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Waseda University Tokyo / Japan
(schriftliche Beurteilung)

Die Dissertation wurde am 28. Januar 2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 30. Mai 2013 angenommen.





Abstract

Mitochondrial swelling has huge impact
to multicellular organisms since it triggers
apoptosis, the programmed cell death. In
this thesis we present a new mathematical
approach to model this phenomenon. As
a novelty it includes spatial effects, which
are of great importance for the in vivo pro-
cess. Our model considers three mitochon-
drial subpopulations varying in the degree
of swelling. The evolution of these groups
is dependent on the present calcium con-
centration and is described by a system of
ODEs, whereas the calcium propagation is
modeled by a reaction-diffusion equation
taking into account spatial effects. Here we
study both the case of non-degenerate and
degenerate diffusion and analyze the de-
rived model with respect to existence and
long-time behavior of solutions.
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Zusammenfassung

Das Schwellen von Mitochondrien hat
weitreichende Auswirkungen, denn es
führt zum programmierten Zelltod durch
Apoptose. In dieser Arbeit stellen wir
ein neues Modell vor, welches dieses
Phänomen mathematisch beschreibt. Es
bezieht erstmals räumliche Effekte mit
ein. Unser Modell betrachtet drei Sub-
populationen von Mitochondrien, die sich
hinsichtlich ihres Schwellgrades unter-
scheiden. Deren Verhalten ist abhängig
von der Calcium-Konzentration und wird
durch ein ODE-System beschrieben. Die
räumliche Calcium-Ausbreitung hinge-
gen wird mit einer Reaktions-Diffusions-
Gleichung modelliert. Hierbei untersuchen
wir sowohl nicht-degenerierte als auch de-
generierte Diffusion und analysieren das
aufgestellte Modell hinsichtliche Existenz
und Langzeitverhalten von Lösungen.
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cooperation with the Institute of Molecular Toxicology and Pharmacology and accompa-
nied me through all the years with great encouragement. Here I would like to thank our
collaboration partners Dr. Hans Zischka and Sabine Schulz for providing the experimental
data and patiently explaining the biological background to me. I really enjoyed being a
part of this interdisciplinary team.

I am very grateful that I had the opportunity to spend six months at the Université Paris
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Preface

In this thesis a new mathematical model of mitochondrial swelling is presented. It consists
of one reaction diffusion equation coupled with a system of three ordinary differential
equations. This model is of the form

∂tu = d1A(u) + d2g(u)N2

∂tN1 = −f(u)N1

∂tN2 = f(u)N1 − g(u)N2

∂tN3 = g(u)N2

with general boundary conditions

a(x)u+ b(x)∂νu = h(x) on ∂Ω .

As a novelty among mitochondria models it takes into account spatial effects by means
of the diffusion operator A. Here we consider both the non-degenerate diffusion case

A(u) = ∆u

and the degenerate case

A(u) = ∆(|u|m−2u)

with m > 2. In order to handle the more challenging case of degenerate diffusion the
theory of maximal monotone operators is introduced.

The present approach is capable of modeling the in vitro as well as the in vivo case.
They vary with respect to the initial and boundary conditions dependent on the choice
of the domain to be either the test tube or the whole cell.

In the following chapters we will point out why our model as one of few biomathematical
models is challenging enough to yield interesting mathematical results and at the same
time simple enough to be of great importance for the understanding of the biological
process.
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In CHAPTER 1 we provide all necessary information about the underlying biological
mechanism. Here we present the structure of mitochondria, the process causing mitochon-
drial swelling and its role in cell death. We introduce experimental data, which measure
swelling by means of changing light scattering values.

CHAPTER 2 then deals with the mathematical modeling of this phenomenon. It
presents existing models and shows the necessity of including spatial effects. Based on
the biological background we introduce the model variables and their evolution in time.
Here u describes the calcium concentration and by N1, N2, N3 we denote three mito-
chondrial subpopulations. We develop the new coupled ODE-PDE model and show the
biological meaning of different boundary conditions.

The mathematical analysis of the derived model starts in CHAPTER 3. Here we con-
sider the non-degenerate case with standard diffusion. At first we take a look at the in
vitro model with homogeneous Neumann boundary conditions. For this setting we are
able to obtain a complete classification of the swelling process and show the robustness
of the model. For the in vivo case with Robin boundary conditions and the homogeneous
Dirichlet problem we can derive similar results regarding existence and convergence of
solutions. However, many concepts of the analysis do not apply anymore and hence we
can not reproduce all results from the Neumann case. Numerical simulations confirm the
mathematical results and explain the experimental data.

The final CHAPTER 4 studies the case of degenerate diffusion with homogeneous
Dirichlet boundary conditions. To this end we introduce the theory of maximal monotone
operators, by use of which we can prove the existence of a unique solution. This is done by
defining the diffusion operator to be the subdifferential of a convex, lower semicontinuous
functional. In order to apply this theory, we have to choose another phase space, for which
we can obtain similar convergence results as for the non-degenerate model. However, in
analogy to the standard diffusion case with Dirichlet boundary conditions we are not able
to achieve a complete classification of the whole swelling process.



CHAPTER 1

Biological background

The subject of this thesis is the mathematical modeling of a biological process, the swelling
of mitochondria as it is graphically depicted in Figure 1.1. Mitochondria are often termed
the cell’s powerhouse due to their main function as energy supplier for almost all eukaryotic
cells. In this thesis we will become acquainted with another process that is highly regulated
by mitochondria, namely cell death.

Figure 1.1 – The process of mitochondrial swelling: Extension of the inner membrane until it
hits the outer membrane

The mitochondrion

The number of mitochondria in a cell varies widely related to the specific energy con-
sumption, from one single organelle up to several thousands in muscle cells or neurons.
For the experiments mostly liver mitochondria are used, which come up to 22 % of the cell
volume [1]. It is known that mitochondria within cells are not distributed randomly but
are divided into three main regions. This feature will be interesting for the in vivo model
to be described in Section 2.3. There, Figure 2.5 shows the organization of an eukaryotic
cell, restricted to the cell compartments which are of interest for our purpose.

Structure

Figure 1.2 depicts the mitochondrial structure, which will now be described in detail. The
function of all occurring mitochondrial components will be explained, where the colors
corresponds to the those from the diagram.
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4 Chapter 1. Biological background

I One significant attribute of mitochondria is the enclosing double membrane, namely
the inner (IM) and outer membrane (OM). A specific characteristic of the IM is
the peculiar way of folded appearance, which compartmentalizes it into numerous
cristae. Since most of the important chemical reactions of mitochondria take place
at its surface area, in doing so the potential working surface can be maximized. To
that effect, mitochondria with higher energy demand exhibit more cristae and vice
versa. In liver mitochondria, for instance, the surface of the IM exceeds that of the
OM five times over [1].
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Figure 1.2 – Schematic description of the mitochondrial structure

As can be seen in the picture, the two membranes build up two compartments.
These are the intermembrane space (IMS) and the matrix, each one with specialized
functions to be presented below. The major difference between the mitochondrial
membranes are different permeabilities.

I The OM contains several protein channels, which allow for the exchange of molecules
and ions up to a certain size [1]. According to this, the concentration of small
molecules like ions and sugar in the IMS is nearly identical to that of the cytoplasm,
whereas large molecules like proteins occur in much less amounts [34].

I By contrast, the IM is nearly impermeable to almost all molecules and so special
membrane transporters are needed. These transporters include the calcium uni-
porter and several other ion exchange fluxes, see e.g. [43]. As it is written in [33],
the calcium uniporter plays a major role in intracellular Ca2+ signaling. Mitochon-
drial calcium uptake has controversial impacts on the mitochondrial as well as the
cellular function. These are described in [16] and include control of the energy pro-
duction rate or initiation of cell death. The latter, fatal property will be the topic
of this thesis.
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I Furthermore, mitochondria possess the ability to store a huge amount of calcium
inside the matrix, the so-called Ca2+ buffer [39]. This calcium storage turns out to
be of great importance for the mathematical modeling as it has some accelerating
effect to mitochondrial swelling.

I I For the maintenance of cellular respiration it is crucial to create an electrochemical
as well as concentration gradient at the IM by pumping protons from the matrix to
the IMS [1]. Due to the impermeability of the IM, this leads to a proton gradient
which is termed ∆Ψ. The power of this gradient is utilized by the reflux of H+ into
the matrix through turbine-like channels. This flux produces energy which is then
spent for the synthesis of ATP.

I During this process, electrons are transported by the small protein Cytochrome c
(Cyt c). However, it also has an entirely different function. Under normal conditions,
Cyt c can not pass the OM. But if the OM is damaged or perforated by some reason,
Cyt c is released from the IMS to the cytoplasm. This event is critical in cell death,
since now apoptosis is inevitably triggered [25].

I As it was first mentioned in [27], there is also another way ions and solutes can
enter the impermeable IM. Under pathological conditions, for example high Ca2+

concentrations, it happens that a special pore in the IM, the so-called permeability
transition pore (PTP) opens. The PTP is formed connecting both membranes and
has this name since pore opening makes the IM permeable. Later we will learn more
about this pore and the serious consequences of its opening.

Apoptosis

Apoptosis is one of the most important types of programmed cell death. This phenomenon,
first mentioned in a publication from 1972, can be described as a kind of “suicide program”
of single cells, which have become ectopic or meaningless to the organism. Additionally,
mutated or damaged cells use this mechanism to“sacrifice” themselves for the collective
good and prevent further deteriorations [23].
The metamorphose of pollywogs to frogs or the degeneration of skins between fingers and
toes while human embryonic development are famous examples of this sort of cell death.

The following information are taken from [23] and [34]. Apoptosis plays a crucial role
in the maintenance of tissue homeostasis. At this, balance between an increasing cell
population by proliferation and its decrease by cell death is required. The following data
give an impression of the process dimension: without tissue homeostatis, an 80-year-old
person would end up with two tons of bone marrow and lymph nodes together with a 16
km long gut. Apoptosis can be exogenously induced but it is enforced by the affected cell
itself as a part of its metabolism.

In contrast to another fundamental cell death mechanism, namely necrosis, apoptosis
underlies strong control procedures and assures the intactness of neighboring tissues. As
opposed to it, necrosis effects cell swelling with subsequent destruction of the plasma
membrane. This leads to local inflammations because released cytoplasm and organelles
have to be removed by macrophages.
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Pathways

Apoptosis can be elicited by several molecular pathways. The most essential ones, referred
to as extrinsic and intrinsic pathways are displayed in Figure 1.3 and will be presented
here. These information can be found in [8], [34].

Caspase 3 
activation 

Apoptosome 

death 
receptor 

DISC complex 

Figure 1.3 – Extrinsic and intrinsic pathways to caspase activation culminating in apoptosis

Extrinsic pathway: On the right hand side a schematical description of the extrinsic,
also known as death receptor pathway, is given. At this juncture, the activation of
death receptors at the cell surface assembles the death-inducing signaling complex
(DISC). This complex in turn mobilizes several enzymes termed caspases which in
the end cleave the effector caspase 3. Once these enzymes are formed, apoptosis is
inexorably triggered.

Intrinsic pathway: In this work we focus on the intrinsic, also called mitochondrial path-
way. Here apoptosis results from intracellular events, where mitochondria play an
important role as can be seen on the left hand side of Figure 1.3. Mitochondrial
stress is induced by several intracellular signals including high increase of the Ca2+

concentration within the cytoplasm, reactive oxygen species, DNA damage, toxins or
chemotherapy. It affects the mitochondrial membrane permeability and finally leads
to the release of, among others, Cyt c, a common proapoptotic factor. A detailed
description of the permeabilization process will be given in the next paragraph.
Cyt c binds to a special gene and thus elicits the formation of the so-called apop-
tosome complex . Due to its structure and effect, this complex is often termed the
“wheel of death”. The lethal function of the apoptosome is characterized by activa-
tion of caspase 3. At this stage the extrinsic and intrinsic pathways coincide and in
both cases cell death by apoptosis is irreversibly initiated.

Mechanism: The activation of caspase 3, also called execution pathway, results in con-
trolled cell destruction including cell shrinkage and DNA fragmentation. In the end
the cell is fragmented into small apoptotic bodies, which in turn are digested by
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phagocytes. This ensures the clean and tidy removal of apoptotic cells from tissues
and with that avoids the problems occurring at necrotic cell death, for instance
inflammation.

Mitochondrial permeability transition (MPT)

In the past, mitochondria were only perceived as the cell’s powerhouse without any further
role in the cell mechanism. Therefore it was very astonishing when it came to light that
they also play a decisive role in the control of cell death. In the following we will point
out the underlying mechanistic details of this important detection in conformity with [34].

As it was described before, the IM is usually nearly impermeable to all ions. However,
this impermeability is not an enduring attribute. Under certain conditions the membrane
can be permeabilized to solutes up to a certain size. This IM permeabilization is trig-
gered by multiple factors, one of those being the topic of this thesis, the Ca2+-induced
mitochondrial permeability transition (MPT).

Permeability transition pore (PTP)

High loads of Ca2+ within the cytoplasm effectuate the permanent opening of the PTP
introduced in the description of mitochondria. Consequently, due to the concentration
gradient between IMS and matrix, positively charged ions like Ca2+ and H+ are forced
into the IMS. This equalization in charge and concentration immediately causes a collapse
of the existing membrane potential ∆Ψ. In turn this leads to an increase of the inner
membrane permeability and with it to an osmotically driven influx of water and other
solutes [12], [28].
As a natural result, the matrix starts to swell and the IM extends further and further until
it hits the OM [7]. Due to the surface area of the IM largely exceeding that of the OM,
the outer one gets even more permeable and in the end it ruptures. These occurrences
can be visualized via an electron microscope as it is shown in Figure 1.4.

Figure 1.4 – Electron microscopy picture of unswollen (left) and swollen (right) mitochondria,
picture taken at the Institute of Toxicology, Helmholtz Zentrum München

This OM permeabilization denotes a point of no return, since it enables the irreversible
release of soluble proteins from the IMS. This is a critical event in cell death, because
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several proapoptotic factor including Cyt c are set free in this process. That means, once
the OM of a sufficient amount of mitochondria is damaged, apoptosis is triggered and the
cell will end up in death.

As it is e.g. shown in [41], the rate of PTP activation is dependent on the actual Ca2+ load
with higher calcium concentrations leading to faster pore opening. Also the experimental
data (see Figure 1.5) clearly reveal a positive dependence of the swelling mechanism to
increasing concentrations.

Ca2+ release

At the beginning we introduced the ability of mitochondria to store calcium inside the
matrix. These Ca2+ buffers control the calcium homeostasis of the cell and contain large
amounts of bounded calcium. If MPT is induced, the total matrix content of calcium is
released containing the original buffer amount and the additionally assimilated Ca2+ [34].

For that reason, the remaining intact mitochondria are now confronted with an even higher
load of Ca2+. In fact, this leads to even faster pore opening and thus to an acceleration of
the whole process. This mechanism is often termed “positive feedback” and, as it turns
out, is of major importance for the mathematical modeling.

Pharmaceutical background

Apoptosis is also of great interest for the pathophysiological research. It is recognized
that this kind of programmed cell death contributes to many diseases in two oppositional
ways, which are described in detail in [23], [34]. On the one hand too much apoptosis is
involved at (neuro-)degenerative diseases, Parkinson, Alzheimer and AIDS, whereas on
the other hand cancer and hemolytic anemia can be associated with too little of it.

Hence, it is not surprising that one of the most promising pharmacological strategies on
cancer research is the therapeutic control of MPT. Triggering mitochondrial membrane
permeabilization on cancer cells could be an excellent possibility to initiate apoptosis or
at least overcome chemotherapeutic resistancies.
In contrast to initiating apoptosis on virulent cells, pharmacological interventions can also
be used to inhibit cell death as it is done, for instance, at ischemia/reperfusion injury. In
this context, the main goal is to stabilize mitochondrial membranes to protect them from
permeabilization.

Experimental procedure

For reasons further elaborated above, MPT induces osmotical swelling of the mitochon-
drial matrix and with that causes an alteration of the molecular composition. This modi-
fication can be quantified by the resulting change of the optical density. We work closely
together with the research group of Hans Zischka from the Institute of Molecular Toxi-
cology and Pharmacology at the Helmholtz Zentrum München. They performed all the
experiments and provided the light scattering data.

Taking a look at Figure 1.4, it becomes obvious that a population of intact mitochondria
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is a very heterogenous one. Light is deflected at the highly folded inner membranes to
a great extent, which means we measure high light scattering values. Opposed to it, the
more mitochondria are swollen, the more homogenous the population gets, which in turn
leads to lower values. Like that mitochondrial swelling is measured indirectly by decreas-
ing light scattering values. In agreement with findings reported in [3] and [41], we have
determined this relation to be linear by use of free flow electrophoresis, a technique to
partition mitochondria that have undergone MPT [58].

The effects of MPT are measured by use of an absorbance reader, that yields optical den-
sity data according to the curves displayed in Figure 1.5. Here the swelling curves depict
the mean value of four independent light scattering measurements. For that, a microplate
with 4×24 repositories is filled with identical mitochondrial amounts each. Afterwards
these are treated with 24 substances, for example different Ca2+ concentrations, in order
to obtain four independent measurements of similar mixtures. The absorbance reader then
quantifies the corresponding light scattering data at a wavelength of 540 nm.

Figure 1.5 – Experimental data of mitochondrial swelling represented by the decrease of optical
density

These experimental data show that the more Ca2+ is added, the faster the whole swelling
proceeds. Starting from time ranges of about one hour, at very high concentrations swelling
is completed after less than 10 minutes. The swelling curve appearance is similar for each
Ca2+ concentration, with an initial lag phase followed by a steep decrease of optical den-
sity. This initial phase of moderate decay can be explained by the duration of calcium
uptake and the time it needs until the permeabilization process is initiated.
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However, there is a one minute time lag between the substance addition on all repositories
and the start of the measurement. Indeed, one has to keep in mind that at high Ca2+

concentrations the swelling proceeds very fast and thus one missing minute implies a high
loss of information. This fact poses problems for the mathematical modeling and with
that, the faster swelling proceeds the worse the approximation of mitochondrial incidents
gets.

The required mitochondria are extracted from rat liver, isolated from debris and nuclei by
multiple centrifugations and resuspended in an isolation buffer. The intactness of the or-
ganelles prepared like this is tested by measuring the respiration activity in form of oxygen
consumption. On intact mitochondria, osmotic swelling is induced using the “standard
swelling buffer” consisting of 10 mM MOPS-Tris, pH 7.4, 200 mM sucrose, 5 mM succi-
nate, 1 mM Pi, 10 µM EGTA and 2 µM rotenone [58].

In our experiments, the common MPT inducer Ca2+ is used. As reported in [30] and
[42], there are many indicators that calcium plays a main role in several forms of apop-
tosis, even when MPT is initiated by other substances. This fact traces back to the huge
amount of stored calcium in the endoplasmic reticulum, which is then released and targets
the mitochondrial membrane permeability. Hence it is really important to obtain a deep
understanding of the calcium induced swelling mechanism.



CHAPTER 2

Mathematical modeling of mitochondrial
swelling

The process of mitochondrial swelling induced by MPT is known for more than 30 years.
However, many important issues concerning the MPT have still remained unanswered or
controversial. It is for instance a matter of continuous debate which components exactly
build up the PTP [5], [26]. For that reason mathematical modeling is of great importance.
It provides the possibility to verify and predict properties of the underlying biological
mechanism that possibly can not be obtained from the experiments directly.

2.1 Existing models

The following overview is adapted from our publication [22].

In order to improve the understanding of the kinetics and the complex interdependences
of the MPT process, modeling of the MPT pore function has only started recently with
two conceptually different approaches.

Microscale

One is mainly oriented on a detailed biochemical and biophysical description of mitochon-
drial molecular processes such as mitochondrial respiration or ion exchanges [43], [50]. For
each of these processes an equation is created, which are then combined in a system of
nonlinear ordinary differential equations including a number of variables, e.g. the amount
of Ca2+ inside the matrix, the pH-value or the membrane potential ∆Ψ.

The specific advantage of this approach is that it can reproduce the three states of the
pore: closed, flickering or permanently open. However, this model does not display the
time course of pore opening and lacks a major feature, the irreversible volume increase.
Hence it is inadequate for simulating mitochondrial swelling. Furthermore, this kind of
model only considers the processes for single mitochondria, whereas the experiments are
made with huge mitochondrial populations where the resulting data always represent a
mean value.

11



12 Chapter 2. Mathematical modeling of mitochondrial swelling

Macroscale

The other modeling approach aims to directly represent mitochondrial swelling. In con-
trast to the microscale models, it considers a population of mitochondria and studies the
total volume increase. It focuses on the basic kinetic processes and hence is mathemati-
cally and numerically comparatively easier to handle. It consists of only one [36] or two [3]
equations and concentrates on the increase of the number of swollen mitochondria, largely
ignoring the details of the underlying biochemical mechanism. Despite these simplifica-
tions, this approach can produce a more accurate picture of the mitochondrial volume
increase, which can be directly compared with the experimental data.

First order kinetics

To our knowledge, Massari [36] created the first model of this kind assuming first order
kinetics. A great advantage of this model is that it can be solved explicitly due to its
low mathematical complexity. A drawback of this model is that it fails to account for
the initial lag phase in mitochondrial swelling displayed in Figure 1.5. In agreement with
the observations mentioned in [3] and [36], we have observed that the Massari model
especially fits the end, the “tail” of the swelling curves, but misses their starting phase.
The reason for this is the assumption in the derivation of the model, according to which
the logarithm of the mitochondrial volume changes linearly during the swelling process.
In fact, we showed that for our experimental data this linearity only occurs once most of
the actual swelling is done.

Several steps of calcium uptake

Baranov et al. [3] then presented an elaborate model, which provides a good simulation
of the swelling on a longer time interval. It consists of two ODEs, one for the amount of
calcium and one for the ratio of swollen mitochondria. The authors take into consideration
that the Ca2+ uptake by mitochondria occurs in several steps with different reaction rates.
However, their simulations concentrate on the middle part of the experimental swelling
curves, and unfortunately do not explain the above mentioned “tail”. The change of the
parameters is tested and discussed in dependence of various inducers and inhibitors, but
the variation of parameter values with increasing amount of added Ca2+ was not examined.

Second order kinetics

Due to the above mentioned disadvantages of the existing models, our aim was to develop
a mathematical model that is capable of simulating the whole swelling process. The de-
rived model is based on the known major properties of the process, which allows us to
analyze the parameter values and obtain a classification of different swelling inducers or
mitochondria from different tissues. In the following we will briefly present this model,
which can be found in [22].

Based on experiments we assume that three subpopulations of mitochondria with different
corresponding volumes exist: unswollen, swelling and mitochondria that have completely
finished swelling. The first and the last group have constant mean volumes, depending
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only on their source and the medium. The mean volume of swelling mitochondria addi-
tionally depends on the characteristics of the swelling process, which could be influenced
e.g. by properties and concentrations of the added substances. Onset and time course of
swelling typically vary between mitochondria from different tissues, caused e.g. by differ-
ent sensitivities to inducers [4], [11].

The dynamical behavior of the total volume of the mitochondrial population, i.e. the
subsumed volume of all subpopulations corresponds to the light scattering data obtained
from the experiments. As noted before, we have determined the relation of volume in-
crease and optical density decrease to be linear.

Model description The model is based on the observation that mitochondria vary
concerning their sensitivity for swelling induction by stimuli like Ca2+ as it was described
by our collaboration partner in [58]. We model the time progress of swelling with two
equations for two variables X and V .

Here X(t) denotes the fraction of mitochondria that are swollen or have started swelling
at time t and hence 0 ≤ X(t) ≤ 1. V (t) describes the average volume of the mitochondrial
population at time t. Since we assume that all mitochondria are intact prior to calcium
addition, it holds X(0) = 0.
Let Xp be the ratio of swollen mitochondria after the whole swelling is done. During the
extraction and isolation from living mitochondria, it happens that some mitochondria are
destructed and hence can not react to swelling inducers. This is why it holds 0 < Xp ≤ 1
and in particular we assume Xp = 0.9 corresponding to 10 % loss in accordance with ex-
perimental observations. By V0 and Vp we denote the volume of unswollen and completely
swollen mitochondria, respectively. These parameter values are chosen in agreement with
[43] and we take V0 = 1.2 and Vp = 1.7 with unit [ml/mg protein].

The permeability transition process can be described via the initial value problem

d

dt
X(t) = (aX(t) + b) · (Xp −X(t))

X(0) = 0 ,

where a ≥ and b > 0 are biological parameters.

Here a describes the positive feedback induced by stored calcium additionally being re-
leased when mitochondria get completely swollen. The value a = 0 corresponds to the
case of no feedback and we are in the situation of the linear kinetics model described
earlier. However, it turns out that for an appropriate simulation of the whole swelling
process a is always positive, and thus we confirmed the existence of such an accelerating
effect mathematically. Parameter b is a background swelling coefficient, i.e. it represents
the swelling rate which is induced by the starting stimulus, in our case the addition of
Ca2+.

This second order ODE can be solved explicitly by separation of variables, which yields

X(t) = Xp ·
(

1− Xp + b
a

Xp + b
a
· exp

(
(aXp + b) · t

)) .
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This representation shows that X(t) is monotone increasing with one inflection point and
that limt→∞X(t) = Xp. The solution is also robust in the sense that the rate of conver-
gence is exponential.

We split up the mitochondrial volume V (t) into three different subpopulations V1, V2 and
V3. With the delay term τ > 0 denoting the average swelling time of a single mitochon-
drion, we have

V1(t) = (1−X(t)) · V0 (2.1)

Mitochondria that did not yet start swelling at time t

V2(t) = (X(t)−X(t− τ)) · kVp , 0 < k < 1 (2.2)

Mitochondria that have started swelling after t− τ and hence are not fully swollen

at time t; they only come up to a fixed percentage k of the final volume

V3(t) =X(t− τ) · Vp (2.3)

Mitochondria that finished swelling completely until t = t− τ

By setting

X(t) := 0 for t < 0 ,

we obtain the volume equation

V (t) = (1−X(t)) · V0 + (X(t)−X(t− τ)) · kVp +X(t− τ) · Vp . (2.4)

The parameter k determines the average swelling volume of mitochondria that are in the
swelling process. Naturally, k can not be arbitrarily close to 0, it has a lower bound de-
pending on the experimental setting.

Assuming the average volume to be kVp necessarily leads to a small break of the curve
at t = τ . This results from the fact that the right-hand side derivative of X(t) at t = 0
is limt→ 0+ X ′(t) = bXp and hence limt→ τ+ V ′(t) − limt→ τ− V

′(t) = bXpVp(1 − k) > 0.
Nevertheless, the size of the break tends to 0 as b→ 0. As most of our experiments showed
rather low and almost invariant values for b, we could largely eliminate the break.

Results

(i) Parameter estimation:

Figure 2.1 shows the experimental data and the rescaled simulated volume curves for
various Ca2+ concentrations. Here the four parameters a, b, τ and k are estimated
by means of least squares minimization using the Nelder-Mead simplex method [35].
Like that we found an accurate fit of the volume curves and the measurement for
the total time range of swelling. Moreover, the model parameters change in a well-
determined way, consistent with the corresponding Ca2+ concentrations.

As already mentioned, the background swelling parameter b shows no clear corre-
lation with the amount of added calcium over a wide range and always remains
around a value of 0.021. Therefore it is possible to fix this parameter in order to
reduce the complexity of minimization.
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Figure 2.1 – Swelling curves at different Ca2+ concentrations compared to the corresponding
numerical approximation assuming second order kinetics

The feedback parameter a is estimated to be always positive, i.e. we indeed have an
accelerating effect. Furthermore, by assuming second order kinetics, we are now able
to appropriately describe the initial lag phase as well as the “tail” of the swelling
curve. We determined a linear increase of a with increasing Ca2+ concentrations.

The average swelling time τ decreases exponentially with increasing amount of added
calcium. This behavior is probably governed by signal transfer processes: a high
amount of extra-mitochondrial Ca2+ results in a faster arrival of calcium ions inside
the mitochondria and hence in a faster initiation of MPT.

Parameter k represents the mean value of mitochondria during their swelling process.
Higher values of k thus indicate a faster volume increase in the beginning of the
swelling compared to the end, e.g. a less convex / more concave swelling curve of
single mitochondria. For our data, k was estimated to be around 0.75 with a very
slow exponential increase dependent on the added calcium concentration.

Example

time 

swelling  
degree 

0 

1 

0 t0 

k < 0.5 

k > 0.5 

1
In contrast to the population volume between V0

and Vp, for simplicity we take a look at single mi-
tochondria with a swelling degree between 0 and 1.
Then k = 0.5 corresponds to linear swelling curves.
Higher values of k lead to faster than linear swelling,
whereas lower values represent a slower volume in-
crease. We studied the influence of single swelling
curves to the total mitochondrial volume in [21].
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(ii) Curve progression:

The shape of the resulting volume curves highly depends on the choice of parameter
k as it represents the swelling progression of single mitochondria. As was shown for
example in [4] or [41], at high Ca2+ concentrations mitochondria may go through
a short phase of initial shrinking before the actual swelling begins, i.e. we have
a slow increase of optical density in the very beginning. Obviously, a value of k
with kVp < V0 means that mitochondria first shrink, thus loose from the initial
volume V0, and then a fast swelling follows to reach the final volume Vp. However,
kVp > V0 does not exclude initial shrinking, but indicates a domination of partly
swollen mitochondria over shrunk ones.

Furthermore, for very high values of k we observe a different curve progression,
which has a two-phase behavior consisting of two inflection points.

(iii) Other organs, different inducers:

We tested the model with mitochondria from other organs and also different inducers
of MPT. Figure 2.2 presents the comparison of the swelling curves obtained by
treating liver and kidney mitochondria with the same amount of Ca2+.
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Figure 2.2 – Different curve progressions of liver and kidney mitochondria exposed to the same
amount of Ca2+

It is obvious that the swelling curves have completely different curve progressions,
but nevertheless our model produces very accurate results. As mentioned before, the
two-phase behavior of the kidney swelling curve can be simulated by high values of
parameter k. The optimal parameter values are given as follows:

Liver mitochondria 50µM Ca2+ : τ = 16.28 a = 0.25 b = 0.012 k = 0.74
Kidney mitochondria 50µM Ca2+ : τ = 24.65 a = 0.25 b = 0.019 k = 0.89 .

Hence the difference results from differing values of τ and k, while the optimal
values for a and b are almost identical. This refers to varying Ca2+ uptake and
corresponding swelling times, but similar feedback mechanisms in the two organs.

We also made a comparison of liver mitochondria with swelling induced by 50 µM
Ca2+ and 20 µM Hg2+. This gave the following optimal parameters:

Liver mitochondria 20µM Hg2+ : τ = 16.54 a = 0.055 b = 0.041 k = 0.70 .
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Here all parameters in comparison with liver mitochondria exposed to Ca2+ are
almost the same, except for the feedback rate a. This definitely makes sense, since
we take a look at identical mitochondria, which by default should have the same
swelling time and speed. We learned that the mechanism of positive feedback is
connected to calcium and since we now induce swelling by mercury, this effect can
not appear to the same extent anymore. However, it is not completely zero, because
if a sufficiently high amount of mitochondria is swollen, then the stored Ca2+ itself
can induce swelling, even if it was induced by Hg2+.

In summary, the developed model of mitochondrial swelling is capable to describe the
experimental data accurately and over the whole time range. Furthermore it is not only
used to reproduce given data, but we are now also able to classify mitochondria and
inducers by the corresponding parameter values. If we think for example of the swelling
curves for liver and kidney mitochondria, then from the data itself it is not possible to
deduce what causes these different curve shapes. But by means of parameter τ we can
state that kidney mitochondria have a longer average swelling time.

2.2 Spatial effects

Coming from an ODE model, it is natural to think about the necessity of including spatial
effects by means of taking into account partial differential equations.

