, d) 
Cu10, e) Cu12, f) Cu14, g) Cu20.  

The distribution of the time requirements for the tasks as well as the approximate costs 

can be visualized in the same way as for the three-center integrals (Section 5.3). The calcula-

tion time of a single task is not expected to depend on the number of atoms involved, but 

mostly on the angular momentum of the various shells which are the same for all atoms of the 

same kind. Thus all copper clusters of Figure 6.3 should show in principle the same cost dis-

tribution of the tasks. It will not be exactly the same distribution as not all combinations of the 

integral indices are appearing in the task numbers because some combinations refer to the 

same integral. The distribution of the smallest clusters Cu4 is given in Figure 6.4 showing 
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again the number of small tasks (< 2 sec) overweighting the number of larger ones (time > 2 

sec). Only 16 tasks need more than 7 seconds, more than half of them are smaller than one 

second. In case that the tasks are sorted with the help of cost windows, there are eight win-

dows, as shown in Figure 6.4. 

Table 6.1: Statistics about the copper test examples. Shown are for each cluster size the num-
ber of tasks in the relevant part and the averaged real working time (as elapsed wall clock) in 
hours of the tasks over all core numbers and methods (thus all calculation of Section 6.4). 

Num. atoms 4 6 8 10 12 14 20 
Num. tasks 3003 14535 44850 107720 221445 407253 1672223 
Calc. time 1.0 5.0 15.9 37.5 79.3 140.7 600.7 

 

 

Figure 6.4: Time requirement for tasks calculation for Cu4. Left panel: how often a task fell 
into the given interval. Right panel: the mapping of the time requirements onto the time ex-
pectations in logarithmic scale. The cost windows used for sorting according to the estimated 
times are also shown (the lines mark the border). 

The decision for the number of cost windows was made after a test with Cu4 on 128 cores:  

Cost sorting of tasks should improve the performance of the load balancing methods. This 

should be especially the case when it is applied together with a dynamic load balancing meth-

od. Treating smaller tasks at the end should optimize the balancing. Cost sorting should also 

improve the performance of a static task distribution, as it should prevent that all large tasks 

end up on one core. However the effect should be more noticeable for a dynamic variant. Fig-

ure 6.5 shows how the W/ET efficiency, Eq. (6.2), changes with the number of cost windows 

on 128 cores. The W/ET efficiency grows with increasing numbers of cost windows, thus the 

better the tasks are sorted the more time is saved. On the other hand, the time required for 

scheduling is also increasing, see Figure 6.5. This increase is roughly linear for the current 

example with a slope of 0.13 s/cost window. For the current example this is negligible, as it 
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amounts at most to 1.4 s for 10 cost sorting windows, while the complete computation time 

for Cu4 is around 3450 s, see Table 6.1. This overhead for sorting is also much smaller than 

the overhead due to the imbalance which is at least 80 s for the various cost sorting windows. 

Other factors may affect the amount of overhead. With increasing number of cores the 

overhead should increase as every core has to perform the scheduling over the tasks numbers, 

but the influence of the system size should be even larger. For N being the number of angular 

momentum shells of all atoms of a system, the number of tasks (before screening) is propor-

tional to the forth power of it, ntask∼N
4. This is also the reason why the tasks are not sorted 

beforehand and a list of them is provided. For the cost sorted calculation one can expect that 

(on one core) the list has to be calculated w*ntask times in case of w windows. Nevertheless the 

number of cost windows should have a moderate effect only, as the increase in the number of 

tasks will dominate the overhead. Still it does not make sense to choose w very large. With 

more than 8 cost windows the gain in the W/ET efficiency is only marginal, see Figure 6.5. 

Therefore, all calculations with cost sorting, discussed in the following, were carried out with 

8 cost windows. 

 

Figure 6.5: Scheduling time and W/ET efficiency for the four-center integrals of Cu4 on 128 
cores for varying numbers of cost sorting windows. Calculations were done with dynamic 
load balancing including cost sorting.  

For a systematic test, three methods were used to distribute the tasks. The dynamic load 

balancing strategy with cost sorting, as defined in Section 6.3, is one of them. Additionally it 

is possible to test dynamic load balancing on the original task number assignment, thus with 

minimal cost requirement to transform the task ID into the indices. The third method is a stat-

ic variant, which uses also the cost sorting. Calculating the largest tasks first should not have 

an effect in this case. However the sorting should provide every core with nearly the same 

amount of tasks of an expected computational afford. It prevents that, for example, all tasks 

belonging to the largest computational afford, will be scheduled on the same core. This strate-
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gy provides the additional benefit of revealing the mere overhead of the cost sorting. For the 

tests on HLRB-II the RMA variant of DLB was chosen for both dynamic distribution meth-

ods, on SuperMIG the thread variant, as these were the respective variants performing best on 

the given machines for the simple tests, compare Section 5.1. 

6.4 The Test Process on HLRB-II  

The first part of the test was done with the smallest copper cluster, Cu4, using varying num-

bers of cores. The calculations were also done with a single core, therefore it is possible to 

calculate next to the W/ET efficiency also the real efficiency, see Figure 6.6. The general 

trend is the same for both efficiency measures and the differences between them are always 

smaller than 0.02. This supports that the W/ET efficiency can be used to examine the quality 

of calculations. It can be even used if only a single calculation has been done for the specific 

system, while the real efficiency requires that there are at least two calculations, of which one 

should be a serial run for a proper efficiency. Furthermore the real efficiency has the draw-

back that it does not consider the overhead of a calculation on one core, different from the 

W/ET efficiency. In the following the efficiency of the results is examined using the W/ET 

efficiency. 

 

Figure 6.6: W/ET efficiency and real efficiency for the example of Cu4 for 1 to 128 cores. 
Dynamic load balancing with cost sorting (dots), dynamic load balancing on unsorted task list 
(diamonds) and static cost sorted method (triangles). Averages over three runs. 

Examining the efficiency the difference between the performance of the various meth-

ods becomes evident. Using DLB with cost sorting was doing best for Cu4, having still a 

W/ET efficiency of 0.97 for 128 cores. Using DLB with unsorted tasks was doing always 

worse. Especially between 64 and 128 cores there was a large drop in the W/ET efficiency 

from 0.93 to 0.84. This indicates that for the method the number of cores is getting too large 

for this system size. There are only 23 tasks on average per core and the calculation lasted 
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around 30 seconds on every core. For randomly distributed tasks there were too few to archive 

a balanced load situation. The DLB with cost sorting with its high efficiency of 0.97 illus-

trates that the sorting is responsible for the improvement. The static variant with cost sorting 

is the variant with the lowest efficiency, it achieves only 0.79 on 128 cores. Already for 8 

cores it is doing worse with an W/ET efficiency of 0.97 than the best variant for 128 cores. It 

is relying on the fact that on average the cores would statically get about the same time re-

quirement, which is not the case.  

 

Figure 6.7: W/ET efficiency for varying numbers of copper atoms in the copper clusters on 
128 cores. Dynamic load balancing with cost sorting (dots), dynamic load balancing without 
cost sorting (diamonds) and static task distribution with cost sorting (triangles). Averages over 
three runs. 

When the amount of tasks is increased by increasing the cluster size, see Figure 6.7, all 

three methods improve when 128 cores are used. The distribution of the tasks is expected to 

stay more or less the same as in Figure 6.4, but there are more tasks of varying size. Thus 

comparing the efficiencies for the different system sizes makes sense. The order of the meth-

ods with respect to the efficiency stays the same. The cost sorted DLB variant is still the best, 

showing already for Cu6 an efficiency better than 0.99. But for Cu10 the DLB variant without 

cost sorting is getting close in efficiency, yielding also a very good values above 0.99 (Figure 

6.7).  

The overhead related to the termination of the dynamic load balancing depends on the 

number of cores, but is independent of the number of tasks, thus the system size, and the sort-

ing of the tasks. For one core it is too small to get a reliable measurement while it is about 

0.1s for 128 cores. For calculations with up to 510 cores it is still ~1s only. It grows rather 

slowly. Thus in our case it is negligible. The time for the setup should be also negligible as it 

includes only the time to set some variables to their start values. There is no global communi-

cation required during setup. The setup time is considered in the total elapsed time of the loop, 
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but is not measured separately. The other two types of overhead time are more interesting: the 

overhead due to load imbalance at the end of the algorithm and the overhead due to the sched-

uling itself. The time requirements for the scheduling of the tasks are increasing with both 

core number and system size, see Figure 6.8. On the other hand, the time requirement for 

scheduling per core decreases with the number of tasks per core (can be calculated by dividing 

the scheduling overhead and the number of tasks through the number of cores). For Cu4 the 

scheduling time is still negligible for 128 cores, it amounts to 1.4 s. The requirements for the 

DLB with cost sorting method are always higher than for the static variant with cost sorting. 

The calculations with DLB with unsorted tasks require a nearly constant scheduling overhead, 

as it depends only on the system size. The scheduling time for the DLB with unsorted tasks is 

only slightly increasing, thus work stealing overhead alone is not responsible for the differ-

ence in the DLB with cost sorting and the static with cost sorting run.  

 

Figure 6.8: Time requirements for the scheduling. Left panel: for Cu4 on different numbers of 
cores. Right panel: for various copper cluster sizes on 128 cores. Dynamic load balancing 
with cost sorting (dots), dynamic load balancing without cost sorting (diamonds) and static 
task distribution with cost sorting (triangles). Averages over three runs. 

It was already indicated in Section 6.2 that the cost sorting is better optimized for a case, 

where the tasks are kept ordered; this is the case for the static variant with cost-sorting. The 

DLB variant with cost-sorting gets the task IDs more randomly, because of work stealing. The 

largest effect for the increase in the scheduling time for the static and the DLB variant with 

cost sorting is therefore the growing cost for determining which task belongs to the provided 

task IDs.  

The increase of the scheduling time with the number of atoms, see Figure 6.8, is steeper 

than with the number of cores. One has to consider that the number of tasks increases much 

faster with the system size than the number of atoms, see Table 6.1. It is (formally) propor-

tional to the power of four of the number of atoms. The increase of the time requirement for 
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scheduling per tasks is nearly linearly, but with the increase of tasks with the number of atoms 

even for moderately sized molecules this cost is supposed to grow to noticeable size. There-

fore the cost sorted DLB variant will not always be superior to the unsorted one.  

The tests described above were also done for larger systems and core numbers. The scal-

ing with core numbers was tested with Cu10 doing also calculations on 256 and 510 cores. 

Calculations distributed over several partitions met technical problems. The efficiency results 

are presented in Figure 6.9. The results look qualitatively the same as the results for Cu4 

(Figure 6.6). Again the DLB variant with cost sorting is close to the ideal results. The effi-

ciency is not going down that much as in the case of Cu4, thus it would be possible to use effi-

ciently larger numbers of cores here. For 510 cores there are on average more than 200 tasks 

and 4.5 min computational time to spend on every core.  

 

Figure 6.9: W/ET efficiency for Cu10 on 128 to 510 cores and W/ET efficiency on 510 cores 
for different sizes of copper clusters. Methods: dynamic load balancing with cost sorting 
(dots), dynamic load balancing without cost sorting (diamonds) and (only for Cu10) static dis-
tribution of cost sorted tasks (triangles). 

In a further test, the system size was increased up to Cu20 on 510 cores for DLB with 

and without cost sorting, see Figure 6.9. The efficiency of the DLB method with unsorted 

tasks was increasing much faster than for the DLB method with cost sorted tasks. With the 

latter approach, the efficiency is even slightly smaller for Cu20 than for Cu16. The different 

increases of the efficiency lead to the fact that DLB with unsorted tasks is more efficient for 

Cu20 than the variant with sorted tasks whereas the opposite is true for systems smaller than 

Cu14. The reason for this observation is the increasing cost for scheduling with the system 

size, as already been observed for the smaller clusters (Figure 6.8). Cu20 belongs to the al-

ready mentioned case where the scheduling overhead (through cost sorting) is too large for 

providing an improvement over the larger imbalance time of the DLB method on the unsorted 

list. Not only the real time of scheduling increases with system size, as observed for smaller 
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systems, but also the relative contribution to the overall computation time (Figure 6.10). Al-

ready for Cu14 the scheduling costs more time than the load imbalance at the end. For this case 

the load imbalance of the unsorted tasks is still larger than the time needed for scheduling, 

thus for the Cu14 calculation the strategy with cost sorting is still more effective. For larger 

systems Cun, n > 14, cost sorting reaches its limit of efficiency. 

 

Figure 6.10: Distribution of elapsed time for the scheduling variant of dynamic load balanc-
ing with cost sorting for copper cluster with 10 to 20 atoms on 510 cores. The contribution of 
termination is not visible as its contribution is below 10-4 %. 

Further optimizations of the calculation, which can lower the time required per task, can 

further restrict the area for applying DLB with cost sorting. For the 1672223 tasks of Cu20 

there are already 6230 s spend for overall scheduling on 510 cores. For a static task schedul-

ing with cost sorting, scheduling costs only 1297 s overall, about a factor of 5 less. The time 

required for scheduling for DLB without sorting the tasks, 170 s, is rather negligible com-

pared to the scheduling effort of other approaches. 

The timings (averaged over three runs) for all calculations are provided in Appendix B. 

6.5 Cu4 on SuperMIG 

The tests on HLRB-II showed that the DLB variant with RMA can be very efficient on specif-

ic machines. A machine, where the DLB variant with threads, was the superior strategy com-

pared to the RMA variant (Section 5.1) was SuperMIG. This machine allows core numbers as 
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large as on HLRB-II. Thus SuperMIG is appropriate for a large test set on real systems using 

the thread variant. 

 

Figure 6.11: W/ET efficiency (left) and time requirement for scheduling (right) for Cu4 on 1 
to 160 cores of SuperMIG. Methods: dynamic load balancing with cost sorting (dots), dynam-
ic load balancing with unsorted tasks (diamonds) and static scheduling with sorted tasks (tri-
angles).  

The core numbers in the tests on SuperMIG were increased in steps of 40 cores, which 

corresponds to one node on this architecture. The three strategies, DLB with cost sorted tasks, 

DLB with unsorted task list and static distribution of cost sorted tasks, were tested. All tim-

ings can be found in Appendix C. Runs with 1 core allow calculating the standard efficiency. 

However the standard efficiency was not a good measure for the current performance tests. 

The sum of working times increases significantly, at least 300s, between 1 and higher num-

bers of cores. As this effect was also observed for the static variant (with cost sorting), it 

should not be an effect of the DLB scheduler. The reason for this effect might be that the sys-

tem treats a serial program differently. The effect was also present on HLRB-II, but was with 

less than 100s difference between the working times of serial and parallel calculations much 

smaller. 

The overall time requirement for the work has decreased due to the computer hardware. 

Instead of requiring 1.2 s on average on HLRB-II, the time per task was reduced to about 0.8 s 

on SuperMIG. Thus, the time required for the mere working, which was around one hour on 

HLRB-II, compare Table 6.1, is decreased for SuperMIG by around 20%. The decrease in 

overall time together with the working time difference between serial and parallel calculations 

makes the standard efficiency a bad choice for observing the efficiency, instead the W/ET 

efficiency is exclusively used.  

The W/ET efficiency might not be suitable for observing the thread variant of DLB as 

the time for working includes the times in which the helper thread of the DLB thread variant 
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is running. However, this effect can be neglected because the real working times for core 

numbers larger than 1 were stable (thus only slightly and randomly varying) and for some of 

the calculations using DLB even smaller than for the static variant. This allows to calculate 

the W/ET efficiency using Eq. (6.2), see Figure 6.11. Comparing the results for SuperMIG 

with the efficiency of the calculations on HLRB-II, one sees that the relative order of the vari-

ous methods is the same. As expected for a faster machine, the efficiencies drop faster with 

the CPU count for the SuperMIG calculations, Figure 6.11, than for the RMA variant on 

HLRB-II, Figure 6.6.  

 

Figure 6.12: Distribution of the time requirements per task. Left panel: number of tasks ac-
cording to working time. Calculations on SuperMIG (solid lines) and HLRB-II (dashed line). 
Dark: actual time requirements; light: mapped expectation times. Right panel: correlation of 
estimated and real working times on SuperMIG. The cost windows for the expected times are 
also shown (solid lines). 

There is one variant, cost-sorted DLB, which is especially performing worse on Super-

MIG than on HLRB-II. This is due to the load imbalance at the end. All other overhead tim-

ings measured gave comparable results. The reason for the more pronounced load imbalance 

is not fully understood. A cause for this difference in performance between HLRB-II and Su-

perMIG can be the varying time requirements for the tasks. Comparison of expected time to 

the real time requirements per task on SuperMIG, see Figure 6.12, is approximately as good 

as on HLRB-II. On the other hand, the number of tasks in the window of smallest cost were 

1326 (see Figure 6.12) on SuperMIG (where the interval was 0–0.5 s) while there were 1796 

on HLRB-II (where the interval was from 0–1 s). Thus the main reason for the drop in effi-

ciency is most certainly only related to an unfavorable distribution. Another reason might be 

the fact that different variants of DLB were used for SuperMIG and HLRB-II. Thus, for ex-

ample, the thread variant is not allowed to steal the last task from a core to ensure proper ter-

mination, see Subsection 4.2.2. However, on SuperMIG the DLB variant with threads is still 
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preferable over the variant with RMA. This can be seen at the example of 40 cores, where the 

scheduling overhead (including the time for DLB to fetch the next task number from its stor-

age) was for the thread variant less than 1‰ of the result of the RMA variant (scheduling 

times in Appendix C). They needed 0.5 s and 684.2 s, respectively. 

The scheduling overhead on SuperMIG was quite similar to that on HLRB-II (Figure 

6.8). For the cost sorted DLB variant it was nearly the same, see Figure 6.11. Only the calcu-

lations of DLB with an unsorted task list shows some increase in the time requirements. 

Altogether using DLB for the redistribution of the tasks was as efficient on SuperMIG 

as it was on HLRB-II. Only the usage of the cost sorting in addition was becoming less effi-

cient for high core numbers. Already before, cost sorting was computationally demanding and 

on the HLRB-II machine it might have profited immensely from a good balance of the task 

length. Still, for the small example of Cu4 it provided in both cases a better performance than 

without. As the larger systems were shown to scale even better than the smaller systems, see 

Section 6.4, especially for the method with DLB on an unsorted list, the good scaling on the 

small example with up to 180 processes indicates that larger systems might scale even better. 

Thus cost sorting can be useful especially for smaller systems when a fast processing is re-

quired, e.g. in dynamic simulations. 

6.6 Benchmarking on Four-Center Integrals with Symmetry Screening 

A version of the four-center integrals (marked with tag AN Perf Test ERI4C) integrated in 

ParaGauss (V3.1.8 ALPHA 7) was used for tests on the Nehalem cluster (Subsection 5.1.2). 

The tests used for dynamic redistribution the thread variant of DLB, which was found to be 

superior on this cluster, see Section 5.1. All test calculations used results of the first SCF loop, 

in which the four-center integrals were calculated. The version of the four-center integrals, 

used in this test, is described in detail by Soini.11 

The two loops, the first for calculating the tasks required for the prescreening and the 

second one with the remaining tasks, were merged into one loop. Thus all calculations run 

now over all tasks. In addition to the simple screening,83 already applied in the Section 6.4 for 

the larger clusters, a screening due to the symmetry was introduced.11 To test how this affects 

the scaling of the DLB-driven scheduler, a platinum cluster with 38 atoms in Oh symmetry 

was used as an example. This example had 67,611,006 tasks of which 1,467,266 were actually 

calculated. Thus due to the screening only about 2 % of the tasks needed to be calculated. On 

the Nehalem cluster these tasks required about 0.001 s calculation time on average. This is 

already very small, especially compared to the calculation time per task of about 1s for the 

previous examples. If all the omitted tasks are also considered, the time requirement per task 
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is reduced to 2·10-5 s. This is an average over all tasks which were scheduled. The scheduler 

using DLB required about 5·10-6 s for determining a task ID. Thus, the overhead due to the 

scheduler was about 25 % of the computation time. Even if the load distribution would be 

perfect, the efficiency can only reach 80%. A static scheduler without any cost sorting, as a 

comparison, requires about 2·10-7 s for scheduling a task. To use DLB efficiently, the relation 

of calculation time per task to the scheduling time had to be improved. By concentrating sev-

eral of the tasks to a DLB scheduled task the average calculation time for a DLB task increas-

es and the scheduling overhead per task decreases.11 Additionally, for a serial run on one core, 

the DLB scheduling was removed completely by concentrating all tasks in a single DLB 

task.11 The timings for calculations with a static scheduler, a scheduler using DLB for the task 

distribution and a scheduler using the concentrated tasks for DLB (200 per core) are available 

in Appendix D. For DLB on concentrated tasks the time for scheduling is less than 1% of the 

overall computational time. Calculations were performed with up to 24 cores on the Nehalem 

cluster. The observed load imbalance is smallest for the DLB variant working on all tasks, 

however the scheduling overhead is much larger than the imbalance overhead for the other 

methods. 

 

Figure 6.13: W/ET efficiency, see Eq. (6.2), for calculations with different core count for Pt38 
of the four-center integral part of ParaGauss on a Nehalem cluster. A static variant (diamonds) 
and a variant using DLB for concentrated tasks (dots) are shown. 

The SCF cycle in the calculation with Pt38 was not converged but rather aborted after the 

third iteration, thus including two iterations with four-center integrals and one without. For 

these iterations the four-center integrals required with about 3000s already 98% of the time of 

the whole SCF-cycle. In this regard on can already see, that ensuring a good scaling with in-

creasing process numbers for the four-center integrals can easily become a very important 

aspect of ensuring a good scaling of the complete quantum chemistry program. This is espe-
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cially the case as the four-center integrals are scaling with N4 for N atoms, while the rest of 

the SCF-cycle only scales with up to N3.  

The dynamic redistribution of the tasks with DLB is very useful. Its W/ET efficiency 

(Figure 6.13) is strongly improved compared to the variant with static distribution. For 24 

cores DLB on concentrated tasks still has a performance of 0.99, while the static distribution 

has 0.88. Thus, one only has to ensure that the ratio of the times, for the actual calculation and 

the DLB overhead required to assign a new task, is reasonable. The optimum ratio will de-

pend on the computer architecture and the given structure to be calculated, but the example 

showed that, with the current implementation, it is possible to get the scheduling time below 

1% of the overall time without rendering the performance inefficient.  

7. Conclusions and Discussion 

Work stealing algorithms offer favorable scaling of parallelization for complex tasks.45-46 

These methods avoid the bottleneck of a master process which has to feed tasks to many 

“slaves”. 

In order to get a simple interface to this work stealing algorithm, it is necessary to make 

strong use of methods and functionalities of the MPI-2 standard. Two methods, which are 

easily exchangeable, were created, building on such different functionalities as remote 

memory objects (RMA) or running a program with multiple threads. It turned out that these 

two methods perform differently on various computer architectures, thus offering complemen-

tary advantages. The method with remote memory objects works best when specific hardware 

support is provided. The thread method requires a thread safe MPI. This is not always given 

or it is not as well maintained as an implementation without threads. However, one may ex-

pect that in the future such MPI functionalities will be better maintained. Scalability tests with 

a simple dummy set of tasks unraveled differences of the various computer architectures. The 

thread method performed better on most of the tested architectures. Only HLRB-II having 

RMA hardware support shows a clear superiority for this method.  

There are three modules in the quantum chemistry program ParaGauss, where work 

stealing algorithms are currently in use. For all of them tests demonstrated that dynamic load 

balancing routines scale well. The case of the numerical integrals illustrated that tasks of equal 

size are easily parallelized without suffering from an overhead of the scheduling algorithm. 

This was tested for up to 16 cores on the Linux Nehalem cluster for Pd19 in octahedral sym-

metry. The real benefit of the dynamic load balancing routines shows up if the tasks have dif-

ferent sizes. Sorting them from large to small increases the performance of the module, as it 
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allows a finer load balancing towards the end. This results in a good improvement for the 

three-center integrals. For the four-center integrals (tested in a standalone version) it was pos-

sible to reach an efficiency of 99% on 520 cores on HLRB-II for the largest example tested, 

Cu20. This test was done with the RMA variant of DLB, the thread variant of DLB reached an 

efficiency of 82% on 160 cores of SuperMIG of the LRZ. For this test only the significantly 

smaller cluster Cu4 was used.   

In cases like the four-center integrals, where it is not possible to presort the tasks, an ap-

proximate sorting at runtime is only favorable if it does not require too much time. Thus for 

the tests on the standalone version with copper clusters this was the case for Cu4 to Cu14, 

while for Cu20 the work stealing variant, which did not use sorting, was preferable. The usa-

bility of the sorting might be further reduced if the time requirements for the tasks do not add 

up nicely. Therefore, for large system sizes and core numbers, which both increase the over-

head of the sorting, a method without sorting is much more preferable. This will become more 

important when the calculation time per tasks is decreased by further improvements of the 

algorithm and when more tasks are skipped by screening. In this case even for smaller core 

counts and smaller system sizes, the distribution of unsorted tasks is preferable to sorting 

them on the fly.  

If the time requirement for a single task gets small in comparison to the time required to 

get a task ID, it is preferable to bundle several tasks into a single work package to be sched-

uled. This is for example required for a version of the four-center integrals with improved 

screening. Especially if symmetry reduction results in a large amount of tasks requiring very 

small time for calculation, such bundling of tasks is mandatory. 
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Part II: Convergence Acceleration of the Self-Consistent Field 

Procedure 

8. The Self-Consistent Field Procedure 

The self-consistent field (SCF) procedure is a central part of density functional codes like 

ParaGauss. It solves the subproblem of adapting the electron density and the derived energy to 

the geometry of the system. This is achieved by repeatedly solving the Kohn–Sham eigenval-

ue problem, compare Section 1.1. Unfortunately Eq. (1.5) is not a closed form expression. 

Thus instead of a direct calculation it is solved iteratively. 

In each SCF iteration i first the Kohn–Sham matrix ( )
KS
ih  is built (see Section 1.1), for all 

matrix elements related to the contributions of Eq. (1.4) and the basis functions αχ  of Section 

1.1. This matrix requires the electron density matrix T

i i i in=D C C  for the matrix 1i−C  of ei-

genvectors; ni is the diagonal matrix of occupation numbers of the various Kohn-Sham levels 

from the previous iteration i–1. The eigenvalue problem, Eq. (1.7), will provide the energies εi 

and expansion coefficients Ci of the eigenvectors. To obtain the approximate charge density 

i ih uρ =∑ɶ  for the basis vectors ui (see Section 1.1), the charge fit coefficients hi have to be 

selected accordingly. For this purpose, the Coulomb self-interaction of the density difference 

ρ ρ− ɶ  between the exact density, represented by the density matrix Di, and the approximate 

density is minimized (see Section 1.1).5, 17, 20 The resulting charge fit coefficients hi and the 

expansion coefficients Ci are used for the next iteration. 

The first iteration starts with a zero density. The SCF cycle is repeated until conver-

gence. The convergence is tested in ParaGauss by three different measures, comparing the 

value with the result of the last iteration: the energy, the charge fit coefficients and the density 

matrix D. All three measures have to get smaller than the corresponding convergence criteria. 

9. Convergence Acceleration 

The convergence of the SCF procedure might meet some challenges. In the Kohn–Sham for-

malism the errors of the electronic self-interaction energy are different for occupied and unoc-

cupied orbitals.21 The gap between the highest occupied and the lowest unoccupied orbital 

(the HOMO-LUMO gap) is therefore often too small. In the SCF part, in general, the orbitals 

with the smallest eigenvalues are occupied. Thus, a too small a gap can lead to a case where 

the occupation of some of the orbitals around the HOMO-LUMO gap changes frequently dur-
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ing the SCF process. This is especially common for systems involving metal centers or clus-

ters, where the gap is usually very small or even absent. Convergence of the SCF procedure is 

less stable as a result. Furthermore the simple approach of reaching this convergence as de-

scribed in Chapter 8 is not expected to converge fast. This leaves room for improvements also 

in the cases where orbital occupations are more stable. 

For this purpose ParaGauss offers several convergence acceleration methods. The theory 

behind the implementation of (dynamic) damping and the perturbation theory approach are 

only shortly summarized in this thesis (Sections 9.1 and 9.2). It has been described already in 

detail elsewhere.90 The current thesis concentrates on the direct inversion in the iterative sub-

space (DIIS) method which has been newly implemented. It is described together with im-

plementation details in Chapter 10. This method is reported to be very efficient,91-92 even if 

this might be only expected for situations close to convergence, making it essential that other 

methods are available as a start-up procedure. Another difference to the other method imple-

mented in ParaGauss, which all operate on the charge fit coefficients, is a variant of the DIIS 

method which operates on the Kohn–Sham matrix instead.   

9.1 Damping 

The damping algorithm is realized by mixing the current value of an object iterated in the SCF 

procedure, in a cycle with the value from the last iteration.90, 93 The mixing scheme can be 

applied to various objects, e.g. the Kohn–Sham matrix, the density matrix or the orbital coef-

ficients. ParaGauss mixes the coefficients of the approximate charge density.  

To carry out the mixing, the SCF cycle i is interrupted at the point after a specific (sca-

lar) object Ai has been calculated. Instead of continuing with the output of this iteration out
iA , a 

mixed input object 1
in
iA +  for the next cycle is generated. In the simplest case it is a fixed mix-

ture of the input and output of the last iteration: 1
in in out)(1i i iA A Aβ β+ = − +  with a mixing param-

eter 0 < β < 1. 

ParaGauss uses this static mixing with a fixed parameter β as a start-up procedure for 

the dynamic damping.90, 94 In the latter approach the value β is calculated anew in every cycle 

using input and output values, in
iA  and out

iA , of the last two iterations. The converged value of 

A should be a fixpoint. Assuming a linear relation between the input and output of the compo-

nents of A in the last iterations, it is possible to determine parameters ( )1/ 1 mβ = −  and the 

corresponding fixpoint from the slope ( ) ( )1 1
out out in in/i i i iA Am A A− −− −= . For the charge fit coeffi-

cients, which are provided as a vector, the average over all component specific first-order de-
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rivatives mk is taken to determine the overall mixing parameter. Ultimately, the values of β 

are restricted to the range between 0.1 and 1 to ensure progress. 

