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Summary In this paper, a new framework for model order
reduction of LTI parametric systems is introduced. After generat-
ing and reducing several local original models in the parameter
space, a parametric reduced-order model is calculated by in-
terpolating the system matrices of the local reduced models.
The main task is to find compatible system representations with
optimal interpolation properties. Two approaches for this pur-
pose are presented together with several numerical simulations.
��� Zusammenfassung In diesem Beitrag wird ein

neuer Rahmen zur Modellordnungsreduktion parametrischer
LZI-Systeme vorgestellt. Er sieht zunächst die Reduktion des
Originalmodells in einigen Stützstellen des Parameterraums
vor. Anschließend wird ein reduziertes parametrisches System
generiert, indem die Systemmatrizen der lokalen Reduktionen
durch geeignete Transformationen kompatibel gemacht und in-
terpoliert werden. Hierfür werden zwei alternative Verfahren
beschrieben, deren Eigenschaften an drei numerischen Test-
fällen dargestellt werden.
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1 Introduction and Problem Formulation
Mathematical modelling of dynamical systems for the
sake of optimization, simulation or control often yields
systems of ordinary differential equations (ODE) whose
complexity grows dramatically with increasing demands
on the accuracy of the FE model. Model Order Reduction
(MOR) techniques like Truncated Balanced Realization
(TBR) [2; 11], Krylov Subspace Methods (also known as
Moment Matching) [2; 7] or Modal Reduction Methods
e. g. [8; 14] seek to replace such large-scale systems by
considerably smaller ones which approximate the transfer
behaviour of the original system as accurately as possible,
preserve some of its properties like stability or passivity
and offer an error bound for the approximation.

Once the considered large-scale systems depend on
one or several parameters, for instance geometry, mate-
rial properties or mode of operation, the already existing
methods are not suitable anymore to conduct the reduc-
tion step while preserving the parameter-dependency in

the reduced-order model. Hence, there is a need to adapt
and further improve these reduction methods or possibly
create new ones that allow the reduction of such classes
of dynamical systems. This new and emerging branch
of MOR is known as Parametric Model Order Reduction
(pMOR).

Consider a parametric MIMO state-space model in
descriptor form

E(p)ẋ(t)= A(p) x(t) + B(p) u(t) ,

y(t)= C(p) x(t) ,
(1)

where E(p), A(p) ∈Rn×n, B(p) ∈ Rn×m, C(p) ∈ Rp×n are
parameter-dependent matrices with constant coefficients,
u(t) ∈ Rm, y(t) ∈ Rp, and x(t) ∈ Rn are, respectively,
the inputs, outputs and states of the system, while
p ∈ � ⊆Rd is the vector of parameters. The main goal
of parametric model order reduction is to find a reduced
model that preserves the parameter-dependency, thus al-

at – Automatisierungstechnik 58 (2010) 8 / DOI 10.1524/auto.2010.0863 © Oldenbourg Wissenschaftsverlag 475



Methoden

lowing a variation of any of the parameters without the
need to repeat the reduction step. Thereby, the reduction
method should ideally be able to cope with any number
of parameters and with systems where no analytical ex-
pression of the parameter-dependency in the matrices is
available. In addition, it should be numerically efficient
to be suitable for the reduction of large-scale systems and
at the same time its computational cost should be low
enough to keep the reduction step numerically justified.

The first work dealing with Krylov-based parametric
order reduction of linear systems was presented in [15],
where the moment matching approach has been gener-
alized to a parametric system with a matrix A linearly
depending on one parameter. It was shown how a pro-
jection matrix V can be calculated, such that the reduced
model not only matches some of the first moments of the
transfer function G(s, p) with respect to s, but also with
respect to the parameter p. This work has been gener-
alized in [5] to the multiple parameter case by deriving
suitable Krylov subspaces guaranteeing matching of the
coefficients of the multivariate Taylor series having s and
all the parameters pi as variables. The method suffers
from the curse of dimensionality where the order of the
reduced system grows very rapidly even for a low number
of parameters. In addition, it turned out that it is often
difficult in practice to generate parametric models with
an analytically expressed parameter dependency.

Another well-known technique [9; 13] consists of cal-
culating local projection matrices from several local
models in the parametric space, merge these matrices
together, and then apply a common order reducing
projection to the original parametric model. The main
advantage of this method is its simple and direct way of
calculating the projection matrices. However, in order to
result in a parametric reduced order model, the parame-
ter dependency needs to be affine. Moreover, the order of
the reduced system tends to become very large once many
local models are considered, and no moment matching
property can be guaranteed or proven for the obtained
reduced models.

