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Abstract

This thesis is concerned with the pricing of credit- and inflation-linked prod-
ucts within a defaultable term structure framework that incorporates macroe-
conomic and firm-specific factors. In particular, we introduce a general pric-
ing framework from which several models are derived differing in the assump-
tions regarding the number of economic factors, observability and correlation
of these factors. For this family of models, we study the determinants of non-
defaultable and defaultable bond prices by directly including observable as
well as unobservable macroeconomic factors into the different set-ups.
Based on the general version of the defaultable term structure model, we
determine prices for credit default swaps in closed form and further deduce
exact dynamics of credit default swap spreads. Approximating these ex-
act dynamics enables us to present closed-form solutions for complex credit
derivatives like credit default swaptions and constant maturity credit default
swaps. We use a full simulation approach to test the pricing formulas for
these credit derivatives and to compare our results to literature.

Further, we apply a variant of our general term structure framework to the
pricing of inflation-linked assets. We use a framework that decomposes the
short rate into a real short rate and an inflation short rate. Starting with
standard inflation-linked derivatives like zero-coupon inflation-linked swaps
and year-on-year inflation-linked swaps, we extend our framework to the pric-
ing of complex hybrid inflation-linked derivatives incorporating interest rate,
equity or credit components. We derive closed-form solutions for inflation-
linked equity options and credit default swaps. Also, we present a feasible
approximation for pricing hybrid inflation-linked derivatives in closed form
enabling a fast and accurate pricing for such complex derivatives.
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Zusammenfassung

Diese Dissertation befasst sich mit der Bewertung von kreditrisikobehafteten
und inflationsindexierten Produkten innerhalb eines ausfallbehafteten Zins-
strukturmodells, das sowohl makrookonomische als auch firmenspezifische
Faktoren integriert. Ausgehend von einem allgemeinen Bewertungsansatz
werden mehrere Modelle abgeleitet, welche sich in den Annahmen beziiglich
der Anzahl 6konomischer Faktoren und deren Beobachtbarkeit und Kor-
relation unterscheiden. Fiir diese verschiedenen Anséatze werden anhand der
Integration von beobachtbaren und unbeobachtbaren makrookonomischen
Faktoren potentielle Treiber risikoloser und ausfallbehafteter Bondpreise ana-
lysiert.

Basierend auf der allgemeinen Version des ausfallbehafteten Zinsstruktur-
modells werden Preise fiir Credit Default Swaps in geschlossener Form be-
stimmt und des Weiteren exakte Dynamiken der Credit Default Swap Spreads
abgeleitet. Das Approximieren dieser exakten Dynamiken erlaubt nun die
Bewertung von komplexen Kreditderivaten wie Credit Default Swaptions
und Constant Maturity Credit Default Swaps in geschlossener Form. Ab-
schliefend werden diese Ergebnisse gegen eine simulationsbasierte Bewertung
getestet und mit der bestehenden Literatur verglichen.

Eine Variante des allgemeinen Bewertungsmodells wird zudem verwendet,
um inflationsindexierte Produkte zu bewerten. Dieser Ansatz zerlegt die
Shortrate in eine reale Shortrate und eine Inflations-Shortrate. Ausgehend
von Standard-Inflationsderivaten wie Zero-Coupon- und Year-on-Year Infla-
tion-Linked Swaps wird die Bewertung auf komplexe, hybride, inflationsin-
dexierte Derivate ausgeweitet. Diese hybriden Derivate beinhalten zusatzliche
Zins-, Equity- und Kreditkomponenten. Es werden geschlossene Bewertungs-
formeln fiir inflationsindexierte Equity Optionen und Credit Default Swaps
hergeleitet. Des Weiteren wird eine Approximation fiir die Bewertung von
hybriden, inflationsindexierten Derivaten in geschlossener Form vorgestellt,
welche eine schnelle und akkurate Bewertung fiir komplexe Derivate erlaubt.
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Chapter 1

Introduction

1.1 Motivation

The recent financial crisis turned the spotlight to credit risk pricing. The
deterioration in prices and ratings of complex credit derivatives left the com-
munity wondering if the models in use are capable of pricing highly structured
products, and whether default and its determinants are captured correctly.
The majority of losses and provisions which occured during the crisis were
not due to actual losses caused by default but corrections of prices with re-
spect to counterparty risk. So far, the assumptions for pricing derivatives
have been that there is no counterparty risk inherent especially for interbank
transactions resulting in risk-free values. But since the bail-out of AIG one
of the biggest player in so-called credit default swaps, which are a type of in-
surance against the default of a certain reference asset, the focus of traders,
financial engineers and regulators lies in adjusting derivatives’ prices with
respect to counterparty risk (CVA).

