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Preface

This study investigates the well-posedness and long-time behavior of two math-
ematical models for a biofilm formation in the presence of a chemoattractant.

Biofilms are accumulations of microorganisms that grow on solid surfaces or
interfaces between solid surfaces and liquids. They are frequently embedded in a
film of their own creation: a matrix of extracellular polymeric substance (EPS).
The physiology and behavior of the microbial cells of an organism growing in-
side a biofilm, especially if being inside an EPS matrix, and of a free-swimming
organism of the same species differ considerably. Organized and protected by
EPS, biofilm populations became ubiquitous. They can be found virtually every-
where where environmental conditions allow microbial growth. Whereas many
biofilms can cause negative effects like biofouling, biocorrosion and microbial
infections, some of them are active in useful technologies, like self-purification
of water and soil remediation.

A clear understanding of biofilm processes is highly relevant in environ-
mental, industrial and medical engineering applications, as well as in medicine.
Examples include [32]: developing better control mechanism over microbially
induced effects: corrosion, surface contamination (on food production surfaces,
natural or implanted surfaces in the body, teeth, contact lenses, etc.) and fouling
of drinking water and food; designing more efficient and stable self-purification
technologies in soil remediation and waste- and groundwater treatment.

Over the last 25 years, mathematical modeling, analysis and simulation of
biofilms have greatly contributed to a better understanding of biofilm processes
by explaining experimental findings and gaining insight into biofilm structure,
function, dynamics, population dynamics and the stability of their processes.

Most of the proposed biofilm formation models are discrete. They describe
the local cell motion on a chosen lattice in terms of a cellular automaton (a
microscopic approach). These models are able to capture different effects which
can be observed in connection with biofilms, but they are rather difficult to
analyze. In the present study, we treat the microbial cells and the exopolysac-
charide molecules surrounding them as single biomass entity described in terms
of its density in time and space. Such (mesoscopic) descriptions of biofilms lead
to continuous models which are much easier to handle analytically.

Based on the experimental evidence, several typical assumptions on a biofilm
are usually included into a spatial biofilm model:
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(i) The EPS matrix is a porous medium. The microbial cells defuse with a
non-constant, density-dependent diffusion coefficient. The diffusion coef-
ficient is a monotonically increasing function. It is zero where there is no
biofilm, that is, for zero biomass density, and it tends to infinity as the
biofilm density tends to its maximum possible value;

(ii) The cells cannot accumulate without bound. This means that the biomass
density at any point cannot exceed the density of the tight packing state
- a so-called volume filling effect.

Since our goal is to study the role of positive chemotaxis, we assume the presence
of a chemoattractant, a chemical which controls the cell motion by attracting
them to the areas of its higher availability. In addition to assumptions (i)-(ii),
we make yet another one - also based on experimental studies. It concerns the
way a biofilm responds to the chemoattractant:

(iii) In the areas with low biomass density there is little response to the chemoat-
tractant.

Apart from actually attracting the cells, the chemoattractant may have diverse
additional effects. For example, it may be a nutrient or a poison, thus having
an impact on the biofilm growth, or it may be produced by the cells themselves.

The majority of the chemotaxis models that were developed and analyzed in
the recent years originate from the Keller-Segel model for chemotaxis [18]. It is
a system of two strongly coupled parabolic partial differential equations for two
functions: the biomass density and the concentration of the chemoattractant.

Although, in its most general formulation, the Keller-Segel model allows a
variety of diffusion and chemotaxis scenarios and may include growth, death
and volume filling effects, it was extensively studied only for the case of free-
swimming microorganism colonies. In this research, we deal with two general-
izations of the Keller-Segel model for the case of a biofilm colony. Both enjoy,
under certain conditions on the parameter values, the basic assumptions (i)-(iii).
Chapter 2 of this work gives a generalization of a well-posed prototype proposed
in [12] (see also references therein), which merges together the classical porous
medium equation [31] and the Keller-Segel model with a source term. In this
part, we present the first study of the long-time dynamics for this system. In
Chapter 3, we perform, for the first time, the full study of the well-posedness and
the long-time dynamics of a nonautonomous version of the model from Chap-
ter 2. An alternative model is developed in Chapter 4. This new model extends
the prototype proposed in [32] and analyzed in [9] for a biofilm growing in the
presence of a nutrient, allowing the nutrient to be a chemoattractant as well.
We analyze its well-posedness and long-time dynamics and illustrate possible
model behavior in numerical simulations.

Chapter 1 is a preliminary one. It deals with the functional spaces that we
use throughout this work and with the notions of the global and the pull-back
attractors.
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Chapter 1

Preliminaries

In this chapter, we present notation and generally known facts (mostly without
proofs) that we use to state and derive the results of the subsequent chapters.
For the sake of convenience, we introduce the following conventions:

• N, N0, Z, R, R� and R�
0 are sets of natural, non-negative integer, integer,

real, positive real and non-negative real numbers respectively;

• x� :� max tx, 0u returns the positive part of a number x P R;

signpxq :�

$'&'%
1 for x ¡ 0,

0 for x � 0,

�1 for x   0

returns its sign;

• The integer and fractional parts of a number x P R are the numbers
rxs :� max tq P Z| x ¥ qu and txu :� x� rxs respectively;

• By | � | we denote:

– for a number x its absolute value |x| � max tM,�Mu;

– for a vector x � px1, . . . , xdq P Rd its Euclidean norm |x| :�
�°d

i�1 |xi|
2
	 1

2

;

– for a multiindex α � pα1, . . . , αdq P Nd0 for d P N its absolute value

|α| �
°d
j�1 αj ;

– for a Lebesgue measurable set its Lebesgue measure;

• By measure we always understand the Lebesgue measure;
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• In a topological space X, we denote by clXpAq the closure of a set A in X.
In Rd we use the notation A instead. BA denotes the topological boundary
of A.

• In a linear space X, we define x�A :� tx� a| a P Au for x P X, A � X.

1.1 Functional spaces and their properties

This section is devoted to the classical Lebesgue and Sobolev spaces and to some
of their modifications. We refer to [1, 30] for a detailed analysis of the classical
spaces.

Most of the presented spaces are normable (e.g., LppΩq and W s,ppΩq), some
are metriziable, but not normable (e.g., LplocpΩq and W s,p

loc pΩq), and some (e.g.,
L8w��pΩq) are not even metriziable, though locally convex. Let us, therefore,
before looking at concrete examples, briefly recall several facts originating from
the general framework in locally convex and normed spaces. We refer to [26]
(or some other standard textbook) for these as well as for the other facts from
functional analysis that we use in this work.

Let X and Y be two locally convex spaces. The (continuous) dual space of
X is denoted by X 1, its weak and weak-� topologies by σpX,X 1q and σpX 1, Xq
respectively. X � Y denotes the topological equivalence of X and Y , which
means that they are homeomorphic.

Let F be an operator, not necessarily linear, between X and Y . F is said
to be compact if it maps bounded subsets of X onto relatively compact subsets
of Y . It is said to be closed if its graph ΓpF q :� tpx, F pxqq| x P Xu is closed in
X � Y .

We will often consider embeddings of a ’smaller’ locally convex space into a
’larger’ one:

Definition 1.1 (Embedding). Let X and Y be two locally convex spaces. An
injective linear operator ι : X Ñ Y is called an embedding. If such an operator
ι exists between X and Y , then X is said to be embedded in Y . Further, we say
that

(1) X is continuously embedded in Y (and write X ãÑ Y ) if ι is a continuous
operator;

(2) X is compactly embedded in Y (and write: X ãÑãÑ Y ) if ι is a compact
operator;

(3) X is densely and continuously embedded in Y (and write: X
d
ãÑ Y ) if ι is

a continuous operator and ιpXq is dense in Y ;

(4) X is densely and compactly embedded in Y (and write: X
d

ãÑãÑ Y ) if ι is a
compact operator and ιpXq is dense in Y .

An important property of the dense and continuous embeddings concerns dual-
ity:
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Theorem 1.1 (Embedding of dual spaces). Let X and Y be two locally convex
spaces. Then

X
d
ãÑ Y ñ Y 1 d

ãÑ X 1. (1.1)

It is well known that every compact linear operator between Banach spaces
is continuous. It is even weak-to-norm continuous, which means that it is con-
tinuous between pX,σpX,X 1qq and Y . A similar property holds for the weak-�-
to-norm continuity:

Theorem 1.2 (Weak-�-to-norm continuity of a compact linear operator). Let X
be a normed space, Y a Banach space and F a compact linear operator between
X 1 and Y . Then F is a continuous operator between pX 1, σpX 1, Xqq and Y .

Lp spaces

We assume in this subsection that Ω is a nonempty measurable subset of Rd,
d P N. Let us denote by L0pΩq the (linear) space of all equivalence classes
of measurable functions on Ω. Each such class consists of functions that are
equal almost everywhere in Ω. As usual, we identify the functions from one
equivalence class and write u instead of rus.
For p P r1,8s the function

|| � ||LppΩq : L0pΩq Ñ r0,8s,

||u||LppΩq :�

$&%
�³

Ω
|upxq| dx

� 1
p for p P r1,8q,

ess sup
xPΩ

|upxq| for p � 8

is called the Lp norm. It is a well defined norm on the space

LppΩq :�
 
u P L0pΩq| ||u||LppΩq   8

(
.

Each Lp space equipped with the Lp norm is a Banach space. The space L2pΩq
is a Hilbert space with the scalar product

pu, vqL2pΩq :�

»
Ω

upxqvpxq dx for u, v P L2pΩq.

We write || � ||p instead of || � ||LppΩq and even || � || instead of || � ||2 and p�, �q
instead of p�, �qL2pΩq to shorten the notation.
Some of the most important results about Lp spaces are:

Theorem 1.3 (Hölder inequality). Let p, q P r1,8s be such that 1
p �

1
q � 1.

Then for all u P LppΩq, v P LqpΩq, we have uv P L1pΩq, and the following
inequality holds

||uv||1 ¤ ||u||p||v||q.
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Theorem 1.4 (Interpolation inequality for LppΩq). Let 1 ¤ p1   p   p2 ¤ 8.
Then for all u P Lp1pΩqXLp2pΩq we have u P LppΩq, and the following inequality
holds

||u||p ¤ ||u||1�θp1 ||u||θp2 ,

where

θ :�

1
p1
� 1

p
1
p1
� 1

p2

.

Theorem 1.5 (Dual representation for LppΩq). Let p P r1,8q. Put

p1 :�

#
p
p�1 for p P p1,8q,

8 for p � 1.

Then it holds that

pLppΩqq1 � Lp
1

pΩq.

In particular, consider the linear operator

ιp : Lp
1

pΩq Ñ pLppΩqq1, ιppuqpvq :�

»
Ω

upxqvpxq dx for all v P LppΩq.

ιp is an isometric isomorphism between Lp
1

pΩq and pLppΩqq1.

Up to this point, we have considered the L8pΩq space, as well as other
Lp spaces, equipped with the topology produced by the corresponding norm.
For some of our applications (see below), the original topology appears too
restrictive. We are forced to pass to weaker topologies where it is easier to
prove compactness. We start with the following

Definition 1.2 (L8w��pΩq space). We define L8w��pΩq to be the set of all
L8pΩq-functions equipped with the topology 

ι�1
1 pOq| O P σppL1pΩqq1, L1pΩqq

(
,

where ι1 is the isometric isomorphism defined in Theorem 1.5.

Some properties of L8w��pΩq are collected in Theorem 1.6 and Remark 1.1 below.

Theorem 1.6 (Properties of L8w��pΩq). (1) The space L8w��pΩq is a locally
convex space;

(2) A subset of L8pΩq is bounded in L8w��pΩq if and only if it is norm bounded;

(3) The topology of L8w��pΩq, if restricted to an L8pΩq ball, is completely
metrizable;
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(4) L8pΩq balls are compact in L8w��pΩq.

Sketch of the proof. Observe that ι1 is not only an isometric isomorphism
between pL1pΩqq1 and L8pΩq, it is, due to Definition 1.2, also a linear home-
omorphism between ppL1pΩqq1, σppL1pΩqq1, L1pΩqqq and L8w��pΩq. But every
homeomorphism preserves metrizability and compactness properties, and every
linear homeomorphism preserves locally convex structure and boundedness of
subsets. Therefore, the properties (i)-(iv) are consequences of the corresponding
properties of the space ppL1pΩqq1, σppL1pΩqq1, L1pΩqqq, which is the dual space
of the infinitely dimensional separable Banach space L1pΩq, equipped with the
weak-� topology, and the fact that compact metric spaces are complete.

l

Remark 1.1 (Further properties of L8w��pΩq).

(1) The weak-� topology is the topology of pointwise convergence, so that the
topology of L8w��pΩq can be also obtained by means of the following con-
vergence notion: A sequence tvnunPN converges in L8w��pΩq to a v if and
only if »

Ω

upxqvnpxqdx Ñ
nÑ8

»
Ω

upxqvpxq dx for all u P L1pΩq;

(2) A metric for the restriction of the L8w��pΩq topology to a ball of radius R
centered at 0 can be defined in the following way. Let tununPN be a dense
subset of L1pΩq and let tBnunPN be a sequence of positive real numbers,
such that ¸

nPN
Bn||un||L1pΩq   8.

Then the function defined by

d
p8q
� pv1, v2q :�

¸
nPN

Bn

����»
Ω

pv1pxq � v2pxqqunpxq dx

���� (1.2)

for all v1, v2 P L
8pΩq, ||v1||8, ||v2||8 ¤ R, is an example of a metric which

produces the relative topology;

(3) The property 4. from Theorem 1.6 is equivalent to L8pΩq ãÑãÑ L8w��pΩq.
This is due to the definition of compact embedding.

(4) For more information on compactness and metrizability in the weak-� topol-
ogy see [26].

Thus the L8pΩq balls are metrizable compact subsets of L8w��pΩq. This prop-
erty is used in Section 2.3 to prove the existence of a compact absorbing (see
Section 1.3) set. In Sections 3.5 and 4.4, we make use of intersections of the
L8w��pΩq topology with the Lp norm topology for p P r1,8q. The definition is
as follows:
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Definition 1.3 (The space HppΩq). Let p P r1,8s. We define HppΩq to be the
set of all L8pΩq-functions equipped, for p � 8, with the topology of L8w��pΩq
and, for p P r1,8q, with the intersection of the topologies of the spaces L8w��pΩq
and LppΩq.

Next theorem contains the properties of the HppΩq spaces that are used in this
work.

Theorem 1.7 (Properties of HppΩq). Let p P r1,8q. Then:

(1) The space HppΩq is a locally convex space;

(2) A subset of L8pΩq is bounded in HppΩq if and only if it is norm bounded;

(3) The topology of HppΩq, if restricted to an L8pΩq ball, is completely metriz-
able;

(4) The topologies of HppΩq and L2pΩq, if restricted to an L8pΩq ball, coincide.

Sketch of the proof. Let p P r1,8q.

(1) We observe that the set
 
lu| u P L

1pΩq
(
, where lupu

1q :� |u1puq| for u1 P
pL1pΩqq1, is an example of a system of seminorms on pL1pΩqq1 that gen-
erates σppL1pΩqq1, L1pΩqq topology on pL1pΩqq1. Hence the locally convex
structure of the space L8w��pΩq is given by the family

 
ωu| u P L

1pΩq
(
,

where ωupvq :�
��³

Ω
upxqvpxq dx

�� for all u P L1pΩq and v P L8pΩq. Conse-

quently, the family
 
ωu � || � ||p| u P L

1pΩq
(

is an example of a system of
norms that generates the locally convex structure of HppΩq;

(2) A set is bounded in HppΩq if and only if it is bounded in each of the
seminorms that defines it locally convex structure. In the particular case of
HppΩq it follows with the proof of the property (1) that a set is bounded in
HppΩq if and only if it is bounded in each of the norms ωu and in the Lp

norm, which is equivalent to the boundedness in both L8w��pΩq and LppΩq.
The statement now follows with the property (2) from Theorem 1.6 and the
fact that, for Ω bounded, the L8 norm is stronger then any other Lp norm;

(3) It is a consequence of (4);

(4) Observe first that, due to the Hölder inequality and Theorems 1.4, we have

1

||1|| p
p�1

||v||1 ¤ ||v||p ¤ ||v||
1� 1

p
8 ||v||

1
p

1 for all v P L8pΩq.

This shows that the topologies of LppΩq and L1pΩq, if restricted to an L8pΩq
ball, coincide. To show the property (4) it then suffices to check that the
restriction of the L8w��pΩq topology is weaker than, for example, the L2pΩq
topology.
Since the space L2pΩq is dense in L1pΩq, we may assume that tununPN �
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L2pΩq in the definition of the metric d
p8q
� from (1.2) and choose the sequence

tBnunPN to be such that ¸
nPN

Bn||un||L2pΩq   8

holds. Consequently, we obtain with the Hölder inequality that

d
p8q
� pv1, v2q �

¸
nPN

Bn

����»
Ω

pv1pxq � v2pxqqunpxq dx

����
¤
¸
nPN

Bn||un||L2pΩq||v1 � v2||2.

This shows that, if restricted to an L8pΩq ball, the L8w��pΩq topology is
weaker then the topology of L2pΩq.

l
Thus the L8pΩq balls are metrizable subsets of HppΩq, and, for p P r1,8q, a

subset of an L8pΩq ball is compact if an only if it is compact in LppΩq. These
properties we use in Sections 3.5 and 4.4 to prove the existence of a compact
absorbing (see Sections 1.4 and 1.3, respectively) set.

Sometimes, especially in case when Ω is unbounded, it is useful (see [5, 10])
to consider the local version of an Lp space, the space

LplocpΩq :�
 
u P L0pΩq| u P LppKq for all compact sets K � Ω

(
.

This space is not normable, though metrizable. Define the function

|| � ||Lpb pΩq : LplocpΩq Ñ r0,8s,

||u||Lpb pΩq :� sup
x0PRd

||u||LppΩXBx0 p1qq
,

where Bx0p1q is a unit ball in Rd centered at x0. || � ||Lpb pΩq is a norm on a

subspace of LplocpΩq, namely on the space

LpbpΩq :�
!
u P LplocpΩq| ||u||Lpb pΩq   8

)
.

Note that L1
locpΩq is the largest of the presented spaces of the Lp type.

Sobolev spaces

From now on we assume Ω to be a nonempty domain (i.e. a nonempty open
connected set) in Rd. We denote by DpΩq the (locally convex) space of all test
functions over Ω. As a set, DpΩq coincides with C8

0 pΩq, the set of all infinitely
differentiable functions with compact support in Ω. The dual space of DpΩq,
the space D1pΩq, is the space of distributions over Ω.
Distributions of the form v Ñ

³
Ω
upxqvpxq dx for u P L1

locpΩq are called regular.



12 Preliminaries

In case of a regular distribution, we identify the distribution with the L1
loc func-

tion that produces it.
For u P D1pΩq and v P DpΩq we denote by pu, vq the value of u on v. In case
when u P L2pΩq we recover the scalar product in L2pΩq.
For a multiindex α � pα1, . . . , αdq we define the differential operator of the
order |α|: Dpαq :�

�
Bα1
x1
, . . . , Bαdxd

�
, where Bxk is the partial distributional deriva-

tive along the variable xk and Bαkxk � pBxkq
αk . Recall that any distribution is

infinitely differentiable in the distributional sense.
For s P N0 and p P r1,8s the function

||u||Wk,ppΩq :�

$'&'%
�°

|α|¤k

��Dpαqu
��p
LppΩq

	 1
p

for p P r1,8q,

max
|α|¤k

��Dpαqu
��
8

for p � 8

is a well defined norm on the space

W k,ppΩq :�
!
u P LppΩq| Dpαqu P LppΩq for |α| ¤ k

)
,

Equipped with the || � ||Wk,ppΩq norm, the space W k,ppΩq is the classical Sobolev

space of order k. All W k,ppΩq spaces are Banach spaces. The space HkpΩq :�
W k,2pΩq is a Hilbert space with the scalar product

pu, vqHkpΩq :�
¸
|α|¤k

�
Dpαqu,Dpαqv

	
for u, v P HkpΩq.

With k � 0 we recover the definitions of the corresponding Lp spaces. One of
those subspaces of W k,ppΩq that play an important role in partial differential

equations is the space W k,p
0 pΩq for Ω bounded. It consists of functions that

’vanish on the boundary’ in the sense of trace (see [1]). One of the equivalent
ways to define these spaces is:

W k,p
0 pΩq :� clWk,ppΩq pDpΩqq

for k P N and p P r1,8s. For Ω bounded the seminorm

|| � ||Wk,p
0 pΩq : W k,ppΩq Ñ r0,8q,

||u||Wk,p
0 pΩq :�

�� ¸
|α|�k

���Dpαqu
���p
LppΩq

�
1
p

is an equivalent norm on W k,p
0 pΩq. This is a consequence of the Poincaré in-

equality:

Theorem 1.8 (Poincaré inequality). Let p P r1,8s and let Ω be a smooth
bounded domain in Rd. Then there exists a positive constant P pΩ, pq that de-
pends only on Ω and p and such that

||u||p ¤ P pΩ, pq||Du||p

holds for all u PW 1,p
0 pΩq.
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The norm ||�||Wk,p
0 pΩq is called the energy norm. On the spaceHk

0 pΩq :�W k,2
0 pΩq

the bilinear form defined via

pu, vqHk0 pΩq :�
¸
|α|�k

�
Dpαqu,Dpαqv

	
for u, v P Hk

0 pΩq

is a scalar product. The space W k,p
0 pΩq is a closed subspace of W k,ppΩq, thus

it is a Banach space, while the space Hk
0 pΩq is a Hilbert space.

It is often useful to consider a class of ’in-between’ spaces, that is, to extend
the notion of classical Sobolev spaces of non-negative integer order k to the case
s P R�

0 zN0. One of the possible contractions uses the Slobodeckij seminorm

rusθ,p :�

$'&'%
�³

Ω

³
Ω
|upxq�upyq|p

|x�y|pθ�d
dx dy

	 1
p

for p P r1,8q,

ess sup
x,yPΩ,x�y

|upxq�upyq|
|x�y|θ

for p � 8

defined for θ P p0, 1q and p P r1,8s. For s P R�
0 zN0 and p P r1,8s the function

|| � ||W s,ppΩq : W rss,ppΩq Ñ r0,8s,

||u||W s,ppΩq :�

$'''&'''%
�
||u||p

W rss,ppΩq
�

°
|α|�s

�
Dpαqu

�p
tsu,p

� 1
p

for p P r1,8q,

||u||W rss,8pΩq � max
|α|�s

�
Dpαqu

�
tsu,8

for p � 8

is a well defined norm on the space

W s,ppΩq :�

"
u PW rss,ppΩq|

�
Dpαqu

�
tsu,p

  8 for |α| � rss

*
.

The spaces W s,ppΩq for s P R�
0 zN0 are called Sobolev-Slobodeckij spaces. These

spaces are Banach spaces. The space HspΩq :�W s,2pΩq is a Hilbert space with
the scalar product

pu, vqHspΩq :�pu, vqHrsspΩq

�
¸
|α|�s

»
Ω

»
Ω

�
Dpαqupxq �Dpαqupyq

� �
Dpαqvpxq �Dpαqvpyq

�
|x� y|2θ�d

dx dy.

If the domain Ω is suitably regular then, indeed, W s2,p is a subset of W s1,p for
all 0 ¤ s1   s2   8.
Just as in case of integer order Sobolev spaces, we can define for s P R�

0 zN0 and
p P r1,8s the space

W s,p
0 pΩq :� clW s,ppΩq pDpΩqq .

Observe that for all s P R� and p P r1,8s the space DpΩq is densely and
continuously embedded in the space W s,p

0 pΩq by means of the identity operator.
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This is because the convergence in DpΩq is stronger than the convergence in
W s,p

0 pΩq and because DpΩq is dense in W s,p
0 pΩq (by definition). With (1.1) it

follows that pW s,p
0 pΩqq

1 d
ãÑ D1pΩq. Now, for s P R� and p P p1,8s set

W�s,ppΩq :�
�
W s,p1

0 pΩq
	1
, p1 :�

#
p
p�1 for p P p1,8q,

1 for p � 8,

H�spΩq :�W�s,2pΩq.

This is the way to define the Sobolev spaces of negative order. For p P p1,8q it
also holds �

W�s,ppΩq
�1
�W s,p1

0 pΩq.

This is a consequence of

Theorem 1.9 (Reflexivity of W s,ppΩq). Let s P R and p P p1,8q. The space
W s,ppΩq is reflexive.