2.2.1 Motivation

In our previous work mentioned above, we introduced a model which is only focussed on
the time evolution. That means we do not take into account local effects and only work
with mean values over the whole domain. In other words, the three volume components
described in (2.1) - (2.3) can be written as weighted integrals

V1(t) = V0

∫
Ω

N1(x, t) dx

V2(t) = kVp

∫
Ω

N2(x, t) dx

V3(t) = Vp

∫
Ω

N3(x, t) dx

where N1, N2 and N3 denote the density of unswollen, swelling and completely swollen
mitochondria. The evolution of these densities depends on the local Ca2+ concentration,
which is denoted by u(x, t). The added amount of calcium as inducer of mitochondrial
swelling is hence given by the initial data u0(x).

Remark
Here the question appears how a density N(x) of mitochondria on the domain Ω is defined.
Mitochondria are a discrete quantity, which has to be translated into a continuous density.
Here we present the easiest way to obtain such a density function:
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First we define a lattice Γ of points covering Ω. Then for every point xi ∈ Γ and fixed
radius ε > 0 we draw a circle Bε(xi) and count the number ni of mitochondria within this
circle. We set N(xi) = ni, then interpolation yields a continuous function N(x) for every
x ∈ Ω. In order to derive a density, we have to divide N by the size of Ω.

We assume we are given a test tube with purified mitochondria. If there were no spatial
effects, then it should make no difference how the same amount of calcium is added. That
is, as long as the integral

∫
Ω
u0(x) dx is equal, the resulting mitochondrial volume

V (t) = V1(t) + V2(t) + V3(t)

should be the same. Figure 2.3 depicts different possibilities to add the same Ca2+ amount.

Ca2+ 

(a) highly localized

Ca2+ 

(b) “normally distributed”

Ca2+ 

(c) uniformly distributed

Figure 2.3 – Addition of a fixed calcium amount in varying distribution

The following experiment reveals that different distributions indeed have an influence
to the volume outcome. Here three settings with the same total calcium amount are
considered:

(i) Volume ratio 1:4

The volume ratio of added Ca2+ compared to the volume of the total (unswollen)
mitochondrial population is 1:4, i.e. the calcium source is near to being uniformly
distributed. This setting is the standard setting for the experimental data displayed
in Figure 1.5.

(ii) Volume ratio 1:100 mixed

Here the calcium appears in a much more concentrated form, in order to obtain the
same calcium amount in a much smaller volume. After addition to the mitochondria
the whole content is mixed, which again leads to a fast calcium dispersion.

(iii) Volume ratio 1:100

Calcium is added in a high concentration with ratio 1:100, but this time no mixing
takes place. That means we are in the highly localized case.

The following Figure 2.4 shows the results of these experiments.
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Figure 2.4 – Experimental data resulting from different volume ratios of Ca2+ and mitochondria

Here it becomes obvious that the swelling curves and with that the volume increase func-
tion V (t) highly depend on the initial calcium distribution. Mixing the test tube content
of mitochondria and added calcium, leads to a faster dispersion of the initially highly
localized Ca2+ source and hence we soon arrive at the nearly uniformly distributed case.
This explains why the blue and the green curve show almost the same progression.

However, if we do not mix and wait until calcium is distributed by diffusion, the resulting
red curve shows a completely different shape. In the beginning the swelling proceeds faster
due to locally very high calcium concentrations, but at the same time several mitochon-
dria remain untreated. Hence, in contrast to the other cases, it takes some time until all
of them are reached, which explains the slower second phase of swelling.

With that the necessity of taking into account spatial effects is motivated and in the
following we will focus on this topic. That means we are now interested in the local
behavior of the densities N1(x, t), N2(x, t) and N3(x, t) in dependence on the calcium
concentration u(x, t) instead of only taking a look at the mean values of them.

In order to develop a mathematical model, we have to consider two spatial effects that
directly influence the process of mitochondrial swelling:

On the one hand the extent of mitochondrial damage due to calcium is highly dependent
on the position of the particular mitochondrion. If the mitochondrion is located near to
the Ca2+ source, it is exposed to a higher dose compared to mitochondria residing further
away and consequently it will be damaged to a higher degree. By diffusion, the locally
high calcium dose is diminished and the remaining mitochondria are confronted with a
lower concentration.

On the other hand, at a high amount of swollen mitochondria the effect of the positive
feedback gets relevant and here the residual mitochondria are confronted with a higher
calcium load. Due to the positive feedback mechanism and the natural diffusion, we have
some kind of spreading calcium wave e.g. reported in [29], which however is neglected
in the existing models. Experiments of our collaboration partner confirmed that not all
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mitochondria are damaged to the same degree which implies that they do not react ho-
mogeneously [58].

This explains why the distribution of the added Ca2+ amount indeed leads to different
swelling dynamics. Hence it is important to include the calcium evolution into the model
and introduce spatial effects by means of calcium diffusion. This leads to a partial differ-
ential equation model.

Remark
The mathematical model to be developed on the following pages does not aim to give a quan-
titative description of the experimental data as we obtained from our ODE model described
earlier. The given data only have mean value character and hence from them we can not de-
duce more than mean value information. However, our aim now is to qualitatively understand
the underlying biological mechanism on the basis of local effects and in particular make the
transfer to the processes taking place in vivo. Up to now we do not have data of the process
in a living cell and thus our model can help to understand the swelling of mitochondria for the
biologically and especially pharmacologically more relevant case.

2.2.2 In vitro swelling

The experimental procedure introduced in Chapter 1 describes the set up for in vitro
swelling. Here living mitochondria are extracted from organs and then swelling is arti-
ficially triggered within a test tube by addition of MPT inducing substances like Ca2+.
Naturally calcium can not leave the test tube and we look at a process taking place in a
closed system without any disturbance from the outside. The test tube contains a huge
amount of purified mitochondria, which rest in a kind of sugar solution that prevents mi-
tochondria from dying immediately. In this solution the mitochondria are uniformly and
“densely” distributed. Furthermore they are either intact or have been destructed while
extraction, but in any case at the beginning there are no swelling or completely swollen
mitochondria in the test tube.

The initial distribution of calcium describes how it is added to the mitochondria. The
experimental data are obtained by assessing a calcium to mitochondria ratio of 1:4, i.e.
20 % of the test tube content then is Ca2+. If one imagines the dissolving of ink in a glass
of water, adding ink in a ratio of 1:4 leads to an almost immediate uniform distribution.
Therefore, in this case the effects of spatial dependencies are small, since all mitochon-
dria are exposed to the almost same calcium amount simultaneously. Hence the positive
feedback only occurs when a large part of the mitochondria is already completely swollen
and with that the accelerating effect only happens once most of the swelling is finished.

As we will see in the numerical simulations, the experimental data are best reproduced
by assuming highly dissolved initial calcium concentrations, whereas more located initial
data lead to completely different curve shapes. Hence, one really has to be aware of the
influence of the experimental design on the swelling curve outcome. In order to obtain
comparable results, one has to pay attention to what degree of localization the swelling
inducer is added.



2.2. Spatial effects 21

2.2.3 In vivo swelling

Here the swelling process is examined in a living organism, where we do not have a
controlled environment as we had in the test tube. We take a look at the whole cell and
analyze the effects of high Ca2+ concentrations to the mitochondria residing inside the
cell. In contrast to the in vitro case, here calcium is not artificially added, but rather
several biochemical processes in the organism lead to an increase of intracellular Ca2+.

Remark
Ca2+ plays an important role in the communication of cells, not only in regard of inducing
apoptosis by mitochondrial swelling. As it is e.g. described in [6], calcium acts as a “second
messenger”, i.e. it is a chemical substance that translates extracellular signals into intracellular
ones. This signal transduction by means of calcium ions is also involved in the activation of
muscle contraction, cell division or gene expression. Even for mitochondria, the main physio-
logical role of Ca2+ uptake is control of the ATP production rate. Only the dose decides
whether more energy is produced or the cell dies via apoptosis [45].

Mitochondrial distribution

It is known that mitochondria within cells are not distributed randomly but reside in
three main regions. As it was noted in [38], mitochondria reside around the nucleus, in
a neighboring group and near the cell membrane. In liver cells, the total mitochondrial
population comes up to 22 % and the endoplasmic reticulum to 15 % of the cell volume [1].
Figure 2.5 shows the organization of an eukaryotic cell, restricted to the cell compartments
which are of interest for our purpose.

Ca2+ 

Ca2+ 

Ca2+ 

Ca2+ 

Ca2+ 

Ca2+ 

Ca2+ 

Nucleus 

Endoplasmic 
reticulum 

Mitochondria 

Calcium 
channels 

Figure 2.5 – Schematic diagram of a cell with focus on the mitochondrial distribution

The endoplasmic reticulum is the main calcium storage inside a cell and plays a big role in
the cellular Ca2+ homeostasis [45]. Another important feature are the calcium channels,
which allow for an ion exchange between the cell and the extracellular regime.
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It is not clear whether all mitochondria in a cell react in the same way, or if e.g. mitochon-
dria located around the nucleus are less sensitive to calcium than mitochondria residing
near the cell membrane. At the moment this is not biologically clarified yet, but as we will
see, we can introduce such kind of properties into our mathematical model by assuming
space dependencies of the mitochondrial behavior.

Now it would be interesting to see if a given amount of calcium is sufficient to induce
swelling for all mitochondria or if the process only attacks mitochondria from a specific
region. At this the Ca2+ source plays a major role.

Increase of intracellular Ca2+

There are two mechanisms that lead to calcium increase inside the cell (see e.g. [45], [46]),
which both may lead to apoptosis, as it is depicted in Figure 2.6.

• Internal: Ca2+ release from endoplasmic reticulum (ER)

Due to external stimuli, Ca2+ is released from the endoplasmic reticulum. When
ER stress is triggered by e.g. the exposure to toxins or under pathophysiological
conditions like ischemia or viral infections [48], this ER store is depleted and the
released Ca2+ causes apoptotic events [15].

Cyt c 
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Figure 2.6 – Calcium triggers apoptosis either intra- or extracellular

• External: Ca2+ influx from extracellular milieu

The cell membrane itself is impermeable to ions and with that also to Ca2+. How-
ever, there are transport systems that enable the calcium flux over the membrane.
These are ion channels for the influx, whereas the efflux is is controlled by Na+/Ca2+

exchangers and ATP-dependent Ca2+ pumps. As we noted before, calcium acts as
a second messenger and hence it is of major importance to maintain a constant cy-
tosolic Ca2+ concentration, since a small change may cause severe cellular responses.
For that reason there exists an enormous concentration gradient between cytosolic
(100nM) and extracellular (1mM) calcium, which is to be maintained actively by
use of energy [45].
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If apoptosis now is induced by Ca2+ as an extracellular signal, it is exposed to the
cell in form of a directed calcium flow, that enters the cell via the ion channels in
the membrane [6].

For our model this increase of cytosolic Ca2+ signifies the start of the swelling process. It
represents the initial calcium concentration by setting

u0(x) := Cin + upeak(x) ,

where Cin denotes the constant cytosolic concentration and upeak(x) describes the local
increase. Here we assume this peak to be a singular event and model the resulting events
effectuated from this calcium pulse.

A remarkable effect compared to the in vitro case is, that for both possibilities of intra-
cellular calcium increase the calcium source is very localized and by no means we have a
uniformly distributed initial concentration.

The cell membrane

As described earlier, Ca2+ can enter or leave the cell across the plasma membrane via a
non-symmetric transport system consisting of channels and pumps. Here the radius and
the location of these passage ways are not fixed and dependent on the present need of
concentration gradient stabilization.

Since we do not have detailed biological information, for the mathematical modeling we
assume that the total channel size over the whole membrane stays constant. Hence scaling
down the radius implies a larger number of channels and passing to the limit as we did
in Figure 2.7, leads to an all-over permeable “limit membrane”.

Figure 2.7 – Passing to the limit of the ion channel radius

By simplicity, in the following we will consider the in vivo model with this limit membrane.

Remark
In order to avoid this limiting process, we can introduce two regions Γ1 and Γ2 with Γ1∩Γ2 = ∅,
where Γ1 contains the channels and Γ2 the closed parts of the membrane. Then by definition,
on Γ2 calcium can not leave or enter the cell, which implies a different behavior on these two
regions.
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This poses difficulties for the mathematical analysis since we have to handle these two regions
separately. However, it is not clear how to define the size of these subsets in a biological correct
way and hence we can not obtain a better description of the biological reality.

Summary

The previous observations make clear why it is really necessary to take into account spatial
effects for the in vivo modeling of mitochondrial swelling. Briefly summarized, there are
three main factors that differ a lot from the in vitro case:

• Mitochondria are not uniformly distributed.

• The inducing Ca2+ source is very localized.

• The cell is not a closed system.

2.3 The mitochondria model

In the following the biological description of the mitochondrial swelling process is trans-
lated into the mathematical language. We already indicated before that for the in vitro
model we choose the domain Ω to be the test tube, whereas the in vivo model considers
Ω as the whole cell.

The variables

The model variables were already introduced before and are described in the following
way:

u(x, t): Ca2+ concentration
N1(x, t): density of unswollen mitochondria
N2(x, t): density of mitochondria in the swelling process
N3(x, t): density of completely swollen mitochondria

Here the transition of intact mitochondria over swelling to completely swollen ones pro-
ceeds in dependence on the local calcium concentration. At this we can assume that
mitochondria in the test tube as well as within cells do not move in any direction and
hence the spatial effects are only introduced by the calcium evolution.

Initial conditions

In accordance with previous findings, the initial data

u(x, 0) = u0(x) , N1(x, 0) = N1,0(x) , N2(x, 0) = N2,0(x) , N3(x, 0) = N3,0(x)

are defined by the type of experiment.

Here the quantities Ni, i = 1, 2, 3 are to be interpreted in the density sense described
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earlier when we scale 1
|Ω|Ni(x, t).

We assume that they initially take only the values 0 or 1, where Ni,0(x) = 0 corresponds
to “no mitochondrion at point x” and a value of 1 means “mitochondrion at point x”.

in vitro: Initially the test tube contains densely distributed mitochondria and the
“swelling buffer” described in Chapter 1. It does not contain any calcium, hence
we have

u0(x) = upeak(x) ≥ 0 , N1,0(x) ≡ 1 , N2,0(x) ≡ 0 , N3,0(x) ≡ 0 . (2.5)

Here upeak describes the artificially added Ca2+ that induces the swelling process.

in vivo: Mitochondria reside in three main regions, i.e.

u0(x) = Cin + upeak(x) ≥ 0 , N1,0(x) ∈ {0, 1} , N2,0(x) ≡ 0 , N3,0(x) ≡ 0 ,

where Cin ≥ 0 denotes the intracellular Ca2+ concentration at normal conditions.
upeak is the calcium pulse coming either from outside the cell or the endoplasmic
reticulum.

Note that for both cases in the beginning there are no swelling mitochondria or those that
have already finished swelling.

Remark
For the mathematical analysis we allow for more general initial conditions.

Boundary conditions

The spatial effects only trace back to spreading Ca2+, hence we only need to impose
boundary conditions for the variable u(x, t):

in vitro: Calcium can not cross the boundary ∂Ω, i.e. the test tube wall and hence we
have homogenous Neumann boundary conditions

∂νu(x, t) = 0 for x ∈ ∂Ω .

Mathematically we will also treat the case of homogenous Dirichlet boundary con-
ditions

u(x, t) = 0 for x ∈ ∂Ω .

Biologically, this kind of boundary condition appears if we put some chemical mate-
rial on the wall that binds calcium ions and hence removes it as a swelling inducer.

in vivo: As we demonstrated in Figure 2.7, we assume the boundary to be the perme-
able “limit membrane”. Here calcium can enter or leave the cell over this membrane.
The concentration gradient between the cell and the extracellular regime needs al-
ways be maintained, hence we assume inhomogeneous Robin boundary conditions

−∂νu(x, t) = a(x)
(
u(x, t)− β Cext

)
for x ∈ ∂Ω .



26 Chapter 2. Mathematical modeling of mitochondrial swelling

Here Cext ≥ 0 denotes the extracellular, constant calcium concentration and β ≥ 0
represents the concentration gradient.
That means e.g. for the constants reported in [45], we have Cin = 100 nM = 10−7 M
and Cext = 1 mM = 10−3 M and hence the concentration gradient is of order 10−4

and we take β = 10−4.

Remark
1) In general the extracellular calcium concentration is not constant, however due to its
largeness compared to the cell size, single calcium peaks are dissolved very fast.

2) By the choice of the function a(x) we can distinguish between different parts of the
membrane. The previously mentioned case ∂Ω = Γ1 ∪ Γ2 hence could be realized by
setting a(x) = 0 for x ∈ Γ2 representing the closed parts of the membrane. This leads
to zero flux on Γ2 and concentration-dependent flux on Γ1, just as we described the
situation for the original membrane. However, for the mathematical analysis we need to
assume a(x) ≥ a0 > 0.

3) By the choice of a we can switch between Dirichlet and Neumann type boundary
conditions. If a is very small, the flux over the boundary is also very small and in the
limit case a → 0 we have homogeneous Neumann boundary conditions. On the other
hand, for high values of a the solution soon approaches u = β Cext on the boundary, i.e.
we can expect a behavior similar to non-homogeneous Dirichlet boundary conditions.

Coupled ODE-PDE model

Now we are finally prepared to introduce the new model. As we noted before, only the
calcium concentration u evolves in time and space, and hence its behavior is described
by a partial differential equation. Mitochondria do not move and thus the evolution of
the mitochondrial subpopulations N1, N2 and N3 is modeled by a system of ordinary
differential equations that are dependent on the current state of u(x, t). These ODEs
depend on the space variable x in terms of a parameter. This leads to the following
coupled ODE-PDE system determined by the model functions f and g and the diffusion
operator A:

∂tu = d1A(u) + d2g(u)N2

∂tN1 = −f(u)N1

∂tN2 = f(u)N1 − g(u)N2

∂tN3 = g(u)N2

with diffusion constant d1 ≥ 0 and feedback parameter d2 ≥ 0. The boundary conditions
vary for the type of the model and can be generally formulated as

a u+ b ∂νu = h on ∂Ω

with functions a, b and h defined on the boundary. Furthermore we have initial conditions

u(x, 0) = u0(x) , N1(x, 0) = N1,0(x) , N2(x, 0) = N2,0(x) , N3(x, 0) = N3,0(x)
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with the specific functions depending on the model type as described earlier.

This model is solved on the phase space H, which has to be suitable defined for every
type of problem. According to that, the initial data have to be taken from an appropriate
space dependent on the diffusion operator A. For the ODE components we can always
assume

Ni,0 ∈ L∞(Ω) for i = 1, 2, 3 .

In the following we will explain all model components in detail.

Diffusion operator A

The operator A denotes the diffusion operator responsible for the calcium spreading,
i.e. the calcium evolution is described by a reaction-diffusion equation with a positive
production term as we will see later on.

In this thesis we will study both to the case of non-degenerate and degenerate diffusion.
The non-degenerate diffusion model considers the standard Laplacian

A(u) = ∆u ,

whereas the degenerate case is described by the nonlinear operator

A(u) = ∆(|u|m−2u) .

with m > 2.

The biological reason to consider also the mathematically more complicate case of degen-
eracy is connected to the propagation speed of calcium. The standard Laplace operator
is an appropriate and well-studied tool to model the diffusion process, however it has
one disadvantage, namely its infinite speed of propagation. That means, starting from
compactly supported initial data, the solution u get immediately positive on the whole
domain, i.e. it reaches any corner in arbitrary small time. This effect is not consistent with
biological observations and hence we want to get rid of this effect by choosing degenerate
diffusion with finite propagation speed. This effect will be described in more detail in
Section 4.1.

Model function f

The process of mitochondrial permeability transition is dependent on the calcium concen-
tration. If the local concentration of Ca2+ is sufficiently high, the transition pores open
and mitochondrial swelling is initiated. This incident is mathematically described by the
transition of mitochondria from N1 to N2. The corresponding transition function f(u) is
zero up to a certain threshold C− displaying the concentration which is needed to start
the whole process. Whenever this Ca2+ threshold is reached, the local transition at this
point from N1 to N3 over N2 is inevitably triggered. It is written e.g. in [41] that this
process is calcium-dependent with higher concentrations leading to faster pore opening.
Hence the function f(u) is increasing in u.
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The transfer from unswollen to swelling mitochondria is related to pore opening, hence
we also postulate that there is some saturation rate f ∗ displaying the maximal transition
rate. This is biologically explained by a bounded speed of pore opening with increasing
calcium concentrations. This saturation with respect to calcium also becomes obvious in
the experimental data displayed in Figure 1.5, where we see that with increasing Ca2+

concentrations the swelling process is speeded up, but at very high concentrations we do
not observe changes in the swelling curves appearance any more.

Figure 2.8 (a) displays the type of function we used for the numerical simulations.

Remark
The initiation threshold of f is crucial for the whole swelling procedure. Dependent on the
amount and location of added calcium, it can happen that in the beginning the local concen-
tration was enough to induce swelling in this region, but after some time due to diffusion the
threshold C− is not reached anymore. Thus we only have partial swelling and after the whole
process there are still intact mitochondria left. Nevertheless, the are no mitochondria in the
intermediate state N2.
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Figure 2.8 – Graphical description of the model functions we used for the numerical simulation

Model function g

The change of the population N2 consists of mitochondria entering the swelling process
(coming from N1) and mitochondria getting completely swollen (leaving to N3). The tran-
sition of N2 to N3 is modeled by the transition function g(u). In contrast to the function f
here we have no initiation threshold and this transition can not be avoided (as we will see
later: u(x, t) > 0 ∀x ∀t except for the homogenous Dirichlet case). This property is based
on the biological mechanism of swelling. The permeabilization of the inner membrane
due to pore opening leads to an osmotically driven influx of water and other solutes into
the mitochondrial matrix and induces swelling. This process itself is independent of the
present calcium concentration. Due to a limited pore size, this effect also has its restric-
tions and thus we have saturation at level g∗. By simplicity we assume that the point of
saturation C+ is the same for f and g as can be seen in Figure 2.8 (b), where we depict
a typical function g used in the simulations.
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However, biologically it is not clear if there are other influences of calcium to this second
transition, e.g. by the opening of additional pores. To include such possibilities, for the
simulations we assume g to be increasing with saturation at level g∗ for u ≥ C+.

The third population N3 of completely swollen mitochondria grows continuously due to
the unstoppable transition from N2 to N3. All mitochondria that started to swell will be
completely swollen in the end.

Remark
1) For the mathematical analysis we allow for more general transition functions f and g. The
corresponding assumptions are formulated in Conditions 1 and 2. Note that in particular f
and g (up to a small interval) not even have to be monotone.

2) In the present model we assume that mitochondria only differ with respect to their location
and with that in the moment when they are hit by the calcium wave.
If we take a look at the whole cell, then it is not clear if all mitochondria react in the same way
or if mitochondria residing in different groups have different sensitivities to calcium. At the
moment this is not biologically clarified yet, however we can introduce such kind of properties
into our model by assuming space dependence f(x, u) and g(x, u).

Calcium evolution

The model consists of spatial developments in terms of diffusing calcium. In addition to
the (linear or non-linear) diffusion term, the equation for the calcium concentration con-
tains a production term dependent on N2, which is justified by the following:

In our earlier ODE approach of modeling mitochondrial swelling [22] it turned out that it
is essential to include the positive feedback mechanism. This accelerating effect is induced
by stored Ca2+ inside the mitochondria, which is additionally released once the mitochon-
drion gets completely swollen. Due to a fixed amount of stored calcium, we assume that
the additional released calcium is proportional to the newly completely swollen mitochon-
dria, i.e. the mitochondria leaving N2 and entering N3. Here the feedback parameter d2

describes the amount of stored calcium.

In contrast to the previous model, now the action of the positive feedback is contained
directly by providing additional calcium. As we will see later on, this additional term is
always non-negative and hence it is interesting to take a look at the long-time behavior
of the solution.

Model analysis

In the following we will analyze the derived model mathematically. Here we take a look at
more general initial data and allow for a larger class of model functions. All mathematical
results apply for the biological relevant cases Ω ⊂ Rn with n = 2 or n = 3.

Chapter 3 deals with the non-degenerate model based on the standard Laplacian. Here
we study both the dynamics in vitro and in vivo and verify the mathematical results by
numerical simulations.
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Chapter 4 then treats the more complicated case of degenerate diffusion. In order to handle
it mathematically, we have to assume homogeneous Dirichlet boundary conditions.

Conclusion

To our knowledge, there are no mathematical models taking into account the whole cell
and the non-uniform mitochondrial distribution yet. At the moment we do not have ex-
perimental data since it is a very complicated task to monitor the processes taking place
in a living cell without being too disruptive.

However, biologically this is the relevant case and it is definitely worth to study these
spatial dependencies mathematically as well as experimentally. With mathematics we can
formulate postulates, which then can be tested biologically by specially designed exper-
iments. This will lead to new insights into the interaction of calcium and mitochondria
inside cells.



CHAPTER 3

Non-degenerate mitochondria model

In this Chapter we study the developed mathematical model of mitochondrial swelling
with the standard diffusion operator A = ∆. In the following sections we examine the
influence of different boundary conditions and show the results for the in vitro and the in
vivo model.

3.1 Neumann boundary conditions

As we have elaborated earlier, homogeneous Neumann boundary conditions apply to test
tube experiments and hence we are now analyzing the in vitro model

∂tu = d1∆u+ d2g(u)N2 (3.1)

∂tN1 = −f(u)N1 (3.2)

∂tN2 = f(u)N1 − g(u)N2 (3.3)

∂tN3 = g(u)N2 (3.4)

with boundary condition

∂νu = 0 on ∂Ω (3.5)

and initial values

u(x, 0) = u0(x), N1(x, 0) = N1,0(x), N2(x, 0) = N2,0(x), N3(x, 0) = N3,0(x) .

Remark
We already characterized the initial functions in (2.5), however the mathematical analysis can
be applied to a more general setting.

3.1.1 Existence and uniqueness of global solutions

The coupled ODE-PDE model (3.1) - (3.5) describing the in vitro swelling process shall
now be analyzed mathematically. At first we want to show the well-posedness of the
model. For that purpose we introduce some assumptions to the model functions f and g.

31
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Condition 1
For the model functions f : R→ R and g : R→ R it holds:

(i) Non-negativity:

f(s) ≥ 0 ∀s ∈ R
g(s) ≥ 0 ∀s ∈ R

(ii) Boundedness:

f(s) ≤ f ∗ <∞ ∀s ∈ R
g(s) ≤ g∗ <∞ ∀s ∈ R

with f ∗, g∗ > 0.

(iii) Lipschitz continuity:

|f(s1)− f(s2)| ≤ Lf |s1 − s2| ∀s1, s2 ∈ R
|g(s1)− g(s2)| ≤ Lg |s1 − s2| ∀s1, s2 ∈ R

with Lf , Lg ≥ 0.

Remark
Property (iii) implies bounded derivatives |f ′(s)| ≤ Lf and |g′(s)| ≤ Lg for all s ∈ R.

One remarkable characteristic of the model is the following:

If we only take a look at the ODE part and define the total mitochondrial population

N(x, t) := N1(x, t) +N2(x, t) +N3(x, t) ,

then adding the three equations (3.2) + (3.3) + (3.4), we obtain ∂tN = 0. This implies

N(x, t) = N(x) = N1,0(x) +N2,0(x) +N3,0(x) ∀t ≥ 0 ∀x ∈ Ω , (3.6)

i.e. the total population N does not change and is given by the sum of the initial data.

In particular we have

‖N‖L∞(Ω) ≤ ‖N1,0‖L∞(Ω) + ‖N2,0‖L∞(Ω) + ‖N3,0‖L∞(Ω) <∞

for initial data from L∞(Ω).

The first aim is to study the model in terms of existence and uniqueness of the solution
(u,N1, N2, N3). Here we consider the phase space H = L2(Ω).

Theorem 1
Let Ω ⊂ Rn be bounded. Under the assumptions of Condition 1 it holds:

For all initial data u0 ∈ L2(Ω), N1,0 ∈ L∞(Ω), N2,0 ∈ L∞(Ω) and N3,0 ∈ L∞(Ω) with

‖N1,0‖L∞(Ω) + ‖N2,0‖L∞(Ω) 6= 0 , (3.7)
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the system (3.1) - (3.5) possesses a unique global solution (u,N1, N2, N3) satisfying

u ∈ C([0, T ];L2(Ω))
√
t ∂tu ∈ L2(0, T ;L2(Ω))
√
t∆u ∈ L2(0, T ;L2(Ω))

Ni ∈ L∞(0, T ;L∞(Ω)), i = 1, 2, 3 ,

for all T > 0.

Remark
The additional assumption (3.7) first comes into play in the proof of global existence. However,
this condition is not very restrictive, since from

‖N1,0‖L∞(Ω) + ‖N2,0‖L∞(Ω) = 0

it follows
N1,0(x) ≡ 0 and N2,0(x) ≡ 0

which leads to the trivial solution N1(x, t) ≡ 0, N2(x, t) ≡ 0, N3(x, t) ≡ N3,0(x) for all
x ∈ Ω and the model is reduced to the standard heat equation with homogeneous Neumann
boundary conditions.

Proof

1.) Local solution

At first we proof existence and uniqueness of a local solution.

In the following we only take a look at equations (3.1) - (3.3). From the conservation law
(3.6) we know that the solution N3 is then given by the identity

N3(x, t) = N(x)−N1(x, t)−N2(x, t) . (3.8)

We work in the Banach space

X := C([0, T ];L2(Ω)) with ‖u‖X = max
0≤t≤T

‖u(t)‖L2(Ω)

and define the mapping

B : u ∈ X 7→ Nu :=

(
Nu

1

Nu
2

)
7→ û = B(u)

in the following way: By Nu
i we denote the solution of the corresponding ODE with respect

to a fixed u, i.e. the vector Nu solves the pure ODE system

∂tN
u =

(
−f(u)Nu

1

f(u)Nu
1 − g(u)Nu

2

)
=: F (Nu) (3.9)

Nu(x, 0) =

(
N1,0(x)
N2,0(x)

)
. (3.10)
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This solution dependent on fixed u is now substituted into the PDE (3.1), which means
we are looking for the solution û of the pure PDE problem

∂tû = d1∆û+ d2g(û)Nu
2

û(x, 0) = u0(x) (3.11)

∂ν û
∣∣
∂Ω

= 0 .

The outline of the proof is the following:

(i) Show that the ODE system possesses a unique solution Nu for fixed u

(ii) Show that the PDE corresponding to the solution Nu possesses a unique solution û

(iii) Show that the mapping B possesses a unique fixed-point with B(u) = u.

Step (i): Consider the mapping u 7→ Nu

For every u ∈ X by Condition 1 (ii) we have f(u) ≤ f ∗ and g(u) ≤ g∗. We now take a
look at the ODE system (3.9), (3.10) and search for the unique solution of this ODE in
the product Banach space

Y := L2(Ω)× L2(Ω) .

Obviously it holds F : Y → Y . In order to apply the Piccard-Lindelöf theorem we need
Lipschitz-continuity of F :

‖F (A)− F (B)‖Y
!

≤ LF‖A−B‖Y ∀A,B ∈ Y with A = (A1, A2), B = (B1, B2)

‖F (A)− F (B)‖2
Y = ‖ − f(u)(A1 −B1)‖2

L2(Ω) + ‖f(u)(A1 −B1)− g(u)(A2 −B2)‖2
L2(Ω)

≤ |f(u)|2‖A1 −B1‖2
L2(Ω) + 2|f(u)|2‖A1 −B1‖2

L2(Ω) + 2|g(u)|2‖A2 −B2‖2
L2(Ω)

≤ max
(
3f ∗2, 2g∗2

)︸ ︷︷ ︸
=:LF

2 with LF>0

‖A−B‖2
Y

Thus it follows:

For every u ∈ X there exists a unique solution Nu =

(
Nu

1

Nu
2

)
∈ C([0,∞], Y ) . (3.12)

Our aim now is to obtain upper bounds in L∞(Ω).

Remark
For general initial data N1,0(x), N2,0(x) we do not have any information about the sign of
Nu

1 (x, t) and Nu
2 (x, t).
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For that reason we define for i = 1, 2

T +(x) := {t ∈ [0,∞) : Nu
i (x, t) > 0} =

⋃
j∈J
T +
j (x)

T −(x) := {t ∈ [0,∞) : Nu
i (x, t) < 0} =

⋃
k∈K
T −k (x)

T 0(x) := {t ∈ [0,∞) : Nu
i (x, t) = 0} =

⋃
l∈L

pl(x) ∪ Tz(x)

where T +
j (x), T −k (x) and Tz(x) are connected intervals and the point pl(x) is the location

of the lth zero.