9.2 Perturbation Theory 

Convergence acceleration by means of perturbation theory is an approach to reduce the 

switching of occupied and unoccupied orbitals between SCF iterations.21, 95 This gain in sta-

bility is the only improvement to be expected by this method. The method will have an accel-

erating effect on the convergence only in situations where such situations occur, for example 

for large metal clusters. Applying perturbation theory allows and requests that it is used to-

gether with other acceleration methods. For example already early on perturbation theory was 

supposed to be used together with mixing.21 Unfortunately this combined application does not 

need to enhance the convergence in all cases, but it might disturb the converging of other ac-

celeration methods used instead of mixing. 

The method uses a perturbation theory approach for energy levels of the orbitals, espe-

cially those which are near to the Fermi level. Instead of adapting the energies themselves the 

approximate charge density is created with a correction term 
i iuhρ∆ = ∆∑ɶ  (using the basis 

vectors ui of the approximate charge density), by a corresponding change 
i

h∆  to the charge fit 

coefficients ( *
i i ih h h= + ∆ ). This gives an additional term to the Coulomb component of the 

Kohn–Sham operator, 3( ) ( )/ | |V d ρ′∆= ′ − ′∫r r r r rɶɶ , and with this to the energy, with the side 

effect that the coefficients for the orbital functions 
k

ϕ  have to be adapted. If the change in the 

energy is considered up to second-order perturbation theory, it results in a quadratic term 

which penalizes large changes in the approximate charge density: 
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Here the notation 1 2 1 2 2 1 2| ( ) ( ) ( )[ ] / ( )
ki il k l

u d udϕ ϕ ϕ ϕ= −∫ r r r r r r r  was used. The last part of the 

expression on the right hand side of Eq. (9.1) looks similar to the expression for the elements 

of the matrix G, see Eq. (1.9) : 
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The perturbation theory approach is used exclusively for the determination of the charge fit 

coefficients. Other implementations do not seem to be that successful.21 Introducing the per-

turbation theory term due to the second-energy correction, Eq. (9.1), effectively leads to re-
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placing the matrix G, in the calculation of the approximate charge density expansion coeffi-

cients in Eq. (1.8)  by a sum G + ′G .21 In ParaGauss the orbitals 
l

ϕ  and 
k

ϕ  used in perturba-

tion theory are restricted to only a few in a small energy range around the HOMO-LUMO 

gap. 

10. Direct Inversion in the Iterative Subspace 

10.1 General Method 

The direct inversion in the iterative subspace (DIIS) method is an extrapolation method to 

accelerate iterative searches of fixpoints with respect to some parameter.12, 91-92 In the current 

context the minimal energy with respect to the electron density is sought for. The general con-

cept of the method is to extrapolate one of the quantities which is iterated in the fixpoint 

search in a subspace obtained before by an iterative procedure.  

The DIIS method can be applied in the SCF approach to several variables P, such as the 

Kohn–Sham matrix or the expansion coefficients of the approximate charge density. The 

method is supposed to work well in the quadratic region around the stationary point.91 Far 

from this region it is often not very effective.96 Therefore it is often applied only together with 

another convergence acceleration method which switches to DIIS in the last phase of conver-

gence. 

In the DIIS method, one replaces the current value of a parameter Pi+1 by an extrapola-

tion determined from values of previous iterations similar as the mixing approach (Section 

9.1). However, instead of using only the input parameter Pi from the previous iteration, DIIS 

uses values from m preceding iterations of Pj to build a linear combination. To find the best 

DIIS linear combination 

  
1

1

m

j m j
j

ii a+ − +
=

=∑P P   (10.1) 

with coefficients aj an error vector ( )j i m j− +=e e P  associated with each Pi-m+j is minimized 

using the square of the L2 norm, 
2

1
0

m

j
j

j

k

d

a
a

d =
∑ =e . A practical choice for the error vector is to 

use the residuum vector which should vanish at convergence: 

 1i i i+∆ = −P P Pɶ  (10.2) 

where the parameter Pi as input results in the value 1i+Pɶ  of the quantity P in the next SCF iter-

ation (before extrapolation by DIIS). For keeping the parameter Pi+1 meaningful the DIIS pa-

rameters aj have to be normalized: 



Part II: Convergence Acceleration of the Self-Consistent Field Procedure 

-  67  - 

 
1

1  
m

j

j

a
=

=∑  (10.3) 

 To minimize the error vector, including the constraint of Eq. (10.3) as a corresponding 

Lagrange multiplier λ, one derives a system of linear equations by the Lagrange method with 

a Gramian matrix jij iB = ⋅e e augmented by a row and a column: 
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The error vector given a as residuum vector, as described in Eq. (10.2), is a suitable 

choice for the charge fit coefficients, the Coulomb matrix or the density matrix. This residuum 

vector vanishes at the convergence of the SCF cycle. 

For the Kohn–Sham matrix KSh  as recurrence variable P, however, another definition of 

the error vector is proposed which was suggested to be superior (the new error vector can be 

used more efficiently and the computational cost is lower):12 

 KS KS KS( ) = −e h h DS SDh  (10.5) 

This definition exploits the fact that the self consistent Kohn–Sham matrix KSh  commutes 

with the density matrix D at convergence. The commutator relation can be derived from the 

definition of the density matrix and Eq. (1.7) considering that at convergence the iteration 

number is unimportant. To formulate this vector independent of the normalization convention 

for basis functions, it is transformed into an orthogonal basis using the overlap matrix S:12  

 1/2 1/2
KS KS( ) ( )− −′ =e h S e h S  (10.6) 

A technique to increase the performance of DIIS is to scale the diagonal elements of the 

error matrix B by a factor (1 + d), where d is a small positive number.92 

10.2 Implementation in ParaGauss 

ParaGauss contains two implementations of the DIIS algorithm. One implementation operates 

on the Kohn–Sham matrix using the error vector of Eqs. (10.5) and (10.6). The second im-

plementation, which has proven to be less useful, employs the residuum vector as error vector 

and operates on the charge fit coefficients, see Eq. (10.2). In the following DIIS-KS will al-

ways refer to the implementation, that operates on the Kohn–Sham matrix, while the other 

implementation operating on the charge fit coefficients will be called DIIS-cc. 
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The size of the Gramian matrix B, is limited by the maximal number of stored error vec-

tors and variables of previous iterations. If the SCF algorithm proceeds to more iterations the 

oldest of the stored entries is replaced. The methods start only after several iterations with the 

default convergence acceleration strategy, the dynamic damping method, see Section 9.1. The 

starting iteration for DIIS is controlled by a threshold for the maximum component of the cur-

rent error vector, indicating that a regime where DIIS should be able to work is reached. As 

this threshold might be chosen too large for a specific system and large fluctuations might 

occur, it is possible to return to the original convergence scheme. It is not desirable to switch 

between dynamic damping and DIIS too often. Thus one returns to dynamic damping only 

after a significant increase of the norm of the error. The threshold for returning to the default 

acceleration strategy therefore is set to 10 times the threshold for initializing DIIS. 

The DIIS methods start first with accumulating a specific number of pairs (ei, Pi) before 

an extrapolation is done. DIIS-KS has an option to step-in every mth iteration, only collecting 

error vectors ei and corresponding parameters Pi in between. The number of stored pairs, the 

initialization threshold, the number of steps to collect data before the mixing starts and the 

maximal number m are parameters of the current implementation. These parameter are shared 

by DIIS-KS and DIIS-cc. 

The two methods, DIIS-KS and DIIS-cc, can be alternated or used in parallel. Alterna-

tion is controlled by a threshold for the maximal component of the error vector. It is possible 

to stop DIIS-KS and either to return to the original method or to continue with DIIS-cc, for 

the benefit of getting the charge fit coefficients better converged.  

11. Performance Tests and Results 

Test examples demonstrating the applicability of DIIS-KS and DIIS-cc were chosen from two 

groups of applications: The first one are actinide complexes. These systems are represented by 

an actinide ion and the water molecules of the complex treated by the all-electron quantum 

chemistry. The first member of this group was neptunyl, [NpO2(H2O)5]
+, see Figure 11.1. Ap-

plying D5H symmetry constraints, this corresponds comprises 4 unique atoms.  A second ex-

ample of this group is a charged americium complex, aquated Am3+ without symmetry con-

straints (C1 symmetry). The complex included eight water molecules. The second group of 

examples are palladium clusters in Oh symmetry with different numbers of atoms, see Figure 

11.1. The basis sets for all test systems are provided in Appendix H. 
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Figure 11.1: Sketches of the geometries of evaluated test examples: a) Pd6, b) Pd14, c) Pd38, d) 
Pd44, e) Pd68, f) Pd92, g) Pd116, h) [NpO2(H2O)5]

+, i) [Am(H2O)8]
3+. 

The evolution of the three convergence measures, working on the density matrix, on the 

charge fit coefficients, and on the energy differences, as the SCF procedure progresses are 

used for the following tests. The energy measure, the absolute value of the difference of the 

current energy to the value of the last iteration is given in the unit of energies and therefore 

well defined. The measure for the charge fit coefficient uses next to the charge fit coefficient 

matrix h the diagonal elements of the overlap matrix of the basis functions of the approximate 

charge density in Coulomb norm 1 2 1 2 1 2[ ]| ( ) ( ) / ( )
ij i j i j

u d uG u d u= = −∫ r r r r r r . The resulting 

measure is given as max | |k kk
k

h h G∆ = ∆ . This measure is invariant to changes of the basis 

functions αχ  of the approximate charge density. The third measure, using the density matrix 

of the orbital coefficients, is given (in cases without spatial symmetry constraints) as 

,
| |max ij

i j

D D∆ = ∆ . In case of spatial symmetry constraints the measure is created for each irre-
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ducible representations and the overall measure is given as the maximum of them. In contrast 

to the other two measures the values of the density measure depend on the choice of the or-

bital basis functions αχ . This results in some arbitrariness regarding the magnitude of the 

measure. In cases where these orbital functions are normalized, the measure is normalized as 

well. However in a general case this does not need to be the case as the implementation used 

for ParaGauss does not rely on normalized orbital functions. Thus the user should be aware 

that for basis sets chosen with unfortunate norms the convergence criteria for the density 

measure might provide misleading results.  

Furthermore the convergence is usually limited. As DIIS is not intended to tighten the 

convergence, that can be achieved, but rather the rate of convergence, the focus of the follow-

ing test cases is on the latter. Thus for observing the behavior of the different convergence 

accelerators the most important values in the following will be the limits for the convergence 

measure and the convergence rate required to reach these limits. Reaching a special conver-

gence threshold, as required for production calculations, will not be in the focus of the present 

discussion.  

11.1 Convergence Behavior for Small Examples 

The SCF convergence behavior was inspected for two examples with runs including 200 itera-

tions for various convergence acceleration techniques. All these techniques start with a dy-

namic damping approach. The dynamic damping phase, see Section 9.1, was preceded by 5 

cycles with a static mixing with coefficient β = 0.5. The mixing coefficient could be chosen 

that large as the test examples are rather simple. After the maximal component of the error 

vector reached the threshold of 0.1 Hartree the procedure switched to either DIIS-KS or DIIS-

cc. For none of the test examples in this section perturbation theory was used. As test exam-

ples the neptunyl ion and a small palladium cluster with 14 atoms were taken, see Figure 11.1. 

Thus one small example of each class was treated. 

The evolution of the three convergence measures, the norm of the density matrix, of the 

charge fit coefficients, and of the energy differences, as the SCF procedure progresses, are 

given for the neptunyl ion in Figure 11.2. Convergence measures reach a limit for all methods 

though, for the iterations towards the end all methods seem to fluctuate slightly around that 

limit. For the density convergence this limit was around 10-12 in relative units for all methods, 

as measured by the average over the last 20 iterations. The value of that limit for the energy is 

between 10-10 and 10-11 Hartree. The limit for the charge fit coefficient convergence measure 

is substantially lower for the DIIS-cc acceleration method. Indeed while the convergence limit 
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for the DIIS-KS or without DIIS was 6·10-5 and 5·10-6 in relative units, the DIIS-cc method 

reaches the limit at around 10-18 to 10-20.  Convergence thresholds of 10-8 Hartree and 10-9 for 

energy and density measure, respectively, are more than sufficient in the present context. Only 

for the charge fit convergence measure, where, in practice, criteria between 10-4 and 10-5 are 

used, the limits are rather near to the desired convergence.   

 

Figure 11.2: Convergence criteria evolution during calculation of [NpO2(H2O)5]
+. The densi-

ty and the charge convergence criteria are in relative units, the energy convergence criterion is 
in Hartree. Three calculation techniques are compared: with dynamic damping (solid), DIIS-
KS (dashed) and the DIIS-cc methods (dotted) after meeting the DIIS initialization threshold. 

The same overall behavior of the convergence measures can be seen for the Pd14 exam-

ple in Figure 11.3. All convergence acceleration methods approach a limit with small fluctua-

tions. For the energy criterion all calculations fluctuate about a value below 5·10-10 Hartree. 

Also the density convergence limit is not much different for the three methods. For the last 20 

iterations the average of the density matrix changes is between 3·10-10 for the dynamic damp-

ing method against 4·10-11 and 10-11 for the DIIS-KS and the DIIS-cc variants, respectively. 

These values are again in relative units. Again, the behavior of the charge fit coefficients 

stands out. While DIIS-KS and the dynamic damping methods reach a limit of the order of  

10-7 and 10-6 in the relative units, the limit for the DIIS-cc method is significant lower. For 
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both test examples, Pd14 and neptunyl, the clear difference in behavior related to the conver-

gence limit of the DIIS-cc and the DIIS-KS method might be explained by the fact that DIIS-

cc operates directly on the charge fit coefficients while the DIIS-KS method affect conver-

gence of the charge fit coefficients only indirectly. The DIIS-cc method is therefore by design 

explicitly minimizing the convergence measure of the charge fit coefficients. 

 

Figure 11.3: Convergence criteria evolution during calculation of Pd14. Shown are conver-
gence criteria for the density (in arbitrary units), the charge fit coefficients (in arbitrary units) 
and the energy (in Hartree). Three different calculations are compared: with dynamic damping 
(solid), DIIS-KS (dashed) and the DIIS-cc methods (dotted). 

This convergence behavior demonstrates that in case a tight charge fit coefficient con-

vergence is required, it is favorable to use DIIS-cc. Unfortunately DIIS-cc is not the best 

method for the convergence if considering the other properties or measuring different effects 

like the convergence rate. Indeed, the DIIS-KS method shows the steepest decrease for all 

convergence criteria. In fact, the switch over from the dynamic damping acceleration tech-

nique to the DIIS-KS method takes place slightly earlier than in the case of DIIS-cc. However, 

because of the different convergence rates it is not expected that tuning the starting point for 

the DIIS-cc method could change its overall performance. Another fact should be also men-

tioned: at convergence the total energies of the calculation with the DIIS-KS method and the 
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one with the traditional dynamic damping technique differ by about 10-9 Hartree. The same 

order of differences appeared for all the other calculations, which are done for further tests 

with DIIS-KS within this section. However the total energies of the calculation converged by 

DIIS-cc differ by about 10-6 Hartree from these results. This means that DIIS-cc converges to 

a slightly different solution, a fix point for the charge fit coefficients. 

 

Figure 11.4: Evolution of the relative density convergence. The curves show the behavior for 
various thresholds at which DIIS-KS starts: 0.1 (solid), 0.3 (dashed), 0.5 (dash dotted), 0.8 
(dotted), 1.0 (dash dot dotted). Left panel: [NpO2(H2O)5]

+; Right panel: Pd14. 

DIIS should only work well for convergence acceleration towards the end of the calcula-

tion. Already in its first description it was explained that it cannot be expected to be useful for 

the initial convergence.12 Changing the initial convergence threshold, after which the program 

switches to DIIS, should affect the convergence behavior. Too large a value will force DIIS to 

work in an unfavorable region, maybe even preventing convergence. Too small a value will 

reduce the overall speed of convergence. For both test cases, the neptunyl complex and Pd14, 

different threshold values in the range between 0.001 and 1 Hartree were tested for the DIIS-

KS method. Some of these curves are shown in Figure 11.4 for the density convergence. For 

each test example all calculations ended with the same convergence limit. The convergence 

rate is also the same after DIIS-KS steps in. The main difference in the evaluation of starting 

thresholds is the iteration number of the start of convergence.  

Especially the calculation with 0.8 Hartree as the initiation threshold of the DIIS-KS 

method had difficulties in the beginning to converge, showing a fluctuating behavior that 

seemed to indicate that the threshold was chosen too large. 

As all calculations show more or less the same convergence rate in the region where DI-

IS-KS works efficiently, i.e. after the fluctuations have died off, a good measure for compar-

ing various initiation thresholds is to compare the iteration in which a given value for the con-

vergence criteria was reached. A value of the convergence criteria well below the fluctuations 
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at the start and above the convergence limit at the end should be used. Table 11.1 summarizes 

the number of iterations required to reach the energy criterion of 10-8 Hartree (a common val-

ue used for production calculations) in calculations with different initiating thresholds for DI-

IS-KS for both test examples. Note that the case with exclusively dynamic damping (compare 

Figure 11.2 and Figure 11.3) is given as threshold 0 Hartree in Table 11.1. 

Table 11.1: Number of iterations to converge the energy to 10-8 Hartree for two test systems 
and varying initial thresholds for DIIS-KS. 

Threshold  NpO2(H2O)5
+ Pd14 

in Hartree DIIS start conv. DIIS start conv. 
0 – 37 – 64 
0.001 20 33 46 50 
0.01 19 28 37 39 
0.025 12 33 22 39 
0.05 11 28 15 26 
0.06 11 28 15 26 
0.07 11 28 15 26 
0.08 11 28 15 26 
0.09 11 28 14 30 
0.1 11 28 14 30 
0.15 11 28 13 32 
0.2 11 28 13 32 
0.3 10 35 8 23 
0.4 8 19 8 23 
0.5 8 19 7 25 
0.6 8 19 7 25 
0.7 4 51 7 25 
0.8 4 51 7 25 
0.9 2 26 7 25 
1.0 2 26 6 25 

 

For neptunyl the thresholds of 0.7 and 0.8 Hartree require large number of iterations, 51, 

to reach convergence. This was already shown by the curve for 0.8 Hartree in Figure 11.4, 

featuring large fluctuations in a significantly large interval at the beginning. The even larger 

thresholds were requiring less iterations, 26, see Table 11.1. One reason for this might be that 

the thresholds starting with 0.7 are too large, so that DIIS-KS starts in an unfavorable region, 

far from the quadratic region. In this regard the smaller results for the even lager threshold 

might be an effect of chance. The best results for DIIS-KS obtained with initiation thresholds 

between 0.4 and 0.6 Hartree, are about half of the iteration count of the dynamic damping 

approach.  

In case of the palladium cluster the number of iteration for the various initiation thresh-

olds are much closer to each other. Only for very small values of the initiation threshold the 
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number of iterations increases. The best value for the threshold to start DIIS-KS in this case is 

about 0.07 Hartree, which is much lower than in the case of the neptunyl. This also indicates 

that there is no universal optimal threshold. Still both systems performed well in the explored 

region. Turning of initiation thresholds provided an improvement for nearly all cases except 

for the thresholds 0.7 and 0.8 Hartree for neptunyl, where a larger number of iterations than 

with dynamic damping is obtained (Table 11.1).  

Considering convergence criteria of 10-8 Hartree for the energy and 10-5 and 10-9 for 

density and charge fit coefficient criteria, respectively, the neptunyl test example required 69 

iterations with the reference dynamic damping calculation. DIIS-cc and DIIS-KS (with the 

default threshold of 0.1 Hartree) required 66 and 33 iterations, respectively, thus 4% and 52% 

less iterations. The reduction was even better for Pd14 (with the same convergence criteria). 

The dynamic mixing calculation required with 132 iterations significantly more than DIIS-cc 

with 95 iterations or DIIS-KS with even 36 iterations. In this case DIIS-KS required 73% less 

iterations. 

11.2 Pdn Clusters, n= 6–116, with Perturbation Theory 

To get an impression of how DIIS-KS behaves for larger systems than those discussed in the 

previous subsection a series of palladium cluster was examined, see Figure 11.1. The clusters 

were all of Oh symmetry, with 6, 14, 38, 44, 68, 92 and 116. For metal clusters featuring a 

small HOMO-LUMO gap, the convergence acceleration via perturbation theory is usually 

applied within ParaGauss. Thus perturbation theory is also applied for all of the following 

calculations, providing equal terms for comparisons. However, when DIIS-KS is started, per-

turbation theory is turned off. This is also in agreement with earlier considerations about this 

topic to facilitate convergence.21 The occupation numbers of the orbitals around the HOMO-

LUMO gap are smoothened by using a so-called broadening function of the orbital energies.5 

For the clusters investigated in this section the broadening was done with the Gaussian func-

tion with a half-width of 0.1 eV. 

The convergence limit of the three criteria, for energy, density and fitted density, varies 

with the size of the clusters. While the energy convergence limit is below 10-10 Hartree for the 

smallest system, the average over the last 20 iterations for the largest system is only 7·10-8 

Hartree. The largest part of the change in the limit is most certainly related to the increase in 

the global energy. If only relative energy differences are considered the values are rather sta-

ble, about 10-15 to 10-14. In a similar fashion, the convergence limit for the density on average 

is between 6·10-6 and 3·10-12 and the charge fit coefficients between 2·10-4 and 2·10-7. To a 

large extent, this decrease in accuracy may be related to the increase of values for the fitted 
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approximate charge density and the usual density. The global norm of both increases with the 

number of atoms. While for the charge fit coefficients values considering these changes differ 

only between 3·10-9 and 6·10-10, the effect for the density measure is not that prominent, with 

values still differing between 10-14 and 10-9. This might be partly related to the fact that the 

density measure is not normalized. The calculation using DIIS-KS with the standard DIIS 

initiation threshold of 0.1 Hartree on Pd116 did not converge (just as the calculations with dy-

namic damping), but showed large fluctuations from the beginning. Only after the initiation 

threshold for DIIS-KS was set to a smaller value of 0.05 Hartree the Pd116 calculation also 

converged. For all other systems the convergence limits for the calculation with DIIS-KS and 

dynamic damping are of the same order. Only for the charge fit coefficients the convergence 

limits for the calculations with DIIS-KS were always worse. 

Table 11.2: Convergence limit of the electronic density and number of iterations to reach a 
convergence of twice the limit (iter.) for the palladium clusters with n atoms. Two different 
DIIS initiation thresholds (in Hartree) are compared. 

 Without DIIS DIIS, Thr. = 0.1 DIIS, Thr. = 0.05 
n Conv. Iter. Conv. Iter. Conv. Iter. 
6 1E-11 63 4E-12 31 3E-12 31 

14 2E-10 56 3E-11 40 3E-11 34 
38 1E-07 36 2E-08 34 2E-08 33 
44 2E-07 38 4E-08 44 3E-08 40 
68 2E-06 39 3E-07 57 2E-07 49 
92 3E-06 52 9E-07 50 7E-07 51 

116 5E-06 57 – – 6E-06 84 
 

For the density convergence, the convergence limit and the number of iterations, to 

reach twice that value are given in Table 11.2 for all cluster sizes. The number of iterations 

was taken at this value to avoid the fluctuations around the limit while profiting from a faster 

convergence rate. The same two performance indicators for the charge fit coefficient and the 

energy convergence are summarized in Appendix E.  

The number of iterations to reach the convergence limit was usually not significantly 

different for DIIS and dynamic damping. Especially for the larger cluster, Pd44 to Pd116, the 

dynamic damping with perturbation theory required fewer iterations for the density and the 

energy convergence. For the smaller clusters, with 6 to 38 atoms, the strategy using DIIS out-

performed dynamic damping with perturbation theory.   

This shows that the DIIS method does not perform well together with perturbation theo-

ry and Fermi broadening. It seems to be of only marginal use for such calculations. 
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11.3 Actinide Complexes 

Another large test example, the hydrated americium ion, [Am(H2O)8]
3+ in C1 symmetry, see 

Figure 11.1, was used with level broadening by a Fermi function, with a width of 0.2 eV, but 

without perturbation theory convergence acceleration. 

 

Figure 11.5: Evolution of convergence of energy, density and fitted density for hydrated 
Am3+. Shown are the evolution of the convergence of the density (in relative units), the charge 
(in relative units) and the energy (in Hartree). Two calculations are compared: with dynamic 
damping only (solid) and with DIIS (dotted) after the DIIS initiation threshold of 0.05 Hartree 
was reached. 

A reference calculation was carried out with a combination of static and dynamic damp-

ing: the first 15 iterations were done with a fixed mixing coefficient of 0.1 before changing to 

the dynamic damping. The DIIS-KS method was applied after the threshold of 0.05 Hartree in 

the convergence criteria was reached. With this initial threshold the calculations switched over 

to DIIS-KS after 27 iterations. The evolution of the convergence of energy, density and fitted 

density for the first 100 iterations is shown in Figure 11.5. There is hardly any difference in 

the behavior of the convergence of the charge fit coefficients between the calculation with and 

without DIIS-KS. In fact the calculation without DIIS-KS reaches the threshold of two times 
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its convergence limit in iteration 37, while the calculation with DIIS-KS requires 6 iterations 

more for a slightly larger limit. 

 For the other two quantities, energy and density, this looks different. The energy con-

vergence has a convergence limit of 8·10-10 Hartree for the calculation without DIIS-KS and 

the value of 1.6·10-9 Hartree is reached in iteration 74. With DIIS-KS the convergence limit is 

even 3·10-10 Hartree and 6·10-10 Hartree is reached in iteration 41 almost twice as fast. By de-

sign, DIIS-KS is expected to provide the best improvement for the density convergence: this 

is also true in the current case. While DIIS-KS reaches the accuracy of 5·10-12 in iteration 87, 

the calculation without DIIS-KS is still far from this convergence region in iteration 199 with 

an accuracy of about 4·10-7. Using convergence criteria of 10-8 Hartree, 10-9 and 10-3 for the 

energy, the density and the charge fit convergence, respectively, the calculation with DIIS-KS 

converges in iteration 68, while the reference calculation using only dynamic mixing did not 

reach convergence within 200 iterations at all. DIIS-KS is therefore well suited for usage in 

calculations without perturbation theory convergence acceleration. 

12. Conclusion 

Two variants of the direct inversion in the iterative subspace (DIIS) method have been im-

plemented in the course of this work. They are not suited for the initial convergence. Thus one 

initially has to invoke a dynamic damping method and switch to the DIIS methods later on. 

One DIIS variant (DIIS-KS) works on the Kohn–Sham matrix while the other one (DIIS-cc) 

extrapolates the charge fit coefficients. 

The DIIS methods can be applied efficiently for various systems. However, for systems 

with small HOMO-LUMO gap the usage of dynamic damping together with the perturbation 

theory is still recommended. For other systems DIIS, especially DIIS-KS, can be used to im-

prove the convergence. Convergence of the density matrix, the charge fit coefficients and the 

energy are differently affected by DIIS. DIIS-KS shows usually for all variables the fastest 

convergence rate; its improvement of the speed of the convergence is the largest for the densi-

ty. The convergence limits of the density matrix and the energy difference are of the same 

order for dynamic damping and both DIIS acceleration techniques. The convergence limit for 

the charge fit coefficients is often not as tight as for the other variables. However DIIS-cc 

allows in some circumstances to converge the charge fit coefficients to a tighter accuracy than 

the others quantities. This is the main advantage of this method. 

For some small systems, the neptunyl anion and Pd14, DIIS-KS reduced the number of 

required iterations of about 52% and 73% compared to the reference calculation with dynamic 
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damping for the same choice of convergence criteria, relatively. For a larger test system, hy-

drated americium ion, the improvement especially for the density convergence measure was 

even larger.  

Thus, in general DIIS method is a useful tool, which can increase the approach to con-

vergence and the accuracy of final results for quite a lot of systems. However to get in all cas-

es a fast and reliable convergence further investigations are required. For example, developing 

a method with improved convergence in cases with a small HOMO-LUMO gap would be a 

valuable choice for further efforts. 
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Part III: ParaTools 

13. Methods for Transition State Search on Potential Energy Surfaces 

13.1 Exploring Potential Energy Surfaces 

 A major task for computational chemistry is the search for specific geometries on the poten-

tial energy surface ( )E r , a function of the geometry vector r, which comprises the positions 

A
r  of all nuclei A in a three-dimensional space. Stationary points, geometries which are of 

special interest, have vanishing gradients of the energy with respect to the nuclear positions r,

( ) ( ) 0  E= ∇ =g r r . If the second-order energy derivatives, collected in the so-called Hessian 

matrix B , give rise only to positive eigenvalues, the stationary point is a local minimum. Lo-

cal minima on the potential energy surface correspond to the most important chemical struc-

tures — stable and meta-stable species, including also reaction intermediates. A transition 

state of a reaction is a stationary point with exactly one negative eigenvalue of the Hessian 

matrix. Reaction pathways are curves on the hypersurface interconnecting two of the minima 

typically via a transition state. The most important ones are those with minimal energy barrier, 

called minimum energy pathways. The path which follows the direction of least curvature of 

the potential energy surface, starting from a minimum, can end in a blind valley for compli-

cated reactions. An alternative is the “steepest descent path”, which always follows the direc-

tion of steepest descent, down from a transition state. The direction t(s) along the path (the 

tangent) at position r, with s being the coordinate which parameterizes the path, of such a 

steepest descent path is given by 

 ( ) ( ( ))s s= −t g r  (13.1) 

Following Fukui,97 this equation defines the “intrinsic reaction path” which intersects each 

equipotential contour in orthogonal fashion. 

Various methods exist for determining an approximation of the intrinsic reaction path. 

One example for these methods, which are widely used,98-104 are chain-of-state methods, 

where the path approximation is represented by n images (sometimes also called path nodes), 

the chain of states. Interesting properties of a reaction, like the reaction rate, can usually be 

calculated without knowledge of the complete path but using only properties of the transition 

state. However, the transition state estimates from paths with common convergence criteria 

usually do not reach the desired accuracy.101, 105 Methods for searching locally for a transition 

state can be used both independently106-107 or as a refinement of a chain-of-state method.108-113 

The focus of the current thesis is on a two-step strategy, using a chain-of-state method to gen-
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erate an approximate transition structure which then is refined by a local transition state meth-

od. Several choices for the different methods are considered. 