For all s P R and p P r1,8s the number γ � s� d
p is called the Sobolev number

(corresponding to the pair s, p). The numbers s, p and γ can be used to compare
a Sobolev space with another Sobolev space or with a Hölder space. This is the
subject of

Theorem 1.10 (Sobolev embedding theorem). Let Ω be smooth and bounded.
Let �8   s1   s2   8, 1 ¤ p2 ¤ p1 ¤ 8 and let γ1 and γ2 be the Sobolev
numbers corresponding to the pairs s1, p1 and s2, p2 respectively. Then:
(Part I)

γ2 ¡ γ1 ñW s2,p2pΩq ãÑãÑW s1,p1pΩq,

γ2 � γ1 and p1   8 ñW s2,p2pΩq ãÑW s1,p1pΩq,

the embedding being the identity operator. In both cases the Sobolev inequality

||u||W s1,p1 pΩq ¤ C0ps1, s2, p1, p2q||u||W s2,p2 pΩq for all u PW s2,p2pΩq (1.3)

holds. The embedding constant C0ps1, s2, p1, p2q depends only on s1, s2, p1, p2

and the domain Ω.
(Part II)

γ2 ¡ γ1 and p1 � 8, s1 ¡ 0 ñW s2,p2pΩq ãÑãÑ Crs1s,ts1upΩq,

the embedding being the identity operator and the Sobolev inequality

||u||Crs1s,ts1upΩq ¤ C1ps1, s2, p2q||u||W s2,p2 pΩq

holds. The embedding constant C1ps1, s2, p2q depends only on s1, s2, p2 and Ω.
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Remark 1.2. In part II of the Sobolev embedding theorem, the Sobolev spaces
are compared with the spaces of continuously differentiable functions CkpΩq and
the Hölder spaces Ck,θpΩq. They are continuous versions of the Sobolev spaces
W k,8pΩq and the Sobolev-Slobodeckij spaces W k�θ,8pΩq, respectively:

C0pΩq :� CpΩq :�
 
u : Ω Ñ R| u continuous on Ω

(
,

CkpΩq :�
!
u P CpΩq|Dpαqu P CpΩq for |α| ¤ k

)
, k P N,

Ck,θpΩq :�

#
u P CkpΩq| sup

x,yPΩ,x�y

��Dpαqupxq �Dpαqupyq
��

|x� y|θ
  8

+
,

|| � ||Ck,θpΩq :� || � ||Wk�θ,8pΩq, k P N0, θ P r0, 1q.

As in case of Lp spaces, we have an interpolation inequality for a space ’in-
between’:

Theorem 1.11 (Interpolation inequality for W s,ppΩq). Let Ω be smooth and
bounded. Let s1, s, s2 P p0,8q and p1, p, p2 P r1,8s be such that

s2 ¡ s ¥ s1,

γ2 ¡ γ ¡ γ1,

θ :�
γ � γ1

γ2 � γ1
P

�
s� s1

s2 � s1
, 1



,

where γ1, γ and γ2 are the Sobolev numbers corresponding to the pairs s1, p1,
s, p and s2, p2 respectively. Then the following interpolation inequality holds for
all u PW s2,p2pΩq:

||u||W s,ppΩq ¤ Ips1, s, s2, p1, p, p2q||u||
1�θ
W s1,p1 pΩq||u||

θ
W s2,p2 pΩq. (1.4)

The constant Ips1, s, s2, p1, p, p2q depends only on s1, s, s2, p1, p, p2 and the do-
main Ω.

The following useful nonlinear version of the Sobolev inequality (1.3) is a con-
sequence of Lemma 1.2 from [8].

Lemma 1.1. Let s P p0, 1q, p P r1,8q and q P p1,8q. Then there exists a
constant Npqq that depends only on q and such that it holds

||u||
W

s
q
,sq

pΩq
¤ Npqq

��|u|q�1u
�� 1
q

W s,ppΩq for all u PW s,ppΩq.

We conclude this subsection with the definition of a local Sobolev space:

W k,p
loc pΩq :�

!
u P LplocpΩq| D

pαqu P LplocpΩq for |α| ¤ k
)
.
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The space W 1,pp1,p0qppa, bq;E1, E0q

The treatment of the parabolic problems dealt with in this work requires vector-
valued analogs of the functional spaces already introduced above. Let E1 be a
Banach space. Now we focus on the functions which are defined on an interval
pa, bq, �8 ¤ a   b ¤ 8, with values in E1:

u : pa, bq Ñ E1.

Similarly to the scalar case, we define vector-valued: Lebesgue spaces Lpppa, bq;E1q,
spaces of test functions Dppa, bq;E1q and distributions D1ppa, bq;E1q, Sobolev
spaces W s,pppa, bq;E1q and Hsppa, bq;E1q. Another important example of a
vector-valued Sobolev space is the space in which the time derivative Btu maps
from pa, bq to a ’larger’ space E0 such that E1 ãÑ E0: we introduce for p1, p0 P
r1,8s the space

W 1,pp1,p0qppa, bq;E1, E0q :� tu P Lp1ppa, bq;E1q| Btu P L
p0ppa, bq;E0qu

equipped with the norm

||u||W 1,pp1,p0qppa,bq;E1,E0q :� ||u||Lp1 ppa,bq;E1q � }Btu}Lp0 ppa,bq;E0q
.

Let E be an in-between Banach space:

E1 ãÑ E ãÑ E0.

Clearly we have the following continuous embedding

W 1,pp1,p0qppa, bq;E1, E0q ãÑ Lp1ppa, bq;Eq.

The important compactness result for this kind of spaces is given by the following
theorem [5, 22].

Theorem 1.12 (Compact embeddings in vector-valued Sobolev spaces). Let
�8   a   b   8, p1 P r1,8s, p0 P p1,8s and let E1, E and E0 be Banach
spaces. Then

E1
d

ãÑãÑ E
d
ãÑ E0 ñW 1,pp1,p0qppa, bq;E1, E0q

d
ãÑãÑ

#
Lp1ppa, bq;Eq for p1   8,

Cppa, bq;Eq for p1 � 8.

Remark 1.3 (Weak continuity). A similar result holds in case of a reflexive
space E equipped with its weak topology. In particular, the following useful
weak continuity property holds: let �8   a   b   8, p0 P p1,8s and let E and
E0 be Banach spaces, then

E
d

ãÑãÑ E0 ñW 1,p8,p0qppa, bq;E,E0q
d

ãÑãÑ Cppa, bq; pE, σpE,E1qqq, (1.5)

see [5, 22].
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Positivity

We conclude the Section 1.1 with two remarks on notation connected with posi-
tivity. The first one concerns the fact that in this work we deal with mathemat-
ical models that can describe evolution of two non-negative physical quantities:
density and concentration. Such models are naturally expected to preserve pos-
itivity in the following sense:

Definition 1.4 (Positivity preserving property). We say that an initial problem
is positivity preserving if its solutions are non-negative for non-negative initial
data.

The second point is that we sometimes consider non-negative functions com-
ing from a function space. To shorten the notation, let us introduce the positive
cone notion:

Definition 1.5 (Positive cone). Let X be a subset of L0pΩq. We define the
positive cone of X to be the subset X� of X that consists of all u P X such that
u ¥ 0 almost everywhere in Ω.

1.2 Laplace operator

In this section, we consider the Laplace operator ∆ from two different points of
view: as product of divergence and gradient and as infinitesimal generator of
an analytic semigroup.

The domain Ω is assumed to be smooth and bounded throughout the section.
Let us start with the following realization of the gradient operator:

∇ : H1
0 pΩq Ñ

�
L2pΩq

�d
, ∇u :� pBx1

u, . . . , Bxduq
t
,

where t denotes the transposition operator. In this realization, ∇ is clearly an
isometry (see the definition of the H1

0 pΩq norm), hence its range is closed. As a
consequence, it possesses the Moore-Penrose pseudoinverse [16]. It is given by
the operator

∇� :
�
L2pΩq

�d
Ñ H1

0 pΩq, ∇� :� p∇q�1PRanp∇q,

where PRanp∇q means the orthogonal projection on the range of ∇.

Further, since
�
L2pΩq

�d
is a Hilbert space, we can identify it with its dual.

Then the corresponding adjoint operator coincides with a realization of the
minus divergence operator ∇� � �p∇�q, where

∇� :
�
L2pΩq

�d
Ñ H�1pΩq, ∇ � pu1, . . . , udq :�

ḑ

j�1

Bxjuj .

For the minus Laplace operator, we then obtain

�∆ : H1
0 pΩq Ñ H�1pΩq, �∆ � ∇�∇.
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It follows directly from the properties of a pseudoinverse that

p�∆q�1 � ∇�∇��,
∇p�∆q�1 � ∇��, (1.6)

∇�∇ � id. (1.7)

For an isometric operator the adjoint of its pseudoinverse is also isometric,
therefore

||∇��v�||pL2pΩqqd � ||v�||H�1pΩq for all v� P H�1pΩq. (1.8)

The other way to handle the Laplace operator is to apply to this operator the
general theory of abstract parabolic evolution equations [34]. Having a p P p1,8q
fixed, consider this time the Laplace operator as an unbounded operator

∆ : LppΩq Ñ LppΩq

equipped with the domain

Dp∆q :�
!
u PW 1,p

0 pΩq| ∆u P LppΩq
)
.

It is known that this operator generates an analytic semigroup et∆ and that its
spectrum lies entirely in tλ P R : λ ¤ �βu for some β ¡ 0 depending on Ω. As
such, it has the following properties:

p�∆qµet∆ � et∆p�∆qµ, (1.9)

||et∆p�∆qµ||p ¤ Apµ, pqe�βtt�µ (1.10)

for all t ¡ 0 and µ ¡ 0. The constant Apµ, pq depends only on µ, p and the
domain Ω.

1.3 Global attractor

It is well known that the long time behavior of an autonomous dynamical system
can be described in terms of its global attractor. Let us recall several definitions
and facts from the general theory of attractors (for details we refer to [4, 5, 10]).
For our purpose, it is enough to make the presentation for locally convex spaces.

Consider an arbitrary locally convex space T .

Definition 1.6 (Semigroup). A (one-parametric) family tSptqut¥0 of operators
in T is called a semigroup on T if it satisfies two conditions:

Sp0q � idT ,

Spt� sq � Sptq � Spsq for all t, s ¥ 0,

where idT denotes the identity operator.
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Remark 1.4. We call a semigroup tSptqut¥0 continuous (closed, compact) if
the semigroup operators Sptq are continuous (closed, compact) operators in T
for all t ¥ 0.

Definition 1.7 (Global attractor). Let tSptqut¥0 be a semigroup on T . A set
A � T is called a global attractor for tSptqut¥0 if

(i) A is compact in T ;

(ii) A attracts bounded subsets of T : for every B bounded and every neigh-
borhood V of A there exists a T pB, V q ¡ 0 such that SptqB � V for all
t ¥ T pB, V q;

(iii) A is invariant with respect to tSptqut¥0:

SptqA � A for all t ¥ 0.

Remark 1.5 (Uniqueness of global attractor). If a global attractor exists, it
is also unique. In fact, it is the maximal (with respect to inclusion) bounded
invariant (with respect to tSptqut¥0) subset of T .

Definition 1.8 (Absorbing set). A set C � T is called absorbing for a semi-
group tSptqut¥0 if for every B bounded there exists a T pBq ¡ 0 such that
SptqB � C for all t ¥ T pBq.

Remark 1.6. Every absorbing set is an attracting set.

Remark 1.7 (Positively invariant absorbing set). If C � T is an absorbing set
for a semigroup tSptqut¥0, then, clearly,¤

sPr0,T pCqs

SpsqC

is a positively invariant absorbing set for tSptqut¥0. The latter means that

SptqC � C for all t ¥ 0.

In this work, we use the following general result on the existence of global
attractors in complete metric spaces (see [24]):

Theorem 1.13 (Existence of global attractor). Let tSptqut¥0 be a closed semi-
group in a complete metric space E having a compact absorbing set K � E.
Then the semigroup tSptqut¥0 possesses the global attractor. It is given by

A :�
£
t¥0

clE

�¤
s¥t

SpsqK

�
.
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1.4 Pullback attractor

It is well known that the way to extend the attractor theory for autonomous
dynamical systems to nonautonomous dynamical systems is not unique. The
two essential approaches here are the uniform and the pullback attractors. In-
troduced in [17], further studied and developed in [5, 6], the uniform attractor
is a time-independent set. Its existence for a nonautonomous system is usu-
ally obtained by means of the skew-product technique (see [5]). This object is
quite useful in periodic and quasiperiodic settings and usually leads to finite
dimensional dynamics. However, in more general (translation-compact, see [5])
settings, the uniform attractor often turns out to be infinite-dimensional, even
if the underling dynamics are actually very simple. Such is the case, e.g., with
the inhomogeneous heat equation in a bounded domain

Btu �∆u� fptq, u|BΩ � 0

This equation produces very simple dynamics, namely, a single exponentially
attracting trajectory. At the same time, the corresponding uniform attractor
has an infinite dimension and infinite topological entropy [5]. To avoid such
artificial effects, the pullback attractor concept was initiated in [19, 28]. We
follow this approach in the present work.

Let us recall several definitions and facts from the general theory of pullback
attractors (for details we refer to [19, 28] and, for further development, to [10,
13, 29] and the references therein). For our purpose, it is enough to make the
presentation for locally convex spaces.

Consider an arbitrary locally convex space T .

Definition 1.9 (Process). A (two-parametric) family tUpt, τqut¥τ of operators
in T is called a process on T if it satisfies two conditions:

Upτ, τq � idT for all τ P R,
Upt, τq � Upt, sq � Ups, τq for all t ¥ s ¥ τ, τ, s, t P R,

where idT denotes the identity operator.

Remark 1.8. We call a process tUpt, τqut¥τ continuous (closed, compact) if
the process operators Upt, τq are continuous (closed, compact) operators in T
for all t ¥ τ .

Definition 1.10 (Pullback attractor). Let tUpt, τqut¥τ be a process on T . A
(one-parametric) family tAptqutPR is called a pullback attractor for tUpt, τqut¥τ
if

(i) The sets Aptq are compact in T for all t P R;

(ii) The pullback attracting property holds: for all t P R, every B bounded
and every neighborhood V of Aptq there exists a T pB, V, tq ¡ 0 such that
Upt, t� sqB � V for all s ¥ T pB, V, tq;
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(iii) The invariance property holds:

Upt, τqApτq � Aptq for all t ¥ τ. (1.11)

(iv) The minimality property holds: for all families tA1ptqutPR of closed sets
that enjoy the pullback attracting, property it holds

Aptq � A1ptq for all t P R.

Remark 1.9 (Uniqueness of pullback attractor). If a pullback attractor tAptqutPR
exists for a process tUpt, τqut¥τ on T , it is also unique. In fact, it is the maxi-
mal (with respect to inclusion) family of bounded subsets of T with invariance
property (1.11): for all tA1ptqutPR that enjoy

(i) The sets A1ptq are bounded in T for all t P R;

(ii) Upt, τqA1pτq � A1ptq for all t ¥ τ ;

it holds

A1ptq � Aptq for all t P R.

Definition 1.11 (Uniformly absorbing set). A set C � T is called uniformly
absorbing for a process tUpt, τqut¥τ in T if for every B bounded there exists a
T pBq ¡ 0 such that Upt, t� sqB � C for all t P R and s ¥ T pBq.

Remark 1.10. Every uniformly absorbing set is a pullback attracting set.

Remark 1.11 (Positively invariant uniformly absorbing set). If C � T is a
uniformly absorbing set for a process tUpt, τqut¥τ , then, clearly,¤

sPr0,T pCqs

¤
tPR
Upt, t� sqC

is a positively invariant uniformly absorbing set for tUpt, τqut¥τ . The latter
means that

Upt, t� sqC � C for all t ¥ s.

It is not difficult to extend the Theorem 1.13 to the following existence criterion
for the pullback attractor in a metric space:

Theorem 1.14 (Existence of pullback attractor). Let tUpt, τqut¥τ be a closed
process in a complete metric space E having a compact uniformly absorbing set
K � E. Then the process tUpt, τqut¥τ possesses the pullback attractor. It is
given by

Aptq :�
£
r¥0

clE

�¤
s¥r

Upt, t� sqK

�
for all t P R.
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Remark 1.12 (Forward attractor). Under the assumptions of Theorem 1.14 the
pullback attractor Aptq is at the same time the (uniform) forward attractor for
the process tUpt, τqut¥τ , i.e., the following (uniform) forward attracting prop-
erty (compare with the property (ii) from the Definition 1.10) holds: for all ε ¡ 0
and B bounded there exists a T pB, εq ¡ 0 such that Upt� s, tqB � OεpApt� sqq
for all t P R and s ¥ T pB, εq. Here OεpCq denotes the ε-neighborhood of a set
C � E .



Chapter 2

A biofilm model with
chemotaxis effect:
autonomous case

2.1 The Model

In this chapter, we consider the following model:

BtM � ∇ � p|M |α∇Mq �∇ � p|M |γ∇ρq � fpM,ρq in p0,8q � Ω, (2.1)

Btρ � ∆ρ� gpM,ρq in p0,8q � Ω, (2.2)

M � 0, ρ � 1 in p0,8q � BΩ, (2.3)

Mp0, �q �M0, ρp0, �q � ρ0 in Ω, (2.4)

where α and γ are given positive constants satisfying

α

2
� 1 ¤ γ   α. (2.5)

Remark 2.1 (On condition (2.5)).

(1) In this study, we call conditions of this type for α and γ ’balance’ conditions
since they establish a balance between the diffusion and transport terms,
that is, between the porous medium and the chemotaxis effects.

(2) It is clear from (2.5) that α, γ ¡ 2 should hold.

Ω � Rd pd � 1, 2, 3q is a nonempty smooth bounded domain and M0 P
L8pΩq, ρ0 P W 1,8pΩq. We assume that the functions f and g satisfy the
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following assumptions: for all M,ρ P R let

|fpM,ρq| ¤ F1p1� |M |ξq
1
2 for some ξ P r0, α� γ � 2q , F1 P R�

0 , (2.6)

fpM,ρq signpMq ¤ �F2|M | � F3 for some F2 P R�, F3 P R�
0 , (2.7)

gpM,ρq � G1ρ� g2pρqM for some G1 P R�
0 , (2.8)

|g2pρq| ¤ G3 for some G3 P R�
0 (2.9)

and, in order to ensure uniqueness and non-negativity of solutions for non-
negative initial data, let

rfpM,ρq :� f
�
M |M |

2
2�α�1, ρ

	
� F4M |M |

2
2�α�1 for some F4 P R, (2.10)rf PW 1,8

loc pR
2q, g2 PW

1,8
loc pRq, fp0, ρq ¥ 0 for all ρ P R, g2p0q ¤ 0. (2.11)

The following example of functions f and g satisfies the conditions (2.6)-(2.11):

Example 2.1.

fpM,ρq � �M �
pM�q

2�α
2

pM�q
2�α
2 � 1

arctan ρ,

gpM,ρq � ρ�M
ρ

ρ� 1
.

The system (2.1)-(2.4) was first introduced in [12]. It can model different
formation scenarios of a biofilm population described in terms of its density
M in the presence of a chemoattractant, a chemical described in terms of its
concentration ρ.

Let us compare our model with the classical chemotaxis models - the models
for the free-swimming populations.

As in the case of a free-swimming population with possibility of growth, the
evolution equation (2.2) for the chemoattractant includes the standard linear
diffusion term and a nonlinear reaction interaction term. Depending on the
particular choice of the reaction interaction term, the chemoattractant can be
subject to abiotic decay, be produced or degraded by the population.

The governing evolution equation, the equation (2.1) for the biomass den-
sity, differs considerably from the classical one. It includes two nonlinear spatial
movement effects: a degenerate diffusion term and a chemotaxis transport term.
Both diffusion and chemotaxis coefficients are density-dependent - following a
power law for positive exponents α and γ� 1, respectively. Hence, both motion
effects disappear in the regions with zero biomass density, and they intensify as
the population grows.

The way diffusion and chemotaxis work together is responsible for the lo-
cal changes in the biomass density. Extensive studies made for the chemotaxis
models for the free-swimming populations show that in high dimensions the
diffusion is not strong enough to dominate over the positive chemotaxis effect.
This leads to local aggregation of cells and even to blow-up effect. The latter
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means that the biomass density becomes infinite in finite or infinite time.
In our case of a biofilm population, we can impose a ’balance’ condition on

the exponents α and γ so as to balance the diffusion and transport terms. As a
result, we obtain a well-posed system, and its solutions are uniformly bounded
in time and space.

The study of the model (2.1)-(2.4) expands [12] (see also references therein).
In our research, we propose a less restrictive ’balance’ condition. The condition
α ¡ γ (an improvement over the condition α ¥ γ � 1 imposed in [12]) reads:
the density-dependent diffusion coefficient ’dominates’ the intensity of response
to the chemical signal as the population grows. This, together with the ho-
mogenous Dirichlet boundary conditions, results in the uniform boundedness
of M and ρ and in their dissipation with time. On the other hand, in the ar-
eas with low biomass density the porous medium effect is due to the condition
α
2 � 1 ¤ γ strong enough to keep the population spreading without vanishing

locally, which means that the support of Mpt, �q - the set tx P Ω : Mpt, xq ¡ 0u
- is not shrinking in t (see Section 2.4).

Finally, the equation (2.1) includes a ’source’ term: a nonlinear reaction in-
teraction term, which in our case allows a more general dependence upon the
biomass density than in the original model (see [12]). As usual, it corresponds
to the sink/source density: net number of particles created/lost per unit time
and per unit volume. The source term provides the possibility to model the
impact which the chemoattractant and external forces, such as predation or in-
toxication, can have on the population growth and death. In particular, apart
from actually attracting the biofilm cells, the chemoattractant can be a nutrient
or a poison, or a product of the cells themselves.

We emphasize the fact that even the analysis for the models that include
either the degenerate diffusion or the chemotaxis is rather challenging (see [31]
and [18], respectively) so that, in our case of a joint model, we face significant
difficulties. In this work, we consider weak solutions of the system (2.1)-(2.4).
The definition is as follows:

Definition 2.1 (Weak solution). A pair of functions pM,ρq defined in r0,8q�Ω
is said to be a weak solution of (2.1)-(2.4) for M0 P L

8pΩq, ρ0 P W
1,8pΩq, if

for all T ¡ 0

(i) M P L8 pp0, T q � Ωq, |M |αM P L2
�
p0, T q;H1

0 pΩq
�
, BtM P L2

�
p0, T q;H�1pΩq

�
;

(ii) ρ� 1 P Cpp0, T q;W 1,8
0 pΩqq;

(iii) pM,ρq satisfies the equation (2.1) in L2
�
p0, T q;H�1pΩq

�
, Mp0q � M0 in

Cpp0, T q; pL2pΩq, σpL2pΩq, pL2pΩqq1qqq-sense and

ρptq � 1 �et∆pρ0 � 1q �

» t
0

ept�sq∆gpMpsq, ρpsqq ds

in W 1,8
0 pΩq.



26 A biofilm model with chemotaxis effect: autonomous case

Remark 2.2 (Initial condition). From M P L8pp0, T q;L2pΩqq and BtM P
L2

�
p0, T q;H�1pΩq

�
, it follows with (1.5) for p0 � 2, E � L2pΩq and E1 �

H�1pΩq and the compact embedding (see Theorem 1.10) L2pΩq
d

ãÑãÑ H�1pΩq
that M P Cpp0, T q; pL2pΩq, σpL2pΩq, pL2pΩqq1qqq. Therefore, the initial condi-
tion for M makes sense.

For the convenience of the reader, we formulate the following

Theorem 2.1 (Well-posedness and boundedness). Let the functions f and
g satisfy the assumptions (2.6)-(2.11) and the constants α and γ satisfy γ P�
α
2 � 1, α

�
. Then the initial boundary-value problem (2.1)-(2.4) is uniquely solv-

able (in the sense of Definition 2.1) for each pair of starting values pM0, ρ0q P
L8pΩq�W 1,8pΩq and positivity preserving (in the sense of Definition 1.4). The
solution is uniformly bounded in time in the phase space L8pΩq �W 1,8pΩq.

The proof of Theorem 2.1 for a more general (nonautonomous) setting is given
in Chapter 3 (see also [12] for the first result on the well-posedness for this model
in the autonomous case).

In Theorem 2.2 of Section 2.2 we prove a dissipative estimate for the problem
(2.1)-(2.4). As a consequence of Theorem 2.2, we derive in Section 2.3 the
existence of a weak global attractor for (2.1)-(2.4).

Remark 2.3 (Notation). For the sake of convenience, we assume throughout
this chapter that the constants Bi (appear below) for all indices i are only
dependent upon the parameters of the problem, that is, upon the constants α
and γ, the functions f and g and the domain Ω, and not upon the initial data
M0, ρ0 or t, or, unless stated otherwise, any other parameters.

2.2 Dissipative estimate

In this section, we use the condition α ¡ γ to establish a dissipative estimate
for our model, which is necessary to show the existence of the global attractor
(see Section 2.3). Our result reads:

Theorem 2.2 (Dissipative estimate). Let the functions f and g satisfy the
assumptions (2.6)-(2.11) and let the constants α and γ satisfy γ P

�
α
2 � 1, α

�
.