On a ODE-PDE coupling model of the mitochondrial
swelling process

S. Eisenhofer, M.A. Efendiev, M. Ôtani, S. Schulz and H. Zischka
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Like that we have the following partition of the time interval [0,∞) for fixed x ∈ Ω:

[0,∞) = T +(x) ∪̇ T −(x) ∪̇ T 0(x) .

We are now looking at the equations point-wise. For Nu
1 it holds

∂tN
u
1 (x, t) = −f(u(x, t))Nu

1 (x, t)

and that relation immediately implies that if Nu
1 (x, t) attains zero at time t = t1, then

Nu
1 (x, t) ≡ 0 for all t ≥ t1, i.e. for Nu

1 the partition is either given by

[0,∞) = T +(x) ∪̇ Tz(x) or [0,∞) = T −(x) ∪̇ Tz(x) . (3.13)

So we only have to consider the cases Nu
1 (x, t) > 0 for t ∈ T +(x) or Nu

1 (x, t) < 0 for
t ∈ T −(x). For both cases, Nu

1 satisfies

∂t|Nu
1 (x, t)| = −f(u(x, t))|Nu

1 (x, t)|

with f(u(x, t)) ≥ 0 by Condition 1 (i). Hence it easily follows for all x ∈ Ω with Gronwall’s
inequality

|Nu
1 (x, t)| ≤ |N1,0(x)|e−f(u(x,t))t ≤ |N1,0(x)|

≤ ‖N1,0‖L∞(Ω) ∀t ∈ T +(x) or ∀t ∈ T −(x) .

For t ∈ Tz(x) we clearly have

|Nu
1 (x, t)| = 0 ≤ ‖N1,0‖L∞(Ω)

and all together by (3.13) we obtain the L∞ bound

‖Nu
1 (t)‖L∞(Ω) ≤ ‖N1,0‖L∞(Ω) =: C1 <∞ ∀t ≥ 0 . (3.14)
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An analogous result can be achieved for Nu
2 . However, in that case the partition of [0,∞)

can not be simplified as before. For fixed x ∈ Ω we have to distinguish between different
cases.

Case 1: N2,0(x) 6= 0, i.e. p1(x) 6= 0

a) Nu
2 (x, t) > 0 on the interval [0, p1(x)), i.e. [0, p1(x)) = T +

1 (x)

In that case due to the non-negativity of g, the boundedness of f and (3.14), it holds

∂tN
u
2 (x, t) = f(u(x, t))Nu

1 (x, t)− g(u(x, t))Nu
2 (x, t)

≤ f ∗‖N1,0‖L∞(Ω) ∀t ∈ T +
1 (x) .

Hence we easily get by integration
∫ t

0
ds

Nu
2 (x, t) ≤ N2,0(x) + tf ∗‖N1,0‖L∞(Ω)

≤ ‖N2,0‖L∞(Ω) + tf ∗‖N1,0‖L∞(Ω) ∀t ∈ T +
1 (x) .

b) Nu
2 (x, t) < 0 on the interval [0, p1(x)), i.e. [0, p1(x)) = T −1 (x)

In contrary to the previous case we have

∂tN
u
2 (x, t) ≥ −f(u(x, t))|Nu

1 (x, t)| − g(u(x, t))Nu
2 (x, t)

≥ −f ∗‖N1,0‖L∞(Ω) ∀t ∈ T −1 (x) ,

which implies

Nu
2 (x, t) ≥ −|N2(x, 0)| − tf ∗‖N1,0‖L∞(Ω)

≥ −‖N2,0‖L∞(Ω) − tf ∗‖N1,0‖L∞(Ω) ∀t ∈ T −1 (x) .

In summary for Case 1 we obtain

|Nu
2 (x, t)| ≤ ‖N2,0‖L∞(Ω) + tf ∗‖N1,0‖L∞(Ω) ∀x ∈ Ω ∀t ∈ [0, p1(x)) .

Case 2: N2,0(x) = 0, i.e. p1(x) = 0

a) Nu
2 (x, t) > 0 on the interval (p1(x), p2(x)), i.e. (p1(x), p2(x)) = T +

1 (x)

In analogy to Case 1 but with Nu
2 (x, 0) = Nu

2 (x, p1(x)) = 0 we obtain by integration∫ t
p1(x)

ds

Nu
2 (x, t) ≤ (t− p1(x))f ∗‖N1,0‖L∞(Ω)

≤ ‖N2,0‖L∞(Ω) + tf ∗‖N1,0‖L∞(Ω) ∀t ∈ T +
1 (x) .

b) Nu
2 (x, t) < 0 on the interval (p1(x), p2(x)), i.e. (p1(x), p2(x)) = T −1 (x)

The same statements yield

|Nu
2 (x, t)| ≤ ‖N2,0‖L∞(Ω) + tf ∗‖N1,0‖L∞(Ω) ∀t ∈ T −1 (x) .
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With that for the first interval T ±1 (x) we achieved the desired estimate in both cases. Our
aim now is to make the transition to the whole time interval t ≥ 0. It obviously holds

|Nu
2 (x, t)| = 0 ≤ ‖N2,0‖L∞(Ω) + tf ∗‖N1,0‖L∞(Ω) ∀t ∈ Tz(x) and ∀t ∈

⋃
l∈L

pl(x) .

By repeating the arguments of Case 2 to the remaining intervals [pl(x), pl+1(x)) using
t − pl(x) ≤ t ∀t ∈ [pl(x), pl+1(x)) and Nu

2 (x, pl(x)) = 0, with the partition of [0,∞) we
finally obtain

‖Nu
2 (t)‖L∞(Ω) ≤ ‖N2,0‖L∞(Ω) + tf ∗‖N1,0‖L∞(Ω) =: C2(t) ∀t ≥ 0 . (3.15)

Step (ii): Consider the mapping Nu 7→ û

Now we are given the solutions Nu
1 and Nu

2 for fixed u and take a look at the solution of
the corresponding PDE. That means we are focussing on the problem

∂tû = d1∆û+ d2g(û)Nu
2

û(x, 0) = u0(x) (3.16)

∂ν û
∣∣
∂Ω

= 0 .

In Condition 1 (iii) we require the function g to be Lipschitz continuous on R. That can
be easily expanded to Lipschitz continuity on L2(Ω):

‖g(v1)− g(v2)‖2
L2(Ω) =

∫
Ω

|g(v1(x))− g(v2(x))|2 dx ≤ L2
g

∫
Ω

|v1(x)− v2(x)|2 dx

= L2
g‖v1 − v2‖2

L2(Ω) .

From that and the properties of the solution Nu
2 we are indeed dealing with a parabolic

equation with Lipschitz type perturbation. Problems of this type are treated e.g. in [2],
[13] or in a more abstract way in [9], [40]. There the existence and uniqueness of a solution
û is shown and it is proved that the solution satisfies

û ∈ C([0, T ];L2(Ω))
√
t ∂tû ∈ L2(0, T ;L2(Ω))
√
t∆û ∈ L2(0, T ;L2(Ω)) .

(3.17)

The standard technique to show this kind of properties is introduced in Chapter 4 in the
proof of Theorem 26.

By the property of the solution û ∈ X it follows B : X → X.

Step (iii): Consider the mapping u 7→ B(u)

This mapping maps u to the solution û of the PDE problem (3.16), which is dependent
on the argument u via the term Nu

2 . Our aim now is to find the specific solution û = u of
(3.16) corresponding to Nu

2 . That means we are searching for the fixed point

B(u) = û
!

= u .
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If we can show that this fixed point exists and is unique, then we can find the unique
solution of the original problem (3.1) - (3.5) and the proof is finished. This is done by the
famous contraction mapping theorem, which means we have to show the following:

∃T0 > 0 sufficiently small and ∃α ∈ (0, 1) such that the mapping

B : C([0, T0];L2(Ω)) =: X0 → X0

is a contraction, i.e.

‖B(u1)− B(u2)‖X0 ≤ α‖u1 − u2‖X0 ∀u1, u2 ∈ X0 .

For that we calculate the difference between two solutions of the ODE problem (3.9),
(3.10) and the PDE problem (3.16) corresponding to different fixed u1, u2 ∈ X:

l1 δN1 := Nu1
1 −Nu2

1 , where

∂tN
u1
1 = −f(u1)Nu1

1 Nu1
1 (x, 0) = N1,0(x)

∂tN
u2
1 = −f(u2)Nu2

1 Nu2
1 (x, 0) = N1,0(x) .

This yields δN1(x, 0) = 0 and

∂tδN1 = −f(u1)Nu1
1 + f(u2)Nu2

1

= −f(u1)Nu1
1 + f(u1)Nu2

1 − f(u1)Nu2
1 + f(u2)Nu2

1

= −f(u1)δN1 +
(
f(u2)− f(u1)

)
Nu2

1 .

Multiplication by δN1, integration over
∫

Ω
dx and using the Lipschitz continuity of f leads

to ∫
Ω

∂tδN1δN1 dx = −
∫

Ω

f(u1)|δN1|2 dx+

∫
Ω

(
f(u2)− f(u1)

)
Nu2

1 δN1 dx

⇒ 1

2

d

dt
‖δN1‖2

L2(Ω) ≤ −
∫

Ω

f(u1)|δN1|2 dx+ Lf

∫
Ω

|u2 − u1||Nu2
1 ||δN1| dx .

With δu := u1 − u2, the non-negativity of f and the L∞-estimate (3.14) it follows

1

2

d

dt
‖δN1(t)‖2

L2(Ω) ≤ LfC1

∫
Ω

|δu(x, t)||δN1(x, t)| dx .

and by Hölder’s inequality we obtain

d

dt
‖δN1(t)‖L2(Ω)‖δN1(t)‖L2(Ω) ≤ LfC1‖δu(t)‖L2(Ω)‖δN1(t)‖L2(Ω)

⇒ d

dt
‖δN1(t)‖L2(Ω) ≤ LfC1‖δu(t)‖L2(Ω) .

Integrating over
∫ t

0
ds and using the fact δN1(0) = 0, we are led to the final result

‖δN1(t)‖L2(Ω) ≤ LfC1

∫ t

0

‖δu(s)‖L2(Ω) ds ∀t ∈ [0, T ] . (3.18)
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l2 δN2 := Nu1
2 −Nu2

2 , where Nu1
2 , Nu2

2 solve

∂tN
u1
2 = f(u1)Nu1

1 − g(u1)Nu1
2 Nu1

2 (x, 0) = N2,0(x)

∂tN
u2
2 = f(u2)Nu2

1 − g(u2)Nu2
2 Nu2

2 (x, 0) = N2,0(x) .

Again we have δN2(x, 0) = 0 and

∂tδN2 = f(u1)Nu1
1 − f(u2)Nu2

1 − g(u1)Nu1
2 + g(u2)Nu2

2

= f(u1)δN1 +
(
f(u1)− f(u2)

)
Nu2

1 − g(u1)δN2 +
(
g(u2)− g(u1)

)
Nu2

2 .

Multiplying by δN2 and integrating over
∫

Ω
dx using the boundedness of f and the non-

negativity of g together with the Lipschitz continuity, we get

1

2

d

dt
‖δN2‖2

L2(Ω) ≤ f ∗
∫

Ω

|δN1||δN2| dx+ Lf

∫
Ω

|δu||Nu2
1 ||δN2| dx

+ Lg

∫
Ω

|δu||Nu2
2 ||δN2| dx .

We are looking for local solutions and the existence of a time T0 sufficiently small to assure
contraction. Hence without loss of generality we can assume t ≤ T ≤ 1. Then by (3.15)
we have the estimate

‖Nu
2 (t)‖L∞(Ω) ≤ C2(t) ≤ C2(1) = ‖N2,0‖L∞(Ω) + f ∗‖N1,0‖L∞(Ω) =: C2 <∞ . (3.19)

Application of Hölder’s inequality, canceling out ‖δN2(t)‖L2(Ω) and using estimate (3.14)
together with the previous result, we get

d

dt
‖δN2(t)‖L2(Ω) ≤ f ∗‖δN1(t)‖L2(Ω) + (LfC1 + LgC2)︸ ︷︷ ︸

=:C1,2

‖δu(t)‖L2(Ω) .

By substituting estimate (3.18), integrating over
∫ t

0
ds and using δN2(0) = 0 we obtain

‖δN2(t)‖L2(Ω) ≤ f ∗LfC1

∫ t

0

∫ s

0

‖δu(τ)‖L2(Ω) dτ ds+ C1,2

∫ t

0

‖δu(s)‖L2(Ω) ds .

Due to the fact t ∈ [0, T ] with T ≤ 1 the double integral is estimated by∫ t

0

∫ s

0

‖δu(τ)‖L2(Ω) dτ ds ≤
∫ t

0

∫ t

0

‖δu(τ)‖L2(Ω) dτ ds ≤
∫ t

0

‖δu(s)‖L2(Ω) ds .

This finally gives

‖δN2(t)‖L2(Ω) ≤ (f ∗LfC1 + C1,2)︸ ︷︷ ︸
=:C3

∫ t

0

‖δu(s)‖L2(Ω) ds ∀t ∈ [0, T ] . (3.20)

l3 δû := û1 − û2 = B(u1)− B(u2), where û1, û2 are solutions of

∂tû1 = d1∆û1 + d2g(û1)Nu1
2 û1(x, 0) = u0(x) ∂ν û1

∣∣
∂Ω

= 0

∂tû2 = d1∆û2 + d2g(û2)Nu2
2 û2(x, 0) = u0(x) ∂ν û2

∣∣
∂Ω

= 0 .
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Remark
Our goal was to show that the mapping B : X0 → X0 is a contraction for an appropriate
choice of the time interval [0, T0]. By the definition of δu and δû, B is a contraction if

max
0≤t≤T0

‖δû(t)‖L2(Ω) ≤ α max
0≤t≤T0

‖δu(t)‖L2(Ω), 0 < α < 1 .

It holds δû(x, 0) = 0 and

∂tδû = d1∆δû+ d2g(û1)Nu1
2 − d2g(û2)Nu2

2

= d1∆δû+ d2g(û1)δN2 + d2

(
g(û1)− g(û2)

)
Nu2

2 .

As before, multiplication by δû, integration over
∫

Ω
dx, application of Hölder’s inequality

and making use of estimate (3.19), T ≤ 1 and the properties of g together with the
Neumann boundary condition gives

1

2

d

dt
‖δû(t)‖2

L2(Ω) + d1‖∇δû(t)‖2
L2(Ω) ≤ d2g

∗‖δN2(t)‖L2(Ω)‖δû(t)‖L2(Ω) + d2LgC2‖δû(t)‖2
L2(Ω)

⇒ d

dt
‖δû(t)‖L2(Ω) ≤ d2g

∗‖δN2(t)‖L2(Ω) + d2LgC2‖δû(t)‖L2(Ω) .

Substituting the previous result (3.20) and taking
∫ t

0
ds with δû(0) = 0, we have

‖δû(t)‖L2(Ω) ≤ d2g
∗C3

∫ t

0

∫ s

0

‖δu(τ)‖L2(Ω) dτ ds+ d2LgC2

∫ t

0

‖δû(s)‖L2(Ω) ds .

With the same argument as before, the double integral can be cancelled and we can further
estimate by using Gronwall’s inequality

‖δû(t)‖L2(Ω) ≤ d2g
∗C3 T max

0≤t≤T
‖δu(t)‖L2(Ω) + d2LgC2

∫ t

0

‖δû(s)‖L2(Ω) ds

⇒ ‖δû(t)‖L2(Ω) ≤ d2g
∗C3 T‖δu‖Xed2LgC2T ∀t ∈ [0, T ] .

⇒ ‖δû‖X ≤ d2g
∗C3 Te

d2LgC2T︸ ︷︷ ︸
=:C4(T )>0

‖δu‖X .

From that it follows

B is a contraction ⇔ ∃T0 > 0 such that C4(T0) < 1 .

This is indeed the case since for T → 0 we have C4(T )→ 0, whence follows the existence
of T0 = T0

(
‖N1,0‖L∞(Ω), ‖N2,0‖L∞(Ω)

)
with the required properties. Thus we showed

B is a contraction on the space X0 = C([0, T0], L2(Ω)) .

Now the contraction mapping theorem can be applied to B and yields

∃!u ∈ X0 : B(u) = u .
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As noted before, the unique fixed-point u is exactly the solution of the original problem
and thus we have the existence and uniqueness of the local solution u. This solution sat-
isfies (3.17) with T = T0.

Furthermore the uniqueness of N1 and N2 in [0, T0] follows from (3.18) and (3.20) im-
mediately, since by the uniqueness of u we have δu = 0. The conservation identity (3.8)
provides the unique solution N3. For t ∈ [0, T0] with T0 ≤ 1, estimates (3.14) and (3.19)
induce

‖N1(t)‖L∞(Ω) ≤ C1 <∞ ⇒ ‖N1‖L∞(0,T0;L∞(Ω)) <∞
‖N2(t)‖L∞(Ω) ≤ C2 <∞ ⇒ ‖N2‖L∞(0,T0;L∞(Ω)) <∞

}
⇒ ‖N3‖L∞(0,T0;L∞(Ω)) <∞ .

This completes the proof of local existence and uniqueness.
21.)

2.) Global solution

Our next aim is to show that this local solution exists globally in time, i.e. not only on
the time interval [0, T0] but on any bounded interval [0, T ] for all T > 0.

For that we come back to the definition of the function C4(T ) determining the time T0

such that C4(T0) < 1. For simplification this function can be further estimated by the
definition of the appearing constants C2 and C3 and the fact T0 ≤ 1. Here we define

s := ‖N1,0‖L∞(Ω) + ‖N2,0‖L∞(Ω) > 0 by (3.7)

a1 := 2d2g
∗max (Lf + Lgf

∗ + Lff
∗, Lg) > 0

a2 := 2d2Lg max (1, f ∗) > 0

and it follows

C4(T0) ≤ a1s T0e
a2sT0 ≤ a1s T0e

a2s
!
< 1 ,

i.e. then there exists 0 < ξ < 1 such that

a1s T0e
a2s = ξ ⇔ T0 =

ξ

a1sea2s
=: H(s) ≥ 0 . (3.21)

More precisely, the function H(s) is strictly monotonically decreasing due to

d
ds
H(s) = −ξ a1ea2s+a1a2sea2s

(a1sea2s)2 < 0 .

Up to this point, we obtained the existence of a unique solution (u,N1, N2, N3) satisfying
the properties of Theorem 1 on the time interval [0, T0]. Thus we can define new initial
conditions

u0(x) = u(x, T0) , N1,0(x) = N1(x, T0) , N2,0(x) = N2(x, T0) , N3,0(x) = N3(x, T0)

which satisfy

‖N1(x, T0)‖L∞(Ω) + ‖N2(x, T0)‖L∞(Ω) ≤ CT0 <∞ .
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Relation (3.21) implies that we have the existence of a positive time T0 > 0 as long as s is
bounded by some constant. This is the case here, whence follows the existence of a time
T1 such that the problem (3.1) - (3.4) with the new initial conditions possesses a unique
local solution on [T0, T1]. With that we can extend the solution to the bigger interval [0, T1].

Hence, in order to assure the existence of the unique global solution, it suffices to show
that

sup
0≤t≤T

(
‖N1(t)‖L∞(Ω) + ‖N2(t)‖L∞(Ω)

)
≤ CT <∞

for any bounded intervall [0, T ], where the constant CT is dependent on the time T . If
we can show the boundedness of this expression, we can stepwise extend the existence
interval of the local solution to any interval [0, T ] for all T > 0, which means that the
solution exists globally in time.
In fact, proceeding in exactly the same way as in Step (i) of the local existence proof to
show (3.14) and (3.15), we obtain the following estimates:

‖N1(t)‖L∞(Ω) ≤ ‖N1,0‖L∞(Ω) for all t ≥ 0

‖N2(t)‖L∞(Ω) ≤ ‖N2,0‖L∞(Ω) + tf ∗‖N1,0‖L∞(Ω) for all t ≥ 0 .

This yields the desired result

sup
0≤t≤T

(
‖N1(t)‖L∞(Ω) + ‖N2(t)‖L∞(Ω)

)
≤ ‖N2,0‖L∞(Ω) + (1 + Tf ∗)‖N1,0‖L∞(Ω) =: CT <∞

which implies that the unique local solution can be continued globally.
22.)

Theorem 2
Let all assumptions of Theorem 1 hold and in addition assume that

u0 ≥ 0, N1,0 ≥ 0, N2,0 ≥ 0, N3,0 ≥ 0 .

Then the solution (u,N1, N2, N3) preserves non-negativity. Furthermore N1, N2 and N3

are uniformly bounded in Ω× [0,∞).

Proof

1.) Non-negativity

The property of preserving non-negativity starting from non-negative initial values is
proved with the standard technique to show that the negative part of the solution is zero.
For a general function v the positive and negative part is defined by

v+ := max (v, 0) ≥ 0, v− := max (−v, 0) ≥ 0 and with that v = v+ − v− .
That means for the preservation of non-negativity we have to show

v−(·, 0) ≡ 0 ⇒ v−(·, t) ≡ 0 ∀t ≥ 0 .

In order to apply this concept to functions from Sobolev spaces, we need the following
lemma of Stampacchia.
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Lemma 3 (Stampacchia)
Let Ω ⊂ Rn be bounded, v ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then it holds v+, v− ∈ W 1,p(Ω) and

∇v+(x) =

{
∇v(x) for x ∈ {x ∈ Ω : v(x) > 0}

0 else

∇v−(x) =

{
−∇v(x) for x ∈ {x ∈ Ω : v(x) < 0}

0 else

in the sense of distributions.

A proof of this lemma can be found in [32].

Remark
An analogous result is not true for higher Sobolev spaces W k,p with k > 1.

For the integral over Ω it follows immediately∫
Ω

v+(x)v−(x) dx = 0 and

∫
Ω

∇u+(x)∇u−(x) dx = 0 .

l1 N1(t) ≥ 0

By assumption we have N1,0(x) ≥ 0 and consequently N−1 (0) ≡ 0. Multiplying (3.2)

∂tN1 = −f(u)N1

by N−1 , using N1 = N+
1 −N−1 and integrating over

∫
Ω
dx, we get with Condition 1 (i)

1

2

d

dt
‖N−1 (t)‖2

L2(Ω) = −
∫

Ω

f(u(t))|N−1 (t)|2 dx ≤ 0 ,

which gives

‖N−1 (t)‖2
L2(Ω) ≤ ‖N−1 (0)‖2

L2(Ω) = 0 .

This implies ‖N−1 (t)‖L2(Ω) = 0 ∀t > 0, i.e.

N−1 (t) ≡ 0 ∀t ≥ 0 ⇔ N1(t) ≥ 0 ∀t ≥ 0 .

l2 N2(t) ≥ 0

We have N−2 (0) ≡ 0, N2 = N+
2 − N−2 and by the previous result N1 = N+

1 . Multiplying
the equation (3.3)

∂tN2 = f(u)N1 − g(u)N2

by the negative part N−2 and taking
∫

Ω
dx, we have with Condition 1 (i)

1

2

d

dt
‖N−2 (t)‖2

L2(Ω) = −
∫

Ω

f(u(t))N+
1 (t)N−2 (t) dx−

∫
Ω

g(u(t))|N−2 (t)|2 dx ≤ 0 .
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As before we obtain

N−2 (t) ≡ 0 ∀t ≥ 0 ⇔ N2(t) ≥ 0 ∀t ≥ 0 .

l3 N3(t) ≥ 0

With the same arguments making use of the result N2 = N+
2 we get

N−3 (t) ≡ 0 ∀t ≥ 0 ⇔ N3(t) ≥ 0 ∀t ≥ 0 .

l4 u(t) ≥ 0

Multiplication of (3.1) by u− and integration over
∫

Ω
dx yields

−1

2

d

dt
‖u−(t)‖2

L2(Ω) = d1

∫
Ω

∆u(t)u−(t) dx+ d2

∫
Ω

g(u(t))N2(t)u−(t) dx .

It holds due to Stampacchia’s lemma∫
Ω

∆u(t)u−(t) dx =

∫
∂Ω

∇u(t)u−(t)~n dS −
∫

Ω

∇u(t)∇u−(t) dx = ‖∇u−(t)‖2
L2(Ω) (3.22)

and by using the fact N2 = N+
2 , we obtain

1

2

d

dt
‖u−(t)‖2

L2(Ω) = −d1‖∇u−(t)‖2
L2(Ω) − d2

∫
Ω

g(u(t))N+
2 (t)u−(t) dx ≤ 0 .

This implies in analogy to the cases before

u−(t) ≡ 0 ∀t ≥ 0 ⇔ u(t) ≥ 0 ∀t ≥ 0 .

21.)

2.) Uniform boundedness of (N1, N2, N3)

From the conservation law

N1(x, t) +N2(x, t) +N3(x, t) = N1,0(x) +N2,0(x) +N3,0(x) = N(x) ∈ L∞(Ω) (3.23)

for x ∈ Ω, and the proved non-negativity of the ODE parts N1, N2 and N3 it follows
immediately

0 ≤ Ni(x, t) ≤ ‖N‖L∞(Ω) ∀t ≥ 0 , ∀x ∈ Ω , i = 1, 2, 3 . (3.24)

22.)



3.1. Neumann boundary conditions 45

3.1.2 Asymptotic behavior of solutions

Now the longtime behavior of the solution (u,N1, N2, N3) is studied. This behavior is
highly dependent on the special structure of the model functions f and g.

Proposition 4
Let all assumptions of Theorems 1 and 2 hold and in addition assume u0 6≡ 0.

Then the unique solution u is strictly positive for t > 0 and becomes bounded by below:

∃ t0 > 0 and ∃ % > 0 : u(x, t) ≥ % > 0 ∀t ≥ t0 ∀x ∈ Ω.

Proof

The solution u fulfills the PDE problem

∂tu = d1∆u+ d2g(u)N2

u(x, 0) = u0(x)

∂νu
∣∣
∂Ω

= 0 .

For the proof we introduce a subsolution u and show the relation

u(x, t) ≥ u(x, t) ≥ % > 0 .

First we show that the subsolution u is given by the solution of the following auxiliary
problem

∂tu = d1∆u

u(x, 0) = u0(x)

∂νu
∣∣
∂Ω

= 0 .

By Condition 1 and Theorem 2 we have g(u) ≥ 0, N2 ≥ 0. Thus it holds

∂tu− d1∆u︸ ︷︷ ︸
= 0

− g(u)N2︸ ︷︷ ︸
≥ 0

≤ ∂tu− d1∆u− g(u)N2︸ ︷︷ ︸
= 0

u(x, 0) = u(x, 0)

∂νu
∣∣
∂Ω

= ∂νu
∣∣
∂Ω
.

From the comparison principle it follows

u(x, t) ≤ u(x, t) ∀(x, t) ∈ ΩT := Ω× (0, T ] .

By ∂ΩT we denote the parabolic boundary ∂ΩT = ({0} × Ω) ∪ ([0, T ]× ∂Ω).

The next step is to show that u > 0. For that we consider the constant function u ≡ 0,
which is a subsolution of the auxiliary problem due to the initial condition u(x, 0) = 0.
Thus we have

u(x, t) ≤ u(x, t) ∀(x, t) ∈ ΩT .
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We assume that there exists y0 := (x0, t0) ∈ ΩT\∂ΩT such that

u(y0) = u(y0) .

That means there is an inner point y0 at which the function u attains its maximum. By
the strong parabolic maximum principle this implies

u ≡ u in ΩT  

which is a contradiction to u(0) = u0(x) 6≡ 0 = u(0).
It follows: There is no inner point y0 such that u(y0) = u(y0) = 0 ⇒ u > 0 in ΩT\∂ΩT .

Furthermore we can also show that u is positive on the boundary for all t > 0, i.e.
on ∂ΩT\({0} × Ω). We assume that there exists y1 := (x1, t1) with x1 ∈ ∂Ω and t1 > 0
such that

u(y1) = 0 .

Then by the properties of u, Hopf’s maximum principle (see e.g. [44], [56]) implies

∂νu(y1) 6= 0  

which is a contradiction to the homogeneous Neumann boundary condition ∂νu(y1) = 0.
It follows: There is no point y1 on the boundary with u(y1) = 0⇒ u > 0 in ∂ΩT\({0}×Ω).

All together it follows:
u(x, t) ≥ u(x, t) > 0 in ΩT ,

which means that u is proceeding instantaneously with infinite spreading speed.

It remains to show that u in fact is bounded below by some positive constant.

From u(x, t) > 0 ∀(x, t) ∈ ΩT it follows

∃ t0 > 0 and % > 0 such that min
x∈Ω

u(x, t0) ≥ % > 0 .

We define the constant function u% ≡ %. Then by the choice of t0 it holds

∂tu% − d1∆u% = ∂tu− d1∆u

u%(x, t0) ≤ u(x, t0)

∂νu%
∣∣
∂Ω

= ∂νu
∣∣
∂Ω
.

Again applying the comparison principle we obtain

u(x, t) ≥ u% ≡ % ∀t ≥ t0 ∀x ∈ Ω .

Taking everything together yields the desired result

u(x, t) ≥ % > 0 ∀t ≥ t0 ∀x ∈ Ω .

2

This result is now used to obtain information about the type of convergence as time goes
to infinity. For that we need additional assumptions on the functions f and g.
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Condition 2
Let the model functions f : R→ R and g : R→ R fulfill Condition 1. In addition we assume
that there exist constants C− ≥ 0, m1 > 0, m2 > 0, δ > 0 and %0 > 0 such that the following
assertions hold:

(i) Starting threshold:

f(s) = 0 ∀s ≤ C−

g(s) = 0 ∀s ≤ 0

(ii) Smoothness in [C−, C− + δ]:

m1(s− C−) ≤ f ′(s) ≤ m2(s− C−) ∀s ∈ [C−, C− + δ]

(iii) Lower bounds:

f(s) ≥ f(C− + δ) > 0 ∀s ≥ C− + δ

g(s) ≥ g(%0) > 0 ∀s ≥ %0 > 0

(iv) Monotonicity in [0, %0]:
g′(s) > 0 ∀s ∈ [0, %0]

In order to show several convergence results we need the following statement:

Proposition 5
Let y(t) and a(t) be non-negative functions with y ∈ C1([t0, t1]) and a ∈ C([t0, t1]) for
0 ≤ t0 < t1 ≤ ∞. If the inequality

d

dt
y(t) + γy(t) ≤ a(t) (3.25)

is satisfied with γ ≥ 0, then for t0 ≤ t ≤ t1 it holds

y(t) ≤ y(t0)e−γ(t−t0) +

∫ t

t0

a(s)e−γ(t−s) ds .

Depending on the properties of a(t), we can deduce further estimates:

(i) a(t) ≡ C in [t0, t1]:

y(t) ≤ y(t0) +
C

γ

(ii)

∫ ∞
0

a(t) dt <∞:

y(t) ≤ y(t0)e−γ(t−t0) +

∫ ∞
t0

a(t) dt

which implies y(t)
t→∞−−−→ 0.
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Proof

Multiplying (3.25) by eγt yields

d

dt
y(t)eγt + γy(t)eγt =

d

dt

(
y(t)eγt

)
≤ a(t)eγt

and by integration over
∫ t
t0
ds and multiplication with e−γt we obtain

y(t) ≤ y(t0)e−γ(t−t0) +

∫ t

t0

a(s)e−γ(t−s) ds . (3.26)

In the first case (i) we can further estimate

≤ y(t0)e−γ(t−t0) +
C

γ

(
1− e−γ(t−t0)

)
≤ y(t0) +

C

γ
.

In the second case (ii) the basic estimate (3.26) yields

y(t) ≤ y(t0)e−γ(t−t0) +

∫ t

t0

a(s) ds
t→∞−−−→

∫ ∞
t0

a(s) ds

for all t0 ≥ 0. From the assumption

∫ ∞
0

a(t) dt <∞ it follows

∫ ∞
t0

a(s) ds→ 0 for t0

sufficiently large which implies y(t)
t→∞−−−→ 0.

2

The next theorem gives information about the strong convergence of the solution.