There exist two important classes of chain-of-state methods: nudged elastic band 

(NEB)114-115 and string116-122 methods. Both classes require one to define tangents of the path 

at every image position. The component of the energy gradients at the images parallel to the 

path does not need to vanish. Both classes of methods also need to keep the images evenly or 

otherwise regularly distributed along the path. The main difference between these two classes 

of methods is that the NEB method modifies the energy gradients to care about all these re-

quirements at once. This is done by adding so-called string forces to mimic an elastic band 

between the images. The string methods decouple the two requirements, optimization of the 

path and distribution of the images along the path. Thus, only the gradient component perpen-

dicular to the path is optimized; in a separate step, called “respacing”, one takes care of the 

distribution of the images. In the respacing step, which may be applied only occasionally, the 

images are redistributed on the path to fulfill the conditions for spacing.  

Besides the standard implementation of such methods it is worth mentioning that there 

exist some more specialized methods, modifications of the standard methods, which are sup-

posed to provide advanced transition state estimates. For example, the searching string meth-

od is a version of the string method which intends to space the images more tightly around the 

transition state.118 Another modification is the climbing image (CI) approach where one image 

is supposed to reach the transition state. This approach was first suggested by Henkelman et 

al.123 as a modification of the nudged elastic band method. It was also adapted for usage in 

combination with string methods.124 

When searching locally for a transition state, one has to consider that the search is simi-

lar to the search for a local minimum as both geometries are stationary points. Nevertheless, 

the search for a transition state is much more complicated than the search for a local minimum 

because for a transition state the Hessian matrix needs to have exactly one negative eigenval-

ue. Getting all eigenvalues positive (as for the minimum) is simpler and can, for example, be 

done by the quasi-Newton methods, which use first- and approximate second-order deriva-

tives of the energy with respect to the nuclear positions. The positive definiteness of the ap-

proximate second-order derivatives of the energy, the Hessian matrix, can be enforced for the 

minimum search; thus the stationary point to which the method converges has with high prob-

ability the right signature. The signature of a transition state cannot be enforced by common 

update strategies. Thus a direct approach to a transition state is not feasible with a quasi-

Newton approach. It is only possible to use a quasi-Newton method which searches for the 
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next stationary point, or to turn to a more complex strategy. When using the simple quasi-

Newton method, there is a high probability, especially for starting geometries far from the 

structure of the transition state, that the search fails to locate the intended transition state and 

ends instead in any other stationary point. This method is therefore only useful if the geometry 

is already close to the transition state. For example, the program package Gaussian imple-

ments synchronous transit methods which switch automatically to quasi-Newton when getting 

close enough to a stationary point.125 

Solutions to make the quasi-Newton method work also for transition state search when 

starting further off the convergence region usually involve a calculation of all eigenvalues of 

the Hessian. Poppinger126 proposed a method where all eigenvalues are calculated and in case 

of a wrong number of negative ones a step along the mode direction of the unwanted curva-

ture (minimization for the second negative one, maximization if all curvatures are positive) is 

done in order to reach a region with the desired signature of eigenvalues. When only one neg-

ative eigenvalue is obtained, a Newton–Raphson step is carried out. The possibility of using 

also the other eigenmodes for the determination of the correction step has also been dis-

cussed.127-128 Baker prefers to shift all eigenvalues and then uses an rational function optimi-

zation (RFO) approach.127 In this way the search direction is chosen such that the energy 

along one mode of the approximate Hessian should be maximized, the energy along all other 

eigenvectors should be minimized. Baker mentioned that the mode along which the energy 

should be maximized does not need to be the mode that corresponds to the lowest eigenvalue 

of the approximate Hessian but could be arbitrarily chosen from the eigenmodes of the ap-

proximate Hessian. In this case the mode with the largest overlap to the mode of the last itera-

tion is used further during the progressing optimization.127 

A different class of local transition state methods is often addressed under the name 

“mode following”. These procedures define a special mode direction which should represent 

the reaction coordinate. This direction is treated differently from the others when the geome-

try is updated. One way of carrying this out is to separate steps along and orthogonal to the 

mode direction.129 However it seems to be a superior strategy to adapt also the mode direction 

itself.130 A method, which combines the two types of steps by using a modified gradient, does 

alternating update steps for the geometry and the mode direction. This is the so-called Dimer 

method, for which several modifications are available.131-133 

13.2 Routines of the Program Package ParaTools 

ParaTools is a collection of routines, written in the programming language Python, 

which work on a potential energy surface. For these routines the potential energy surfaces can 
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come from various sources, from a simple analytical potential like the Lennard-Jones potential 

up to a potential energy surface based on a complicated density functional code. ParaTools 

treats the source as a “black box” algorithm that provides energies and gradients of the energy 

for selected coordinates. Many of these “black box” routines are python interfaces for quan-

tum chemistry programs, obtained from an open source program package, the atomic simula-

tion environment (ASE).134 

Most of the ParaTools routines concentrate on the tasks of finding transition states or 

approximations to a minimum energy path. For these tasks a selection of the routines men-

tioned in Section 13.1 were implemented. This selection includes both chain-of-state methods 

and local transition state search methods to allow performing a two-step strategy of transition 

state search as mentioned in Section 13.1.  

The chain-of-state methods implemented in ParaTools are a version of the NEB method, 

which follows the descriptions of Henkelman et al.,115 and three string methods, which share 

the general interface but differ in the distribution of the images. The three string methods are: 

first, a standard string method, with images equally spaced on the path; second, a growing 

string variant122, 135 and at last, a searching string variant.118 The growing string and searching 

string variants start with a reduced string and add further images when some specific require-

ments are met. The differences between these variants are the positions at which the new im-

ages are inserted and whether some of the images of the remaining path are frozen. All string 

methods make use of cubic splines to interpolate the path between the images, allowing one to 

approximate the path tangents at the images as tangents of the cubic splines. All string meth-

ods implement a search for new positions on the path for respacing. All variants of the string 

methods implemented differ from the ones described by Chaffey-Millar et al.118 in the algo-

rithm to construct a spline parameterization, see Chapter 17,  and the possibility of choosing a 

metric for the coordinate space, see Chapter 18. Additional standard optimizers were imple-

mented, see Chapter 15. The novel enhancements include also climbing image variants for all 

path searching methods, see Chapter 16. 

Additionally ParaTools was enhanced by some local transition state search methods, see 

Chapter 14. A simple quasi-Newton method and a standard dimer method131 were implement-

ed as references. The main enhancement for the local transition state search methods was a 

new interpretation of the dimer method motive, which was developed and implemented in the 

context of this thesis. 
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14. Local Transition State Search Routines 

14.1 Quasi-Newton Methods 

Newton methods are widely used to locate the geometries that represent minima on potential 

energy surfaces, using first- and second-order derivatives of the potential energy. The meth-

ods propose a step, which on a quadratic potential energy surface leads directly to the mini-

mum. Quasi-Newton methods approximate the matrix of the second-order derivatives of the 

energy, the Hessian matrix B (or its inverse 1−=H B ), using the changes of the gradients of 

the energy with respect to the nuclear positions during the preceding steps, by one of several 

Hessian update methods.  

There are many adaptions of the Hessian update schemes for transition state search deal-

ing with the fact that the matrix of second-order derivatives of the energy should have exactly 

one negative eigenvalue. This requirement rules out the BFGS (Broyden–Fletcher–Goldfarb–

Shanno) update method,136 which enforces positive definiteness of the approximate Hessian. 

On the other hand, the SR1 method (symmetric rank 1) will maintain only the symmetry, al-

lowing for negative eigenvalues. The SR1 update formula for the inverse of the Hessian ma-

trix 1−=H B  is: 

 1 ,   
T

k k k k k

T k

+ ⋅
= + = ∆ −

u u
H H u x H y

u y
  (14.1) 

with 1k k k+= −y g g  and 1k k k+=∆ −x x x  being the gradient difference and the corresponding 

step from kx  to the new geometry 1k +x , respectively. A quasi-Newton approach with the SR1 

update may or may not converge to a transition state. If one of the first geometries, where the 

Hessian matrix is not yet very accurate, would lead into a region with several or no negative 

eigenvalues, the method is likely to converge to the stationary point belonging to this region. 

It simply is not advisable to start a transition state search from far off the solution. The meth-

od is properly used only for geometries which are already nearly converged to the intended 

transition state where the maximum geometry update step size is small. Then quasi-Newton 

methods are supposed to converge fast and reliably. 

14.2 The Standard Dimer Method 

The Dimer method was invented by Henkelman and Jonsson131 to find saddle points on high 

dimensional potential surfaces. Their method is useful if the second-order derivatives of the 

energy are not accessible or much too costly to compute. Henkelman and Jonsson131 used two 

images at 1+x  and 1−x  of the system, connected by a vector of fixed length in the direction of 
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the so-called mode vector m with 1 1 2l+ −− = ⋅x x m , 1=m . The images should be arranged 

such that the mode vector is along the direction of lowest curvature C of the potential energy 

surface at the location of the dimer midpoint 0 1 1 /( ) 2x + −= +x x . To achieve this, the images 

can be rotated around their midpoint (rotation step). In a translation step the images are moved 

such that the energy in the direction of the approximated lowest curvature mode is maximized 

and the energy in the complementary directions is minimized. 

These ideas were used and modified by other authors.132-133, 137 who found it convenient 

to use the midpoint at 0x  and one of the images (at 1x ) for defining the dimer. These authors 

only approximate the gradients at the other image 2x . With this approach one takes into ac-

count that one usually does not have an analytical potential surface and the cost of each gradi-

ent evaluation is substantial. Therefore, it is rather helpful to calculate explicitly the point, 

which is supposed to reach the saddle point. Furthermore the results for the midpoint can be 

reused in the dimer rotations; in case of maintaining two images one has to calculate the gra-

dients for both images anew in each rotation step. Also, there is a tendency to do several rota-

tion steps till convergence is reached before doing a translation step, instead of doing alternat-

ing rotation and translation steps. The implementation in ParaTools follows the method de-

scribed by Heyden et al.132 

14.2.1 The Translation Step 

The gradients at the dimer midpoint 0x  should vanish at a transition state. Different to, for 

example, a minimum, this should not be reached by minimizing the potential energy in all 

directions (for a minimum all eigenvalues of the matrix of second-order derivatives of the 

energy are positive), but by maximizing the potential energy in the direction of the mode vec-

tor (corresponding to a negative eigenvalue). This can be rephrased as following a modified 

force, where the component of the true force along the dimer direction is inverted. A modified 

force does no longer correspond to the true potential energy surface, thus the minimization 

algorithm has to work only on the forces. Henkelman et al.131 suggested to use the conjugate 

gradient method for the minimization, which was seconded by Heyden et al.132 The current 

implementation uses the Polak–Ribiere138 approach for the conjugate gradient method with 

Powell's restart suggestion.139 The only change to the implementation for minimizing is that 

the modified forces had to be used instead of the usual ones. 
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14.2.2 The Rotation Step 

Every rotation is carried out in a plane, which is defined by the mode vector and a second 

direction, ⊥k m , derived from a so-called “rotation” force. This rotation force is defined as 

the difference between the gradient projections perpendicular to the mode vector at the two 

dimer endpoints, 
rot

1 1 1( | | )+ − + −= − + + − iF g g g m g m m, for the gradients 1+g  and 1−g  at 

1+x  and 1−x , respectively. When using the midpoint, the expression is similar:132  

 rot
1 0 1 02( ) 2 |= − + −−F g g g g m m  (14.2) 

For the ideal case of a quadratic surface the two definitions are equivalent. It is possible to 

take the force vector rotF  as the second direction required to specify the plane although often 

one applies a conjugate gradient approach to the rotation force to improve direction k  for the 

plane. This requires changing the usual conjugate gradient approach:138  

 rot '
1( )i i ii γ −= +k F k  (14.3)  

Here the weighting factor 
i

γ  and the modified old direction 1'
i−k  are used; the latter is ob-

tained from the direction 1i−k  of the preceding step as follows. The old direction 1i−k  is not 

orthogonal to the current mode vector m. To define the plane by a second direction 
i

k , the 

modified old direction 1'
i−k  should be orthogonal to the current mode vector but should still 

lie in the old rotation plane:131 

 
( )h

1 1

h h
1 1| | / |' |

i i

i i

− −

− −

=

= ⋅

−k k k m m

k k k k
 (14.4) 

Using these formulae the vector 1'
i−k  which replaces the old direction 1i−k  of the usual conju-

gate gradient approach fulfills these requirements. The length of this vector 1'
i−k  is the same 

as the length of the old vector 1i−k . The weighting factor 
i

γ  is calculated following Polak–

Ribiere,138 only using the rotation forces:  

 
rot rot rot

rot rot

( )( ) ( )

( ) ( )
i

i ii

i i
γ

−
=

F F F

F F
 (14.5) 

If the weighting factor is negative, 0
i

γ < , the procedure is restarted as suggested by 

Powell.139  

Having defined the plane ( ),m k  by two orthogonal vectors and fixed the midpoint as 

well as the dimer length 2l, there is only one degree of freedom left, which could be used to 

find the best mode vector in the plane. This degree of freedom is expressed as a rotation angle 
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φ . The geometries of the dimer point can thus be expressed as a function of the rotation angle, 

( )φx , with 1(0) =x x . The curvature of the potential energy surface at the midpoint in the di-

rection along the rotated mode vector can be approximated as difference of the gradient pro-

jections: 

  
2

0 0( ) ( ( )) | ( ) /C lφ φ φ= − −g x g x x  (14.6) 

One assumes the curvature to be a quadratic function around the midpoint: 

 0 1 1( ) / 2 cos 2 sin 2C a a bφ φ φ+ +≃   (14.7) 

The parameters of this equation can be calculated with Eq. (14.6), using two geometries, 

0φ = and 1φ φ= : 
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2
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=
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= −
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∂

  

[The first-order derivative of the curvature can also be approximated with the help of Eq. 

(14.6).] In another, simpler, approximation, the rotation angle *φ  that corresponds to the min-

imum curvature of the potential energy surface as found in the plane, can be determined from 

the gradients of one geometry 1g , allowing to calculate (0)C  and /C φ∂ ∂ : 

 * 1 /
arctan 

2
 -

2 | (0) |

C

C

φ
φ

∂ ∂
=   (14.8) 

This can be used as the second geometry at 1φ , as required for the quadratic approxima-

tion. Heyden et al.132 suggested doing another rotational step 1φ  for the interpolation instead. 

In this way, a more stable numerical procedure is expected when *φ  becomes small near con-

vergence. The standard dimer method of ParaTools uses 
1 / 4φ π= ±  with the same sign as the 

approximate angle *φ . The quadratic approximation, Eq. (14.7), being a periodic function, has 

two minima that correspond to the two equivalent choices of the mode vector. Thus, any of 

the two directions can be used as a new mode vector m; e.g., see Eq. (14.2) .  

To avoid wasting computer time, the number of rotation steps is limited and two con-

vergence criteria are applied. The calculation is stopped if the rotation angle minφ  to the mini-

mum of Eq. (14.7) is below a threshold. The rotation is also stopped if the approximate rota-

tion angle *φ  is smaller than the same threshold. A small angle *φ  indicates that the mode 

vector m is an eigenvector of the Hessian matrix of the system, as in this case the gradient 
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difference g–g0 is parallel to the mode vector; the two contributions /C φ∂ ∂  and 2 | (0) |C  of 

the angle can be identified as the parts of the gradient difference perpendicular and parallel to 

the mode vector. This is one of the suggestions of Heyden et al.132 for reducing the number of 

required gradient evaluations. For every completed dimer rotation step two gradient calcula-

tions are necessary. 

14.3 The Modified Dimer-Lanczos Method 

The newly implemented modified Dimer-Lanczos (mDL) method differs from the standard 

dimer method, Section 14.2, in both update steps, the mode update and the midpoint update. 

The principle procedure of the dimer method with alternating update procedures is kept. 

While for the mode vector update step a simplified version of the Lanczos method is used to 

determine the eigenvector of the smallest eigenvalue,137 the method for the translation step is a 

novel approach to combine the strength of the quasi-Newton approach with the strength of the 

dimer method. 

14.3.1 Mode Vector Update by the Lanczos Method 

The Lanczos method is one of the methods that allow one to determine a specific eigenvalue 

and the corresponding eigenvector of a matrix A.140 These methods were originally intended 

for solving large systems of linear equations =Av c , making use of the Krylov subspace. For 

a starting vector c the Krylov subspace of order ≤k n  of an ×n n  matrix A is given as 

( ) 1( , ) span{ , , , }k k−= …c A c Ac A cK . For the maximum size k n=  it represents the complete 

space. The Arnoldi method, or for symmetric matrices like in our case the Lanczos method, 

searches for the solution of the linear equation in the subspace ( ) ( , )k
c AK  expressed in an or-

thogonal set of basis vectors. One can also use the basis vectors for getting approximate ei-

genvalues of the matrix A, which corresponds to the Hessian, in ( ) ( , )k
c AK  and take the 

eigenmode with the smallest eigenvalue as the dimer mode vector. First a Lanczos approach 

was used in the so-called “ART nouveau” method141 to replace the eigenvector decomposition 

of the Hessian for large systems described by analytical potentials. Then the usability of the 

Lanczos method was tested by Olsen et al.137 who found it to be superior to the dimer rotation 

for tight convergence criteria. For less tight convergence criteria both methods for determin-

ing the mode vector were comparable.137 

The mode vector m of the mode update step is used as the starting vector c. The matrix 

A, which corresponds here to the Hessian, is not explicitly accessible, instead the vector pro-
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duct Av for any vector v in the Krylov space, which represents a step from the midpoint 0x  

with unit length, is approximated by 

  0 0( ) ( ) ( )
E E

l
∂ ∂

= = + −
∂ ∂

Av g v x v x
x x

ɶ  (14.9)  

for a fixed length l, which corresponds to half the distance between the two images of the di-

mer; cf. the dimer length in Subsection 14.2.2. The Lanczos basis vectors 

 ( ) ( 1) ( )( )  i i k

i ki

k i

n b−

<

 
= − 

 
∑q g q qɶ   (14.10) 

with the normalization constant 
i

n  and the matrix elements 

 ( ) ( )( ) ( ) ( ) ( )(  ) ( ) / 2i j j i

ij
b l= 〈 〉 + 〈 〉q g q q g qɶ ɶ   (14.11) 

build the approximate subspace Hessian ( )kB . This Hessian is a tridiagonal matrix. It is possi-

ble to calculate the elements of matrix ( )kB  in step k without having to store all vectors ( )iq  

and ( )( )ig qɶ  of the previous iterations, as done both in the original method140 and in a quantum 

chemical application.137 However, as the maximal dimension maxk  is expected to stay rather 

small, this kind of optimization is not useful in the current case. Additionally the vectors ( )iq  

and ( )( )ig qɶ  as determined by the Lanczos algorithm will be also useful for updating the ap-

proximate Hessian, see Subsection 14.3.2. Therefore the current implementation calculates the 

basis vectors ( )iq  and the approximate subspace Hessian ( )kB  as described in Eqs. (14.10) and 

(14.11) using only the Lanczos basis. 

A few simplifications were applied which might prove to be useful for the current case 

and which can indirectly be found in the simplifications of the original method:137, 140 

1. The Hessian matrix should be symmetric. Therefore Eq. (14.11) was taken instead of 

the standard expression of the matrix elements ( ) ( )  ( ) /i j

ijb l= 〈 〉q g qɶ , which need not 

to result in a symmetric matrix. 

2. Only the elements which are non-zero by the theory of the tridiagonal matrix ( )kB are 

calculated. 

Each iteration of the Lanczos algorithm provides a smallest eigenvalue )
min
(ke  and the cor-

responding eigenvector )
min
(kv  as an approximation for the mode vector m. The algorithm does 

not need to do maxk  steps every time it is applied but stopping criteria are applied. If the angle 

between the eigenvectors )
min
(kv  of two consecutive iterations is too small (or too close to π), 

there is hardly any progress and the update procedure is stopped. The second angle to observe 
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is the angle between the current eigenvector )
min
(kv  and the expected gradient 

( ) ( )
min( ) ( )k i

iα≈∑g v g qɶ ɶ  with αi being the components of the eigenvector 
( ) ( )
min
k i

iα=∑v q  in the 

Lanczos basis. If this angle is small, then the eigenvector )
min
(kv  corresponds to a good approx-

imation to an eigenvalue emin of the complete Hessian matrix ( )nB . The criteria were chosen as 

angles so that they are more easily comparable to the criteria for the dimer rotation.  

Neither method for mode vector updating, the standard dimer rotation or the Lanczos al-

gorithm, guarantees to find at convergence the smallest eigenvalue, even of an approximate 

full Hessian. The only exception is when the Lanczos algorithm stops after exactly n itera-

tions. The dimer rotation cannot even guarantee that it finds the smallest eigenvalue from the 

space in which it searched. Therefore it is always required to have a good starting vector. For 

moderately large steps the change in the eigenvectors will not be very large, providing the 

algorithm a fair chance to find the correct mode vector.  

The Lanczos method covers the complete space after n iterations. Then the algorithm 

should in principle be converged, fulfilling any convergence criteria. In reality approximations 

and numerical errors might cause that an error remains. In this case it is not possible to do a 

next step as there is no direction left to explore. Thus, if the search for the mode vector should 

be continued after n iterations, it is required to do a restart which removes the already tested 

trial vectors and starts with a Lanczos subspace of dimension 1 in the direction of the last 

mode vector. The standard dimer method does not suffer from this restriction. However, even 

after n iterations it might still be leaving parts of the space unexamined. 

14.3.2 The Step Update Algorithm 

The novel step update algorithm for the modified Dimer-Lanczos method is a quasi-Newton 

approach with a specially adapted inverse Hessian H, which was created using information of 

the mode update step, and the gradient g resulting in a Newton step δ =x Hg . One method 

widely used to minimize the energy is the quasi-Newton method using an update for the ap-

proximate Hessian like the BFGS update method;136 see Section 14.1. However with the ap-

proximate Hessian, or even more comfortable for the requirement of the algorithm the approx-

imate inverse Hessian BFGSH , it is not possible to search for a transition state, as the approxi-

mate inverse Hessian is usually positive definite. However as the energy should be minimized 

in all but one directions, the Hessian can still be used efficiently for a part of the optimization. 

The direction, in which the energy should be maximized instead of minimized, is approximat-

ed by the mode vector m. This direction is supposed to correspond to an eigenvector of the 
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ideal inverse Hessian H, and has been calculated by the Lanczos method. The Lanczos meth-

od provides also the approximate eigenvalue to this vector, which corresponds to a desired 

negative eigenvalue 1/C of the inverse Hessian. To get an approximate Hessian, which in-

cludes the eigenvector and eigenvalue as defined by the Lanczos method, an SR1 update step 

SR1∆H  is used. This update step is carried out with the approximate inverse Hessian BFGSH  as 

initial approximation. Thus the general inverse Hessian 

 BFGS SR1= + ∆H H H , (14.12) 

which should be the best possible approximation with the available information, is used for 

the quasi-Newton step.  

The BFGS part, BFGSH , is updated in the usual way136 using steps and gradient differ-

ences of the middle point of the dimer. Additionally it is updated with the gradient differences 

for the various directions of the Lanczos basis from the rotation steps. The BFGS update can 

use the geometries ( )j
q  and gradients ( ) ( )( )=j j

g g qɶ ɶ  from the Lanczos iterations to get an im-

proved Hessian approximation: 

 
( )

( 1) ( ) ( ) ( ) ( ) ( )
BFGS BFGS ( ) ( )

1 j T
k k j j T j T j T

j T j

+ +
= + − −

g z
H H q q q z zq

g q

ɶ

ɶ
  (14.13) 

with ( )( ) ( ) ( ) ( )
BFGS /k j j T j=z H g g qɶ ɶ . The additional update with the Lanczos basis is done before 

the original update of the algorithm using the translation steps of the geometry center. The 

BFGS update was originally developed to use the translation steps, which should converge to 

a stationary point. Thus these steps are more important than those of the Lanczos basis for the 

algorithm.   

The second part of the inverse Hessian, SR1∆H , Eq. (14.14), is an SR1 update employing 

the mode vector m and its eigenvalue C of the Lanczos Hessian. Using k
C=y m  and 

BFGS
k k C= −u m H m , it can be expressed as 

  SR1

k k T

kT k
∆ =

u u
H

u y
  (14.14) 

Here one takes into account that the Lanczos step length l cancels out (the steps are lq
(j)). The 

complete approximate inverse Hessian H has at most one negative eigenvalue in the direction 

of the mode vector m; see Appendix F for a proof. 

Therefore, the inverse Hessian H has the correct signature when the eigenvalue 1/C of 

the eigenvector, which is the mode vector provided by the Lanczos algorithm, (see Subsection 

14.3.1) is negative. In the case that 0C > , like in the standard dimer method, a special step is 
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done. This special step corresponds to a full relaxation along the gradients perpendicular to 

the mode vector to reach the reaction path if possible. This special step is always chosen to 

have the maximal step length; if the step length of the relaxation step is smaller, a step along 

the mode vector is added in direction opposite to the gradients.    

15. Optimizers for the Path Searcher Routines 

15.1 General Considerations and Reference Optimizers 

The task of an optimizer in the framework of a chain-of-state method is to propose a step for 

each image of the discrete path representation in every iteration until a fixpoint has been 

reached. String methods might modify these steps further by respacing the images along the 

path. All the optimizers applied are based on optimizers used for minimum search and were 

adapted to deal with a path rather than only a single image. Among the optimizers considered 

there is none which is aware of the way the path or the tangents are expressed, nor of the con-

straints which are imposed on the distances between images. There is only one optimizer, 

called Multiopt, which takes into account that the gradients it works with, are not the gradi-

ents of the energy with respect to the nuclear positions but modifications, like only the part 

perpendicular to the path for the string methods or that they contain the string forces for the 

NEB method.  

There are two conceptual approaches for chain-of-states optimizers. One approach is to 

treat the n images, corresponding to systems with N atoms each, as a larger system with n·N 

atoms and gradients G, where the component gk refers to the atom k, and to modify atomic 

forces either by eliminating the component collinear with the path tangent for the string meth-

ods or by adding spring forces in case of the NEB approach. Then it is possible to use for both 

methods exactly the same optimizer as for a minimum search on a potential energy surface. 

However, it is required to use only such methods, which do not use the potential energy itself, 

but work only with gradients and possibly a Hessian matrix. This is due to the fact that there 

is no potential energy surface that corresponds to the modified gradients of the chain of states. 

The second concept for path optimizers is to invoke for every image an instance of a single-

image optimizer which independently proposes a step for this image. 

Several optimizers of both kinds, operating on a whole chain or on each chain image 

separately, were compared to each other for CI-NEB and CI-string methods by Sheppard et 

al.142 Several optimizers are also included in the Transition State Tools for VASP (Vasp TST 

Tools)143 for the NEB method. These optimizers provide also an algorithm following the 

eigenmode of the lowest eigenvalue of the Hessian, like the dimer method.131 Thus, no adap-
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tion for the chain-of-state methods was done by the developers of Vasp TST Tools.143 The 

optimization methods of the Vasp TST Tools are divided into two classes in the Vasp TST 

Tools, depending on the usability for small accurate gradients or for gradients which are inac-

curate or high.  

For the current thesis two standard optimizers have been added to ParaTools, one for 

small and accurate gradients and one for less favorable cases. ParaTools contained already the 

Multiopt optimizer. The Multiopt optimizer will serve as reference.   

The Multiopt optimizer is a special purpose optimizer which has been designed exclu-

sively for the string methods. It follows the scheme of having one optimizer instance for each 

image, extended by a collective scaling of the step length, and has already been used in an 

systematic study with the toolbox.118 It uses the steepest decent direction for every image as a 

search direction. The step length in the search direction is obtained with an approximate Hes-

sian jB , which is modified by an SR1 update. A quadratic surface approximation, based on 

this Hessian, and the gradients and energy of the image at the current position, are used to 

estimate the minimum in the steepest decent direction. The step length is further restricted by 

a trust radius.  

15.2 The Conjugate Gradient Optimizer 

The conjugate gradient optimizer is supposed to be a good solution when accurate gradients of 

the energy are available. The conjugate gradient optimizer of ParaTools follows in most parts 

the variant of Sheppard et al.142 used for NEB and the string methods and can be used for both 

of them, too. It works on converted vectors of the Nbeads geometries and gradients. Similar to 

the description of Sheppard et al.142 it uses the Polak–Ribiere formula138 for generating the 

coefficient ( )γ m  needed for the search direction ( )
1

m

m m mγ −= − +Q G Q  in iteration m. The vec-

tor of gradients mG  consists of the components ( )m

kg  which were properly modified for string 

or NEB approaches. To build the new search direction this vector was used to modify the 

search direction from the previous iteration 1m−Q . In ParaTools the optimizer uses this method 

with the modification of resetting the conjugate gradient approach when ( )γ m  turns negative 

by using the steepest decent direction instead.138-139 The coefficient ( )γ m  is calculated as 

 ( ) 1

1 1

( )
ax , m 0 

T T
m m m m

T

m m

γ −

− −

 −
=  

 

G G G

G G
  (15.1) 

Normally the conjugate gradient method uses a line search algorithm to define the length of 

the update step, but the current implementation, as well as the one from Sheppard et al.,142 
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does a single Newton step instead. The Newton step has the advantage over a line search that 

it usually needs much fewer gradient calculations. The required second-order energy deriva-

tives in the conjugate gradient direction are approximated as gradient differences based on a 

trial step in the search direction. The trial step has a finite length tl . The step length for the 

Newton step is further limited to a finite size, in our case to smax·Nbeads with a parameter maxs . 