In [4], a TBR-based method using interpolation and
a soft switching between weighted linear reduced order
transfer functions calculated at different points in the
parameter space is presented. For the choice of the pa-
rameter points where the local reduced model are to be
calculated and reduced, it was suggested to employ the
sparse grids method which is an efficient tool once the
parameter dependency of the system matrices can be an-
alytically expressed. The weighting functions play a major
role in this method and need to be carefully chosen to
minimize the interpolation error at different parameter
values. The order of the resulting model depends on the
order and number of the involved local models and the
method faces difficulties when the involved systems have
weakly damped modes. In [3], this approach has been
further developed and coupled to the interpolatory H 2

optimal model reduction method.

In this article, a novel framework for the reduction
of parameter-dependent linear dynamical systems of the
form (1) is introduced. In a first step, the original model
is generated and independently reduced at k different pa-
rameter values with individual projection matrices [1].
The reduced parametric model is then calculated by
a weighted interpolation between the matrices of these
k reduced models. Prior to that, however, suitable trans-
formations are applied to each of these reduced systems,
in order to make this interpolation meaningful.

The main features of the new approach are that the
parametric matrices E(p), A(p), B(p), and C(p) need to
be known and evaluated only at k discrete values of the
vector p. This significantly simplifies the modeling pro-
cess in many practical cases, where it is often impossible
to assume or obtain an affine or analytical parameter
dependency. Also, the order of the reduced model will
equal q, independently of the number k of local models
considered. This allows increasing the number of the local
models in order to better capture the generally unknown
parameter dependency without increasing the complexity
of the resulting reduced model. In addition, a main fea-
ture of this new framework is that the reduction method
to be applied to compute the local reduced models can
be freely chosen.

The rest of this paper is organized as follows: In the
following section, a short overview of projection-based
order reduction is given. The new interpolation-based
framework for parametric model reduction is introduced
in Sect. 3. The different approaches for adjusting the local
reduced order models to allow their interpolation are
presented together with their main features in Sect. 4.
In Sect. 5, reduced parametric models of three technical
systems are calculated to illustrate the suitability and the
main features of the proposed methods.

2 Projection-based Order Reduction
Consider the Linear Time Invariant (LTI) dynamical sys-
tem in descriptor form

E ẋ(t)= A x(t) + B u(t) ,

y(t)= C x(t) ,
(2)

where E, A ∈Rn×n, B ∈Rn×m, C ∈Rp×n are matrices with
constant coefficients, u(t) ∈Rm, y(t) ∈Rp, and x(t) ∈Rn

are, respectively, the input, output and state vectors of
the system. n ∈N is called the order of the system and is
considered here to be very large.

Projection-based Model Order Reduction seeks to ap-
proximate the state vector x(t) ∈ Rn as

x(t) ≈ Vxr(t) (3)

where xr(t) ∈ Rq, V ∈ Rn×q and q � n. Inserting (3) in
(9) leads to an overdetermined system

E Vẋr(t)= A Vxr(t) + B u(t) + ε(t) (4)
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with q unknowns but n equations. In general, this sys-
tem can not be exactly solved without a residual ε(t). In
order to obtain a well-determined system of equations,
the state equation above is multiplied from the left by the
transpose of a matrix W ∈ Rn×q leading to

WT EV ẋr(t)=WTAV xr(t) + WT B u(t) ,

yr(t)= CV xr(t) .
(5)

Note that the resulting residual ε(t) is then orthogonal
to the subspace spanned by the columns of W, i. e.
WTε(t) ≡ 0.

Accordingly, the matrices of the reduced system can
be calculated as:

Er =WTEV , Ar =WTAV ,

Br =WTB , Cr = CV .
(6)

This procedure can be seen in fact as a projection of the
original state equation onto a rank-q subspace spanned
by the columns of V along the orthogonal complement
of W using the projector

P= V(WTV)–1WT , (7)

leading to

V(WTV)–1WTEVẋr(t)=

V(WTV)–1WTAVxr(t) + V(WTV)–1WTB u(t) . (8)

The equality above is described with respect to the
basis V. Its solution xr(t) is not affected when multiply-
ing (8) from the left by WT , which then leads to the
commonly used description of the reduced order sys-
tem (5).