Theorem 6
Let Condition 2 hold. Under the assumptions of Theorem 2 we have the following strong
convergence results:

N1(x, t)
t→∞−−−→ N∞1 (x) ≥ 0 in Lp(Ω), 1 ≤ p <∞

N2(x, t)
t→∞−−−→ N∞2 (x) ≡ 0 in Lp(Ω), 1 ≤ p <∞

N3(x, t)
t→∞−−−→ N∞3 (x) ≤ ‖N‖L∞(Ω) in Lp(Ω), 1 ≤ p <∞

u(x, t)
t→∞−−−→ u∞(x) ≡ C in L2(Ω) .

Proofl1 N1(x, t)→ N∞1 (x)

From the model equation (3.2), Condition 1 (i) and the non-negativity result it holds in
the point-wise sense

∂tN1(x, t) = −f
(
u(x, t)

)
N1(x, t) ≤ 0 ∀t ≥ 0 ∀x ∈ Ω .
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Thus the sequence is non-increasing and bounded below by 0 which yields the convergence

N1(x, t)
t→∞−−−→ N∞1 (x) ≥ 0 ∀x ∈ Ω .

From (3.24) we know supx∈ΩN1(x, t) ≤ ‖N‖L∞(Ω) ∀t ≥ 0. Since N1(x, t) is non-increasing
in t it follows

sup
x∈Ω

N∞1 (x) ≤ sup
x∈Ω

N1(x, t) ≤ ‖N‖L∞(Ω) . (3.27)

Furthermore we have

N1(x, t) = |N1(x, t)| ≤ N(x) where

∫
Ω

|N(x)| dx ≤ |Ω|‖N‖L∞(Ω) <∞ .

Thus the Lebesgue dominated convergence theorem can be applied and yields

lim
t→∞

∫
Ω

|N1(x, t)−N∞1 (x)| dx = 0 ,

i.e. we have strong convergence in L1(Ω) to the unique limit N∞1 (x). This result can be
adapted to Lp(Ω), 1 ≤ p <∞. We note∫

Ω

|N1(x, t)−N∞1 (x)|p dx =

∫
Ω

|N1(x, t)−N∞1 (x)|p−1|N1(x, t)−N∞1 (x)| dx

≤ sup
x∈Ω
|N1(x, t)−N∞1 (x)|p−1

∫
Ω

|N1(x, t)−N∞1 (x)| dx .

Applying Minkowski’s inequality, we get

≤ 2p−2

(
sup
x∈Ω
|N1(x, t)|p−1 + sup

x∈Ω
|N∞1 (x)|p−1

)∫
Ω

|N1(x, t)−N∞1 (x)| dx
(3.27)

≤ 2p−1 ‖N‖p−1
L∞(Ω)︸ ︷︷ ︸

<∞

∫
Ω

|N1(x, t)−N∞1 (x)| dx︸ ︷︷ ︸
−→ 0

t→∞−−−→ 0 .

This finally yields

N1(x, t)
t→∞−−−→ N∞1 (x) strongly in Lp(Ω), 1 ≤ p <∞ .

l2 N3(x, t)→ N∞3 (x)

For N3(x, t) the model equation (3.4) gives

∂tN3(x, t) = g
(
u(x, t)

)
N2(x, t) ≥ 0 ∀t ≥ 0 ∀x ∈ Ω .

Since N3(x, t) is bounded above by ‖N‖L∞(Ω), the monotonicity yields almost everywhere
convergence

N3(x, t)
t→∞−−−→ N∞3 (x) ≤ ‖N‖L∞(Ω) for a.e. x ∈ Ω .
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Analogously to l1 , |N3(x, t)| is dominated byN(x) and supx∈Ω N3(x, t) ≤ supx∈ΩN
∞
3 (x) ≤

‖N‖L∞(Ω). Thus we have the same convergence result

N3(x, t)
t→∞−−−→ N∞3 (x) strongly in Lp(Ω), 1 ≤ p <∞ .

l3 N2(x, t)→ N∞2 (x)

Using (3.6) we obtain the almost everywhere convergence

N2(x, t) = N(x) − N1(x, t) − N3(x, t)yt→∞ yt→∞ yt→∞
N(x) − N∞1 (x) − N∞3 (x) =: N∞2 (x)

and the convergence in Lp(Ω) follows immediately:∫
Ω

|N2(x, t)−N∞2 (x)|p dx =

∫
Ω

|N∞1 (x)−N1(x, t) +N∞3 (x)−N3(x, t)|p dx

≤ 2p−1
(∫

Ω

|N1(x, t)−N∞1 (x)|p dx︸ ︷︷ ︸
−→ 0

+

∫
Ω

|N3(x, t)−N∞3 (x)|p dx︸ ︷︷ ︸
−→ 0

)
t→∞−−−→ 0 .

Thus we have

N2(x, t)
t→∞−−−→ N∞2 (x) strongly in Lp(Ω), 1 ≤ p <∞ . (3.28)

l4 u(x, t)→ u∞(x)

In order to show the convergence properties of u we take a look at the eigenvalue problem

−∆ϕj(x) = λjϕj(x) , x ∈ Ω

∂νϕj
∣∣
∂Ω

= 0 . (3.29)

It is well known that this eigenvalue problem with Neumann boundary conditions has the
following properties:

(i) For the first eigenvalue and the corresponding eigenfunction it holds:

λ1 = 0 and ϕ1(x) ≡ Cϕ .

(ii) The remaining eigenvalues satisfy

λ2 > 0 and λi →∞ as i→∞

and the set of eigenfunctions {ϕi}i∈N, ‖ϕj‖L2(Ω) = 1 forms a complete orthonormal
system in L2(Ω).
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Remark
We denote by λ(Ω) := |Ω| the Lebesgue measure of the domain Ω.

From the normalizing condition ‖ϕ1‖L2(Ω) = 1 it follows

ϕ1 = Cϕ = λ(Ω)−1/2 . (3.30)

The function u(t) ∈ L2(Ω) can be projected onto the space spanned by eigenfunctions:

u(x, t) =
∞∑
j=1

aj(t)ϕj(x) .

For the convergence result we work with the following orthogonal decomposition

u(x, t) = a1(t)ϕ1(x) + ϕ⊥(x, t) (3.31)

where the orthogonal complement ϕ⊥ of a1(t)ϕ1(x) is given by ϕ⊥(x, t) =
∑∞

j=2 aj(t)ϕj(x)

due to the orthogonality of the eigenfunctions. By (3.29) ϕ⊥(x, t) also satisfies the zero
Neumann boundary condition

∂νϕ
⊥∣∣
∂Ω

= 0 .

The Fourier coefficients are calculated by

aj(t) = (u(t), ϕj)L2(Ω)

and thus for the first coefficient a1(t) it holds

a1(t) = (u(t), Cϕ)L2(Ω) = Cϕ

∫
Ω

u(x, t) dx (3.32)

d

dt
a1(t) = Cϕ

∫
Ω

∂tu(x, t) dx .

Substituting this relation into PDE (3.1) gives

d

dt
a1(t) = Cϕ

∫
Ω

d1∆u(x, t) dx︸ ︷︷ ︸
= 0

+ d2Cϕ

∫
Ω

g(u(x, t))N2(x, t)︸ ︷︷ ︸
≥ 0

dx ≥ 0 (3.33)

since∫
Ω

d1∆u(x, t) dx =

∫
∂Ω

d1∇u(x, t) · ν dS −
∫

Ω

∇d1∇u(x, t) dx = d1

∫
∂Ω

∂νu(x, t) dS = 0 .

Thus the function a1(t) is non-decreasing. In order to show convergence, we need to find
an upper bound. For that we interpret the previous equation in a different way using the
relation g(u(x, t))N2(x, t) = ∂tN3(x, t):

d

dt
a1(t) = d2Cϕ

d

dt

∫
Ω

N3(x, t) dx .
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Integration of this identity over
∫ t

0
ds yields the term we have to estimate:

a1(t) = a1(0) + d2Cϕ

(∫
Ω

N3(x, t) dx−
∫

Ω

N3(x, 0) dx

)
.

From (3.24) we know that

N3(x, t) = N3(x, 0) +

∫ t

0

∂sN3(x, s) ds = N3,0(x) +

∫ t

0

g(u(x, s))N2(x, s) ds ≤ ‖N‖L∞(Ω)

(3.34)
and since N3,0(x) ≥ 0 we obtain

N3(x, t)−N3,0(x) ≤ ‖N‖L∞(Ω)

⇒
∫

Ω

N3(x, t) dx−
∫

Ω

N3,0(x) dx ≤ λ(Ω)‖N‖L∞(Ω) <∞ .

The constant a1(0) is given by

a1(0) = (u(0), Cϕ)L2(Ω) = Cϕ‖u0‖L1(Ω) ≤ Cϕλ(Ω)1/2‖u0‖L2(Ω) <∞ .

All together we obtain

a1(t) ≤ Cϕλ(Ω)1/2‖u0‖L2(Ω) + d2Cϕλ(Ω)‖N‖L∞(Ω) =: Ca1 <∞ ,

which yields the existence of the limit a∞1 ≤ Ca1 such that

a1(t)
t→∞−−−→ a∞1 . (3.35)

In order to show that u converges to a constant function, it is thus sufficient to show that
ϕ⊥(t, x)→ 0 as t→∞ for a.e. x ∈ Ω.

For this purpose, we need to derive the boundedness of ‖N2‖L1(0,∞;L1(Ω)): From (3.34),
Proposition 4 and Condition 2 (iii), (iv) it holds

λ(Ω)‖N‖L∞(Ω) ≥
∫

Ω

∫ t

0

g(u(x, s))N2(x, s) ds dx ≥ g(%)

∫
Ω

∫ t

0

N2(x, s) ds dx ,

where % := min(%, %0) > 0.

Permuting the integration order we obtain a non-decreasing sequence

F (t) :=

∫ t

0

‖N2(s)‖L1(Ω) ds ≤
λ(Ω)

g(%)
‖N‖L∞(Ω)

which is bounded for every t ≥ 0 and thus converging to F (∞) ≤ λ(Ω)
g(%)
‖N‖L∞(Ω):

lim
t→∞

F (t) =

∫ ∞
0

‖N2(t)‖L1(Ω) dt = ‖N2‖L1(0,∞;L1(Ω)) ≤
λ(Ω)

g(%)
‖N‖L∞(Ω) . (3.36)
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This estimate also gives a characterization of N∞2 (x) since the convergence of the integral
over the non-negative integrand

∫∞
0
‖N2(t)‖L1(Ω) dt implies the existence of a sequence

{tk}k∈N with tk →∞ such that

lim
k→∞

‖N2(tk)‖L1(Ω) = 0 .

From (3.28) and the uniqueness of the strong limit it follows

lim
k→∞

∫
Ω

N2(x, tk) dx =

∫
Ω

N∞2 (x) dx = 0 =

∫
Ω

0 dx ,

i.e. N2(x, t)→ 0 in L1(Ω) and by the arguments we used earlier we have

N2(x, t)
t→∞−−−→ 0 strongly in Lp(Ω), 1 ≤ p <∞ .

Furthermore
∫

Ω
N∞2 (x) dx = 0 implies

N∞2 (x) ≡ 0 for a.e. x ∈ Ω .

Now we return to the decomposition of u and our aim is to show

a1(t)ϕ1(x) + ϕ⊥(x, t) = u(x, t)
t→∞−−−→ u∞ ≡ a∞1 Cϕ in L2(Ω) .

For this aim we use the following lemma:

Lemma 7 (Wirtinger’s inequality)
Let v ∈ H1(Ω) with zero mean value ∫

Ω

v dx = 0 .

Then there exists a constant CW > 0 such that the following estimate holds:

‖v‖L2(Ω) ≤ CW‖∇v‖L2(Ω) .

A proof of that inequality can be found in [10]. Under some condition we can further
estimate:

Corollary 8
Let v ∈ H2(Ω) satisfy the conditions of Lemma 7 and in addition assume

‖∇v‖2
L2(Ω) = (−∆v, v)L2(Ω) . (3.37)

Then it holds with the same constant CW > 0

‖v‖L2(Ω) ≤ CW‖∇v‖L2(Ω) ≤ C2
W‖∆v‖L2(Ω) .
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Proof

Due to Cauchy-Schwarz and Wirtinger’s inequality it follows immediately

(−∆v, v)L2(Ω) = ‖∇v‖2
L2(Ω) ≤ ‖∆v‖L2(Ω)‖v‖L2(Ω) ≤ CW‖∆v‖L2(Ω)‖∇v‖L2(Ω)

and consequently

‖∇v‖L2(Ω) ≤ CW‖∆v‖L2(Ω) .

2

Remark
Condition (3.37) is not very restrictive. If v satisfies homogeneous Dirichlet or Neumann
boundary conditions, it follows

(−∆v, v)L2(Ω) =

∫
Ω

−∆v v dx = −
∫
∂Ω

∇v v ~n dS︸ ︷︷ ︸
= 0

+

∫
Ω

∇v∇v dx = ‖∇v‖2
L2(Ω) .

The orthogonal complement ϕ⊥ fulfills by definition(
ϕ⊥(t), ϕ1

)
L2(Ω)

= Cϕ

∫
Ω

ϕ⊥(x, t) = 0

and thus Wirtinger’s inequality can be applied to ϕ⊥(t):

‖ϕ⊥(t)‖L2(Ω) ≤ CW‖∇ϕ⊥(t)‖L2(Ω) .

Substitution of the decomposition into the PDE (3.1) gives

∂t
(
a1(t)ϕ1(x) + ϕ⊥(x, t)

)
= d1∆

(
a1(t)ϕ1(x) + ϕ⊥(x, t)

)
+ d2g(u(x, t))N2(x, t) ,

which leads to

d

dt
a1(t)ϕ1 + ∂tϕ

⊥(x, t) = d1∆ϕ⊥(x, t) + d2g(u(x, t))N2(x, t) (3.38)

due to the fact ϕ1(x) ≡ Cϕ. Multiplying that equation by ϕ⊥, integrating over
∫

Ω
dx and

using the orthogonality, we get

d

dt
a1(t)

∫
Ω

ϕ1 ϕ
⊥(x, t) dx︸ ︷︷ ︸
= 0

+
1

2

d

dt
‖ϕ⊥(t)‖2

L2(Ω)

=− d1‖∇ϕ⊥(t)‖2
L2(Ω) + d2

∫
Ω

g(u(x, t))N2(x, t)ϕ⊥(x, t) dx ,

i.e.

1

2

d

dt
‖ϕ⊥(t)‖2

L2(Ω) + d1‖∇ϕ⊥(t)‖2
L2(Ω) = d2

∫
Ω

g(u(x, t))N2(x, t)ϕ⊥(x, t) dx . (3.39)
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Applying Wirtinger’s and Hölder’s inequality we have

1

2

d

dt
‖ϕ⊥(t)‖2

L2(Ω) +
d1

CW
2‖ϕ⊥(t)‖2

L2(Ω) ≤ d2‖g(u(t))N2(t)‖L2(Ω)‖ϕ⊥(t)‖L2(Ω)

and Young’s inequality with ε = d1

d2C2
W

gives

d

dt
‖ϕ⊥(t)‖2

L2(Ω) +
d1

CW
2︸ ︷︷ ︸

=: γ > 0

‖ϕ⊥(t)‖2
L2(Ω) ≤

d2
2CW

2

d1︸ ︷︷ ︸
=:C5> 0

‖g(u(t))N2(t)‖2
L2(Ω) . (3.40)

Remark
By the term ”applying Young’s inequality with ε” we mean that we solve the following scenario:

Aim: For a given expression kAB with numbers k > 0, A,B ≥ 0 and a given target constant
Ct > 0, find a constant ε > 0 such that

kAB = k
√
εA

1√
ε
B ≤ k

(ε
2
A2 +

1

2ε
B2
) !

= CtA
2 + CεB

2 .

This implies

k
ε

2
!

= Ct ⇔ ε =
2Ct
k

⇒ Cε =
k

2ε
=

k2

4Ct
.

Put

y(t) := ‖ϕ⊥(t)‖2
L2(Ω)

a(t) := C5‖g(u(t))N2(t)‖2
L2(Ω) ,

then our aim is to show y(t)→ 0 by use of Proposition 5. Here the estimate of ‖N2‖L1(0,∞;L1(Ω))

comes into play: From (3.36) and Condition 1 (ii) it follows∫ ∞
0

a(t) dt = C5

∫ ∞
0

∫
Ω

|g(u(x, t))N2(x, t)|2 dx dt

≤ g∗2‖N‖L∞(Ω)C5

∫ ∞
0

∫
Ω

|N2(x, t)| dx dt

= g∗2‖N‖L∞(Ω)C5‖N2‖L1(0,∞;L1(Ω)) ≤ C5λ(Ω)
g∗2

g(%)
‖N‖2

L∞(Ω) =: C6 <∞ .

(3.41)

Remark
From that it also follows ‖N2‖L2(0,∞;L2(Ω)) <∞:

By the definition of % > 0 we know g(u(x, t)) ≥ g(%) > 0 which leads to

C5g(%)2‖N2‖2
L2(0,∞;L2(Ω)) ≤

∫ ∞
0

a(t) dt ≤ C6 .
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Hence the assumptions of Proposition 5 are fulfilled and we can conclude

y(t) = ‖ϕ⊥(t)‖2
L2(Ω)

t→∞−−−→ 0 .

This yields

ϕ⊥(x, t)
t→∞−−−→ 0 strongly in L2(Ω) .

Together with the convergence result (3.35) of a1(t), this gives the almost everywhere
convergence result for u(x, t):

u(x, t) = a1(t)ϕ(x) + ϕ⊥(x, t)yt→∞ yt→∞
a∞1 Cϕ + 0 := u∞

and we have

u(x, t)
t→∞−−−→ u∞(x) ≡ a∞1 Cϕ strongly in L2(Ω) .

This completes the proof.
2

Further estimates

Up to now we have the following convergence results:

N1(x, t)
t→∞−−−→ N∞1 (x) in Lp(Ω), 1 ≤ p <∞

N2(x, t)
t→∞−−−→ 0 in Lp(Ω), 1 ≤ p <∞

N3(x, t)
t→∞−−−→ N∞3 (x) in Lp(Ω), 1 ≤ p <∞

u(x, t)
t→∞−−−→ a∞1 Cϕ in L2(Ω)

ϕ⊥(x, t)
t→∞−−−→ 0 in L2(Ω)

Corollary 9
Under the assumptions of Theorem 6 the following additional facts hold:

We have the convergence

∇ϕ⊥(x, t) = ∇u(x, t)
t→∞−−−→ 0 in L2(Ω) (3.42)

and the following expressions are bounded:

sup
t> 0

‖u(t)‖L1(Ω) <∞

sup
t> 0

‖u(t)‖L2(Ω) <∞

sup
t≥ δ
‖∇u(t)‖L2(Ω) <∞ for δ > 0 (3.43)

sup
t> 0
‖ϕ⊥(t)‖L2(Ω) <∞∫ T

0

‖∇u(t)‖2
L2(Ω) dt <∞ .
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Furthermore the following integrals converge, where (3.45) only holds if we make the ad-
ditional assumption u0 ∈ H1(Ω)∫ ∞

0

‖∇ϕ⊥(t)‖2
L2(Ω) dt <∞ (3.44)∫ ∞

0

‖∆ϕ⊥(t)‖2
L2(Ω) dt <∞ if u0 ∈ H1(Ω) . (3.45)

Proof

The first result is obtained in analogy to the previous case ϕ⊥(x, t)→ 0. For that we use
again equation (3.38) in terms of the decomposition of u, multiply by −∆ϕ⊥ and integrate
over

∫
Ω
dx. From the zero Neumann boundary condition it follows

(−∆ϕ⊥(t), ϕ1)L2(Ω) = (−∆ϕ⊥(t), Cϕ)L2(Ω) = 0

and we have

1

2

d

dt
‖∇ϕ⊥(t)‖2

L2(Ω) + d1‖∆ϕ⊥(t)‖2
L2(Ω) = −d2

∫
Ω

g(u(x, t))N2(x, t)∆ϕ⊥(x, t) dx

≤ d2‖g(u(t))N2(t)‖L2(Ω)‖∆ϕ⊥(t)‖L2(Ω) . (3.46)

Young’s inequality with ε = d1

d2
yields

d

dt
‖∇ϕ⊥(t)‖2

L2(Ω) + d1‖∆ϕ⊥(t)‖2
L2(Ω) ≤

d2
2

d1

‖g(u(t))N2(t)‖2
L2(Ω) (3.47)

and by use of Corollary 8 we get

d

dt
‖∇ϕ⊥(t)‖2

L2(Ω) +
d1

CW
2‖∇ϕ⊥(t)‖2

L2(Ω) ≤
d2

2

d1

‖g(u(t))N2(t)‖2
L2(Ω) . (3.48)

As before, we set

y(t) := ‖∇ϕ⊥(t)‖2
L2(Ω)

a(t) :=
d2

2

d1

‖g(u(t))N2(t)‖2
L2(Ω) .

From the differential inequality

d

dt
y(t) + γy(t) ≤ a(t)

with the same constant γ = d1

CW
2 > 0 and the same arguments as in the previous case

ϕ⊥(x, t)→ 0, by Proposition 5 it follows

y(t) = ‖∇ϕ⊥(t)‖2
L2(Ω)

t→∞−−−→ 0 .
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This yields

∇ϕ⊥(x, t)
t→∞−−−→ 0 strongly in L2(Ω) .

Now we want to analyze the solution u in terms of the supremum norm over the time
interval (0,∞]. Integrating the PDE

∂tu = d1∆u+ d2g(u)N2 (3.49)

over
∫

Ω
dx, we obtain due to the boundary condition

d

dt
‖u(t)‖L1(Ω) = d2

∫
Ω

g(u(x, t))N2(x, t) dx = d2
d

dt
‖N3(t)‖L1(Ω) ≥ 0

and thus the sequence ‖u(t)‖L1(Ω) is monotonically increasing. Furthermore it is bounded

for every t > 0, which is shown by integration over
∫ t

0
ds:

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω) − d2‖N3,0‖L∞(Ω) + d2‖N3(t)‖L1(Ω)

≤ ‖u0‖L1(Ω) − d2‖N3,0‖L∞(Ω) + λ(Ω)‖N‖L∞(Ω) =: C7 <∞ .

This yields

sup
t> 0
‖u(t)‖L1(Ω) ≤ C7 .

This result is now used to give an upper bound for ‖u(t)‖L2(Ω).

Multiplying (3.49) by u and integrating over
∫

Ω
dx, we obtain

1

2

d

dt
‖u(t)‖2

L2(Ω) + d1‖∇u(t)‖2
L2(Ω) ≤ d2g

∗‖N‖L∞(Ω)‖u(t)‖L1(Ω)

≤ d2g
∗‖N‖L∞(Ω) sup

t> 0
‖u(t)‖L1(Ω) =: C8 <∞ . (3.50)

By the non-negativity of the norm we can deduce d
dt
‖u(t)‖L2(Ω) < ∞. Together with the

property u ∈ C([0, T ];L2(Ω)) and the convergence ‖u(t)‖L2(Ω) → ‖u∞‖L2(Ω), this gives

sup
t> 0
‖u(t)‖L2(Ω) <∞ .

In order to obtain a similar result for ∇u, we first have to show the boundedness of∫ T
0
‖∇u(t)‖2

L2(Ω) dt. Integrating estimate (3.50) over
∫ T

0
dt, we get

1

2
‖u(T )‖2

L2(Ω) + d1

∫ T

0

‖∇u(t)‖2
L2(Ω) dt ≤

1

2
‖u0‖2

L2(Ω) + C8T =: C9 ,

which is a bounded expression due to the initial condition u0 ∈ L2(Ω) and yields∫ T

0

‖∇u(t)‖2
L2(Ω) dt ≤

1

d1

C9 . (3.51)
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By the orthogonal decomposition (3.31) with ϕ1 ≡ Cϕ, we know ∇ϕ⊥ = ∇u and thus
(3.48) also reads with Condition 1 (ii) and (3.24)

d

dt
‖∇u(t)‖2

L2(Ω) +
d1

CW
2‖∇u(t)‖2

L2(Ω) ≤
d2

2

d1

g∗2‖N‖2
L∞(Ω)λ(Ω) =: C10 .

Again we set y(t) := ‖∇u(t)‖2
L2(Ω) and apply Proposition 5 with γ = d1

C2
W

and constant

right hand side C = C10. This gives

‖∇u(t)‖2
L2(Ω) ≤ ‖∇u(δ)‖2

L2(Ω) +
C10

γ
for t ≥ δ , (3.52)

i.e. for the boundedness we need ‖∇u(δ)‖L2(Ω) <∞.

At this we know δ > 0 since we only have initial data from L2(Ω). However, from estimate
(3.51) we can deduce the existence of a time δ ∈ (0, T ] such that ‖∇u(δ)‖L2(Ω) <∞ and
thus it follows for a suitable constant C11 <∞

sup
t≥ δ
‖∇u(t)‖L2(Ω) ≤ C11 . (3.53)

Remark
1) Since ∇u = ∇ϕ⊥, we also have

sup
t≥ δ
‖∇ϕ⊥(t)‖L2(Ω) ≤ C11 .

2) If we assume u0 ∈ H1(Ω), then (3.52) also holds for δ = 0, i.e. in that case we have

sup
t> 0
‖∇u(t)‖L2(Ω) ≤ C12 (3.54)

with C12 :=
(
‖∇u0‖2

L2(Ω) + C10

γ

) 1
2 <∞.

Our next aim is to estimate supt>0 ‖ϕ⊥(t)‖L2(Ω). This is done by use of inequality (3.40),

which yields after integration
∫ t

0
ds

‖ϕ⊥(t)‖2
L2(Ω) ≤ ‖ϕ⊥(0)‖2

L2(Ω) + C5

∫ t

0

‖g(u(s))N2(s)‖2
L2(Ω) ds

≤ ‖ϕ⊥(0)‖2
L2(Ω) + C5

∫ ∞
0

‖g(u(s))N2(s)‖2
L2(Ω) ds .

From (3.77) we know that the integral is bounded and thus we only need ϕ⊥(0) ∈ L2(Ω).
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This follows from the orthogonal representation of u0 ∈ L2(Ω)

u0 =
∞∑
j=1

aj(0)ϕj =
∞∑
j=1

(u0, ϕj)L2(Ω)ϕj

⇒ ϕ⊥(0) =
∞∑
j=2

(u0, ϕj)L2(Ω)ϕj = u0 − (u0, Cϕ)L2(Ω)Cϕ

⇒ ‖ϕ⊥(0)‖L2(Ω) ≤ ‖u0‖L2(Ω) + |(u0, Cϕ)L2(Ω)|‖Cϕ‖L2(Ω)

≤ ‖u0‖2
L2(Ω) + ‖u0‖L2(Ω) ‖Cϕ‖L2(Ω)︸ ︷︷ ︸

= 1

‖Cϕ‖L2(Ω) = 2‖u0‖L2(Ω) <∞ .

(3.55)

In summary this gives

sup
t> 0
‖ϕ⊥(t)‖L2(Ω) <∞ .

The next estimate is obtained from inequality (3.39). Application of Hölder’s, Wirtinger’s
and Young’s inequality with ε = d1

d2CW
yields

1

2

d

dt
‖ϕ⊥(t)‖2

L2(Ω) +
d1

2
‖∇ϕ⊥(t)‖2

L2(Ω) ≤
d2

2CW
2

2d1

‖g(u(t))N2(t)‖2
L2(Ω) .

Integration over
∫ t

0
ds and omitting the positive term ‖ϕ⊥(t)‖2

L2(Ω) gives

d1

∫ t

0

‖∇ϕ⊥(s)‖2
L2(Ω) ds ≤ ‖ϕ⊥(0)‖2

L2(Ω) +
d2

2CW
2

d1

∫ t

0

‖g(u(s))N2(s)‖2
L2(Ω) ds .

This holds true for every t > 0, whence follows with (3.77) and (3.55)∫ ∞
0

‖∇ϕ⊥(t)‖2
L2(Ω) dt ≤

1

d1

‖ϕ⊥(0)‖2
L2(Ω) +

d2
2CW

2

d1
2

∫ ∞
0

‖g(u(t))N2(t)‖2
L2(Ω) dt

≤ 2

d1

‖u0‖2
L2(Ω) +

d2
2CW

2

d1
2 λ(Ω)

g∗2

g(%)
‖N‖2

L∞(Ω) =: C13 <∞ .

Thus we have ∫ ∞
0

‖∇ϕ⊥(t)‖2
L2(Ω) dt ≤ C13 .

In an analogous way we now want to show the same result for ∆ϕ⊥. Here we use inequality
(3.47) and integrate over

∫ t
0
ds. Again omitting the positive term ‖∇ϕ⊥(t)‖2

L2(Ω) and
passing to the limit t→∞ we obtain∫ ∞

0

‖∆ϕ⊥(t)‖2
L2(Ω) dt ≤

1

d1

‖∇ϕ⊥(0)‖2
L2(Ω) +

d2
2

d1
2

∫ ∞
0

‖g(u(t))N2(t)‖2
L2(Ω) dt .
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Remark
At this point we explicitly need ∇ϕ⊥(0) ∈ L2(Ω). For all the observations before it was
sufficient to have ϕ⊥(0) ∈ L2(Ω), which follows immediately from u0 ∈ L2(Ω) as it was
shown in (3.55). In order to have ∇ϕ⊥(0) ∈ L2(Ω), we need to assume u0 ∈ H1(Ω). By the
definition of ϕ⊥ it holds

∇ϕ⊥(0) =
∞∑
j=2

(u0, ϕj)∇ϕj = ∇u0 − (u0, ϕ1)L2(Ω)∇ϕ1 = ∇u0 .

If u0 ∈ H1(Ω), then we obtain by (3.77)∫ ∞
0

‖∆ϕ⊥(t)‖2
L2(Ω) dt ≤

1

d1

‖∇u0‖2
L2(Ω) +

d2
2

d1
2λ(Ω)

g∗2

g(%)
‖N‖2

L∞(Ω) =: C14 <∞ ,

∫ ∞
0

‖∆ϕ⊥(t)‖2
L2(Ω) dt ≤ C14 .

2

3.1.3 Classification of partial and complete swelling

The mitochondrial swelling process and its extent is dependent on the local calcium dose.
If the initial concentration u0 stays below the initiation threshold C− at any point x ∈ Ω,
then no swelling will happen and we have Ni(x, t) ≡ Ni,0(x) ∀x ∈ Ω, i = 1, 2, 3.

Another possible scenario is the so-called “partial swelling”. This effect of partial swelling
occurs in the experiments and can also be seen in the simulations when the initial cal-
cium concentration lies above C− at a small region but due to diffusion it does not stay
above this threshold for the whole time. This leads to N1(x, t) = N1(x, T1) ∀t ≥ T1 and
N3(x, t) = N3(x, T2) ∀t ≥ T2.

But if the initial calcium distribution together with the influence of the positive feed-
back is sufficiently high, then “complete swelling” occurs which means N1(x, t) → 0 and
N3(x, t)→ N(x) for all x ∈ Ω.

As it was shown before, for both cases it holds N2(x, t)→ 0.

Condition 3
Let the assumption of Conditions 1 and 2 hold. In addition we assume more regularity of the
initial data:

u0 ∈ H1(Ω)

N1,0 ∈ H1(Ω)

N2,0 ∈ H1(Ω)

A crucial point to distinguish between partial and complete swelling is to check if f(u)
stays positive for all times. For that it is necessary to have uniform convergence of u(x, t)
to u∞ ≡ a∞1 Cϕ. Up to now we only have strong convergence in L2(Ω). So our aim now is
to show uniform convergence, which turns out to be an extensive task.
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Theorem 10
Under the assumptions of Condition 3, the following additional statements hold:

sup
t> 0
‖∇N1(t)‖L2(Ω) <∞

sup
t> 0
‖∇N2(t)‖L2(Ω) <∞

sup
t≥ δ̃
‖∆ϕ⊥(t)‖L2(Ω) <∞ for δ̃ > 0 .

Furthermore we have uniform convergence

‖u(t)− u∞‖L∞(Ω) −→ 0 as t→∞ .