Then the following dissipative estimate holds for the initial boundary-value prob-
lem (2.1)-(2.4):

||Mptq||L8pΩq � ||ρptq||W 1,8pΩq ¤C8
�
||M0||L8pΩq � ||ρ0||W 1,8pΩq

�r8
� e�ω8t

�D8 for all t ¥ 0, (2.12)

where the positive constants C8, r8, ω8, D8 depend only on α, γ, f and g, and
are independent of M0, ρ0 or t.

Remark 2.4. As will become clear from the proof below, we do not actually
need the condition γ ¥ α

2 �1 to obtain the dissipative estimate (2.12). However,
this condition is crucial for uniqueness of solutions (see the proof of Theorem 3.1
or [12]).



Dissipative estimate 27

Proof. The main idea of the proof is to derive a collection of coupled dissipative
estimates for M and ∇ρ in various Lδ norms, with δ   8 for the M component,
and then apply a bootstrap argument in order to obtain the desired dissipative
estimate in the L8 norm for both components. The estimates are done formally,
they can be justified by passing to an appropriate sequence of regularization
problems (e.g., (3.11)-(3.14) from Chapter 3), performing the estimates in the
same manner for the solutions of these problems and then passing to the limit.

We start with rewriting the equation (2.1) in the following way:

BtM � ∇ �

�
|M |γ∇

�
1

α� γ � 1
M |M |α�γ � ρ




� fpM,ρq

In order to derive our first a priori estimate, we multiply this equation by�
1

α�γ�1M |M |α�γ � ρ
	

and integrate by parts over Ω to obtain

�
BtM,

1

α� γ � 1
M |M |α�γ � ρ



� �

�
|M |γ ,

����∇�
1

α� γ � 1
M |M |α�γ � ρ


����2
�

�

�
fpM,ρq,

1

α� γ � 1
M |M |α�γ � ρ



¤

�
fpM,ρq,

1

α� γ � 1
M |M |α�γ � ρ



ô

d

dt

�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq



¤

�
fpM,ρq,

1

α� γ � 1
M |M |α�γ � ρ



� pBtρ,Mq . (2.13)

Next, we multiply the equation (2.2) by pBtρ� ρ� 1q in the same sense as above,
in order to obtain

}Btρ}
2
�

1

2

d

dt
||ρ� 1||2 � �

1

2

d

dt
||∇ρ||2 � ||∇ρ||2 � pgpM,ρq, Btρ� ρ� 1q ô

1

2

d

dt

�
||∇ρ||2 � ||ρ� 1||2

�
� �||∇ρ||2 � }Btρ}

2
� pgpM,ρq, Btρ� ρ� 1q . (2.14)

By adding the inequalities (2.13) and (2.14) together, we obtain that

d

dt

�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq �
1

2
||∇ρ||2 � 1

2
||ρ� 1||2



¤

�
fpM,ρq,

1

α� γ � 1
M |M |α�γ � ρ



� ||∇ρ||2 � pBtρ,Mq � }Btρ}

2

� pgpM,ρq, Btρ� ρ� 1q . (2.15)
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We consider first the term containing gpM,ρq � G1ρ� g2pρqM . Then

�pG1ρ, Btρ� ρ� 1q � �
1

2

d

dt

�
G1||ρ||

2
�
�G1

�
||ρ||2 � p1, ρq

�
¤ �

1

2

d

dt

�
G1||ρ||

2
�
� p1� εqG1||ρ||

2 �
1

4ε
G1|Ω| (2.16)

and

�pg2pρqM, Btρ� ρ� 1q ¤ ε }Btρ}
2
� ε||ρ� 1||2 �

1

2ε
||g2pρqM ||2

¤
p2.9q

ε }Btρ}
2
� ε||ρ� 1||2 �

1

2ε
G2

3||M ||2. (2.17)

By combining (2.16) and (2.17) with the inequality

�pBtρ,Mq � }Btρ}
2
¤

1

2
||M ||2 �

1

2
}Btρ}

2

and choosing ε ¤ 1
2 , we have

� pBtρ,Mq � }Btρ}
2
� pgpM,ρq, Btρ� ρ� 1q

¤ �
1

2

d

dt

�
G1||ρ||

2
�
� p1� εqG1||ρ||

2 � ε||ρ� 1||2 �
1

4ε
G1|Ω| �

�
1

2
� ε



}Btρ}

2

�

�
1

2
�

1

2ε
G2

3



||M ||2

¤
ε¤ 1

2

�
1

2

d

dt

�
G1||ρ||

2
�
� p1� εqG1||ρ||

2 � ε||ρ� 1||2 �
1

4ε
G1|Ω|

�

�
1

2
�

1

2ε
G2

3



||M ||2. (2.18)

Further, we can estimate the terms with f from (2.15) in the following way:

�
fpM,ρq,M |M |α�γ

�
¤
p2.7q

�
�F2M

2 � F3|M |, |M |pα�γ�1q�1
	

� � F2

���|M |
α�γ�2

2

���2

� F3

���|M |
α�γ�1

2

���2

, (2.19)

�pfpM,ρq, ρq ¤
p2.6q

ε||ρ||2 �
1

4ε
F 2

1

�
|Ω| �

���|M |
ξ
2

���2



¤ 2ε||ρ� 1||2 �

�
2ε�

1

4ε
F 2

1



|Ω| �

1

4ε
F 2

1

���|M |
ξ
2

���2

. (2.20)
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By using the inequalities (2.18)-(2.20) we conclude from (2.15) that

d

dt

�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq

�
1

2
||∇ρ||2 � 1

2
||ρ� 1||2 �

1

2
G1||ρ||

2



¤� F2

���|M |
α�γ�2

2

���2

� F3

���|M |
α�γ�1

2

���2

�
1

4ε
F 2

1

���|M |
ξ
2

���2

�

�
1

2
�

1

2ε
G2

3



||M ||2

� ||∇ρ||2 � p1� εqG1||ρ||
2 � 3ε||ρ� 1||2 �

�
2ε�

1

4ε
G1 �

1

4ε
F 2

1



|Ω|.

(2.21)

In order to shorten the formulas, we introduce a new variable:

ϕ :�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq

�
1

2
||∇ρ||2 � 1

2
||ρ� 1||2 �

1

2
G1||ρ||

2. (2.22)

Observe that |M |
α�γ�2

2 is the leading M power in (2.21)-(2.22) due to the as-
sumptions made on α, γ and ξ. Further, due to the Cauchy-Schwarz and Young
inequalities it holds that

pM,ρq ¤ ε||ρ||2 �
1

4ε
||M ||2, (2.23)

so that the term pM,ρq is negligible in (2.22). Altogether, applying the Poincaré
and the Hölder inequalities and adjusting the constant ε, we can deduce from
(2.21)-(2.23) the inequality

d

dt
ϕ ¤ �B1ϕ�B2

for some B1 P R�, B2 P R�
0 . Gronwall’s lemma yields

ϕptq ¤ e�B1tϕp0q �
B2

B1

�
1� e�B1t

�
,

¤ e�B1tϕp0q �
B2

B1
. (2.24)

We finally obtain our first dissipative estimate: set

yδ0 :� ||M ||δ0δ0 � 1� ||∇ρ||2, δ0 :� α� γ � 2, (2.25)

it follows from (2.24) with the help of (2.22)-(2.23) and the Poincaré inequality
that

yδ0ptq ¤ Cyδ0 yδ0p0qe
�ωyδ0

t
�Dyδ0
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for some Cyδ0 , ωyδ0 , Dyδ0
that depend only upon the parameters of the problem.

Now, the equation (2.2) can be rewritten in the following way:

Btpρ� 1q � ∆pρ� 1q � gpM,ρq

and can thus be regarded as an abstract parabolic evolution equation with
respect to ρ� 1. Therefore, for all t ¡ 0 it holds (see [34]):

ρptq � 1 � et∆pρ0 � 1q �

» t
0

ept�sq∆gpMpsq, ρpsqq ds (2.26)

and by applying operator ∇ to both sides of (2.26), we obtain that

∇ρptq � et∆∇ρ0 �

» t
0

∇
�
ept�sq∆gpMpsq, ρpsqq

	
ds. (2.27)

The initial value ρ0 is assumed to be sufficiently smooth, so that the following
holds:

||∇ρ0||δ   8. (2.28)

What remains is to estimate the δ norm of the integral from (2.27) with the

help of (1.9)-(1.10) and assumptions on g. By choosing µ P
�

1
2 , 1

�
and δ̂ ¥ 1

such that W 2µ,δ̂pΩq ãÑW 1,δpΩq, we arrive at the estimate����» t
0

∇
�
ept�sq∆gpMpsq, ρpsqq

	
ds

����
δ

¤

» t
0

���p�∆qµ
�
ept�sq∆gpMpsq, ρpsqq

	���
δ̂
ds

¤Apµ, δ̂q

» t
0

e�βpt�sqpt� sq�µ
�
G1||ρpsq||δ̂ �G3||Mpsq||δ̂

�
ds. (2.29)

Altogether, we obtain from (2.27)-(2.29) the following estimate:

||∇ρptq||δ ¤e�βt||∇ρ0||δ �Apµ, δ̂qpG1 �G3q�

�

» t
0

e�βpt�sqpt� sq�µ
�
||ρpsq||δ̂ � ||Mpsq||δ̂

�
ds. (2.30)

Leaving this result for a moment and returning to the equation (2.1) we multiply
this equation by M |M |δ�1 for an arbitrary δ ¥ α� γ � 1, so that all occurring
powers remain non-negative, and (formally) integrate over Ω:�

BtM,M |M |δ�1
�
�
�
∇ � p|M |α∇Mq �∇ � p|M |γ∇ρq � fpM,ρq,M |M |δ�1

�
.

It follows that

1

δ � 1

d

dt

���|M |
δ�1
2

���2

��
4δ

pα� δ � 1q2

���∇|M |
α�δ�1

2

���2

�
2δ

α� δ � 1

�
∇|M |

α�δ�1
2 , |M |γ�

α
2�

δ�1
2 ∇ρ

	
� pfpM,ρq,M |M |δ�1q. (2.31)



Dissipative estimate 31

Set ϑpδq :�
γ�α

2�
δ�1
2

α�δ�1
2

. Then ϑpδq   1 holds due to the assumption α ¡ γ.

Applying Hölder’s inequality, we obtain that

�
∇|M |

α�δ�1
2 , |M |γ�

α
2�

δ�1
2 ∇ρ

	
�
�
∇|M |

α�δ�1
2 , |M |ϑpδq

α�δ�1
2 ∇ρ

	
¤}1} 6

1�θpδq

���∇|M |
α�δ�1

2

��� ���|M |
α�δ�1

2

���ϑpδq
6

}∇ρ}3

¤B3

���∇|M |
α�δ�1

2

���1�ϑpδq

}∇ρ}3 . (2.32)

For the last inequality, the embedding H1pΩq ãÑ L6pΩq (recall that d ¤ 3) was
used. Further, we apply once more the Hölder inequality and assumptions on
the function f and thus derive:

pfpM,ρq,M |M |δ�1q ¤ � F2

���|M |
δ�1
2

���2

� F3

���|M |
δ
2

���2

(2.33)

¤� F2

���|M |
δ�1
2

���2

� F3 }1}δ�1

����|M |
δ�1
2

���2

 δ
δ�1

. (2.34)

We can conclude from (2.31) using (2.32) and (2.34) that

1

δ � 1

d

dt

���|M |
δ�1
2

���2

¤�
4δ

pα� δ � 1q2

���∇|M |
α�δ�1

2

���2

�
2δ

α� δ � 1
B3

���∇|M |
α�δ�1

2

���1�ϑpδq

}∇ρ}3

� F2

���|M |
δ�1
2

���2

� F3 }1}δ�1

����|M |
δ�1
2

���2

 δ
δ�1

.

Since 1� ϑpδq   2, it follows with the Young inequality that

1

δ � 1

d

dt

���|M |
δ�1
2

���2

¤ � F2

���|M |
δ�1
2

���2

� F3 }1}δ�1

����|M |
δ�1
2

���2

 δ
δ�1

�B4pδq }∇ρ}
2

1�ϑpδq

3 , (2.35)

where B4pδq �
1�ϑpδq

2

�
2δ

α�δ�1B3

	 2
1�ϑpδq

�
4δ

pα�δ�1q2
2

1�ϑpδq

	� 1�ϑpδq
1�ϑpδq

, therefore this

constant depends only on δ and the parameters of the problem.
Next, we return to the equality (2.31) in order to repeat the whole procedure

once more, but this time we will be more precise about the estimates made, and
will use the regularity achieved up to this point. First, due to (2.33) and two
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obvious inequalities we have

d

dt

���|M |
δ�1
2

���2

��
4δpδ � 1q

pα� δ � 1q2

���∇|M |
α�δ�1

2

���2

�
2δpδ � 1q

α� δ � 1

�
∇|M |

α�δ�1
2 , |M |γ�

α
2�

δ�1
2 ∇ρ

	
� pδ � 1qpfpM,ρq,M |M |δ�1q.

¤�B5

���∇|M |
α�δ�1

2

���2

� pδ � 1qB6||∇ρ||8
���∇|M |

α�δ�1
2

��� ���|M |
α�δ�1

2

���ϑpδq
� pδ � 1qF2

���|M |
δ�1
2

���2

� pδ � 1qB7F3

���|M |
α�δ�1

2

���2ζ

(2.36)

for δ ¥ α � γ � 1 with ζ � δ
α�δ�1 . Taking into account a special case of the

interpolation inequality (1.4), the inequality

||v|| ¤ B8||∇v||
3
5 ||v||

2
5
1 ,

we obtain with the help of the Young inequality that

pδ � 1q||∇v||||v||ϑpδq

¤pδ � 1qB
ϑpδq
8 ||∇v||1�ϑpδq 3

5 ||v||
ϑpδq 2

5
1

¤B
ϑpδq
8

��ε||∇v||2 �B9pεqpδ � 1q
2

1�ϑpδq 3
5 ||v||

2ϑpδq 2
5

1�ϑpδq 3
5

1

� (2.37)

and

pδ � 1qF3||v||
2ζ ¤ pδ � 1qF3B

2ζ
8 ||∇v||2ζ 3

5 ||v||
2ζ 2

5
1

¤ B2ζ
8

��ε||∇v||2 �B10pεq pF3pδ � 1qq
1

1�ζ 3
5 ||v||

2ζ 2
5

1�ζ 3
5

1

�, (2.38)

where B9pεq and B10pεq depend only on ε and the parameters of the problem.
With the Hölder inequality, we also have���|M |

α�δ�1
2

���
1
¤

��|M |
α
2

��
q
q�1

���|M |
δ�1
2

���
q

(2.39)

for q P p1, 2q independent of δ. By combining (2.37)-(2.38) for v :� |M |
α�δ�1

2

with (2.39) and choosing ε small enough depending only on the parameters of
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the problem, we can conclude from (2.36):

d

dt

���|M |
δ�1
2

���2

¤B11 p}∇ρ}8 pδ � 1qq
2

1�ϑpδq 3
5

���|M |
α
2

��
q
q�1

���|M |
δ�1
2

���
q


 2ϑpδq 2
5

1�ϑpδq 3
5

�B11 pF3pδ � 1qq
1

1�ζ 3
5

���|M |
α
2

��
q
q�1

���|M |
δ�1
2

���
q


 2ζ 2
5

1�ζ 3
5

� F2pδ � 1q
���|M |

δ�1
2

���2

for δ ¥ α� γ � 1. Since ϑpδq, ζ P p0, 1q it follows for all δ ¥ α� γ � 2 that

d

dt

�
}M}

δ
δ � 1

	
¤B11δ

5 p}∇ρpsq}8 � 1q
5
}M}

α
α
2

q
q�1

�
}M}

qδ{2
qδ{2 � 1

	 2
q

� F2δ
�
}M}

δ
δ � 1

	
.

Once more we get an integral inequality for }Mptq}
δ
δ � 1:

}Mptq}
δ
δ � 1 ¤ B11

» t
0

e�δF2pt�sqδ5 p}∇ρpsq}8 � 1q
5
}Mpsq}

α
α
2

q
q�1

�
�
}Mpsq}

qδ{2
qδ{2 � 1

	 2
q

ds� e�δF2t
�
}M0}

δ
δ � 1

	
. (2.40)

Now we are ready to derive some more dissipative estimates for the prob-
lem (2.1)-(2.4). We will extensively use Lemma A.1 from the Appendix. This
lemma appears to be very useful in our situation. It actually shows that the
’dissipative property’ is preserved under standard operations (addition, multi-
plication, raising to a power and integration). To shorten the formulas, let us
set

h1 :� ||∇ρ||3 � 1,

h2 :� ||∇ρ||8 � 1,

uδ :� ||M ||δδ � 1, δ P r1,8q.

Observe that particular powers of yδ0 and h1, h2 and uδ (for sufficiently large
δ), u7 and h2 can be connected with one another by the inequalities of the
type (A.1) in the same manner as z1 and z3 from Lemma A.1 are. From the
Lemma A.1 we can conclude that all of them dissipate exponentially with t:

h1ptq ¤ Ch1ph1 � yδ0q
rh1 p0qe�ωh1 t �Dh1 , (2.41)

h2ptq ¤ Ch2
ph2 � u7q

rh2 p0qe�ωh2 t �Dh2
, (2.42)

uδptq ¤ U
�
uδp0q � Cuδph1 � yδ0q

rδp0q
�
e�

F2
2 δt �Duδ �: ruδptq, (2.43)

where the appearing coefficients depend on the parameters of the problem, and
only the coefficients Cuδ and Duδ depend on δ as well. We especially emphasize
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that r is independent from δ (it will be crucial for the existence of the uniform
dissipative estimate). Indeed, from (2.30) and the definition of yδ0 (yδ0 ¡ 1, see
(2.25)), we obtain that

||∇ρptq||3 ¤e�βt||∇ρ0||3 �A

�
3

4
, 2



pG1 �G3q �

�

» t
0

e�βpt�sqpt� sq�
3
4 p||ρpsq||2 � ||Mpsq||2q ds

¤e�βt||∇ρ0||3 � Cp1, 2, 2qA

�
3

4
, 2



pG1 �G3q �

�

» t
0

e�βpt�sqpt� sq�
3
4 yδ0p0q ds (2.44)

since α � γ � 2 ¡ 2, W 2� 34 ,2 ãÑ W 1,3 and W 1,2 ãÑ L2pΩq (with the embedding
constant Cp1, 2, 2q). Next, using (2.30) one more time, we obtain that

||∇ρptq||8 ¤e�βt||∇ρ0||8 �A

�
3

4
, 7



pG1 �G3q �

�

» t
0

e�βpt�sqpt� sq�
3
4 p||ρpsq||7 � ||Mpsq||7q ds

¤e�βt||∇ρ0||8 � Cp1, 7, 3qA

�
3

4
, 7



pG1 �G3q �

�

» t
0

e�βpt�sqpt� sq�
3
4 p||∇ρpsq||3 � 1� ||Mpsq||7q ds

(2.45)

since W 2� 34 ,7 ãÑ W 1,8 and W 1,3pΩq ãÑ L7pΩq (with the embedding constant
Cp1, 7, 3q). The estimates for h1 and h2 now follow with (2.44)-(2.45) and

Lemma A.1 due to the fact that for the function dpt, sq :� pt�sq
� 3

4
� the condition

||d||L8pR�0 ,L1
bpR

�
0 qq

  8 is satisfied.

Let us now check the dissipative estimate (2.43). With (2.35) we have:

1

δ

d

dt
uδ ¤� F2uδ � F3|Ω|u

δ�1
δ

δ �B4pδqh
2

1�ϑpδq

1 . (2.46)

Recall that ϑpδq �
γ�α

2�
δ�2
2

α�δ
2

and, consequently, 2
1�ϑpδq �

α�δ
α�γ�1 ¤ B12δ for

some B12 and δ ¥ δ� sufficiently large. Now, the Young inequality yields:

u
δ�1
δ

δ � pεuδq
δ�1
δ ε�

δ�1
δ ¤

δ � 1

δ
εuδ �

1

δ
ε�pδ�1q,

therefore it follows from (2.46) that

d

dt
uδ ¤� δ

�
F2 � εF3|Ω|

δ � 1

δ



uδ � ε�pδ�1qF3|Ω| � δB4pδqh

B12δ
1

¤� δ
F2

2
uδ � ε�pδ�1qF3|Ω| � δB4pδqh

B12δ
1
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for ε small (depends only on the parameters of the problem). Gronwall’s lemma
then yields

uδptq ¤

» t
0

e�δ
F2
2 pt�sq

�
ε�pδ�1qF3|Ω| � δB4pδqh

B12δ
1 psq

	
ds

� e�δ
F2
2 tuδp0q. (2.47)

The dissipate estimate (2.43) follows now with the estimate (A.2) of Lemma
A.1 and the dissipate estimate (2.41) for h1.

Now, from the inequality (2.40) we can conclude that

uδptq ¤e
�δF2tuδp0q �B11δ

5

» t
0

e�δF2pt�sqH1psqru 2
q
q
2 δ
psq ds, (2.48)

where

H1ptq :� h5
2ptqru 2pq�1q

q
α
2

q
q�1

ptq.

Taking into account that u
2
q
q
2 δ

dissipates with e�δ
F2
2 t and that H1 dissipates with

an exponent independent of δ, we consecutively apply (A.3) to (2.48) and get

uδptq ¤e
�δ

F2
2 tuδp0q �B11ru 2

q
q
2 δ
ptq

» t
0

e�δ
F2
2 pt�sqδ5H1psq ds

¤e�δ
F2
2 tuδp0q �

2

F2
B11δ

4H1ptqru 2
q
q
2 δ
ptq

for δ ¥ δ� sufficiently large. The bound δ� depends only on the parameters of
the problem. Therefore, we may assume that

ruδptq�e�δ F2
2 tuδp0q �B13δ

4H1ptqru 2
q
q
2 δ
ptq. (2.49)

Since

uδp0q � ||M0||
δ
δ � 1 ¤ ||M0||

δ
8|Ω| � 1

we conclude from (2.49) that for

Aδptq :� ruδptq
�

e
F2
2 t

||M0||8�1

�δ
�1 (2.50)

it holds that

Aδptq ¤ B14δ
4H1ptqA

2
q
q
2 δ
ptq.
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One can show by induction then that

A
p q2 q

n

p 2
q q
n
δ�
ptq ¤

�
B14δ

4
�H1ptq

�°n
k�1p

q
2 q
k �q

2

	4
°n
k�1 kp

q
2 q
k

Aδ�ptq

Ñ
nÑ8

�
B14δ

4
�H1ptq

� q
2

1�
q
2

�q
2

	2q

�
1

1�
q
2


2

Aδ�ptq

�: Hδ�ptqAδ�ptq.

Therefore, we get

lim sup
δÑ8

A
1
δ

δ ptq ¤ HptqA
1
δ�

δ�
ptq. (2.51)

By combining (2.51) with (2.50), we finally arrive at an estimate for ||Mptq||8:

||Mptq||8 � 1 � lim
δÑ8

u
1
δ

δ ptq

¤ lim sup
δÑ8

ru 1
δ

δ ptq

¤ Hptq

�ru 1
δ�

δ�
ptq � p||M0||8 � 1q e�

F2
2 t



. (2.52)

Now, since the functions H and ruδ� dissipate exponentially (recall (2.42)-(2.43)
and the definition of H and H1), we apply Lemma A.1 to (2.52) and conclude
that ||M ||8 dissipates exponentially as well. Moreover, it follows from the proof
that there exists a dissipative estimate for ||M ||8 of the form given in (2.12).
The dissipative estimate for ||∇ρ||8�1 � h2 is given in (2.42) and the Theorem
2.2 is thus proven.

l

2.3 Global attractor

The aim of this section is to apply the general theory from Section 1.3 to the
problem (2.1)-(2.4). We prove

Theorem 2.3 (Global Attractor). Let the functions f and g satisfy the as-
sumptions (2.6)-(2.11) and let the constants α and γ satisfy γ P

�
α
2 � 1, α

�
.

Then the solutions of the problem (2.1)-(2.4) can be described by a semigroup

tSptqut¥0 that acts on the space L8w��pΩq �
�

1�W 1,8
0 pΩq

	
. The semigroup

tSptqut¥0 possesses the global attractor in L8w��pΩq �
�

1�W 1,8
0 pΩq

	
.