The step length includes a factor Nbeads to allow progress also in the case of a large number of 

images without having to change the step length. The sign of the step vector is not fixed. Thus 

in special cases it is possible that the step goes into the direction opposite to the gradients, 

m−Q . Yet, it is not critical if the first trial step goes into a direction with positive gradient 

projection. If this Newton step is accepted unconditionally, the gradient projection on the 

search direction might increase by absolute value, if the quadratic model of the potential ener-

gy surface is not accurate enough. Every modified gradient is influenced by the positions of 

all of the images. The direction perpendicular to the path changes while the image positions 

change. For the case of string method calculations the positions can even be changed after a 

Newton step by a respacing procedure. It does not make sense to use much effort for making 

the gradient projections onto the current step direction vanish because the Newton step proce-

dure cannot ensure that the weakest convergence conditions are fulfilled, hence that the step 

improves the convergence of the path. However, without having a potential energy surface to 

judge the process, this would be anyhow complicated. On the other hand, accepting the step in 

any case can lead the system to a completely wrong structure. There is especially one case, 

where it does not make sense to accept the step: if one has overstepped. In other words, the 

projection of the modified gradient has changed its sign and increased in magnitude. It is even 

useful to demand that the magnitude of the gradient has to drop by a factor, e.g., below 0.9 

times its starting value. When such an overstepping occurs for the conjugate gradient optimiz-

er of ParaTools, the erroneously accepted structure and the starting structure of the last itera-

tion are interpolated. This process is called backtracking.136 Only one backtracking step in 

sequence is allowed.  

15.3 The Fast Inertial Relaxation Engine (FIRE) Optimizer 

Like the conjugate gradient optimizer, the FIRE optimizer was originally designed for finding 

local minima on a potential energy surface.144 The FIRE optimizer has its grounds in molecu-

lar dynamics. The relaxation is considered as a kind of motion, downhill along the potential 

energy surface in the direction of the so-called velocity which is multiplied by a “time step” to 

get the length. In each step one interpolates a new direction for the velocity from the previous 
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direction and the steepest descent direction created from the gradient of the energy. The pro-

jection of the gradients on the velocity is negative as a rule. The so-called “time step”, which 

is used as a trust radius, can be increased as long as this condition is met. If the projection of 

the gradient on the velocity is positive, the proposed step is rejected and the algorithm is re-

started, as it is assumed that the algorithm overstepped the minimum. A variety of parameters 

are available which, for example, define how the time step is modified, how much the velocity 

vector is influenced by the gradient direction and how this relationship will change over time. 

In the original proposal of the method it was mentioned that, except for the maximum time 

step, all parameters have been fixed in their test calculations.144 Here, the same parameters144 

are also used. 

The FIRE optimizer can also be used for path optimization.142 The energy itself is never 

used in its algorithm, instead the goal of optimization is to let the gradients vanish. This can 

also be done for the modified gradient vector of a string or NEB method. FIRE is supposed to 

be especially suitable in cases of large or inaccurate gradients but to be slower than conjugate 

gradient in all other cases.143 This method was implemented into ParaTools in the scope of the 

current work. It follows the original description144 using the suggestions of its applications to 

path optimizations when required142 and is adapted to work with the objects and path search-

ing methods of ParaTools. 

16. The Climbing Image Method 

 The climbing image (CI) approach combines the search for a path with the search for a transi-

tion state by choosing one of the path images as the “climbing image” which is supposed to 

converge towards the transition state. This image is chosen, after some iterations of preopti-

mization, as the image of largest energy. 

Path searching methods without climbing image can only provide approximations for 

transition states and cannot deterministically shift an image to the transition state. Thus, the CI 

approach makes the transition state estimate less ambiguous than the estimate from images of 

a path approximation. 

16.1 Climbing Image Nudged Elastic Band (CI-NEB) 

The climbing image approach was first described123 as a variant of the NEB method. The 

NEB method was already included in ParaTools. Thus implementation the CI-NEB method, 

as done in the context of the current work, is straightforward. The NEB approach adds for 

every image i spring forces spring
if , which are parallel to the tangent it , to the part i

⊥f  perpen-
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dicular to the path of the force vector F, to generate the modified force vector F*. The climb-

ing image c  should not be affected by the distances to the other images; these distances will 

be only used for generating the path tangent ct  at the location of the climbing image. The 

string forces are therefore not applied to the climbing image. Still it should react different on 

the forces perpendicular ⊥
cf  and parallel ( )=c c c cf f t t�  to the tangent. At the climbing image 

both components of the forces should finally vanish. This is correlated with a minimization of 

the energy in the direction perpendicular to the path and with a maximization of the energy in 

the direction parallel to the path. As the optimizer tries to minimize the energy in all direc-

tions, the parallel forces have to be reversed. The modified force of the climbing image thus is 

* 2c c c= −f f f�. The other images are treated as usual, see Chapter 13. They tend to become 

equally distributed on the two substrings between the minima and the climbing image. This 

happens because the two substrings do not influence each other. 

16.2 Climbing Image String (CI-String) Method  

The main aspects of a CI-string method124 are essentially the same as for the CI-NEB method. 

The variant implemented in the current work differs in the basic string method, to which the 

climbing image approach was added. The modified forces, as processed by the optimizer, con-

tain again the inverted parallel part for the climbing image c, 
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and are projected perpendicular to the path for the other images. Weinan et al.124 followed a 

different procedure for the modified forces on the regular images, by using the complete forc-

es for the minimization. In both string methods, the images occasionally need to be respaced.  

Let jw  be the desired relative distance, with 0 1jw≤ ≤ , between the first minimum and 

image j, and let cl  be the length of the path from the first image to the climbing image c di-

vided by the complete path length. The relative length *
jl , to be restored in the respacing pro-

cess, for image j is then 
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This relative length is calculated for each of the two substrings starting from the minima to-

ward the climbing image. During a respacing step the images are distributed along the path 
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according to the relative length *
jl . Note that the position of the climbing image at the path is 

not changed by this procedure for j c= .  

The CI approach is only started after some steps with the standard string method. It is required 

to use explicit and variable relative lengths *
jl  for the algorithm as the growing string66g, 67 and 

searching string118 methods do not require that the images should be equidistantly spaced. In 

the growing string and searching string methods, the string has to be fully grown before a 

climbing image is selected. 

17. Contiguous Path Parameterization for a String Method 

The string implementation of ParaTools makes use of cubic splines through Nbeads images. The 

paths ( )sp  as a function of the path coordinate s generated by having such a spline for every 

coordinate should approximate the minimal energy path. These paths are used for defining the 

tangents at the images and for image respacing. Both operations could be done without 

splines142 and are independent of each other. In ParaTools splines are used for both opera-

tions, which requires that one chooses path parametrization parameters (abscissas) { }is  that 

generates positions { }( )isp  which correspond to the image positions { }ix . 

17.1 Area of Application for Abscissas 

After one has chosen the abscissas, they can be used to generate a path. However, just as there 

is more than one way to parameterize a path, there is more than one way of defining the ab-

scissas, see Sections 17.2 and 17.3. The abscissas for the image positions ( )
i i

s =p x , the 

Nbeads-dimensional vector S  of the abscissas is , have to be given as input for building the 

spline. Together with the geometry vector X , with i iX = x  the path path( , )=p X S  of cubic 

splines used in ParaTools string methods is completely defined when the abscissas are select-

ed. 

For a given path ( )sp  as a function of the path coordinate s calculating tangents at im-

age positions and respacing of image positions is straightforward. The tangents ( , )T p S  are 

the vector of the first-order derivatives ( ) /= ∂ ∂j js st p
 
at position

 js . A respacing is per-

formed when necessary after the optimizer has proposed a step: 

 ( 1)* ( ) ( ) ( ) ( ) ( ) ( )( , , ,[ ])m m m m m m mX E+ = + ∆X X T X G  (17.1) 

The step is dependent on the positions X(m), the gradients of the energy with respect to 

the nuclear positions G(m) and the tangents T(m). The optimizer Multiopt uses also the energies 
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E
(m) for its trust radius. The step can now be either accepted as is, if the path length deviations 

( )( 1) (0, , ) / (0,1, )m

i j j
D l s l w+ = −p p  to the desired relative distance jw  are acceptable. The 

function ( ), ,a bl s s p  measures the length of the path section between ( )
a

sp  and ( )
b

sp  by in-

tegrating over the length of the tangent using a norm defined by the metric, see Chapter 18. If 

the path length deviations are not acceptable new positions *S  on the path are generated  
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A function, which uses the inverse of the discretized path length function ( ), ,a bl s s p , yields 

positions *S  on a path * ( 1)*path( , )m+=p X S  which are spaced to fulfill the desired distribution 

W of the path nodes. Note that the new positions *S  and the abscissas vector S will generally 

not be equal. Thus if a new path with the new positions *S  and the corresponding geometries 

X
(m+1)* is generated, it will usually not correspond to the path * ( 1)*path( , )m+=p X S . 

17.2 Requirements for Abscissas for Spline Representations 

At first thought one would not expect that the abscissas S have a large effect on the path 

path( , )X S  as the abscissas are merely auxiliary parameters. For example, scaling the abscis-

sas or adding a constant term to all of them, results in the same tangents and the same geome-

tries after respacing. Without loss of generality one may choose 0 0=s  and 1=ns  for Nbeads 

images. The distribution of the remaining images on the abscissa strongly influences the path; 

consequently the tangents, and the new geometries after respacing, are also affected by the 

choice.  

Figure 17.1 illustrates this for a one-dimensional problem. Three splines generated from 

the same image data but different abscissas are shown. When the abscissas are chosen equal-

ly-spaced, the obtained spline is a straight line while for the other choices curves are generat-

ed. Looking for the geometry of a point halfway between the first two images, the path 

marked by diamonds gets 1 0(( ) / 2) 0.55s s+ = −p  for this interpolated geometry, which is far 

off the range of the input values between 0 and 1. The other path marked with triangles is not 

monotonic either but remains in the domain between 0 and 1. This illustrates that the abscissas 

have a large effect on the path and the overall calculations. Each of the three examples would 

provide a different result for respacing or the tangents. The most important aspect about them 

is that the abscissas for consecutive paths are adapted to each other because otherwise conver-
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gence might be prevented. Imagine for example that a calculation would switch between the 

three abscissa choices of Figure 17.1 during the calculation. 

 

Figure 17.1: Spline shape as function of the distribution of abscissa values. For a one-
dimensional problem five values evenly distributed between 0 and 1 are specified (vertical 
axis). Paths as represented by different markers, depend strongly on the choice of abscissas 
(horizontal axis). The two terminal images have the same abscissas for all three paths. Circles 
and diamonds additionally share the (third) node in the middle.  

17.3 Abscissa Implementation 

It has been already mentioned in Section 17.2 that there exist several possibilities of how the 

abscissas can be chosen. A simple way would be by keeping a fixed vector of abscissas, 

const=S . This approach is very attractive for its simplicity. However, the main drawback is 

that these abscissas are not taking care about how the images are distributed in the space. Two 

images far apart from each other might still yield a small distance according to the path length 

if the difference in abscissa values is small. 

The current implementation of the abscissas is quite opposite to this approach and relies 

on the coordinates of the images X . Instead of storing the values of the abscissas, they are 

always calculated anew. Besides on the vector of geometries X  for the images, the abscissas 

depend on the metric (see Chapter 18) which is used for calculating the distances between the 

geometries X . Whenever a path is required for a vector of geometries X , both for the tasks 

of getting tangents or for respacing, the abscissas are given as  

 1 metric
/ with  j k k j j j

k j k n

s u u u +
< <

= = −∑ ∑ x x   (17.3) 

This corresponds approximately to the relative length of the path segments that connects 

the images. One advantage of this implementation is that the path is only a function of the 

geometries. Thus also the tangents require only the geometries. Another advantage is that a 



18. Metric 

-  100  - 

smooth path with a sufficiently high number of uniformly distributed images will necessarily 

yield a path length proportional to these abscissas. This approach also decouples the way a 

path is represented from the question of the quality of the path. If, for example, the simple 

approach for the abscissa, with a fixed vector const=S , would be used, the paths would dif-

fer for various choices of this vector S  but the same images. A small drawback may be that 

the optimization process yields different abscissas for each iteration, which may be not that 

stable as fixed abscissas. Changes in the geometries and changes in the abscissa may accumu-

late and lead to changes in the tangents or in the geometries through respacing which are larg-

er than it would be necessary for a different choice of abscissas. However, one can expect that 

near convergence, where the changes between the image geometries are small, the changes in 

the abscissas will also be small. 

18. Metric 

18.1 Requirement for Considering Metric  

In principle it is possible to treat a metric exactly, but that often is not done because of the 

entailed numerical effort. The choice of a metric plays a role when reaction path calculations 

done in different coordinate systems are compared. For comparison of distances, angles be-

tween vectors or vector products it is required to have a consistent metric for the coordinate 

systems. Such problems may be circumvented by using the same coordinate system for all 

calculations, for example a Cartesian or mass-weighted Cartesian coordinate system. Howev-

er, internal coordinates, e. g. Z-Matrix or natural internal coordinates, often are advanta-

geous.97, 145-146 They can reduce the dimension of the system by eliminating global positioning 

parameters97 and they can reduce coupling terms in the functions describing the potential en-

ergy surface.146 The current chapter deals with the requirements which appear if internal coor-

dinates should be used as coordinate system for calculations especially with path searching 

routines. 

The current section illustrates one effect when the metric is not considered for the men-

tioned comparisons. Explanations for the effect are provided in Section 18.3. The current sec-

tion should be seen only as a motivation for taking some effort in choosing a suitable metric. 

The effect of various choices of the metric is shown on minimum energy paths, see Section 

13.1, to which the chain-of-state methods are supposed to converge for an infinite number of 

images and at ideal convergence. As an exemplary system a simple analytical potential with 

two coordinates is chosen: The Müller–Brown potential147, parameterized by the two variables 

1x  and 2x , features three minima and two transition states in the explored rectangular region, 
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11.2 0.8x− < <  and 2 10.2 .8x <− <  (Figure 18.1). The variables 1x  and 2x   will be in the fol-

lowing referred to as x coordinate system. For testing purposes a second set of coordinates 

1 2)( ,y y y=  is introduced, which is related to the original set 1 2)( ,x x x=  by 

 1 1 2

2 2

    / 2

    / 2

x y y

x y

= +

=
 (18.1) 

 

Figure 18.1: Müller–Brown potential with ideal minimal energy path for two parameteriza-
tions of the potential energy surface, original (x coordinates, solid) and mapped (y coordi-
nates, dashed). 

 

The simple Euclidean metric, called L2-metric in the following, corresponds to a norm 

related to the coordinate choice. This metric is not appropriate for comparing minimal energy 

paths in various coordinate systems. Thus it is used to demonstrate the errors that appear due 

various choices of the metric. This is related to the fact that for two coordinate systems both 

associated with the L2-metric, one is looking at two different potential energy surfaces. For 

each of the coordinate systems one might get the ideal path by numerically integration148 of 

the differential equation for the minimal energy path, given by the steepest descent equation, 

Eq. (13.1). 
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Figure 18.2: Müller–Brown Potential in mapped coordinates with ideal path for two parame-
terizations of the potential energy surface, using the coordinate systems x (solid) and y 
(dashed). 

The ideal paths are shown in Figure 18.1. These paths for the two coordinate systems are ex-

act to a good accuracy, having only perpendicular gradients left with a square smaller than 

0.008 for all discretization modes in their own coordinate system and the L2-metric. The two 

ideal paths expose the same stationary points but differ in all other points which is caused by 

the type of transformation. The original path in x coordinates, the solid curve in Figure 18.1, 

follows the valley of the Müller–Brown potential surface. The path in y coordinates, dashed 

curve in Figure 18.1, leaves the valley and has parts where it does not follow the gradients in 

the x coordinate parameterization. However, this looks quite the opposite when the paths are 

both observed in y coordinates, see Figure 18.2. In these coordinates the path in y coordinates 

follows the steepest descent path. This illustrates that it is only possible to say which of two 

paths corresponds more to the expected minimum energy path after the genuine coordinate 

system has been chosen. 

The energy profile of the two paths is very similar, see Figure 18.3. However, the ener-

gy values do not only belong to different pathways on the energy surface, but also to different 

system configurations, except for the stationary structures. 
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Figure 18.3: Energy profile for the Müller–Brown potential energy surface in x (solid) and y 
(dashed) coordinates. The path length is measured along the path by the L2-norm in the re-
spective coordinate systems. 

18.2  Metric Formalism 

The current section explains the basic concepts of a metric. The description follows closely 

the one of Brown.149 

For the total energy 1 2, ,( ,x )n
xE x … as a smooth continuous function of n coordinates, 

the total differential dE can be expressed using the incremental changes idx  in the variables 

ix  and the partial derivatives / iE x∂ ∂  of E with respect to xi:  

 i

i
i

E
dx

x
dE

∂

∂
=∑  (18.2) 

Two vectors can be defined in order to express this total differential as a vector product 

dE = ⋅g d  
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where g is the so-called gradient vector of the energy function E. While g is a vector with so-

called co-variant components, the differential coordinates d form a vector with so-called con-

tra-variant components. The differences between these two kinds of vector representations 

become visible when a transformation of the coordinates (to a coordinate system with varia-

bles yi) is performed. The differential in the new coordinates can be expressed, using the Jac-

obean matrix J  with /i j
y x∂ ∂ , as 

 
i

i j

j
j

dy
y

dx
x

∂

∂
=∑  (18.3) 
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A similar expression can be derived for the gradients by using the total differential. 

 
j

i ji
j

x
gk

y

∂

∂
=∑  (18.4) 

The main difference between Eqs. (18.3) and (18.4) is in the different coefficients for the 

transformation. This results in different behavior of the two kinds of coordinate components 

by coordinate transformations and thus the different names for the representations of these 

components. For vectors these are the only representations possible. 

Gradients and the differential coordinates are as vectors tensors of the first order. The 

observation can also be extended for tensors of the second order. They are of special interest if 

the length ds of a differential coordinate vector should be obtained. In this case the squared 

differential distance can be derived from the generalized Pythagorean theorem using the cor-

responding differential coordinate d. 

  

 ( )
2

ds dx dx
µ ν

µν
µ ν

η=∑∑  (18.5) 

According to the Einstein convention, a summation is implied if in a formula the same index 

is used twice, in an upper and a lower position. This allows to simplify the equation. 

 ( )
2 i j

ij
ds dx dxη=  (18.6) 

This formula is an important expression for the metric of the space. However, it depends on 

the coordinate system as the so-called metric tensor η  will look differently in another coordi-

nate system. However, as the vector product dx
i
dx

j can be transformed using Eq. (18.3) one 

can transform also the metric expression using the assumption that the length ds should stay 

the same. This gives with 
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a chance to express the length ds as before by adding the changes to the metric tensor η . 

 ( ) ( ) ( )
( ) ( )( )

j

l

i
x xy i j

kl ij k ij lk

x x

y
J J

y
η η η=

∂ ∂
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=  (18.8) 

The metric tensor can be inverted, which results in the representation with upper indices ijη . 

For the example of coordinates of Section 18.1 and the choice of the metric tensor ( )xη  

in the original x coordinate system to be the unit matrix (
ij ijη δ= , using the Kronecker delta 

symbol which is 1 if the two indices are the same and 0 otherwise), the metric matrix for the y 

coordinate system is: 
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 ( ) 1 0.5

0.5 0.5
y  

=  
 

η  (18.9) 

Every vector has a co- and a contra-variant representation. The gradients g and differen-

tial coordinates d defined above are only in one specific representation fixed by their usage in 

the total differential; see Eq. (18.2). For orthogonal coordinate systems with coordinates x (for 

which the coordinate axes are mutually perpendicular) the two representations are the same. 

In this case the coordinates x represent a genuine coordinate system. However, also for other 

coordinate systems it is possible to transform from one representation into another:  

 i ij

jy yδ η δ=  (18.10) 

This is required if two vectors should be added to each other; they have to be in the same rep-

resentation for this operation. Furthermore one is able to write the square of the length of the 

differential coordinates by using the two representations of a vector. 

 ( )
2

i

ids dx dx=  (18.11) 

To properly use the metric, without having to deal explicitly with the metric matrix, is to 

make sure that for an addition vectors are always in the same representation while for a vector 

product they are in different ones.  

18.3 Metric Requirements for Transition State Search 

Metric considerations are important for searching the minimal energy path as the metric may 

distort the path if not properly chosen. This can be seen on the example of different genuine 

coordinate systems, compare Section 18.1. This effect originates in the definition of the min-

imal energy path in Eq. (13.1). As mentioned in Section 18.2 the coordinate differences, to 

which belong the tangents, are provided in a contra-variant vector representation, while the 

gradients are given with co-variant components. Thus, the fundamental Eq. (13.1) of steps t 

and gradients g has to deal with both coordinate representations and should therefore be writ-

ten as 

 
j i

i

jt gη= −  (18.12) 

Only in the genuine coordinate system, where the metric tensor 
ijη  is always the unit matrix, 

one may chose not to write the metric tensor; in any other coordinate system the proper metric 

has to be used to end up with the same path. If the metric is not chosen suitable and instead 

the transformation matrix is set in every coordinate system to the unit matrix a situation like in 

Section 18.1 occurs where the paths are no longer comparable. This procedure is only valid in 

cases where the main interest is only in stationary points like transition states, which are, in an 
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ideal consideration, not affected by any change of coordinates. This is the case for local transi-

tion state searching methods. 

For the genuine coordinate system several choices have been considered in the litera-

ture,97, 150-152 mass-weighted coordinates and Cartesian coordinates seem to be the most prom-

inent choices. Fukui describes his intrinsic reaction coordinate97 exclusively in mass-weighted 

coordinates. As Quapp and Heidrich pointed out,153 the physical model of Fukui's IRC path, 

being a dynamical limit with vanishing kinetic energy is problematic as the steepest decent 

paths, to which the IRC belongs, seem to use a dynamical description as a motivation and at 

the same time neglect the dynamics by removing the kinetic energy from the picture. This 

reduces the path to a mathematically defined curve which follows a decrease in the 

potential.153 Minimum energy pathways and also steepest descent paths described in Cartesian 

coordinates can be quite similar to their counterpart in mass-weighted coordinates,151 although 

this is not compulsory. Calculations carried out with different genuine coordinate systems can 

lead to different results, as already observed by Sana et al.152 

In principle there is no reason, why one cannot describe minimal energy paths also in 

other coordinate systems; an example is the first description of Fukui's intrinsic reaction coor-

dinate which uses ” 3 6−N  independent internuclear distances”150 as genuine coordinates on 

the potential energy surface. All these paths, whether they are based on mass-weighted or Car-

tesian coordinates, are nevertheless simplifications, as they do not consider, for example, the 

kinetic energy. It is supposed that the deviation to the real chemical dynamical path, that is the 

path the reaction would take in reality, of a reaction processes is small for small kinetic ener-

gies.154 Thus, choosing one of the genuine coordinate systems seems to be more a question of 

taste. On the other hand, employing a correct metric allows one to choose the coordinate sys-

tem, in which the calculation is performed, freely. The necessary transformation have been 

described by Fukui97 and by Quapp and Heidrich.153  

18.4 Metric in ParaTools 

As ParaTools permits the usage of various coordinate systems it is necessary to consider the 

metric, in order to achieve comparable results of transition state optimization, irrespective of 

the coordinate choice, see Section 18.3. This is especially important for the path searching 

routines, which will be the focus of the following evaluation. However, the metric can also be 

used for local transition state search methods. 

The following Sections 18.4.1 and 18.4.2 deal with the implementation of the metric in 

ParaTools. ParaTools contains three implementations of the metric: the first is a simple Eu-

clidean metric. The other two for internal coordinates are derived from an Euclidean metric 
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together with Cartesian coordinates and the coordinate transformation between internal and 

Cartesian coordinates. The two variants differ in the way the global positioning, the orienta-

tion of the system in space, is handled. The last section of the current chapter, Section 18.5, 

demonstrates the effect of the choice of the metric on the convergence of paths and on main-

taining symmetry properties. 

18.4.1 The Simplest Case: The Euclidean Metric 

For some of the routines, such as the local transition state search routines, the choice of the 

metric will have only a small performance effect. The results of these methods do not heavily 

rely on orthogonality or step length constraints of coordinates, as they are searching solely for 

a coordinate system independent object. Consequently, these methods can ignore the metric in 

practice. This is also possible for the path searching routines. In many cases only the transi-

tion state estimate from the path is of interest and rough convergence criteria are used or only 

few images are chosen. In these cases it is reasonable to use a simplified metric, where the 

contra- and co-variant components of the vectors are identical, thus the transformation matrix 

is always the unit matrix 
ij ijη δ= . This is the numerical most efficient method. Effectively, 

this corresponds to an Euclidean metric, irrespective of the type of coordinates used. In the 

following this case will be referred to as Euclidean metric. 

18.4.2 Non-Euclidean Metric 

The metric, as used in the following, uses the Cartesian coordinates x of the atomic system as 

genuine configuration space, with contra- and co-variant vector representations being equiva-

lent. This metric is, besides the metric using mass weighted Cartesian coordinates as genuine 

configuration space, the most ubiquitous metric for path searching routines.97, 153  

18.4.2.1 Metric without Explicit Consideration for Global Positioning 

For describing the relation of contra- and co-variant components of vectors in arbitrary (inter-

nal) coordinates y it is only required to define the matrix 
ijη , see Eq. (18.10). With help of the 

matrix of first-order derivatives from Cartesian to internal coordinates, the Jacobean matrix 

/i i j

j x y= ∂ ∂ J , this relation looks like: 

 ( ) ( )k j T j

i i lk j
ij

l
y y yδ δ δ δ== J J J J  (18.13) 
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This relationship can be used to transform vectors with contra-variant components into vec-

tors with co-variant components. For the reverse transformation from co- to contra-variant 

components the matrix T=η J J  has to be inverted. 

These relations are enough to define a proper metric. However, there is still one thing to 

consider, as in some cases the metric includes some ambiguity. The following subsection will 

deal with this case of a “reduced metric”. The remaining part of this subsection will provide 

the reason for requiring two versions of the metric. The dimension of the Cartesian coordinate 

system of an atomic system is always 3N for N atoms involved. The dimension for internal 

coordinates y can be smaller: dim 3N≤y . For example, in case of Z-Matrix coordinates, it 

would be 3 6N − , with the global positioning coordinates for global translation and global 

rotation of the whole system being eliminated. These global positioning coordinates are often 

removed because the energy of a molecular system does not depend on the position and orien-

tation of the system as the whole. However, if a transformation into a 3N- dimensional space 

of, for example, Cartesian coordinates is carried out it is required that a global positioning 

exists to provide all coordinates for this space and allow an injective transformation. As such 

a transformation is required for the metric, the global positioning is implicitly present. The six 

degrees of freedom representing the global positioning can be chosen arbitrarily and are never 

used directly. They are usually fixed. It is possible to use the metric as defined above for the 

cases with a smaller dimension of the internal coordinate system, as the matrix T=η J J  is 

still invertible. However the Jacobian J cannot be inverted by itself, leaving some ambiguity 

for the Cartesian coordinates, which are implicit present in the form j

ijJ yδ . 

The effect of the resulting ambiguity can be best explained for an example: the internal 

coordinates can include the implicit global translation by keeping the geometrical center at the 

origin (if a transforming into Cartesian coordinates is done). If the difference between two 

geometries in this internal coordinates would be calculated, there will be two contributions: 

one related to the changes in the internal coordinates and one related to the resulting change in 

the geometrical center. The second contribution is unwanted.  

These effects do not have to appear in all cases in which the internal coordinates do not 

include the global positioning. In other cases they might be negligible. However, for a correct 

approach it is required to consider these effects.  

When Fukui explained how his intrinsic reaction path could be calculated in Z-Matrix 

coordinates, he was also aware of having to consider global positioning; he solved the related 

ambiguity by introducing six more relations to be fulfilled besides the 3 6N −  relations for the 
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transformation of the coordinates.97 The update procedure he used for his path fulfilled these 

relations in a natural way. However, for the path searching methods of ParaTools applying 

this special treatment as restriction on the possible update methods for the paths appeared im-

practical. Therefore ParaTools includes a different solution by providing the reduced metric, 

see the following subsection. 

18.4.2.2 Reduced Metric Considering Global Positioning 

Other than the usual metric, Subsection 18.4.2.1, or the simple metric, Section 18.4.1, the re-

duced metric discussed here can only be used for a special kind of coordinate systems. These 

coordinate systems have to be translationally and rotationally invariant, thus the global posi-

tioning parameter must not be any of the coordinates. This limits the usability of this metric. 

However, for coordinate systems without global positioning, it is the correct metric. For these 

coordinate systems it has even some advantages over the alternative of extending the coordi-

nate systems by a global positioning object and employing the usual metric. The first ad-

vantage is that the approach with the reduced metric does not contain as many coordinates as 

the second approach. The second advantage is that the explicit global positioning parameters, 

which are added for the second approach, might also induce an effect in the length and other 

metric related properties. As global positioning should have no such effect, removing these 

effects should be a superior strategy.  

The reduced metric will be derived as standard metric (see Section 18.4.2.1), where the 

internal coordinates y are augmented by six more coordinates v, which later will be removed 

again from the final equation. This results in vectors of the kind ( ),
T

δ δ δ=s y v , with trans-

formations between co- and contra-variant representations like as in Subsection 18.4.2.1. Eq. 

(18.13) can still be used to describe the transformation between the representations. One only 

has to note that ( ),
y V

=J J J  contains next to the original Jacobian matrix 
yJ  also a second 

submatrix 
V

J , which represents the first-order derivatives of the Cartesian coordinates with 

respect to the global positioning parameters. Eq. (18.13) is now extended to the relations (with 

, 1,...i j n=  and , 1,...6p q =   for dim y n= ): 

 ( ) ( )T j T

i y y y V
ij ip

p
y y vδ δ δ= +J J J J  

 ( ) ( )T T j

V V V y
qp qj

p

qv v yδ δ δ= +J J J J  (18.14) 

Any displacement on the potential energy surface )(E y  is fully characterized by δy , 

but neither pvδ  nor pvδ  have been defined yet. It is possible to choose six more relations 
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0p

pv vδ δ =  taking care of the constraints that the global positioning parameters should not 

contribute to the square norm l

il

i p

ps s y y v vδ δ δ δ δ δ= + . Two solutions for the additional re-

lations that satisfy Eq. (18.14) for arbitrary δy  are 0pvδ =  or 0pvδ = . The first choice would 

decouple the co-variant vectors in Eq. (18.14) from each other. This corresponds to the origi-

nal metric, see Subsection 18.4.2.1, when used for internal coordinates without global posi-

tioning parameter. The other choice of 0pvδ =  leads to the “reduced” metric, which is the 

subject of this subsection. With this choice Eqs. (18.14) can be simplified, taking into account 

that δ iv  is of no real interest.  