Proof

The course of action is to show the implications

sup
t> 0
‖∇N2(t)‖L2(Ω) ≤ C ⇒ sup

t≥ δ̃
‖∆ϕ⊥(t)‖L2(Ω) ≤ C ⇒ ‖u(x, t)− u∞‖Cα(Ω)

t→∞−−−→ 0

for t ≥ δ̃, where Cα(Ω) denotes the Hölder space C0,α(Ω), α ∈ (0, 1].

For that we need the following statements:

Lemma 11 ([53])
Let v ∈ Cα(Ω). Then there exist positive constants θ > 0 and Cθ > 0 such that

‖v‖Cα(Ω) ≤ Cθ‖∇v‖θL2(Ω)‖∆v‖1−θ
L2(Ω) .

Theorem 12 (Morrey, [52])
Let Ω ⊂ Rn be open with Lipschitz boundary ∂Ω ∈ C0,1. For k > l, 1 ≤ p < ∞ and
0 < α < 1 satisfying

k − n

p
≥ l + α

we have the continuous imbedding

W k,p(Ω) ↪→ C l,α(Ω) .

Lemma 13 ([56])
Let Ω ⊂ Rn be bounded. Then we have the continuous imbeddings

C l,β(Ω) ↪→ C0,β(Ω) ↪→ C0,α(Ω) ↪→ L∞(Ω)

for 0 < α < β ≤ 1.

Applied to our case, for every space dimension n ≤ 3 there exists α ∈ (0, 1] such that

k ≥ 3

2
+ α ⇒ Hk ↪→ Cα(Ω) .
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For our problem the domain of −∆ is given by D(−∆) = {v ∈ H2(Ω) : ∂νv
∣∣
∂Ω

= 0} and
thus by the previous result with k = 2 the solution u(t) as well as the constant function
u∞ lie in Cα(Ω). So we can apply Lemma 11 to the difference u(t)− u∞, which yields by
Lemma 13 for t ≥ δ̃

‖u(t)− u∞‖L∞(Ω) ≤ C‖u(t)− u∞‖Cα(Ω) ≤ CCθ‖∇(u(t)− u∞)‖θL2(Ω)‖∆(u(t)− u∞)‖1−θ
L2(Ω)

= CCθ‖∇ϕ⊥(t)‖θL2(Ω)‖∆ϕ⊥(t)‖1−θ
L2(Ω)

≤ CCθ sup
t≥ δ̃
‖∆ϕ⊥(t)‖1−θ

L2(Ω)‖∇ϕ⊥(t)‖θL2(Ω) .

From (3.42) we know ‖∇ϕ⊥(t)‖L2(Ω)
t→∞−−−→ 0 and so we conclude

‖u(t)− u∞‖L∞(Ω)
t→∞−−−→ 0 if sup

t≥ δ̃
‖∆ϕ⊥(t)‖L2(Ω) ≤ C ,

i.e. in that case we have uniform convergence of u(x, t) to u∞ for t ≥ δ̃.

Remark
The restriction t ≥ δ̃ > 0 does not pose any problems. We are interested in the longtime
dynamics, where we study the behavior for t → ∞ and the small initial interval [0, δ̃) need
not be taken into account.

So our aim now is to show that ‖∆ϕ⊥(t)‖L2(Ω) is bounded for all t ≥ δ̃. For that purpose
we introduce the operator A = −∆, which is well known to be positive and self-adjoint.
Thus we can define its square root A

1
2 which inherits the property of self-adjointness. The

norm ‖A 1
2v‖L2(Ω) is then given by

‖A 1
2v‖2

L2(Ω) = (A
1
2v,A

1
2v)L2(Ω) = (v, Av)L2(Ω) = (∇v,∇v)L2(Ω) = ‖∇v‖2

L2(Ω) .

PDE (3.1) is written in terms of A

∂tu+ d1Au = d2g(u)N2

and the application of A
1
2 to this equation gives us

∂tA
1
2u+ d1A

3
2u = d2A

1
2 (g(u)N2) .

Multiplying by A
3
2u and integrating over

∫
Ω
dx we obtain due to A

1
2 being self-adjoint

1

2

d

dt
‖Au(t)‖2

L2(Ω) + d1‖A
3
2u(t)‖2

L2(Ω) = d2

(
A

1
2 (g(u(t))N2(t)) , A

3
2u(t)

)
L2(Ω)

.

This term can be further estimated by Cauchy Schwarz and Young’s inequality with
ε = d1

d2
, whence it follows

1

2

d

dt
‖Au(t)‖2

L2(Ω) +
d1

2
‖A 3

2u(t)‖2
L2(Ω) ≤

d2
2

2d1

‖A 1
2 (g(u(t))N2(t)) ‖2

L2(Ω)
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and from the norm definition we have

1

2

d

dt
‖∆u(t)‖2

L2(Ω) +
d1

2
‖A 3

2u(t)‖2
L2(Ω) ≤

d2
2

2d1

‖∇ (g(u(t))N2(t)) ‖2
L2(Ω)

≤ d2
2

d1

‖g′(u(t))∇u(t)N2(t)‖2
L2(Ω) +

d2
2

d1

‖g(u(t))∇N2(t)‖2
L2(Ω) .

The term ‖A 3
2u‖2

L2(Ω) can again be estimated by Wirtinger’s inequality. From the de-

composition of u we know Au = Aϕ⊥ = −∆ϕ⊥ and A is mapping from the orthogonal
complement to itself:

(Aϕ⊥, ϕ1)L2(Ω) = 0 = Cϕ

∫
Ω

Aϕ⊥ dx .

Thus Wirtinger’s inequality can be applied to Aϕ⊥ and yields

‖Aϕ⊥‖L2(Ω) ≤ CW‖∇
(
Aϕ⊥

)
‖L2(Ω) = CW‖A

1
2

(
Aϕ⊥

)
‖L2(Ω) = CW‖A

3
2ϕ⊥‖L2(Ω)

= CW‖A
3
2u‖L2(Ω)

Substituting that relation into the previous inequality with ∆u = ∆ϕ⊥, ∇u = ∇ϕ⊥ and
using the boundedness g(s) ≤ g∗, |g′(s)| ≤ Lg by Condition 1 (i), (iii) and N2(t) ≤
‖N‖L∞(Ω), we obtain

d

dt
‖∆ϕ⊥(t)‖2

L2(Ω) +
d1

CW
2‖∆ϕ⊥(t)‖2

L2(Ω)

≤ 2d2
2

d1

L2
g‖N‖2

L∞(Ω)‖∇ϕ⊥(t)‖2
L2(Ω) +

2d2
2

d1

g∗2‖∇N2(t)‖2
L2(Ω) .

In the following we assume

sup
t> 0
‖∇N2(t)‖L2(Ω) ≤ CN <∞ (3.56)

and show that under this assumption we have supt≥ δ̃ ‖∆ϕ⊥(t)‖L2(Ω) <∞.

Remark
It remains to show that this assumption holds true in general.

From (3.53) we know that supt≥ δ ‖∇ϕ⊥(t)‖L2(Ω) ≤ C11 and due to Condition 3 even
supt> 0 ‖∇ϕ⊥(t)‖L2(Ω) ≤ C12 (c.f. Remark, (3.54)). In summary we have

d

d
y(t) + γy(t) ≤ C15 =:

2d2
2

d1

L2
g‖N‖2

L∞(Ω)C
2
12 +

2d2
2

d1

g∗2C2
N

where y(t) := ‖∆ϕ⊥(t)‖2
L2(Ω) and γ := d1

CW
2 . Proposition 5 yields by integration

∫ t
t
ds with

t > 0

‖∆ϕ⊥(t)‖2
L2(Ω) ≤ ‖∆ϕ⊥(t)‖2

L2(Ω) +
C15

γ
for all t ≥ t . (3.57)
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Theorem 1 states that the solution u fulfills
√
t∆u ∈ L2(0, T ;L2(Ω)), i.e. the solution is

immediately smoothened. By definition it holds for ∆u = ∆ϕ⊥∫ T

0

t‖∆ϕ⊥(t)‖2
L2(Ω) dt <∞ ,

which yields the existence of a time t ∈ (0, T ] and a constant C16 <∞ such that

t‖∆ϕ⊥(t)‖2
L2(Ω) ≤ C16 ⇔ ‖∆ϕ⊥(t))‖L2(Ω) ≤

1√
t
C16 .

This expression is bounded if t is bounded away from zero, i.e. if t ≥ δ̃ > 0 for some
positive constant δ̃ > 0. Then (3.57) implies

‖∆ϕ⊥(t)‖2
L2(Ω) ≤

1

δ̃
C16 +

C15

γ
=: C2

17 <∞ for all t ≥ t ≥ δ̃

and consequently

sup
t≥ δ̃
‖∆ϕ⊥(t)‖L2(Ω) ≤ C17 .

In order to show the uniform convergence of u(t) to u∞, at this point it only remains
to show that assumption (3.56) is always satisfied. For that the higher regularity of the
initial data under the terms of Condition 3 is crucial.

First we need to show that the same holds for ∇N1(t), i.e. supt> 0 ‖∇N1(t)‖L2(Ω) < ∞.
Application of the gradient to the model equation (3.2) leads to

∂t∇N1 = −f ′(u)∇uN1 − f(u)∇N1

and by multiplying with ∇N1 and integrating over
∫

Ω
dx we obtain

1

2

d

dt
‖∇N1(t)‖2

L2(Ω) =

= −
∫

Ω

f ′(u(x, t))∇u(x, t)N1(x, t)∇N1(x, t) dx−
∫

Ω

f(u(x, t))|∇N1(x, t)|2 dx

≤
∫

Ω

|f ′(u(x, t))||∇u(x, t)||N1(x, t)||∇N1(x, t)| dx−
∫

Ω

f(u(x, t))|∇N1(x, t)|2 dx .
(3.58)

Remark
Recall the decomposition

u(x, t) = a1(t)Cϕ + ϕ⊥(x, t) .

From previous observations we know u∞ = a∞1 Cϕ and the function a1(t) in non-decreasing,
i.e.

a1(t)Cϕ ≤ u∞ for all t ≥ 0 . (3.59)
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Now Condition 2 (ii) comes into play, which holds for u ∈ [C−, C−+ δ]. According to that
we define the following subsets of Ω for all t ≥ 0:

Ω1(t) := {x ∈ Ω : u(x, t) < C−}
Ω2(t) := {x ∈ Ω : u(x, t) ∈ [C−, C− + δ]}
Ω3(t) := {x ∈ Ω : u(x, t) > C− + δ}

Then for every point of time we have a disjoint partition of Ω:

Ω = Ω1(t) ∪̇ Ω2(t) ∪̇ Ω3(t) ∀t ≥ 0 .

Our aim now is to estimate the term |f ′(u(x, t))| appearing in (3.58) for the regions Ω1(t)
and Ω2(t). From Condition 2 (i) we know that f(u(x, t)) is constant zero on Ω1(t) and
thus it holds

|f ′(u(x, t))| = 0 on Ω1(t) .

To obtain an estimate in Ω2(t), at this stage we have to distinguish between the two cases

I) u∞ ≤ C− and II) u∞ > C− .

Case I
We first take a look at the case u∞ ≤ C−. On Ω2(t) we have by (3.59)

0 ≤ m1

(
u(x, t)− C−

)
≤ f ′ (u(x, t)) ≤ m2

(
u(x, t)− C−

)
≤ m2

(
u∞ + ϕ⊥(x, t)− C−

)
≤ m2ϕ

⊥(x, t)

⇒ |f ′(u(x, t))| ≤ m2|ϕ⊥(x, t)| on Ω2(t) .

Substituting these estimates into (3.58), we get

1

2

d

dt
‖∇N1(t)‖2

L2(Ω) ≤ m2‖N‖L∞(Ω)

∫
Ω2(t)

|ϕ⊥(x, t)||∇u(x, t)||∇N1(x, t)| dx

+ ‖N‖L∞(Ω)

∫
Ω3(t)

|f ′(u(x, t))||∇u(x, t)||∇N1(x, t)| dx−
∫

Ω

f(u(x, t))|∇N1(x, t)|2 dx .

(3.60)

The first integral can be further estimated by use of Hölder’s inequality:∫
Ω2(t)

|ϕ⊥(x, t)||∇u(x, t)||∇N1(x, t)| dx ≤ ‖ϕ⊥(t)∇u(t)∇N1(t)‖L1(Ω)

≤ ‖ϕ⊥(t)∇u(t)‖L2(Ω)‖∇N1(t)‖L2(Ω) ≤ ‖ϕ⊥(t)‖L4(Ω)‖∇u(t)‖L4(Ω)‖∇N1(t)‖L2(Ω) .

From Theorem 1 we know that u(t) and ∇u(t) lie in H1(Ω) for t > 0 and the Sobolev
imbedding theorem states H1(Ω) ↪→ L4(Ω) with constant CH1 since n ≤ 3. This allows to
further estimate

≤ C2
H1‖ϕ⊥(t)‖H1(Ω)‖∇u(t)‖H1(Ω)‖∇N1(t)‖L2(Ω)
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and applying Corollary 8 to ‖ϕ⊥(t)‖H1(Ω) and ‖∇u(t)‖H1(Ω) = ‖∇ϕ⊥(t)‖H1(Ω) leads us to

≤ C2
H1(C2

W + 1)‖∇ϕ⊥(t)‖L2(Ω)‖∆ϕ⊥(t)‖L2(Ω)‖∇N1(t)‖L2(Ω) .

For the second integral we artificially insert

√
f(u(x,t))√
f(u(x,t))

which is possible since in Ω3(t) it

holds u(x, t) > C− + δ and with that by Condition 2 (iii) we know f(u(x, t)) > 0. By
Young’s inequality we have∫

Ω3(t)

|f ′(u(x, t))|√
f(u(x, t))

|∇u(x, t)|
√
f(u(x, t)) |∇N1(x, t)| dx

≤ 1

2

∫
Ω3(t)

|f ′(u(x, t))|2
f(u(x, t))

|∇u(x, t)|2 dx+
1

2

∫
Ω3(t)

f(u(x, t))|∇N1(x, t)|2 dx

and due to Conditions 1 (iii) and 2 (iii)

≤ 1

2

L2
f

f(C− + δ)
‖∇ϕ⊥(t)‖2

L2(Ω) +
1

2

∫
Ω

f(u(x, t))|∇N1(x, t)|2 dx .

Substitution of these findings into (3.60) leads to

1

2

d

dt
‖∇N1(t)‖2

L2(Ω) ≤ m2‖N‖L∞(Ω)C
2
H1(C2

W + 1)︸ ︷︷ ︸
=:C18

‖∇ϕ⊥(t)‖L2(Ω)‖∆ϕ⊥(t)‖L2(Ω)‖∇N1(t)‖L2(Ω)

+ ‖N‖L∞(Ω)
1

2

L2
f

f(C− + δ)︸ ︷︷ ︸
=:

C19
2

‖∇ϕ⊥(t)‖2
L2(Ω) −

1

2

∫
Ω

f(u(x, t))|∇N1(x, t)|2 dx .

The last term can be omitted and we obtain with Young’s inequality

d

dt
‖∇N1(t)‖2

L2(Ω) ≤ (C18 + C19)‖∇ϕ⊥(t)‖2
L2(Ω) + C18‖∆ϕ⊥(t)‖2

L2(Ω)‖∇N1(t)‖2
L2(Ω) .

Integration over
∫ t

0
ds yields with (3.44) under the assumption of Condition 3

‖∇N1(t)‖2
L2(Ω) ≤ ‖∇N1,0‖2

L2(Ω) + (C18 + C19)

∫ ∞
0

‖∇ϕ⊥(t)‖2
L2(Ω) dt︸ ︷︷ ︸

≤C20 <∞

+ C18

∫ t

0

‖∆ϕ⊥(s)‖2
L2(Ω)‖∇N1(s)‖2

L2(Ω) ds .

Now Gronwall’s inequality can be applied and we finally obtain with (3.45)

‖∇N1(t)‖2
L2(Ω) ≤ C20 e

C18

∫∞
0
‖∆ϕ⊥(t)‖2

L2(Ω) dt <∞ for all t > 0 ,
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i.e. for the case u∞ ≤ C− we achieved

sup
t> 0
‖∇N1(t)‖L2(Ω) <∞ . (3.61)

This result is now used to show that ∇N2(t) also stays bounded in L2(Ω). For that we
apply the gradient to model equation (3.3) and get

∂t∇N2 = f ′(u)∇uN1 + f(u)∇N1 − g′(u)∇uN2 − g(u)∇N2 .

Multiplication by ∇N2 and integration over
∫

Ω
dx leads to

1

2

d

dt
‖∇N2(t)‖2

L2(Ω) =

∫
Ω

f ′(u(x, t))∇u(x, t)N1(x, t)∇N2(x, t) dx

+

∫
Ω

f(u(x, t))∇N1(x, t)∇N2(x, t) dx−
∫

Ω

g′(u(x, t))∇u(x, t)N2(x, t)∇N2(x, t) dx

−
∫

Ω

g(u(x, t))|∇N2(x, t)|2 dx .

Condition 1 (ii), (iii) yields

1

2

d

dt
‖∇N2(t)‖2

L2(Ω) ≤ (Lf + Lg)‖N‖L∞(Ω)︸ ︷︷ ︸
=:C21

∫
Ω

|∇u(x, t)||∇N2(x, t)| dx

+ f ∗
∫

Ω

|∇N1(x, t)||∇N2(x, t)| dx−
∫

Ω

g(u(x, t))|∇N2(x, t)|2 dx .

Our first aim is to derive the boundedness of ‖∇N2(t)‖L2(Ω) for the fixed interval t ∈ (0, t0].
Omitting the last integral and using Hölder’s together with Young’s inequality, we obtain
with (3.54) and (3.61)

d

dt
‖∇N2(t)‖2

L2(Ω) ≤ C21‖∇u(t)‖2
L2(Ω) + f ∗‖∇N1(t)‖2

L2(Ω) + (C21 + f ∗)‖∇N2(t)‖2
L2(Ω)

≤C21 sup
t> 0
‖∇u(t)‖2

L2(Ω) + f ∗ sup
t> 0
‖∇N1(t)‖2

L2(Ω) + (C21 + f ∗)‖∇N2(t)‖2
L2(Ω)

≤C + (C21 + f ∗)‖∇N2(t)‖2
L2(Ω) with C <∞ .

Integration over
∫ t

0
ds with 0 < t ≤ t0 yields

‖∇N2(t)‖2
L2(Ω) ≤ ‖∇N2,0‖2

L2(Ω) + Ct0 + (C21 + f ∗)

∫ t

0

‖∇N2(s)‖2
L2(Ω) ds

and hence with Gronwall’s inequality and Condition 3

‖∇N2(t)‖2
L2(Ω) ≤

(
‖∇N2,0‖2

L2(Ω) + Ct0
)
e(C21+f∗)t0 <∞ for all t ∈ (0, t0] . (3.62)

In particular this implies
‖∇N2(t0)‖L2(Ω) <∞ (3.63)
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and we can proceed to the whole time intervall t > 0.

From Proposition 4 we know that for all x ∈ Ω it holds u(x, t) ≥ % > 0 ∀t ≥ t0 and
consequently Condition 2 (iii), (iv) implies

g(u(x, t)) ≥ g(%) > 0 ∀t ≥ t0

with % = min(%, %0) as defined earlier.

We use this result and apply Young’s inequality to the first two integrals with ε1 = 1
2C21

g(%)

and ε2 = 1
2f∗
g(%). This gives for all t ≥ t0

1

2

d

dt
‖∇N2(t)‖2

L2(Ω) +
1

2
g(%)‖∇N2(t)‖2

L2(Ω) ≤
C2

21

g(%)
‖∇u(t)‖2

L2(Ω) +
f ∗2

g(%)
‖∇N1(t)‖2

L2(Ω)

≤ C2
21

g(%)
sup
t> 0
‖∇u(t)‖2

L2(Ω) +
f ∗2

g(%)
sup
t> 0
‖∇N1(t)‖2

L2(Ω)

≤C22 <∞ due to (3.54) and (3.61) .

Hence Proposition 5 can be applied and yields with (3.63)

‖∇N2(t)‖2
L2(Ω) ≤ ‖∇N2(t0)‖2

L2(Ω) +
2C22

g(%)
<∞ for all t ≥ t0 ,

i.e. together with (3.62) we achieved

sup
t> 0
‖∇N2(t)‖L2(Ω) <∞ .

That means for the first case I) u∞ ≤ C− we showed that assumption (3.56) holds for all
t > 0 and taking it all together we obtain with C23 > 0 chosen appropriately

sup
t> 0
‖∇N2(t)‖L2(Ω) <∞ ⇒ sup

t≥ δ̃
‖∆ϕ⊥(t)‖L2(Ω) ≤ C23 <∞ .

From the previous observations we know

‖u(t)− u∞‖L∞(Ω) ≤ CCθ sup
t≥ δ̃
‖∆ϕ⊥(t)‖1−θ

L2(Ω)‖∇ϕ⊥(t)‖θL2(Ω) for all t ≥ δ̃

and from the boundedness of ∆ϕ⊥(t) it follows

‖u(t)− u∞‖L∞(Ω) ≤ CCθC
1−θ
23 ‖∇ϕ⊥(t)‖θL2(Ω) for all t ≥ δ̃ .

With (3.42) we finally obtain

‖u(t)− u∞‖L∞(Ω) −→ 0 as t → ∞

and the uniform convergence of u(t) to the constant function u∞ is shown.
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Case II
Now the same considerations are made in the case u∞ > C−. Again by Condition 2 (ii)
on Ω2(t) it holds

m1(u(x, t)− C−) ≤ f ′(u(x, t)) ≤ m2(u(x, t)− C−)

and this time we take a look at the lower part and integrate over the interval [C−, u(x, t)]:∫ u(x,t)

C−
m1(v − C−) dv ≤

∫ u(x,t)

C−
f ′(v) dv = f(u(x, t))− f(C−)︸ ︷︷ ︸

= 0

which leads to

f(u(x, t)) ≥ 1

2
m1

(
u(x, t)− C−

)2
.

Due to the condition u∞ > C− and the monotonicity of a1(t), with (3.59) it follows:

For all α with 0 < α < (u∞ − C−) there exists Tα > 0 such that

a1(t)Cϕ ≥ C− + α for all t ≥ Tα .

Substituting that relation into the previous estimate, we obtain with Young’s inequality

f(u(x, t)) ≥ 1

2
m1

(
a1(t)Cϕ + ϕ⊥(x, t)− C−

)2 ≥ 1

2
m1

(
α + ϕ⊥(x, t)

)2

≥ 1

2
m1

(
α2 − 2α|ϕ⊥(x, t)|+ |ϕ⊥(x, t)|2

)
≥ 1

2
m1

(
1

2
α2 − |ϕ⊥(x, t)|2

)
for all t ≥ Tα and x ∈ Ω2(t) ,

i.e. this estimates holds for f applied to u(x, t) ∈ [C−, C− + δ]. The boundedness of f
from below given by Condition 2 (iii) implies

f(u(x, t)) ≥ f(C− + δ) ≥ 1

2
m1

(
1

2
α2 − |ϕ⊥(x, t)|2

)
for all t ≥ Tα and x ∈ Ω3(t) .

We start again with the boundedness of ∇N1(t) and go back to (3.58). With the preceding
observations and f(u(x, t)) = 0 = f ′(u(x, t)) in Ω1(t) we have for t ≥ Tα

1

2

d

dt
‖∇N1(t)‖2

L2(Ω) ≤ Lf‖N‖L∞(Ω)

∫
Ω2(t)∪Ω3(t)

|∇(u(x, t))||∇N1(x, t)| dx

− m1

4
α2

∫
Ω2(t)∪Ω3(t)

|∇N1(x, t)|2 dx+
m1

2

∫
Ω2(t)∪Ω3(t)

|ϕ⊥(x, t)|2|∇N1(x, t)| dx .

Hölder’s and Young’s inequality with ε = m1(2Lf‖N‖L∞(Ω))
−1α2 and extension to Ω give

d

dt
‖∇N1(t)‖2

L2(Ω) ≤
2L2

f‖N‖2
L∞(Ω)

m1α2
‖∇u(t)‖2

L2(Ω) +m1‖ϕ⊥(t)‖2
L∞(Ω)‖∇N1(t)‖2

L2(Ω) .
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For n ≤ 3 there is the Sobolev space imbedding H2(Ω) ↪→ L∞(Ω) with constant CH2 > 0
and by use of Corollary 8 we can further estimate

≤
2L2

f‖N‖2
L∞(Ω)

m1α2︸ ︷︷ ︸
=:C24

‖∇ϕ⊥(t)‖2
L2(Ω) +m1C

2
H2(C4

W + C2
W + 1)︸ ︷︷ ︸

=:C25

‖∆ϕ⊥(t)‖2
L2(Ω)‖∇N1(t)‖2

L2(Ω) .

Integrating over
∫ t

0
ds, we obtain

‖∇N1(t)‖2
L2(Ω) ≤ ‖∇N1,0‖2

L2(Ω) + C24

∫ ∞
0

‖∇ϕ⊥(t)‖2
L2(Ω) dt︸ ︷︷ ︸

≤C26<∞

+ C25

∫ t

0

‖∆ϕ⊥(s)‖2
L2(Ω)‖∇N1(s)‖2

L2(Ω) ds

and Gronwall’s inequality together with (3.44) leads us to

‖∇N1(t)‖2
L2(Ω) ≤ C26 e

C25

∫∞
0
‖∆ϕ⊥(t)‖2

L2(Ω) dt <∞ for all t ≥ Tα ,

i.e. it holds

sup
t≥Tα

‖∇N1(t)‖L2(Ω) <∞ .

In analogy to the calculations for ∇N2(t) in (0, t0], by use of (3.58), Condition 1 (iii) and
3 we also obtain for the bounded intervall (0, Tα]

sup
t∈ (0,Tα]

‖∇N1(t)‖L2(Ω) <∞ .

All together for case II) u∞ > C−, we obtain

sup
t> 0
‖∇N1(t)‖L2(Ω) <∞ .

The boundedness of ∇N2(t) in L2(Ω) is shown in exactly the same way as for case I)
u∞ ≤ C−, since for the estimation of ‖∇N2(t)‖L2(Ω) we did not use the relation of u∞

and C−. This yields

sup
t> 0
‖∇N2(t)‖L2(Ω) <∞

and with that
‖u(t)− u∞‖L∞(Ω) −→ 0 as t → ∞ .

In summary for both cases I) and II) we obtained uniform convergence of the solution
u(t) to u∞ ≡ a∞1 Cϕ

2
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Convergence rate

Theorem 14
Under the assumptions of Condition 3, the long-time behavior of the ODE solution (N1, N2, N3)
can be further characterized:

Partial swelling: u∞ < C−

∃Tp ≥ δ̃ > 0 such that for all x ∈ Ω it holds

N1(x, t) ≡ N1(x, Tp) for all t ≥ Tp

and we have the following exponential convergence rates for all x ∈ Ω and t ≥ Tp:

N2(x, t)
t→∞−−−→ 0 in O(e−g(%)t)

N3(x, t)
t→∞−−−→ N(x)−N1(x, Tp) in O(e−g(%)t) .

Complete swelling: u∞ > C−

∃Tc ≥ δ̃ > 0 such that for all x ∈ Ω and all t ≥ Tc the following exponential
convergence rates hold with some constants γ > 0, ζ > 0, η > 0:

N1(x, t)
t→∞−−−→ 0 in O(e−f(C−+γ)t)

N2(x, t)
t→∞−−−→ 0 in O(e−g(ζ)t)

N3(x, t)
t→∞−−−→ N(x) in O(e−ηt) .

Here exponential convergence of v(t) → v∞ is given if there exist some constants C > 0
and k > 0 such that

|v(t)− v∞| ≤ Ce−kt .

Proof

1.) Partial swelling
We start with the partial swelling case. By the uniform convergence of u(x, t) to u∞ < C−

follows the existence of a time Tp ≥ δ̃ > 0 such that

u(x, t) ≤ C− ∀x ∈ Ω ∀t ≥ Tp

and consequently

f(u(x, t)) = 0 ∀x ∈ Ω ∀t ≥ Tp . (3.64)

Remark
For this relation it was crucial to have uniform convergence.

From the model equation (3.2) it follows immediately for all x ∈ Ω

∂tN1(x, t) = 0 ∀t ≥ Tp ,
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which implies

N1(x, t) ≡ N1(x, Tp) ∀t ≥ Tp .

For equation (3.3), by (3.64) and the definition of %, it holds for all t ≥ Tp ≥ δ̃

∂tN2(x, t) = −g(u(x, t))N2(x, t) ≤ −g(%)N2(x, t) ,

which yields with Gronwall’s inequality

N2(x, t) ≤ N2,0(x)e−g(%)t ≤ ‖N2,0‖L∞(Ω)e
−g(%)t ∀x ∈ Ω ∀t ≥ Tp (3.65)

i.e. we have exponential convergence of N2(x, t) to 0. From the conservation law (3.8) we
know

N3(x, t) = N(x)−N1(x, Tp)−N2(x, t) ∀t ≥ Tp

and consequently

N∞3,p(x) = N(x)−N1(x, Tp) .

This gives

|N3(x, t)−N∞3,p(x)| = N2(x, t) for t ≥ Tp

and with the previous result (3.65) it follows

|N3(x, t)−N∞3,p(x)| ≤ ‖N2,0‖L∞(Ω)e
−g(%)t ∀x ∈ Ω ∀t ≥ Tp ,

i.e. exponential convergence of N3(x, t) to N∞3,p(x).

2.) Complete swelling
In the complete swelling case where u∞ > C−, the uniform convergence of u(x, t) to u∞

yields the existence of a time Tc ≥ δ̃ > 0 and a constant β > 0 such that

u(x, t) ≥ C− + β > C− ∀x ∈ Ω ∀t ≥ Tc .

In order to show the positivity of f(u(x, t)), we have to distinguish between two cases in
accordance with Condition 2:

• u(x, t) ≥ C− + δ, where δ > 0 denotes the constant from Condition 2, i.e. β ≥ δ. In
that case, Condition 2 (iii) holds and it follows

f(u(x, t)) ≥ f(C− + δ) > 0 ∀x ∈ Ω ∀t ≥ Tc .

• u(x, t) ∈ (C−, C− + δ), which means we are in the case of Condition 2 (ii), where
we have the relation f ′(u(x, t)) ≥ m1β > 0, i.e. the function is strictly increasing
and with that

f(u(x, t)) ≥ f(C− + β) > 0 ∀x ∈ Ω ∀t ≥ Tc .
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In summary we conclude for the situation of complete swelling

f(u(x, t)) ≥ f(C− + γ) > 0 ∀x ∈ Ω ∀t ≥ Tc , where γ := min(β, δ) (3.66)

and in addition by Condition 2 (iii), (iv)

g(u(x, t)) ≥ g(ζ) > 0 ∀x ∈ Ω ∀t ≥ Tc , where ζ := min(%, C− + β) . (3.67)

Substituting relation (3.66) into the model equation

∂tN1(x, t) = −f(u(x, t))N1(x, t) ,

we obtain exponential convergence of N1(x, t) to 0:

N1(x, t) ≤ N1,0(x)e−f(C−+γ)t ≤ ‖N1,0‖L∞(Ω)e
−f(C−+γ)t ∀x ∈ Ω ∀t ≥ Tc .

The second ODE

∂tN2(x, t) = f(u(x, t))N1(x, t)− g(u(x, t))N2(x, t)

can be estimated by means of the previous result, Condition 1 (ii) and (3.67). This yields
for x ∈ Ω and t ≥ Tc

∂tN2(x, t) ≤ f ∗‖N1,0‖L∞(Ω)e
−f(C−+γ)t − g(ζ)N2(x, t) .

Integration over
∫ t

0
ds gives

N2(x, t) ≤ ‖N2,0‖L∞(Ω) +
f ∗

f(C− + γ)
‖N1,0‖L∞(Ω)︸ ︷︷ ︸

=:C27<∞

− g(ζ)

∫ t

0

N2(x, s) ds ,

whence follows with Gronwall’s inequality the exponential convergence to 0:

N2(x, t) ≤ C27e
−g(ζ)t ∀x ∈ Ω ∀t ≥ Tc .