There are two main approaches to credit risk pricing, structural and reduced-
form models. While the former tries to model default directly by assuming its
occurrence when the firm’s value crosses a certain threshold (i.e. outstand-
ing debt), the latter focuses on modelling the default probability instead.
Although the rational behind structural models is easy to understand, they
fail in exactly specifying default. Contrarily, reduced-form models assume
the default event of being exogenously given. For these models default is not
explainable by any observable data and comes totally unexpected. In order to
overcome the shortcomings of both approaches, a third class of models have
arosen. Hybrid models combine characteristics of both approaches therefore
linking default probabilities to macroeconomic or microeconomic data.

The literature on determinants of sovereign und bond spreads is extensive.



2 CHAPTER 1. INTRODUCTION

Yet, the discussion is still going on about which economic factors are driving
the spreads, how spreads and determinants are related and how to uncover
the relationships respectively find the determinants. A popular approach
for specifying determinants is to use regression analysis for spreads and a
set of candidate determinants. However, the results of these studies do not
link the economic risk dynamics to asset prices. The true relationship of the
spread and its driving factors remains unexplained. Therefore, more recent
approaches use economic risk factors in no-arbitrage term structure mod-
els directly linking the determinants to prices and emphasizing the growing
interest in hybrid credit models. All approaches have in common that al-
though the choice of factors to be included in the test varied substantially,
only a portion of credit spread changes could be explained. The majority of
variation, however, appeared to be driven by a common factor that is still
unexplained.

1.2 Objectives and Structure

The main objective of this thesis is to study hybrid credit risk models with
respect to their ability in explaining credit spreads and their usage for pric-
ing complex derivatives. It is our aim to further develop and promote hy-
brid credit risk models because of their linkage to economic factors, which
we believe crucial for pricing and forecasting credit risk especially for risk
management purposes like stress testing, future exposure and counterparty
risk. Concerning the pricing of derivatives we want to improve the usage
of our proposed defaultable term structure model by proposing closed-form
solutions that could help to reduce the computational burden of risk man-
agement applications.

The remainder of this thesis is organized as follows: In Chapter 2 we intro-
duce and familiarize the reader with the basic concepts in (financial) mathe-
matics that are used throughout this thesis. Chapter 3 outlines the origins
and building blocks of the main credit risk pricing models and embeds our
defaultable term structure framework into these approaches.

In Section 4.1 of Chapter 4 we introduce the general version of our defaultable
term structure model and derive pricing formulas for non-defaultable zero-
coupon bonds in Theorem 4.2 as well as for defaultable zero-coupon bonds
in Theorem 4.3. From this general set-up we deduce several models differing
in the assumptions regarding the number of economic factors, observability
and correlation. For example, the extended Schmid-Zagst model of Section
4.2 was first introduced by Antes, Ilg, Schmid & Zagst (2008) and incorp-
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orates an observable macroeconomic factor in its term structure, whereas
the real and inflation short-rate model of Section 4.4, for which a variant of
it was first published by Hagedorn, Meyer & Zagst (2007), makes use of a
second unobservable macroeconomic factor. Based on these models we test
in Sections 4.7 and 4.8 a set of macroeconomic factors with respect to their
impact on sovereign and bond spreads. We use factors that either represent
a single driving factor or are a composition of several factors representing
the current or future state of the economy. Our choice of factors is based on
their recurrent appearance in literature. Among our set of factors are widely
accepted factors like the gross domestic product, that was used in several
studies by e.g. Bonfim (2009), Glen (2005), Hilscher & Nosbusch (2010)
and Rowland (2005), the consumer price index, that was used by Ang &
Piazzesi (2003) and Cantor & Packer (1996) in addition to some of the previ-
ously mentioned studies, and the industrial production, that was analyzed by
Figlewski, Frydman & Liang (2012), Krishnan, Ritchken & Thomson (2005)
and Krishnan, Ritchken & Thomson (2010). In addition to those well-known
macroeconomic factors, we study the composite indices of leading and coin-
cident indicators which are an aggregate of macroeconomic factors and give
indications concerning the state of the economy. These indices are published
by The Conference Board (see TCB (2001)) and appeared e.g. in the work
of Huang & Kong (2003). In Sections 4.7 and 4.8 we describe in detail the
calibration as well as the analysis of the obtained results.