Finding suitable projection matrices V and W under
the restriction det(WTV) �= 0, is in fact the main task of
a MOR method such as the Modal Reduction approach,
the Truncated Balanced Realization method, the Krylov-
Subpace method (also known as Moment Matching) or
Proper Orthogonal Decomposition.

3 Interpolation of Locally Reduced Systems
Consider the parametric LTI dynamical system (1) given
at the discrete parameter values pi, for i= 1...k, as:

Ei ẋ(t)= Ai x(t) + Bi u(t) ,

y(t)= Ci x(t) .
(9)

Each of the k models is reduced using separate sub-
spaces represented by the different projection matrices
Vi, Wi ∈ Rn×q. This makes it possible to focus on the ap-
proximation of each of the local models which, in general,
do not have similar dynamics. Also, it should be noted
that each of these projection matrices can be calculated
according to a given order reduction method, e. g. by
Truncated Balanced Realization, by a Modal reduction
approach, by Proper Orthogonal Decomposition, or by
Krylov subspace methods.

The resulting reduced-order models are then the fol-
lowing:

Er,i︷ ︸︸ ︷
WT

i EiVi ẋr,i(t)=

Ar,i︷ ︸︸ ︷
WT

i AiVi xr,i(t) +

Br,i︷ ︸︸ ︷
WT

i Bi u(t) ,

yr,i(t)= CiVi︸︷︷︸
Cr,i

xr,i(t)
(10)

Once all the local reduced models are obtained, the result-
ing parametric reduced model is calculated by a weighted
interpolation of the matrices of these models as:

Er ẋr(t)= Ar xr(t) + Br u(t) ,

yr(t)= Cr xr(t) ,
(11)

where

Ar =
∑k

i=1 ωi(p) Ar,i , Er =
∑k

i=1 ωi(p) Er,i ,

Br =
∑k

i=1 ωi(p) Br,i , Cr =
∑k

i=1 ωi(p) Cr,i ,
(12)

and
∑k

i=1 ωi(p)= 1, ωi(pj)= δij for i, j = 1...k, p ∈ �.
So far, however, it is not clear if the interpolation (12)

is in fact meaningful, since the reduced state vectors xr,i

do not have the same physical interpretation due to the
fact that the projection matrices Vi are generally not
equal. Clearly, applying a state transformation Ti and
pre-multiplying the models (10) by Mi from the left,

E∗
r,i︷ ︸︸ ︷

MiEr,iT
–1
i ẋ∗

r,i(t)=

A∗
r,i︷ ︸︸ ︷

MiAr,iT
–1
i x∗

r,i(t) +

B∗
r,i︷ ︸︸ ︷

MiBr,i u(t) ,

yr,i(t)= Cr,iT
–1
i︸ ︷︷ ︸

Cr,i
∗

x∗
r,i(t) ,

(13)

where Mi, Ti ∈ Rq×q are regular matrices, leaves their
input-output behaviour unchanged. However, using the
models (13) instead of those in (10) strongly affects the
dynamics of the resulting parametric reduced model (11)
as illustrated by the following example:

Consider a parametric undamped spring-mass-system
in second-order form,

m ẍ + x = 0 . (14)

Its transformation to state-space representation can be
carried out in many ways, e. g.[

0 m
1 0

]
︸ ︷︷ ︸

E1

[
ẋ
ẍ

]
=

[
– 1 0
0 1

]
︸ ︷︷ ︸

A1

[
x
ẋ

]
. (15)

Choosing the state vector as two linearly independent
combinations of x and ẋ, leads to different matrices Ẽ1

and Ã1 which are connected to E1 and A1 by a trans-
formation T as in (13); thereby, the columns of E1 and
A1, respectively, are linearly recombined, but the system
dynamics unchanged.
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In addition, the two equations of the first-order system
can be exchanged, resulting in the equivalent system[

1 0
0 m

]
︸ ︷︷ ︸

E2

[
ẋ
ẍ

]
=

[
0 1

– 1 0

]
︸ ︷︷ ︸

A2

[
x
ẋ

]
, (16)

where the state vector is the same as above, but the rows
of the matrices are linearly recombined. Accordingly, this
change corresponds to a multiplication from the left by
a matrix M which again does not affect the system dy-
namics.

Suppose E1, E2 and A1, A2 are interpolated both for
m= 1 according to (12) using ωi = 0.5, then a singu-
lar matrix Er results, although Er, Ar would have been
expected to again describe the same dynamics as (15)
and (16).