In analogy to the previous case, the conservation law (3.8) implies

N∞3,c(x) = N(x)

and it immediately follows with η := min
(
f(C− + γ), g(ζ)

)
|N3(x, t)−N(x)| ≤

(
‖N1,0‖L∞(Ω) + C27

)
e−ηt ∀x ∈ Ω ∀t ≥ Tc .

2
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Remark
For the third case u∞ = C− no further details about the type of convergence can be made.

Proposition 15
Let the assumptions of Theorem 14 hold.

Then the solution u(t) converges to u∞ “exponentially fast”, i.e. there exists t0 > 0 and
constants k > 0, C > 0 such that

‖u(t)− u∞‖L2(Ω) ≤ Ce−kt0 for all t ≥ t0 ,

which means we can obtain an arbitrary small norm by the choice of t0 sufficiently large.

Proof

From Theorem 14 we know that N2(t) converges exponentially to 0 in O(e−kt), where
k := min(g(%), g(ζ)). In addition, (3.33) states that the main part of the decomposition
of u(x, t) is non-decreasing, whence follows

d

dt
a1(t) ≤ d2Cϕg

∗
∫

Ω

N2(x, t) dx ≤ d2Cϕg
∗λ(Ω)‖N2,0‖L∞(Ω)e

−kt .

Integration over
∫∞
t

ds yields

0 ≤ a∞1 − a1(t) ≤ d2Cϕ
g∗

k
λ(Ω)‖N2,0‖L∞(Ω)︸ ︷︷ ︸
=:C28 <∞

e−kt ,

i.e.
a∞1 − a1(t) = |a∞1 − a1(t)| ≤ C28e

−kt ∀t > 0 .

By the characterizaton of the first Fourier coefficient (3.32), the definition (3.30) of Cϕ
and the fact u∞ = a∞1 Cϕ, it follows for t > 0

a∞1 − a1(t) = Cϕ

∫
Ω

u∞ dx− Cϕ
∫

Ω

u(x, t) dx = Cϕ
(
‖u∞‖L1(Ω) − ‖u(t)‖L1(Ω)

)
≤ C28e

−kt .

This relation induces that not u(t) itself, but the mean value over Ω converges exponen-
tially to the mean value of u∞.

Remark
1.) Since we do not know the sign of u∞ − u(x, t) in Ω, we can not deduce exponential
convergence of u(t) to u∞ in L1(Ω).

2.) This kind of exponential mean value convergence is also known from the standard heat
equation.

Now we take a look at second part of the decomposition. From (3.40) it follows with
Condition 1 (ii)

d

dt
‖ϕ⊥(t)‖2

L2(Ω) + γ‖ϕ⊥(t)‖2
L2(Ω) ≤ C29‖N2(t)‖2

L2(Ω)
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and by Proposition 5 together with the exponential convergence of N2, we have

‖ϕ⊥(t)‖2
L2(Ω) ≤ ‖ϕ⊥(t0)‖2

L2(Ω)e
−γ(t−t0) + C29

∫ t

t0

‖N2(s)‖2
L2(Ω) ds

≤ ‖ϕ⊥(t0)‖2
L2(Ω)e

−γ(t−t0) +
C29

k
‖N2,0‖2

L∞(Ω)λ(Ω)
(
e−2kt0 − e−2kt

)
for every t ≥ t0. Taking the limit, we obtain

‖ϕ⊥(t)‖2
L2(Ω) ≤

C29

k
‖N2,0‖2

L∞(Ω)λ(Ω)︸ ︷︷ ︸
=:C30

e−2kt0 for every fixed t0 > 0 and t ≥ t0.

In summary we obtain with the previous results for t ≥ t0

‖u(t)− u∞‖2
L2(Ω) =

∫
Ω

|a1(t)Cϕ + ϕ⊥(x, t)− a∞1 Cϕ|2 dx

≤ 2C2
ϕλ(Ω)|a1(t)− a∞1 |2 + 2‖ϕ⊥(t)‖2

L2(Ω)

≤ 2C2
ϕλ(Ω)C2

28e
−2kt + 2C30e

−2kt0

≤ (2C2
ϕλ(Ω)C2

28 + 2C30)e−2kt0

and the proof is complete.
2

3.2 Dirichlet boundary conditions

The mathematical analysis of the previous section is highly dependent on the chosen
Neumann boundary conditions. We now want to study another in vitro model, where the
test tube wall contains a substance that binds calcium ions. That means, more and more
Ca2+ gets lost during the process and as we will see, we end up with u = 0.

For that we consider the same model with replaced boundary conditions:

∂tu = d1∆u+ d2g(u)N2 (3.68)

∂tN1 = −f(u)N1 (3.69)

∂tN2 = f(u)N1 − g(u)N2 (3.70)

∂tN3 = g(u)N2 (3.71)

with boundary condition

u = 0 on ∂Ω . (3.72)

Our aim now is to study the influence of this replacement.

In the following let (uD, ND
1 , N

D
2 , N

D
3 ) denote the solution of (3.68) - (3.72). It turns out

that the small change in the model description has a high impact on the mathematical
results. There are three main differences occurring in the Dirichlet problem:
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(i) Hopf’s principle can not be applied any more.

(ii) The corresponding eigenvalue problem has different properties.

(iii) Wirtinger’s inequality does not hold any more.

These will be explored in the sequel.

Hopf’s principle

One main property that was used to study the asymptotic behavior of solutions was
the boundedness of u(x, t) by a positive constant % > 0 for sufficiently large t ≥ t0 (c.f.
Proposition 4). In order to obtain this lower bound, it was crucial to create a contradiction
by use of Hopf’s maximum principle, which states that the normal derivative at the
boundary can not be zero. This fact was contrary to the assumption of homogenous
Neumann boundary conditions, however it does not yield a contradiction in the Dirichlet
case any more.
Hence with that we can not show that uD stays away from zero and consequently the
transition function g(uD) is not assured to be positive. In order to show the convergence
result ND,∞

2 (x) ≡ 0 in Theorem 6 we needed Proposition 4, which now does not hold any
more. Due to g(uD) not necessarily being positive, we can not deduce that all mitochondria
entering the state ND

2 will be transferred to ND
3 .

Corresponding eigenvalue problem

In Theorem 6 we also showed that the calcium concentration u strongly converges to a
constant C. To prove this fact we essentially used the orthogonal decomposition

u(x, t) = a1(t)ϕ1(x) + ϕ⊥(x, t)

with ϕ1(x) being the first eigenfunction of the corresponding eigenvalue problem

−∆ϕj(x) = λjϕj(x) , x ∈ Ω

∂νϕj
∣∣
∂Ω

= 0 .

For this type of boundary condition it is known that ϕ1(x) is constant and with that we
could show

u(x, t)→ u∞(x) = lim
t→∞

a1(t)ϕ1(x) ≡ C as t→∞ .

On the contrary for the corresponding Dirichlet eigenvalue problem

−∆ϕDj (x) = λDj ϕ
D
j (x) , x ∈ Ω

ϕDj
∣∣
∂Ω

= 0

we can only deduce that the first eigenfunction is positive, but not constant. Even if
we could show that the orthogonal complement ϕD,⊥ converges to 0 as in the Neumann
case, like that we can not obtain information about the limit function uD,∞(x). Thus the
orthogonal decomposition is only helpful for the Neumann problem.
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Wirtinger’s inequality

In order to show some of the convergence results in Theorem 6 and Corollary 9, it was
necessary to estimate ‖ϕ⊥(t)‖L2(Ω) by ‖∇ϕ⊥(t)‖L2(Ω). As a result of the orthogonality
between ϕ⊥(t) and the constant eigenfunction ϕ1(x) ≡ Cϕ in the Neumann case, we could
apply Wirtinger’s inequality (c.f. Lemma 7) to obtain this estimate.
However, for the Dirichlet problem this is not the case any more. But this problem can be
easily solved, since due to the boundary condition we are now looking at functions from
the Sobolev space H1

0 (Ω). In that space the well known Poincaré inequality is valid and
we can work with the analogous estimate

‖v‖L2(Ω) ≤ CP‖∇v‖L2(Ω) for v ∈ H1
0 (Ω) .

By use of this inequality we can show that in the Dirichlet case ‖uD(t)‖L2(Ω) stays bounded
for all t > 0. Multiplying (3.68) by uD and integrating over

∫
Ω
dx, we get

1

2

d

dt
‖uD(t)‖2

L2(Ω) + d1‖∇uD(t)‖2
L2(Ω) = d2

∫
Ω

g(uD(x, t))ND
2 (x, t)uD(x, t) dx . (3.73)

Remark
Integration by parts yields∫

Ω

∆uu dx =

∫
∂Ω

∇uu~n dS −
∫

Ω

∇u∇u dx = −‖∇u‖2
L2(Ω)

regardless of which choice of homogenous boundary condition.

It turns out that (3.73) is exactly equation (3.39) from the Neumann case with ϕ⊥ re-
placed by uD. From here we can proceed in the same way by use of Poincaré’s instead of
Wirtinger’s inequality and obtain

d

dt
‖uD(t)‖2

L2(Ω) +
d1

C2
P︸︷︷︸

=: γ > 0

‖uD(t)‖2
L2(Ω) ≤

d2
2C

2
P

d1

‖g(uD(t))ND
2 (t)‖2

L2(Ω) (3.74)

≤ d2
2C

2
P

d1

λ(Ω)g∗2‖N‖2
L∞(Ω) =: C <∞ .

Now Proposition 5 can be applied with y(t) := ‖uD(t)‖2
L2(Ω) and yields

‖uD(t)‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) +
C

γ
=: CD <∞ for all t > 0 ,

hence

sup
t> 0
‖uD(t)‖L2(Ω) ≤ CD . (3.75)

By the continuous imbedding L2(Ω) ↪→ L1(Ω) it immediately follows

sup
t> 0
‖uD(t)‖L1(Ω) ≤ CD . (3.76)
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From (3.74) we can not directly deduce uD(x, t) → 0 in L2(Ω) as we did in the analo-
gous Neumann case for ϕ⊥. For that we need ‖ND

2 ‖L1(0,∞;L1(Ω)) < ∞ in order to have∫∞
0
a(t) dt < ∞ with a(t) := ‖g(uD(t))ND

2 (t)‖2
L2(Ω) to apply Proposition 5. This was

shown in (3.36) and is, amongst others, based on Proposition 4, which is not valid any
more.

However, we can derive the L2-summability in a different way:

Since we will see that Theorem 2 also holds true in the Dirichlet case, it follows from
(3.71) that ND

3 (x, t) is non-decreasing in t for each x ∈ Ω and is bounded due to the
conservation law: ND

3 (x, t) ≤ ‖N‖L∞(Ω) (c.f. (3.24)). Thus the sequence converges and we

have ND
3 (x, t) → ND,∞

3 (x) ≤ ‖N‖L∞(Ω) as t → ∞. Hence integrating (3.71) over
∫ t

0
dt

and passing to the limit, we obtain∫ ∞
0

g(uD(x, t))ND
2 (x, t) dt = ND,∞

3 (x)−N3,0(x) <∞ ∀x ∈ Ω .

This yields g(uD)ND
2 ∈ L1(0,∞;L1(Ω)), since we can estimate∫ ∞

0

∫
Ω

g(uD(x, t))ND
2 (x, t) dx dt ≤ λ(Ω)

∫ ∞
0

sup
x∈Ω

g(uD(x, t))ND
2 (x, t)) dt <∞ .

Finally we arrive at the desired result∫ ∞
0

a(t) dt =

∫ ∞
0

‖g(uD(t))ND
2 (t)‖2

L2(Ω) dt ≤ g∗‖N‖L∞(Ω)‖g(uD)ND
2 ‖L1(0,∞;L1(Ω)) <∞ ,

(3.77)

which implies by use of Proposition 5

uD(x, t)
t→∞−−−→ uD,∞(x) ≡ 0 strongly in L2(Ω) . (3.78)

Remark
This convergence to zero makes clear that it is not possible to obtain a result like Proposition
4 in this case.

Summary

For the homogenous Dirichlet problem in comparison with the Neumann case major dif-
ferences occur and hence we are not able to obtain all results from Section 3.1. Due to
the facts noted above, we can not deduce uniform convergence of uD and in particular
we can not deduce a classification of partial and complete swelling. However as a result
of uD,∞ ≡ 0 < C−, we assume that only partial swelling can occur. Nevertheless, many
findings are in agreement with those from the Neumann problem as they are summarized
in the next theorem.

Theorem 16
For the solution (uD, ND

1 , N
D
2 , N

D
3 ) of the homogenous Dirichlet problem (3.68) - (3.72)

the following assertions hold:
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(i) Theorem 1 holds true.

(ii) Theorem 2 holds true.

(iii) Under the assumptions of Theorem 2 we have the strong convergence results

ND
1 (x, t)

t→∞−−−→ ND,∞
1 (x) ≥ 0 in Lp(Ω), 1 ≤ p <∞

ND
2 (x, t)

t→∞−−−→ ND,∞
2 (x) ≥ 0 in Lp(Ω), 1 ≤ p <∞

ND
3 (x, t)

t→∞−−−→ ND,∞
3 (x) ≤ ‖N‖L∞(Ω) in Lp(Ω), 1 ≤ p <∞

uD(x, t)
t→∞−−−→ uD,∞(x) ≡ 0 in L2(Ω)

and the solution uD is bounded in the following sense:

sup
t> 0
‖uD(t)‖L1(Ω) <∞

sup
t> 0
‖uD(t)‖L2(Ω) <∞ .

Proof

(i) In the proof of existence and uniqueness of a global solution, the Dirichlet boundary
condition comes only into play in the pure PDE (c.f. (3.16))

∂tû = d1∆û+ d2g(û)Nu
2

û(x, 0) = u0(x)

û
∣∣
∂Ω

= 0 .

In analogy to the Neumann case, equations of such kind are treated in [2] or [13] and
can also be embedded into the abstract framework of [40], which yield the desired
results.

(ii) The proof of solutions preserving non-negativity proceeds with exactly the same
arguments as in the Neumann boundary case. Equation (3.22) also holds for ho-
mogenous Dirichlet boundary conditions since u

∣∣
∂Ω

= 0 implies u−
∣∣
∂Ω

= 0.

(iii) The convergence results of ND
1 , ND

2 , ND
3 follow without any influence of the modified

boundary condition. However, as noted before we can not conclude N∞2 (x) ≡ 0 any
more. The main effect of the Dirichlet boundary conditions becomes noticeable at the
analysis of uD. Here most of the results get lost due to the three reasons introduced
earlier. The only information we can obtain with this method are the upper bounds
(3.75) and (3.76) and the convergence (3.78).

2

Remark
For the proof of Theorem 16 we do not require Conditions 2 and 3. The assumptions of
Condition 1 together with non-negative initial conditions are sufficient.
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3.3 Robin boundary conditions

Now we want to proceed to the biologically more interesting case and study the behavior
in the whole cell. Here the cell membrane is permeable and it is of major importance that
the calcium concentration between the cell and the extracellular regime is maintained. In
Section 2.3 we introduced the arguments leading to the following in vivo model:

∂tu = d1∆(u) + d2g(u)N2 (3.79)

∂tN1 = −f(u)N1 (3.80)

∂tN2 = f(u)N1 − g(u)N2 (3.81)

∂tN3 = g(u)N2 (3.82)

with non-homogeneous Robin boundary conditions

−∂νu = a(x)(u− α) on ∂Ω , (3.83)

where the constant α ≥ 0 represents the balance of concentration that is to be maintained.
The boundary function a(x) may be used to distinguish between different parts of the cell
membrane.

Remark
Here we note again that the different initial conditions described in Section 2.3 are covered by
the general case and hence we do not need to study them seperatly.

For the mathematical analysis we need to impose a condition on the function a(x), i.e. a
has to be bounded below by a positive constant:

a ∈ L∞(∂Ω) , 0 < a0 ≤ a(x) for a.e. x ∈ ∂Ω . (Cond.a)

In the following we denote by (uR, NR
1 , N

R
2 , N

R
3 ) the corresponding solution of the Robin

problem (3.79) - (3.83). In analogy to the previous section, here many mathematical tools
do not apply anymore.

• First of all we do not have the the relation (−∆u, u)L2(Ω) = ‖∇u‖2
L2(Ω) ≥ 0 as we

had for the Neumann and Dirichlet case, since it now holds∫
Ω

−∆uRuR dx =

∫
∂Ω

a(x)(uR − α)uR dS + ‖∇uR‖2
L2(Ω) .

• By the same arguments as for the Dirichlet problem, we can not obtain a lower
positive bound for uR(x, t) due to Hopf’s principle not inducing a contradiction.
Furthermore, we do not have an orthogonal decomposition with the first component
being constant and neither Wirtinger’s nor Poincaré’s inequality are valid.

These facts pose many problems in applying the previous techniques to analyze the model.
In particular for the existence of a unique solution of the pure PDE we need to introduce
a new mathematical concept, which will also be of great importance for the degenerate
diffusion model examined in Chapter 4.
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Homogeneous case

At first we take a look at the homogeneous case α = 0, i.e. (3.83) now reads

− ∂νu = a(x)u on ∂Ω . (3.84)

Then we obtain the following result similar to Theorem 16 of the previous section:

Theorem 17
For the solution (uR, NR

1 , N
R
2 , N

R
3 ) of the homogeneous Robin problem (3.79) - (3.82) with

boundary condition (3.84), the following assertions hold under the additional assumption
of (Cond.a):

(i) Theorem 1 holds true.

(ii) Theorem 2 holds true.

(iii) Under the assumptions of Theorem 2 we have the strong convergence results

NR
1 (x, t)

t→∞−−−→ NR,∞
1 (x) ≥ 0 in Lp(Ω), 1 ≤ p <∞

NR
2 (x, t)

t→∞−−−→ NR,∞
2 (x) ≥ 0 in Lp(Ω), 1 ≤ p <∞

NR
3 (x, t)

t→∞−−−→ NR,∞
3 (x) ≤ ‖N‖L∞(Ω) in Lp(Ω), 1 ≤ p <∞

uR(x, t)
t→∞−−−→ uR,∞(x) ≡ α = 0 in L2(Ω) .

Proof

(i) Again, the modified boundary condition comes only into play in the analysis of the
pure PDE (c.f. (3.16))

∂tû = d1∆û+ d2g(û)Nu
2

û(x, 0) = u0(x) (3.85)

−∂ν û = a(x)û for x ∈ ∂Ω .

The existence and uniqueness of a global solution of such a problem can be obtained
by applying the theory of maximal monotone operators, which is described in [9].
In Chapter 4 we will intensely use this mathematical concept, for which reason we
introduce it in detail in Section 4.2. It states that we can rewrite (3.85) in the form

∂tû = −d1M(û)−B(û) (3.86)

û(x, 0) = u0(x) , (3.87)

where M is a maximal monotone operator (c.f. Definition 22) in the phase space
L2(Ω) and û 7→ B(û) = −d2g(û)Nu

2 is Lipschitz continuous on L2(Ω). Here the
boundary condition is contained in the domain D(M). Problems of this type are
treated in [9], which yields the desired result and gives the properties of û stated in
Theorem 1.
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Hence it remains to choose an appropriate maximal monotone operator M . For that
we need the notion of the subdifferential ∂ (c.f. Definition 20) and by Theorem 24
it follows M = ∂ϕ, where ϕ is a lower semi-continuous convex functional. In the
sequel will we see that the function ϕ : L2(Ω)→ [0,∞] defined by

ϕ(u) :=


1

2

∫
Ω

|∇u|2 dx+
1

2

∫
∂Ω

a|u|2 dS if u ∈ H1(Ω)

∞ if u ∈ L2(Ω) \H1(Ω)

satisfies these properties.

In analogy to the proof of Proposition 25 we can show that ϕ is convex, lower
semicontinuous and Gâteaux differentiable, which implies ∂ϕ(u) = {u∗}, where u∗

is to be determined. Thus it remains to prove u∗ = −∆u. By definition, a subgradient
u∗ ∈ ∂ϕ(u) fulfills

〈u∗, v − u〉 = (u∗, v − u)L2(Ω)

!

≤ ϕ(v)− ϕ(u)

and for functions u ∈ L2(Ω) satisfying the boundary condition (3.84) it holds∫
Ω

−∆u (v − u) dx =

∫
∂Ω

au (v − u) dx+

∫
Ω

∇u∇(v − u) dx .

This can be further estimated by use of Hölder’s and Young’s inequality

≤ 1

2

∫
∂Ω

a|u2| dS +
1

2

∫
∂Ω

a|v2| dS −
∫
∂Ω

a|u2| dS

+
1

2

∫
Ω

|∇u|2 dx+
1

2

∫
Ω

|∇v|2 dx−
∫

Ω

|∇u|2 dx

= ϕ(v)− ϕ(u)

and thus u∗ = −∆u. Since we know that ∂ϕ is single-valued, ∂ϕ : u 7→ −∆u is a
mapping from L2(Ω) into L2(Ω) defined for u satisfying (3.84). That implies

D(∂ϕ) = {u ∈ H2(Ω) : −∂νu = a(x)u on ∂Ω} ,

i.e. the domain D(∂ϕ) includes the boundary condition and we found an appropri-
ate function ϕ to obtain (3.86), (3.87). This yields the existence of a unique global
solution of the pure PDE (3.85).

In order to assure the local and global existence of (uR, NR
1 , N

R
2 , N

R
3 ) to the original

system, we can repeat the same arguments as for the Neumann boundary case. This
is possible since for α = 0 we have by (Cond.a)∫

Ω

−∆uRuR dx =

∫
∂Ω

a(x)|uR|2 dS + ‖∇uR‖2
L2(Ω) ≥ 0 .
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(ii) We assume non-negative initial data u0(x) ≥ 0 and Ni,0(x) ≥ 0 for i = 1, 2, 3. Then
the non-negativity of NR

i (x, t) for t > 0 is shown by exactly the same arguments
as in the proof of Theorem 2. Multiplying (3.79) by the negative part uR− and
integrating

∫
Ω
dx, we obtain

−1

2

d

dt
‖uR−‖2

L2(Ω) = d1

∫
∂Ω

a|uR−|2 dS + ‖∇uR−‖2
L2(Ω) + d2

∫
Ω

g(uR)NR
2 u

R− ≥ 0

and hence
d

dt
‖uR−‖2

L2(Ω) ≤ 0 ,

which implies the property of preserving non-negativity.

(iii) The convergence of NR
i (x, t) → NR,∞

i (x) in Lp(Ω), 1 ≤ p < ∞ can be proved with
the same arguments as in Neumann boundary case. However, as we already noted in
Section 3.2, we can not verify NR,∞

2 ≡ 0, since we can not obtain the strict positivity
of u as in Proposition 4.
In the following we show that for the Robin boundary problem the solution uR

converges to zero in L2(Ω). Here we can neither apply Wirtinger’s nor Poincaré’s
inequality, but the following lemma finds a remedy:

Lemma 18 (Friedrich’s inequality)
Let v ∈ H1(Ω). Then there exists a positive constant CF such that

‖v‖2
L2(Ω) ≤ CF

(
‖∇v‖2

L2(Ω) +

∫
∂Ω

|v|2 dS
)
.

A proof of this inequality can be found in [52].

Remark
Friedrich’s inequality is a generalization of Poincaré’s inequality for functions satifsying
arbitrary boundary conditions.

In order to derive the convergence of ‖uR‖L2(Ω), we multiply (3.79) by uR and inte-
grate over

∫
Ω
dx. This yields with (Cond.a)

1

2

d

dt
‖uR‖2

L2(Ω) +

∫
Ω

|∇uR|2 dx+ a0

∫
∂Ω

|uR|2 dS ≤ d2‖g(uR)NR
2 ‖L2(Ω)‖uR‖L2(Ω) .

By Friedrich’s inequality there exists a positive constant C > 0 such that

‖uR‖2
L2(Ω) ≤ CFC

(
‖∇uR‖2

L2(Ω) + a0

∫
∂Ω

|uR|2 dS
)
.

Inserting this estimate we obtain

1

2

d

dt
‖uR‖2

L2(Ω) +
1

CFC
‖uR‖2

L2(Ω) ≤ d2‖g(uR)NR
2 ‖L2(Ω)‖uR‖L2(Ω)



3.3. Robin boundary conditions 85

and Young’s inequality yields

1

2

d

dt
‖uR‖2

L2(Ω) +
1

2CFC
‖uR‖2

L2(Ω) ≤
d2

2CFC

2
‖g(uR)NR

2 ‖2
L2(Ω) .

From Proposition 5 it follows with the same arguments as in the previous cases by
use of (3.77)

uR(x, t)
t→∞−−−→ uR,∞(x) ≡ 0 strongly in L2(Ω) .

This finishes the proof of Theorem 17.
2

Inhomogeneous case

Based on these findings we now consider the model (3.79) - (3.82) with inhomogeneous
Robin boundary conditions (3.83) for the general case α ≥ 0. Here we obtain a similar
result

Theorem 19
For the general Robin problem (3.79) - (3.83) all assertion of Theorem 17 hold true with

uR,∞ ≡ α ≥ 0 .

Proof

In order to study this type of boundary condition, we define

v(x, t) := u(x, t)− α .
Then v satisfies

∂tv = d1∆v + d2g(v + α)N2

with homogeneous Robin boundary condition

−∂νv = a(x)v on ∂Ω .

By the properties of f and g, shifting v y v + α does not change the mathematical
analysis and hence applying the previous arguments we can prove Theorem 17 with u
replaced by v. Consequently it also follows ‖v‖L2(Ω) → 0, i.e.

uR(x, t)
t→∞−−−→ uR,∞(x) ≡ α strongly in L2(Ω) .

It only remains to show the non-negativity of uR for general α ≥ 0. We proceed in analogy
to (ii) of the proof of Theorem 17. Here it holds∫

Ω

∆uRuR− dx =

∫
Ω

|∇uR−|2 dx−
∫
∂Ω

a((uR+ − uR−)− α)uR− dS

=

∫
Ω

|∇uR−|2 dx+

∫
∂Ω

a(|uR−|2 + αuR−) dS ≥ 0

and hence by the same arguments the property of preserving non-negativity follows.
2
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Biological interpretation

Biologically the convergence of u(x, t) to α is exactly the result we expected. Additional
Ca2+ is removed from the cell and the calcium gradient is again stabilized. Here it is
interesting to take a look at the relation of α and the swelling threshold C−. Based on
the classification of partial and complete swelling we obtained for the in vitro model, one
could conjecture that we have an analogous classification here, i.e. α > C− leading to
complete swelling and α < C− inducing partial swelling.

However, u(x, t) ≡ α is also the situation when the whole system is in rest, that means
when we do not have any induction of mitochondrial swelling. α being greater than C−

would hence imply that without any outer influence the cell dies immediately by apoptosis
due to all mitochondria getting swollen. This allows only for the conclusion α < C−.

Now the distinction between partial and complete swelling is only dependent on the
parameter values:

• A low diffusion rate d1 together with a high feedback rate d2 can lead to complete
swelling, when the initially high calcium peak is not dissolved too fast and the re-
sulting calcium wave reaches every mitochondrion with a sufficiently high amplitude
bigger than C−.

• On the other hand, the opposite direction of high diffusion and small feedback brings
forward the fast diffusion of calcium, which then leads to partial swelling.

• As we will see in the numerical simulations, this distinction is also highly dependent
on the boundary parameter a, which determines the speed of the calcium efflux.
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3.4 Numerical simulation

Now we want to verify the obtained mathematical results numerically. The varying set-
tings for the in vitro and the in vivo model are elaborated in Section 2.3.

As described earlier, the model functions f and g have a sigmoidal shape determined in
the following way:

f(u): Transition rate from unswollen to swelling mitochondria dependent on the local
Ca2+ concentration

f(s) =


0 for s < C−

f ∗ for s > C+

−f∗

2
cos
(

s−C−
C+−C− π

)
+ f∗

2
else

s 

f(s) 

0 

0 
C- C+ 

f * 

Figure 3.1 – Transition rate f

g(u): “Dying” term describing the transition of mitochondria in the swelling process to
completely swollen ones where the membrane is ruptured and stored Ca2+ is released

g(s) =

{
g∗ for s > C+

−g∗

2
cos
(
s
C+ π

)
+ g∗

2
else

s 

g(s) 

0 

0 
C- C+ 

g * 

Figure 3.2 – Transition rate g

3.4.1 The in vitro model

Model parameters

The model parameters we used for the in vitro simulations are noted in Table 3.1.
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Name Description Value

d1 diffusion parameter 0.2

d2 feedback parameter 30

f ∗ maximal transition rate N1 y N2 1

g∗ maximal transition rate N2 y N3 0.1

C− threshold of initiating N1 y N2 20

C+ saturation threshold 200

hx = 1
N

step size of space discretization 1
40

ht step size of time discretization 1

Table 3.1 – In vitro simulation: Model parameters I

Discretization

The domain Ω is discretized with step size hx = 1
N

leading to the discrete domain

Ωh = {(xi, xj)}i,j=0,...,N = {(ihx, jhx) : i = 0, . . . , N, j = 0, . . . , N}

of size (N + 1)× (N + 1).

The time interval will be discretized with time steps of length ht which results in the
discrete time interval

Th = {tk}k∈N0 = {kht : k ∈ N0} .
On that domain Ωh × Th we define the grid solution (uh, N1h, N2h, N3h).

Numerical approximation

The PDE describing the calcium diffusion process is discretized with respect to space by
means of the standard finite difference approach. Here the Laplacian is approximated by
use of the five point star. Doing so, the PDE is transferred into an ODE and we end up with
an ODE system on the discrete domain Ωh, that shall be solved for the discrete time steps
tk ∈ Th. Due to the low numerical complexity of the model, this can be easily achieved
by using the explicit Euler method. The homogeneous Neumann boundary condition is
realized by introducing phantom points in order to calculate the normal derivative at the
boundary.

Initial values

As we pointed out earlier, in the beginning all mitochondria are intact and with that
neither in the swelling process nor completely swollen, i.e.

N1,0(x) ≡ 1, N2,0(x) ≡ 0, N3,0(x) ≡ 0 .
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For the calcium concentration it is not so clear how to determine the initial state. The
initial value u0(x) defines the distribution of the added Ca2+ amount. At this the rate of
diffusion progression as well as the dosage location is of great importance. Therefore one
can imagine different possible initial states. Here we take a look at the grid solution uh
and determine initial values u0h. In all cases we assume that the total amount of added
Ca2+ is the same, i.e. ∑

xi,xj∈Ωh

u0h(xi, xj) ≡ Ctot .

1) Highly localized: The total calcium amount Ctot is located at one single point (xk, xl)
in Ωh:

u0h(xk, xl) = Ctot

u0h(xi, xj) = 0 for i 6= k, j 6= l, xi, xj ∈ Ωh .

Figure 3.3 shows two possible distributions.
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(a) Center: (xk, xl) = (0.5, 0.5)
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(b) Close to boundary: (xk, xl) = (0.5, 0.95)

Figure 3.3 – Localized initial calcium distribution

2) Normally distributed: The initial calcium concentration is determined by a sector of
the standard normal distribution. Figure 3.4 depicts the meaning of a sector of the normal
distribution for the 1D case .
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Figure 3.4 – Sector of the 1D standard normal distribution

In 2D the density function is given by

N(y1, y2) =
1

2π
exp

(
−1

2
(y2

1 + y2
2)

)
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and the sector for the interval [yl, yr] is obtained by the translation

y y ỹ := (yr − yl) · y + yl .

Thus the initial Ca2+ concentration adapted to the total calcium amount is given by

u0h(xi, xj) = Ctot ·
N(x̃i, x̃j)∑

xi,xj∈Ωh
N(x̃i, x̃j)

, xi, xj ∈ Ωh .

The next Figure 3.5 shows the resulting initial calcium distributions for different sector
intervals [yl, yr].
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(a) yl = −0.5, yr = 0.5
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(b) yl = −1, yr = 1
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(c) yl = −2, yr = 2
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(d) yl = −3, yr = 3
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(e) yl = −0.8, yr = 0.2
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(f) yl = −1, yr = 3

Figure 3.5 – Normally distributed initial calcium distribution

3) Constant: As a consequence of complete diffusion the initial calcium distribution is
constant, i.e.

u0h(xi, xj) =
Ctot

(N + 1)2
, xi, xj ∈ Ωh .
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Simulation

Now everything is prepared for the numerical simulations, which were done using the
commercial software MATLAB.

