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Abstract—In this paper, we propose a method to apply any
new face to a retro-projected 3D face system, the Mask-bot,
which we have developed as a human-robot interface. The
robot face using facial animation projected onto a 3D face
mask can be quickly replaced by a new face based on a single
frontal image of any person. Our contribution is to apply
an automatic face replacement technique with the modified
texture morphable model fitting to the 3D face mask. Using
our technique, a face model displayed on Mask-bot can be
automatically replaced within approximately 3 seconds, which
makes Mask-bot widely suitable to applications such as video
conferencing and cognitive experiments.

I. INTRODUCTION

To provide smooth interaction between humans and robots,

it is important to provide robots with the capacity to commu-

nicate naturally – similar to how people communicate in daily

life – in appearance and behaviour, especially in face-to-face

communication. To achieve such a goal, many researchers

developed various types of humanoid robotic faces in recent

years[1], [2], [3], [4], [5].

Kuratate et al. developed the humanoid robotic face called

Mask-bot[5], which consists of a 3D life-size face-shaped

screen, a data projector with fisheye lens and a pan-tilt unit,

and whose expressions can be controlled by projecting facial

animations synthesized by a computer graphics technique

onto a 3D face-shaped screen (Fig. 1). Similar retro-projected

3D faces have been developed by various researchers[6], [7],

and although all give better appearances to users compared to

conventional flat panel displays or stereoscopic 3D displays,

Mask-bot has a great advantage in its ability to express

not only animated abstract faces, but realistic faces as well.

Moreover, in principle, it can easily switch faces by changing

not only to a differently shaped screen but also by changing

the face texture of the facial animation. However, to replace

a robotic face with other individual faces while preserving

the individual 3D facial geometry, we have to perform a

calibration between the individual 3D face model and the

face-shaped screen for each face. This calibration process

requires significant efforts.

To solve this problem, we proposed an automatic face

replacement method for such retro-projected 3D face sys-

tems, especially for Mask-bot. Our method can automatically

generate an appropriate individual texture which is aligned

to a standard face model or pre-defined face model already

Fig. 1. The Mask-bot without projection (left) and with the image
synthesized with the proposed method (right).

calibrated to a face-shaped screen using a single frontal

image of a new person. A part of the texture which is im-

possible to acquire from a single snapshot is complemented

by using our texture morphable model. Using our method,

we can replace a retro-projected robot face with anybody in

approximately 3 seconds. As a result, it is possible to apply

Mask-bot to various applications, such as video conferencing

and cognitive experiments.

II. RELATED WORK

In closely related work, Hayashi et al. have developed a

humanoid robotic face where the 3D face-shaped display can

be roughly approximated to a subject’s 3D facial geometry

by controlling needle positions and projecting the subject’s

video onto the display by front projection [4]. However,

the available space is limited due to the front projection.

Moreover, the system enforces subjects to maintain their head

poses while taking video. This constraint is not practical nor

possible for actual use in many applications, especially in

video conferencing. We would have a feeling of strangeness

if we omitted normal head pose information, losing an

important part of the natural communication behaviors we

seek. On the other hand, our method can automatically

generate an appropriate individual texture which is aligned

to a standard face model or pre-defined face model already

calibrated to a face-shaped screen from a single snap shot and

synthesize facial animations. Our system does not constrain

a subject’s head pose during the capturing process. Users
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Fig. 2. System Overview

only have to look at camera for a few seconds. Therefore,

our method is more convenient for various applications.

As for the texture estimation, one of the representative

methods which addresses the need to augment texture cap-

tured from a single snapshot is the 3D Morphable Model

proposed by Blanz et al[8]. In this paper, we employ a

similar approach for the texture part of the 3D Morphable

Model. However, instead of multi-resolution model fitting

which requires considerable time, we introduce a fitting

acceleration strategy to decimate the evaluation points while

still preserving the estimated texture quality.

In this paper, we assume that the subject’s head pose for

the new face capture is roughly frontal with respect to the

camera. To allow for large variations of the head pose, we

correct for the head pose by fitting a 3D Standard Face Model

(SFM) or 3D average face model to the face in the input

image using the rigid body transformation and rendering

the frontal-posed image of the fitted face model before the

texture estimation.

III. OVERVIEW

In this paper, we define a 3D face model which has already

been calibrated to the display as an Standard Face Model

and utilize it to create all of the individual face textures.

By generating an individual texture that has same shape of

the SFM, we can change the robotic face by only replacing

individual textures.

An individual face texture for a 3D face-shaped display -

especially targeted to the Mask-bot system - is generated

from a single snapshot as follows (Fig.2). First, from an

input snapshot we create an individual face texture which

is matched to the SFM. We refer to the generated texture

as a shape normalized texture. Second, to complement a

texture with missing parts such as the lateral face, we

estimate a texture by using our texture morphable model.