Based on the defaultable term structure model of Chapter 4, we determine in
Chapter 5 prices for credit default swaps in closed form also after controlling
for counterparty risk. The results for credit default swaps of Theorems 5.13,
5.15 and 5.18 extend the work of Schmid (2002) and Antes, El Moufatich,
Schmid & Zagst (2009) to our general framework introduced in Section 4.1
of Chapter 4 with respect to different assumptions concerning the recovery
payments. Then, in Section 5.4.3 we further extend these results by incorp-
orating counterparty risk based on the work of Jarrow & Yu (2001) who used
so-called primary and secondary firms in order to model default dependen-
cies. In Section 5.4.1 we deduce from the closed-form solutions of Theorems
5.13, 5.15 and 5.18 dynamics of credit default swap spreads in a consistent
way while keeping the link to economic factors. After approximating the ex-
act dynamics in Section 5.4.2 by lognormal and shifted-lognormal dynamics,
we present closed-form solutions based on these approximations for credit de-
fault swaptions in Theorems 5.33 and 5.34, and for constant maturity credit
default swaps in Theorems 5.38, 5.39 and 5.40. In addition, we show in Sec-
tion 5.5.1 how to incorporate the new quoting mechanism for credit default
swaps, i.e. a constant cds spread (cf. Markit (2009a) and Markit (2009b)),
into the pricing of credit default swaptions and we outline in Theorem 5.35
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how to price a credit default swaption if the option maturity does not coincide
with the start of the credit default swap. We use a full simulation approach
to test the pricing formulas for those credit derivatives and to compare our
results to literature, e.g. Krekel & Wenzel (2006) and Brigo & Mercurio
(2006).

In Chapter 6 we outline the pricing of inflation-linked derivatives within our
term structure model. This chapter extends the work of Hagedorn et al.
(2007) to pricing hybrid inflation-linked derivatives. Starting with standard
derivatives like zero-coupon inflation swaps we extend our pricing framework
to hybrid products combining inflation with interest rates in Theorem 6.6
according to the work of Dodgson & Kainth (2006). We test the approx-
imated semi-analytical solution of Theorem 6.6 against the pricing by means
of simulation. Further, we introduce in Theorem 6.7 derivatives combining
the characteristics of inflation and equity analogously to Hammarlid (2010),
and in Theorem 6.9 we extend our inflation set-up to credit derivatives and
make use of results obtained in Chapter 5 in order to price an inflation-
indexed credit default swap introduced by Avogaro (2006). Finally, Chapter
7 concludes.



Chapter 2

Mathematical Fundamentals

This chapter is meant to introduce and familiarize the reader with the mathe-
matical fundamentals and notations which will be used in this thesis. The
first section deals with point processes and intensities while the next section
outlines the basics of stochastic differential equations. Section 2.3 introduces
the concepts of financial markets and Section 2.4 presents the Kalman fil-
tering technique which we will use later on as suggested in Schmid (2002).
Mainly this chapter is based on Zagst (2002) but the usage of other sources
will be explicitly stated at the appropriate places.

2.1 Point Processes and Intensities

The concept of point processes is an important source for credit risk mod-
elling. Therefore, we start with these processes and further introduce inten-
sities of point processes. A main class of credit risk models, the so-called
reduced-form models (cf. Chapter 3), make use of intensities.

In the following we assume a filtered probability space (Q, F,Q,F), i.e. a
sigma-algebra F on the non-empty sample space 2 which is further equipped
with a probability measure @) and a filtration F = (F)s>o0.

Definition 2.1 (Point Processes)

Let (T))nen be a monotonously increasing series of random variables with
values in [0,00] and T'(0) = 0. If it holds for T,, < oco: T, (w) < Tphi1(w),
Vw € Q, then N(t) defined as

N(t) = Z 1{t2Tn}

n>1

5
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is called the (T),)nen, -associated point process.
Further, N(t) is non-explosive if it holds sup,cy T, = 00, @ — a.s..

Definition 2.2 (Stopping Time)
Let T be a random variable in RT U {oc} with {r <t} € F, for any t > 0,
then T is a stopping time with respect to the filtration F.

Lemma 2.3
A point process N is adapted if and only if the associated series (T,,)nen is a
series of stopping times.

Proof:
see Protter (1990), Theorem 1.22. O

Definition 2.4 (Intensity)
Let N be a non-explosive, adapted point process and ¢ a non-negative, pro-
gressively measurable process, such that it holds for all t > 0

/tc(s)ds < oo —a.s..
0

If it further holds for all non-negative, predictable processes C

Eo { /0 N (J(s>dN(s)] = Eo { /0 T ) c(s)ds} :

then N is said to admit the intensity c.

Theorem 2.5 (Martingale Characterization of Intensity)
(i) Assume N(t) admits the intensity ¢, M is given as M(t) := N(t) —
fg c(s)ds, and C' is a predictable process with
Eq [fot |C(5)|C(S)d8] < o0, t >0, then f(f C(s)dM(s) is a martingale.

1) 1If it additionally holds E Le(s)ds| < oo, t > 0, then M is a mar-
Q@ |Jo

tingale.

(11i) Let N(t) be a non-explosive, adapted, (T, )nen, associated point process

and let N(t N'T,,) — OtAT" c(s)ds be a martingale Vn € Ny. Then c(t) is

the intensity of N(t).
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Proof:
see Brémaud (1981), pages 27-28. O

If we now assume the point process N(t) to be represented by the indicator
function 1g>,y for a stopping time 7 and that N admits a right-continuous
intensity ¢ with Eq [supg<,<; ¢(s)] < oo, Vt > 0. Then according to Theorem
2.5 (ii) M (t) is a martingale and it holds for € > 0:

Q(t<7'§t+€’ft) = EQ [1{t<7-§t+e} ft}
= Eq[N(t+e) - N(1)| 7]

= EQ[M(t—i—G)—M(tﬂft]-i-EQ [/t EC(S)ds

- & [ /t 7 )ds

Additionally, it holds (see e.g. Schmid (2002))

g

7.