Proof. We observed in Section 2.1 that the problem (2.1)-(2.4), if considered

as an equation with respect to pM,ρq in the space L8pΩq �
�

1�W 1,8
0 pΩq

	
, is
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well-posed: for each pair of initial values pM0, ρ0q P L
8pΩq �

�
1�W 1,8

0 pΩq
	

there exists a unique solution pM,ρq in terms of Definition 2.1.
Since L8pΩq and L8w��pΩq coincide as sets, we can define the solving semi-

group tSptqut¥0 of the problem (2.1)-(2.4) on the phase space L8w��pΩq ��
1�W 1,8

0 pΩq
	

as follows: for all t ¥ 0 let

Sptq : L8w��pΩq �
�

1�W 1,8
0 pΩq

	
Ñ L8w��pΩq �

�
1�W 1,8

0 pΩq
	
,

SptqpM0, ρ0q :� pMptq, ρptqq for all pM0, ρ0q P L
8
w��pΩq �

�
1�W 1,8

0 pΩq
	
.

Clearly, the space L8w��pΩq �
�

1�W 1,8
0 pΩq

	
inherits all the properties of the

space L8w��pΩq that are listed in Theorem 1.6. In particular, it is a locally
convex space, so that the general theory from Section 1.3 is applicable.

Another consequence is that, due to Theorem 1.6(2), there is no difference
between the spaces L8pΩq and L8w��pΩq with concern to boundedness, the same

thus holds for L8pΩq �
�

1�W 1,8
0 pΩq

	
and L8w��pΩq �

�
1�W 1,8

0 pΩq
	

.

The dissipative estimate (2.12) provides for the semigroup tSptqut¥0 the

existence of an absorbing L8pΩq �
�

1�W 1,8
0 pΩq

	
ball B� centered at p0, 1q of

a radius 2D8. According to Remark 1.7, the set

C� :�
¤

sPr0,T pB�qs

SpsqB�,

where T pB�q is such that SpsqB� � B� for all s ¥ T pB�q, is a positively
invariant absorbing set. With the dissipative estimate (2.12), it follows also

that C� is actually contained in an L8pΩq �
�

1�W 1,8
0 pΩq

	
ball B�� of a

radius R��, R�� ¥ 2D8, centered at p0, 1q, thus it is a bounded positively
invariant absorbing set for tSptqut¥0.

Since C� is bounded, its closure, the set

C̄� :� clL8w��pΩq�p1�W
1,8
0 pΩqqpC�q,

is completely metrizable in its relative topology (see Theorem 1.6(3)).

m
p8q
� ppM1, ρ1q, pM2, ρ2qq :� max

!
d
p8q
� pM1,M2q, ||ρ1 � ρ2||W 1,8

0 pΩq

)
is an example of a complete metric which induces the relative topology. Here

d
p8q
� is the metric defined in (1.2) for R :� R��.

Let us assume for a moment that tSptqut¥0 is a closed semigroup. As a
closure of a positively invariant set, C̄� is then also positively invariant under
tSptqut¥0. Let us assume further that the set Sp1qC̄� is relatively compact in

L8w��pΩq �
�

1�W 1,8
0 pΩq

	
. As the closure of a time shift of an absorbing set,

clL8w��pΩq�p1�W
1,8
0 pΩqqpSp1qC̄�q is absorbing.
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All assumptions of Theorem 1.13 are then fulfilled since we are dealing with
a closed semigroup (the semigroup tSptqut¥0) in a complete metric space (the

space
�
C̄�,m

p8q
�

	
), and this semigroup possesses a compact absorbing set (the

set clL8w��pΩq�p1�W
1,8
0 pΩqqpSp1qC̄�q). Theorem 1.13 yields the existence of the

global attractor.
To finish the proof, it remains to check the closedness of tSptqut¥0 and the

relative compactness of Sp1qC̄�.
The projection of C̄� on the M component is a bounded norm closed set in

L8pΩq, therefore it is compact in L8w��pΩq due to Theorem 1.6. Let us now
show the relative compactness for the ρ component.

Since

p�∆q
11
12 ρp1q � p�∆q

11
12 e∆ρ0 �

» 1

0

p�∆q
11
12 ep1�ωq∆gpMpωq, ρpωqq dω

we conclude with (1.9)-(1.10) and assumptions on g that for all pM0, ρ0q P C̄�
it holds���p�∆q

11
12 ρp1q

���
6
¤

����p�∆q
11
12 e∆ρ0 �

» 1

0

p�∆q
11
12 ep1�ωq∆gpMpωq, ρpωqq dω

����
6

¤A

�
5

12
, 6



}∇ρ0}6 �A

�
11

12
, 6


» 1

0

p1� ωq�
11
12 }gpMpωq, ρpωqq dω}6

¤BρpR��q, (2.53)

where the constant BρpR��q depends only on R�� and the parameters of the
problem. With (2.53) and the compact embedding (see Theorem 1.10)

W
11
6 ,6pΩq ãÑãÑW 1,8pΩq

it follows that the projection of the set Sp1qC̄� on the ρ component is relatively
compact.

It remains to show the closedness of the semigroup operators. In the proof
of Theorem 3.1 we will encounter the local Lipschitz-type continuity property
(3.39) for the solutions of (2.1)-(2.4). It can be translated into the following
form: ���Sptq�M p1q

0 , ρ
p1q
0

	
� Sptq

�
M

p2q
0 , ρ

p2q
0

	���
H�1pΩq�L2pΩq

¤Lpt, R��q
����M p1q

0 , ρ
p1q
0

	
�
�
M

p2q
0 , ρ

p2q
0

	���
H�1pΩq�L2pΩq

(2.54)

for
�
M

p1q
0 , ρ

p1q
0

	
,
�
M

p2q
0 , ρ

p2q
0

	
P C̄�. The constant Lpt, R��q depends only on t,

R�� and the parameters of the problem.
Recall that due to Theorem 1.10 we have

W 1,8pΩq ãÑ L2pΩq, (2.55)

L8pΩq ãÑãÑ H�1pΩq. (2.56)
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Since due to Theorem 1.2 compact operators are weak-�-to-norm continuous,
the property (2.56) allows the interpretation

L8w��pΩq ãÑ H�1pΩq. (2.57)

By combining (2.55) with (2.57), we obtain that

L8w��pΩq �W 1,8pΩq ãÑ H�1pΩq � L2pΩq. (2.58)

Let
!�
M

pnq
0 , ρ

pnq
0

	)
nPN

� C̄� be a sequence of initial data convergent to some

pM0, ρ0q in L8w��pΩq � W 1,8pΩq. Due to the continuous embedding (2.58),
this sequence converges in H�1pΩq � L2pΩq to the same limit. From the prop-

erty (2.54) we deduce that the sequence
!
Sptq

�
M

pnq
0 , ρ

pnq
0

	)
nPN

converges to

Sptq pM0, ρ0q in H�1pΩq � L2pΩq for all t ¥ 0.

Let us further assume that for some t ¥ 0 the sequence
!
Sptq

�
M

pnq
0 , ρ

pnq
0

	)
nPN

is convergent in L8w��pΩq �W 1,8pΩq. Again, due to the continuity of the em-
bedding (2.58), the limit is the same. This proves closedness, and the proof of
Theorem 2.3 is thus finished.

l

2.4 Biofilm mass: local behavior

In this section, we study the local behavior of the biofilm mass. We prove

Theorem 2.4 (Local mass behavior). Let the functions f and g satisfy the
assumptions (2.6)-(2.11) and the constants α and γ satisfy γ P

�
α
2 � 1, α

�
.

Further, let pM0, ρ0q P L
8pΩq �W 1,8pΩq and the starting value M0 be strictly

separated from 0 in some open ball B � Ω. Then»
rB
Mpt, xq dx ¡ 0

for all t ¡ 0 and all open balls rB with rB � B.

Proof. We observed in Section 2.1 that the problem (2.1)-(2.4), if considered as
an equation with respect to pM,ρq in the space L8pΩq�W 1,8pΩq, is well-posed:
for each pair of initial values pM0, ρ0q P L

8pΩq�W 1,8pΩq there exists a unique
solution pM,ρq in terms of Definition 2.1.

Assume the starting value M0 to be separated from 0 in a ball B � Ω by a
constant ε ¡ 0:

ess inf
B

M0 ¥ ε ¡ 0. (2.59)
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This time we multiply the equation (2.1) by �ϕM�1, where ϕ is a smooth
cut-off function with the properties

ϕ P C8
0 pBq, 0 ¤ ϕ ¤ 1, ϕ � 1 in a ball rB � B

for an arbitrary ball rB with rB � B, and integrate over Ω:�
BtM,�ϕM�1

�
�
�
∇ � pMα∇Mq �∇ � pMγ∇ρq � fpM,ρq,�ϕM�1

�
(2.60)

Integrating (2.60) by parts we get:

d

dt

»
B

�ϕpxq lnMp�, xq dx ��
4

α2

���ϕ 1
2∇M α

2

���2

�
4

α

�
ϕ

1
2∇M α

2 ,M
α
2∇ϕ 1

2

	
�

2

α

�
ϕ

1
2∇M α

2 , ϕ
1
2Mγ�α

2�1∇ρ
	
�
�
Mγ�1,∇ϕ �∇ρ

�
�

�
ϕ,
fpM,ρq

M



. (2.61)

Let us now fix an arbitrary T ¡ 0. The expression (2.61) is quite similar to
what we had in (2.31). It can be shown in the same way that the right side of
(2.61) is bounded from above by some positive constant B1pT q for all t P r0, T s.
This is due to the assumptions made on f , the uniform boundedness of ∇ρ and
the cut-off function and also to the fact that α

2 � 1 ¤ γ (and γ ¡ 1, of course).
Thus we get

d

dt

»
B

�ϕpxq lnMpt, xq dx ¤ B1pT q (2.62)

for all t P r0, T s. Integrating over r0, T s, we obtain from (2.62) with the help of
(2.59) that»

B

�ϕpxq lnMpT, xq dx ¤TB1pT q �

»
B

�ϕpxq lnM0pxq dx

¤TB1pT q �

»
B

ϕpxq dx ln ε

�:B2pT, εq.

It follows with M being uniformly bounded that»
rBXtMpT,�q 1u

� lnMpT, xq dx ¤B2pT, εq �

»
BXtMpT,�q¥1u

lnMpT, xq

¤B3pT, εq. (2.63)

If | rB X tMpT, �q   1u | � 0 holds, then MpT, �q ¥ 1 in rB, and nothing is left to

prove. If | rB X tMpT, �q   1u | ¡ 0 then we can use the Jensen’s inequality [27]
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for the measure 1

| rBXtMpT,�q 1u|
dx and convex function � ln to estimate to the

left side of (2.63) from below. We obtain:

� ln

��� 1

| rB X tMpT, �q   1u |

»
rBXtMpT,�q 1u

MpT, xq dx

��¤
B3pT, εq

| rB X tMpT, �q   1u |
.

Hence it follows with obvious calculations that»
rB
MpT, xq dx ¥

»
rBXtMpT,�q 1u

MpT, xq dx ¡ 0 for all T ¡ 0.

Theorem 2.4 is thus proven.

l
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Chapter 3

A biofilm model with
chemotaxis effect:
nonautonomous case

3.1 The Model

This chapter is devoted to the nonautonomous version of system (2.1)-(2.4): the
system

BtM � ∇ � p|M |α∇Mq �∇ � p|M |γ∇ρq � fpt,M, ρq in pτ,8q � Ω, (3.1)

Btρ � ∆ρ� gpt,M, ρq in pτ,8q � Ω, (3.2)

M � 0, ρ � 1 in pτ,8q � BΩ, (3.3)

Mpτ, �q �Mτ , ρpτ, �q � ρτ in Ω, (3.4)

where α and γ satisfy the ’balance’ condition (2.5):

α

2
� 1 ¤ γ   α.

Ω � Rd pd � 1, 2, 3q is a nonempty smooth bounded domain and Mτ P L
8pΩq,

ρτ P W 1,8pΩq. We assume that the functions f and g satisfy the following
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nonautonomous version of the assumptions (2.6)-(2.11): for all t,M, ρ P R let

|fpt,M, ρq| ¤ f1ptqp1� |M |ξq
1
2 for some ξ P r0, α� γ � 2q , f1 P pL

2
bpRqq�,

(3.5)

fpt,M, ρq signpMq ¤ �F2|M | � f3ptq for some F2 P R�, f3 P pL
κ
b pRqq�, κ ¡ 1,

(3.6)

gpt,M, ρq � g1ptqρ� g2pt, ρqM for some g1 P pC
1pRqq� :

d

dt
g1ptq ¤ 0, g1p�8q   8, (3.7)

|g2pt, ρq| ¤ g3ptq, for some g3 P pL
η
b pRqq

�, η ¡ 4 (3.8)

and, in order to ensure uniqueness and non-negativity of solutions for non-
negative initial data,

rfpt,M, ρq :� f
�
t,M |M |

2
2�α�1, ρ

	
� F4M |M |

2
2�α�1, for some F4 P R, (3.9)rf PW 1,8

loc pR
3q, g2 PW

1,8
loc pR

2q, fpt, 0, ρq ¥ 0, g2pt, 0q ¤ 0 for all t, ρ P R.
(3.10)

The following example of functions f and g satisfies the conditions (3.5)- (3.10):

Example 3.1.

fpt,M, ρq � �M �
pM�q

2�α
2

pM�q
2�α
2 � 1

arctanpρq sinptq,

gpt,M, ρq � arccotptqρ�M
ρ

ρ� 1
cosptq.

We define weak solutions of (3.1)-(3.4) in the following way:

Definition 3.1 (Weak solution). A pair of functions pM,ρq defined in rτ,8q�Ω
is said to be a weak solution of (3.1)-(3.4) for Mτ P L

8pΩq, ρτ P W
1,8pΩq, if

for all T ¡ τ

(i) M P L8 ppτ, T q � Ωq, |M |αM P L2
�
pτ, T q;H1

0 pΩq
�
, BtM P L2

�
pτ, T q;H�1pΩq

�
;

(ii) ρ� 1 P Cppτ, T q;W 1,8
0 pΩqq;

(iii) pM,ρq satisfies the equation (3.1) in L2
�
pτ, T q;H�1pΩq

�
, Mpτq � Mτ in

Cwppτ, T q;L
2pΩqq-sense and

ρptq � 1 �ept�τq∆pρτ � 1q �

» t
τ

ept�sq∆gps,Mpsq, ρpsqq ds

in W 1,8
0 pΩq.
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Remark 3.1 (Initial condition). From M P L8ppτ, T q;L2pΩqq and BtM P
L2

�
pτ, T q;H�1pΩq

�
, it follows with (1.5) for p0 � 2, E � L2pΩq and E1 �

H�1pΩq and the compact embedding (see Theorem 1.10) L2pΩq
d

ãÑãÑ H�1pΩq
that M P Cppτ, T q; pL2pΩq, σpL2pΩq, pL2pΩqq1qqq. Therefore, the initial condi-
tion for M makes sense.

In the present work, we study the well-posedness and the long-time behav-
ior of the nonautonomous system (3.1)-(3.4). We prove the following nonau-
tonomous version of Theorem 2.1:

Theorem 3.1. Let the functions f and g satisfy the assumptions (3.5)-(3.10)
and the constants α and γ satisfy γ P

�
α
2 � 1, α

�
. Then the initial boundary-

value problem (3.1)-(3.4) is uniquely solvable (in the sense of Definition 3.1)
for each pair of starting values pMτ , ρτ q P L

8pΩq �W 1,8pΩq and (in the sense
of Definition 1.4). The solution is uniformly bounded in time in the phase space
L8pΩq �W 1,8pΩq.

The proof of Theorem 3.1 is divided between Sections 3.2 (existence) and 3.3
(uniqueness). The positivity preserving property is a consequence of the pos-
itivity results from [11]. Sections 3.4 (dissipative estimate) and 3.5 (pullback
attractor) are devoted to the study of the long-time behavior for our system.
The main result is Theorem 3.2. It states the existence of a dissipative estimate
for the solutions of (3.1)-(3.4), and the dissipation proves to be with exponential
speed. In Section 3.5 we establish the existence of a global pullback attractor.

Remark 3.2 (Notation). For the sake of convenience, we assume throughout
this chapter that the constants Bi (appear below) for all indices i are only
dependent upon the parameters of the problem, that is, upon the constants α
and γ, the functions f and g and the domain Ω, and not upon the initial data
Mτ , ρτ or the time variables τ and t, or, unless stated otherwise, any other
parameters.

3.2 Existence of solutions

Proof of Theorem 3.1 (Existence). The main idea of the existence proof is to
choose a suitable regularization sequence for the problem (3.1)-(3.4) and then
apply the compactness method (see [21]).

Let us consider for arbitrary T ¡ 0, n P N a non-degenerate approximation
of the problem (3.1)-(3.4), the system

BtMn�∇ �

��
|Mn| �

1

n


α
∇Mn



�∇ �

��
|Mn| �

1

n


γ
∇ρn



� f pt,Mn, ρnq in pτ, T q � Ω,

(3.11)

Btρn �∆ρn � gpt,Mn, ρnq in pτ, T q � Ω
(3.12)
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with the same initial and boundary conditions as before:

Mn � 0, ρn � 1 in pτ, T q � BΩ, (3.13)

Mnp�, τq �Mτ , ρnp�, τq � ρτ in Ω. (3.14)

As a consequence of the a priory uniform boundedness, the general theory from
[20] may be extended to the non-degenerate problems (3.11)-(3.14) (for an al-
ternative treatment via maximal regularity see [2]). It follows that they are
uniquely solvable in the class of functions which is defined by Definition 3.1.

Further, in the same manner as the estimates for the solution itself are de-
rived in Section 3.4, one can show for the approximating sequence tpMn, ρnqunPN
the following a priory estimate:

}Mn}L8ppτ,T q�Ωq , }∇ρn}L8ppτ,T q�Ωq , }|Mn|
αMn}L2ppτ,T q,H1

0 pΩqq
¤ B1. (3.15)

With the help of (3.15) we can now estimate the right side of the equation (3.11)
in the L2ppτ, T q, H�1pΩqq norm uniformly in n P N. We obtain

}BtMn}L2ppτ,T q,H�1pΩqq ¤ B2. (3.16)

Moreover, applying Lemma 1.1 for q � α� 1 and (for example) s � 1
2 together

with the Sobolev embedding theorem yields

||Mn||
2pα�1q

W
1

2pα�1q
,2pα�1q

pΩq
¤N2pα�1qpα� 1q }|Mn|

αMn}
2

W
1
2
,2pΩq

¤B3 }|Mn|
αMn}

2
H1

0 pΩq
. (3.17)

Integrating (3.17) over pτ, T q and combining with (3.15)-(3.16) we conclude that

||Mn||
W 1,p2pα�1q,2q

�
pτ,T q;W

1
2pα�1q

,2pα�1q
pΩq,H�1pΩq


 ¤ B4.

The spaces E1 :� W
1

2pα�1q ,2pα�1qpΩq, E :� L2pα�1qpΩq, E0 :� H�1pΩq satisfy
the assumptions of Theorem 1.12, consequently, it holds (set p1 :� 2pα � 1q,
p0 :� 2)

W 1,p2pα�1q,2q
�
pτ, T q;W

1
2pα�1q ,2pα�1qpΩq, H�1pΩq

	
ãÑãÑ L2pα�1qppτ, T q � Ωq,

and the set tMn| n P Nu is thus compact in the space L2pα�1qppτ, T q � Ωq.
For the second component, we now use the (3.15) to estimate the right side

of the equation (3.12) in L8ppτ, T q,W�1,8pΩqq and get

||ρn||W 1,p8,8qppτ,T q;W 1,8
0 pΩq,W�1,8pΩqq ¤ B5p||∇ρ0||8q.

The spaces E1 :�W 1,8
0 pΩq, E :� L8pΩq, E0 :�W�1,8pΩq satisfy the assump-

tions of Theorem 1.12, consequently, it holds (set p1 :� p0 :� 8)

W 1,p8,8q
�
pτ, T q;W 1,8

0 pΩq,W�1,8pΩq
	

ãÑãÑ Cprτ, T s, L8pΩqq.
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The set tρn| n P Nu is thus compact in the space Cprτ, T s, L8pΩqq, hence also
in the larger space L8ppτ, T q � Ωq.

By combining these results, we obtain that there is a subsequence pnmq such
that

Mnm Ñ
mÑ8

M in L2pα�1qppτ, T q � Ωq,

ρnm Ñ
mÑ8

ρ in L8ppτ, T q � Ωq,

∇ρnm Ñ
mÑ8

∇ρ in L8w��ppτ, T q � Ωq. (3.18)

for some pM,ρq P L2pα�1qppτ, T q � Ωq � L8ppτ, T q � Ωq, and for a subsequence
(not relabeled) the convergence is almost everywhere in the cylinder pτ, T q�Ω.

It thus suffices to check that pM,ρq is indeed a solution of the original prob-
lem (3.1)-(3.4) in the sense of distributions. Recall first that f, g PW 1,8pQq for
Q :� pτ, T q � p�B1, B1q

2, so that, with the second part of the Sobolev embed-
ding theorem, we have that f, g P CpQq.
With the continuity argument and the dominant convergence theorem, we ob-
tain that

f p�,Mnm , ρnmq Ñ
mÑ8

fp�,M, ρq in L2ppτ, T q � Ωq,

gp�,Mnm , ρnmq Ñ
mÑ8

gp�,M, ρq in L2ppτ, T q � Ωq,» Mnm

0

�
|M | �

1

n


α
dM Ñ

mÑ8

1

α� 1
|M |αM in L2ppτ, T q � Ωq,�

|Mnm | �
1

nm


γ
Ñ

mÑ8
|M |γ almost everywhere in pτ, T q � Ω. (3.19)

Moreover, combining (3.19) with (3.18), we obtain with the dominant conver-
gence theorem that�

|Mnm | �
1

nm


γ
∇ρnm Ñ

mÑ8
|M |γ∇ρ in L8w��ppτ, T q � Ωq.

Since the convergence in the distributional sense is weaker than the Lp con-
vergence for any p P r1,8s or than the L8w�� convergence and since differential
operators are continuous in the space of distributions, it follows with the conver-
gences we derived in this subsection that pM,ρq solves the problem (3.1)-(3.4)
in the sense of distributions. The existence part of Theorem 3.1 is thus proven.

l

3.3 Uniqueness of solutions

Proof of Theorem 3.1 (Uniqueness). Let us assume that the problem (3.1)-
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(3.4) has two different solutions pM1, ρ1q, pM2, ρ2q with the same initial data:

M1pτq �M2pτq, ρ1pτq � ρ2pτq.

Since both pM1, ρ1q and pM2, ρ2q are solutions of the equation (3.1), we get

BtpM1 �M2q �
1

α� 1
∆ p|M1|

αM1 � |M2|
αM2q �∇ � p|M1|

γ∇ρ1 � |M2|
γ∇ρ2q

� pfpt,M1, ρ1q � fpt,M2, ρ2qq

�
1

α� 1
∆ p|M1|

αM1 � |M2|
αM2q

�∇ � p|M1|
γ∇pρ1 � ρ2qq �∇ � pp|M1|

γ � |M2|
γq∇ρ2q

� pfpt,M1, ρ1q � fpt,M1, ρ2qq

� pfpt,M1, ρ2q � fpt,M2, ρ2qq . (3.20)

We want to estimate the difference M1 �M2, and we choose to do so in the
||∇��p�q|| norm. For this purpose we multiply (3.20) by p�∆q�1pM1�M2q and
integrate over Ω:�

BtpM1 �M2q, p�∆q�1pM1 �M2q
�

�
�
∆ p|M1|

αM1 � |M2|
αM2q , p�∆q�1pM1 �M2q

�
� p�∇ � p|M1|

γ∇pρ1 � ρ2qq , p�∆q�1pM1 �M2qq

� p�∇ � pp|M1|
γ � |M2|

γq∇ρ2q, p�∆q�1pM1 �M2qq

�
�
fpt,M1, ρ1q � fpt,M1, ρ2q, p�∆q�1pM1 �M2q

�
�
�
fpt,M1, ρ2q � fpt,M2, ρ2q, p�∆q�1pM1 �M2q

�
. (3.21)

On the left side of the resulting equation, there appears:�
BtpM1 �M2q, p�∆q�1pM1 �M2q

�
�

1

2

d

dt

��∇��pM1 �M2q
��2
. (3.22)

Suitable estimates for the terms on the right side of (3.21) are required now.
The operator ∆ is self-adjoint, therefore�

∆ p|M1|
αM1 � |M2|

αM2q , p�∆q�1pM1 �M2q
�

�� p|M1|
αM1 � |M2|

αM2,M1 �M2q . (3.23)

In the subsequent Section 3.4, we prove the uniform boundedness for solutions
of the problem (3.1)-(3.4), so that

R :� max t}Mi}8 , }∇ρi}8 , }ρi}8u   8 (3.24)

holds. This and (1.6) leads to

p�∇ � p|M1|
γ∇pρ1 � ρ2qq , p�∆q�1pM1 �M2qq

�pp|M1|
γ∇pρ1 � ρ2qq ,∇��pM1 �M2qq

¤Rγ }∇pρ1 � ρ2q}
��∇��pM1 �M2q

�� , (3.25)
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p�∇ � pp|M1|
γ � |M2|

γq∇ρ2q, p�∆q�1pM1 �M2qq

�pp|M1|
γ � |M2|

γq∇ρ2,∇��pM1 �M2qq

¤R }|M1|
γ � |M2|

γ}
��∇��pM1 �M2q

�� . (3.26)

Finally, combining (3.24) with the assumptions made on f and fixing an (arbi-
trary) t ¡ 0, we obtain that

|fps,M1, ρ1q � fps,M1, ρ2q| �

����» 1

0

Bf

Bρ
ps,M1, ρ1 � zpρ2 � ρ1qq dz

���� |ρ1 � ρ2|

¤
p2.11q

B1pt, Rq |ρ1 � ρ2| (3.27)

and

|fps,M1, ρ2q � fps,M2, ρ2q|

�
p2.10q

��� rf �s, |M1|
α
2 M1, ρ2

�
� rf �s, |M2|

α
2 M2, ρ2

�
� F4

�
|M1|

α
2 M1 � |M2|

α
2 M2

����
¤

������
» 1

0

B rf
BM

�
s, |M1|

α
2 M1 � z

�
|M2|

α
2 M2 � |M1|

α
2 M1

�
, ρ2

�
dz

������ |F4|

�
�
��|M1|

α
2 M1 � |M2|

α
2 M2

��
¤

p2.10q
B2pt, Rq

��|M1|
α
2 M1 � |M2|

α
2 M2

�� (3.28)

for all s P r0, ts and some constants B1pt, Rq, B2pt, Rq ¡ 0 depending only on
the parameters of the problem and on R and t. With (3.22)-(3.28) we conclude
from (3.21) that

1

2

d

dt

��∇��pM1 �M2q
��2

¤� p|M1|
αM1 � |M2|

αM2,M1 �M2q �B3pt, Rq
��∇��pM1 �M2q

��
�
�
}|M1|

γ � |M2|
γ} � }∇pρ1 � ρ2q} �

��|M1|
α
2 M1 � |M2|

α
2 M2

��� (3.29)

for some constant B3pt, Rq ¡ 0 depending only on the parameters of the problem
and on R and t.