Finally, a complete individual face texture for the 3D face-

Fig. 3. The result of feature point detection. The left side is the input
image and the right side is the detection result.

Fig. 4. The result of shape normalized texture generation. Based on the
fitting result shown in the left, a shape normalized texture will be synthesized
as in the right.

shaped display is generated by linear blending both shape

normalized and resulting estimated textures. The generated

texture is immediately projected to the Mask-bot system.

IV. SHAPE NORMALIZED TEXTURE GENERATION

A shape normalized texture is generated by the following

procedures. First, 84 facial feature points are automatically

detected by Zhang’s detector [9] as shown in Fig.3. Then,

using 84 pairs of detected facial feature points and their

corresponding vertices on a 3D SFM, the SFM is fit to

the input image by Radial Basis Functions (RBFs). After
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Fig. 5. The texture morphable model. The top-left is a mean vector and
first three basis vectors are located in the remaining part with raster scan
order.

this, image coordinates of the deformed face model can be

obtained. RBFs fi(x) for i = x, y elements corresponding

to both feature points and unknown texture coordinates

respectively is defined by following:

fi(x) =

N
∑

j=1

wi
jφ(x− xj) (1)

N is the number of feature points and vertices on the SFM.

x = (x, y)′ is a 2D coordinate of an arbitrary vertex on the

SFM, xj = (xj , yj)
′ is also a 2D coordinate (a center of a

basis function) of a j-th vertex on the SFM corresponding to

j-th feature point. Additionally, wi
j is a weight for j-th basis

function of i = x, y elements, φ is a basis function with the

Hardy multi-quadrics [10] which is defined by following:

φ(x− xj) =
√

||x− xj ||2 + s2j (2)

where, s2j is a closest point on the SFM for xj which is

obtained by

s2j = min
i 6=j

||x− xj || (3)

Using the obtained u, v coordinates, we render the stan-

dard 3D face model with the input image as a texture to

generate a normalized face texture as shown in Fig.4.

V. TEXTURE SYNTHESIS

To create a complete individual face texture, we estimate

the texture difficult to acquire from the input snapshot (e.g.

the lateral part of a face in the case of a frontal pose)

using the Texture Morphable Model (TMM). The TMM is

linear combination model of multiple face textures and can

be built by applying Principal Component Analysis to 130

individuals’ facial images aligned with the same format of

the shape normalized image. Fig.5 shows the average vector

and +3σ first three basis vectors of our TMM.

Given a shape normalized texture as mentioned in Section

IV, the texture estimation is performed by minimizing the

error between a shape normalized texture and its estimate as

defined by Equation (4):

argmin
a

1

2

N
∑

i=1

||Wκi
(dκi

−U
′
κi
a)||2

2
(4)

Fig. 6. Texture blending between shape normalized texture and estimated
texture.

where, ′ represents matrix transpose. U is a matrix including

basis vectors of the TMM and a is a vector including their

corresponding coefficients. d is a differential vector x − x,

x is a vector-form of an shape normalized image and x is

a average vector of the TMM. W = diag(w1, · · · , wn) is a

diagonal matrix whose elements mean contribution weights

for each pixel in the minimization. To decimate evaluation

points in the texture estimation, we select evaluation points

from an uniform grid with specific interval k. κ means a

vector containing pixel indices selected as evaluation points.

N is the total number of the selected indices. The energy

function shown in Equation (4) can be minimized by the

Levenberg-Marqardt algorithm with its Gradient and Hes-

sian. After that the estimated texture x̃ can obtained by linear

blending texture bases according to the resulting a. Finally,

the shape normalized texture and the estimated texture is

mixed by Equation (5) to obtain final output x̂ as in Fig.6.

x̂ = Wx+ (I−W)x̃ (5)

We implemented this such that the generated texture is

transferred from the image capture / texture synthesis PC to

the Mask-bot facial animation PC through the network and

projected onto Mask-bot.

VI. EXPERIMENTS

With the basic algorithms determined, it is essential to

define the various parameters of the algorithm to work with

reasonable output image quality and a reasonable time frame.

Therefore, we evaluate parameters for grid spacing (texture

estimation) and number of basis of morphable model (texture

synthesis) as follows.