<
e— €

In credit risk models the stopping time 7 is defined as the time of default of a
reference entity, e.g. the time when a company is unable to meet its financial
obligations. With this in mind, the intensity ¢, which is often also referred
to as hazard rate, can be interpreted as the arrival rate of default within the
next infinitesimal time period [t, ¢+ €] given all available information at time
t.

2.2 It0 Processes and Stochastic Differential
Equations

An important tool in financial mathematics are Ito processes for describing
the performance of prices. In this section we introduce those processes and
further important applications of stochastic analysis. If not stated otherwise
we consult Zagst (2002). For further reading we also recommend @ksendal
(1998) and Karatzas & Shreve (1991).



8 CHAPTER 2. MATHEMATICAL FUNDAMENTALS

Definition 2.6 (Ité6 Process)
Let W be an m-dimensional Brownian motion. A stochastic process is called
an Ité process if for allt >0

X = Xo+ /Ot,u(s)ds + /Ot o(s)dW (s),

with X being Fo-measurable and p and o = (01, ...,0,) (m-dimensional)
progressively measurable stochastic processes with

t
| s < o
0
and
t

/ o2 (s)ds < oo

0
Q-a.s. Vt>0,5=1,...,m.
An n-dimensional Ité process is given by an n-dimensional vector
X =(X1,...,X,), n €N, whose elements are an Ito process.

The Ito6 process is often denoted in another way via a so-called stochastic
differential equation (SDE):

dX(t) = p(t)dt + o(t)dW(t)

J=1

Since financial derivatives are often constructed as a function of an It6 pro-
cess it is helpful to know how this new process looks like and under which
conditions it will be an It6 process again. The following lemma states the
necessary conditions for a one-dimensional It6 process but can be extended
for higher dimension (see e.g. Zagst (2002), page 29).

Theorem 2.7 (It6’s Lemma)
Let X = (X (t))i>0 be an Ito process with

dX (1) = p(t)dt + Zm: o, (1) dW; (1)

J=1

and G : R x [0,00) — R be twice continuously differentiable in the first

variable and once continuously differentiable in the second. Then it holds for
all t € [0, 00)

Gea(X (1), 1

AG(X(W.1) = [GX(0).0) + G0 ufe) + St

G (X (1), t)a(t)dW (2).

[l (t)]]7]dt
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Proof:
See Korn & Korn (1999), page 48-50. O

Now, we define a strong solution of a given SDE and give conditions for
the existence and uniqueness of such a strong solution.

Definition 2.8 (Strong Solution)

Let @ R" x [0,00) — R"™ and o : R" x [0,00) — R™™ n m € N, be
measurable with respect to the corresponding Borel o-algebras. If there exists
an n-dimensional Ité-process X on the filtered probability space (2, F,Q,TF)
such that

t t
X(t)==z —i—/ w(X(s),s)ds —|—/ o(X(s),s)dW(s) Q-a.s., X(0) =z,
0 0
with x € R™, then X 1is called a strong solution of the SDE
dX(t) = pw(X(t),t)dt + o(X(t),t)dW(t), Vt > 0,X(0) = x.

Theorem 2.9 (Existence and Uniqueness)

Let the functions p and o of the previously stated SDE be continuous such
that for allt > 0, x,y € R™ and a constant K > 0 the following conditions
hold *:

1 ||p(z, )=y, )|+ ||o(z, t)—o(y, t)|| < K-||x—y|| (Lipschitz condition)
2. |z, O + |lo(z, t)]]> < K2(1 + ||z|]?) (growth condition,).

Then there exists a unique, continuous strong solution X of the SDE and a
constant C'" which depends only on K and T > 0 such that it holds:

Eol[| X (1)["] < C(1+ [|=]*)e“" vt € [0, T].
Furthermore it holds that

Eq[ sup || X (#)[|*] < oc.
0<t<T

Proof:
See Korn & Korn (1999), page 127-133. O

In this thesis, we will work with linear stochastic differential equations that
are defined in the following. Further, we present the unique strong solution
of this special class of SDEs.

I|z||,z € R**™ denotes the Euclidean norm with ||z|| := \/m
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Definition 2.10 (Linear Stochastic Differential Equation)
Consider the matrices H € R™", V € R™™ and a continuous function
J :]0,00) — R, then

dX(t) = [HX () + J(t)]dt + VAW (¢)

with initial condition X (0) = x is called a linear stochastic differential equa-
tion.