With lim
xÑ1

�
x
α
2
�1�1

	2
pxα�1�1qpx�1q �

pα2�1q
2

α�1   8 it follows that�
|M1|

α
2 M1 � |M2|

α
2 M2

�2
¤ B4 p|M1|

αM1 � |M2|
αM2q pM1 �M2q, (3.30)

and with lim
xÑ1

x
α
2
�1�1

xγ�1 �
α
2�1

γ   8 and γ ¥ α
2 � 1 we have

||M1|
γ � |M2|

γ | ¤ B5R
γ�α

2�1
��|M1|

α
2 M1 � |M2|

α
2 M2

�� . (3.31)

Applying (3.30)-(3.31) together with the Young’s inequality to (3.29) yields
finally

1

2

d

dt

��∇��pM1 �M2q
��2
¤B6pt, Rq

��∇��pM1 �M2q
��2
�B6pt, Rq }∇pρ1 � ρ2q}

2

(3.32)
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for some constant B6pt, Rq ¡ 0 depending only on the parameters of the problem
and on R and t.

Now we turn to equation (3.2). Both pM1, ρ1q and pM2, ρ2q solve it, hence

Btpρ1 � ρ2q �∆pρ1 � ρ2q � pgpt,M1, ρ1q � gpt,M2, ρ2qq

�∆pρ1 � ρ2q � g1pρ1 � ρ2q � pg2pt, ρ1qM1 � g2pt, ρ2qM2q

�∆pρ1 � ρ2q � g1pρ1 � ρ2q � pg2pt, ρ1q � g2pt, ρ2qqM1

� g2pt, ρ2qpM1 �M2q. (3.33)

As usual, we multiply (3.33) by ρ1 � ρ2 and integrate over Ω, so that it comes
out

1

2

d

dt
}ρ1 � ρ2}

2
�� }∇pρ1 � ρ2q}

2
� g1 }ρ1 � ρ2}

2

� ppg2pt, ρ1q � g2pt, ρ2qqM1, ρ1 � ρ2q

� pg2pt, ρ2qpM1 �M2q, ρ1 � ρ2q . (3.34)

Due to the property (1.7) of ∇� and the assumptions made on g2 together with
the Poincaré inequality and uniform boundedness of ∇ρ2 and M1, we obtain
the estimates:

p�g2ps, ρ2qpM1 �M2q, ρ1 � ρ2q

� � pg2ps, ρ2qpρ1 � ρ2q,M1 �M2q

�
�
∇pg2ps, ρ2qpρ1 � ρ2qq,∇��pM1 �M2q

�
�

�
g2ps, ρ2q∇pρ1 � ρ2q,∇��pM1 �M2q

�
�

�
Bg2

Bρ
ps, ρ2qpρ1 � ρ2q∇ρ2,∇��pM1 �M2q



¤

p2.11q
g3 }∇pρ1 � ρ2q}

��∇��pM1 �M2q
��� }∇ρ2}8

�

����Bg2

Bρ
ps, ρ2q|ρ1 � ρ2|

���� ��∇��pM1 �M2q
��

¤
p2.11q

pg3 �B7pt, Rqq }∇pρ1 � ρ2q}
��∇��pM1 �M2q

�� (3.35)

and

|pg2ps, ρ1q � g2ps, ρ2qqM1| ¤
p2.11q

R

����» 1

0

Bg2

Bρ
ps, ρ1 � zpρ2 � ρ1qq dz

���� |ρ1 � ρ2|.

¤ B8pt, Rq|ρ1 � ρ2| (3.36)

for some constants B7pt, Rq, B8pt, Rq ¡ 0 depending only on the parameters of
the problem and on R and t. Applying the estimates (3.35) and (3.36) to (3.34)
yields

1

2

d

dt
}ρ1 � ρ2}

2
¤� }∇pρ1 � ρ2q}

2
�B9pt, Rq }ρ1 � ρ2}

2

� pg3 �B7pt, Rqq }∇pρ1 � ρ2q}
��∇��pM1 �M2q

�� . (3.37)
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By adding (3.32) and (3.37) together and using the Young’s inequality one more
time, we finally come to the inequality

d

dt

���∇��pM1 �M2q
��2
�B6pt, Rq }ρ1 � ρ2}

2
	

¤B10pt, Rqpg3 � 1q
���∇��pM1 �M2q

��2
�B6pt, Rq }ρ1 � ρ2}

2
	

(3.38)

for some constant B10pt, Rq ¡ 0 depending only on the parameters of the prob-
lem and on R and t. Integrating (3.38), we conclude that��∇��pM1ptq �M2ptqq

��2
�B6pt, Rq }ρ1ptq � ρ2ptq}

2

¤
���∇��pM1pτq �M2pτqq

��2
�B6pt, Rq }ρ1pτq � ρ2pτq}

2
	
eB10pt,Rq

³t
0
g3psq�1 ds

¤B11pt, Rq
���∇��pM1pτq �M2pτqq

��2
�B6pt, Rq }ρ1pτq � ρ2pτq}

2
	

(3.39)

for some constant B11pt, Rq ¡ 0 depending only on the parameters of the prob-
lem and on R and t. This proves uniqueness for the problem (3.1)-(3.4) since
the solutions pM1, ρ1q, pM2, ρ2q coincide at t � τ . The uniqueness part of The-
orem 3.1 is thus proven.

l

3.4 Dissipative estimate

In this section, we use the condition α ¡ γ to establish a dissipative estimate
for our model, which is necessary to show the existence of the pullback attractor
(see Section 3.5). Our result reads:

Theorem 3.2 (Dissipative estimate). Let the functions f and g satisfy the
assumptions (3.5)-(3.10) and let the constants α and γ satisfy γ P

�
α
2 � 1, α

�
.

Then the following dissipative estimate holds for the initial boundary-value prob-
lem (3.1)-(3.4):

||Mptq||8 � ||ρptq||W 1,8pΩq ¤C8
�
||Mτ ||8 � ||ρτ ||W 1,8pΩq

�r8
� e�ω8pt�τq �D8 for all t ¥ τ, (3.40)

where the positive constants C8, r8, ω8, D8 depend only on α, γ, f and g, and
are independent of Mτ , ρτ or t.

Remark 3.3. As will become clear from the proof below, we do not actu-
ally need the condition γ ¥ α

2 � 1 to obtain the dissipative estimate (3.40).
However, this condition is crucial for uniqueness of solutions (see the proof of
Theorem 3.1).
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Proof. The main idea of the proof is to derive a collection of coupled dissipative
estimates for M and ∇ρ in various Lδ norms, with δ   8 for the M component,
and then apply a bootstrap argument in order to obtain the desired dissipative
estimate in the L8 norm for both components. The estimates are done formally,
they can be justified by passing to an appropriate sequence of regularization
problems (e.g., (3.11)-(3.14)), performing the estimates in the same manner for
the solutions of these problems and then passing to the limit.

We start with rewriting the equation (3.1) in the following way:

BtM � ∇ �

�
|M |γ∇

�
1

α� γ � 1
M |M |α�γ � ρ




� fpt,M, ρq. (3.41)

In order to derive our first a priori estimate, we multiply this equation by�
1

α�γ�1M |M |α�γ � ρ
	

and integrate by parts over Ω to obtain�
BtM,

1

α� γ � 1
M |M |α�γ � ρ



� �

�
|M |γ ,

����∇�
1

α� γ � 1
M |M |α�γ � ρ


����2
�

�

�
fpt,M, ρq,

1

α� γ � 1
M |M |α�γ � ρ



¤

�
fpt,M, ρq,

1

α� γ � 1
M |M |α�γ � ρ



ô

d

dt

�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq



¤

�
fpt,M, ρq,

1

α� γ � 1
M |M |α�γ � ρ



� pBtρ,Mq . (3.42)

Next, we multiply the equation (3.2) by pBtρ� ρ� 1q in the same sense as above,
in order to obtain

}Btρ}
2
�

1

2

d

dt
||ρ� 1||2 � �

1

2

d

dt
||∇ρ||2 � ||∇ρ||2 � pgpt,M, ρq, Btρ� ρ� 1q ô

1

2

d

dt

�
||∇ρ||2 � ||ρ� 1||2

�
� �||∇ρ||2 � }Btρ}

2
� pgpt,M, ρq, Btρ� ρ� 1q .

(3.43)

By adding the inequalities (3.42) and (3.43) together, we obtain that

d

dt

�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq �
1

2
||∇ρ||2 � 1

2
||ρ� 1||2



¤

�
fpt,M, ρq,

1

α� γ � 1
M |M |α�γ � ρ



� ||∇ρ||2 � pBtρ,Mq � }Btρ}

2

� pgpt,M, ρq, Btρ� ρ� 1q . (3.44)
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We consider first the term containing gpt,M, ρq � g1ptqρ � g2pt, ρqM . It then
holds:

�pg1ρ, Btρ� ρ� 1q � �
1

2

d

dt

�
g1||ρ||

2
�
�

1

2

d

dt
g1||ρ||

2 � g1

�
||ρ||2 � p1, ρq

�
¤
p3.7q

�
1

2

d

dt

�
g1||ρ||

2
�
� g1

�
||ρ||2 � p1, ρq

�
¤ �

1

2

d

dt

�
g1||ρ||

2
�
� p1� εqg1||ρ||

2 �
1

4ε
g1|Ω|

¤
p3.7q

�
1

2

d

dt

�
g1||ρ||

2
�
� p1� εqg1||ρ||

2 �
1

4ε
g1pτq|Ω| (3.45)

and

�pg2pt, ρqM, Btρ� ρ� 1q ¤ ε }Btρ}
2
� ε||ρ� 1||2 �

1

2ε
||g2pt, ρqM ||2

¤
p3.8q

ε }Btρ}
2
� ε||ρ� 1||2 �

1

2ε
g2

3 ||M ||2. (3.46)

By combining (3.45) and (3.46) with the inequality

�pBtρ,Mq � }Btρ}
2
¤

1

2
||M ||2 �

1

2
}Btρ}

2
(3.47)

and choosing ε ¤ 1
2 , we have

� pBtρ,Mq � }Btρ}
2
� pgpt,M, ρq, Btρ� ρ� 1q

¤ �
1

2

d

dt

�
g1||ρ||

2
�
� p1� εqg1||ρ||

2 � ε||ρ� 1||2 �
1

4ε
g1pτq|Ω| �

�
1

2
� ε



}Btρ}

2

�

�
1

2
�

1

2ε
g2

3



||M ||2

¤
ε¤ 1

2

�
1

2

d

dt

�
g1||ρ||

2
�
� p1� εqg1||ρ||

2 � ε||ρ� 1||2 �
1

4ε
g1pτq|Ω|

�

�
1

2
�

1

2ε
g2

3



||M ||2. (3.48)

Further, we can estimate the terms with f from (3.44) in the following way:�
fpt,M, ρq,M |M |α�γ

�
¤
p3.6q

�
�F2M

2 � f3|M |, |M |α�γ
�

� � F2

���|M |
α�γ�2

2

���2

� f3

���|M |
α�γ�1

2

���2

, (3.49)

�pfpt,M, ρq, ρq ¤
p3.5q

ε||ρ||2 �
1

4ε
f2

1

�
|Ω| �

���|M |
ξ
2

���2



¤2ε||ρ� 1||2 � 2ε�
1

4ε
f2

1 �
1

4ε
f2

1

���|M |
ξ
2

���2

. (3.50)
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By using the inequalities (3.48)-(3.50) we conclude from (3.44) that

d

dt

�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq

�
1

2
||∇ρ||2 � 1

2
||ρ� 1||2 �

1

2
g1||ρ||

2



¤� F2

���|M |
α�γ�2

2

���2

� f3

���|M |
α�γ�1

2

���2

�
1

4ε
f2

1

���|M |
ξ
2

���2

�

�
1

2
�

1

2ε
g2

3



||M ||2

� ||∇ρ||2 � p1� εqg1||ρ||
2 � 3ε||ρ� 1||2 �

�
2ε�

1

4ε
g1pτq �

1

4ε
f2

1



|Ω|.

(3.51)

In order to shorten the formulas, we introduce a new variable:

ϕ :�
1

pα� γ � 1qpα� γ � 2q

���|M |
α�γ�2

2

���2

� pM,ρq

�
1

2
||∇ρ||2 � 1

2
||ρ� 1||2 �

1

2
g1||ρ||

2 � 1. (3.52)

|M |
α�γ�2

2 is the leading M power present in the expressions (3.51)-(3.52) due
to the assumptions made on α, γ and ξ, and we also have the estimate

pM,ρq ¤ ε||ρ||2 �
1

4ε
||M ||2 (3.53)

for all ε ¡ 0. Altogether, applying the Poincaré and the Hölder inequalities and
adjusting the constant ε, we can deduce from (3.51) the inequality

d

dt
ϕ ¤ �A1ϕ� a2ϕ

θ (3.54)

for some A1 P R� and a2 P L
1
bpRq, a2 ¥ 0 and

θ :�
max

!
α�γ�1

2 , ξ2

)
α�γ�2

2

P p0, 1q.

A simple calculation shows that any solution ϕ of the inequality (3.54) satisfies
the inequality

ϕptq ¤

�
ϕ1�θpτqe�A1p1�θqpt�τq � p1� θq

» t
τ

e�A1p1�θqpt�sqa2psq ds


 1
1�θ

.

(3.55)

Applying Lemma A.1 from the Appendix to the inequality (3.55) and taking
into account that a2 P L

1
bpRq and the inequality (3.53) holds, we finally obtain

our first dissipative estimate. Set

yδ0 :� ||M ||δ0δ0 � 1� ||∇ρ||2, (3.56)

δ0 :� α� γ � 2 ¥ 2,
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it holds then that

yδ0ptq ¤ Cyδ0 yδ0pτqe
�ωyδ0

pt�τq
�Dyδ0

for some Cyδ0 , ωyδ0 , Dyδ0
that depend only upon the parameters of the problem.

Now, the equation (3.2) can be rewritten in the following way:

Btpρ� 1q � ∆pρ� 1q � gpt,M, ρq

and can thus be regarded as an abstract parabolic evolution equation with
respect to ρ� 1. Therefore, for all t ¡ 0 it holds (see [34]) that

ρptq � 1 � ept�τq∆pρpτq � 1q �

» t
τ

ept�sq∆gps,Mpsq, ρpsqq ds, (3.57)

and by applying operator ∇ to both sides of (3.57), we obtain that

∇ρptq � ept�τq∆∇ρpτq �
» t
τ

∇
�
ept�sq∆gps,Mpsq, ρpsqq

	
ds. (3.58)

The initial value ρpτq is assumed to be sufficiently smooth, so that the following
holds:

||∇ρpτq||δ   8. (3.59)

What remains is to estimate the δ norm of the integral from (3.58) with the

help of (1.9)-(1.10) and assumptions on g. By choosing µ P
�

1
2 , 1

�
and δ̂ ¥ 1

such that W 2µ,δ̂pΩq ãÑW 1,δpΩq, we arrive at the estimate����» t
τ

∇
�
ept�sq∆gps,Mpsq, ρpsqq

	
ds

����
δ

¤

» t
τ

���p�∆qµ
�
ept�sq∆gps,Mpsq, ρpsqq

	���
δ̂
ds

¤Apµ, δ̂q

» t
τ

e�βpt�sqpt� sq�µ
�
|g1psq|||ρpsq||δ̂ � g3psq||Mpsq||δ̂

�
ds. (3.60)

Altogether, we obtain from (3.58)-(3.60) the following estimate:

||∇ρptq||δ ¤e�βt||∇ρpτq||δ �Apµ, δ̂q�

�

» t
τ

e�βpt�sqpt� sq�µp|g1psq| � g3psqq
�
||ρpsq||δ̂ � ||Mpsq||δ̂

�
ds.

(3.61)

Leaving this result for a moment and returning to the equation (3.1) we multiply
this equation by M |M |δ�1 for an arbitrary δ ¥ α� γ � 1, so that all occurring
powers remain non-negative, and (formally) integrate over Ω:�

BtM,M |M |δ�1
�
�p∇ � p|M |α∇Mq �∇ � p|M |γ∇ρq
�fpt,M, ρq,M |M |δ�1

�
.
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It follows that

1

δ � 1

d

dt

���|M |
δ�1
2

���2

��
4δ

pα� δ � 1q2

���∇|M |
α�δ�1

2

���2

�
2δ

α� δ � 1

�
∇|M |

α�δ�1
2 , |M |γ�

α
2�

δ�1
2 ∇ρ

	
� pfpt,M, ρq,M |M |δ�1q. (3.62)

Set ϑpδq :�
γ�α

2�
δ�1
2

α�δ�1
2

. Then ϑpδq   1 holds due to the assumption α ¡ γ.

Applying Hölder’s inequality, we obtain that�
∇|M |

α�δ�1
2 , |M |γ�

α
2�

δ�1
2 ∇ρ

	
�
�
∇|M |

α�δ�1
2 , |M |ϑpδq

α�δ�1
2 ∇ρ

	
¤}1} 6

1�θpδq

���∇|M |
α�δ�1

2

��� ���|M |
α�δ�1

2

���ϑpδq
6

}∇ρ}3

¤B1

���∇|M |
α�δ�1

2

���1�ϑpδq

}∇ρ}3 . (3.63)

For the last inequality, the embedding H1pΩq ãÑ L6pΩq (recall that d ¤ 3) was
used. Further, we apply once more the Hölder inequality and assumptions on
the function f and thus derive:

pfpt,M, ρq,M |M |δ�1q ¤ � F2

���|M |
δ�1
2

���2

� f3

���|M |
δ
2

���2

(3.64)

¤� F2

���|M |
δ�1
2

���2

� f3 }1}δ�1

����|M |
δ�1
2

���2

 δ
δ�1

. (3.65)

We can conclude from (3.62) using (3.63) and (3.65) that

1

δ � 1

d

dt

���|M |
δ�1
2

���2

¤�
4δ

pα� δ � 1q2

���∇|M |
α�δ�1

2

���2

�
2δ

α� δ � 1
B3

���∇|M |
α�δ�1

2

���1�ϑpδq

}∇ρ}3

� F2

���|M |
δ�1
2

���2

� f3 }1}δ�1

����|M |
δ�1
2

���2

 δ
δ�1

.

Since 1� ϑpδq   2, it follows with the Young inequality that

1

δ � 1

d

dt

���|M |
δ�1
2

���2

¤ � F2

���|M |
δ�1
2

���2

� f3 }1}δ�1

����|M |
δ�1
2

���2

 δ
δ�1

�B2pδq }∇ρ}
2

1�ϑpδq

3 , (3.66)

where B4pδq �
1�ϑpδq

2

�
2δ

α�δ�1B3

	 2
1�ϑpδq

�
4δ

pα�δ�1q2
2

1�ϑpδq

	� 1�ϑpδq
1�ϑpδq

, therefore this

constant depends only on δ and the parameters of the problem.
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Next, we return to the equality (3.62) in order to repeat the whole procedure
once more, but this time we will be more precise about the estimates made, and
will use the regularity achieved up to this point. First, due to (3.64) and two
obvious inequalities we have

d

dt

���|M |
δ�1
2

���2

��
4δpδ � 1q

pα� δ � 1q2

���∇|M |
α�δ�1

2

���2

�
2δpδ � 1q

α� δ � 1

�
∇|M |

α�δ�1
2 , |M |γ�

α
2�

δ�1
2 ∇ρ

	
� pδ � 1qpfpt,M, ρq,M |M |δ�1q.

¤�B3

���∇|M |
α�δ�1

2

���2

� pδ � 1qB4||∇ρ||8
���∇|M |

α�δ�1
2

��� ���|M |
α�δ�1

2

���ϑpδq
� pδ � 1qF2

���|M |
δ�1
2

���2

� pδ � 1qB5f3

���|M |
α�δ�1

2

���2ζ

(3.67)

for δ ¥ α� γ � 1 with ζ � δ
α�δ�1 .

Recall that f3 P L
κ
b pRq and κ ¡ 1. Taking into account a special case of the

interpolation inequality (1.4), the inequality

||v|| ¤ B6||∇v||1�
1
κ ||v||

1
κ
p , p �

6

1� 2κ
,

where the constant B8 depends only on κ and the domain Ω, we obtain with
the help of the Young inequality that

pδ � 1q||∇v||||v||ϑpδq

¤pδ � 1q pB6q
ϑpδq

||∇v||1�ϑpδqp1�
1
κ q||v||

ϑpδq 1
κ

p

¤pB6q
ϑpδq

��ε||∇v||2 �B7pεqpδ � 1q
2

1�ϑpδqp1� 1
κ q ||v||

2ϑpδq 1
κ

1�ϑpδqp1� 1
κ q

p

� (3.68)

and

pδ � 1qf3||v||
2ζ ¤ pδ � 1qf3 pB6q

2ζ
||∇v||2ζp1�

1
κ q||v||

2ζ 1
κ

p

¤ pB6q
2ζ

��ε||∇v||2 �B8pεq pf3pδ � 1qq
1

1�ζp1� 1
κ q ||v||

2ζ 1
κ

1�ζp1� 1
κ q

p

�,
(3.69)

where B9pεq and B10pεq depend only on ε and the parameters of the problem.
With the Hölder inequality, we also have���|M |

α�δ�1
2

���
p
¤

��|M |
α
2

��
qp
q�p

���|M |
δ�1
2

���
q
, q ¡

6

1� 2κ
. (3.70)
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Since 6
1�2κ   2 holds due to κ ¡ 1, we can assume that q   2 and that it is

independent from δ. By combining (3.68)-(3.69) for v :� |M |
α�δ�1

2 with (3.70)
and choosing ε small enough depending only on B5 and B6 (thus it depends
only on the parameters of the problem) we can conclude from (3.67):

d

dt

���|M |
δ�1
2

���2

¤B9 p}∇ρ}8 pδ � 1qq
2

1�ϑpδqp1� 1
κ q

���|M |
α
2

��
qp
q�p

���|M |
δ�1
2

���
q


 2ϑpδq 1
κ

1�ϑpδqp1� 1
κ q

�B11 pf3pδ � 1qq
1

1�ζp1� 1
κ q

���|M |
α
2

��
qp
q�p

���|M |
δ�1
2

���
q


 2ζ 1
κ

1�ζp1� 1
κ q

� F2pδ � 1q
���|M |

δ�1
2

���2

for δ ¥ α� γ � 1. Since ϑpδq, ζ P p0, 1q it follows for all δ ¥ α� γ � 2 that

d

dt

�
}M}

δ
δ � 1

	
¤B11δ

2κ
�
}∇ρ}2κ8 � fκ3 � 1

	�
}M}

α
α
2
qp
q�p

� 1
	�

}M}
qδ{2
qδ{2 � 1

	 2
q

� F2δ
�
}M}

δ
δ � 1

	
.