The following pages show the time evolution of the numerical solutions for five different
initial calcium concentrations displayed column by column:

Column 1 Column 2 Column 3 Column 4 Column 5

Normally Normally Normally

Localized at Localized at distributed distributed distributed
point point on sector on sector on sector

x = (0.5, 0.5) x = (0.5, 0.95) [−1, 3] [−2, 2] [−0.5, 0.5]

t = t1 t = t1 t = t1 t = t1 t = t1

...
...

...
...

...

t = t10 t = t10 t = t10 t = t10 t = t10

For every data collection we used the same total amount of initial Ca2+

Ctot = 30 · (N + 1)2 ,

i.e. the difference between each column only lies in the localization and the degree of
calcium diffusion. The simulations show that for every constellation this calcium amount
is high enough to induce complete swelling.

Figures 3.6 - 3.9 show the evolution of the model variables uh, N1h, N2h and N3h column-
wise for the five different initial conditions mentioned above. Each row displays the differ-
ent states at one time step. From the simulations it becomes clear that the choice of the
initial calcium distribution is of great importance for the duration as well as the dynamics
of the whole process.

One remarkable result is the clearly visible spreading calcium wave. If we compare the
dynamics with those of simple diffusion without any feedback, the resulting calcium evo-
lution induced by mitochondrial swelling is indeed completely different.

The numerical simulations also show that at much lower initial calcium concentrations,
the model outcome depends on the location and type of the initial calcium distribution.
As we can see there, a small change in the initial distribution of Ca2+ is enough to shift
the behavior from partial to complete swelling.
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,

,

Figure 3.6 – Time development of the calcium concentration uh for different initial calcium
concentrations
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,

,

Figure 3.7 – Time development of the unswollen mitochondrial subpopulation N1h for
different initial calcium concentrations
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,

,

Figure 3.8 – Time development of the intermediate mitochondrial subpopulation N2h for
different initial calcium concentrations
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,

,

Figure 3.9 – Time development of the swollen mitochondrial subpopulation N3h for dif-
ferent initial calcium concentrations
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,

,

,

Here we con-
sider a much
lower total
amount of
calcium, Ctot =
2.1 · (N + 1)2

added in two
varying initial
distributions.
The simula-
tions show
that this small
change in
the degree of
localization
decides be-
tween partial
and complete
swelling.
Here we only
show the evo-
lution of uh
and N1h in
order to get a
qualitative de-
scription of the
difference be-
tween partial
and complete
swelling.
The remaining
variable N3h

behaves in a
similar man-
ner, whereas
N2h converges
to zero re-
gardless of
the situation.
We know that
N∞1h +N∞3h = 1,
hence N∞3h
represents the
complement of
N∞1h .

,

,
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Comparison with experimental data

Up to now, we do not have any experimental data including the spatial development. As
we already explained, the existing data measure mitochondrial swelling in terms of light
scattering at different calcium concentrations as can again be seen in Figure 3.10:

Figure 3.10 – Experimental data of mitochondrial swelling at different Ca2+ concentrations

In order to compare the obtained solutions with the experimental data, we now have to
take a look at the combined volume of all three subpopulations. As described in Section
2.2.1, this is obtained by summing the weighted mean values over the whole domain Ωh.
These averages are given by

I1h(tk) =
1

(N + 1)2

∑
xi,xj∈Ωh

N1h(xi, xj, tk)

I2h(tk) =
1

(N + 1)2

∑
xi,xj∈Ωh

N2h(xi, xj, tk)

I3h(tk) =
1

(N + 1)2

∑
xi,xj∈Ωh

N3h(xi, xj, tk)

and with that in accordance with the previously introduced volume equation (2.4), the
volume is set up as

V (tk) = V0 · I1h(tk) + kVp · I2h(tk) + Vp · I3h(tk) , tk ∈ Th . (3.88)

Here we choose the initial mitochondrial volume V0 and the volume of completely swollen
mitochondria Vp in accordance with [43]. The parameter 0 < k < 1 determines the volume
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of mitochondria in the swelling process as a fixed percentage of the final volume Vp. For
the simulations we used the values from Table 3.2.

Name Description Value

V0 initial volume 1.2

Vp final volume 1.7

k intermediate volume parameter 0.68

Table 3.2 – In vitro simulation: Model parameters II

As we showed in [22], there is a linear dependence between the total mitochondrial vol-
ume and the measured light scattering change. Thus for the simulation, the optical density
values are given by 0.95 − V (tk), tk ∈ Th resulting in the biologically reasonable range
between 0.25 and 0.75.

In the experiment the added Ca2+ concentrations are high enough to induce complete
swelling. Thus we apply volume formula (3.88) to the solution (uh, N1h, N2h, N3h) of the
complete swelling case as depicted in Figures 3.6 - 3.9.

Figure 3.11 shows the evolution of each subpopulation in total and displays the resulting
optical density values. Here it becomes clear that different initial calcium conditions in-
deed result in completely different curve shapes. In the following we want to explain the
varying curve progressions biologically.

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

O
pt

ica
l d

en
sit

y

Light scattering

 

 
Localized at point x = (0.5,0.5)
Localized at point x = (0.5,0.95)
Normally distributed on [ 1,3]
Normally distributed on [ 2,2]
Normally distributed on [ 0.5,0.5] 0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e 

ra
tio

Unswollen mitochondria

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Av
er

ag
e 

ra
tio

Swelling mitochondria

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time

Av
er

ag
e 

ra
tio

Swollen mitochondria

Figure 3.11 – Time development of the average mitochondrial subpopulations and the resulting
light scattering values for different initial calcium concentrations
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1) Swelling time

As one can expect from the 2D simulations, the green line (column 2 ) is the slowest one.
Due to the most “unfavorable” initial calcium distribution it takes the longest time until
all mitochondria are swollen and the lowest optical density value is reached. The shape of
the swelling curve displays the linear style of wave propagation.

On the other hand the black line (column 5 ) presents the most “favorable” initial con-
dition and the equilibrium is reached soon. The initial calcium concentration at every
point in Ωh lies above the initiation threshold C− and thus all mitochondria start swelling
immediately. Since there is only little variation over the domain, the whole process is
running in a very uniform way. If we take a look at the corresponding ‘Swelling mitochon-
dria’ curve, it is clearly to be seen how the black line increases and decreases very steep
within a short period of time. This shows the simultaneity of the incidents because first
all mitochondria enter the swelling process at the same time and subsequently complete
the swelling process nearly simultaneously. However the transition N2 y N3 is dependent
on the local calcium concentration, which is locally not so high compared to the other
situations due to the high rate of dispersion. This fact explains why the black swelling
curve is the slowest one in the very beginning.

The remaining curves (columns 1 , 3 and 4 ) lie in between and we see that the cen-
tered normally distributed initial conditions produce the fastest swelling times.

2) Number of phases

Another thing that immediately attracts attention are the different types of curve pro-
gression. In particular for the red line (column 3 ) the two-phase shape becomes very
obvious. This special appearance can be explained by the different dynamics of calcium
diffusion. Figure 3.12 studies the two dimensional diffusion process on the quadratic do-
main Ω. It depicts the dependence of the spreading dynamics on the source location under
the assumption of zero flux conditions on the boundary.Contents

Ω

1

(a) Center

Contents

Ω

1

(b) Close to egde

Contents

Ω

1

(c) Close to corner

Figure 3.12 – Effects of the source location to the diffusion process in 2D

In the first image 3.12(a) the source location is the center of Ω. Since calcium diffusion
on a homogenous domain is symmetric, the whole process is radially symmetric and leads
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to uniform expansion.

The second image 3.12(b) considers the situation of the source located close to an edge
of the boundary. Here radial symmetry is lost and due to the zero Neumann condition
calcium reaching this edge (marked in red) is reflected. Meanwhile calcium is diffusing
without interruption in the three remaining directions. The reflection at the boundary has
two consequences: 1) Around the reflection area the calcium diffusion is constricted and
thus the local concentration here is higher. 2) This blocked amount of calcium is missing
on the other side of the calcium wave and it takes a longer time until all mitochondria are
reached. Furthermore this blocked calcium reaches the mitochondria at a later time where
they have already been confronted with the freely diffusing calcium. Thus the influence
of the “delayed” calcium is diminished.

In the last image 3.12(c) the situation is tightened and now the source is located close to
a corner, i.e. close to two edges at once. Here the diffusing calcium is reflected and blocked
in two directions and can only spread freely in the two remaining directions. Now all the
consequences from before apply and are even self-enhanced due to interactions.

Remark
Of course the same effects occur in the weakened case where the domain is not quadratic but
round.

Conclusion

The influence of different initial calcium distributions was experimentally studied in the
previously described Figure 2.4, which is again depicted here.
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If we compare these data with the simulated swelling curves from Figure 3.11, we see that
we indeed obtain similar curve progressions.

The first case Volume ratio 1:4 corresponds to the most distributed case of column 5 ,
whereas the highly localized case Volume ratio 1:100 shows the same two-phase behavior
as the red line (column 3 ).
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As we saw in the previous simulations, the experimental setting is displayed in the most
appropriate way when assuming an initial calcium concentration which is normally dis-
tributed on the interval [−0.5, 0.5]. Adding different total amounts of calcium in this
distribution, we can obtain a qualitative description of the experimental data as it is
shown in Figure 3.13.
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Figure 3.13 – Comparison: Different calcium concentrations

In summary, the derived mathematical model gives a realistic description of the mitochon-
drial swelling taking place in vitro. All experimental data could be verified and furthermore
it also yields spatial data. By use of this new model we are now able to study the local
processes, which is of major importance in order to understand the underlying biological
mechanism in more detail.

3.4.2 The in vivo model

As a next step we now want to simulate the processes taking place in vivo as described in
Section 2.3. Here we have to choose a different discrete domain Ωh, which now represents
the whole cell. In order to do this in an appropriate way, we utilize another method of
space discretization, the finite element method.

For that we use the MATLAB Partial Differential Equation Toolbox, which provides
a graphical user interface to draw arbitrary domains. Using this interface, we can also
describe the mitochondrial regions, i.e. N1h(0), define the Robin boundary conditions and
initialize the finite element mesh. The resulting domain description is shown in Figure 3.14.
Here the green regions depict two mitochondrial groups and the purple circle represents
the nucleus, which is excluded from the domain.

The numerical simulation of the in vivo model is then obtained in the following way:

• Calculate the calcium evolution by the MATLAB routine parabolic.m. Due to the
dependence on N2h, in every time step the present distribution of N2h is calculated
on the run by means of one Euler iteration.
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• Interpolate the obtained solution uh in order to evaluate it on predefined time steps
tk ∈ Th and then use this values to calculate N1h, N2h and N3h by use of the explicit
Euler method.
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Figure 3.14 – Finite element mesh initialization of the cell including the nucleus and two regions
of mitochondria

At this we use the parameter values noted in Table 3.3.

Name Description Value

d1 diffusion parameter 0.01

d2 feedback parameter 100

f ∗ maximal transition rate N1 y N2 1

g∗ maximal transition rate N2 y N3 0.1

C− threshold of initiating N1 y N2 20

C+ saturation threshold 200

ht step size of time discretization 0.1

α intracellular Ca2+ concentration at rest 1

Table 3.3 – In vivo simulation: Model parameters

The initial calcium distribution is highly localized representing either calcium influx from
the extracellular regime through a channel in the cell membrane or the release of calcium
from the endoplasmic reticulum.

The total amount is given by

Ctot = 18 # points in Ωh .
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The in vivo model with the domain described in Figure 3.14 is now simulated. Here we
analyze the influence of two different parameter values a in the description of the bound-
ary condition. All other parameter values remain identical.

For the simulations we assume a to be constant and study the cases

a = 1 · 10−4 and a = 3 · 10−4 ,

i.e. in the second case the flux over the boundary is three times higher. Like that more
calcium vanishes per time step and as we will see in the following Figures 3.15 - 3.18, this
small difference decides between partial and complete swelling.

The simulations on the left represent the complete swelling case, i.e. here both mito-
chondrial regions are affected, whereas on the right only one region gets swollen and the
other one remains intact.

Special model function g

The following figures are obtained by setting C+ = 0 in the description of the model
function g, i.e. here g is a constant function g ≡ g∗. Like that the transition of mitochon-
dria from N2 to N3 proceeds independent of calcium, representing the osmotically driven
influx of water once the membrane got permeable.

We chose the function to be constant, since for the in vivo case in contrast to the in vitro
case, calcium vanishes over the cell membrane and hence g(u) gets smaller and smaller.
But it stays positive due to the assumed intracellular calcium concentration u = α of the
system in rest. However, this would lead to very slow dynamics. Also the effect of the
positive feedback gets more visible by taking a constant g.

Remark
For the in vitro case it is not necessary to change the description of g, since there the local
calcium concentration remains higher compared to the in vivo case. This happens because
added calcium does not leave the test tube.

Conclusion

The presented simulations show the wide capability of the derived mathematical model.
The in vitro as well as the in vivo swelling mechanism is modeled in perfect accordance
with the biological description and we are now able to study the local processes taking
place in whole cells.

Using the MATLAB Partial Differential Toolbox we can also simulate the degenerate
diffusion case and take into account space dependencies of the model functions f , g and
the boundary function a. This offers a wide applicability of the developed model, which
may lead to important new biological findings about the underlying mechanism.
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,

Figure 3.15 shows the
time development of the
calcium concentration for
two values of a. As we
pointed out in the model
description, for the in
vivo model the calcium
source is always very
localized. This leads to
a high difference u − α
and hence the calcium
efflux is very high near
to the calcium pulse. On
the left the value of a
is lower and hence this
efflux proceeds slower.
Like that more calcium
is available to induce
mitochondrial swelling,
which leads to complete
swelling on the left and
partial swelling on the
right. In the beginning
calcium diffuses in a
similar manner, however
the right concentration
is not sufficient to in-
duce swelling in both
mitochondria regions.
In contrast on the left
side the positive feedback
coming from the second
mitochondria group can
be immediately identi-
fied by the additional
calcium bump appearing
at t = 900. This leads
to a different calcium
evolution, however they
both converge to the
constant function u ≡ α.
This convergence appears
to be very slow due to the
low values of a. Figure 3.15 – Calcium evolution at in vivo swelling
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Figure 3.16 – Unswollen mitochondria at in vivo swelling

The next Figure 3.16
shows the corresponding
behavior of the unswollen
mitochondrial popu-
lation. Starting from
initially distributed mito-
chondria residing in the
two regions introduced
in Figure 3.14, we either
end up with no intact
mitochondria on the
left or only one intact
population on the right.
Due to the location of
the calcium source, at
the beginning only one
group is affected. In
the partial swelling case
the remaining calcium
concentration is not high
enough to trigger also
swelling in the second
group. However, this
effect is dependent on the
distance between both
groups. We also saw in
other simulations that if
these groups are more
contiguous and hence
calcium does not diffuse
to the same degree on the
way from one region to
the other, then under the
same conditions swelling
is induced in both groups.
As one can imagine, here
also the diffusion rate
plays an important role
with higher diffusion
leading to a higher prob-
ability of partial swelling
and vice versa.
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,
Taking a look at the
population of mitochon-
dria that are in the
swelling process but
not completely swollen
presented in Figure 3.17,
the direction of the cal-
cium wave gets clearly
visible. Starting from
the source near to the
cell membrane, calcium
spreads to the left where
it hits the first group of
mitochondria. When it
made its way through the
whole region, it hits the
second group. Since the
calcium concentration is
positive by definition of
the cell milieu, we can
deduce the convergence
of N2 to zero. However,
this convergence appears
to be very slow.

In the mathematical
description of the cell
we excluded the nucleus
from the domain, because
calcium can not diffuse
through it. At this inner
boundary we assume
to have homogeneous
Neumann boundary con-
ditions.

Using the graphical user
interface provided by the
MATLAB Partial Differ-
ential Equation Toolbox,
it is also possible to build
a more realistic model
of the cell taking into
account more biological
details.

Figure 3.17 – Swelling mitochondria at in vivo swelling
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Figure 3.18 – Swollen mitochondria at in vivo swelling

,

The last Figure 3.18
displays the behavior
of the remaining mito-
chondrial population, the
completely swollen ones.
In the case of complete
swelling, the final dis-
tribution is the same as
the initial distribution
of intact mitochondria.
This is an immediate
consequence of the con-
servation law, which
states that the total
population of mitochon-
dria does not change
with time. In the partial
swelling case hence mi-
tochondria from the first
region are all completely
swollen, whereas those
from the second group are
still intact. If we take a
look at the dynamics and
focus on the beginning of
the whole process, we see
that the increase of N3 in
the first region proceeds
nearly identical for both
cases. This is justified
by an almost identical
high calcium source at
the very beginning. The
more diffusion comes
into play, the more the
process dynamic changes.
However, at this also the
extent of the positive
feedback plays an im-
portant role. The higher
the additionally released
calcium, the higher the
probability of complete
swelling.





CHAPTER 4

Degenerate mitochondria model

The previous models were governed by the concept of standard diffusion. A classical
property of the heat equation is its infinite speed of propagation, i.e. for every t > 0 the
solution u(t) starting from non-negative initial values u0 gets automatically positive on
the whole domain. We saw this fact in Proposition 4 and the reason becomes reliable by
the divergence form representation

∆u = div(1 · ∇u)

with the constant diffusion coefficient D ≡ 1 determining the speed of diffusion.

Remark
This classical property can also be shown for the Dirichlet problem (3.68) - (3.72).

However, from the application point of view this property is not realistic, since there are
no substances that can diffuse infinitely fast. Imagine a huge domain Ω and the calcium
source u0 being a delta distribution. Then biologically it is not possible that after an
arbitrary small time the calcium reaches any point of the domain.

Remark
Besides knowing this disadvantage, the use of the standard Laplacian to describe diffusion
processes is a generally accepted mathematical idealization. Furthermore, this effect does
not appear in the numerical simulations. Here the domain is discretized and the diffusion at
one point is only dependent on its neighboring points, which may all be zero for compactly
supported initial conditions.

4.1 Degenerate diffusion

In order to obtain a more realistic setting, in the following the standard Laplacian is not
the method of choice anymore. It is replaced by the porous medium operator

∆um−1 = div
(
(m− 1)um−2 · ∇u

)
with m > 2 , (4.1)

which is a nonlinear generalization of ∆u representing the case m = 2. For more general
information the reader is referred to [54], where the mathematical theory of the porous
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medium equation
∂tu = ∆um−1

and its applications are studied.

The nonlinear expression (4.1) is only defined for non-negative functions, since m does not
have to be an integer. In our application u represents the calcium concentration, which is
biologically restricted to be non-negative. However, from the beginning we can not math-
ematically assure that the solution u is non-negative, this is why in the following we work
with the signed operator

∆(|u|m−2u) = div
(

(m− 1)|u|m−2︸ ︷︷ ︸
=:D(u)

·∇u
)
, m > 2 . (4.2)

The absolute value assures that the definition is valid regardless of the sign of u and the
function |s|m−2s is monotone.

This leads to the new model equation

∂tu = d1∆(|u|m−2u) + d2g(u)N2 , (4.3)

which will be studied in the sequel.

Finite propagation speed

In contrast to the standard Laplace operator, now the diffusion coefficient

D(u) = (m− 1)|u|m−2

is dependent on u and not constant anymore. This has a huge influence on the speed of
propagation. Now starting from a compactly supported initial condition, diffusion only
appears dependent on u. That means D(u) is only positive for locations where calcium is
already present, which leads to a consecutive spreading.
As it can e.g. be read in [54], starting from a compactly supported initial value u0, the so-
lution u(t) has compact support for every t > 0, which signifies finite speed of propagation.
Furthermore the sets

B(t) := {x ∈ Ω : u(x, t) > 0} ⊂ Ω

satisfy ⋃
t>0

B(t) = Ω and B(t2) ⊂ B(t1) for t2 > t1 .

The diffusion coefficient vanishes outside the set B(t) if m > 2 and therefore the rate
of diffusion is extremely small near the boundary of B(t), hence the set expands slowly.
On the other hand, if m = 2 representing the Laplacian, the diffusion coefficient remains
identically constant in Ω, therefore in this case supp u(·, t) spreads all over Ω instantly.

Figure 4.1 depicts the differences between infinite and finite propagation speed and makes
clear why the degenerate diffusion (4.2) is more suitable to represent the process in reality
compared to the standard Laplacian with infinite speed.
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! 

t = 0 

t > 0 

(a) infinite speed

! 

t = 0 

t1 > 0 

t2 > t1 

(b) finite speed

Figure 4.1 – Propagation of compactly supported initial data

Degeneracy

The most important property of this new type of equation is its degeneracy, i.e. the
diffusion coefficient depends on u in a sense that it vanishes for u = 0. In that case the
PDE (4.3) is not parabolic anymore and we name it a degenerate parabolic equation.

Example
For the case u ≥ 0 and m = 3 we obtain

∂tu = 2d1(u∆u+ |∇u|2) + d2g(u)N2 .

That means for u→ 0 the equation becomes

∂tu = 2d1|∇u|2 + d2g(u)N2 ,

where the diffusion term is completely lost and we have to deal with another class of equation.

Understandably the degeneracy is challenging for the mathematical analysis and in the
following we will see that we need additional theoretical concepts to treat this type of
equation.

4.2 Preliminaries

At first we want to introduce some mathematical tools to handle degenerate parabolic
equations. Our aim is to embed the nonlinear diffusion operator into a wider class of
equations, namely maximal monotone operators. At this we restrict ourselves to Hilbert
spaces, however there are analogous concepts for Banach spaces. The following facts can
be found in the standard literature [9], [54] and [57].

Subdifferential

The notion of the derivate can be generalized in order to be also applied for functions
that are not differentiable in the classical sense, i.e. Gâteaux differentiable in the case of
infinite dimensional spaces.
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Definition 20
Let X be a real Banach space with dual X∗ and ϕ : X → [−∞,∞] a functional. An
element u∗ ∈ X∗ is called subgradient of ϕ at u ∈ X if and only if ϕ(u) 6=∞ and

ϕ(v) ≥ ϕ(u) + 〈u∗, v − u〉 ∀v ∈ X , (4.4)

where 〈·, ·〉 denotes the pairing between X and X∗. The set

∂ϕ(u) := {u∗ : u∗ ∈ X∗, u∗ subgradient of ϕ in u}
is called subdifferential of ϕ in u.

Remark
Here we list some important properties of the subdifferential:

(i) In contrast to the Gâteaux differential Dϕ, the subdifferential can be multivalued, i.e.
∂ϕ is a mapping from the space X into the set of subsets of the dual space X∗:

∂ϕ : X → 2X
∗
.

(ii) If the function ϕ is convex, then

∂ϕ(u) 6= ∅ ∀u ∈ X .

(iii) If the function ϕ is convex and Gâteaux differentiable at u, then ∂ϕ(u) is singlevalued:

∂ϕ(u) = {Dϕ(u)} .

(iv) Let ϕ : R → R. Then the subdifferential ∂ϕ(x) can be geometrically described as the
set containing all slopes of straight lines through the point (x, ϕ(x)), that lie underneath
the graph of ϕ.

(v) The subdifferential is dependent on the choice of the pairing 〈·, ·〉 between X and X∗.

The following example explains the subdifferential of a function ϕ : R→ R, which is not
differentiable at x = 0.

Example
Let ϕ : R→ R and a, b ∈ R+. We define

ϕ(x) :=

{
−bx if x < 0
ax if x ≥ 0 .

Then ϕ(x) is differentiable for x ∈ R \ 0 and thus in that case we have ∂ϕ(x) = {ϕ′(x)}. It
remains to determine ∂ϕ(0). For x = 0 condition (4.4) reads

ϕ(y) ≥ x∗y ⇔
{
x∗ ≥ −b if y < 0
x∗ ≤ a if y ≥ 0

}
⇔ x∗ ∈ [−b, a] ∀y ∈ R

and it follows ∂ϕ(0) = [−b, a].

Figure 4.2 (a) shows all solid lines through the point (0, 0) and marks the feasible (green)
and not feasible (red) slopes to stay underneath the graph. Figure 4.2 (b) then displays the
subdifferential ∂ϕ as it was obtained by calculation as well as geometrical observation.
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f(x) 

x 

(a) Admissibility of the solid lines

!f(x) 

x 

(b) Corresponding subdifferential

Figure 4.2 – Geometrical explanation of the subdifferential

Multivalued operators

The theory of nonlinear operators often includes multivalued operators as for instance the
subdifferential of a convex function.

Definition 21
Let X, Y be real Banach spaces and A : X → 2Y a multivalued operator that maps u ∈ X
to A(u) ⊆ Y .

Then the effective domain D(A), the range R(A) and its graph G(A) are defined as follows:

D(A) := {u ∈ X : A(u) 6= ∅}
R(A) :=

⋃
u∈D(A)

A(u)

G(A) := {(u, v) ∈ X × Y : u ∈ D(A), v ∈ A(u)} .

One remarkable property of multivalued operators is that the inverse operator

A−1 : Y → 2X defined by A−1(v) = {u ∈ X : v ∈ A(u)} ⊆ X

always exists. Here we have

D(A−1) = R(A) , R(A−1) = D(A) , (u, v) ∈ G(A)⇔ (v, u) ∈ G(A−1) .

Remark
For single-valued maps it holds A(u) = {v}.
However, every single-valued map A : D(A) ⊆ X → Y can be identified with a multivalued
map A : X → 2Y by setting

A(u) =

{
{A(u)} if u ∈ D(A)
∅ else .
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Maximal monotone operators

Another important feature of operators is maximal monotonicity, which is generally de-
fined in the following way:

Definition 22
Let H be a Hilbert space and A : D(A) ⊂ H → H a (possibly nonlinear and multivalued)
operator.

A is called monotone, if for every u1, u2 ∈ D(A) and every v1 ∈ A(u1), v2 ∈ A(u2) it
holds

(A(u1)− A(u2), u1 − u2)H ≥ 0 .

A is called maximal monotone, if it is monotone and satisfies the range condition

R(I + A) = H .

Maximal monotonicity can be geometrically characterized in the following way:

Proposition 23
Let A : D(A) ⊂ H → H be a monotone operator.

Then A is maximal monotone if and only if its graph G(A) is maximal.

Example
The following examples show the application to functions f : R→ R.

1) Let f be non-decreasing. Then f is montone.

2) Let f be non-increasing. Then f is not monotone, but −f is.

3) Let f be non-decreasing and continuous. Then f is maximal monotone.

4) Let f be non-decreasing and discontinuous. Then f can be extended to a maximal
monotone function, which is multivalued.

f(x) 

x x0 

f(x) 

x x0 

Figure 4.3 – Obtaining a maximal montone function by extension
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This situation is shown in Figure 4.3, where the function f on the left has a discontinuity
at x0 and due to the resulting “hole”, the graph is not maximal. Extending this function
by filling up the hole, we obtain the maximal monotone function f depicted on the right
hand side, which is multivalued at point x0.

Remark
The theory of maximal monotone operators also applies to the standard Laplacian, since we
can show that the non-negative linear operator −∆ : D(A) ⊂ H → H with H = L2(Ω)
fulfills the required properties

(i) monotone:
(A(u1)− A(u2), u1 − u2)H = ‖∇(u1 − u2)‖2

L2(Ω) ≥ 0

(ii) maximal: The range condition R(I + A) = H reads in this case

∀f ∈ H there exists u ∈ D(A) such that u−∆u = f .

In other words we are looking for the solution of this elliptic PDE, whose existence is
e.g. reported in [24].

The most important result for the analysis of the porous medium model is the fact that
under some conditions the subdifferential is a maximal monotone operator [47].

Theorem 24
Let H be a Hilbert space and ϕ : H → (−∞,∞] be a proper function, i.e. ϕ 6≡ ∞.

If ϕ is convex and lower semicontinuous, then its subdifferential ∂ϕ : H → 2H
∗

is a
maximal monotone operator.

4.3 Model analysis

In the following we want to apply the theory of [40] to prove existence and uniqueness for
the porous medium type model

∂tu = d1∆(|u|m−2u) + d2g(u)N2 (4.5)

∂tN1 = −f(u)N1 (4.6)

∂tN2 = f(u)N1 − g(u)N2 (4.7)

∂tN3 = g(u)N2 (4.8)

with homogeneous Dirichlet boundary condition

u = 0 on ∂Ω . (4.9)

At this the PDE has to be rewritten in the form

∂tu(t) = −d1∂ϕ(u(t))−B(u(t)) , (4.10)

where the subdifferential ∂ϕ is maximal monotone and B is a possibly nonmonotone
multivalued nonlinear operator.
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Phase space

In contrast to the non-degenerate cases, now the phase space is changed to

H := H−1(Ω) = H1
0 (Ω)∗ ,

for which on bounded domains we have the well-known continuous and dense embeddings

H1
0 (Ω) ↪→ L2(Ω) ⊂⊂ H−1(Ω) . (4.11)

Remark
The theory of [40] deals with abstract Cauchy problems, where the boundary condition is
contained in the phase space definition. In our case, the homogeneous Dirichlet boundary
condition (4.9) is reflected by the choice of H1

0 (Ω).

The subdifferential shall be applied to a function ϕ : H → [0,∞]. By definition of the
subdifferential, it obviously follows

D(∂ϕ) ⊆ D(ϕ) ⊆ H

and for the operator B : D(B) ⊂ H → H determined by B(u) = d2g(u)N2 we also require

D(∂ϕ) ⊆ D(B) .

The subdifferential

In terms of Theorem 24, at first we have to find a suitable proper, convex, lower semicon-
tinuous function ϕ. Here we denote by ‖ · ‖p the Lp-norm ‖ · ‖Lp(Ω).

Proposition 25
Let m > 2. The function ϕ : H → [0,∞] defined by

ϕ(u) :=

{
1
m
‖u‖mm if u ∈ Lm(Ω)
∞ otherwise

(4.12)

possesses in H the maximal monotone subdifferential

∂ϕ(u) = −∆(|u|m−2u) . (4.13)

Proof

1) ϕ is proper

We have ϕ 6≡ ∞ due to the embedding

Lm(Ω) ↪→ L2(Ω) ⊂⊂ H−1(Ω) = H .

2) ϕ is convex

In order to show the convexity, we define ϕ̃ := g ◦ f

ϕ̃ : Lm(Ω)→ [0,∞)
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with f : Lm(Ω)→ [0,∞) and g : [0,∞)→ [0,∞) given by

f(u) := ‖u‖m and g(s) :=
1

m
sm .

Then f is convex by the triangle inequality valid of every norm and g is convex since
g′′(s) ≥ 0 for every s ∈ [0,∞). Furthermore g is non-decreasing and it follows for every
λ ∈ (0, 1)

g
(
f(λu+ (1− λ)v)

)
≤ g
(
λf(u) + (1− λ)f(v)

)
≤ λg

(
f(u)

)
+ (1− λ)g

(
f(v)

)
,

thus ϕ̃ is convex. Knowing that, it immediately follows that

ϕ(u) :=

{
ϕ̃(u) if u ∈ Lm(Ω)
∞ otherwise

(4.14)

is also convex.

3) ϕ is lower semicontinuous

Here we again use the composition ϕ̃ = g ◦ f as described above. It is basic knowledge
that every norm is lower semicontinuous with respect to weak convergence and so we have
lower semicontinuity of f . Furthermore g as a polynomial is continuous and increasing on
its domain [0,∞). This implies that ϕ̃ is lower semicontinuous as it is e.g. proved in [14].
Again, this is also satisfied by the extension (4.14).

By Theorem 24 it follows that the subdifferential ∂ϕ is maximal monotone, but it remains
to show that it is given by (4.13). For that we will show that ϕ is Gâteaux differentiable
and consequently ∂ϕ(u) = {u∗}. Then will prove that u∗ = −∆|u|m−2u in H−1(Ω).

4) ϕ is Gâteaux differentiable

For h > 0 we have to show

lim
h→ 0

ϕ(u+ hv)− ϕ(u)

h
= Dϕ(u)(v)

where the derivative Dϕ(u)(v) of ϕ at u in direction v is linear and bounded in v.