Theorem 2.11 (Solution of Linear Stochastic Differential Equa-
tion)
The previously introduced linear SDE has a unique strong solution of the form

t t
X(t) = thiU-i-/ eH(tS)J(s)ds—i—/ =DV aw (s).

0 0

Moreover, X (t) follows a normal distribution for t > 0 with

t
Eo[X (t)] = e’ +/ =) J(s)ds
0

and .
Covg[X(t)] = / eV et ds.
0
Proof:
see Karatzas & Shreve (1991), page 354-355. O

In the following, we outline an important link between partial differential
equations (PDE) and stochastic analysis, the so-called Feynman-Kac repre-
sentation. Given certain assumptions, this representation allows us to inter-
pret the solution of a PDE as the expectation of a function of a diffusion
process where the drift and coefficient are represented in terms of the PDE
coefficients. First, we define the PDE for which the Feynman-Kac represen-
tation holds.

Definition 2.12 (Cauchy Problem)
Let the differential operator D be defined by

n n

1
(Dv)(x,t) = vy(x,t) +Zuzxtvx (x,t) +222athvmx (z,1)

=1 =1 j5=1
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with v : R"x[0,00) — R being twice continuously differentiable in x and once
continuously differentiable in t, and with functions p : R™ x [0,T] — R™ and
a:R"x[0,T] — R™". Additionally, let r : R" x [0,T] — R be a continuous
function and T > 0 be arbitrary but fired. Then the Cauchy problem is the
problem of finding a function v : R™ x [0,T] — R which is continuously dif-
ferentiable in t, twice continuously differentiable in x and solves the following
partial differential equation, the so-called backward Kolmogorov equation,

(Dv)(x,t) = r(z, t)v(x,t), V(z,t) € R" x[0,T]

and terminal condition v(z,T) = D(x) for all z € R™.

Theorem 2.13 (Uniqueness of Solutions for the Cauchy Problem)
If (a;j(x,t))1<ij<n 1S positive semi-definite and it holds for a constant K > 0

‘aij(x7t)‘ < K,
i, )] < K (1+ [lz]]),
—r(2,t) < K (L+[|l2]*),
then there exists at most one solution v of the Cauchy problem satisfying
v(x,t)] < Kkl
for positive constants Ky, K.

Proof:
see Friedman (1975), page 139-140. O

We now present the Feynman-Kac representation for linear stochastic dif-
ferential equations which will be used later in this thesis. More general ap-
plications of Feynman-Kac can be found in Friedman (1975), e.g. Theorem
4.6, page 142 and Theorem 5.3, page 148.

Theorem 2.14 (Feynman-Kac Representation)

Assume T > 0, X(t) being the solution of the linear stochastic differential
equation (see Definition 2.10) and V'V’ being positive definite. Furthermore,
let f,r :R" =R, f(z):= Fla+d, r(x) :== G'z+ ¢ be affine linear functions,
F.GeR" ¢,deR, v:R"x[0,T] — R,

ol 1) o= By [ 1O (X (7))
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and ' the differential operator D be defined as in Definition 2.12 with
w(w,t) == Hr + J(t), a(w,t) == >0, VieVie = (VV'),;. Then it holds that

o(XO5(), 1) = EGT e~ I T p (X (T))| 7,

and v(z,t) is the unique solution of the Cauchy problem and fulfills the growth
condition

lu(z, )| < Kpe'2lelP

for positive constants K1, Ks.

Proof:
see Antes (2004), page 36-37. O

Hence, the unique solution of the Cauchy problem is given by this expected
value as a function depending on the initial parameters (x,t) of the SDE. In
general, the reverse is not true. But if it is possible to determine the expected
value and to show that this expected value solves the Cauchy problem then
it is the unique solution.

In order to solve the PDE that it is obtained by means of the Feynman-Kac
representation, the next theorem will be used within this thesis.

Theorem 2.15 (Linear Differential Equation)
Consider the inhomogeneous linear differential equation

Y (z) = a(x)y(z) + b(z)

with continuous functions a and b, b # 0. Then, the solution of this differ-
ential equation s

with C € R and A’ = a.

Proof:
see Walter (1986), §2. O

The superscript in EZ; indicates that X (t) = x.
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2.3 Financial Markets

In order to get a consistent framework we present below the most impor-
tant building blocks for financial markets. We start with introducing a gen-
eral model for financial markets. Throughout this section we consult Zagst
(2002). Other textbooks regarding introductions of financial markets are

Brigo & Mercurio (2006) with an emphasis on interest-rate markets, Musiela
& Rutkowski (1997) and Bingham & Kiesel (2004).