Once more we get an integral inequality for }Mptq}
δ
δ � 1:

}Mptq}
δ
δ � 1

¤B11δ
2κ

» t
τ

e�δF2pt�sq
�
}∇ρpsq}2κ8 � fκ3 psq � 1

	�
}Mpsq}

α
α
2
qp
q�p

� 1
	

�
�
}Mpsq}

qδ{2
qδ{2 � 1

	 2
q

ds� e�δF2pt�τq
�
}Mpτq}

δ
δ � 1

	
. (3.71)

Now we are ready to derive some more dissipative estimates for the prob-
lem (3.1)-(3.4). We will extensively use Lemma A.1 from the Appendix. This
lemma appears to be very useful in our situation. It actually shows that the
’dissipative property’ is preserved under standard operations (addition, multi-
plication, raising to a power and integration). To shorten the formulas, let us
set:

h1 :� ||∇ρ||3 � 1,

h2 :� ||∇ρ||8 � 1,

uδ :� ||M ||δδ � 1, δ P r1,8q.

Observe that particular powers of yδ0 and h1, h2 and uδ (for sufficiently large
δ), u7 and h2 can be connected with one another by the inequalities of the
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type (A.1) in the same manner as z1 and z3 from Lemma A.1 are. From the
Lemma A.1 we can conclude that all of them dissipate exponentially with t:

h1ptq ¤ Ch1
ph1 � yδ0q

rh1 pτqe�ωh1 pt�τq �Dh1
, (3.72)

h2ptq ¤ Ch2ph2 � u7q
rh2 pτqe�ωh2 pt�τq �Dh2 , (3.73)

uδptq ¤ U
�
uδpτq � Cuδph1 � yδ0q

rδpτq
�
e�

F2
2 δpt�τq �Duδ �: ruδptq, (3.74)

where the appearing coefficients depend on the parameters of the problem, and
only the coefficients Cuδ and Duδ depend on δ as well. We especially emphasize
that r is independent from δ (it will be crucial for the existence of the uniform
dissipative estimate). Indeed, from (3.61) and the definition of yδ0 (yδ0 ¡ 1, see
(3.56)), we obtain that

||∇ρptq||3 ¤e�βt||∇ρpτq||3 �A

�
3

4
, 2



�

�

» t
τ

e�βpt�sqpt� sq�
3
4 p|g1psq| � g3psqq p||ρpsq||2 � ||Mpsq||2q ds

¤e�βt||∇ρpτq||3 � Cp1, 2, 2qA

�
3

4
, 2



�

�

» t
τ

e�βpt�sqpt� sq�
3
4 p|g1psq| � g3psqqyδ0p0q ds (3.75)

since α � γ � 2 ¡ 2, W 2� 34 ,2 ãÑ W 1,3 and W 1,2 ãÑ L2pΩq (with the embedding
constant Cp1, 2, 2q). Next, using (3.61) one more time, we obtain that

||∇ρptq||8 ¤e�βt||∇ρpτq||8 �A

�
3

4
, 7



�

�

» t
τ

e�βpt�sqpt� sq�
3
4 p|g1psq| � g3psqq p||ρpsq||7 � ||Mpsq||7q ds

¤e�βt||∇ρpτq||8 � Cp1, 7, 3qA

�
3

4
, 7



�

�

» t
τ

e�βpt�sqpt� sq�
3
4 p|g1psq| � g3psqq p||∇ρpsq||3 � 1� ||Mpsq||7q ds

(3.76)

since W 2� 34 ,7 ãÑ W 1,8 and W 1,3pΩq ãÑ L7pΩq (with the embedding constant
Cp1, 7, 3q). The estimates for h1 and h2 now follow with (3.75)-(3.76) and

Lemma A.1 due to the fact that for the function dpt, sq :� pt � sq
� 3

4
� p|g1psq| �

g3psqq the condition sup
t¡0

||dpt, �q||L1
bpRq   8 is satisfied (recall that we assumed

that g1 P L
8pRq and g3 P L

η
b pRq, η ¡ 4).

Let us now check the dissipative estimate (3.74). With (3.66)

1

δ

d

dt
uδ ¤� F2uδ � |Ω|f3u

δ�1
δ

δ �B4pδqh
2

1�ϑpδq

1 . (3.77)
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Recall that ϑpδq �
γ�α

2�
δ�2
2

α�δ
2

and, consequently, 2
1�ϑpδq �

α�δ
α�γ�1 ¤ B10δ for

some B12 and δ ¥ δ� sufficiently large. Now, the Young inequality yields:

u
δ�1
δ

δ � pεuδq
δ�1
δ ε�

δ�1
δ ¤

δ � 1

δ
εuδ �

1

δ
ε�pδ�1q,

therefore it follows from (3.77) that

d

dt
uδ ¤� δ

�
F2 � ε|Ω|f3

δ � 1

δ



uδ � ε�pδ�1q|Ω|f3 � δB4pδqh

B12δ
1 .

Gronwall’s lemma then yields

uδptq ¤

» t
τ

e�δ
³t
s
F2�ε|Ω|f3psq

δ�1
δ ds

�
ε�pδ�1q|Ω|f3psq � δB4pδqh

B12δ
1 psq

	
ds

� e�δ
³t
τ
F2�ε|Ω|f3psq

δ�1
δ dsuδpτq. (3.78)

Observe that it holds that» t
τ

F2 � ε|Ω|f3psq ds ¥F2pt� τq � ε|Ω|

» rts

tτu

f3psq ds

¥F2pt� τq � ε|Ω|||f3||L1
bpRqprts� tτ uq

¥
�
F2 � ε|Ω|||f3||L1

bpRq

	
pt� τq � 2ε|Ω|||f3||L1

bpRq. (3.79)

For ε :� F2

2|Ω|||f3||L1
b
pRq

, it follows with (3.78) and (3.79) that

uδptq ¤e
F2

�» t
τ

e�pt�sqδ
F2
2

�
ε�pδ�1q|Ω|f3psq � δB4pδqh

B12δ
1 psq

	
ds

�e�pt�τqδ
F2
2 uδpτq

	
.

The dissipate estimate (3.74) follows now with the estimate (A.2) of Lemma
A.1 and the dissipate estimate (3.72) for h1.

Now, from the inequality (3.71) we can conclude that

uδptq ¤e
�δF2pt�τquδpτq �B11δ

2κ

» t
τ

e�δF2pt�sqH1psqru 2
q
q
2 δ
psq ds, (3.80)

where

H1ptq :�
�
h2κ

2 ptq � fκ3 ptq � 1
� ru 2pq�pq

qp
α
2
qp
q�p

ptq.

Taking into account that u
2
q
q
2 δ

dissipates with e�δ
F2
2 pt�τq and that H1 dissipates

with an exponent independent of δ, we consecutively apply (A.3) to (3.80) and
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get

uδptq ¤e
�δ

F2
2 pt�τquδpτq �B11δ

2κru 2
q
q
2 δ
ptq

» t
τ

e�δ
F2
2 pt�sqH1psq ds

¤e�δ
F2
2 pt�τquδpτq �B11δ

2κ�1H2ptqru 2
q
q
2 δ
ptq,

where

H2ptq :�
�
h2κ

2 ptq � ||f3||
κ
Lκb pRq

� 1
	 ru 2pq�pq

qp
α
2
qp
q�p

ptq

and δ ¥ δ� is sufficiently large. The bound δ� depends only on the parameters
of the problem. Therefore, we may assume that

ruptq �e�δ F2
2 pt�τquδpτq �B13δ

2κ�1H2ptqru 2
q
q
2 δ
ptq, (3.81)

Since

uδpτq � ||Mpτq||δδ � 1 ¤ ||Mpτq||8|Ω| � 1

we conclude from (3.81) that for

Aδptq :� ruδptq
�

e
F2
2 pt�τq

||Mpτq||8 � 1

�δ
� 1 (3.82)

it holds that

Aδptq ¤ B12H2ptqδ
2κ�1A

2
q
q
2 δ
ptq.

One can show by induction then that

A
p q2 q

n

p 2
q q
n
δ�
ptq ¤

�
B14H2ptqδ

2κ�1
�

�°n
k�1p

q
2 q
k �q

2

	p2κ�1q
°n
k�1 kp

q
2 q
k

Aδ�ptq

Ñ
nÑ8

�
B14H2ptqδ

2κ�1
�

� q
2

1�
q
2

�q
2

	p2κ�1q q2

�
1

1�
q
2


2

Aδ�ptq

�: Hδ�ptqAδ�ptq.

Therefore, we get

lim sup
δÑ8

A
1
δ

δ ptq ¤ HptqA
1
δ�

δ�
ptq. (3.83)

By combining (3.83) with (3.82), we finally arrive at an estimate for ||Mptq||8:

||Mptq||8 � 1 � lim
δÑ8

u
1
δ

δ ptq

¤ lim sup
δÑ8

ru 1
δ

δ ptq

¤ Hptq

�ru 1
δ�

δ�
ptq � p||Mτ ||8 � 1q e�

F2
2 pt�τq



. (3.84)
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Now, since the functions H and ruδ� dissipate exponentially (recall (3.73)-(3.74)
and the definition of H and H2), we apply Lemma A.1 to (3.84) and conclude
that ||M ||8 dissipates exponentially as well. Moreover, it follows from the proof
that there exists a dissipative estimate for ||M ||8 of the form given in (3.40).
The dissipative estimate for ||∇ρ||8�1 � h2 is given in (3.73) and the Theorem
3.2 is thus proven.

l

3.5 Pullback attractor

The aim of this section is to apply the general theory from Section 1.4 to the
problem (3.1)-(3.4). We prove

Theorem 3.3. Let the functions f and g satisfy the assumptions (3.5)-(3.10)
and let the constants α and γ satisfy γ P

�
α
2 � 1, α

�
. Then for all p P r1,8s the

solutions of the problem (3.1)-(3.4) can be described by a process tUpt, τqut¥τ

that acts on the space HppΩq �
�

1�W 1,8
0 pΩq

	
. The process tUpt, τqut¥τ pos-

sesses the pullback attractor tAptqutPR in HppΩq �
�

1�W 1,8
0 pΩq

	
, which is

independent of the concrete choice of p. Moreover, the set
�
tPR
Aptq is relative

compact in HppΩq �
�

1�W 1,8
0 pΩq

	
for all p P r1,8s.

Remark 3.4 (Rate of convergence to the pullback attractor). The rate of con-
vergence to the pullback attractor Aptq may, of course, depend on p and can be
arbitrarily slow.

Proof of Theorem 3.3. We showed in Theorem 3.1 that the problem (3.1)-

(3.4), if considered in the space L8pΩq �
�

1�W 1,8
0 pΩq

	
, is well-posed: for

each pair of initial values pMτ , ρτ q P L
8pΩq �

�
1�W 1,8

0 pΩq
	

there exists a

unique solution pM,ρq in terms of Definition 3.1.
We define the solving process tUpt, τqut¥τ of the problem (3.1)-(3.4) on the

phase space L8pΩq �
�

1�W 1,8
0 pΩq

	
as follows: for all t ¥ τ let

Upt, τq : L8pΩq �
�

1�W 1,8
0 pΩq

	
Ñ L8pΩq �

�
1�W 1,8

0 pΩq
	
,

Upt, τqpMτ , ρτ q :� pMptq, ρptqq for all pMτ , ρτ q P L
8pΩq �

�
1�W 1,8

0 pΩq
	
.

The dissipative estimate (3.2) provides the existence of the ball B� of radius
2D8 centered at p0, 1q, which uniformly absorbs all bounded subsets of L8pΩq�
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�
1�W 1,8

0 pΩq
	

. According to Remark 1.11, the set

C� :�
¤

sPr0,T pB�qs

¤
tPR
Upt, t� sqB�,

where T pB�q is such that Upt, t � sqB� � B� for all s ¥ T pB�q, is a pos-
itively invariant set that uniformly absorbs all bounded subsets of L8pΩq ��

1�W 1,8
0 pΩq

	
. With the dissipative estimate (3.2), it follows also that C� is

actually contained in a ball B�� of a radius R��, R�� ¥ 2D8, centered at p0, 1q.

Clearly, the spaces HppΩq �
�

1�W 1,8
0 pΩq

	
inherit all the properties of the

space HppΩq that are listed in Theorems 1.6 and 1.7 for p � 8 and p P r1,8q,
respectively. In particular, they are locally convex spaces, so that the general
theory from Section 1.4 is applicable.

The fact that L8pΩq�
�

1�W 1,8
0 pΩq

	
and all HppΩq�

�
1�W 1,8

0 pΩq
	

co-

incide as sets and have the same set of bounded sets (see Theorems 1.6(2) and

1.7(2)) has as a consequence that, in the spaces HppΩq �
�

1�W 1,8
0 pΩq

	
, the

family tUpt, τqut¥τ remains to be a process, and the set C� remains to be a
bounded positively invariant uniformly absorbing set for tUpt, τqut¥τ .

For p P r1,8q, the HppΩq �
�

1�W 1,8
0 pΩq

	
topology is, per definition,

stronger than the H8pΩq �
�

1�W 1,8
0 pΩq

	
topology, and, if restricted to a

bounded set, it coincides with the restriction of the L2pΩq �
�

1�W 1,8
0 pΩq

	
topology (see Theorem 1.7(4)).

Altogether, we arrive at the following conclusion: it suffices to prove the
existence of the family of compact sets with the invariance property (1.11)
that pullback attracts C� equipped with one of the metrics that generates the

L2pΩq�
�

1�W 1,8
0 pΩq

	
topology, for example, with the metric m

p2q
� defined as

follows:

m
p2q
� ppM1, ρ1q, pM2, ρ2qq :�

�
||M1 �M2||

2 � ||ρ1 � ρ2||
2
W 1,8

0 pΩq

	 1
2

for all pM1, ρ1q, pM2, ρ2q P L
2pΩq �

�
1�W 1,8

0 pΩq
	

. This pullback attracting

family is then the pullback attractor for the whole HppΩq �
�

1�W 1,8
0 pΩq

	
for

each p P r1,8s.
However, to be able to apply the existence criterion for metric spaces, Theo-

rem 1.14, it is necessary for the process operators to be mapping in a complete
metric space.

The underling space,
�
L2pΩq �

�
1�W 1,8

0 pΩq
	
,m

p2q
�

	
, is a complete metric

space, so that the set

C̄� :� clL2pΩq�p1�W 1,8
0 pΩqqpC�q,
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equipped with the metric m
p2q
� , is complete too.

Every L8pΩq ball is a closed subset of L8w��pΩq, thus closed in the stronger
topology of L2pΩq, so that

C̄� � B��,

and the process tUpt, τqut¥τ is well defined in C̄�.
Let us assume for a moment that tUpt, τqut¥τ is a closed process in C̄�. As

a closure of a positively invariant set, C̄� is then also positively invariant under
tUpt, τqut¥τ . Let us assume further that the set

K� :� clL2pΩq�p1�W 1,8
0 pΩqq

�¤
τPR

Upτ � 1, τqC̄�

�
(3.85)

is compact in L2pΩq �
�

1�W 1,8
0 pΩq

	
. As a closure of a uniform time shift of

C̄�, K� is also uniformly absorbing. All assumptions of Theorem 1.14 are then
fulfilled since we are dealing with a closed process (the process tUpt, τqut¥τ )
in a complete metric space (the set C̄� equipped with a complete metric), and
this process possesses a compact uniformly absorbing set (the set K�). Theo-
rem 1.14 yields the existence of the pullback attractor, its sets are contained
in the compact K�, and, as we showed above, it is also the pullback attractor

for the process tUpt, τqut¥τ in each of the spaces HppΩq �
�

1�W 1,8
0 pΩq

	
for

p P r1,8s.
In order to finish the proof, it remains to check the closedness of tUpt, τqut¥τ

and the compactness of K�.
Let us first prove the closedness of the process operators. In the proof of

Theorem 3.1 we encountered the local Lipschitz-type continuity property (3.39)
for the solutions of (3.1)-(3.4). It can be translated into the following form:���Upt, τq�M p1q

τ , ρp1qτ

	
� Upt, τq

�
M p2q
τ , ρp2qτ

	���
H�1pΩq�L2pΩq

¤Lpt� τ,R��q
����M p1q

τ , ρp1qτ

	
�
�
M p2q
τ , ρp2qτ

	���
H�1pΩq�L2pΩq

(3.86)

for all
�
M

p1q
τ , ρ

p1q
τ

	
,
�
M

p2q
τ , ρ

p2q
τ

	
P C̄�. The constant Lpt�τ,R��q depends only

on t� τ , R�� and the parameters of the problem.
Recall that due to the embedding theorems for Sobolev spaces, we have

L2pΩq �W 1,8
0 pΩqãÑH�1pΩq � L2pΩq. (3.87)

Let
!�
M

pnq
τ , ρ

pnq
τ

	)
nPN

� C̄� be a sequence of initial data convergent in L2pΩq��
1�W 1,8

0 pΩq
	

to some pMτ , ρτ q. Due to the continuous embedding (3.87),

this sequence converges in H�1pΩq � L2pΩq to the same limit. From the prop-

erty (3.86) we deduce that the sequence
!
Upt, τq

�
M

pnq
τ , ρ

pnq
τ

	)
nPN

converges to
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Upt, τq pMτ , ρτ q in H�1pΩq � L2pΩq for all t ¥ τ .

Let us further assume that for some t ¥ τ the sequence
!
Upt, τq

�
M

pnq
τ , ρ

pnq
τ

	)
nPN

is convergent in L2pΩq �
�

1�W 1,8
0 pΩq

	
. Again, due to the continuity of the

embedding (3.87), the limit is the same. This proves closedness.

To prove compactness of K� in L2pΩq �
�

1�W 1,8
0 pΩq

	
, we multiply the

equation (3.1) by pα� 1qBt|M |αM and integrate (formally) over Ω:

pα� 1q pBtM, Bt|M |αMq �
�

∆|M |αM � pα� 1qf̂pt,M, ρq, Bt|M |αM
	
.

Here:

f̂pt,M, ρq � �∇ � p|M |γ∇ρq � fpt,M, ρq.

After integrating by parts, we obtain that�
α� 1
α
2 � 1


2 ��Bt|M |
α
2�1

��2
��

1

2
Bt
��∇|M |α�1

��2

�
pα� 1q2

α
2 � 1

�
|M |

α
2 f̂pt,M, ρq, Bt|M |

α
2�1

	
.

With the Cauchy-Schwarz inequality we have�
α� 1
α
2 � 1


2 ��Bt|M |
α
2�1

��2
¤� Bt

��∇|M |α�1
��2

� pα� 1q2
���|M |

α
2 f̂pt,M, ρqBt|M |

α
2�1

���2

,

so that

Bt
��∇|M |α�1

��2
¤pα� 1q2

���|M |
α
2 f̂pt,M, ρq

���2

.

It follows with multiplying by t� τ , t ¡ τ that

Bt

�
pt� τq

��∇|M |α�1
��2
	
¤
��∇|M |α�1

��2
� pt� τqpα� 1q2

���|M |
α
2 f̂pt,M, ρq

���2

.

Integrating over pτ, τ � 1q, we obtain that��∇|Mpτ � 1q|α�1
��2
¤

» τ�1

τ

��∇|Mpsq|α�1
��2

� ps� τqpα� 1q2
���|Mpsq|

α
2 f̂ps,Mpsq, ρpsqq

���2

ds. (3.88)

It remains, therefore, to estimate the integral on the right side of (3.88). We
have���|M |

α
2 f̂ps,M, ρq

��� � ���� γ
α
2 � γ

∇|M |
α
2�γ �∇ρ� |M |

α
2�γ∆ρ� |M |

α
2 fps,M, ρq

����
¤

γ
α
2 � γ

}∇ρ}8
��∇|M |

α
2�γ

��� }∆ρ}2
��|M |

α
2�γ

��
8

�
��|M |

α
2 fps,M, ρq

�� .
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From the derivation of dissipative estimates for ||M ||δδ in Section 3.4 we conclude
that for all pMτ , ρτ q P C̄� It then holds:» τ�1

τ

��∇|Mpsq|α�1
��2
ds ¤B1 pR��q , (3.89)» τ�1

τ

��∇|Mpsq|
α
2�γ

��2
ds ¤B2 pR��q , (3.90)

where the constants B1 pR��q and B2 pR��q depend only on R�� and the pa-
rameters of the problem.

Further, due to the classical energy estimate and assumptions on g, we have
for all pMτ , ρτ q P C̄�» τ�1

τ

}∆ρpsq}
2
ds ¤}∇ρpτq}2 �

» τ�1

τ

}gps,Mpsq, ρpsqq ds}
2

¤B3 pR��q , (3.91)

the constant B3 pR��q depends only on R�� and the parameters of the problem.
By combining (3.89)-(3.91) with (3.88), we arrive at the following smoothing

estimate for M : ��|Mpτ � 1q|α�1
��
H1

0 pΩq
¤ B4 pR��q , (3.92)

the constant B4 pR��q depends only on R�� and the parameters of the problem.
Finally, using Lemma 1.1 for q � α� 1, we obtain from (3.92) that

}Mpτ � 1q}
W

1
α�1

�θ,2pα�1q
pΩq

¤ BM pR��q

for an arbitrary θ P p0, 1q, the constant BM pR��q depends only on R��, θ and
the parameters of the problem. We choose θ :� 1

2 , so that

}Mpτ � 1q}
W

1
2pα�1q

,2pα�1q
pΩq

¤ BM pR��q . (3.93)

Next, we deal with equation (3.2). Since

p�∆q
11
12 ρpτ � 1q � p�∆q

11
12 e∆ρτ

�

» τ�1

τ

p�∆q
11
12 epτ�1�ωq∆gpω,Mpωq, ρpωqq dω

we conclude with the properties (1.9)-(1.10) that, due to assumptions on g,���p�∆q
11
12 ρpτ � 1q

���
6

¤

����p�∆q
11
12 e∆ρτ �

» τ�1

τ

p�∆q
11
12 epτ�1�ωq∆gpω,Mpωq, ρpωqq dω

����
6

¤A

�
5

12
, 6



}∇ρτ }6 �A

�
11

12
, 6


» τ�1

τ

pτ � 1� ωq�
11
12 }gpω,Mpωq, ρpωqq}6 dω

¤BρpR��q, (3.94)
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and the constant BρpR��q depends only on R�� and the parameters of the
problem.

With the smoothing properties (3.93)-(3.94) and the compact embeddings
(see Theorem 1.10)

W
1

2pα�1q ,2pα�1qpΩq ãÑãÑ L2pΩq,

W
11
6 ,6pΩq ãÑãÑW 1,8pΩq,

we obtain that Upτ � 1, τq maps the set C̄� into a compact subset of L2pΩq ��
1�W 1,8

0 pΩq
	

, and that this set can be assumed to be one and the same for

all τ P R. Since K� is contained in it (see the definition of K� in (3.85)), it is
also compact. Theorem 3.3 is thus proven.

l

Remark 3.5 (Pullback attractor in 1D-case). In case of one spatial dimension,
there is no need to pass to a weaker topology. For Ω � pa, bq for some �8  
a   b   8 the process tUpt, τqut¥τ possesses the pullback attractor in the phase

space L8pa, bq �
�

1�W 1,8
0 pa, bq

	
. The proof of this statement (can be found

in [15]) is very similar to the proof of Theorem 3.3. It makes use of the compact
embedding

H1
0 pa, bq ãÑãÑ Cpra, bsq,

see Theorem 1.10.
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Chapter 4

A biofilm model with
chemotaxis and
volume-filling effects

4.1 The Model

In this chapter, we consider the following model:

BtM � dM∇ �

�
Mα1

p1�Mqα2
∇M



� dc∇ � pMγ1p1�Mqγ2∇ρq � fpM,ρq,

(4.1)

Btρ � dρ∆ρ� gpM,ρq (4.2)

satisfied in p0,8q � Ω, with the boundary conditions

M � 0, ρ � 1 in p0,8q � BΩ (4.3)

and the initial conditions

Mp0, �q �M0, ρp0, �q � ρ0 in Ω, (4.4)

where Ω � Rd pd � 1, 2, 3q is a nonempty smooth bounded domain, and the
given constants dM , dc, dρ, α1, α2, γ1, γ2 satisfy

dM , dc, dρ ¡ 0, (4.5)

α1 ¡ 0, α2 P p0, 1q, (4.6)

and a ’balance’ condition

γ1 ¥
α1

2
� 1, γ2 ¥ �

α2

2
� 1. (4.7)
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We assume that the given functions f, g : r0, 1s2 Ñ R for all M,ρ P r0, 1s satisfy
the conditions

BMfpM,ρq � F1 �
M

α1
2

p1�Mq
α2
2

BMf2pM,ρq, Bρf P L
8
�
p0, 1q2

�
, (4.8)

gpM,ρq � G0 �G1ρ� g2pρqM (4.9)

for such constants

F1, G0, G1 P R (4.10)

and functions

f2 PW
1,8

�
p0, 1q2

�
, g2 PW

1,8p0, 1q (4.11)

that the conditions

fp0, ρq ¥ 0, fp1, ρq ¤ 0 for all ρ P r0, 1s, (4.12)

gpM, 0q ¤ 0, gpM, 1q ¥ 0 for all M P r0, 1s (4.13)

are fulfilled. For the initial data we assume that

M0 P L
8pΩq, ρ0 PW

1,8pΩq, 0 ¤M0, ρ0 ¤ 1 almost everywhere in Ω. (4.14)

Remark 4.1 (On assumptions).