Hence, the interpolation between the locally reduced
systems may only be performed after modifying them
using appropriate Mi and Ti to make them compatible to
each other in a certain sense1.

This choice will be discussed in detail in the next sec-
tion.

4 Methods for Adjusting the Local
Reduced Models

Starting from the local reduced order model (10), that has
been obtained using a given reduction approach, several
methods for the choice of the matrices Ti and Mi are
presented in this section. Each of them adjusts those local
models in a different way so that after their weighted
interpolation according to (12), properties of interest are
attained in the resulting reduced order model (11), in
addition to a good approximation for parameter values
within the considered set �.

4.1 Reprojection into a Common Subspace

Compatibility of Local Coordinate Systems
The first approach is based on the fact that interpo-
lating the matrices of several dynamical systems, which
is equivalent to summing up their underlying systems
of ODEs, is generally not advisable if their respective
state variables represent different physical quantities.
This is however the case for the vectors xr,i which
represent different linear combinations of the original,
high-dimensional state space given by the columns of
the respective matrices Vi, which generally span different
subspaces.

As seen in Sect. 2, one degree of freedom in the new
pMOR framework is represented by the transformation
matrices Ti which allow the transition from the local
reduced coordinates xr,i to a modified coordinate sys-
tem x∗

r,i, i. e. xr,i = T–1
i x∗

r,i. Thereby, it is desired to find
a common basis x∗

r = x∗
r,1 = x∗

r,2 = ...= x∗
r,k such that all

1 Note that if Er,i = I, Mi = Ti leads to E∗
r,i = I.

the reduced local models are described using the same set
of state variables.

In the original state-space, however, the state vectors
x∗

r,i correspond to x̂i = Vixr,i = ViT–1
i x∗

r,i. Consequently,
the backprojected states x̂i will still lie in the subspaces
spanned by the corresponding matrices Vi, independently
of the choice of the matrices Ti. Hence, the states x∗

r,i
cannot be given a common meaning when projected back
to the original state-space (except for the unlikely case
that the matrices Vi of all involved local reduced models
span the same subspace).

However, choosing the Ti appropriately, it is possible
to make the state vectors x∗

r,i compatible with respect
to a subspace spanned by the columns of a matrix R ∈
R

n×q. This means, that starting from a given reduced
state vector

x∗
r,i ,

transforming it to a local reduced coordinate system,

xr,i = T–1
i x∗

r,i ,

projecting it back to the original subspace using the as-
sociated projection matrix Vi,

x̂i = Vixr,i = ViT
–1
i x∗

r,i ,

and reprojecting it to the subspace spanned by the
columns of R,

RT x̂i = RT Vixr,i = RTViT
–1
i x∗

r,i , (17)

the same vector is obtained for all the involved reduced
systems, as illustrated in Fig. 1.

From (17), it is clear that this can be achieved by
choosing:

Ti = RTVi . (18)

Figure 1 Transformation, backprojection, reprojection.
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which leads to:

RTV1︸ ︷︷ ︸
T1

xr,1 = RTV2︸ ︷︷ ︸
T2

xr,2 = ...=: x∗
r (19)

Definition 1. The coordinate systems of the state vectors
x∗

r,i ∈Rq×q are called compatible w.r.t. a matrix R ∈ Rn×q,
if the images of their basis vectors under a transformation
Ti ∈Rq×q, backprojection using the matrices Vi ∈Rn×q and
reprojection into the subspace spanned by the columns of
the matrix R, are identical.

The matrix R is supposed to be orthogonal, i. e. RTR= I,
so that it is possible to project the common state vectors
x∗

r ∈Rq back to the original high dimensional state-space
by Rx∗

r . In addition, this matrix has to be chosen so that
none of the transformation matrices Ti becomes singular.

Recall that the columns of R span the subspace with
respect to which a common state description x∗

r is guaran-
teed. Hence, R is chosen in a way to contain q directions
in the state-space that are most important to approximate
the dominant dynamics of the involved local models.

The Choice of the Matrix R
Assuming that k models are involved during the interpo-
lation (12), up to k ·q linearly independent columns may
be obtained when building the matrix

Vall := [V1 V2 ... Vk] . (20)

This matrix constitutes a “pool” from which q directions
can be chosen to form the matrix R.