Definition 2.16 (Financial Market)

The primary financial market M(Q) on the filtered probability space

(Q, F,Q,F) with the filtration F(W), F = Fp(W), consists of n+ 1 primary
traded assets whose prices are non-negative Ito processes on [0,T):

dP,(t) = pi(t)dt + Zm:mj(t)de(t) L i=0,...,n,

Jj=1

with an m-dimensional Brownian motion W and progressively measurable
stochastic processes p; and o;;. Furthermore, these processes satisfy the con-
ditions

T
/ |pi(s)|ds < oo @ — a.s.
0

and .
]EQ{/ Ugj(s)ds}<oo Vi=1,...,m.
0

For pricing purposes we want to rewrite the primary traded assets with re-
spect to another unit price (numéraire).

Definition 2.17 (Numéraire)
A price process (X (t))ico,r) that satisfies

X(t) >0 Vtel0,T]

is a numéraire in the financial market M(Q).

In the following, we want to use P, as numéraire and hence define it as
the riskless cash account by taking a stochastic process r which satisfies the
above condition such that

dPy(t) = r(t) - Py(t)dt, Py(0) = 1.
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Hence, the discounted prices of the primary traded assets are

Bi(t):=Fy'(t)- B(t), t€[0,T), i=0,...,n,

with
150(75) =1,
dP;(t) = fu(t)dt + i i (£)dW;(t)
fii(t) = (i) —r(t) - (1) - Py '),
and

Gij(t) = o4(t) - By (t)

foralli=1,...,n,7=1,....,m, t€[0,T].

In order to simplify the calculation of prices, respectively expected values,
we need to find a measure under which the discounted price processes are
martingales.

Definition 2.18 (Equivalent Martingale Measure)

A probability measure (Q on the measure space (2, F) is called an equivalent
martingale measure to Q) if:

(i) Q is equivalent to Q, i.e. Q and Q) have the same null sets.

(ii) The discounted price process P = (Py(t), ..., Py (t))iejo,r) is an n-dimen-
sional QQ-martingale, i.e.

P(t)=Eg [ﬁ(s)’ .7-}} s>

B | | *llop(s)]Pds

The set of equivalent martingale measures to Q) is denoted by M(Q).

and

.7-}] < 00.

The next theorem describes how such an equivalent martingale measure @
can be constructed. As a result we get an arbitrage-free financial market.
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Theorem 2.19 (Discounted Market Characterization)
Suppose there exists an m-dimensional progressively measurable stochastic
process v such that the no-arbitrage condition

palt) = i(t) A1) = 7(t) - Plt) A®Q— s on [0,T], i=1,...,m,
with o; == (041, . ..,0im), and the Novikov condition
Eo [e%ff? II'Y(S)HQdS} < 00

are fulfilled. B
Furthermore, let the probability measure Q@ on (2, F) be defined as

@(A) =Qry(A) =Eq[la-L(y,T)| VA€ F

with
L(y,T) = e~ Jo vV aW ) =3 i Ih(e)lds,

Then the stochastic process W = <W(t)) o defined by
telo,

AW (t) == ~y(t)dt + dW (t) on [0, T]

s a @—Bmwm’an motion and the price processes have the following represen-
tation in terms of W:

dPy(t) = 0,

dP,(t) = G(t)dW (1), 5i == (Git, -, 0im), i=1,...,n,

dPi(t) = r(t)- P(t)dt + o;()dW (1), i =1,...,n.

If additionally the martingale condition

T
Es [/0 ij(t)dt] <oo Vi=1,....,n,j=1,...,m,

holds, then @ is an equivalent martingale measure with L being the Radon-
Nikodym derivative of QQ with respect to Q).

Proof:
See Zagst (2002), pages 59f. O

Having found an equivalent martingale measure @ we wonder about the
prices of financial products like e.g. derivatives with primary traded assets
as underlyings.
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Definition 2.20 (Contingent Claim)
A random wvariable D(T) on (2, F) whose discounted value up to time t

Py(t) - D(T) is lower bounded for allt € [0,T], is named a European contin-
gent claim with maturity T

Definition 2.21 (Contingent Claim Prices)
Under QQ € M(Q) the expected-value process of a European contingent claim

D s given by

VE(t) = Ro(t) - Eg | DIT)IF] ¢ € [0,7].

If this process Vg)(t) is unique in M(Q), it is called the price of the contingent
claim D, Vp(t).

If our financial market M(Q) is complete, the prices of European contin-
gent claims are unique. We call a financial market complete if all contingent
claims D(T) can be replicated by an admissible trading strategy .

A powerful tool for pricing financial derivatives is the change of numéraire
where the martingale property of the newly discounted price process is pre-
served under the changed probability measure.