(1) It is clear from (4.6)-(4.7) that γ1 ¡ 1, γ2 ¡
1
2 should necessarily hold.

(2) The function f has, due to the assumption (4.8), the form

fpM,ρq � fp0, ρq � F1M �

» M
0

M
α1
2

p1�Mq
α2
2

BMf2pM,ρq dM.

With α2 P p0, 1q and Bρf, BMf2 P L
8
�
p0, 1q2

�
it follows that f P Cpr0, 1s2q.

(3) Since g is linear in M , (4.13) is equivalent to the following set of conditions:

G0 ¤ 0, G0 � g2p0q ¤ 0, G0 �G1 ¥ 0, G0 �G1 � g2p1q ¥ 0.

Example 4.1. The primary example of functions f and g satisfying the above
assumptions is: a logistic-like growth function for the biomass growth

fpM,ρq � k3M
a�1p1�Mqb

Mρ

ρ� k2
(4.15)

and a Monod’s function for the nutrient uptake

gpM,ρq � k1
Mρ

ρ� k2
, (4.16)

so that the growth rate is proportional to the consumption rate g. The given
constants in (4.15)-(4.16) should satisfy

k1, k2, k3 ¡ 0,

a ¥
α1

2
� 1, b ¥ �

α2

2
� 1. (4.17)
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The system (4.1)-(4.4) can be used to model biofilm formation with chemo-
taxis and volume filling effects present. A volume filling effect has been included
into the biofilm prototype proposed in [32] and analyzed in [9, 14], as well as
into several chemotaxis models for free-swimming populations, for which we re-
fer the reader to [25] and to a survey of corresponding mathematical results [33].
It implies the existence of an upper threshold value for the biofilm density. This
maximal density value corresponds to the tight packing state. In our modeling,
we assume the threshold density to be normalized to 1.

As in the system (2.1)-(2.4), the unknown quantities in (4.1)-(4.4) are the
biomass density M and the concentration ρ of the chemoattractant. Thus,
M � 1 indicates the regions where the biomass is tightly packed. Note that,
as in the case of free-swimming populations, the variable M can be also seen
as volume fraction of the biomass in a two-phase modeling: a chemoattractant
diffuses through a two-component mixture of biomass and fluid (water, for ex-
ample) surrounding it (so that the fluid has the volume fraction 1�M).

The model (4.1)-(4.4) arises from an attempt to bring a volume filling effect
into the model (2.1)-(2.4) for a biofilm with chemotaxis. The key difference
between the new model and the original one lies in the possibility contained
in equation (4.1) to control separately the asymptotics of the biomass motil-
ity coefficients at the both ends of density range. While in equation (4.1) one
exponent α is responsible for the limiting behavior of the diffusion coefficient
both as M tends to 0 and as it tends to infinity, in equation (4.1), we have two
different independent exponents, α1 and α2, that regulate the limiting behavior
at 0 and at 1, respectively. The same holds for the chemotaxis coefficient, where
we now have two different independent exponents, γ1 and γ2, in place of γ, as
in (4.1). This offers a wider parameter range. Still, for the same reasons as for
the model (2.1)-(2.4), the exponents α1 and γ1 (α2 and γ2) cannot be chosen
independently of each other. In place of the ’balance’ condition eqrefbc1, a new
’balance’ condition (4.7) is imposed to obtain a well-posed model. Note that
in this work we deal only with the case where α2 P p0, 1q, which, in Aronson’s
classification [3], corresponds to the so called fast diffusion, whereas the biofilm
prototype from [9] includes the super-diffusion singularity instead.

The shape of the reaction term f is forced by analysis, especially, by the
uniqueness proof. It differs considerably from the standard growth kinetics
terms used in most biofilm studies, the sink/source density (net number of par-
ticles created/lost per unit time and per unit volume) being dependent on the
biomass density M . In the important case fp0, �q � 0, F2 � 0, there is, due
to α1 ¡ 0, a delay in the biomass growth wherever M is close to 0, especially
during the early stages of biofilm formation. This corresponds to a ‘lag-phase’
coursed by the physiological adaptation which is needed during the onset of the
biofilm growth. In the regions where M is close to 1, particularly in a mature
biofilm, the slowing in the production of the new cells (observe that α2   1
holds) agrees well with the volume filling effect.

In this work, we consider weak solutions of the system (4.1)-(4.4). The
definition is as follows:
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Definition 4.1 (Weak solution). A pair of functions pM,ρq : r0,8q � Ω Ñ
r0, 1s2 is said to be a weak solution of (4.1)-(4.4) for M0 P L8pΩq, ρ0 P
W 1,8pΩq, 0 ¤M0, ρ0 ¤ 1 almost everywhere in Ω, if for all T ¡ 0

(i)
³M
0

Mα1

p1�Mqα2
dM P L2

�
p0, T q;H1

0 pΩq
�
, BtM P L2

�
p0, T q;H�1pΩq

�
;

(ii) ρ� 1 P Cpp0, T q;W 1,8
0 pΩqq;

(iii) pM,ρq satisfies the equation (4.1) in L2
�
p0, T q;H�1pΩq

�
, Mp0q � M0 in

Cpp0, T q; pL2pΩq, σpL2pΩq, pL2pΩqq1qqq-sense and

ρptq � 1 �etdρ∆pρ0 � 1q �

» t
0

ept�sqdρ∆gpMpsq, ρpsqq ds

in W 1,8
0 pΩq.

Remark 4.2 (Initial condition). From M P L8pp0, T q;L2pΩqq and BtM P
L2

�
p0, T q;H�1pΩq

�
, it follows with (1.5) for p0 � 2, E � L2pΩq and E1 �

H�1pΩq and the compact embedding (see Theorem 1.10) L2pΩq
d

ãÑãÑ H�1pΩq
that M P Cpp0, T q; pL2pΩq, σpL2pΩq, pL2pΩqq1qqq. Therefore, the initial condi-
tion for M makes sense.

In the present work, we study the well-posedness and the long-time behavior
of the system (4.1)-(4.4). We prove the following result on well-posedness:

Theorem 4.1 (Well-posedness). Let the given constants dM , dc, dρ, α1, α2, γ1, γ2

satisfy the assumptions (4.5)-(4.7) and the functions f and g satisfy the con-
ditions (4.8)-(4.13). Then the initial boundary-value problem (4.1)-(4.4) is
uniquely solvable (in the sense of Definition 4.1) for each pair of starting values
pM0, ρ0q that satisfies the condition (4.14).

The proof of Theorem 4.1 is divided between Sections 4.2 (global existence) and
4.3 (uniqueness).

In Section 4.4, we address the long-time behavior for our system and es-
tablish the existence of the global attractor. This chapter concludes with an
illustration in Section 4.5 of a possible model behavior in numerical simulations.

Remark 4.3 (Notation).

(1) To shorten the notation, we introduce the functions

DpMq :�
Mα1

p1�Mqα2
,

EpMq :�

» M
0

DpMq dM.
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(2) For the sake of convenience, we assume throughout this chapter that the
constants Bi (appear below) for all indices i are only dependent upon the
parameters of the problem, that is, upon the constants dM , dc, dρ, α1, α2,
γ1, γ2, the functions f and g and the domain Ω, and not upon the initial
data M0, ρ0 or the time variable t, or, unless stated otherwise, any other
parameters.

4.2 Existence of solutions

Proof of Theorem 4.1 (Existence). The main idea of the existence proof is to
choose a suitable regularization sequence for the problem (4.1)-(4.4) and then
apply the compactness method (see [21]).

Let us consider for arbitrary T ¡ 0, n P N a non-degenerate approximation
of the problem (4.1)-(4.4), the system

BtMn �dM∆

�» Mn

0

�
M � 1

n

�α1

p1�Mq
α2

dM

�
� dc∇ � pMγ1

n p1�Mnq
γ2 ∇ρnq

� f pMn, ρnq , (4.18)

Btρn �dρ∆ρn � gpMn, ρnq (4.19)

satisfied in p0, T q �Ω, with the same initial and boundary conditions as before:

Mn � 0, ρn � 1 in p0, T q � BΩ, (4.20)

Mnp�, 0q �M0, ρnp�, 0q � ρ0 in Ω. (4.21)

To shorten the notation, we introduce for ε P r0, 1s the functions

DεpMq :�
pM � εq

α1

p1�Mqα2
,

EεpMq :�

» M
0

DpMq dM,

so that D0 � D, E0 � E . For any fixed ε P r0, 1s the function Dε is clearly
monotonically increasing and

DεpMq ¥Mα1 for all M P r0, 1q. (4.22)

The function Eε is due to assumptions on α1 and α2 continuous and bounded,
and it holds that

EεpMq ¤p1� εqα1

» M
0

dM

p1�Mqα2

¤
p1� εqα1

1� α2

�
1� p1�Mq1�α2

�
¤

2α1

1� α2
�: B1. (4.23)
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We are now prepared to derive several a priori estimates that we then use to
show the global existence of solutions of the problem (4.1)-(4.4). Observe first
that for every n P N the approximating equation (4.18) is clearly quasilinear
and non-degenerate and that the equation (4.19) is even semi-linear. Therefore,
we can conclude from the assumptions (4.7) on the constants, the assumptions
(4.8)-(4.13) on the functions f and g, the assumptions (4.14) on the initial data
and the boundary conditions (4.20) that

0 ¤Mn, ρn ¤ 1 almost everywhere in r0, T s � Ω for all n P N. (4.24)

The proof can be done using the standard techniques, see, for example, [11].
As a consequence of the a priory uniform boundedness, the general theory

from [20] may be extended to the non-degenerate problem (4.18)-(4.21) (for an
alternative treatment via maximal regularity see [2]). It follows that this initial-
boundary value problem possesses a unique classical solution.

Further, using the properties (1.9)-(1.10) we then get

||∇ρnptq||8 �

����etdρ∆∇ρ0 �

» t
0

∇ept�sqdρ∆pgpMnpsq, ρnpsqqq ds

����
¤e�βdρt||∇ρ0||8 �A

�
3

4
, 7


» t
0

e�βdρpt�sqpt� sq�
3
4 ||g||8|Ω| ds

¤e�βdρt||∇ρ0||8 �R8

� : B2p||∇ρ0||8q, (4.25)

where the constant R8 depends only on the parameters of the problem.
Next, we multiply the equation (4.18) by E 1

n
pMnq and integrate over p0, T q�

Ω:

» T
0

�
BtMnpsq, E 1

n
pMnpsqq

	
ds

�dM

» T
0

�
∇ �

�
∇E 1

n
pMnpsqq

	
, E 1

n
pMnpsqq

	
ds

� dc

» T
0

�
∇ � pMγ1

n psq p1�Mnpsqq
γ2 ∇ρnpsqq , E 1

n
pMnpsqq

	
ds

�

» T
0

�
f pMnpsq, ρnpsqq , E 1

n
pMnpsqq

	
ds. (4.26)
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Integrating (4.26) by parts, we obtain that�» MnpT q

Mnp0q

E 1
n
pMq dM, 1

�

�� dM

» T
0

���∇E 1
n
pMnpsqq

���2

ds

� dc

» T
0

�
∇E 1

n
pMnpsqq,M

γ1
n psq p1�Mnpsqq

γ2 ∇ρnpsq
	
ds

�

» T
0

�
f pMnpsq, ρnpsqq , E 1

n
pMnpsqq

	
ds

The Cauchy-Schwarz inequality, together with (4.23), (4.24) and (4.25), yields

dM
2

» T
0

���∇E 1
n
pMnpsqq

���2

ds�

�» MnpT q

0

E 1
n
pMq dM, 1

�

¤

�» Mnp0q

0

E 1
n
pMq dM, 1

�
�

d2
c

2dM

» T
0

}Mγ1
n psq p1�Mnpsqq

γ2 ∇ρn}
2
ds.

�

» T
0

�
f pMn, ρnq , E 1

n
pMnpsqq

	
ds

¤

�
B1 �

�
d2
c

2dM
�B1||f ||8



TB2p||∇ρ0||8q



|Ω|

� : B3p||∇ρ0||8q. (4.27)

By using (4.27) as well, we can now estimate the right side of the equation (4.18)
in L2pp0, T q, H�1pΩqq uniformly in n P N. We obtain» T

0

}BtMn}
2
H�1pΩq ds ¤ B4p||∇ρ0||8q, (4.28)

where the constant B4p||∇ρ0||8q depends only on ||∇ρ0||8 and the parameters
of the problem. Further, (4.27) and (4.22) yield» T

0

��Mα1�1
n psq

��2

H1
0 pΩq

ds ¤pα1 � 1q2
» T

0

���D 1
n
pMnpsqq∇Mn

���2

ds

�pα1 � 1q2
» T

0

���∇E 1
n
pMnpsqq

���2

ds

¤pα1 � 1q2B4p||∇ρ0||8q. (4.29)

Moreover, applying Lemma 1.1 for q � α1�1 and (for example) s � 1
2 together

with the Sobolev embedding theorem yields

||Mn||
2pα1�1q

W
1

2pα1�1q
,2pα1�1q

pΩq
¤N2pα1�1qpα1 � 1q

��Mα1�1
n

��2

W
1
2
,2pΩq

¤B5

��Mα1�1
n

��2

H1
0 pΩq

. (4.30)
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Integrating (4.30) over p0, T q and combining with (4.27)-(4.29) we conclude that

||Mn||
W 1,p2pα1�1q,2q

�
p0,T q;W

1
2pα1�1q

,2pα1�1q
pΩq,H�1pΩq


 ¤ B6p||∇ρ0||8q,

where the constant B6p||∇ρ0||8q depends only on ||∇ρ0||8 and the parameters

of the problem. The spaces E1 :� W
1

2pα1�1q ,2pα1�1q
pΩq, E :� L2pα1�1qpΩq,

E0 :� H�1pΩq satisfy the assumptions of Theorem 1.12, consequently, it holds
(set p1 :� 2pα1 � 1q, p0 :� 2) that

W 1,p2pα1�1q,2q
�
p0, T q;W

1
2pα1�1q ,2pα1�1q

pΩq, H�1pΩq
	

ãÑãÑ L2pα1�1qpp0, T q � Ωq,

and the set tMn| n P Nu is thus compact in the space L2pα1�1qpp0, T q � Ωq.
For the second component, we now use the (4.25) to estimate the right side

of the equation (4.19) in L8pp0, T q,W�1,8pΩqq and get

||ρn||W 1,p8,8qpp0,T q;W 1,8
0 pΩq,W�1,8pΩqq ¤ B7p||∇ρ0||8q.

The spaces E1 :�W 1,8
0 pΩq, E :� L8pΩq, E0 :�W�1,8pΩq satisfy the assump-

tions of Theorem 1.12, consequently, it holds (set p1 :� p0 :� 8) that

W 1,p8,8q
�
p0, T q;W 1,8

0 pΩq,W�1,8pΩq
	

ãÑãÑ Cpr0, T s, L8pΩqq.

The set tρn| n P Nu is thus compact in the space Cpr0, T s, L8pΩqq, hence also
in the larger space L8pp0, T q � Ωq.

By combining these results, we obtain there is a subsequence pnmq such that

Mnm Ñ
mÑ8

M in L2pα1�1qpp0, T q � Ωq,

ρnm Ñ
mÑ8

ρ in L8pp0, T q � Ωq,

∇ρnm Ñ
mÑ8

∇ρ in L8w��pp0, T q � Ωq. (4.31)

for some pM,ρq P L2pα1�1qpp0, T q �Ωq �L8pp0, T q �Ωq, and for a subsequence
(not relabeled) the convergence is almost everywhere in the cylinder p0, T q�Ω.

It remains to check that pM,ρq is indeed a solution of the original problem
(4.1)-(4.4) in the sense of distributions. Recall first that f, g P W 1,8pp0, 1q2q,
so that, with the second part of the Sobolev embedding theorem, we have that
f, g P Cpr0, 1s2q.
With the continuity argument and the dominant convergence theorem, we ob-
tain that

f pMnm , ρnmq Ñ
mÑ8

fpM,ρq in L2pp0, T q � Ωq,

gpMnm , ρnmq Ñ
mÑ8

gpM,ρq in L2pp0, T q � Ωq,

E 1
nm
pMnmq Ñ

mÑ8
EpMq in L2pp0, T q � Ωq,

Mγ1
n p1�Mnq

γ2 Ñ
mÑ8

Mγ1 p1�Mq
γ2 almost everywhere in pτ, T q � Ω.

(4.32)
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Moreover, combining (4.32) with (4.31), we obtain with the dominant conver-
gence theorem that

Mγ1
n p1�Mnq

γ2 ∇ρnm Ñ
mÑ8

Mγ1 p1�Mq
γ2 ∇ρ in L8w��pp0, T q � Ωq.

Since the convergence in the distributional sense is weaker than the Lp con-
vergence for any p P r1,8s or than the L8w�� convergence and since differential
operators are continuous in the space of distributions, it follows with the conver-
gences we derived in this subsection that pM,ρq solves the problem (4.1)-(4.4)
in the sense of distributions. The existence part of Theorem 4.1 is thus proven.

l

Remark 4.4. It follows from the proof that the solution pM,ρq enjoys the
estimates

0 ¤M,ρ ¤ 1 almost everywhere in r0, T s � Ω,

EpM,ρq ¤ B1 almost everywhere in r0, T s � Ω,» T
0

}∇EpMpsqq}
2
ds ¤ B8p||∇ρ0||8q (4.33)

and the dissipative estimate

||∇ρptq||8 ¤e�βdρt||∇ρ0||8 �R8. (4.34)

4.3 Uniqueness of solutions

Proof of Theorem 4.1 (Uniqueness). Let us assume that the problem (4.1)-
(4.4) has two different solutions (in the sense of Definition 4.1) pM1, ρ1q, pM2, ρ2q
with the same initial data:

M1p0q �M2p0q, ρ1p0q � ρ2p0q.

Since both pM1, ρ1q and pM2, ρ2q are solutions of the equation (4.1), we get

BtpM1 �M2q �dM∆

» M2

M1

Mα1

p1�Mqα2
dM

� dc∇ � pMγ1
1 p1�M1q

γ2 ∇ρ1 �Mγ1
2 p1�M2q

γ2 ∇ρ2q

� pfpM1, ρ1q � fpM2, ρ2qq . (4.35)

We want to estimate the difference M1 �M2, and we choose to do so in the
|| � ||H�1pΩq norm on an interval r0, ts for arbitrary t ¡ 0. For this purpose, we
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multiply (4.35) by p�∆q�1pM1 �M2q and integrate over Ω:

�
BtpM1 �M2q, p�∆q�1pM1 �M2q

�
�dM

�
∆

» M2

M1

Mα1

p1�Mqα2
dM, p�∆q�1pM1 �M2q

�
� dc

�
�∇ � pMγ1

1 p1�M1q
γ2 ∇ρ1 �Mγ1

2 p1�M2q
γ2 ∇ρ2q , p�∆q�1pM1 �M2q

�
�
�
fpM1, ρ1q � fpM2, ρ2q, p�∆q�1pM1 �M2q

�
. (4.36)

On the left side of the resulting equation, there appears:

�
BtpM1 �M2q, p�∆q�1pM1 �M2q

�
�

1

2

d

dt

��∇��pM1 �M2q
��2
. (4.37)

Suitable estimates for the terms on the right side of (4.36) are required now.
The operator ∆ is self-adjoint, therefore, using the Cauchy-Schwarz inequality,
we obtain for the first summand that

�
∆

» M2

M1

Mα1

p1�Mqα2
dM, p�∆q�1pM1 �M2q

�

��

�» M2

M1

Mα1

p1�Mqα2
dM,

» M2

M1

1 dM

�

¤�

�����
» M2

M1

M
α1
2

p1�Mq
α2
2

dM

�����
2

. (4.38)

The assumptions (4.7) and M1 P r0, 1s together with the property (1.6) and the
Cauchy-Schwarz inequality lead for the second summand to

����∇ � pMγ1
1 p1�M1q

γ2 ∇ρ1 �Mγ1
2 p1�M2q

γ2 ∇ρ2q , p�∆q�1pM1 �M2q
���

�
���Mγ1

1 p1�M1q
γ2 ∇ρ1 �Mγ1

2 p1�M2q
γ2 ∇ρ2,∇��pM1 �M2q

���
¤

�����
�» M2

M1

d

dM
pMγ1 p1�Mq

γ2q dM∇ρ2,∇��pM1 �M2q

������
�
���pMγ1

1 p1�M1q
γ2 ∇pρ1 � ρ2qq ,∇��pM1 �M2q

���
¤

�
max tγ1, γ2u ||∇ρ2||8

�����
» M2

M1

M
α1
2

p1�Mq
α2
2

dM

������ }ρ1 � ρ2}H1
0 pΩq

�
�

�
��∇��pM1 �M2q

�� . (4.39)
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Further, we use assumptions on f and the Cauchy-Schwarz inequality and get

fpM1, ρ1q � fpM2, ρ2q �pfpM1, ρ2q � fpM2, ρ2qq � pfpM1, ρ1q � fpM1, ρ2qq

�

» M2

M1

pBMfpM,ρ2q � F1q dM � F1pM1 �M2q

�

» ρ2
ρ1

BρfpM1, ρq dρ

�

» M2

M1

M
α1
2

p1�Mq
α2
2

BMf2pM,ρq dM � F1pM1 �M2q

�

» ρ2
ρ1

BρfpM1, ρq dρ,

so that with the Poincaré, the Cauchy-Schwarz and the Young inequalities it
follows that���fpM1, ρ1q � fpM2, ρ2q, p�∆q�1pM1 �M2q

���
¤

�����
�» M2

M1

M
α1
2

p1�Mq
α2
2

BMf2pM,ρq dM, p�∆q�1pM1 �M2q

������� F1

��∇��pM1 �M2q
��2

�

�����» ρ2
ρ1

BρfpM1, ρq dρ, p�∆q�1pM1 �M2q


����
¤

�
||BMf2||8

�����
» M2

M1

M
α1
2

p1�Mq
α2
2

dM

������ ||Bρf ||8||ρ1 � ρ2||

���p�∆q�1pM1 �M2q
��

� F1

��∇��pM1 �M2q
��2

¤

�
P pΩ, 2q||BMf2||8

�����
» M2

M1

M
α1
2

p1�Mq
α2
2

dM

������ P pΩ, 2q||Bρf ||8||ρ1 � ρ2||H1pΩq � F1

�
�

�
��∇��pM1 �M2q

��2
. (4.40)

Observe that it holds��∇��pM1 �M2q
�� � }M1 �M2}H�1pΩq (4.41)

due to the property (1.8). By combining (4.37)-(4.40), using (4.41), the Poincaré
and the Cauchy-Schwarz inequalities, we can conclude from (4.36) that

1

2

d

dt
}M1 �M2}

2
H�1pΩq ¤

dρ
2
||ρ1 � ρ2||

2
H1

0 pΩq
�B1pt, Rq }M1 �M2}

2
H�1pΩq .

(4.42)

The constant B1pt, Rq depends only on t, R and the parameters of the problem.
Now we turn to equation (4.2). Both pM1, ρ1q and pM2, ρ2q solve it, hence

Btpρ1 � ρ2q �dρ∆pρ1 � ρ2q � pgpM1, ρ1q � gpM2, ρ2qq

�dρ∆pρ1 � ρ2q �G1pρ1 � ρ2q � pg2pρ1q � g2pρ2qqM1

� g2pρ2qpM1 �M2q. (4.43)
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As usual, we multiply (4.43) by ρ1 � ρ2 and integrate over Ω

1

2

d

dt
}ρ1 � ρ2}

2
�dρ p∆pρ1 � ρ2q, ρ1 � ρ2q �G1 }ρ1 � ρ2}

2

� pM1pg2pρ1q � g2pρ2qq, ρ1 � ρ2q

� pM1 �M2, g2pρ2qpρ1 � ρ2qq

� � dρ }∇pρ1 � ρ2q}
2
�G1 }ρ1 � ρ2}

2

� pM1pg2pρ1q � g2pρ2qq, ρ1 � ρ2q

�
�
∇��pM1 �M2q, g2pρ2q∇pρ1 � ρ2q

�
�

�
∇��pM1 �M2q, pρ1 � ρ2q

d

dρ
g2pρ2q∇ρ2



¤�

dρ
2
}ρ1 � ρ2}

2
H1

0 pΩq
�B2pt, Rq||ρ1 � ρ2||

2

�B2pt, Rq }M1 �M2}
2
H�1pΩq , (4.44)

while we again made use of the property (4.41), the Cauchy-Schwarz and the
Young inequalities, and the constant B2pt, Rq depends only on t, R and the
parameters of the problem.