The first approach is based on choosing the q “most
important” directions of the subspace spanned by the
columns of Vall. This can be achieved by a Singular Value
Decomposition (SVD) of this matrix

Vall = U�NT , (21)

which yields � ∈ Rn×(kq) and U ∈ Rn×n where the first
(k · q) columns of the orthogonal matrix U form a ba-
sis for the subspace spanned by Vall. Thereby, the basis
vectors are sorted with respect to their relative impor-
tance reflected by the corresponding singular value. In
fact, common directions of most of the subspaces Vi will
outvalue those appearing in only few of them. Accord-
ingly, choosing for R the first q columns of U guarantees
to capture the most important directions in Vall.

This SVD needs to be calculated once, after all the
projection matrices Vi have been obtained, and can be
used to generate any reduced-order model at any point
p in the parameter space. Note that the SVD results are
only useful if all the matrices Vi are orthonormalized,
which is for instance the case when they are calculated to
span a Krylov subspace using the Arnoldi algorithm. The
numerical cost of the SVD step can be minimized when
its economy version is used. This is possible because the
matrix Vall ∈Rn×(kq), and only the first q columns of the
matrix U are of interest.

The second approach follows the main scheme of the
previous one, however with a different matrix Vall in the
SVD step. The weights ωi(p) involved in the interpolation
of the matrices in (12) are also employed to weight their
corresponding projections matrices Vi when building the
new matrix Vω

all, i. e.

Vω
all := [ω1(p)V1 ω2(p)V2 ... ωk(p)Vk] . (22)

The SVD of Vω
all, also here in its economy version, has to

be repeated every time a reduced-order model at a given
parameter p is to be calculated. This is numerically more
expensive than the first approach, however, it allows to
favor the subspaces spanned by the projection matrices
corresponding to the local models that are closest to the
interpolation point p in question. In other words, the
subspace spanned by the columns of R is fit to best ap-
proximate the subspace that would have resulted from
the reduction of the original model at the parameter p.

It has to be noted that only the first approach for
the choice of R allows the generation of a paramet-
ric reduced-order model according to (11), where only
the weights are parameter-dependent. In the second ap-
proach, both the interpolated matrices and the weights
change with p and thus they need to be recalculated for
every parameter.

The Choice of the Matrix M
To motivate the choice of the transformation matrices
Mi in (13), it is necessary to investigate their effect on the
projection-based model reduction procedure presented
in Sect. 2. As seen before, the state equation (5) of the
reduced model can be derived from the intermediate
equation (4) by multiplying the latter by a matrix projec-
torP from the left. Thereby, different choices for P lead
to different state equations which however all have the
same solution xr(t).

Let S ∈ Rn×q be a full column rank matrix with
det(WTS) �= 0. Then, by PS := S(WTS)–1WT , a projec-
tor is defined which maps vectors along the orthogonal
complement of W onto the subspace spanned by S. Mul-
tiplying (4) from the left by PS instead of P leads to

S(WTS)–1WTEVẋr(t)=

S(WTS)–1WTAVxr(t) + S(WT S)–1WTB u(t) . (23)

Unlike (8), the description of the reduced system’s dy-
namics is now enrooted in the subspace spanned by S,
although the solution xr(t) to (23) is the same as the so-
lution to (8). This can be seen by equivalently rewriting
the above equation as

(WTS)–1WTEVẋr(t)=

(WTS)–1WTAVxr(t) + (WTS)–1WTB u(t) , (24)

and multiplying it from the left by (WTV)–1(WTS).
Thereby, nothing changes but the representation of the
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reduced system. Note that (5) describes the same reduced
order model just with respect to another basis.

Accordingly, the choice Mi := (WT
i S)–1 in (13) guar-

antees that all the locally reduced models are modified
such that their state equations are given with respect to
the same basis S.

Based on the results from Sect. 4.1, it is then reasonable
to choose S := R, leading to

Mi := (WT
i R)–1. (25)

Thereby, the state equation in (13) changes using (18)
and (25) to (for ease of presentation, we only consider
one of the terms)

A∗
r,i x∗

r,i(t)=MiAr,iT–1
i x∗

r,i(t)=

= (WT
i R)–1WT

i AiVi(RTVi)–1 x∗
r,i(t)=

= RT R(WT
i R)–1WT

i︸ ︷︷ ︸
3©

Ai Vi(RTVi)
–1RT︸ ︷︷ ︸

2©

R x∗
r,i(t)︸ ︷︷ ︸
1©

(26)

Evaluating this term from right to left shows the follow-
ing:

1© The reduced state x∗
r,i is firstly backprojected to the

original state space using R.
2© Afterwards, it is projected onto Vi orthogonally to the

subspace spanned by R and mapped by Ai.
3© Remembering that R is the underlying basis of (26),

one can see that the resulting vector is finally pro-
jected onto R orthogonally to the subspace spanned
by Wi.