Theorem 2.22 (Change of Numéraire)

Let X = (X (t))ico,1) be a non-dividend-paying numéraire in M(Q) and

Q € M(Q). If the discounted numéraire process X = ()A(:(t))te[oju] with
X(t) == PyY(t) - X(t), t € [0,T], is a Q-martingale, then there exists a
probability measure Q* on (Q, F), defined by its Radon-Nikodym derivative
L(T) with respect to Q,

dQ* X(t
L= - 20 epm,
10 |, X(0)- Rl
and .
dL(t) = —L(t)y(t)dW (1),
such that the discounted primary traded asset prices ]BZ-X, 1=1,...,n, are

QX -martingales. Furthermore, the expected-value process of a contingent

W An admissible trading strategy is a self-financing trading strategy with (discounted)
price processes which are A ® @-a.s. bounded below.
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claim D = D(T) with maturity T under Q and numéraire Py coincides with
the expected-value process of D under Q~ and numéraire X, i.e.

Py(t) -Eg [E(T)‘ .7:1:} = X(t) - Eqx [EX(T)‘ }_t}

for all t €10, 7).

Proof:
See Zagst (2002), pages 87f. O

A popular application of the above financial market is the famous Black-
Scholes Model (see Black & Scholes (1973)) of which we present a generalized
version (see e.g. Zagst (2002)). Within the terms of this model the financial
market is free of arbitrage as well as complete, i.e. the price process of a
European contingent claim is unique.

Theorem 2.23 (Generalized Black-Scholes)
Suppose that m = n = 1 and that the primary traded assets with prices Py
and Py are given by

dPy(t) = r(t)- Po(t)dt, Po(0) = 1,

dPy(t) = u(t)- P(t)dt+ o(t) - P (t)dW(t), P (0) >0,
with o > 0 such that the no-arbitrage, the Novikov and the martingale con-
ditions of Theorem 2.19 are satisfied. Then this financial market is free of

arbitrage, and the price process of any European contingent claim D=D(T)
with maturity T is given by

Volt) = Rilt) - B [D(T)|F] = Eq [ 0% D(T)|7,

fort €[0,T], Q € M(Q).

Proof:
See Zagst (2002), pages 77-78. O

An important and well known result of this theorem are the formulas for
European options. Here we present the call option price within the general-
ized Black-Scholes framework.

Theorem 2.24 (Generalized Black-Scholes Call Option Price)
Let the assumptions of Theorem 2.23 be satisfied and let v and o be deter-

ministic. Then the price at time t € [0,T] of a FEuropean call option with
strike X and terminal payoff D(T) = max{P(T) — X, 0} is given by

CallPS(t, T, X) = Py(t) - N(dy) — e~ 7945 X . Af(dy)
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with

In (Pl)gt)) + ftTT(s)ds + 202
d1 =

Oy

,dyi=dy — oy,

and
T
oy =oy(t,T) = / o?(s)ds .
t
N denotes the standard normal cumulative distribution function.

Proof:
See Zagst (2002), pages 79-80. O

An extension of the Black-Scholes formula is the so-called Black formula
(see Black (1976)) for futures prices. Since we make use of Black’s formula
in the following chapters we present it here too.

Let F(t,T) be defined as

F(t,T) = el "®ds . p ()¢ € [0,T7.

Theorem 2.25 (Generalized Black Price)
Let the assumptions of Theorem 2.23 be satisfied and let r and o be determin-
istic. Then the price at time t € [0,T] of a European call option written on

a financial instrument with price process (F(t,T))icjor) and terminal payoff
D(T) = max {F(T,T) — X, 0} is given by

CallBlk (1, T, X) = e~ J 7 (F(t,T) - N'(dy) — X - N'(da))

with
In <—F(§(’.T)> + %032,
dy = . , dy = dy — oy,
Y

and
T
oy =oy(t,T) = / o%(s)ds .
t
N denotes the standard normal cumulative distribution function.

Proof:
See Zagst (2002), pages 81-87. OJ
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Interest-Rate Markets

Interest-rate markets are a special case of the introduced financial markets
where in general the set of primary traded assets consists of zero-coupon
bonds with different maturities. A zero-coupon bond is a financial contract
which pays its holder a nominal N (:=1) at the end of the maturity 7T'. Its
price at time ¢ is given by

P, T)= Ne—RED-(T-1)

where R(t,T") denotes the continuous zero or spot rate, i.e. the interest rate
which is guaranteed for the time period [¢, 7.

Describing an interest market completely is a challenge since there are in-
finitely many zero-coupon bonds with different maturities on the market.
Therefore an approach is to concentrate on a single interest rate instead of
trying to model all possible rates R(t,T) and to describe the whole term
structure 7" — R(t,T) by means of this special rate. There are two rates
which are commonly used, namely the short rate and the forward short rate.

Definition 2.26 (Short Rate and Forward Short Rate)
The short rate r(t) at time t is the interest rate for an infinitesimal time
period. It is defined as

In P(t,t + At) 0

r(t) := R(t,t) == — Alir_r)lo A7 =37 In P(t,T)|r=-

The forward short rate f(t,T) at timet is the interest rate for an infinitesimal
time period at time T but derived at time t. It is defined as

- . InP@ET+At)-InP(t,T)
ft,T) == RtT,7T):= —Alir_r}o A7

0
= —O—TlnP(t,T),

where R(t, Ty, Ty) denotes the forward zero rate given by

In P(t,Tg) —In P(t,Tl)

R(taTlaTQ) = T T 5
2 41

i.e. the interest rate for the time period [11,T5] derived at time t.