Finally, by adding (4.42) and (4.44) together, we obtain that

1

2

d

dt

�
}M1 �M2}

2
H�1pΩq � ||ρ1 � ρ2||

2
	

¤B3pt, Rq
�
}M1 �M2}

2
H�1pΩq � ||ρ1 � ρ2||

2
	
. (4.45)

Integrating (4.45), we conclude that

}M1ptq �M2ptq}
2
H�1pΩq � ||ρ1ptq � ρ2ptq||

2

¤B4pt, Rq
�
}M1p0q �M2p0q}

2
H�1pΩq � ||ρ1p0q � ρ2p0q||

2
	

(4.46)

for some constant B4pt, Rq ¡ 0 depending only on the parameters of the prob-
lem and on R and t. This proves uniqueness for the problem (4.1)-(4.4) since
the solutions pM1, ρ1q, pM2, ρ2q coincide at t � 0. The uniqueness part of The-
orem 4.1 is thus proven.

l

4.4 Global attractor

The aim of this section is to apply the general theory from Section 1.3 to the
problem (4.1)-(4.4). We prove
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Theorem 4.2. Let the given constants dM , dc, dρ, α1, α2, γ1, γ2 satisfy the as-
sumptions (4.5)-(4.7) and let the functions f and g satisfy the conditions (4.8)-
(4.13). Then for all p P r1,8s the solutions of the problem (4.1)-(4.4) can be
described by a semigroup tSptqut¥0 that acts on the set

B1 :�
!
pM,ρq P L8pΩq �

�
1�W 1,8

0 pΩq
	
| 0 ¤M,ρ ¤ 1 almost everywhere in Ω

)
equipped with the metric defined by

m
ppq
� ppM1, ρ1q, pM2, ρ2qq :�

$&%max
!
d
p8q
� pM1,M2q, ||ρ1 � ρ2||W 1,8

0 pΩq

)
for p � 8,�

||M1 �M2||
p
p � ||ρ1 � ρ2||

p

W 1,8
0 pΩq

	 1
p

for p ¥ 1.

Here d
p8q
� is the metric defined in (1.2) for R :� 1.

The semigroup tSptqut¥0 possesses the global attractor in
�
B1,m

ppq
�

	
that is

independent of the concrete choice of p.

Remark 4.5 (Rate of convergence to the attractor). The rate of convergence
to the global attractor A may, of course, depend on p and can be arbitrarily
slow.

Proof of Theorem 4.2. We showed in Theorem 4.1 that the problem (4.1)-(4.4),
if considered in B1, is well-posed: for each pair of initial values pM0, ρ0q P B1

there exists a unique solution pM,ρq in terms of Definition 4.1.
We define the solving semigroup tSptqut¥0 of the problem (4.1)-(4.4) on the
phase space B1 as follows: for all t ¥ 0 let

Sptq : B1 Ñ B1,

SptqpM0, ρ0q :� pMptq, ρptqq for all pM0, ρ0q P B1.

Let us now prove the existence of the global attractor for the semigroup tSptqut¥0.
Observe first that the projection of the semigroup domain B1 on the M

component is the unit ball in L8pΩq. Due to Theorem 1.7(4), it is sufficient,
therefore, to show the existence of a compact invariant set that attracts B1 in

the metric m
p2q
� . This set is then, necessarily, the global attractor in the metric

m
ppq
� for all p P r1,8s.

As a closed subset of a complete metric space
�
L2pΩq �

�
1�W 1,8

0 pΩq
	
,m

p2q
�

	
,

the space
�
B1,m

p2q
�

	
is complete.

Let us assume for a moment that tSptqut¥0 is a closed semigroup and that

it possesses a compact absorbing set in
�
B1,m

p2q
�

	
. All assumptions of Theo-

rem 1.13 are then fulfilled since we are dealing with a closed semigroup (the semi-

group tSptqut¥0) in a complete metric space (the space
�
B1,m

p2q
�

	
), and this

semigroup possesses a compact absorbing set. Theorem 1.13 yields the existence
of the global attractor, and, as we showed above, it is also the global attractor
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for the semigroup tSptqut¥0 in each of the spaces
�
B1,m

ppq
�

	
for p P r1,8s.

In order to finish the proof, it remains to check the closedness of tSptqut¥0

and the existence of a compact absorbing set.
Let us first prove the closedness of the semigroup operators. In the proof of

Theorem 4.1 we encountered the local Lipschitz-type continuity property (4.46)
for the solutions of (4.1)-(4.4). It can be translated into the following form:���Sptq�M p1q

0 , ρ
p1q
0

	
� Sptq

�
M

p2q
0 , ρ

p2q
0

	���
H�1pΩq�L2pΩq

¤Lpt, Rq
����M p1q

0 , ρ
p1q
0

	
�
�
M

p2q
0 , ρ

p2q
0

	���
H�1pΩq�L2pΩq

(4.47)

for
�
M

p1q
0 , ρ

p1q
0

	
,
�
M

p2q
0 , ρ

p2q
0

	
P B1, R :� max t||∇ρ1||8, ||∇ρ2||8u. The con-

stant Lpt, Rq depends only on t, R and the parameters of the problem.
Recall that due to the embedding theorems for Sobolev spaces, we have

L2pΩq �W 1,8pΩqãÑH�1pΩq � L2pΩq. (4.48)

Let
!�
M

pnq
0 , ρ

pnq
0

	)
nPN

� B1 be a sequence of initial data convergent in L2pΩq��
1�W 1,8

0 pΩq
	

to some pM0, ρ0q. Due to the continuous embedding (4.48),

this sequence converges in H�1pΩq � L2pΩq to the same limit. From the prop-

erty (4.47) we deduce that the sequence
!
Sptq

�
M

pnq
0 , ρ

pnq
0

	)
nPN

converges to

Sptq pM0, ρ0q in H�1pΩq � L2pΩq for all t ¥ 0.

Let us further assume that for some t ¥ 0 the sequence
!
Sptq

�
M

pnq
0 , ρ

pnq
0

	)
nPN

is convergent in L2pΩq �
�

1�W 1,8
0 pΩq

	
. Again, due to the continuity of the

embedding (4.48), the limit is the same. This proves closedness.
Next, the dissipative estimate (4.34) provides the existence of a ball B� cen-

tered at p0, 1q of a radius R� :� p1� 4R2
8q

1
2 in the m

p2q
� metric, which absorbs

all bounded sets of B1. If we prove that Sp1qB� is a relatively compact set,
then cl�

B1,m
p2q
�

	pSp1qB�q is a compact absorbing set for the semigroup.

To prove this, we multiply the equation (4.1) by pα1 � 1qBtM
α1�1 and inte-

grate (formally) over Ω:

pα1 � 1q
�
BtM, BtM

α1�1
�
�

�
∇ �

�
1

p1�Mqα2
∇Mα1�1



, BtM

α1�1



�
pα1 � 1q2

α1

2 � 1

�
M

α1
2 f̂pM,ρq, BtM

α1
2 �1

	
.

Here:

f̂pM,ρq � � dc∇ � pMγ1p1�Mqγ2∇ρq � fpM,ρq.
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After integrating by parts, we obtain that�
α1 � 1
α1

2 � 1


2 ���BtM α1
2 �1

���2

��
1

2
Bt

���� 1

p1�Mq
α2
2

∇Mα1�1

����2

�
pα1 � 1q2

α1

2 � 1

�
M

α1
2 f̂pM,ρq, BtM

α1
2 �1

	
.

With the Cauchy-Schwarz inequality we have�
α1 � 1
α1

2 � 1


2 ���BtM α1
2 �1

���2

¤� Bt

���� 1

p1�Mq
α2
2

∇Mα1�1

����2

� pα1 � 1q2
���M α1

2 f̂pM,ρqBtM
α1
2 �1

���2

.

so that

Bt

���� 1

p1�Mq
α2
2

∇Mα1�1

����2

¤pα1 � 1q2
���M α1

2 f̂pM,ρq
���2

.

It follows with multiplying by t that

Bt

�
t

���� 1

p1�Mq
α2
2

∇Mα1�1

����2
�
¤

���� 1

p1�Mq
α2
2

∇Mα1�1

����2

� tpα1 � 1q2
���M α1

2 f̂pM,ρq
���2

.

Integrating over p0, 1q, we obtain that���� 1

p1�Mp1qq
α2
2

∇Mα1�1p1q

����2

¤

» 1

0

���� 1

p1�Mpsqq
α2
2

∇Mα1�1psq

����2

� spα1 � 1q2
���M α1

2 psqf̂pMpsq, ρpsqq
���2

ds.

(4.49)

Let us estimate the integral on the right side of (4.49). Due to the assumption
(4.7) on γ1 and γ2 we have���M α1

2 f̂pM,ρq
��� ¤|γ1p1�Mq � γ2M |Mγ1�

α1
2 �1 p1�Mq

γ2�1
|∇M | }∇ρ}8

�Mγ1�
α1
2 p1�Mq

γ2 |∆ρ| �M
α1
2 |fpM,ρq|

¤pγ1 � γ2q
1

p1�Mq
α2
2

��∇Mα1�1
�� }∇ρ}8 � |∆ρ|2 � ||f ||8

(4.50)

and

1

p1�Mq
α2
2

��∇Mα1�1
��2 ¤ 1

p1�Mqα2

��∇Mα1�1
��2 � pα� 1q |∇EpMq|

2
. (4.51)



84 A biofilm model with chemotaxis and volume-filling effects

Further, due to the classical energy estimate, we have for all pM0, ρ0q P B�» 1

0

}∆ρpsq}
2
ds ¤}∇ρ0}

2
�

» 1

0

}gpMpsq, ρpsqq ds}
2

¤}∇ρ0}
2
� ||g||8. (4.52)

By combining (4.50)-(4.52) with (4.49) and (4.33), we get the following smooth-
ing estimate for M : ��|Mp1q|α1�1

��
H1

0 pΩq
¤ B1 pR�q , (4.53)

the constant B1 pR�q depends only on R� and the parameters of the problem.
Finally, using Lemma 1.1 for q � α1 � 1, we obtain from (4.53) that

}Mp1q}
W

1
α1�1

�θ,2
pΩq

¤ BM pR�q (4.54)

for an arbitrary θ P p0, 1q, the constant BM pR�q depends only on R�, θ and the
parameters of the problem. We choose θ :� 1

2 in (4.54), so that

}Mp1q}
W

1
2
,2pΩq

¤ BM pR�q . (4.55)

Next, we deal with equation (4.2). Since

p�∆q
11
12 ρp1q � p�∆q

11
12 e∆ρ0

�

» 1

0

p�∆q
11
12 ep1�ωq∆gpMpωq, ρpωqq dω

we conclude with the properties (1.9)-(1.10) that, due to assumptions on g,���p�∆q
11
12 ρp1q

���
6
¤

����p�∆q
11
12 e∆ρ0 �

» 1

0

p�∆q
11
12 ep1�sq∆gpMpsq, ρpsqq ds

����
6

¤A

�
5

12
, 6



}∇ρ0}6 �A

�
11

12
, 6


» 1

0

p1� sq�
11
12 dω

¤BρpR�q, (4.56)

and the constant BρpR�q depends only on R� and the parameters of the prob-
lem.
With the smoothing properties (4.55)-(4.56), the compact embeddings (see The-
orem 1.10)

W
1

2pα�1q ,2pα�1qpΩq ãÑãÑ L2pΩq,

W
11
6 ,6pΩq ãÑãÑW 1,8pΩq,

we obtain that Sp1q maps the set B� into a relative compact subset of L2pΩq ��
1�W 1,8

0 pΩq
	

. Theorem 4.2 is thus proven.

l
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Remark 4.6 (Global attractor in 1D-case). In case of one spatial dimension,
there is no need to pass to a weaker topology. For Ω � pa, bq for some �8  
a   b   8 the semigroup tSptqut¥0 possesses the global attractor in the phase

space L8pa, bq �
�

1�W 1,8
0 pa, bq

	
. The proof of this statement is very similar

to the proof of Theorem 4.2. It makes use of the compact embedding

H1
0 pa, bq ãÑãÑ Cpra, bsq,

see Theorem 1.10. We leave the details to the reader.

4.5 Numerical simulations

We conclude this chapter with a presentation of numerical simulation results
that illustrate possible model behavior. The simulation was performed by Her-
mann Eberl. For computational convenience, we restrict ourselves to the case
of one spatial dimension. Our goal is to investigate the potential effect of chemo-
taxis in early stages of biofilm colony formation, for a generic biofilm rather than
a particular biological system. We will do this by comparing the simulations of
the biofilm-chemotaxis model with the simulations of the corresponding biofilm
model without chemotaxis.

Table 4.1: Model parameters used in the simulations

parameter symbol value unit
system length L 5 � 10�4 m
biomass motility coefficient (diffusion) dM varied m2d�1

biomass motility coefficient (chemotaxis) dc varied m2d�1

substrate diffusion coefficient dρ 104 m2d�1

maximum growth rate k1 6 d�1

half saturation concentration k2 0.2 –
maximum substrate uptake rate k3 95238.1 d�1

biomass diffusion exponent α1 4 –
biomass diffusion exponent α2 0.5 –
chemotaxis exponent γ1 3 –
chemotaxis exponent γ2 3 –
logistic growth exponent a 3 –
logistic growth exponent b 0.8 –

The simulations are done in a domain of length L � 0.5mm. For the reaction
part, we use the functions from Example 4.1. The parameters α1, α2, γ1, γ2 that
describe the spatial movement of the biomass and the growth parameters a, b
are chosen in accordance with (4.6) and (4.17), respectively, so that to ensure
the existence of a unique solution of the problem (4.1)-(4.4). The remaining
growth kinetics parameters and the chemotaxis diffusion coefficient are taken
from Benchmark Problem 1 of the International Water Association’s Taskgroup
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on Biofilm Modeling [32], where the maximum uptake rate k3 in (4.16) is com-
pounded from the maximum specific growth rate k1, a yield coefficient and the
maximum cell density. The half saturation concentration k2 is chosen clearly
smaller 1, i.e. we consider the case of biomass growth that is not initially limited
by the chemoattractant. These parameters are kept constant for all simulations.
The biomass motility parameters dM and dc are varied to investigate different
scenarios. All model parameters are collected in Table 4.1.

The numerical method that we use in these simulations is a straightforward
adaptation of the finite difference scheme [7] for the density-dependent diffusion-
reaction biofilm model. This method is able to deal with both the degeneracy
and the singularity in the biomass diffusion equation with sufficient accuracy,
while requiring only moderate spatial refinement [7, 23]; in our simulations we
use 200 grid points. In the numerical treatment, the additional chemotaxis
terms in (4.2) are treated as convective terms with density dependent convec-
tive velocity.

The system which we simulate corresponds to a standard biofilm growth
scenario. We use the initial data

M0pxq �

"
m0 for L

2 � r ¤ x ¤ L
2 � r,

0 else
for r � 0.05L, m0 � 0.1 (4.57)

ρ0 � 1. (4.58)

The region where M � 0 is the aqueous phase, the region with M ¡ 0 is the
actual biofilm. Due to growth, both regions change in time. It is easy to verify
that these symmetric initial data will lead to a symmetric solution, which is
unique due to Theorem 4.1. This solution will have Mx � ρx � 0 for x � L{2.
Hence, the solution of the problem restricted to the interval 0   x   L{2 can
be interpreted as the solution of the system with a biofilm originally in a small
pocket on an impermeable substratum at L{2. As we present and discuss the
solution, we, therefore, restrict ourselves to the interval 0   x   L{2.

The nutrients are added into the system at x � 0, due to (4.3), i.e. at
the boundary on the opposite side of the substratum. Thus chemotaxis is ex-
pected to lead to a faster expansion of the biofilm toward the nutrient source.
A particularity of the Dirichlet boundary conditions is that, by virtue of the
maximum principle, a higher amount of biomass leads to steeper chemoattrac-
tant gradients at the boundary, i.e. to improved environmental conditions. In
Figure 4.1 we plot the solution pM,ρq of (4.1)-(4.3), (4.57)-(4.58) for biomass
motility coefficients dM � dc � 10�12 as surface data over the x-t-plane. In the
beginning, biomass growth is very slow and appears to be almost stationary.
After some time, biomass density in the biofilm pocket starts increasing with-
out the biofilm region expanding. Initially, the biomass density increases faster
in the outer layer of the biofilm (close to the biofilm/aqueous phase interface)
than in the inner layer (at the substratum), due to higher nutrient availability
and no pressure to diffuse. Once the biomass density reaches values close to
unity, the biofilm region starts expanding and the biomass density attains a
value M � 1 in the interior of the biofilm. The chemoattractant concentration
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Figure 4.1: Biomass density Mpt, xq and chemoattractant concentration ρ as a
solution of (4.1)-(4.3), (4.57)-(4.58) with parameters according to Table 4.1 and
biomass motility coefficients dM � dc � 10�10.

field coincides with the biomass density. It attains its minimum at the substra-
tum. The more biomass there is in the system the lower is the chemoattractant
concentration. The chemoattractant gradient at the boundary x � 0 increases
as biomass grows.

In order to assess the contribution of chemotaxis to biomass movement, rel-
ative to diffusion, we plot in Figure 4.2 the biomass densities for various choices
of the biomass motility coefficients. Together with the solution of our original
model (4.2) with dM ¡ 0, dc ¡ 0 we plot the solution of the corresponding
biofilm model without chemotaxis-term (dM ¡ 0, dc � 0), i.e. the solution of

BtM � dM∇ �

�
Mα1

p1�Mqα2
∇M



� fpM,ρq.

In the left column of Figure 4.2 we show simulations of the model with the
same biomass motility coefficient for both processes, diffusion and chemotaxis,
i.e. dM � dc. These parameters range here from 10�12 to 10�8. This coefficient
controls how fast the biofilm region expands and to which maximum biomass
density it grows. For dM � 10�12, expansion is very slow and the biomass
density reaches values close to M � 1 inside the biofilm (Figure 4.2(a)). For
dM � 10�10 the biofilm expands faster, still growing close to maximum cell
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density (Figure 4.2(c)). For the largest value, the biofilm expands quickly, but
does not exceed values of M � 0.6 Figure 4.2(e)). This choice of parameters
is therefore considered too big to be realistic. In all three cases with the same
biomass motility coefficient for both spatial processes, the solution of the model
with and without chemotaxis are essentially indistinguishable, indicating that
chemotaxis does not contribute noteworthy to biofilm formation in such cases.

In the right column of Figure 4.2, we use different biomass motility coeffi-
cients dM , dc. In all cases we choose the chemotaxis coefficient to be higher than
the diffusive one, dM ! dc. We notice distinct differences in the biomass densi-
ties of the models with and without chemotaxis, in the cases of Figure 4.2(b) and
Figure 4.2(d), where dc � 10�8 but not so in Figure 4.2(f), where dc � 10�10. In
the case of Figure 4.2(b), with dM � 10�12 and dc � 10�8 chemotaxis leads to a
very different biofilm structure than obtained by the model without chemotaxis.
The chemotaxis effect pulls biomass toward the nutrient source and leads to a
biofilm that is much denser close to the biofilm/water interface than in the inner
layers close to the substratum. This could be understood as the 1D analogy of
mushroom type biofilm colonies in 2D/3D. In the case of Figure 4.2(d), with
dM � 10�10 and dc � 10�8, on the other hand the differences are not as pro-
nounced. Interestingly, it appears that the biofilm without chemotaxis grows
bigger and denser in this case than the one with chemotaxis. The chemoat-
tractant concentration ρ in all cases is similar as shown in Figure 4.2. These
simulations were repeated several times with different exponents of the chemo-
taxis model and different initial data (smaller initial inoculum or non-constant
biomass distribution in the inoculum). In all cases the results were qualitatively
the same (data not shown). This suggests that in early stages chemotaxis will
only affect biofilm structure quantitatively if the biomass motility coefficient is
substantially larger than the biomass motility coefficient due to diffusive biomass
spreading. It is reasonable to assume that this parameter depends on the mate-
rial properties of the particular biofilm (species and environment), in particular
of the EPS, in which cells are embedded, but also parameters that describe the
ability of the cells to move, e.g., by flagellar motion or twitching motility.
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Figure 4.2: Comparison of the chemotaxis-diffusion biofilm model with the
diffusion-only biofilm model. Plotted are biomass densities M for various
biomass motility coefficients. The units in x direction are grid point spacings
∆x � L{200, the units in t direction are output time steps ∆T � 2d.
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Appendix A

An auxiliary Lemma

Consider first the differential inequality

d

dt
y ¤ �ωyy � dyy

ζy

assuming that y ¥ 1, ζy P p0, 1q, dy P L
1
bpRq so that with some computation the

estimate

pyptqq1�ζy ¤ pypτqq1�ζye�ωyp1�ζyqt � p1� ζyq

» t
τ

e�ωyp1�ζyqpt�sqdypsq ds

follows.

Lemma A.1. Let z1, z2, z3 : rτ,�8q Ñ r0,�8q be such functions that

z1ptq ¤ ψ1pz1pτqqe
�ω1t �D1,

z2ptq ¤ ψ2pz2pτqqe
�ω2t �D2,

z3ptq ¤ z3pτqe
�ω3t �

» t
τ

e�ω3pt�sqd3pt, sqz1psq ds, (A.1)

z1pτq, z2pτq, z3pτq ¥ 1,

for some constants ω1, ω2, ω3 ¡ 0 and D1, D2 ¥ 1, some non-decreasing func-
tions ψ1, ψ2 : r1,�8q Ñ r1,�8q and some d3 P L8pR�

τ , L
1
bpR�

τ qq. Then it
holds that

(1) pz1 � z2qptq ¤ pψ1 � ψ2qppz1 � z2qpτqqe
�mintω1,ω2ut �D1 �D2.

(2) z1z2ptq ¤ 3D1D2ψ1ψ2pz1z2pτqqe
�mintω1,ω2ut �D1D2.

(3) zσ1 ptq ¤ max
 
1, 2σ�1

(
pψσ1 pz1pτqqe

�σω1t �Dσ
1 q @σ ¡ 0.
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(4) For ω1 � ω3

z3ptq ¤

�
ψ1pz1pτqq

1

1� e�|ω1�ω3|
e�mintω1,ω3ut �D1

1

1� e�ω3



� ||d3||L8pR�τ ,L1

bpR
�
τ qq

� z3pτqe
�ω3t (A.2)

and for ω3 � ω1

z3ptq ¤

�
ψ1pz1pτqq rts e

�ω1t �D1
1

1� e�ω1



||d3||L8pR�τ ,L1

bpR
�
τ qq

� z3pτqe
�ω1t.

For ω1   ω3, we also have

z3ptq ¤z3pτqe
�ω3t � z1ptq

» t
τ

e�pω3�ω1qpt�sqd3pt, sq ds. (A.3)

Proof. We only check the property (A.2). Since» t
τ

e�ω3pt�sqe�ω1sd3pt, sq ds

�e�mintω1,ω3ut

# ³t
τ
e�|ω1�ω3|pt�sqd3pt, sq ds if ω1   ω3³t

τ
e�|ω1�ω3|sd3pt, sq ds if ω1 ¡ ω3

¤
1

1� e�|ω1�ω3|
e�mintω1,ω3ut||d3||L8pR�τ ,L1

bpR
�
τ qq
,

we conclude from (A.1) that» t
τ

e�ω3pt�sqd3pt, sqz1psq ds

¤

» t
τ

e�ω3pt�sqd3pt, sq
�
ψ1pz1psqqe

�ω1pt�sq �D1

	
ds

¤

�
ψ1pz1pτqq

1

1� e�|ω1�ω3|
e�mintω1,ω3ut �D1

1

1� e�ω3



� ||d3||L8pR�τ ,L1

bpR
�
τ qq
,

and (A.2) follows.

l



Bibliography

[1] R.A. Adams, Sobolev spaces, Academic press, New York (1975).

[2] H. Amann, Linear and Quasilinear Parabolic Problems, Volume 1, Abstract
Linear Theory, Birkhäuser, Basel (1995).
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73, 279-333 (1994).

[7] H.J. Eberl, L. Demaret, A finite difference scheme for a degenerated diffu-
sion equation arising in microbial ecology, Electronic Journal of Differential
Equations, CS15, 77-95 (2007).

[8] M.A. Efendiev, Attractors of Degenerate Parabolic Type Equations, to ap-
pear in AMS.

[9] M.A. Efendiev, Evolution Equations Arising in the Modelling of Life Sci-
ences, International Series of Numerical Mathematics, 163, Birkhäuser
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