A. Decision of the optimal number of grid spacing

To decide an optimal number and location of evaluation

points in the texture estimation, we measure the average

processing time and the average texture estimation error

when we generate individual textures from 30 individuals’

face image with sampling interval k = 20, 21, · · · , 24. The

average texture estimation error can be calculated by

E =
1

3N

N
∑

i=1

||Ttgt
i −T

est
i || (6)
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Fig. 7. The speed ratio with various numbers of sampling interval k used
for the texture estimation.

where, T
tgt
i and T

est
i are RGB color vector at pixel i of

the target and the input texture respectively, and N means

the number of evaluation points. Moreover, we calculated the

speed ratio kn/k0 and visually confirmed generated textures

and the error maps. Our experimental environment was Intel

Core i7 3.4 GHz, 8 GB RAM. The result of this experiment

is shown in Fig.7. In the error map, the hue value represents

the error strength (Blue: 0 Red: more than 10). From this

results, we found that k = 23 is the best sampling interval

for the texture estimation. At this time, we can accelerate

the texture estimation approximately ten times faster than

the estimation without decimation of evaluation points while

still preserving the quality of the estimated texture.

B. Decision of optimal number of basis for synthesis texture

To determine an optimal number of the bases of the TMM,

we conduct the texture estimation experiment for 30 indi-

viduals’ frontal face textures. Varying the number of bases

of the TMM to 1, 2, 5, 10, 20, 50, 100, 130, we measured the

average estimation error and the average processing time.

The experimental environment is the same as in section VI-A.

In this experiment, we set the grid interval to k = 23 which is

the best result as mentioned above section. The result of this

experiment is shown in Fig.8. Also, we show input frontal

face images and generated textures which are synthesized

by using 1, 10, 20, 50, and 130 texture bases respectively

in Fig.9. In Fig.8, two vertical axes represent the average

estimation error and the average processing time, and the

horizontal axis means the number of texture bases.

From Fig.8 and 9, we found that the texture estimation

error could be reduced if we use more basis vectors of

the TMM in the texture estimation. However, the texture

quality tends to be low when we use more bases because

high order bases contain high frequency components similar

to noise that influences the texture estimation. Furthermore,

the computational time is increased exponentially due to the

cost of the linear combination. Therefore, we determined the

optimal number of TMM’s bases is 20 from the computa-

tional time and the quality view points. With this condition,

we can generate an individual face texture in an average

Fig. 8. The average texture estimation error and the processing time.

of 2.6 seconds after inputting a face image. Note that, we

have not yet optimized the actual codes, and therefore further

acceleration of processing speed is expected.

Using these optimal parameters, some examples of original

input images, generated textures and the final output images

on Mask-bot are shown in Fig.10 and supplementary video.

As you can see from this figure, even though the proposed

technique is less complex than the 3D Morphable Model

originally proposed by Blanz et al. [8], the texture quality

estimated by this technique is quite sufficient for such retro-

projected facial animation. Moreover, we preliminary tested

the 3D Morphable Model-based implementation [11] under

the same experimental environment as in the section VI-A

and we found out that our texture estimation is approximately

10 times faster. We therefore conclude that the proposed

technique is effective for making a humanoid robotic face

with a face-shaped display.

VII. CONCLUSION

In this paper, we have proposed an automatic face replace-

ment method for a retro-projected 3D face-shaped display

developed for humanoid robot faces.

We apply a new person’s face image to a standard 3D

face model which has already been calibrated to the display

to avoid building a new 3D face model and its calibration

which is normally required to add the new person. To add a

new person’s face to the system, an individual face texture

which has same geometry as the standard 3D face model

for the 3D face-shaped display is automatically generated by

using the proposed method from a single snapshot. From the

experimental results, we found that our method can generate

an individual texture in approximately 3 seconds, which

can be further decreased by optimization of our code. Our

method makes retro-projected humanoid robot faces such as

the Mask-bot more suitable and widely applicable to video

conferencing and cognitive experiments.

Now, we attempt to implement the proposed method to

the new version of the Mask-bot hardware [12]. Herewith,

an user can also easily replace the 3D face screen with

other masks, including either individualized, generalized,
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Fig. 9. The comparison of final image quality using different number of principal components.

or even caricatured face-shape screens as compared to the

current version [5]. For further development of the proposed

algorithm, we still have difficulties to generate a facial texture

with fine details such as wrinkles, freckles, and birthmarks,

because our texture morpahble model is a linear combination

model of collected face textures without correspondences

between fine features. Therefore, we need to solve this

problem to generate a more realistic texture to provide more

promising appearances. Moreover, in this paper, we decided

the evaluation points by sampling from a uniform grid with

arbitrary interval on the input image. However, the evaluation

points are a little bit redundant for our texture estimation. To

make the texture estimation more efficient, we would like to

apply a kind of key point selection technique proposed by

Mayer et al. to decide effective evaluation points[13].

We also started subjective evaluation - gender identifica-

tion of the mask with different face textures as a beginning

[14] and we plan to perform further experiments such as

the face identification with various 3D face masks, and

examine how synthesized texture and 3D geometry will

contribute to personal identification for human users. We

believe that such evaluations will guide us to develop robotic

heads with optimal shape and animation qualities for various

applications.
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Fig. 10. The results of texture projection for the face-shaped display.
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