Remark 1. For the case where RT R �= I, Eq. (26) becomes:

A∗
r,i x∗

r,i(t)= (RTR)–1RT R(WT
i R)–1WT

i Ai

Vi(RT Vi)
–1RTR(RT R)–1x∗

r,i(t)

which however does not affect the compatibility of the
local reduced models.

Accordingly, for calculating the reduced parametric
model (11) and (12) we use the local reduced models
(13) instead of (10), with Ti = RTVi and Mi = (WT

i R)–1.
With this choice, the local reduced models have com-

patible state vectors with respect to R and are, in addition,
all described in terms of R as basis.

4.2 Optimization-Based Matrix Matching
In this section, we assume that the reduced systems have
already been transformed into some standard form, e. g.
balanced or real modal canonical form. In particular, we
suppose E= I. Note that the reduced systems are usu-
ally small enough to invert the matrix E explicitly, while
this might not at all be true for the original systems.
Moreover, if the reduced matrix Er is still singular, this
indicates algebraic states, which may be taken from the
dynamic system and added to a direct feedthrough ma-
trix D. Therefore, assuming normal forms for the reduced
systems does usually not imply any loss of generality.

Matrix matching modifies the system realizations at
different parameters in such a way that corresponding
matrices become as similar as possible. In the follow-
ing, we motivate why this induces good interpolation
properties. For ease of presentation, we assume linear
interpolation in a single parameter p ∈ [0, 1]. From [4]
we know that interpolating transfer functions gives good
results away from poles. For p ∈ {0, 1} let

Gp(s)= Cp Xp Bp with Xp = Xp(s)=
(
s I – Ap

)–1
(27)

be the transfer functions of the known reduced systems
and

G̃p(s)=
(
1 – p

)
G0(s) + p G1(s) , p ∈ [0, 1] (28)

linearly interpolated transfer functions at intermediate
parameters. This interpolation is compared to the transfer
function of the interpolated matrices. With ΔB= B1 – B0

etc., it reads

G′
p(s)=

(
C0 + p ΔC

) (
X0 + p ΔX

) (
B0 + p ΔB

)
. (29)

Up to third order terms in the Δ-matrices, the difference
between these two interpolations proves to be

G̃p(s) – G′
p(s) ≈ p

(
1 – p

)×(
C0 ΔX ΔB + ΔC X0 ΔB + ΔC ΔX B0

)︸ ︷︷ ︸
Δ

. (30)

For a sub-multiplicative matrix-norm, e. g. the Frobenius
norm, this difference can be estimated as follows:

‖Δ‖= ‖C0‖ ‖X0‖ ‖B0‖×∥∥∥∥C0 ΔX ΔB + ΔC X0 ΔB + ΔC ΔX B0

‖C0‖ ‖X0‖ ‖B0‖
∥∥∥∥

≤‖C0‖ ‖X0‖ ‖B0‖×[‖ΔX‖
‖X0‖

‖ΔB‖
‖B0‖ +

‖ΔC‖
‖C0‖

‖ΔB‖
‖B0‖ +

‖ΔC‖
‖C0‖

‖ΔX‖
‖X0‖

]
≤‖C0‖ ‖X0‖ ‖B0‖×[(‖ΔX‖

‖X0‖
)2

+

(‖ΔB‖
‖B0‖

)2

+

(‖ΔC‖
‖C0‖

)2
]

≤α ‖X1 – X0‖2 + β ‖B1 – B0‖2 + γ ‖C1 – C0‖2 (31)

with

α=
‖B0‖ ‖C0‖

‖X0‖ , β =
‖C0‖ ‖X0‖

‖B0‖ , γ =
‖X0‖ ‖B0‖

‖C0‖ .

(32)

In the second inequality of (31), we have used the general
relation ab + bc + ca ≤ a2 + b2 + c2.