 ( )( )1
T T T j

i V V V V
ij

y yδ δ
− 

 
−


=


I J JJ J J J  (18.15) 

The derivation of Eq.(18.15) can be found in Appendix G. Although the variables pvδ

and pvδ  corresponding to global positioning parameters have been eliminated from Eq. 

(18.15), it is still necessary to define them, as they are required to generate the partial Jacobian 

matrix VJ . Three degrees, T, of the six degrees of freedom of v = {T, R}, correspond to a 

translation of the system as a whole and the remaining three, R, to the rotation of the complete 

system around a specific point. The rotation center can be chosen as is convenient, e.g., the 

center of mass or the geometric center of the system. The partial Jacobian ( ),V T R=J J J  can 

be parameterized the same way, with 
T

J  and 
R

J  being 3 3N×  matrices containing N 3 3×  

matrix blocks ( )k

TJ  and ( )
R

kJ  related to the atom k, respectively. With the definition 

,1 ,2 ,3( , , )k kk kR R R=R  for the coordinates of atom k with respect to the geometrical center 

of the system and the translation matrices ( )k

TJ  and the rotation matrices ( )
R

kJ  for the atoms k 

are defined as: 
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 (18.16) 

The transformation between the vector representations can be expressed in a simplified 

form, using ,
/22 1( )kj jkR R∑= : 
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1

21T T T T

i y T T R k k k R y

k k
ij

j

N
Ry yδ δ

−  
= − − −     

 
 
  

∑ ∑JJ I J JJ I R R J  (18.17) 

The derivation of this expression can also be found in Appendix G. 

The metric in the square brackets of Eq. (18.17) will be referred to as reduced metric 

throughout this work. Note that the reduced metric and the metric both originate from the Eu-

clidean norm for a parameter space where a given molecular system is represented by the Car-

tesian coordinates of the nuclei. The difference between the two systems is the treatment of 

translational and rotational invariance. 

18.5 Effect of the Metrics in ParaTools 

The metric affects reaction paths in several ways (Section 18.1). Also the rate of the path con-

vergence can be affected by the choice of the metric. For example, a non-Euclidean metric, 

Subsection 18.4.2.1, and especially a reduced metric, Subsection 18.4.2.2, in combination 

with internal coordinates may augment chances for numerical errors than a simple Euclidean 

metric, Section 18.4.1. A third aspect, that will be described in the current subsection, is a 

manifestation of the choice of metric on differences in the steepest decent path for symmetric 

molecules and the symmetry properties of a path. 

18.5.1 Müller–Brown Potential 

As an example to demonstrate the influence of the choice of the metric, the Müller–Brown 

potential and the two coordinate systems described in Section 18.1 are used to demonstrate 

the influence of the choice of the metric using the two coordinate systems, x and y coordi-

nates. 

Two choices of the metric will be discussed. The first one is a simple Euclidean metric, 

an L2-metric in the respective coordinate system, as defined in Section 18.4.1. For the second 

case one of the two coordinates is chosen as genuine coordinate system and the other coordi-

nates are derived by a proper basis transformation. As genuine coordinates x coordinates have 

been chosen, thus the metric will be called x2 metric. For a test several path searching calcula-

tions were run with the various metrics chosen. 

There are three possibilities to run a string path optimization on the Müller–Brown po-

tential. First one uses the x coordinates, for which both metrics describe the same case. The 

other two possibilities are to use y coordinates and either L2 or x2 metric. In principle it would 

be possible to construct a forth case, where the x coordinates are used with y2 metric. Howev-
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er, it is not expected to provide additional insight as it is comparable to y coordinates with x2 

metric. 

Table 18.1: Multiopt (M), conjugate gradient approach (C) and FIRE (F) optimizers for 
which convergence up to 0.01g∆ ≤ is achieved for various numbers of images in x or y coor-

dinates with L2 or x2 metric for the Müller–Brown potential. 

Coord./met. x/L2 y/L2 y/ x2  Coord./met. x/L2 y/L2 y/ x2 
Images     Images    
3 M, C, F M, C, F M, C, F  13 C,F M M, C, F 
4 M, C, F M, C, F M, C, F  14 — M, F M,  F 
5 M, C, F M, C, F M, C, F  15 — M,  F M,  F 
6 M, C, F M, C, F M, C, F  16 F M, F — 
7 M, F M, C, F M, F  17 — M, F — 
8 M, C, F M, C, F M, C, F  18 — M, C, F — 
9 C, F M, C, F M, C, F  19 — M, F — 
10 M, C, F M, C, F M, C  20 — M — 
11 C, F M, C, F M, C, F  21 — M, F — 
12 C M, C, F M, C, F      
 

The results in Table 18.1 show the convergence behavior of these three choices of the 

test set. It was tested which of the three optimizers, Multiopt, conjugate gradient and FIRE, 

see Chapter 15, was able to converge the string approach. The convergence was measured 

with the gradient convergence measure which will be explained in Section 20.2 and for which 

the convergence threshold was set to g∆ = 0.01. The convergence rate of the path in y coordi-

nates with L2 metric shows that these coordinates in the corresponding potential seem to be 

more stable as they provide convergence for the Multiopt optimizer for all examples with up 

to 21 images and for the FIRE optimizer for most of them. The conjugate gradient optimizer 

for all three test sets, shows convergence problems with increasing number of images. The 

calculation in x coordinates with L2 metric did hardly converge at all for more than 13 images. 

The y coordinates with the x2 metric suggest that the influence of the genuine coordinate sys-

tem is larger than the effect of the coordinate system the calculations run in, as there is also 

hardly any convergence for more than 14 images. This is much more similar to the x-

coordinates than to the y-coordinates in L2 metric. However, there are still differences in the 

failures of the optimizers between the y coordinates with the x2 metric and the x coordinates. 

This demonstrates how the metric may affect the numerical stability of the path searching 

procedure. 

The choice of the coordinate system also affects the shape of the approximate path. Fig-

ure 18.4 shows the paths with three images and with eight images, calculated with the Multi-

opt optimizer. For the case with three images the paths are too simplified to represent the ideal 
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path at all. However, it is already shown that the path optimized in y coordinates and x2 metric 

approaches the path in x coordinates and with L2 metric; the difference in the image positions 

is at most about 10-6. For the case with 8 images the string calculations approximate the ideal 

path significantly better. Here the string calculation in x coordinates with L2 metric and the 

calculation in y coordinates with x2 metric are converging to the ideal path in original (x) co-

ordinates. The third string calculation with y coordinates and L2 metric is evidently converg-

ing to the ideal path determined in y coordinates. Of course, for a finite number of images 

differences from the ideal paths will remain, even with nearly perfect convergence. Obvious-

ly, it is evident that it is the metric, which influences the path to which the string method will 

ultimately converge in the limit of an infinite number of images and not the choice of the co-

ordinates. 

 

Figure 18.4: Reaction paths on the Müller–Brown potential. Given are the ideal paths for the 
two coordinate systems, x (solid line) and y (dashed line) coordinates with the L2 metric. The 
string method was used to generate a path, with three (left panel) and eight images (right pan-
el). The position of the images of the strings are indicated. Shown are paths in x coordinates 
and L2 metric (dots), in y coordinates and L2 metric (tri-up) and in y coordinates and x2 metric 
(cross). 

18.5.2 Lennard-Jones Potential 

In the following example the influence of the choice of the metric on symmetry properties of a 

reaction path is inspected. The example was chosen to be quite simple, both in the geometry 

and the potential energy surface. However there will be already some effects visible. Various 

coordinate systems and various metrics are considered in the following. The Lennard-Jones 

potential155  

 

12 6

LJ 4
B A B A

U
r r r r

σ σ    
 −  =

− −
        

ε  (18.18) 
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approximates the interaction between neutral atoms by an analytical function. Relevant for the 

description of the systems are the distances between the atom positions rA. The two parame-

ters, σ and ε, can be adapted in order to model approximately a pairwise interaction between 

various types of atoms. In the following example both parameter were 1, thus no specific kind 

of atoms has been selected. It is always possible to convert the results to a specific kind of 

atoms by applying the change in the parameter. 

 

Figure 18.5: Transformation in C2V symmetry between left- and right tetrahedral structures of 
a four-atomic cluster described by a Lennard-Jones potential. The atoms are labeled for ease 
of following their movement. 

The isomeration reaction of a tetrahedron of four equivalent atoms via a rhombic transi-

tion state, Figure 18.5, interacting by a Lennard-Jones potential, follows a path completely in 

2C v  symmetry. This means that the structure is indistinguishable from the original one after a 

symmetry operation with one of the two orthogonal reflection planes has been performed. 

Furthermore there exists always a rotation around a specific point which exchanges the atoms 

4 and 1 and simultaneously the atoms 2 and 3, see Figure 18.5 for the labels of the atom. The 

effect of the metric on the symmetry properties is shown for a steepest descent step, see Eq. 

(18.12), on a geometry which is supposed to converge to the transition state which is a planar 

structure. As the gradients only depend on the distances between the atoms they should natu-

rally obey the symmetry of the atomic arrangement.  

As starting geometry for the transition state search two arbitrary chosen geometries were 

considered. Geometry 1 is a flat rhombus, with the length for both diagonals being the same 

as the edge lengths. Geometry 2 is also a flat rhombus but shows diagonals of different length 

(one is about 1.7 times larger than the other). The length of the force vectors for the two ge-

ometries are about 0.3 and 0.2 gradient units.  
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For both geometries several choices of the coordinate system were examined. For ge-

ometry 1 they are the Z-Matrix coordinates, Z-Matrix coordinates with six additional coordi-

nates for the global positioning (GP), Cartesian coordinates, and reduced Cartesian coordi-

nates with six coordinates related to the global positioning being fixed. These fixed coordi-

nates for the reduced Cartesian where chosen to be the same, which were implicitly fixed in 

the Z-Matrix coordinates. For geometry 2 Cartesian coordinates and reduced Cartesian coor-

dinates with fixed GP were used. In this case the global orientation of the geometry in the 

Cartesian space was different, hence also the fixed coordinates where chosen differently. Note 

that therefore the reduced Cartesian coordinates differ for the two geometries.  

Table 18.2: Symmetry breaking in the search of a transition state between two structures of a 
four-atomic cluster. For two geometries corresponding to first estimates to the transition state 

both fulfilling 2C v  symmetry the deviation from 2C v  symmetry was measured after a step 

along the steepest descent direction in the various coordinate systems. The applied metrics are 
Euclidean (E), non-Euclidean (N) or reduced (R) metric. Not all combinations are available 
(n. a.). For others the reached accuracy relative to the step size is provided.  

Coord. Degrees of 
freedom 

E N R 

Geometry 1     
Z-Matrix 3N-6 3·10-1 8·10-1 2·10-14 

Z-Matrix + GPS 3N 3·10-1 2·10-14 n. a. 
Cartesian 3N 2·10-14 2·10-14 n. a. 

Reduced Cartesian 3N-6 8·10-1 8·10-1 2·10-3 
Geometry 2     
Cartesian 3N 0 0 n. a. 

Reduced Cartesian 3N-6 0 0 0 
 

The six possible distances between the four atoms of the Lennard-Jones cluster can be 

used to quantify the derivations from 2C v  symmetry. Two of the distances can be identified 

with the diagonals of the rhombus structure of the transition state (the distances between at-

oms 1 and 4, and between 2 and 3); the other four distances correspond to the edges of this 

structure. The edges have to be of same length due to the 2C v  symmetry constraint for all 

geometries. One of the distances is used as reference length. The maximum length difference 

for one of the other three distances to the reference length is used as a measure of how well a 

geometry meets the 2C v  symmetry. The geometries considered are the geometries after a step 

in the steepest decent direction, see Eq.(18.12). The symmetry inspected after such a step for 

the two geometries and the various coordinate systems is available in Table 18.2.  
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The Cartesian coordinates always preserve 2C v  symmetry, see Table 18.2. For them the 

metric is the same as the L2 metric. The Cartesian coordinates cover the complete space. 

However, having coordinates in 3N dimensions is not sufficient for guaranteeing that the 

symmetry is kept. The Z-Matrix coordinates with global positioning also cover the complete 

space but if the Euclidean metric is used the symmetry is broken as this is not the correct met-

ric for these coordinates. Only with a non-Euclidean metric the symmetry is kept, see Table 

18.2, as the underlying genuine coordinate system (Cartesian coordinates) maintain the sym-

metry. Thus, it is not enough, if a coordinate system is used, where it is merely ensured that 

the global positioning parameters are present. For the Z-Matrix coordinates without global 

positioning using the non-Euclidean metric did not change anything. Only if the reduced met-

ric, especially designed for these cases, is used the symmetry is maintained, see Table 18.2. It 

is, of course, possible that the symmetry is maintained by the choice of coordinates. This is 

shown for geometry 2 with reduced Cartesian coordinates where the symmetry is for all met-

rics maintained, which is not the case for geometry 1. However, this example shows that the 

maintenance of the symmetry might be affected even by fixing some coordinates. Another 

challenge can already be identified: even though the reduced metric improves the preservation 

of the symmetry, rounding errors may still result in larger differences than in the other cases, 

like for the example Z-Matrix coordinates, as can be seen for the case of reduced Cartesian 

coordinates for geometry 1 in Table 18.2. 

Already the simple example of a small Lennard-Jones cluster shows that the usage of the 

correct metric for a coordinate system can become important. In our case a specialized coor-

dinate systems allows to avoid symmetry breaking. However, such coordinates are not always 

available and there might be even more properties, which are affected by the choice of the 

metric. Thus it makes sense to consider the proper choice of the metric for a given reaction. 

19. Parallel Task Processing 

 While searching for a reaction path, the global transition state searching methods, like NEB 

and string methods, have to deal with several geometries of the images at once. For generating 

the next path approximation all of these methods require the gradients of the potential energy 

with respect to the nuclear positions of every image. The quantum chemistry calculations, 

which provide the gradients of the potential energy with respect to the nuclear positions, can 

be performed concurrently. Therefore parallelizing the gradient evaluations of various images 

appears meaningful. For a mere analytical code, like the ASE version of the Lennard-Jones 

potential, there is nearly no time spent in calculating the gradients. However for density func-
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tional codes, like ParaGauss or VASP, most time will be spent in these calculations making 

the effect of parallelization notable. The time requirements for the remaining Python code are 

negligible in comparison to the running time of a typical quantum chemistry calculation. For 

the path searching methods there are as many parallelizable tasks as there are moving images. 

There are also many tasks when frequencies of nuclear vibrations are to be calculated in nu-

merical fashion, i.e., when second-order derivatives are estimated as finite differences of first-

order derivatives. Using central differences there are 6N gradient evaluations for a system of 

N atoms, which can be determined independently. This turns frequency calculations into the 

routine where parallelization will improve the time requirement most; for comparison: path 

searching routines typically are used with about 5 independent moving images.13, 118 

The task of processing the geometries in parallel is split into two subtasks. The first is 

about distributing the cores available on an instance of the quantum chemistry programs. Thus 

it manages the internal parallelization of the programs as well as the assignment of the cores 

for the quantum chemistry programs. The second one controls the activation of the various 

gradient evaluations, thus handles the distribution of the complete set of cores between the 

instances of the quantum chemistry program. 

The first subtask, distributing the subset of cores for one instance of the quantum chem-

istry program, is the more demanding one. The python interfaces of the quantum chemistry 

codes have to meet the individual requirements of the code to be called, and are forced to al-

low using the codes without any change. Every quantum chemistry code has its individual 

python interface, however those python functions originally were not created for the case of 

being called in parallel. The codes were either restricted to calculate on one core or were using 

all available cores in parallel. Some of the codes provide the possibility of restricting the gra-

dient calculation by the python interface to a given set of cores. The number of cores in this 

set can either be provided by the python interface itself or be fixed. The cores can either be 

defined by utilities of the operating system, which identify cores with the lowest load, or can 

be provided directly by the python interface.  

Another strategy, which has shown to be successful on a Nehalem cluster (compare 

Subsection 5.1.2), delegates the scheduling decision to the job scheduling software (here grid 

engine). In this case ParaTools concurrently submits the jobs to the grid engine and blocks 

until completion. As an example, the gradients for the 102 geometries of a numerical frequen-

cy calculation for anthranilic acid (17 atoms), were calculated using this strategy with Para-

Gauss on the Nehalem cluster. Even though all gradient evaluations belong to similar geome-

tries (differing by a fixed step in one of the degrees of freedom from the input) and have the 
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same starting condition, the real calculation time per geometry varied by about 10 % (4100 ± 

400s). However, the strategy used makes sure that only then computational resources are used 

when they are really required. Thus, the imbalance in the calculation time does not result in 

idle time as opposed to a case where a complete core set is exclusively used directly by the 

ParaTools program. There are two more factors, which affect the inhomogeneity of the run-

ning time of a task: some information of a gradient calculation could be reused for further 

gradient calculations. Additionally, the computer architecture needs not to be homogeneous. 

The advantage of the scheduling strategy described above is that the resources are only used 

for the gradient calculation when they are actually needed. On the other hand, this strategy 

only works efficiently if the queuing time is not too long. This scheduling strategy works for 

all quantum chemistry programs. 

The second subtask of the parallel processing, deciding how to start gradient calcula-

tions, is solved in a general way, that works for all quantum chemistry codes. Two groups of 

functions are available in ParaTools. The simplest member of the first group uses a function-

ality of Python, provided in the form of Python’s pool map function. A pool of workers is 

created by Python, which autonomously starts all the interfaces for the gradient calculations 

with the quantum chemistry code. The pool size and, thus, the maximum number of the con-

currently executed tasks is limited. All calls to the quantum chemistry code demand the same 

number of cores. 

The second group of functions was created for the case where the number of cores for 

the quantum chemistry code might be different for various tasks. For this purpose ParaTools 

contains an advanced function: the cores are assigned statically to the tasks. The tasks have to 

share a core set. First all tasks get the minimal (user defined) number of cores. However, it is 

often the case that not all tasks fit in the set of cores. In this case the set of cores has to be as-

signed several times. For the last assignment of the set of cores it is possible that the number 

of task for this assignment is smaller than the number of cores in the set of core divided by the 

minimal number of cores per task. In this case the number of cores per tasks is increased for 

these tasks. This is done as balanced as possible. As the parallel performance of a quantum 

chemistry code has its limitations and might become even slower with increasing number of 

cores after a given threshold, also a maximal number of cores per task is specified.  

Workers (threads or processes) are started for every task. They all run on the master ma-

chine, thus the machine from which the executables of the quantum chemistry program are 

started, and are mapped to the assigned cores. A lock, implemented by a special Python Man-

ager construct protects the access to the core reservation states collected in a Python diction-
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ary. The dictionary contains the number of all cores on which currently calculations are run-

ning. A worker blocks until all cores assigned to the tasks are free, afterwards has to add them 

to the reservation list and remove them upon task completion. The order in which the workers 

are processing is arbitrary as it depends on the order in which they get access to the diction-

ary. Availability of new cores is signaled by an event to workers waiting for a reservation. 

Both groups of functions for distributing cores over various instances of quantum chem-

istry codes can work together with the strategy of the first subtask of separately scheduling 

each gradient calculation. For a fixed set of cores assigned to the complete procedure the first 

group of functions can only be used if the operating system provides a routine to select a sub-

set of empty cores for the current task. 

20. Performance Tests 

20.1 Goal of the Surface Reactions Study 

The systematic study13 on surface reactions was done to compare the performance of several 

methods described  in the Chapters 13 to 16 for finding a transition state. These methods use a 

two-step strategy: the first step is a search for an approximate minimal energy path; the sec-

ond step is a local refinement of a transition state estimate that resulted in the first step. 

Simple test potentials as the Lennard-Jones potentials,155 already mentioned in Subsec-

tion 18.5.2, are widely used for testing the performances of transition state searching methods. 

Systematic studies comparing transition state search methods, like the ones in ParaTools, used 

only simple analytical potentials156 or ab initio potentials for gas phase reactions.118, 120, 157 

However, the closer the test system to the real life the more relevant are the results. Methods 

of global and local transition state search are often used by quantum chemists to study surface 

reactions. For rough transition state estimates chemists apply only path searching methods. 

The NEB method98-99, 158 seems to be preferred over string methods.101 The climbing image 

variant, especially of NEB, is also popular, especially if the transition state should be known 

more accurate.102-104, 159-161 The dimer method is used without previous path optimization106-107 

but also as refinement for the CI-NEB108-109 and NEB method.110-113 There are two systematic 

studies on surface reactions to mention: one by Sheppard et al.142 and a second one by  Klimeš 

et al.162 

Sheppard et al. studied diffusion of Pd4 clusters on a MgO(100) surface and oxygen re-

actions on the Au(111) surface.142 In this study Sheppard et al.142 tested the climbing image 

variants of NEB and string methods and compared several optimizers for these methods. They 

used the same definition for the tangents for both methods, which leads to the small differ-
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ences only between the methods. Sheppard et al.142 did not see significant differences in per-

formance between the two chain-of-state methods and concluded that the optimization proce-

dure is much more important than the chain-of-state method. In ParaTools, the tangents for 

the NEB and string methods are determined differently, resulting in larger differences.  

The authors of the second study chose diffusion of water and bond breaking of HCl on a 

NaCl surface as test examples.162 They compared several methods for finding transition states, 

including the CI-NEB method and the dimer method. The dimer method required much more 

gradient evaluations to converge than the CI-NEB method and even failed several times to 

converge to the correct transition state for the flat potential of water diffusion. For the dissoci-

ation of HCl the results of both methods were comparable. From this result the authors con-

cluded that the system and, in particular, the height of the reaction barrier is important for the 

performance of the methods. 

The studies of Sheppard et al.142 and Klimeš et al.162 usually used only one type of 

methods at a time, either path searching methods or local refinement methods. Each type of 

methods has its advantages and disadvantages. For the user one of the largest advantages of 

path searching methods is that the methods require only simple input. Usually the two minima 

of the reaction path are enough. On the other hand, the path searching methods alone might 

experience convergence problems as the convergence usually is slow. In general only rough 

convergence is provided.105 Although image optimization proposes a new path at each step, it 

does not consider that the images might get respaced. Only the climbing image variants can 

approach the transition state directly, while the other methods have to interpolate the transi-

tion state from the path. The interpolated transition state estimate is typically less accurate 

than the one achieved by climbing image methods. 

Local transition state finding methods, like the dimer methods, have the advantage that 

they can converge to high accuracy and require less gradient evaluations than the path search-

ing methods. On the other hand, they strongly depend on the quality of the starting geometry. 

As local methods do not keep any information about the minima on the potential energy sur-

face, the methods can easily approach a transition state (or stationary point of higher order), 

which does not belong to the reaction of interest. The dimer method is created in a way that it 

can deal with convex regions of the potential energy surface,131, 137, 163 allowing a start from a 

geometry close to a minimum. Especially if there are several transition states close to the min-

imum, it is possible that a transition state other than the desired one is found. Thus it is often 

required to generate a starting geometry, which fits the reaction of interest. This in turn needs 

great chemical intuition from the user. 
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A two-step strategy, as implemented in the present work, first launches a global, then a 

local transition state search method. In the first step a minimal energy path search method is 

used to get a rough estimate of the reaction path. In the second step the approximate transition 

state suggested from the converged path is refined by a local search method. Such an ap-

proach combines the advantages of both types of methods. Also ParaTools was opted for sur-

face reactions involving larger adsorbed species than those from the literature.  

20.2 The Test Strategy 

A systematic study of the two-step strategy was done with ParaTools.164 Energies and nuclear 

displacement gradients of the energy for ParaTools were obtained by the Vienna ab initio 

simulation package, VASP 4.6.165-166 A density functional approach with plane-wave basis set 

at the gradient-corrected level was applied.167 The PAW method was used to describe the core 

electrons.168 The energy cut-off of VASP calculations was set to 320 eV. The methods and 

parameters chosen for the test of the two-step strategy of transition state optimization are de-

scribed below. 

For the path searching step (the first step of the two-step strategy) the study concentrated 

on the chain-of-state methods NEB, standard string, searching string, and CI-string methods, 

which were applied with two optimizers, conjugate gradient and Multiopt.13 Other specifica-

tions for this step, like the choice of parameters, were not tested; the default parameters were 

used instead, see Appendix H.  

For the path searching methods, two convergence criteria were applied. The first one is 

the gradients criterion of the images, the second one uses also the step length in addition to the 

gradients criterion. The first criterion employs the gradient convergence measure g∆ , which 

is defined as root mean square value of the gradients perpendicular to the tangents in the 

mixed units of eV/Å or eV/rad if angles were concerned. For convergence this value should be 

below 0.1.  

The second criterion uses a convergence measure for geometry steps in addition to some 

less tight gradient convergence conditions. The maximal step length of the three images with 

the highest energies were monitored. If for the three last iterations the maximum of this step 

length is below the convergence criterion of 0.03 (in units of Å or rad) and additionally the 

gradient convergence measure is at most g∆ = 0.5, convergence is considered to be reached. 

This should prevent too long calculation with very small updates of the chain. These small 

updates hardly change anything but increase the amount of gradient evaluations. If no conver-

gence is reached the algorithm stops after 35 iterations.  
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In this study, the path was represented by 7 images. All methods studied, except the 

searching string method, initially construct 5 images in between two given local minima, 

which are later optimized. The searching string method initially constructs 2 images only and 

increases the number of images during optimization. It adds a new image after the gradient 

convergence measure is less than 5 g∗ ∆ ,  which per default case is equal to 0.5.  

The CI-string method includes up to 5 initial iterations carried out with a standard string 

method, for which the gradient convergence criterion of g∆ = 0.5 is applied. For the adding of 

a new image in the searching string method and for the first 5 iterations in the CI-string meth-

od no geometry convergence criteria were used. 

To apply the second step of the strategy a transition state is estimated from the opti-

mized path. For this estimate only a subset of all available paths was taken. Only those paths 

were used, which are chemically reasonable. Paths with molecular bonds broken or built, 

when it was not expected, or paths with other significant anomalies, were not considered and 

are omitted in tables. To note, it was not required that the path optimization reaches conver-

gence. Even if the path did not meet the convergence criteria after 35 iterations, it was evalu-

ated. To extract the best transition state estimate from the paths, various strategies were used 

for the CI-string approach and the other chain-of-state methods. The climbing image of the 

CI-string approach is expected to converge to the transition state, thus it is used as starting 

point for the next refinement step. For the other three methods the “spline and polynomial” 

method118 was applied to generate a transition state estimate, which uses a cubic spline to in-

terpolate the energy and to find local maxima. It can happen that there several maxima, for 

example, when the path exhibits loops. In this case the maximum closest to the expected tran-

sition state was chosen. This is a situation where chemical intuition is indispensable. The di-

mer methods, used for the transition state refinement, need a mode vector as input. The path 

tangent at the position of the transition state estimate was taken as a starting mode vector. 

For the refinement (the second) step two different method, the standard dimer (Section 

14.2) and the modified Dimer/Lanczos (mDL) methods (Section 14.3) were explored. For the 

choice of the computational parameters, see Appendix H. A simple quasi-Newton approach 

(Section 14.1) for the transition state search, which was applied selectively, was not success-

ful. The refinement methods were restricted to at most 150 iterations. As convergence criteri-

on of the refinement step, the absolute component of the gradients were required to 0.02 eV/Å 

or eV/rad, depending on the parameter considered. With this rough convergence criterion the 

results are still approximates, which cannot give valid results about the observed reactions, 
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but the results are accurate enough to represent the behavior of this kind of method in real 

applications. 

The same parameters were chosen for both local refinement methods. The distance be-

tween the dimer endpoints and its midpoint was set to 0.0025 Å, see Section 14.2. This corre-

sponds to the default distance of the dimer method of Vasp TST tools.118, 143 For the mDL 

method the same distance between the new basis trial point and the midpoint was chosen. 

Both methods were allowed to do at most 10 rotation steps before a translation step was done. 

The convergence of the mode updating step, as judged by the angles as specified in Sections 

14.2 and 14.3, had to be below 0.01°. 

20.3 The Test Systems 

For the systematic study of transition states of surface reactions eight model systems were 

used, representing reactions on the Pt(111) surface. The model systems were created in the 

following way. Various typical reactions of different complexity were taken from recent in-

vestigations110-112 and simplified: the slab model of Pt(111) for these considerations consisted 

of three layers, two of which were kept fixed. This is a simpler model than the one commonly 

applied which exhibits five layers in total, three of them fixed.110-112 Alkyl groups, which are 

not taking part in the reactions, were replaced by hydrogens, thus also the adsorbed species 

were simplified. A unit cell of (3 ⨉ 3) was found to be sufficient. A vacuum space of at least 

10 Å was introduced between the slabs. All systems considered are given in Table 20.1, to-

gether with a short description. Simplified in this way, minima and transition states were 

optimized for all reactions to serve as starting structures and reference states for this study. 

The structures of the transition states are sketched in Figure 20.1. 

Table 20.1: For evaluation of the combinations of transition state search methods eight reac-
tions on Pt(111) were used. Provided is the numbers N of atoms moving during transition state 
search, the barriers ∆E1 and ∆E2 (kJ/mol) from the reactant and product sides defined by the 
reference transition structure, respectively, as well as references to recent computational stud-
ies of related reactions. Adapted from Ref. 13. 