In accordance with Definition 20, the subdifferential of ϕ is only defined for u ∈ Lm(Ω),
hence we only need Gâteaux differentiability in Lm(Ω). Here we have ϕ(u) = 1

m
‖u‖mm and

it is e.g. proven in [55], that this functional is Gâteaux (and also Fréchet) differentiable
for 1 < m <∞. The proof is done using the auxiliary function ψ(h) := ϕ(u+ hv), which
is differentiable in h. Then by the standard differentiability it holds

ψ′(0) = lim
h→ 0

ψ(h)− ψ(0)

h
= lim

h→ 0

ϕ(u+ hv)− ϕ(u)

h
.

Hence it follows that ∂ϕ(u) consists of only one element for every u ∈ Lm(Ω). According
to this, if we can find u∗ ∈ ∂ϕ(u), then this element defines the subdifferential.
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5) u∗ = |u|m−2u ∈ ∂ϕ(u)

We want to determine u∗ ∈ ϕ(u) for the phase space H = H−1(Ω), i.e. by Definition 20
we have to find u∗ ∈ H1

0 (Ω) such that

〈u∗, v − u〉 ≤ ϕ(v)− ϕ(u) ∀v ∈ H−1(Ω) . (4.15)

Again we only need to study u ∈ Lm(Ω), and since (4.15) with v ∈ H−1(Ω)\Lm(Ω) holds
for every u∗ ∈ H1

0 (Ω), it is also sufficient to take v ∈ Lm(Ω). Hence in fact we treat (4.15)
in Lm(Ω), where we want to find u∗ ∈ L m

m−1 (Ω) = Lm(Ω)∗ with∫
Ω

u∗(v − u) dx ≤ 1

m
(‖v‖mm − ‖u‖mm) ∀v ∈ Lm(Ω) . (4.16)

In the following we will show that u∗ = |u|m−2u ∈ L m
m−1 (Ω) for u ∈ Lm(Ω) satisfies the

desired property in Lm(Ω).

It holds ∫
Ω

|u|m−2u(v − u) dx =

∫
Ω

|u|m−2uv dx−
∫

Ω

|u|m dx ,

which can be estimated by applying Hölder’s and Young’s inequality both with p = m
and its conjugate q = m

m−1

≤ ‖|u|m−2u‖ m
m−1
‖v‖m − ‖u‖mm ≤

m− 1

m
‖um−1‖

m
m−1
m
m−1

+
1

m
‖v‖mm − ‖u‖mm

=
m− 1

m
‖u‖mm +

1

m
‖v‖mm − ‖u‖mm =

1

m
(‖v‖mm − ‖u‖mm) .

Hence (4.16) is fulfilled and we have |u|m−2u ∈ ∂ϕ(u) in Lm(Ω).

In summary, for the subdifferential ∂ϕ in Lm(Ω) ⊂ H−1(Ω) we were able to show

∂ϕ(u) = |u|m−2u ∀u ∈ Lm(Ω) . (4.17)

6) Identifying ũ = −∆(|u|m−2u) ∈ ∂ϕ(u) for the phase space H−1(Ω)

However, the PDE (4.5) is defined on the phase space H−1(Ω) and thus our aim now is
to determine the corresponding subdifferential in H−1(Ω). For that we need to choose an
appropriate scalar product on H = H−1(Ω). This can be done by defining

(u, v)H := 〈(−∆)−1u, v〉 ∀u, v ∈ H , (4.18)

where 〈·, ·〉 denotes the duality pairing H1
0 (Ω)〈·, ·〉H−1(Ω). This definition is justified by the

isomorphism −∆ : H1
0 (Ω) → H−1(Ω) provided by the famous Lax-Milgram Theorem.

In accordance the inverse operator (−∆)−1 : H−1(Ω) → H1
0 (Ω) exists and inherits the

property of being self-adjoint.

Our purpose now is to find the identification ũ ∈ H−1(Ω) of u∗ = |u|m−2u. For every
element ũ of H−1(Ω) we have in accordance with the subdifferential definition

(ũ, v)H = 〈(−∆)−1ũ, v〉 !
= 〈u∗, v〉 ∀v ∈ H ⇔ ũ = −∆u∗ ∈ H−1(Ω) .

2
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Existence of a unique global solution

In analogy to Theorem 1, we obtain a similar existence result for the degenerate model
by using the theory of maximal monotone operators.

Theorem 26
Let Ω ⊂ Rn be bounded. Under the assumptions of Condition 1 it holds:

For all initial data u0 ∈ Lm(Ω), N1,0 ∈ L∞(Ω), N2,0 ∈ L∞(Ω) and N3,0 ∈ L∞(Ω) the
system (4.5) - (4.9) with m > 2 and

‖N1,0‖L∞(Ω) + ‖N2,0‖L∞(Ω) 6= 0

possesses a unique global solution (u,N1, N2, N3) satisfying

u ∈ C([0, T ];H−1(Ω))

∂tu ∈ L2(0, T ;H−1(Ω))

|u|m−2∇u ∈ L2(0, T ;L2(Ω))

Ni ∈ L∞(0, T ;L∞(Ω)), i = 1, 2, 3 ,

for all T > 0.

Proof

The approach to prove existence of a solution proceeds in the same way as for the non-
degenerate diffusion case stated in the proof of Theorem 1. The system is splitted up
into a pure ODE system and a pure PDE for which we separately show the existence of
solutions. Then both are reunited and we have the existence of a unique solution of the
whole system if we can show that the corresponding map

B : u ∈ X 7→ Nu :=

(
Nu

1

Nu
2

)
7→ û = B(u)

is a contraction.

1.) Existence for the pure ODE system

Since the modifications only apply to the PDE part, the pure ODE system is again given
by (3.9), (3.10) dependent on a fixed parameter u. It turns out that for this case it is
more suitable to take u from the space X := C([0, T ];L1(Ω)) and search for the global
solution of the ODE in the space Y := L∞(Ω) × L∞(Ω) with the corresponding norm
‖(A1, A2)‖Y = ‖A1‖L∞(Ω) + ‖A2‖L∞(Ω) for A = (A1, A2) ∈ Y .

It is easy to see that F is also Lipschitz continuous in the space Y , which yields the
existence of a unique global solution Nu = (Nu

1 , N
u
2 ) ∈ C([0,∞];Y ).

2 1.)

Remark
Since we deal with functions from Lm(Ω) with m > 2, one can also choose Y to be the space
L∞(Ω)× L∞(Ω) instead of L2(Ω)× L2(Ω) as we did in Section 3.1.1.
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2.) Existence for the pure PDE

The main difference here consists in showing the existence of a solution û to the degenerate
pure PDE problem dependent on Nu

2

∂tû = d1∆(|û|m−2û) + d2g(û)Nu
2 (4.19)

û(x, 0) = u0(x) (4.20)

û
∣∣
∂Ω

= 0 . (4.21)

As stated before, this PDE can be reformulated and embedded in a more abstract context
by searching for the solution û(t) of

∂tû(t) + d1∂ϕ(û(t)) +B(û(t)) = 0 (4.22)

û(0) = u0 (4.23)

in the phase space H = H−1(Ω). Here the subdifferential is applied to the function ϕ
defined in Proposition 25 and we set

B(û) := −d2g(û)Nu
2 .

Remark
By the subdifferential definition, ∂ϕ(u) is only defined for u ∈ Lm(Ω) since ϕ(u) = ∞ for
u ∈ H \ Lm(Ω).

Our aim now is to apply Theorem IV of [40], which then assures the existence of a
global solution û. In order to do that, several conditions have to be satisfied. The theory
developed in [40] is capable for a much larger class of equations and deals with multivalued
operators. In our case we only have single-valued operators and so it is sufficient to show
that the following three conditions hold:

(B.1) The level set KL := {v ∈ H : ‖v‖H + ϕ(v) ≤ L} is compact in H for every L > 0

(B.2) The function B is ϕ-demiclosed:

i) vn → v in C([0, T ];H)
ii) ∂ϕ(vn) ⇀ ∂ϕ(v) in L2(0, T ;H)
iii) B(vn) ⇀ χ in L2(0, T ;H)

 =⇒ χ = B(v)

(B.3) The function B is bounded in H:

‖B(v)‖H ≤ C and consequently (B(v), v)H ≤ C‖v‖H ∀v ∈ H

Lemma 27
For the given problem (4.22), (4.23) conditions (B.1), (B.2) and (B.3) imply all nec-
essary assumptions of Theorem IV in [40].
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Proof

In the following we will check the validity of the necessary assumptions (A.ϕt), (A.1),
(A.2), (A.6) and (A.4) with (3.7) from [40] replaced by (3.7)’.

(A.ϕt) Since ϕ is not dependent on the time t, this assumption is automatically satisfied.

(A.1) = (B.1).

(A.2) The perturbation term B(u) does not depend on t and is single-valued, hence (i)
and (ii) are always satisfied, (iii) follows from (B.2).

(A.4) Follows from (B.3).

(A.6) It holds

(∂ϕ(v), v)H = (−∆(|v|m−2v), v)H
(4.18)
= 〈|v|m−2v, v〉 =

∫
Ω

|v|m dx = mϕ(v) (4.24)

and thus from (B.3) it follows

(−∂ϕ(v)−B(v), v)H +mϕ(v) = (−B(v), v)H ≤ C‖v‖H ≤ 2C(‖v‖2
H + 1)

which implies (A.6).
2

Now we want to prove that these three necessary assumptions are satisfied.

Property (B.1) can be justified by the definition of ϕ according to (4.12). From the
non-negativity of ‖v‖H it immediately follows

KL ⊆ Lm(Ω) ⊂ L2(Ω) ⊂⊂ H

since m > 2 and thus KL is a compact subset of H.

For the demonstration of (B.2) we define the cylinder QT := Ω × (0, T ) with elements
x̃ := (x, t). Then on QT it holds

‖v‖2
L2(0,T ;L2(Ω)) =

∫ T

0

‖v(t)‖2
L2(Ω) dt =

∫ T

0

∫
Ω

|v(x, t)|2 dx dt =

∫
QT

|v(x̃)|2 dx̃ = ‖v‖2
L2(QT ) .

At first we recall the meaning of weak convergence in Bochner spaces. For bounded do-
mains we have the Gelfand triple (4.11) and consequently there is an analogous embedding

L2(0, T ;H1
0 (Ω)) ↪→ L2(0, T ;L2(Ω)) ↪→ L2(0, T ;H−1(Ω)) . (4.25)

Remark
The compact embedding V ⊂⊂ W does not imply L2(0, T ;V ) ⊂⊂ L2(0, T ;W ) and vice
versa. However, under additional assumptions such an implication can be shown see e.g. [51].
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By definition, for a weakly convergent sequence {wn}n∈N in L2(0, T ;H−1(Ω)) it holds for
every ψ ∈ L2(0, T ;H−1(Ω))∗ = L2(0, T ;H1

0 (Ω)) due to the embedding (4.25)

〈ψ,wn〉 → 〈ψ,w〉
⇔ (ψ,wn)L2(0,T ;L2(Ω)) → (ψ,w)L2(0,T ;L2(Ω))

⇔
∫ T

0

(ψ(t), wn(t))L2(Ω) dt →
∫ T

0

(ψ(t), w(t))L2(Ω) dt

⇔
∫
QT

ψ(x̃)wn(x̃) dx̃ →
∫
QT

ψ(x̃)w(x̃) dx̃

⇔ wn ⇀ w in L2(QT ) ⇒ wn → w in D′(QT ) .

Based on this consideration we now want to show (B.2), the ϕ-demiclosedness of B.

As we just demonstrated, the third convergence assumptionB(vn) ⇀ χ in L2(0, T ;H−1(Ω))
implies the weakest type of convergence, i.e. convergence of B(vn) to χ in distributional
sense on QT . The aim now is to identify χ = B(v). If we can show almost everywhere
convergence

vn → v a.e. in QT , (4.26)

then by the continuity of g given by Condition 1 it follows

B(vn) = −d2g(vn)Nu
2 → −d2g(v)Nu

2 = B(v) a.e. in QT .

Since almost everywhere convergence implies convergence in distributional sense and the
D′-limit is unique, under this assumption it follows χ = B(v).

Thus it remains to deduce (4.26) from the supposed convergences i) and ii). First of all
they imply that ∂ϕ(vn) and vn are bounded in L2(0, T ;H) ⊃ C([0, T ];H), from which we
can deduce by (4.24)

∞ > (∂ϕ(vn), vn)L2(0,T ;H) =

∫ T

0

(∂ϕ(vn), vn)H dt =

∫ T

0

∫
Ω

|vn|m dx dt = ‖vn‖mLm(QT ) .

Hence vn is also bounded in the reflexive Banach space Lm(QT ), which yields the existence
of a weakly convergent subsequence

vnk ⇀ v in Lm(QT ) . (4.27)

Furthermore it holds

‖vnk‖mLm(Ω) = (∂ϕ(vnk), vnk)H
ii)→ (∂ϕ(v), vnk)H

i)→ (∂ϕ(v), v)H = ‖v‖mLm(Ω)

and consequently

‖vnk‖Lm(QT ) → ‖v‖Lm(QT ) . (4.28)
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Since Lm(QT ) is reflexive and with that uniformely convex due to the Milman-Pettis
Theorem, the weak convergence (4.27) together with the norm convergence (4.28) implies

vnk → v in Lm(QT ) , (4.29)

which in turn gives the desired result (4.26) for a subsequence

vnkl → v a.e. in QT .

and (B.2) is shown.

The implication (4.29) can e.g. be found in [10] and is a generalization of the basic result
for Hilbert spaces.

Remark
For a Hilbert space H the strong convergence follows immediately:

‖vnk − v‖2
H = (vnk − v, vnk − v)H = ‖vnk‖2

H − 2(vnk , v)H + ‖v‖2
H → 0 ,

since by assumption we have ‖vnk‖H → ‖v‖H and (vnk , w)H → (v, w)H for all w ∈ H and in
particular w = v.

The third condition (B.3) is assured by the continuous embedding L∞(Ω) ↪→ L2(Ω) ↪→ H.
Here we have

‖B(v)‖H ≤ CL2‖B(v)‖L2(Ω) ≤ CL2CL∞‖B(v)‖L∞(Ω) = CL2CL∞‖ − d2g(v)Nu
2 ‖L∞(Ω)

≤ CL2CL∞d2g
∗‖N‖L∞(Ω) =: C <∞

and consequently
(B(v), v)H ≤ ‖B(v)‖H‖v‖H ≤ C‖v‖H .

Hence all conditions of Theorem IV in [40] are satisfied. It yields the existence of a global
solution û to the degenerate pure PDE (4.22), (4.23) and thus also to the original problem
(4.19) - (4.21).

2 2.)

3.) Uniqueness of û

The uniqueness of the solution is shown by use of Kato’s inequality, which is introduced
in [31].

Theorem 28 (Kato’s inequality)
Let v ∈ H2(Ω) satisfy homogeneous Dirichlet boundary conditions. Then it holds

(∆v, sgn(v))L2(Ω) ≤ 0 .

Let û1, û2 be two solutions of (4.19) - (4.21) and define ŵ := û1 − û2. We multiply (4.19)
by sgn(û1 − û2) and obtain due to the Lipschitz continuity of g (c.f. Condition 1 (iii))

d

dt
‖ŵ‖L1(Ω) ≤

∫
Ω

∆(|û1|m−2û1 − |û2|m−2û2) sgn(û1 − û2) dx+ d2Lg‖N‖L∞(Ω)‖ŵ‖L1(Ω) .
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The function h(s) := |s|m−2s is non-decreasing since h′(s) = (m− 1)|s|m−2 ≥ 0 and thus
it holds

sgn(û1 − û2) = sgn(|û1|m−2û1 − |û2|m−2û2)

and we can apply Kato’s inequality, which yields

d

dt
‖ŵ‖L1(Ω) ≤ d2Lg‖N‖L∞(Ω)‖ŵ‖L1(Ω) .

By Gronwall’s inequality it follows

‖ŵ(t)‖L1(Ω) ≤ ‖ŵ(0)‖L1(Ω)e
d2Lg‖N‖L∞(Ω)T = 0

and consequently
û1 ≡ û2 .

2 3.)

4.) Properties of the û

Our aim now is to show that this solution satisfies the following properties:

û ∈ C([0, T ];H−1(Ω)) (4.30)

∂tû ∈ L2(0, T ;H−1(Ω)) (4.31)

∂ϕ(û) ∈ L2(0, T ;H−1(Ω)) (4.32)

Proof of (4.30): The continuity of the solution with respect to t ∈ [0, T ] will be shown
by use of the following Theorem:

Theorem 29
Let H be a Hilbert space, E a Banach space with embedding structure

E ⊂ H ∼= H∗ ⊂ E∗ .

If a function u satisfies u ∈ Lp(0, T ;E) and ∂tu ∈ Lq(0, T ;E∗) with 1
p

+ 1
q

= 1, then it
holds

u ∈ C([0, T ];H)

for every T > 0.

This basic fact in the theory of evolution equations can e.g. be found in [13].

For our purpose we choose E := Lm(Ω) and H = H−1(Ω) as before. Then again we have
the compact embedding E ⊂⊂ H. Furthermore H can be identified with its dual H1

0 (Ω),
which is continuously embedded into L

m
m−1 (Ω) = Lm(Ω)∗. This follows from the Sobolev

embedding theorem in dimensions n = 2, 3 due to m > 2.

Hence in accordance with Theorem 29, we have to show

û ∈ Lm(0, T ;Lm(Ω)) and ∂tû ∈ L
m
m−1 (0, T ;L

m
m−1 (Ω)) .
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For that we multiply (4.19) by û. At this the following term occurs:∫
Ω

∆(|û|m−2û)û dx = −(−∆(|û|m−2û), û)H
(4.18)
= −〈|û|m−2û, û〉 = −(|û|m−2û, û)L2(Ω)

= −‖û‖mLm(Ω) ,

which yields due to m > 2

1

2

d

dt
‖û(t)‖2

L2(Ω) + d1‖û(t)‖mLm(Ω) ≤ d2λ(Ω)
1
2
− 1
m‖g(û(t)Nu

2 (t)‖L2(Ω)‖û(t)‖Lm(Ω)

and by Young’s inequality

d

dt
‖û(t)‖2

L2(Ω) + d1‖û(t)‖mLm(Ω) ≤
d2

2

d1

λ(Ω)2− 2
m g∗2‖N‖2

L∞(Ω) .

Integration over
∫ T

0
dt then gives

∫ T

0

‖û(t)‖mLm(Ω) dt ≤
1

d1

‖u0‖2
L2(Ω) + T

d2
2

d2
1

λ(Ω)2− 2
m g∗2‖N‖2

L∞(Ω) <∞ ,

i.e.

û ∈ Lm(0, T ;Lm(Ω)) . (4.33)

For û(t) ∈ Lm(Ω) we have by (4.17) ∂ϕ(û(t)) = |û(t)|m−2û(t) and consequently∫ T

0

‖∂ϕ(û(t)‖
m
m−1

L
m
m−1 (Ω)

=

∫ T

0

∫
Ω

∣∣|û(x, t)|m−2û(x, t)
∣∣ m
m−1 dx dt =

∫ T

0

∫
Ω

|‖û(t)‖mLm(Ω) dt ,

hence

∂ϕ(û) ∈ L m
m−1 (0, T ;L

m
m−1 (Ω)) .

The remaining term g(û)Nu
2 can be easily estimated:∫ T

0

‖g(û(t))Nu
2 (t)‖

m
m−1

L
m
m−1

dt ≤ Tg∗
m
m−1‖N‖

m
m−1

L∞(Ω)λ(Ω) <∞

an with that it immediately follows

∂tû ∈ L
m
m−1 (0, T ;L

m
m−1 (Ω)) .

Thus Theorem 29 yields

û ∈ C([0, T ];H−1(Ω)) .
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Proof of (4.31): Our next aim is to analyze

‖∂tû‖2
H = (∂tû, ∂tû)H

(4.18)
= 〈(−∆)−1(∂tû), ∂tû〉 =

∫
Ω

(−∆)−1(∂tû) ∂tû dx ,

i.e. we multiply (4.19) by (−∆)−1(∂tû) and integrate over Ω. At this we have with inte-
gration by parts∫

Ω

∆(|û|m−2û) (−∆)−1(∂tû) dx = −
∫

Ω

|û|m−2û ∂tû dx = − 1

m

d

dt

∫
Ω

|û|m dx .

The last term can be estimated by

d2

∫
Ω

g(û)Nu
2 (−∆)−1(∂tû) dx = (g(û)Nu

2 , ∂tû)H ≤ ‖g(û)Nu
2 ‖H‖∂tû‖H .

Then Young’s inequality together with the continuous embedding L2(Ω) ↪→ H yields

‖∂tû(t)‖2
H + 2d1

1

m

d

dt
‖û(t)‖mLm(Ω) ≤ d2

2CL2g∗2‖N‖2
L∞(Ω)λ(Ω) =: C <∞ .

Integration
∫ T

0
dt then finally gives

∫ T

0

‖∂tû(t)‖2
H dt ≤ 2d1

1

m
‖u0‖mLm(Ω) + CT <∞

and hence

∂tû ∈ L2(0, T ;H−1(Ω)) .

Proof of (4.32): In analogy to the previous case we multiply (4.19) by |û|m−2û and obtain

1

m

d

dt
‖û(t)‖mLm(Ω) + d1‖∂ϕ(û(t))‖2

H ≤ d2g
∗‖N‖L∞(Ω)‖û‖m−1

Lm−1(Ω) .

Integration with respect to t then yields∫ T

0

‖∂ϕ(û(t))‖2
H dt ≤

1

d1m
‖u0‖mLm(Ω) +

d2

d1

g∗‖N‖L∞(Ω)(λ(Ω)T︸ ︷︷ ︸
=λ(QT )

)
1

m−1
− 1
m‖û‖Lm(QT ) <∞

due to (4.33) and hence

∂ϕ(û) ∈ L2(0, T ;H−1(Ω)) . (4.34)

It remains to show (4.34) ⇔ |û|m−2∇û ∈ L2(0, T ;L2(Ω).
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This equivalence is justified by the fact that for ψ ∈ L2(0, T ;H1
0 (Ω)) and consequently

∇ψ ∈ L2(0, T ;L2(Ω)) it holds

∞ >

∫ T

0

〈−∆(|û(t)|m−2û(t)), ψ(t)〉 dt =

∫ T

0

(−div((m− 1)|û(t)|m−2∇û(t)), ψ(t))L2(Ω) dt

= (m− 1)

∫ T

0

∫
Ω

|û(x, t)|m−2∇û(x, t)∇ψ(x, t) dx dt = (m− 1)(|û|m−2∇û,∇ψ)L2(QT ) .

2 4.)

5.) The map B : u 7→ û is a contraction

Here we calculate the difference of two solutions û1 = B(u1), û2 = B(u2) of the pure PDE
dependent on different parameters u1, u2:

∂tû1 = d1∆(|û1|m−2û1) + d2g(û1)Nu1
2 û1(x, 0) = u0(x) û1

∣∣
∂Ω

= 0

∂tû2 = d1∆(|û2|m−2û2) + d2g(û2)Nu2
2 û2(x, 0) = u0(x) û2

∣∣
∂Ω

= 0 .

Our aim is to show for δû := û1 − û2 and δu := u1 − u2

max
0≤ t≤T0

‖δû(t)‖L1(Ω) ≤ α max
0≤ t≤T0

‖δu(t)‖L1(Ω)

for 0 < α < 1 and T0 sufficiently chosen.

In the proof of Theorem 1 we consider the space C([0, T ];L2(Ω)), but for the degenerate
case we have to use functions from X = C([0, T ];L1(Ω)). This is due to the fact that we
have to get rid of the diffusion operator term. For the non-degenerate case this is possible
by multiplying with δû, where we obtain∫

Ω

∆δû û dx = −‖∇û‖2
L2(Ω) ≤ 0 .

However, for the degenerate case the diffusion operator is nonlinear and we need to apply
Kato’s inequality as we did for the proof of uniqueness:∫

Ω

∆(|û1|m−2û1 − |û2|m−2û2) sgn(û1 − û2) dx ≤ 0 .

Thus in that case we multiply by the sign-function which in turn leads to the L1-norm.
In order to estimate δû we proceed in exactly the same way as we did in Section 3.1.1,
with the only difference of multiplying by sgn(δ·). This yields with the same constantsl1 δN1 := Nu1

1 −Nu2
1

‖δN1(t)‖L1(Ω) ≤ LfC1

∫ t

0

‖δu(s)‖L1(Ω) ds ∀t ∈ [0, T ] .

l2 δN2 := Nu1
2 −Nu2

2

‖δN2(t)‖L1(Ω) ≤ C3

∫ t

0

‖δu(s)‖L1(Ω) ds ∀t ∈ [0, T ] with T ≤ 1 .
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l3 δû := û1 − û2

‖δû‖X ≤ d2g
∗C3 Te

d2LgC2T︸ ︷︷ ︸
=C4(T )>0

‖δu‖X with T ≤ 1 .

Now we are in exactly the same situation as in the proof of Theorem 1, where we show
the existence of a time T0 ≤ 1 such that C4(T0) < 1.
This assures the existence of a unique local solution of the original problem (4.5) - (4.9)
on the time interval [0, T0]. Furthermore with the same arguments as before, the existence
interval can be extended to any bounded interval [0, T ], which means the unique local
solution can be continued globally. At this we also obtain Ni ∈ L∞(0, T ;L∞(Ω)).

2 5.)
This finishes the proof of Theorem 26.

Further properties of the unique global solution are summarized in the next theorem.

Theorem 30
For the solution (u,N1, N2, N3) of the degenerate problem (4.5) - (4.9) the following as-
sertions hold:

(i) Theorem 2 holds true.

(ii) Under the assumptions of Theorem 2 we have the strong convergence results

N1(x, t)
t→∞−−−→ N∞1 (x) ≥ 0 in Lp(Ω), 1 ≤ p <∞

N2(x, t)
t→∞−−−→ N∞2 (x) ≥ 0 in Lp(Ω), 1 ≤ p <∞

N3(x, t)
t→∞−−−→ N∞3 (x) ≤ ‖N‖L∞(Ω) in Lp(Ω), 1 ≤ p <∞

u(x, t)
t→∞−−−→ u∞(x) ≡ 0 in Lm(Ω) .

Proof

(i) The proof of non-negativity and uniform boundedness of Ni, i = 1, 2, 3 is provided
by exactly the same arguments as for the non-degenerate case.

It remains to show the non-negativity of u(x, t) starting from non-negative initial
data u0 ≥ 0.
Proceeding as in the proof of Theorem 2, we multiply (4.5) by the negative part
u− and integrate over

∫
Ω
dx. Here we use the representation u = u+ − u− and

|u| = u+ + u−. This yields

−1

2

d

dt
‖u−(t)‖2

L2(Ω) = d1

∫
Ω

∆
(
(u+ + u−)m−2(u+ − u−)

)
u− dx+ d2

∫
Ω

g(u)N2 u
− dx .
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Since we know
∫

Ω
u+u− dx = 0, the power function (u+ +u−)m−2 can be resolved to

(u+)m−2 + (u−)m−2 and hence (u+ + u−)m−2(u+ − u−) = (u+)m−1 − (u−)m−1. With
that we obtain

−1

2

d

dt
‖u−(t)‖2

L2(Ω) = −d1

∫
Ω

∆((u−)m−1)u− dx+ d2

∫
Ω

g(u)N2 u
− dx

= d1

∫
Ω

∇((u−)m−1)∇u− dx+ d2

∫
Ω

g(u)N2 u
− dx

= d1

∫
Ω

(m− 1)(u−)m−2|∇u−|2 dx+ d2

∫
Ω

g(u)N2 u
− dx︸ ︷︷ ︸

≥ 0

,

which implies ‖u−(t)‖2
L2(Ω) ≤ ‖u−0 ‖2

L2(Ω) = 0. This yields the desired result

u(x, t) ≥ 0 ∀t ≥ 0 ∀x ∈ Ω .

(ii) The convergence results of N1, N2 and N3 are the same as for the non-degenerate
case, since the ODEs of the model description are not changed. However, we can not
deduce N∞2 ≡ 0. This is due to the fact that we can not obtain the strict positivity
of u as we had in Proposition 4.

Remark
This phenomenon was already mentioned before. Whereas for the standard diffusion case
it is possible to deduce the infinite speed of propagation, i.e. u(t) > 0 for t > 0, for the
degenerate case it can be proven that we only have finite speed of propagation and the
solution has compact support. Hence Proposition 4 can not hold in this case.

In order to obtain the convergence of u(t) to 0 in Lm(Ω), we multiply (4.5) by
∂ϕ(u) = −∆(|u|m−2u) and take the inner product in H. Since we assume non-
negative initial data, we know u(x, t) ≥ 0 and thus |u|m−2u = um−1. Then by the
identification (4.18) we have

〈∂tu, um−1〉 = d1〈∆(um−1), um−1〉+ d2〈g(u)N2, u
m−1〉 , i.e.∫

Ω

∂tuu
m−1 dx = d1

∫
Ω

∆(um−1)um−1 dx+ d2(g(u)N2, u
m−1)L2(Ω)

and we further obtain

1

m

d

dt
‖u‖mLm(Ω) ≤ −d1‖∇um−1‖2

L2(Ω) + d2‖g(u)N2‖L2(Ω)‖um−1‖L2(Ω) .

Applying Poincaré’s inequality to v = um−1 we get ‖v‖L2(Ω) ≤ CP‖∇v‖L2(Ω). Insert-
ing this estimate twice and using Young’s inequality, we come up to

1

m

d

dt
‖u‖mLm(Ω) +

d1

2C2
P

‖um−1‖2
L2(Ω) ≤

d2
2C

2
P

2d1

‖g(u)N2‖2
L2(Ω) .
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At this we have ‖um−1‖2
L2(Ω) = ‖u‖2(m−1)

L2(m−1)(Ω)
and due to 2(m − 1) > m we can

estimate ‖u‖Lm(Ω) ≤ λ(Ω)
1
m
− 1

2(m−1)‖u‖L2(m−1) =: Cλ‖u‖L2(m−1)(Ω). This yields

d

dt
‖u‖mLm(Ω) + C

−2(m−1)
λ

md1

2C2
P

‖u‖2(m−1)
Lm(Ω) ≤

md2
2C

2
P

2d1

‖g(u)N2‖2
L2(Ω) ,

which is of the form
d

dt
y(t) + γy(t)p−1 ≤ a(t)

with y(t) := ‖u(t)‖mLm(Ω), γ > 0 and p = 1 + 2(m−1)
m

> 2. The statements leading to

(3.77) also apply to this case and so we have
∫∞

0
a(t) dt <∞.

This differential inequality is different compared to the previous ones, since we now
have the exponent (p − 1). Lemma 4.3 of [40] deals with this kind of inequalities
and by using the argument in the proof of this lemma we arrive at

y(t) ≤
(
γ(p− 2)(t− t0)

)− 1
p−2 +

∫ t

t0

a(s) ds (4.35)

for all t0 ∈ [0, T ] and t ∈ [t0, T ].

By the convergence of
∫∞

0
a(t) dt we know that for any ε > 0 there exists t0 > 0 such

that
∫∞
t0
a(s) ds < ε. Taking the limit t→∞ in (4.35), we get lim supt→∞ y(t) ≤ ε,

whence follows limt→∞ ‖u‖mLm(Ω) = 0, which implies

u(x, t)
t→∞−−−→ u∞(x) ≡ 0 strongly in Lm(Ω) .

2



Outlook

The derived mathematical model of mitochondrial swelling can be further extended. This
will lead to interesting mathematical questions, that are also very important for the
biological application.

• Take into account other boundary conditions for the degenerate model, in particular
homogeneous Neumann and inhomogeneous Robin boundary conditions in order to
account for the in vitro and in vivo processes as we did for the non-degenerate
model.

• Try to get rid of the additional condition (Cond.a) in the Robin boundary case

−∂νu = a(x)(u− α) on ∂Ω ,

which states that the boundary function a has to be bounded below by a positive
constant. If we could also allow a(x) to be zero for special regions on the boundary,
we could obtain a more detailed mathematical description of the cell membrane.

• Even if mitochondria do not diffuse within the cell, there are indications that mi-
tochondria do move under special circumstances, e.g. dependent on the cell cycle
phase [37]. This spatial evolution could be included in the mathematical model,
which then leads to a coupled PDE-system.
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