Now we keep fixed the realization of the system at
p= 0, i. e. M0 = T0 = I, but apply a state transformation
M1 = T1 = P–1 to the system at p= 1. Although this keeps
the I/O behaviour of the latter system unchanged, it does
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affect the transfer function of the interpolated matrices.
The idea of matrix matching is to choose P such that
the interpolation of the transfer function and the transfer
function of the interpolated matrices differ as little as
possible at a test frequency s away from poles. More
precisely, we minimize the bound (31) on Δ:

J̃(P, s)=α
∥∥P–1X1(s) P – X0(s)

∥∥2
+

β
∥∥P–1B1 – B0

∥∥2
+ γ ‖C1 P – C0‖2 . (33)

As the reduced systems are given in some normal from,
it turns out that the P minimizing (33) is usually close
to a unitary matrix and we can minimize a more simple
functional instead:

J(P, s)=α ‖X1(s) P – P X0(s)‖2 +

β ‖B1 – P B0‖2 + γ ‖C1 P – C0‖2 . (34)

J(·, s) becomes minimal, if the Fréchet-derivative with
respect to the matrix P equals 0. Choosing the Frobe-
nius norm, i. e. ‖A‖= tr

(
A∗A

)
and using ‖A B‖= ‖B A‖,

‖A∗‖ = ‖A‖ finally yields the following generalized
Sylvester equation for P:

(
αX∗

1X1 + γ C∗
1C1

)
P + P

(
αX0X∗

0 + βB0B∗
0

)
– α

(
X1P X∗

0 + X∗
1 P X0

)
= βB1B∗

0 + γ C∗
1C0 . (35)

Note that this is not a standard Sylvester equation, as
P appears also in the third term of the above equation.
However, as long as the dimension of the reduced sys-
tems stays moderate, say n < 200, Eq. (35) can be solved
efficiently in Matlab using the kron command.

Now we turn to the case of more than one parameter
and more than two reduced models to be interpolated.
As before, one reduced model is chosen as reference and
takes the role of system 0. All the other models are trans-
formed with respect to this reference, i. e. for each of them
we solve an equation of type (35), where the model takes
the role of system 1. Once all transformed realizations
are available, the matrices are interpolated for the new
parameters as shown in (12). More precisely, the Xpi are
interpolated to get some Xp and we set Ap = s I – X–1

p ,
Ep = I.

The most important advantage of matrix matching is
the fact that it relies only on the reduced models and does
not need any link to the full model, e. g. in form of the
projection matrices Vi used for reduction. This implies
that matrix matching can even be used in cases where the
original meshes have different topology. This becomes
relevant, for instance, if parameters describe geometry
and the systems result from FE-models with automatically
created meshes. For the same reason, matrix matching is
also applicable to models resulting from system identifi-
cation, i. e. from measurements rather than FE-models.

5 Numerical Results
5.1 Plate
This example demonstrates that both, SVD-based method
and matrix matching, can handle eigenvalue crossing,
i. e. the effect that the ordering of corresponding eigen-
values changes with the model parameters. In order
to illustrate this effect, we consider a rectangular steel
plate clamped at its boundary and excited by a point
force close to the center. The dimension of the plate is
L×500×0.2 mm3, where the parameter L varies between
450 and 550 mm. The excitation point is located 83.5 mm
from the center in both, x and y direction. A parametric
Ansys model is made from 15 ×15= 225 shell elements
and contains 1452 degrees of freedom.

In the numerical experiment, models for L= 450 mm
and L= 550 mm are created, transferred to Matlab and
reduced by modal truncation, i. e. the columns of V=W
are the eigenvectors corresponding to the q= 12 eigenval-
ues with smallest modulus. Three alternative approaches
are used to generate a model of the squared plate.
First, a full Ansys model is created and reduced for
L= 500 mm, which is accurate, but expensive. This model
is compared to those found by interpolation using the
SVD-based method and matrix matching, respectively.
In both cases, the two models created before enter with
weight 0.5.

Figure 2 The plate model.

Figure 3 Interpolation of the plate model.

481



Methoden

Figure 4 Eigenvalue crossing for rectangular plate. ± indicate areas of
associated eigen-shapes moving up/down.

Obviously, the interpolated models approximate well
the directly reduced one. In particular, the degeneration
of the second and third eigenmodes is captured. The
SVD-based method is slightly more accurate close to the
resonance peaks, if s= 0 is used as test frequency for
matrix matching. Moreover, the SVD-based method gives
already good results, if it is provided with the SISO-
system, while matrix matching only works, if more inputs
and outputs are added. This is due to the fact that matrix
matching does not depend on the state vectors.