Nr. Short description Reaction Ν ΔE1 ΔE2 Ref. 
I C-H bond creation CH2C + H → CH2CH 14 55 69 110 
II H-shift CH2CH → CH3C 14 169 218 110 
III C-C bond breaking CH2CO → CH2 + CO 14 106 141 169 
IV O-H bond breaking CH3OH → CH3O + H 15 57 15 112 
V C-H bond breaking CH3OH → CH2OH + H 15 30 90 112 

VI Ring opening 
2 2 2 3CH CH CH CCCH�������������������  24 118 191 111 

VII C-O scission CH2OH + H → CH3 + OH 15 196 151 170 
VIII OH substitution CH3OH + H → CH4 + OH 16 221 191 170 



20. Performance Tests 

-  124  - 

 

Recent investigations on ethylene transformations110, 113 inspired the first two reactions 

(I, II). In System I a carbon-hydrogen bond is created, CH2C + H → CH2CH.110 A completely 

different step, which can also take place during ethylene transformation, is a hydrogen shift 

reaction (CH2CH → CH3C) — system II of the tests.110 Carbon-carbon bond breaking was 

taken as system III  — the ketene example ( CH2CO → CH2 + CO).169 System IV describes 

the scission of the O-H bond of methanol (CH3OH → CH3O + H), for which the oxygen is not 

bound to the surface in the reactant methanol.112 These four systems cover already a large 

variety of reactions and were extensively studied.  

 

Figure 20.1: Sketches of the transition states of various model reactions. See description in 
Table 20.1. Adapted from Ref. 13. 

Four other surface reactions, V–VIII, were used for further tests. They were only tested 

for a reduced set of methods. The reaction V, breaking of a C-H bond of methanol (CH3OH 

→ CH2OH + H)112, should not cause any additional difficulties compared to reaction I. Sys-

tem VI is significantly larger than the other systems, including altogether 33 moving atoms 

(24 for the adsorbate and 9 for the uppermost surface layer). It corresponds to a ring opening 

of cyclopentyne.111 So far only simple reactions have been tested, where only one significant 

structure change was taking place. To test the methods further, more complex reactions, SN2, 

were examined. SN2 reactions combine two significant structure changes in one step. Both 

reactions have a C-H bond formation and at the same time a C-O bond breaking. In reaction 

VII (CH2OH + H → CH3 + OH) reactants and products bind strongly to the surface. In reac-

tion VIII (CH3OH + H → CH4 + OH) methanol is only weakly bound to the surface, while 

methane is not bound at all. 
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20.4 The Path Optimization Step 

The goal of the study was to find a method, which leads to a reliable transition state at rather 

low computational cost. When the path was very peculiar, it is not taken for the further evalu-

ation. For example, three paths found were removed from further considerations as they corre-

spond to unphysical behavior of the system. In two cases the hydrogen atom in the dehydro-

genation reaction was found to be absorbed by the substrate. It was located between the first 

and second layers of the substrate. One more path was skipped because in addition to the de-

hydrogenation reaction C-O bond breaking was observed. However, it is difficult to access the 

reliability of a path and seven more estimated transition states of the path optimization step 

finally did not converge to the expected transition state. This will be discussed in detail in 

Section 20.8. Experience shows that it is not obvious beforehand if the subsequent refinement 

step would reach the correct transition state or not.118 The present section is focused on time 

efficiency and the computational cost.  

For all systems a special mixed coordinate set was assigned. In mixed coordinates the 

adsorbate is described with a Z-Matrix which is connected to the surface by positioning coor-

dinates. These are a global translation vector and a global rotation vector, described by a qua-

ternion.171 The atoms representing the surface were described in Cartesian coordinates. The 

advantage of this mixed coordinate system is that the Z-Matrix coordinates describe chemical 

degrees of freedom, like bonds and angles. At the same time the surface profits from being 

described in Cartesian coordinates, so one does not have to define the Z-matrix for it, which 

would be rather intricate. It is also possible to describe the complete system in Cartesian coor-

dinates only, which has been done as alternative. 

Table 20.2: Number of gradient evaluations required for the path optimization step. Tested 
were various chain-of-state methods: NEB, string (S), searching string (SS), and CI-string 
(CIS). They were combined with the conjugate-gradient (CG) or the Multiopt (MUL) path 
optimization procedures. The test systems I–IV were treated in either Cartesian (C) or mixed 
(M) coordinates. Calculations that did not converge within 35 iterations of the optimizer are 
marked by a star. Omissions indicate cases where no valid path was obtained. Adapted from 
Ref. 13. 

Combination I-C I-M II-C II-M III-C III-M IV-C IV-M 
NEB 127 – 77 97 87 37 52 82 

S-MUL 77 47 117 77 87 52 77 52 
S-CG 352* – 347* 82 87 37 62 87 

SS-MUL 100* 94* 70 82 68 17 82 29 
SS-CG 133 124 31 183 43 21 – 83 

CIS-MUL 117 87 102 67 57 52 67 62 
CIS-CG 97 207 87 82 87 37 47 87 
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The first part of the test explored the reaction path optimization step (the first step) of the two-

step strategy of transition state optimization and was restricted to the four reactions I–IV (see 

Table 20.1).  

These two types of coordinate sets were compared in the current test. Also two optimiz-

ers were compared: the optimizers Multiopt (Section 15.1) and conjugate gradient approach 

(Section 15.2) are considered. Note that Multiopt was only designed for string methods and 

thus the combination NEB with Multiopt is not available. In addition, the four chain-of-state 

methods — NEB, standard string, searching string, and climbing image string — were com-

pared. All tests were done for the four reactions I–IV, see Table 20.1. By varying the coordi-

nate type, optimizer, and reaction path search method, the optimal approach of the two-step 

strategy of the transition state search was searched for. 

 

Figure 20.2: The computational efficiency of various path searching methods was compared 

based on relative differences / sn n〈∆ 〉  of the number of gradient calls n with respect to the 

average sn  over systems s ( sn n n∆ = − ) for systems s =  I–IV. Lower is better. Compared are 

pure Cartesians (CART) and mixed coordinates (MIX), two optimization procedures, Multi-
opt (MUL) and conjugate gradient (CG) and of four chain-of-state methods: NEB, standard 
string (S), searching string (SS), and CI-string (CIS). Further shown are the analogous catego-

ry averages / si i〈∆ 〉  of the relative differences of the number of chains to be calculated from 

the system specific average si  for the four chain-of-state methods. Adapted from reference 13. 

To estimate the efficiency of the path search step the computational cost was evaluated. 

The most demanding part of the computational cost is the calculation of the gradients by the 

quantum chemistry code. The remaining cost can be neglected, leaving the number of gradient 

evaluations as a sound choice for an efficiency criterion. The number of gradient evaluations 

as the indicator of the method efficiency for all test systems is given in Table 20.2. As one can 

see these values cover a wide range from 17 to 352. The number depends on the complexity 

of the system. For example, system I required more steps on average, 130, than system III, 55. 



Part III: ParaTools 

-  127  - 

One can actually use the average number of steps to characterize the complexity of the sys-

tem. However, the average number of gradient calls does not take into account the failures, 

when no approximate transition state was produced. Thus, instead of using direct averages, it 

is more appropriate to look at relative differences 

 / ( ) /
s s s

n n n n n∆ = −  (20.1)  

where sn  is the average for systems s =  I–IV and n is the number of gradient evaluations for 

a specific approach. For all methodological combinations the average ratio / sn n〈∆ 〉  can be 

computed and compared. Note that the sum of the average ratios for all methods is not always 

0. This is related to the fact that the number of values used for the average ratio can differ for 

each method. The average ratios are biased as failed calculations are not included, but using 

the relative differences as indicators should reduce this effect compared to using directly the 

number of gradient evaluations.  

Comparison of Cartesian and mixed coordinates indicates that the average ratios over 

the relative number of gradients clearly favor the mixed coordinates with / 0.14sn n〈∆ 〉 = −  

against the Cartesian coordinates with / 0.13sn n〈∆ 〉 =  (Figure 20.2). It is also possible to 

compare directly pairs of calculations, corresponding to the same system, path searching 

method and optimizer, which differ only in the choice of coordinates. Omitting the pairs with 

a failed counterpart, there are 18 cases were the mixed coordinates required less gradient 

evaluations and only 7 cases were the Cartesian coordinates were favorable. Thus, mixed co-

ordinates are clearly favorable for the path searching step. 

The optimizer Multiopt also reveals a better performance than its conjugate gradient 

counterpart. The relative performances show / 0.15sn n〈∆ 〉 = −  against / 0.12sn n〈∆ 〉 =  

(Figure 20.2). For this category it is only possible to compare 22 pairs as there are no direct 

counterparts for the NEB calculations with conjugate gradient. For 13 of these pairs Multiopt 

requires less gradient evaluations, while conjugate gradient is more efficient for the remaining 

8 ones. The main reason for the preference of Multiopt is that it requires only one gradient 

evaluation for every image per iteration, while conjugate gradient requires a second one to 

approximate the curvature in the search direction. 

When the chain-of-state methods NEB, standard string, searching string and CI-string 

are compared to each other via the relative number of gradient calls they yield results of 

/ 0.02sn n〈∆ 〉 = − , 0.23, 0.17−  and 0.05− , respectively. The searching string method is the 

best method according to this criterion. However, one has to consider that the bad perfor-

mance of the string method is mainly due to two calculations which failed to converge within 
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the maximal number of iterations. They contributed more than 300 gradient evaluations each. 

On the other hand, the searching string method, the best method according to the relative per-

formance criterion, includes also two calculations with failed convergence, but they contribute 

only around 100 gradient evaluations. The searching string method is favored in this perfor-

mance measurement by its restriction on maximal three images to be moved during the opti-

mization.118 This becomes especially clear if another measurement of the performance is tak-

en: instead of counting the number of gradient evaluations one counts how often a new path is 

created. As all image geometries of the chain are known at the same time, it is possible to par-

allelize over them. Thus, counting the number of chains i is a criterion which might be closer 

to the real time estimate on a parallel machine. The comparison is again done for a relative 

measure / si i〈∆ 〉 , calculated in the same way as for the gradient evaluations, but this time for 

the number of chains i. This criterion exhibits a different trend for the performance of the 

methods: the CI-string method wins with / 0.23si i〈∆ 〉 = − , followed closely by NEB with 

/ 0.20si i〈∆ 〉 = − . The searching string method, which had strongly profited by its reduced 

number of gradient evaluations per chain, performs worst with / 0.33si i〈∆ 〉 =  and the string 

method is much better than this with / 0.01si i〈∆ 〉 = . 

Another aspect to mention is that one of the three failed calculations belongs to the 

searching string method, while the CI-string method did not yet show any failures (Table 

20.2). Thus, the CI-string method is the best method concerning time and stability aspects, 

while the searching string method is the best concerning the computer resources. 

Table 20.3: Gradient convergence measure g∆ (see Section 20.2 for the definition) of reac-

tion paths for the method combinations and systems as defined in Table 20.2. Calculations 
that did not converge within 35 iterations of the optimizer are marked by a star. 

Comb. I-C I-M II-C II-M III-C III-M IV-C IV-M 
NEB 0.10 0.48 0.10 0.11 0.20 0.41 0.18 0.25 
S-MUL 0.09 0.12 0.17 0.13 0.28 0.14 0.09 0.10 
S-CG 0.12* 0.40 0.69* 0.26 0.26 0.42 0.22 0.17 
SS-MUL 0.35* 0.41* 0.42 0.09 0.20 0.18 0.31 0.24 
SS-CG 0.07 0.09 0.22 0.24 0.26 0.21 4.74* 0.13 
CIS-MUL 0.08 0.10 0.09 0.10 0.21 0.21 0.09 0.08 
CIS-CG 0.14 0.21 0.11 0.26 0.26 0.42 0.25 0.22 
 

The transition state estimates obtained by the various methods can be compared against 

the reference structures. Additionally the convergence of the paths can be compared. This 

does not allow evaluating the overall quality of the paths but can be used to distinguish differ-
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ent groups within the current results. Furthermore it allows checking whether a path which is 

not converged might be better omitted from further evaluations. All calculations provided 

transition state estimates still far off the reference transition states. Several Cartesian compo-

nents were more than 1 Å away from their values for the reference geometry. Also energy 

differences between reference system and its estimate are around 30 kJ/mol.  

The convergence of the paths was determined with two stopping criteria, one using sole-

ly the gradients, which should vanish at a converged path, and one considering the changes 

between successive paths. The first criterion, using solely the gradient convergence measure 

g∆  (Section 20.2), is a criterion based on the current path, while the second one also depends 

on the history of the paths. The first criterion is more relevant concerning the quality of the 

paths, which are the results of optimizations. Table 20.3 shows the value for the convergence 

criterion g∆  of the gradients for the last path. Several of the calculations had stopped because 

of the second criterion having usually still rather high values of the first measure. The not 

converged paths, except for the failed one of system IV with the searching string method, 

showed comparable values, see Table 20.3. This seconds the fact that the not converged calcu-

lations need not be a failure. The only reason why they were not converged is that successive 

paths during the optimization differed too much from each other, so that the procedure did not 

stop according to the second criteria.  

20.5 The Refinement Step 

Three methods were explored in the refinement step of the transition state optimization, the 

second step of the two-step strategy: the standard dimer, the modified Dimer/Lanczos (mDL) 

and the quasi-Newton method. The simple quasi-Newton method (Section 14.1) failed to find 

the reference transition state from various start positions while the other two methods were 

successful. Therefore only two methods were compared in the present section: the standard 

dimer and the mDL method. 

Both refinement methods follow the same scheme, with small differences, see Sections 

14.2 and 14.3. Although it would be possible to compare the standard dimer and the mDL 

methods for each starting structures generated in Section 20.4, it should be sufficient to com-

pare only a subset of all possible structures in order to look for the preferred one of the dimer 

variants: all path searching methods seem to provide results of comparable quality, see Table 

20.3. For this reason only transition state estimates created from the string calculations — 

except the one which failed for the path of system I — were used as starting positions for the 
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comparison of the two methods. This yields 15 transition state estimates, spread over the four 

systems I–IV.  

The transition state approximation from the path was done as described in Section 20.2. 

In one case, for system II with conjugate gradient optimizer in Cartesian geometries, the tran-

sition state estimate of the “spline and cubic” method with the highest approximate energy 

belonged to a loop, see Section 20.2. For this case the other transition state estimate of the 

“spline and cubic” estimation method with smaller approximate energy was taken as starting 

geometry for the local transition state search. 

For 12 cases both methods converged to a structure which could be identified as the ref-

erence transition state. The three exceptions are related to system II. For system II there was a 

stationary point of higher order (two negative eigenvalues) on the potential energy surface 

geometrically close to the reference transition state. To this particular stationary point the cal-

culations in Cartesian coordinates were converged: for the dimer approach and for mDL 

method with the Multiopt optimizer. The conjugate gradient optimizer with mixed coordinates 

produced a starting geometry from which the mDL method converged to a transition state of a 

different reaction. The two examples where the two methods found different stationary points 

are excluded from the subsequent discussion. However, the example, where the same unde-

sired transition state by both dimer and mDL methods was found, was considered further. 

Thus, as a result, there were 13 cases to compare dimer and mDL methods. The methods 

failed only in two cases to find the reference transition state, thus their overall reliability is 

comparable.  

For 9 of these pairs the mDL method required less gradient evaluations than the standard 

dimer method. Having a valid pair for every combination, one can directly average the num-

ber of the gradient evaluations. This resulted in 191 gradient evaluations on average for the 

standard dimer method and 150 for the mDL method. Consider that several gradient evalua-

tions per iteration are possible. This was clear from the fact that on average the standard dimer 

and the mDL method required only 39 and 35 iterations, respectively. This is roughly one 

iteration per degree of freedom. Note, that the standard dimer method requires two gradient 

evaluations per translation step, while the mDL method needs only one. Thus, the standard 

dimer method required in fact 77 gradient evaluations ( 2 39 1⋅ − , because after convergence 

was detected it was not required to calculate a second geometry) on average for dimer transla-

tion, while the mDL method needs only 35. This is also the main reason why the mDL meth-

od required less gradient evaluations in total (150 vs. 191). For dimer rotations the mDL 
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method required 115 gradient evaluations on average (150–35), while the standard dimer 

method requires 114 on average (191-77). 

In the cases where both methods approached the reference transition state the maximal 

differences in the geometries to the transition state for the standard dimer method were about 

0.06, 0.003, 0.05 and 0.11 Å in the Cartesian L2 norm, for the systems I to IV, respectively. 

The total energies were found to deviate at most by 0.09, 0.33, 0.08 and 0.05 kJ/mol, respec-

tively, from the reference energy. The results for the mDL method were comparable, with 

deviations of 0.04, 0.02, 0.04 and 0.34 Å for the geometries and 0.09, 0.3, 0.06 and 1.3 kJ/mol 

for the energies, respectively. 

Altogether the mDL method performed better than the standard dimer method. The re-

sults were of comparable quality and the mDL method required less gradient evaluations. Still 

it might be possible to improve the mDL method further. 

20.6 Suggestions for Improving the mDL Method 

The mDL method might perform not that well because all the computational parameters were 

taken from the standard dimer method and were not specially adapted. As already mentioned 

in Section 20.5, it required on average nearly the same amount of gradient evaluations for 

rotation as the standard dimer method. It required less iterations (35), therefore the number of 

gradient evaluations per iteration was somewhat higher than for the standard dimer method. 

The hints, which suggest that this difference in performance might be related to the computa-

tional parameter as well as the size of the effect will next be examined for an example. 

 

Figure 20.3: Using one of the starting geometries of system III as example the dimer (blue 
circles) and modified dimer-Lanczos (red diamonds) methods are compared. Left: number of 
gradient calls n in each iteration. Right: cumulative count N of gradient calls. The cumulative 
count N is also shown for the modified dimer-Lanczos method with a relaxed mode conver-
gence threshold of 0.02° (cyan triangles, pointing left) and 0.03° (green triangles, pointing 
right), instead of 0.01°. Adapted from Ref. 13. 
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 For this study, system II in mixed coordinates was chosen, where the string method and 

the conjugate gradient optimizer have been applied to find the transition state estimate. For 

this example the standard dimer and the mDL method required a comparable amount of itera-

tions, 32 and 30, respectively. The mDL method needed less gradient evaluations, 132, than 

the standard dimer method, 155. Figure 20.3 shows how many gradient evaluations were used 

in which iteration and how the sum of gradient evaluations developed over the iterations for 

both, the standard dimer and the mDL method. The standard dimer method used nearly uni-

formly 5 gradient evaluations per iterations and 4 near the end. This corresponds to 2 to 3 gra-

dient evaluations per rotation and thus normally to only one rotation step per rotation phase. 

On the other hand, the mDL method requires especially at the beginning more gradient evalu-

ations per iteration, up to 10. Only in the second half of the optimization the mDL method 

becomes more stable and uses only three gradient evaluations, corresponding to a single rota-

tion with 2 gradient evaluations per translation step (Figure 20.3).  

The curve of the sum of gradient evaluations N for every iteration of the mDL method 

starts much steeper (Figure 20.3) than the one corresponding to the standard dimer method. 

The sum of gradient evaluations N of the mDL method became smaller than that of the stand-

ard dimer method only after iteration 20, see Figure 20.3. It is not obvious why the Lanczos 

algorithm needs more iterations than the standard dimer rotation to determine an appropriate 

mode vector. One reason might be that the Lanczos algorithm works usually on more degrees 

of freedom. Thus even for identical values of the convergence criteria for both methods, the 

Lanczos algorithm may be searching for something which is globally more converged. Hence, 

the mDL method likely takes too many gradient evaluations on searching for the mode; a 

somewhat looser convergence threshold might improve the performance of the method. 

To explore the possibilities of this suggestion for the test case, see Figure 20.3, two fur-

ther calculations with the mDL method were carried out, using less accurate convergence 

thresholds of 0.02° and 0.03° instead of 0.01°. The resulting sum of gradient evaluations can 

be seen in the right panel of Figure 20.3. The curves belonging to the less accurate conver-

gence criteria are less steep than the original curve. They reflect less gradient evaluations, 91 

and 115 versus 132 for the calculation with original convergence criteria. However, the results 

show also that the least accurate threshold is not always superior, as the calculation with 0.03° 

used 35 iterations, even slightly more than the standard dimer method. For this specific exam-

ple calculation the convergence threshold of 0.02° was the best, it needed 91 gradient evalua-

tions for 24 iterations. To determine the best parameter a more extensive study is required, 

because with the less accurate convergence criteria an inaccurate mode vector can be obtained 
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which prevents convergence towards the desired transition state. Thus, for further test calcula-

tions the initial rotation threshold of 0.01° was kept. However, the possibility of decreasing 

the number of gradient evaluations by about 30% by changing the rotation threshold suggests 

that the search for improved computational parameter, which are reasonable in all kind of 

calculations, may further improve the refinement method 

20.7 The Global Evaluation 

For the global performance analysis of the two-step strategy all transition state estimates of 

the path optimization step, see Section 20.4, were followed by a refinement method. For the 

analysis the same criteria for the same set of test systems were used. A similar strategy as in 

Section 20.4 for the path searching step was employed for the global evaluation. Instead of 

comparing various refinement methods the better of the two, the mDL method (see Section 

20.5) was taken for all calculations. In addition it was now possible to evaluate the failures of 

the method combination, as the second step should yield the correct transition state.  

Among the calculations which failed to provide the correct transition state three types of 

failures can be observed. The first one was already addressed in Section 20.4 and corresponds 

to a completely failed path searching step. In Section 20.5 a stationary point of higher order 

was identified. The third kind of failure, the convergence to a wrong transition state of another 

reaction, is more severe and there are six examples of this kind. These failures are most cer-

tainly due to an unfortunate starting position of the refinement step. The failed cases will be 

analyzed further in Section 20.8. For the present performance evaluation only successful ex-

amples are discussed. 

The successful transition states determinations, as obtained with the two-step strategy, 

did not deviate much from the reference transition states. There is a slight difference between 

the systems I–III and system IV, the latter being always less accurate. While for systems I–III 

the total energies deviated only 0.02–0.04 kJ/mol from the reference system, system IV ap-

proached them only by 0.47 kJ/mol on average. The maximum absolute deviations in Carte-

sian coordinates were 0.04–0.09 Å for the systems I–III and 0.6 Å for system IV. The differ-

ences for system IV are mostly due to positions of the hydrogens in the CH3 group. Also the 

standard deviation from the reference data of the imaginary frequency at the transition state of 

483 cm–1 was almost twice as large for system IV, 7.2 cm–1, as the deviation for system I, 3.9 

cm–1, which happened to be the second largest. 

Table 20.4 provides the sums of the gradient evaluations for both steps for all non-failed 

calculations. The numbers are significantly larger than for the path optimization step before. 

With an average requirement of 167 gradient evaluations for the mDL method step versus 88 



20. Performance Tests 

-  134  - 

gradient evaluations for the path searching step, the algorithm spends roughly twice as much 

computational resources in the refinement step than in the path searching step. Thus, it is very 

important to get a good starting position from the path searching algorithm, even though this 

might require a larger number of gradient evaluations.  

Table 20.4: Total number of gradient calls when applying various two-step procedures to 
transition state search: a path optimization step followed by a refinement step with the mDL 
method for tests of systems I to IV. For the designations of the various methods see Table 
20.2. Specially marked are failed path optimizations (omissions), higher-order stationary 
points (“ho”) and convergence to an unexpected transition state (“u”). Adapted from Ref. 13. 

Comb. I-C I-M II-C II-M III-C III-M IV-C IV-M 
NEB 319 – 262 225 240 163 249 271 
S-MUL 284 202 ho 214 236 166 286 217 
S-CG 479 – 536 u 235 169 268 237 
SS-MUL 314 287 269 255 159 145 u 247 
SS-CG u 279 237 292 186 139 – 284 
CIS-MUL 283 214 289 220 u 152 335 237 
CIS-CG 274 375 283 u u 168 327 227 
 

As in Section 20.4, the relative differences / sn n〈∆ 〉  were calculated, instead of direct 

averages, see Figure 20.4. This time the relative differences were built over the cumulative 

number of gradient evaluations of the path searching step and the refinement step. Using the 

relative difference makes even more sense than for the example in Section 20.4. There are 10 

cases, instead of three, which have to be omitted from the statistics because of the three dif-

ferent kinds of failures, instead of only one for failed paths. They are widely scattered for the 

various calculations.  

The coordinates, Cartesian and mixed, show the same picture as for the evaluation of the 

path searching step (Section 20.4) with even the numbers having changed only slightly from 

/ 0.13sn n〈∆ 〉 =  and / 0.14sn n〈∆ 〉 = −  to / 0.12sn n〈∆ 〉 =  and / 0.11sn n〈∆ 〉 = − , respectively. 

This is due to the fact that the mDL method can also use the advantages of the improved 

mixed coordinates. On the other hand, the mDL method cannot profit from the preferable op-

timizer for the path searching step. Thus, the performance difference between the various op-

timizers decreases. While for the path searching step Multiopt gave / 0.15sn n〈∆ 〉 = −  and the 

conjugate gradient optimizer yielded / 0.12sn n〈∆ 〉 = , the differences for the complete num-

ber of gradient calculations is reduced to / 0.07sn n〈∆ 〉 = −  and to / 0.06sn n〈∆ 〉 =  for the full 

optimization, respectively. 
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Figure 20.4: Category averages of relative differences / sn n〈∆ 〉  for the two-step transition 

state search, path optimization plus modified dimer-Lanczos refinement. sn n n∆ = −  is the 

difference of the number n of gradient evaluations for systems s = I–IV and the corresponding 
average sn . Lower is better. Comparison of mixed (MIX) and Cartesian (CART) coordinates, 

of the two optimization methods, Multiopt (MUL) and conjugate gradient (CG), of four chain-
of-state methods NEB, standard string (S), searching string (SS), and CI-string (CIS). For 
each of the string methods three average values are shown: over all optimizations as well as 
over optimizations carried out with the path optimizers Multiopt (dotted line) or conjugate-
gradient (dashed lines). Adapted from Ref. 13. 

Another criterion indicates that the quality of all the transition state estimates is rather 

similar. For the different chain-of-state methods the performance differences also decreased 

when the gradient evaluations for the refinement step were added. This might be changed in 

cases where more effort is used to generate better paths, which can improve the transition 

state estimate to be refined. However, for the current switch point between path search meth-

ods and refinement a decrease is observable. For NEB, standard string, searching string, and 

CI-string methods the values are / sn n〈∆ 〉  = 0.0, 0.09, –0.06, and –0.03, respectively. Espe-

cially the difference between searching string and CI-string methods is reduced largely, com-

pare Figure 20.2. These differences are even further reduced if the averages are separated for 

each optimizer. It is clear that the reason for the relatively bad performance of the string 

method is due the weakness of the conjugate gradient optimizer (Figure 20.4). The CI-string 

method exhibits as good a performance as the searching string method, if only the calculations 

with the Multiopt optimizer are considered; for both methods / 0.08sn n〈∆ 〉 = −  is calculated. 
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The string method reaches / 0.07sn n〈∆ 〉 = −  if the Multiopt optimizer is used. However, the 

combination of the conjugate gradient optimizer and the NEB method for the transition state 

search still performs surprisingly well, compared to combinations of conjugate gradient with 

the string methods. That leads to the hypothesis that not the conjugate gradient optimizer it-

self, but the choice of tangents and the respacing procedures contribute to the (relatively) bad 

performance of this optimizer in the two-step strategy.  

Based on this overall analysis it is recommend to use the more reliable optimizer Multi-

opt for the first step, the path searching step. As it was shown based on the number of gradient 

calls, the best method combinations are the searching string and CI-string methods together 

with the Multiopt optimizer in mixed coordinates. In addition the CI-string method has the 

advantage that more images of the path searching step can be calculated in parallel, see Sec-

tion 20.4. Thus, the CI-string method (together with the Multiopt optimizer) is recommended 

as the best choice for the first step. As shown in Section 20.5, the mDL method is the best 

choice for the refinement step. As a result, the most reasonable choice of procedures for the 

transition state search with the two-step strategy are mixed coordinates, CI-string method, 

Multiopt optimizer and the mDL refinement method. 

20.8 Cases of Unwanted Structures 

There are three types of unwanted structures to consider: 

1. The failed path calculations of the path evaluation step, which were already removed 

in Section 20.4 from the statistics. 

2. The calculation stopped at a stationary point of higher order. 

3. The calculation found an unwanted transition state. 

In case of a failed path one should use another path evaluation method. As these cases 

are rather rare there is always a different choice possible. 

In the case of a stationary point of higher order one may take a single step along the di-

rection of the unwanted eigenmode and restart the refinement. This is explained in detail for 

the only case, where it appeared: for the stationary point found by the mDL method using the 

start geometry of the string calculation with the Multiopt optimizer in Cartesian coordinates. 

With a frequency/eigenmode analysis of the stationary point one finds two imaginary fre-

quencies, 67 cm-1 and 1170 cm-1. A step along the eigenvector of the Hessian matrix is taken 

which belongs to the second smallest eigenvalue (frequency 67i cm–1). The length of this step 

is set to 0.1 Å. This provides a new geometry. This geometry and the eigenvector belonging to 

the 1170i cm–1 frequency as mode direction are the starting values for a second mDL calcula-
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tion, which converged after 41 iterations and 153 gradient evaluations to the desired reference 

transition state. The first calculation had already stopped after 15 iterations and 56 gradient 

evaluations. 

In the third kind of failures of the transition state search, where an unwanted transition 

state was found, the solution was to improve the path with continued optimization until a bet-

ter starting geometry for the refinement step was identified. When the unwanted transition 

state was reached the transition state estimate of the path was not in a region where it con-

verged to the real transition state. The reason might be that it was too far away or in an unfor-

tunate region with the mode vector of the smallest eigenvalue belonging to another reaction. 

Thus it is desirable to improve further the path, hopefully to reach a better starting geometry.  

 

Figure 20.5: Geometry projection of two successive reaction path approximations for the 
hydrogen shift reaction (system II), converged with g∆ = 0.26 (dashed line) and g∆ = 0.10 

(solid line). Structures were located by the modified dimer-Lanczos method when started from 
the TS estimates of these two paths. TS estimates are indicated by crosses. Estimates on the 
paths are in the corresponding color. The reference TS is marked in black, off any of the 
paths. Adapted from Ref. 13. 