5.2 Beam
The following FE model describes the motion of a 3D
cantilever Timoshenko beam and is generated in Mat-
lab according to [12]. The length L of the beam is the
free parameter which is varied between L= 800 mm and
L= 1200 mm. The model input is the vertical force F(t)
applied at its tip as shown in Fig. 5.

The order of the LTI system for both considered
lengths is n= 1200 resulting from taking 100 nodes along
the beam, each having six degrees of freedom: Three
translational displacements u, v, w and three rotational
degrees of freedom α, β, γ with respect to the x-, y- and
z-axis, respectively. Two models for lengths L= 800 mm
and L= 1200 mm have been generated and reduced using
a two-sided Krylov subspace method with q= 10 and
s0 = 0. Then, they were suitably adjusted using the SVD-
based method from Sect. 4.1 to generate a parametric
reduced order model with linear weights. In Fig. 6, the
frequency response of the two local models, the reduced
system obtained by a direct reduction of the original
beam model at L= 1000 mm and the generated para-
metric model for the same length are shown.

The suitability of the new approach for the reduction
of this model is evident, as the frequency response of the
parametric reduced order model almost equals that of the
local reduced order model at L= 1000 mm.

Figure 5 The cantilever beam.

Figure 6 Frequency Response for the cantilever beam.

5.3 Concrete Car Benchmark
The concrete car is an installation at LMS International
(Belgium) which has been used in several European re-
search projects to investigate active noise reduction [6].
It consists of two cavities enclosed by concrete and sep-
arated by a steel plate. The installation models sound
transmission from the motor compartment to the cabin
of a car in a rudimentary way. Motor noise produced
by a loudspeaker is reduced by attaching a piezo patch
to the plate and applying a voltage of suitable amplitude
and phase. Here, we use parametric model reduction for
optimal actuator placement. More precisely, we look for
a piezo position within an admissible region of the plate
which allows most efficient attenuation of resonances at
50 Hz. For this purpose, we set up a parametric multi-
physics Ansys model taking into account fluid structure
interaction and the piezo electric effect [10]. The model
contains 93 702 state variables, two inputs (volume vel-
ocity of loudspeaker, voltage of actuator), one output
(sound pressure level at microphone), and two parame-
ters (x- and y-position of patch). Individual models have
been created, exported to Matlab, and reduced for the
12 positions shown in Fig. 7 (grey fields). Finally, matrix
matching is used to generate models for intermediate
patch positions. The weights are those of a polynomial
of order 3 in x, order 2 in y and mixed orders ≤ 5. Note
that matrix matching is the only method applicable, as
mesh topology changes with patch positions.
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Figure 7 Concrete car model with different piezo positions.

In order to solve the optimization problem, 50 ×
50= 2500 models are generated, evaluated, and the best
one is chosen. In this simple case, the goal function is just
the sound pressure level at the microphone, if the piezo
is excited with 100 V at 50 Hz. Once the 12 reduced,
transformed models are available, this optimization takes
24 s on an Intel Xeon CPU (2.5 GHz), compared to 120 s
per Ansys analysis for a single patch position. If the
goal function required more expensive evaluations, e. g.
system eigenvalues, the difference would be even more
pronounced.

Figure 8 shows the frequency response of the 12
models used for interpolation (thin) and of the optimal
patch position (bold). This position is not compatible
with the meshes used in Ansys, i. e. we cannot generate
an Ansys model to compare with. Therefore, we choose
another position, which is compatible with the mesh, but
does not belong to the 12 precalculated positions. For this
position, a full Ansys model is created, reduced (grey),
and compared to the interpolated model (dashed). Obvi-
ously, the interpolation error is considerably smaller than
the variation between different patch positions.

Figure 8 Frequency response for different piezo positions.

6 Conclusions
A new framework for the reduction of parametric LTI
systems, based on a weighted interpolation between the
matrices of several local reduced models, has been intro-
duced. The new approach is independent of the choice
of the MOR method, but the quality of the generated
parametric reduced system is strongly affected by the
similarity transformations that each of the involved local
reduced models undergoes before being interpolated.

To adjust the local reduced-order models involved in
the interpolation, two main approaches have been pre-
sented, namely the SVD-based and the matrix matching
methods, which delivered very reliable reduced models
within the parameter interval of interest.

However, a number of open questions has still to be
solved to optimize the obtained results, including the
choice of the local original systems in the parameter
space, the choice of the weighting functions, error es-
timates to judge the quality of the obtained models, and
the stability of the generated parametric reduced-order
model.
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