Using the example of the mixed coordinate calculation of system II, where the transition 

state estimate was generated with a string calculation using the conjugate gradient optimizer, 

the strategy is explained in detail. The original string calculation converged after 10 iterations 

and 82 gradient evaluations to a path with gradient convergence measure g∆ = 0.26. From 

this path the mDL method converged to a wrong stationary point. The continued string meth-

od reached the smaller convergence criteria of g∆ = 0.10 in iteration 18. The original con-

verged path and this new path projected on the relevant coordinates are given in Figure 20.5. 

The new path has its transition state estimate closer to the reference transition state in the pro-
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jection shown in Figure 20.5, but the geometry altogether is not that much closer. The geome-

tries in Cartesian coordinates are even a bit further off with 0.26 Å instead of 0.22 Å average 

differences to the reference transition state. Still the transition state estimate from the im-

proved path converged after 25 iterations and 130 gradient evaluations to the reference transi-

tion state. 

The three similar cases for the CI-string method are treated the same way. The calcula-

tion with the CI-string method, mixed coordinates and the conjugate gradient optimizer for 

system II reached a value of g∆ = 0.26; it improved in iteration 24 to g∆ = 0.11. The subse-

quent mDL calculation needed 21 iterations and 110 gradient evaluations. The other two prob-

lematic calculations with the CI-string method appeared for system III, calculated in Cartesian 

coordinates. To resolve them the method, where the Multiopt optimizer had been used, was 

continued to the iteration 23; the convergence measure improved from g∆ = 0.20 to g∆ = 

0.09. For the second calculation the conjugate gradient optimizer took 33 iterations to reach 

g∆ = 0.15 instead of g∆ = 0.26. The following mDL calculations needed 141 gradient evalua-

tions for 35 iterations and 62 gradient evaluations for 15 iterations for the new starting geome-

try obtained from calculations with Multiopt and conjugate gradient optimizer, respectively. 

Both calculations converged to the reference transition state. 

When applying the same strategy to the calculation with the searching string method, 

one has to consider that this method freezes some of its images without further processing. 

Extending the calculation with the purpose of getting better convergence only to the last mov-

ing images might not be enough, as the remaining part of the path is still rather approximate 

and might prevent the desired improvement. Thus in this case the complete calculation with 

the searching string method has to be redone with new convergence criteria. This is different 

from the other calculations where one could reuse the results from the path searching calcula-

tion. The gradient evaluations which were required for the refinement step of the transition 

state search which converged to the wrong stationary point are lost for all calculations and 

cannot be further used. However, this step was computationally more demanding. Thus the 

additional loss for the searching string method does not have too much weight. In case of the 

searching string approach one furthermore has to be careful that the new convergence criteri-

on gtol is not too tight, as it would prevent the chain to add new images because the conver-

gence for getting a new image is set to 5*gtol and hence coupled to the gradient convergence 

criteria gtol, see Subdirectory 20.2. Taking half of the original convergence criteria the calcula-

tion with the searching string method with conjugate gradient optimizer in Cartesian coordi-

nates for system I reached g∆ = 0.17 after 18 iterations and 157 gradient evaluations, allow-
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ing the mDL method to converge to the reference transition state in 40 iterations and 175 gra-

dient evaluations. The calculation with the searching string method in Cartesian coordinates 

with Multiopt optimizer for system IV, which had the same challenges, converged with the 

tighter convergence criteria to g∆ = 0.14 after 13 iterations with 36 gradient evaluations, the 

mDL method required additionally 64 iterations and 243 gradient evaluations. 

20.9 Further Tests 

The reactions V and VI from Table 20.1 were only tested with the best methods from Section 

20.7, searching string and CI-string methods. Only the superior optimizer Multiopt was used. 

Calculations were further exclusively performed in mixed coordinates, as the better choice of 

the coordinate systems found in Section 20.7. The refinement of the transition state estimate 

was done with the mDL algorithm. Thus two different strategies, one starting with the search-

ing string method the other with the CI-string method and both continued with mDL method, 

were tested. 

20.9.1 System V: Hydrogen Abstraction 

For system V, hydrogen abstraction of methanol, see Table 20.1, both strategies converged. 

For the first step (path searching step) both methods needed 17 iterations to converge. 

Relevant coordinates and energies for both strategies are given in Figure 20.6. As can be 

seen in Figure 20.6, the CI-string method starts with two energy maxima on the first interpo-

lated path. The second maximum is reduced in further calculations, in the last iteration only 

one maximum remains at a geometry where the hydrogen is not yet very far from the carbon. 

The searching string method has more problems despite requiring the same amount of itera-

tions. It also starts with two energy maxima on the first path. The resulting path is not as 

straight as the one from the climbing image method. The last path still exhibits the second 

energy maximum. Furthermore it is possible to see how a loop near the reactant develops with 

increasing iterations. Most of the images on the path are applied to represent this loop which 

provides also the highest energy maximum. As transition state estimate for the searching 

string method the second largest energy maximum, the one after the loop, is taken. For com-

parison it is noted that the images of the CI-string method were more or less equally distribut-

ed. 

Both transition state estimates could be refined towards the reference transition state. 

With the starting geometry from the CI-string method the mDL method required for these 73 

gradient evaluations, together with the 87 from the path search this strategy required 160 gra-

dient evaluations in total. Surprisingly, the strategy with the searching string method required 
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less gradient evaluations, 129, as the sum of 45 evaluations for the path searching step and 84 

gradient evaluations for the refinement. This is due to the reduced number of gradient evalua-

tions per chain in the path searching step. 

 

Figure 20.6: Locating the transition state of system V. Relevant coordinates (left) and energy 
(right). The first, fifth, 10th and 15th path are shown as dashed curves, the higher the number 
the darker the path. The last (17th) path is shown as solid curve. Every second geometry of 
the mDL calculation is given as colored circles. Top row: CI-string method as path searching 
method, bottom row: searching string method as path searching method. 

20.9.2 System VI: Ring Opening 

The requirements on gradient evaluations for the calculations of system VI, ring opening of 

cyclopentyne, were of the same order as for the systems tested already in Section 20.7. This is 

a fortunate result, considering that system VI was the largest system of the test set, having 99 

degrees of freedom altogether. The strategy starting with the CI-string method required 193 

gradient evaluations and was requiring even less than the strategy with the searching string 

method which needed 227. The searching string method had problems to converge, running 

the maximal 35 iterations and stopping with a gradient convergence criteria of g∆ = 0.60. Still 

the quality of the transition state estimate was sufficient for the subsequent refinement. The 

refinement took 157 gradient evaluations which is only slightly more than the refinement after 

the CI-string method with 141 gradient evaluations. As several of the atoms of system VI 
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were not taking part in the reaction, this example indicates that removing the alkyl groups to 

simplify the systems makes the results still comparable to the larger systems of the recent in-

vestigations.110-112 

20.10 SN2 Reactions 

The last class of reactions to be discussed comprises SN2 reactions where in one step a bond is 

broken and simultaneously a bond to a different group is built. This does not mean that the 

reaction which would in reality take place between the respective reactant and the product 

needs to be a SN2 reaction. A so called SN1 reaction is also possible where the reaction is done 

in two steps — one where one bond is broken and subsequently another where another bond is 

formed. However, also a SN2 mechanism in the following examples. As for the other tests on 

systems V and VI, Section 20.9, only the searching string and the CI-string methods were 

used together with the optimizer Multiopt. The calculations were carried out in mixed coordi-

nates. 

The fact that there should be two paths between the reactant and product minima, one of 

a type SN2, the other one of a type SN1, can result in challenges for the path searching calcula-

tion. As initial path, a linear interpolation between the two minima is used. If a path nearby 

exists, it is more likely that the path searching method finds this path. One solution to this 

challenge is to provide a third image for a parabolic starting path to enforce the reaction to 

take the more complex SN2 reaction. The creation of these images is described in detail in 

Appendix J.  Alternatively, a path search method, especially adapted to this situation, like the 

growing string method, may provide a solution. Both variants were tested on systems VII and 

VIII. 

20.10.1 System VII: Hydroxymethyl 

In system VII all molecules remain attached to the surface during the reaction. A hydrogen 

atom approaches the CH2 group of the hydroxymethyl from which OH is abstracted. Using 

only reactant and product structure as input to path searching, both the searching string meth-

od and the climbing image string method converged. The two resulting paths were near the 

linear interpolation, see for example the CI-string method in Figure 20.7. The structures of the 

transition state estimates had the following characteristics: The C-H distance was 1.7 Å for the 

searching string method and 1.9 Å for the CI-string method. The C-O distances, on the other 

hand, were even larger, 2.7 Å and 2.6 Å, respectively. These values belong more likely to a 

SN1 reaction where first the C-O bond is broken, allowing the OH group to be removed, fol-

lowed by a step where the C-H bond is formed. For a two-step reaction one would expect a 
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second maximum on the path. However for a path represented by only few images, it is possi-

ble that this aspect is missing, especially if this corresponds to a small reaction energy.  

If the transition state estimates of the paths are refined with the mDL method, they con-

verged to different structures. The starting geometry from the searching string method con-

verges to a stationary point of second order. The larger negative eigenvalue of the Hessian 

matrix in Cartesian coordinates (771 cm–1) corresponds to a C-H bond formation, while the  

smaller second one (29 cm–1) is mainly a rotation of the O-H bond around the oxygen, which 

was removed with the strategy mentioned in Section 20.8 for the case of a transition state of 

higher order. However, in this case (other than in Section 20.8) a larger step along the un-

wanted direction with the length of 0.5 Å is taken. The strategy yielded a SN1 transition state. 

The CI-string transition state estimate on the other hand was refined to yet another structure, 

which was also much lower in energy, but belonged to a reaction step, where both the C-H 

bond and the O-H bond are already broken and only a rotation of the CH2 species took place.  

The transition state, found with the starting geometry of the searching string method, has 

an energy of -17519.5 kJ/mol, while the reference transition state of the SN2 reaction has an 

energy of -17435.1 kJ/mol. Therefore it is to be expected that the path between reactant and 

product would usually follow a SN1 reaction. To have a chance for locating the SN2 pathway, 

a third starting point for a parabolic interpolation is generated, which should switch the initial 

path to a path much more favorable for a SN2 reaction.  

 

 

Figure 20.7: Path projections (left) and energy profiles (right-hand) of system VII. The paths 
were generated with the CI-string method. Shown are the starting path from a linear interpola-
tion (cyan, dashed line) and the resulting converged path (blue, solid line with triangles) as 
well as the starting path with a parabolic interpolation (red, dashed line with diamonds) and 
the corresponding converged SN2 reaction path (black, solid line with circles). The subsequent 
refinement (red dots or blue triangles) starts from the image of this path with the highest ener-
gy. Adapted from Ref. 13. 
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The parabolic starting path and the path to which it converged with the CI-string method 

are also shown in Figure 20.7. The parabolic starting path has the disadvantage that for exam-

ple the C-H bond is getting very small (∼ 0.6 Å) for some of the images. However the CI-

string calculation managed to converge to a sound path using 97 gradient evaluations, see 

Figure 20.7. The mDL method required 207 gradient evaluations to reach the transition state 

of the SN2 reaction. This transition state belongs to the desired SN2 reaction as can be deduced 

from the distances C-H = 1.3 Å and O-H = 2.0 Å; these distances represent existing stretched 

bonds. The searching string method did not succeed to find a reasonable path; rather, it con-

verged to a path where a water molecule is formed.  

For this kind of reactions it makes sense to consider another method for creating a path 

for the first step (phase) of a two-step strategy; the growing string method was designed for 

finding a path when the linearly interpolated initial path is not adequate. The growing string 

method, using the same optimizer and coordinate system as the other two path-searching 

methods, converged towards the path of the SN1 reaction. This again can be explained by the 

fact that the SN1 reaction is likely to be lower in energy and that the corresponding path exists 

and is much closer to the starting path than the path of the SN2 reaction. As the converged 

path of the growing string method is not likely to lead to the desired transition state of the SN2 

reaction, no refinement was carried out.  

20.10.2 System VIII: Methanol 

System VIII is even more complicated than system VII, as here the reactant methanol is only 

slightly bound and the product methane is not attached at all at the surface. The main differ-

ence to system VII is an additional hydrogen, which results in a CH3 group instead of the CH2 

group of system VII. For the current example no strategy was particularly successful. When 

the correct transition state was found, it always required many gradient evaluations. There is 

also no path which can be seen to represent the reaction path especially well. Some of the dif-

ficulties can be ascribed to the fact that the moieties are only weakly bound to the surface. 

For this reaction the path searching methods, started with a linear interpolation between 

the reactant and product, converged again to a path which is close to the linear path, but not to 

that of the SN2 reaction, Figure 20.8. The refinement of the transition state estimate of the 

searching string method even failed to converge, after having broken all C-H bonds in itera-

tion 150. In contrast, the transition state estimate of the CI-string method converged to the 

correct transition state of the SN2 reaction. The refinement with the mDL method needed 286 

gradient evaluations, while the CI-string method converged with 62 evaluations. This hap-

pened even though the transition state estimate geometry had the relevant distances with the 
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C-H distance of 1.9 Å and the C-O distance of 3.0 Å even larger than the corresponding ones 

for system VII. Thus, for system VIII it was not necessary to produce a third starting geome-

try. However, as the approach with the third starting geometry was successful for the other 

SN2 reaction and the calculation starting from a linear path had required many gradient evalu-

ations, it might be worthwhile to compare this approach to the strategy starting with a linearly 

interpolated path.  

 

Figure 20.8: Path projections (left-hand column) and energy profiles (right-hand column) for 
the SN2 reaction VIII for path search with CI-string method (a, b) and searching string method 
(c, d). Shown are the starting path from a linear interpolation (cyan, dashed line) and the re-
sulting converged path (blue, solid line with triangles) as well as the starting path with a para-
bolic interpolation (red, dashed line with diamonds) and the corresponding converged SN2 
reaction path (black, solid line with dots). The subsequent refinement (red dots or blue trian-
gles) was started from the image of this path with the highest energy. Adapted from refer-
ence.13 

Figure 20.8 displays the parabolically interpolated starting path together with the paths, 

the path searching methods converged to. Here the starting path did not produce such a large 

loop with C-H distances below 1 Å, as observed in Figure 20.7 for system VII. This difference 

between the similar systems can be rationalized by the differences in constructing of the third 

start structure, Appendix J. However, the strategy using the parabolically interpolated starting 
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path does not provide much improvement with respect to the gradient evaluations over the 

strategy starting with the linearly interpolated starting path. 

The searching string method converged with 59 gradient evaluations, the CI-string 

method required 142 gradient evaluations. Both resulting paths correspond to the same SN2 

reaction. For these reactions the CI-string method met more challenges than the searching 

string method. This appeared in some movements of the hydrogen on the surface before it 

returned to a position to react with methanol (these fluctuations are not visible in Figure 20.8). 

The path with the searching string method was smoother. Both paths provided transition state 

estimates which correspond to geometries with both small C-H and C-O distances: C-H = 1.3 

Å, C-O = 2.0 Å and C-H = 1.5 Å, C-O = 2.0 Å, respectively. The bonds were even shorter than 

for the reference transition state: C-H = 1.8 Å, C-O = 2.2 Å. The refinement from both paths 

converged towards the transition state. The mDL method, starting from the transition state 

estimate of the CI-string method, had problems to find the right direction from the beginning, 

making something like a loop in the projection of Figure 20.8, before it went straight to the 

right point. An unfortunate mode direction at the transition state estimate of the CI-string 

method nearly prevented the convergence, but the mDL method found the correct mode direc-

tion after about 30 iterations requiring 278 gradient evaluations for the mDL method altogeth-

er. Thus both paths with the CI-string method, irrespective of the starting path, gained by line-

ar interpolation or parabolic interpolation, are not very well fitting the observed reaction. Both 

transition state estimates are still far away of the actual transition state, having to cover a max-

imum displacement of 1.8 Å for parabolic interpolation and 1.3 Å for the linear interpolation. 

The searching string method, started with parabolic interpolation, produced a transition state 

estimate, which was nearest to the reference transition state; however, there were still 0.9 Å to 

cover as maximum atomic displacement. The refinement of this structure needed 181 gradient 

evaluations.  

This looks different for the third strategy, which is using the growing string method. The 

path obtained with the growing string method looks much more promising than all the other 

paths obtained so far. In the projections, already observed for the strategies starting with CI-

string and searching string methods, the path gets much nearer to the reference transition state 

than any of the other path searching methods, lying somewhat in the middle between the two 

different paths obtained with the other methods, see Figure 20.9. Still the mDL method did 

not converge to the reference transition state but converged to a stationary point with two im-

aginary frequencies, where the methanol molecule is present again. The imaginary frequencies 

represent to a diffusion of the hydrogen atom and a rotation of the methanol. 
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The calculation was most successful when the growing string method was continued to 

the chain iteration no. 55. In this case the refinement reached a transition state. These twenty 

steps with the growing string method improved the gradient convergence criteria from g∆ = 

0.31 to g∆ = 0.08. The path did not change much in the abstracted distances from the one 

which ended with the 35th chain iteration using standard convergence criteria. 

 As can be seen in Figure 20.9 the path is much closer to the real transition state in these 

projections than that of the climbing image string calculations. Also for this path, the refine-

ment step had some difficulties to converge to the correct transition state also for this path. As 

can be seen in Figure 20.9 the mDL method starting from the improved growing string path 

first went in these projections in the wrong direction before it turned around. Therefore the 

refinement required also a relatively large amount of gradient evaluations, 248 for 54 itera-

tions. The mode vector at the starting geometry from the growing string path does not look 

like it would belong to the SN2 reaction. This is most probably the cause for the start towards 

a different transition state at the beginning of the refinement. 

For other coordinates than those which are displayed in the projection of Figure 20.9, 

one can see that there are significant differences between the transition state estimate found 

with the growing string method and the reference transition state. The three atoms H, C and O 

were more or less in a line and also the energy of the reference transition state was approached 

within 5 kJ/mol, which was also the exactness of the converged results of the climbing image 

and searching string methods. Thus it can be expected that the correct transition state has been 

found. However, the global orientation of the substrate for the transition state is nearly as un-

defined as can be observed for gas phase reactions. However this is no surprise as in fact at 

the transition state only the hydroxyl moiety is bound to the surface. 

 

Figure 20.9: Projection in the coordinates, which characterize the abstraction, and energy 
profile of the growing string calculation (dashed with diamonds) followed by mDL refinement 
(diamonds). Shown are also the paths with the CI-string method (dots and triangles) from 
Figure 20.8 and the reference transition state (cross). 
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Looking at the structures of the growing string path, which had converged with standard 

convergence criteria, the small angle between the H-C direction and the C-O bond shows that 

the hydrogen does not lay on a line with the other two moieties, the angle being around 90 

degree near the transition state estimate, see Figure 20.10. Further refinement of the growing 

string path does not improve this aspect. As can be seen in Figure 20.10, the angle improves 

only slightly over that of the path with 35 iterations. Moreover the refinement first worsened 

the angle, getting nearly as bad as that of the climbing image path, which had started with two 

images. Also the mode vector for the starting structure is not going in the right direction. Thus 

convergence to the correct transition state seems hard to anticipate. 

 

Figure 20.10: The angle between the three moieties involved in the reaction is shown against 
the abstracted C-O distance. Compared are growing string (dashed line with diamonds, two 
iterations are shown, the latter in darker color) with CI-string method (triangles starting with 
two images, dots for starting with three images). 

Even as the transition state refinement did not result directly in the expected transition 

state, the path of the growing string calculation looks more like the real reaction path than the 

other paths, which do not even get near the transition state. However, it may be misleading to 

consider only the distances and the energies as in Figure 20.9, as the maximal deviation of one 

Cartesian coordinate from the transition state estimate to the coordinates of the reference 

structure is 2.4 Å, which is even larger than for the other paths. 

20.10.3 Conclusions from the Tests of SN2 Reactions 

In summary, for paths which are supposed to deviate much from the linearly interpolat-

ed path, it might be favorable to start with more images on the start path to get it closer to 

desired path. However, this strategy does not guarantee that the correct transition state is 

found or that the refinement method performs better. Another option is to use methods spe-
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cialized for this type of reactions, like the growing string method. But they might also get 

problems, especially if the desired path is not the path with lowest energy.  

21. Conclusions from the Testing 

 The success of an automated search for transition states, especially of surface reactions, can 

still not be guaranteed. The two-step strategy is aiming towards this goal of a successful au-

tomated location of a transition state. The advantages of the two steps are combined in this 

strategy: the path searching methods can start with simple input; the refinement methods, like 

the standard dimer method or its improved variant, the mDL method, are able to converge to 

the transition state. The correct moment to switch between the two steps is a sensitive topic, 

which will require some more investigation. The current tested switch point worked quite well 

for many of the test examples, but in some cases the path searching methods had to be contin-

ued longer, so that the refinement method converges towards the correct transition state. 

Of the several path search methods compared it was possible to see that the methods, 

which were especially optimized for producing a good starting point for the refinement step 

— searching string and CI-string methods — were performing better than the reference meth-

ods, NEB and standard string method, which concentrate on generating the path. These evalu-

ation results seem to make it advisable to design global methods which put more weight on 

the ability of finding a good transition state estimate than on correctly displaying the path. For 

the specialized methods one further has to distinguish whether one is more interested in min-

imizing the computational cost, like gradient evaluations, or the number of non-parallelizable 

task steps. In the first case the searching string method is superior, as it calculates only on a 

reduced substring; the overall gradient evaluation requirements are usually less than for other 

methods. The climbing image (CI) string method is better in the second case, if the computer 

resources allow one to parallelize a complete chain iteration, of which all images are known at 

the same time. Although the CI-string method requires more gradient evaluations per chain 

iteration, it needs less chain iterations. The number of gradient evaluations of the CI-string 

method are even comparable with the number for the searching string method if the methods 

are combined with the better of the tested optimizers, the Multiopt. Both methods, and also 

the reference methods, give transition state estimates of comparable quality as the refinement 

methods do not favor any of the estimates. Also the cases where additional considerations 

have to be performed were fairly distributed. 

The mDL method, introduced in this thesis, was found to perform better than the stand-

ard dimer method. It further shows much room for improvements: parameter and their values 
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had been chosen comparable to the standard dimer method. Other values for the same parame-

ter or even different parameters might give the same results but perform better when com-

bined with the mDL method. 

It was also found that the work of generating special coordinates, like Z-Matrix coordi-

nates, even if only for the adsorbate, can pay off regarding gradient evaluation requirements. 

Therefore, exploration of an automated generation of internal coordinates is an interesting 

option for further studies. 

In summary, it seems advisable to employ a two-step strategy where the climbing image 

string method with the optimizer Multiopt is followed by a refinement with the mDL method. 

If possible, both phases of the two-step strategy should be done in better adapted coordinates 

than the Cartesian ones, for example in mixed coordinates. 

In case that already the initial path is far off the wanted transition state, especially if a 

different path is supposed to be nearby, it might be required that the path search step gets a 

third image as start structure. This additional image does not have to produce a very good 

approximation of the exact path, but should be able to guide the approximate pathways rough-

ly to the desired region.  

Developments regarding the metric of the methods, which makes only sense for the path 

searching methods, are not really promising for the current strategy. The metric can make the 

path more meaningful but as the interest aims more and more toward the transition state esti-

mate, the path is less important. The transition state should be an image of the path in every 

coordinate system and metric. On the other hand, there is the problem that a chosen metric 

may deteriorate the convergence of the path. Therefore, it may be useful to maintain proper-

ties of the systems, like symmetry of the geometries, but this can also be done by fixing coor-

dinates or using linear combinations of coordinates. As the strategy of fixing or combining 

coordinates would further reduce the complexity of the system by reducing the number of 

degree of freedom which have to be considered. Furthermore the strategy improves the con-

vergence and the performance toward convergence. Thus this is a better strategy for maintain-

ing the properties of the system.  
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Summary 

Quantum chemistry programs like ParaGauss3-6 have been developed to answer computation-

ally complex chemical questions. In view of the large computational effort these codes are 

usually parallel implementations. They calculate the electronic structure and derive properties 

of atoms, molecules and other finite aggregates of atoms. These properties can be, for exam-

ple, a point-wise representation of the potential energy and its nuclear displacement gradients 

at those points. An important application is the search for specific distinguished points on the 

potential energy surface, the local minima as educts, intermediates, and products and the first-

order saddle points, corresponding to the transition states of reactions that connect these min-

ima. Knowledge of these points allows unraveling the mechanism, the thermodynamics and 

the kinetics of chemical transformations. This thesis concentrated on three aspects.  

• The first effort of this thesis was directed at improving the parallel performance of 

parts that calculate large amounts of tasks, e.g., the evaluation of so-called integrals.  

• The second effort aimed at accelerating the convergence of the self-consistent field 

procedure.  

• As a third aspect of the thesis a toolbox, containing routines for finding transition 

states, was improved and extended in an essential way and these routines were modi-

fied for large scale parallel calculations. 

ParaGauss was developed from the beginning as a parallel program. However the mas-

ter-slave concept, which was the favorite method in the early attempts of parallelization, has 

its limitations for larger processor numbers. As now supercomputers with many thousands of 

processors are available, it was desirable to replace this concept by another one that better fits 

new challenges. A work-stealing approach is a stable strategy57 that removes the communica-

tion bottleneck which appears if the master has to steer too many slaves. A simple interface to 

the routines for a work-stealing algorithm was designed and implemented to render these rou-

tines easily usable and ready for integration at various places. In this way a rather general 

library for parallel computation of a large set of tasks or of tasks with even unpredictable size 

was constructed.  

A proper work-stealing process requires that a processor can obtain new work from an-

other processor. That other processor should provide facilities for enabling the stealing of 

tasks. Together this is called a “cooperative stealing process”. This was achieved in two ways, 

via the message passing interface (MPI)26 and Pthreads.172 One solution uses remote memory 

access (RMA) objects which allow for one-sided communication. This is conceptually the 
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simpler of the two approaches addressed in this work. The specification of the RMA routines 

of MPI require that a user-defined lock is created to allow read and write access to the RMA 

storage of another process. The second algorithm uses a multi-thread approach. This imple-

mentation requires that the MPI routines are thread safe, thus that all threads can access 

shared resources without disturbing each other. 

The reason for having two implementations, which share the same interface and the 

principle structures, is that MPI implementations differ in the quality of the support of the 

basic functionalities needed. While some implementations provide only a very poor RMA 

realization,59 requesting that the process from which tasks should be stolen is also in a MPI 

context, the thread safety for others is only provided by a variant which is less well perform-

ing and less stable.64 The newly developed library for work stealing was integrated in Para-

Gauss for various parts. Test proved that it can be used efficiently for these parts. 

For example, a performance test on the HLRB-II computer architecture showed that the 

RMA variant is able to reach up to 99% efficiency on 510 processors for a calculation of 

107720 tasks which lasts approximately 5 minutes on every process. The thread variant on the 

computer SuperMIG of LRZ still has an efficiency of 82% on 160 processors and an average 

time requirement of 0.3 minutes for 3003 tasks. 

Convergence acceleration using direct inversion in the iterative subspace (DIIS) was 

implemented in ParaGauss in the course of the current thesis.91 Tests on actinide complexes 

revealed that an implementation interpolating the Kohn–Sham matrix, decreases the number 

of iterations required for reaching the convergence criteria related to energy and density evo-

lution. A second implementation, working instead on the charge fitting coefficients, should 

improve the convergence on a convergence criteria related to the charge fit coefficients. The 

two implementations can be used separately or alternately. Tests showed that the DIIS meth-

ods are not successful for metal clusters, due to the small HOMO-LUMO gap, for which the 

perturbation theory method together with dynamical damping remains the best choice for 

achieving convergence. 

The toolbox ParaTools was designed to search for transition states. It can be used to-

gether with various quantum chemistry programs, including ParaGauss. Each quantum chem-

istry program requires its own interface to the toolbox, being threated as black-box machine 

which generates energies and its nuclear displacement gradients at a given molecular struc-

ture. ParaTools contains routines searching for an approximate discrete representation of the 

reaction path, which were improved and extended in the course of the current thesis. These 

methods search globally for a transition state. 
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For local transition state searches, variants of the dimer method were implemented. The 

implementation consists of a standard dimer method as well as a new variant, referred to mod-

ified Dimer/Lanczos (mDL) method. The minimal curvature and the corresponding mode 

direction, needed for the mDL method, are provided as the smallest eigenvalue and its eigen-

vector of a Hessian defined in a Lanczos subspace. The new aspect of the method is the com-

bination with a quasi-Newton approach for updating the structure. The approximated Hessian 

required for this quasi-Newton approach consists of an approximate positive definite Hessian 

that is updated by a symmetric rank-one update step using the minimal curvature and the cor-

responding mode direction; curvature and mode direction are provided by the Lanczos itera-

tions. This method should improve the performance over the original dimer method. 

A two-step approach for transition state search, which starts with a path searching meth-

od and subsequently refines the transition state approximation by a dimer method was exten-

sively tested.13 This approach allows benefitting from the various advantages for the two 

methods, like simply available input for the path searching method and faster and tighter con-

vergence of the dimer method.  

Applications to surface reaction showed that the newly developed mDL method is supe-

rior to the standard dimer method. The mDL method converged in most cases to the transition 

state belonging to the observed reaction. In few cases a different stationary point was found. 

For all these cases it was possible to recover the correct transition state by small tuning of the 

procedure.  

For the global evaluation of the two–step approach the time requirements for several 

path searching methods and options for them were statistically examined. The fewest evalua-

tions of the gradient to the potential energy surface were required when the path search step 

was done with the searching string method118 and the specialized optimizer implemented by 

Chaffey-Millar et. al.118 The same optimizer together with the climbing image string method 

required only few gradient evaluations more and less path iterations than the searching string 

method. Showing generally smoother paths and no path optimization failures, the climbing 

image string method with the specialized optimizer of Chaffey-Millar et. al.118 was found to 

be a good choice for providing an approximation to be improved by the mDL method.  

Users of ParaGauss or ParaTools will benefit from the current work in the following 

way: the improved parallelization will allow using larger numbers of processor and, together 

with the convergence acceleration of the self-consistent field part, will permit exploring larger 

and more complex systems, like reactions on small particles.  
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Further improvements of the parallelization are possible, for example, by explicitly con-

sidering the computer architecture for the parallelization algorithm. The two-step approach for 

the transition state search aims at an automated transition state search which should simplify 

and accelerate the search for reaction mechanism. Especially finding a more robust path opti-

mization method or creating an intelligent criterion for switching to the local transition state 

searching method, which considers the goal of reaching the transition state, can further im-

prove the procedure. Further improvements of the mDL method seem possibly, by an adapted 

choice of the parameter, once more experience from practical applications is available. 
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Appendix A : Averaged Elapsed Times for Simple Test Cases on LRZ Clus-

ters 

The method abbreviations are the same as in Table 5.1. The tables contain the same data than 

in Table 5.1 but for the three clusters of the LRZ as used in Subsection 5.1.3. ICE and MPP 

clusters are test clusters of the LRZ, SuperMIG is the migration system for the new petascale 

system SuperMUC. 

Table A1: Elapsed times (in s) and efficiency for calculations on the ICE cluster. The values 
are averages over three runs each. For abbreviations see Table 5.1.  

Method Number  Time efficiency for given number of cores 
 of tasks in s 2 4 8 16 

Static 1024 250.3 1.07 1.02 1.04 1.03 
RMA w 1024 236.7 1.02 1.03 1.03 1.02 
RMA b 1024 236.7 1.02 1.03 1.03 1.02 
Th. w 1024 246.2 1.01 1.03 1.07 1.06 
Th. b 1024 247.0 1.01 1.04 1.07 1.06 
Static 512 123.3 1.07 1.02 1.02 0.99 

RMA w 512 117.7 1.02 1.03 1.02 1.01 
RMA b 512 117.5 1.02 1.03 1.03 1.01 
Th. w 512 123.2 1.02 1.04 1.06 1.05 
Th. b 512 122.9 1.02 1.05 1.06 1.04 
Static 128 29.5 1.05 0.94 0.88 0.81 

RMA w 128 29.3 1.00 0.94 0.93 0.77 
RMA b 128 29.4 0.98 0.96 0.87 0.78 
Th. w 128 30.9 1.00 0.96 0.91 0.74 
Th. b 128 31.0 0.98 0.99 0.86 0.71 
Static 32 7.5 1.01 0.99 0.97 0.89 

RMA w 32 7.1 1.02 1.02 1.01 0.97 
RMA b 32 7.0 1.02 1.02 1.00 0.96 
Th. w 32 7.4 1.03 1.03 1.02 0.96 
Th. b 32 7.4 1.02 1.03 1.03 0.95 
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Table A2: Elapsed times (in s) and efficiency for calculations on the MPP cluster. The values 
are averages over three runs each. For abbreviations see Table 5.1. 

Method Number  Time efficiency for given number of cores 
 of tasks in s 2 4 8 16 

Static 1024 291.9 0.95 1.00 1.00 0.98 
RMA b 1024 434.8 1.00 0.99 0.99 0.99 
RMA w 1024 434.8 0.99 0.98 0.95 0.87 

Th. b 1024 434.8 1.00 1.00 0.99 0.98 
Th. w 1024 434.8 1.00 1.00 1.00 0.98 
Static 512 146.2 0.95 1.01 1.00 0.96 

RMA b 512 216.0 1.00 0.99 0.98 0.95 
RMA w 512 216.1 0.99 0.97 0.93 0.76 

Th. b 512 216.0 1.00 1.00 0.98 0.97 
Th. w 512 216.0 1.00 0.99 0.99 0.96 
Static 128 36.0 0.99 0.96 0.93 0.86 

RMA b 128 53.9 0.99 0.97 0.93 0.85 
RMA w 128 53.9 0.98 0.91 0.72 0.49 

Th. b 128 53.9 0.99 0.99 0.95 0.91 
Th. w 128 53.9 0.99 0.98 0.94 0.87 
Static 32 8.7 0.99 0.89 0.84 0.74 

RMA b 32 13.0 0.99 0.90 0.84 0.75 
RMA w 32 13.0 0.90 0.72 0.44 0.28 

Th. b 32 13.0 0.99 0.90 0.86 0.74 
Th. w 32 13.0 0.97 0.94 0.81 0.65 

 

Table A3: Elapsed times (in s) and efficiency for calculations on SuperMIG. The values are 
averages over three runs each. For abbreviations see Table 5.1. 

Method Number Time efficiency for given number of cores 
 of tasks in s 2 4 8 16 32 64 80 

static 1024 327.3 1.00 0.97 0.90 0.96 0.91 0.83 0.79 
RMA b 1024 303.9 0.98 0.97 0.88 0.89 0.82 0.81 0.69 
RMA w 1024 308.0 1.00 0.95 0.84 0.74 0.58 0.43 0.39 

Th. b 1024 302.8 1.00 0.96 0.90 0.86 0.85 0.79 0.77 
Th. w 1024 302.1 0.98 0.98 0.91 0.85 0.83 0.79 0.77 
static 512 157.0 0.96 0.93 0.86 0.89 0.85 0.71 0.66 

RMA b 512 152.4 1.00 0.95 0.89 0.83 0.77 0.69 0.64 
RMA w 512 151.1 0.96 0.93 0.75 0.60 0.46 0.30 0.29 

Th. b 512 151.0 1.00 0.98 0.90 0.84 0.79 0.73 0.69 
Th. w 512 150.3 1.01 0.97 0.91 0.84 0.79 0.71 0.67 
static 128 42.0 1.00 0.94 0.87 0.84 0.72 0.59 0.48 

RMA b 128 38.7 0.97 0.84 0.81 0.76 0.46 0.57 0.30 
RMA w 128 39.3 0.95 0.75 0.59 0.40 0.26 0.16 0.13 

Th. b 128 39.1 0.99 0.96 0.90 0.82 0.69 0.49 0.39 
Th. w 128 39.3 0.99 0.98 0.91 0.80 0.68 0.49 0.39 
static 32 11.1 0.98 0.90 0.79 0.75 0.68 – – 

RMA b 32 10.6 0.95 0.89 0.81 0.71 0.63 – – 
RMA w 32 10.6 0.81 0.60 0.36 0.24 0.15 – – 

Th. b 32 10.5 0.98 0.91 0.84 0.67 0.59 – – 
Th. w 32 10.4 0.94 0.89 0.85 0.62 0.28 – – 
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Appendix B : Averaged Computation Times for Four-Center Integral Test 

Calculations on HLRB-II 

Computation times as measured as described in Section 6.3 and shown in Figure 6.1 are given 

for four-center integral calculations on copper clusters on HLRB-II. The standalone version of 

the four-center integrals was used; the employed screening divides the calculation in two 

loops of which only the second (the larger one) is observed. Timings are measured as real 

time by an MPI routine, see Section 6.3. All values are averaged over three runs. “Rest” con-

tains the setup procedure, rounding errors and everything that is not covered in the other cate-

gories. The W/ET efficiency, Eq. (6.2), is given as efficiency. Total times and work times 

yielded variances below 3%, for variance times and termination times they were with up to 

40% larger than 3%. Scheduling times had in general variances below 5%, exceptions are 

found for Cu20 and for Cu4 with 8 cores and DLB with cost sorted task method. 

Table B1: Times in s and efficiency, averaged over three calculations, for four-center calcula-
tions of small Cu clusters using DLB with cost sorted tasks. 

Cluster Cu4      Cu6 Cu8 
Cores 1 8 16 32 64 128 128 128 
Total 3411 3475 3474 3489 3517 3561 18162 57551 
Work 3411 3474 3471 3467 3458 3450 18046 57398 

Scheduling 0.1 0.3 0.4 0.6 0.9 1.4 8.8 32.5 
Imbalance 0.0 0.8 2.6 21.2 58.6 110.1 107.1 120.4 
Variance 0.0 2.0 4.9 28.8 74.6 145.1 138.9 144.9 

Termination 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Rest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Efficiency 1.000 1.000 0.999 0.994 0.983 0.969 0.994 0.997 

 

Table B2: Times in s and efficiency, averaged over three calculations, for four-center calcula-
tions of small Cu cluster using DLB with unsorted tasks. 

Cluster Cu4      Cu6 Cu8 
Cores 1 8 16 32 64 128 128 128 
Total 3410 3504 3535 3614 3740 4124 18775 58147 
Work 3410 3473 3476 3471 3463 3457 18075 57470 

Scheduling 0.1 0.2 0.2 0.2 0.2 0.2 0.8 2.4 
Imbalance 0.0 31.7 58.8 142.6 276.1 666.3 698.7 676.4 
Variance 0.0 44.8 87.2 199.7 381.3 864.8 942.9 922.7 

Termination 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Rest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Efficiency 1.000 0.991 0.983 0.961 0.926 0.838 0.963 0.988 
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Table B3: Times in s and efficiency, averaged over three calculations, for four-center calcula-
tions of small Cu cluster using static task distribution with cost sorting. 

Cluster Cu4      Cu6 Cu8 
Cores 1 8 16 32 64 128 128 128 
Total 3411 3589 3669 3847 4085 4334 20304 61109 
Work 3411 3465 3469 3464 3453 3443 18018 57301 

Scheduling 0.0 0.0 0.1 0.2 0.3 0.5 2.8 8.7 
Imbalance 0.0 123.4 200.0 383.5 632.0 890.3 2282.6 3799.1 
Variance 0.0 238.4 362.5 634.4 1558.8 2003.1 4428.6 7648.7 

Termination 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.3 
Rest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Efficiency 1.000 0.966 0.945 0.900 0.845 0.794 0.887 0.938 

 

Table B4: Times in s and efficiency, averaged over three calculations, for four-center calcula-
tions of Cu cluster using DLB with cost sorted tasks. 

Cluster Cu10   Cu12 Cu14 Cu20 
Cores 128 256 510 510 510 510 
Total 135015 135262 135487 286159 507450 2169538 
Work 134886 134981 134658 284876 505889 2162507 

Scheduling 91.4 151.7 274.9 626.1 1272.8 6230.3 
Imbalance 37 130 551 656 287 797 
Variance 63 183 681 836 527 1314 

Termination 0.1 0.3 2.5 1.0 1.0 1.0 
Rest 0.1 0.14 0.2 0.4 0.6 2.7 

Efficiency 0.999 0.998 0.994 0.996 0.997 0.997 

 

Table B5: Times in s and efficiency, averaged over three calculations, for four-center calcula-
tions of Cu cluster using DLB with unsorted tasks. 

Cluster Cu10   Cu12 Cu14 Cu20 
Cores 128 256 510 510 510 510 
Total 135840 136460 137849 288868 510103 2168129 
Work 135059 134938 134665 285898 506962 2164626 

Scheduling 5.5 5.5 7.0 13.2 23.7 170.1 
Imbalance 776 1516 3175 2955 3116 3331 
Variance 1028 2024 4096 3951 3949 5338 

Termination 0.1 0.3 1.0 0.9 1.0 1.0 
Rest 0.1 0.1 0.3 0.3 0.4 1.6 

Efficiency 0.994 0.989 0.977 0.990 0.994 0.998 
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Table B6: Times in s and efficiency, averaged over three calculations, for four-center calcula-
tions of Cu cluster using static task distribution with cost sorting. 

Cluster Cu10   Cu20 
Cores 128 256 510 510 
Total 141022 143119 152314 2229856 
Work 134703 134841 134543 2160247 

Scheduling 21.0 41.7 84.1 1296.7 
Imbalance 6297 8234 17684 68292 
Variance 11086 17484 33027 136737 

Termination 0.6 1.2 3.3 18.5 
Rest 0.1 0.15 0.3 1.4 

Efficiency 0.955 0.942 0.883 0.969 

  



Appendix C 

- 159 - 

Appendix C : Averaged Computation Times for Cu4 Calculations on Su-

perMIG 

Calculation times on the SuperMIG computer of four-center integrals of Cu4. For details see 

Appendix B and Section 6.3. For a set of three identical calculations total times had standard 

deviations smaller than 3%. Working times yield standard deviations smaller than 0.6%. Oth-

er contributions show standard deviations significantly larger: scheduling had varied up to 

20%, the largest variations were determined for the imbalance and the variance, which were 

34% and 39%. The small termination time varied by up to 45%. 

Table C1: Times in s and efficiency, averaged over three calculations, for four-center integral 
calculations of Cu4. Method: DLB with cost sorted tasks. 

Cores 1 20 40 80 120 160 
Total 2178 2527 2593 2707 2992 3072 
Work 2178 2500 2494 2494 2504 2502 

Scheduling 0.0 0.3 0.5 0.9 1.4 1.8 
Imbalance 0.0 27.3 98.1 212.7 487.1 568.3 
Variance 0.0 47.2 156.2 315.5 661.8 800.4 

Termination 0.0 0.0 0.0 0.0 0.0 0.0 
Rest 0.0 0.0 0.0 0.0 0.0 0.0 

Efficiency 1.00 0.99 0.96 0.92 0.84 0.81 
 

Table C2: Times in s and efficiency, averaged over three calculations, for four-center integral 
calculations of Cu4. Method: DLB on unsorted tasks. 

Cores 1 20 40 80 120 160 
Total 2246 2644 2714 2868 3159 3287 
Work 2246 2579 2575 2575 2588 2583 

Scheduling 0.0 0.1 0.1 0.2 0.4 0.5 
Imbalance 0.0 65.1 139.5 292.6 571.5 702.6 
Variance 0.0 100.9 204.7 429.2 782.4 972.2 

Termination 0.0 0.0 0.0 0.0 0.0 0.0 
Rest 0.0 0.0 0.0 0.0 0.0 0.0 

Efficiency 1.00 0.98 0.95 0.90 0.82 0.79 
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Table C3: Times in s and efficiency, averaged over three calculations, for four-center integral 
calculations of Cu4. Method: static with cost sorted tasks. 

Cores 1 20 40 80 120 160 
Total 2220 2708 2893 3174 3135 3388 
Work 2220 2526 2525 2523 2531 2528 

Scheduling 0.0 0.1 0.1 0.2 0.3 0.4 
Imbalance 0.0 181.6 367.5 650.7 603.7 859.3 
Variance 0.0 366.5 730.0 1307.7 1256.5 1504.7 

Termination 0.0 0.0 0.0 0.0 0.1 0.0 
Rest 0.0 0.0 0.0 0.0 0.0 0.0 

Efficiency 1.00 0.93 0.87 0.79 0.81 0.75 
 

Table C4: Times in s and efficiency, averaged over three calculations, for four-center integral 
calculations of Cu4 on 40 cores using the RMA variant of DLB with and without cost sorting 
(CS). 

Method DLB+CS DLB 
Total 3382 3108 
Work 2523 2468 

Scheduling 684 405 
Imbalance 175 236 
Variance 390 462 

Termination 0.0 0.0 
Rest 0.0 0.0 

Efficiency 0.75 0.80 
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Appendix D : Averaged Calculation Times for the Four-Center Integral 

Implementation of ParaGauss 

The timings were extracted from the second SCF loop of the program ParaGauss. The calcula-

tions were carried out on a Nehalem Linux cluster with 1 to 24 cores (see Subsection 5.1.2). 

For definition of subdivisions of timings see Sections 6.3 and 6.6. Standard deviations for 

total and work times were below 1%; for scheduling times they were below 10%. The DLB 

methods run always over unsorted task lists. 

Table D1: Time in s and efficiency, averaged over three calculations for the four-center inte-
grals of Pd38.  Method: DLB over groups of tasks. 

Cores 1 2 4 8 16 24 
Total 1565 1560 1547 1550 1552 1556 
Work 1554 1549 1536 1537 1538 1538 

Scheduling 6.6 10.9 8.6 11.0 10.9 13.1 
Imbalance 0.0 0.2 1.4 0.9 1.1 3.4 
Variance 0.0 0.4 2.9 0.9 3.6 5.2 

Termination 3.7 0.4 0.7 0.4 1.5 1.4 
Rest 0.2 0.2 0.2 0.3 1.0 1.0 

Efficiency 0.9933 0.9932 0.9929 0.9918 0.9911 0.9883 

Table D2: Time in s and efficiency, averaged over three calculations for the four-center inte-
grals of Pd38.  Method: Method: DLB over all tasks. 

Cores 1 2 4 8 16 24 
Total 1919 1943 1917 1914 1924 1927 
Work 1545 1568 1547 1547 1545 1548 

Scheduling 194.4 374.5 370.3 367.0 376.2 377.3 
Imbalance 0.0 0.0 0.1 0.1 0.7 0.9 
Variance 0.0 0.0 0.1 0.4 1.4 2.2 

Termination 179.2 0.1 0.1 0.4 1.2 2.8 
Rest 0.2 0.2 0.2 0.2 0.8 0.8 

Efficiency 0.8052 0.8071 0.8067 0.8079 0.8033 0.8021 

Table D3: Time in s and efficiency, averaged over three calculations for the four-center inte-
grals of Pd38.  Method: Method: static task distribution. 

Cores 1 2 4 8 16 24 
Total 1540 1575 1568 1598 1661 1729 
Work 1525 1538 1525 1522 1523 1524 

Scheduling 8.6 12.6 19.3 33.7 62.6 90.5 
Imbalance 0.0 14.6 6.4 9.9 12.1 21.4 
Variance 0.0 29.3 13.6 20.3 22.6 43.2 

Termination 5.5 9.8 16.5 32.0 63.1 92.8 
Rest 0.2 0.2 0.2 0.2 0.9 0.9 

Efficiency 0.9907 0.9765 0.9729 0.9526 0.9170 0.8815 
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Appendix E : Convergence of the Self Consistent Field Procedure for Palla-

dium Clusters 

Convergence of charge fit coefficients and energy as measured by relative values between 

consecutive iterations are provided for the palladium cluster series, Pdn with n=6–116, of Sec-

tion 11.2. The convergence accelerators dynamic damping (without DIIS) and DIIS-KS for 

two different initiation thresholds are compared. 

Table E1: Iteration number (iter.) in which the charge fit coefficient convergence measure in 
arbitrary units was below twice the value of the convergence limit (conv.) for the palladium 
clusters with n atoms. The calculations with DIIS started after the provided threshold (Thr.) in 
Hartree was reached. 

 Without DIIS DIIS, Thr. = 0.1 DIIS, Thr. = 0.05 
N Conv. Iter. Conv. Iter. Conv. Iter. 
6 2E-07 30 1E-06 25 9E-07 26 

14 5E-07 33 2E-06 29 3E-06 23 
38 2E-06 36 2E-05 27 2E-05 26 
44 2E-06 36 2E-05 35 2E-05 30 
68 4E-06 47 6E-05 40 4E-05 41 
92 7E-06 54 1E-04 42 1E-04 43 

116 2E-05 58 – – 2E-04 75 
 

Table E2: Iteration number (iter.) in which the charge fit coefficient convergence measure in 
arbitrary units was below twice the value of the convergence limit (conv.) for the palladium 
clusters with n atoms. The calculations with DIIS started after the provided threshold (Thr.) in 
Hartree was reached. 

 Without DIIS DIIS, Thr. = 0.1 DIIS, Thr. = 0.05 
Na Conv. Iter. Conv. Iter. Conv. Iter. 
6 5E-11 36 9E-11 27 5E-11 27 

14 3E-10 36 2E-10 31 3E-10 27 
38 4E-09 31 4E-09 31 3E-09 30 
44 6E-09 31 4E-09 44 4E-09 33 
68 1E-08 40 1E-08 42 1E-08 45 
92 4E-08 46 4E-08 39 3E-08 43 

116 5E-08 47 – – 7E-08 69 
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Appendix F : Number of Negative Eigenvalues of the General Inverse    

Hessian for the Modified Dimer/Lanczos Method 

The combined inverse Hessian kH , see Eq. (14.12), 

 BFGS SR1
k k k= + ∆H H H  

 can have at most one negative eigenvalue, for a positive definite inverse Hessian BFGS
kH . This 

can be shown as follows: 

An arbitrary eigenvector θθθθ    of the inverse Hessian kH , which is not equal to m, fulfills 

the following equation: 
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A scalar product with m yields: 
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This equation can be simplified by using two relations: ⊥θ m as both θθθθ and m are ei-

genvectors of the combined inverse Hessian kH  and ( )BFGS BFGS

T
k k=H H  as the inverse Hessian 

BFGS
kH  is positive definite.  
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Together these relations allow to show that for a eigenvector θθθθ of the combined inverse Hes-

sian kH  the component BFGS
T kHm θ  vanishes. This can be used for the scalar product of the 

eigenvector equation with θθθθ. 
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All components of kH θ  except the one parallel to θθθθ vanish. Using the relation just found one 

can see that the eigenvalue γ is only influenced by the positive definite inverse Hessian 

BFGS
kH .  
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This enforces that γ is positive. As θθθθ has been chosen arbitrary this shows that if the 

complete inverse Hessian has maximal one negative eigenvalue, which lays in direction of the 

mode vector. 
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Appendix G : Derivation of Transformation Formulas for Reduced Metric 

The derivation of the equations of Subsection 18.4.2.2, which are essential the transformation 

formulas of coordinates, are shown in detail in the current appendix. 

The observation starts with the simple transformation Eq. (18.13)  

 ( ) ( )k j T j

i i lk j
ij

l
s s sδ δ δ δ== J J J J  

which describes how contra- and co-variant representations can be transformed into each oth-

er. For the following equations the short hand notation ( )T

ij
J J  will be used for ( )k

i l j

l

kδJ J . 

For the reduced metric the coordinates differences are separated into two groups 

( ),
T

δ δ δ=s y v , one corresponding to the changes in internal coordinates the other to the 

global displacement. The Jacobean matrix J can be separated likewise, ( ),y V=J J J . Setting 

the co-variant global displacement to zero, this leads to Eq. (18.14), (with , 1,...i j n= and 

, 1,...6p q =  for dim y n= ) 
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one can transform the second equation in a relation between pvδ  and j
yδ and insert it in the 

first expression: 
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The relevant equation for iyδ  can be reformulated a bit, getting it more in a form similar to 

Eq. (18.13), where the identity matrix in the middle is modified to take into account that the 

global positioning is removed from the metric, see Eq. (18.15). 

 ( )( )1
j

y
i

T T T

i V V V V y
j

y yδ δ
− = −

  
JI J JJJ J  

The choice of the global positioning parameters influences the matrix VJ , while in the 

relations before no special requirement for them was given. Global translation and global ro-

tation is easily separable in the coordinates ( , )=v t r . A common choice for the translation 

vector t are the three dimensions of an orthogonal (Cartesian) space. For the rotation unit qua-

ternions are used. From the quaternion a rotation matrix which transforms the Cartesian posi-

tion of every atom can be generated. The quaternions may be expressed as a three component 
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vector r for the rotation around a given center. Because the global positioning is not used to 

change anything for the Cartesian coordinates, it makes sense to set changes in translation and 

rotation to 0. Now one can write VJ  as ( ),V T R=J J J . TJ  and RJ  are both 3 3N× matrices 

and consist of 3 3×  blocks ( )k

TJ  and ( )k

RJ  for each atom k where ,1 ,2 ,3( , , )k kk kR R R=R  are 

the coordinates of atom k with respect to the center of rotation, and 2 2
,k ik

i

RR =∑ .  
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The matrix T

V VJ J , of which the inverse is required for the translation, can be expressed as 

 
,

2
, , ,

T T

T T T T R

V V T T

R T R R

k l ijl

k

k l ijl k ij k i k j

k k k

N R

R R RR δ

 
=  
 

 
 

=  − 
 

∑

∑ ∑ ∑

J J J J
J J

J J J J

1 ε

ε

 

If one has the relation 0
i

i

=∑R  there would be no interaction terms between rotation and 

translation for the matrix T

V VJ J . By choosing the geometrical center of the system as rotation 

center this is achieved: if the geometrical center is chosen as the rotation center, then atomic 

coordinates fulfill the relation ( ) 0
i

i

− =∑ X X . Therefore by setting the rotation center to the 

global center the matrix T

V VJ J
 can be further reduced to 

 2
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This allows to simplify the transformation to the final form.  
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Appendix H : Atomic Basis Sets for ParaGauss Calculations 

The basis sets for carrying out calculations with ParaGauss of the Sections 5, 6 and 11 are 

provided. 

Table H1: Number of basis function of the basis sets used in Section 5. The palladium basis 
was also used in Section 11. The palladium basis is based on a basis set of Huzinaga,173-174 
where 1 s, 2 p and 1 d functions were added and relativistic contractions were used. The basis 
sets for anthranilic acid were a 6-311++G(2d,2p) basis set175-176 for hydrogen and 6-
311++G(3df,3dp) basis sets for carbon, oxygen and nitrogen.175-177 

Atom Basis type Number of basis functions 
  r2 s p d f 

Pd Orbitals (uncontracted)  18 13 9  
 Orbitals (contracted)  7 6 4  
 Charge fit 6 17 5 5  
H Orbitals (uncontracted)  6 2   
 Orbitals (contracted)  4 2   

 Charge fit 2 6 2   
C Orbitals (uncontracted)  12 6 3 1 
 Orbitals (contracted)  5 4 3 1 
 Charge fit 6 12 6 3 1 
O Orbitals (uncontracted)  12 6 3 1 
 Orbitals (contracted)  5 4 3 1 
 Charge fit 6 12 6 3 1 
N Orbitals (uncontracted)  12 6 3 1 
 Orbitals (contracted)  5 4 3 1 
 Charge fit 6 12 5 5  

 

Table H2: Number of basis function for the basis sets used in Section 6. For the cupper clus-
ter a well-tempered Gaussian basis set (WTBS),178-179 was chosen, while for the platinum 
cluster a  def2-TZVP180-182 basis set is employed. 

Atom Orbital Number of basis functions 
 Basis s p d f 
Cu Uncontracted 26 17 13  
 Contracted 4 2 1  
Pt Uncontracted 8 7 6 1 
 Contracted 6 4 3 1 
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Table H3: Number of basis functions in the basis sets used for the actinide complexes in Sec-
tion 11.  The basis sets for oxygen and hydrogen183-185 were used for all complexes. The nep-
tunium basis of Minami and Matsuoka was used.186 For Americium complex a ANO-RCC187 
basis as foundation employing a simplifying contraction was employed.188  

Atom Basis type Number of basis functions 
  r2 s p d f 

O Orbitals (uncontracted)  9 5 1  
 Orbitals (contracted)  5 4 1  
 Charge fit 5 9 5 5  
H Orbitals (uncontracted)  6 1   
 Orbitals (contracted)  4 1   

 Charge fit 1 6 5   
Np Orbitals (uncontracted)  24 19 16 11 
 Orbitals (contracted)  10 7 7 4 
 Charge fit 9 24 5 5 5 
Am Orbitals (uncontracted)  26 23 17 13 
 Orbitals (contracted)  10 8 7 5 
 Charge fit 23 26 5 5 5 
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Appendix I : Parameter Choice for Performance Tests 

The performance tests in Chapter 20 have been carried out with ParaTools.164 The meaning of 

the parameters of ParaTools is described in the documentation.164 Therefore, the following 

tables provide only the values for the parameters. Parameters which have to be set differently 

for various calculations are not shown, they have to be set according to the requirements of 

the specific calculations. An exception is the parameter phi_tol for the dimer/mDL calcula-

tions as it is only changed at a single occurrence in Section 20.5 and otherwise is set accord-

ing to Table I3. 

Table I1: Parameters for VASP single point calculations.  

Parameter Value 
ENCUT 320 
ENAUG 650 
SIGMA 0.15 
EDIFF 1.00E-06 

EDIFFG -2.00E-02 
PREC Normal 
GGA 91 

VOSKOWN 1 
ISYM 0 

ISMEAR 1 
IALGO 48 

NPLANE 1 
LMAXPAW 0 

NPAR 1 
IDIPOL 3 

ISIF 2 
LCHARG .FALSE. 
LWAVE .FALSE. 
LREAL .FALSE. 

 

  



Appendix I 

- 170 - 

Table I2: Parameter choice for path searching (first step of the two-step strategy). Shown are 
only the parameters, which are relevant for the calculations and which have not been specified 
in the text. Be aware that the parameter “spring” is only used for NEB and otherwise ignored. 

Parameter Value 
maxstep 0.1 
spring 5.0 

cpu_architecture 9 
maxit 35 

output_level 2 
output_geo_format vasp 

xtol 0.03 
ftol 0.1 

pmin 1 
max_sep_ratio 0.01 

output_path workplace 
beads_count 7 

pmax  1 
 

Table I3: Parameter choice for the refinement step of transition state search with dimer or 
mDL methods. Shown are only the parameter which are relevant for the calculations and 
which are shared by both methods. 

Parameter Value 
phi_tol 0.01 

trans_converged 0.02 
max_gradients None 
dimer_distance 0.0025 

logfile None 
max_step 0.1 
trajectory one_file 

cache None 
max_rotations 10 

max_translation 150 
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Appendix J : Start Geometry of Images for a Parabolic Initial Path 

 

Figure J.1 : Third image for parabolically starting path for the systems VII and VIII.  

To create a third image for a parabolic starting path for reaction path optimization, which 

should be closer to the expected reaction path than a linear starting path, one could use infor-

mation from previous investigations on the system or from experimental data. However addi-

tional information should be required as little as possible. This strategy was tested for the two 

SN2 Reactions in Section 20.10. The two structures are displayed in Figure J.1. 

System VII (Hydroxymethyl): The reactant geometry was taken as source of the in-

termediate image. Only the hydrogen center H6 (atom with number 6 in Figure J.1) was re-

positioned, closer to the CH2 group (consisting of C1, H4 and H5), with distances of C1-H6 = 

1.4 Å and Pt7-H6 = 1.7 Å. The C1-O2 distance was kept at 1.39 Å, as in the reactant.  

System VIII (Methanol): As for system VII the reactant geometry was used as source 

for the third image. The C1-O2 distance was kept fixed during the complete procedure at 1.46 

Å. Comparing reactant and product to each other, it was found that the methyl group (atoms 

C1, H4, H5 and H6 in Figure J.1) is the group moving strongest. Thus, as a first movement 

the methyl group was rotated around the axis through the oxygen and the platinum surface 

(thus the axis through O2 and Pt8) in such a way that the carbon reaches the same angle relat-

ed to the surface as in the product geometry. As next step the hydrogen H7 is moved towards 

its position at the methyl group, admitting a change in the distance to the surface. Here the 

distances C1-H7=1.65 Å and Pt8-H7 = 1.89 Å were chosen.  
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