We now define our primary interest-rate market MI#M(Q) on the complete
probability space (€2, F, Q) with filtration F(I¥'). The market is supposed to
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be frictionless and trading is allowed continuously up to a fixed time 7. The
numéraire of our interest-rate market is the so-called cash account P, with

Py(t) = elo™@% o <t <T < T
The SDE of the cash account is
dPy(t) = r(t)Py(t)dt

with Py(0) = 1 and r being a progressively measurable process with

-
/ Ir(s)|ds < o0 Q-a.s..

to

The primary traded assets, which are driven by an m-dimensional Brownian
motion W = (Wi(t),..., Wn(t))iepo,r+) With to € [0,77], consist of zero-
coupon bonds with prices P(t,T), t < T. Those prices are described by
non-negative Itd processes as in Definition 2.16 with

dP(t,T) = pp(t,T)dt + f: op;i(t, T)dW;(2),

=1

where pp and opj, 7 = 1,...,m are progressively measurable stochastic
processes such that it holds for all T' € [ty, T*]:

T
/ lpp(s,T)|ds < oo Q-a.s.

to
and

< 00, Vi=1,....m.

T
Eq [/ opi(s,T)ds

to

So far, the only differences between the general financial market M(Q) and
the interest-rate market MM (Q) are the number of primary assets, which
is not limited anymore to n, and the time horizon which was changed to
[to, T*] instead of [0,T].

MIEM(Q) is defined to be arbitrage-free if any finite interest-rate market
MIBM(Q) T.), which is based on a finite number of zero-coupon bonds with
maturities T € 7, .= {Th,...,T,,} C [to,T"], is free of arbitrage.

The definition of an equivalent martingale measure has to be slightly ex-
tended compared to Definition 2.18 in order to fit into the new framework.

Definition 2.27 (Equivalent Martingale Measure in M (Q))
A probability measure Q on (Q, F) is called an equivalent martingale measure
with respect to Q) if
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1. Q is equivalent to Q,

2. The discounted price process (P(t,T))te[to,T] is a Q-martingale for all
T € [to, T).

The conditions under which the existence of an equivalent martingale mea-
sure is guaranteed are similar to Theorem 2.19. We just have to make sure
that the time horizon is changed to [to, 7], especially for the integrals in the
Novikov and martingale conditions. Additionally, the martingale condition
and the no-arbitrage condition have to be fulfilled for all t, <t < T < T*
(see Zagst (2002), page 103ff). The completeness of our primary interest-
rate market is linked to the completeness of a finite interest rate market since
MIEM(Q) is said to be complete if any contingent claim D(Tp), Tp € [to, T"],
is attainable in a finite interest-rate market M EM(Q, 7,,). Thus, if there ex-
ists an equivalent martingale measure for MM (Q) and if this interest-rate
market is complete then the expected-value process of the contingent claim
D is unique. For more general conditions about pricing contingent claims see
Zagst (2002), page 107f.

2.4 Kalman Filter

In this section we present the Kalman filter which will be used later on for
calibration purposes. The main application of the Kalman filter technique,
which was introduced by Kalman (1960), is the modelling and estimation
of unobservable processes. Furthermore, if there are any parameters within
the set-up of the model which are to be estimated, this can also be done by
means of the Kalman filter and a maximum likelihood estimation. In this
section we refer to Harvey (1989). Other textbooks covering this topic are
e.g. Oksendal (1998) who devotes a chapter for the linear filtering problem,
especially the Kalman-Bucy filter. He also cites references for non-linear
cases. Greg Welch and Gary Bishop of the University of North Carolina
provide on their webpage!” an extensive overview of books, articles, tutorials
and research related to the Kalman filter.

State Space Model

The state space model describes the development of the unobservable pro-
cess and its linkage to given data. The dynamics of the process, i.e. its
evolution from one point in time to another, are given by the transition
equation whereas the measurement equation determines the relation of this

Whttp://www.cs.unc.edu/~welch /kalman /
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process to measurable information. We consider a linear state space model
fort=1,...,T

Y, = Zioy +di + € (measurement equation),
ap = Tyay_1 + ¢ + 1 (transition equation),

with
Y, N x 1 vector with observable information at time ¢,
Qy m X 1 state vector at time ¢,
¢ € R™ constant term of transition equation at time ¢,
d, € RY constant term of measurement equation at time ¢,
Z, € RNxm coefficient matrix of state vector for measurement equation,
T, € Rm™>m coefficient matrix of state vector for transition equation,

e ~ Nn(0, Hy) disturbance term of measurement equation,
n ~ N (0,Q,) disturbance term of transition equation.

Furthermore, it must hold that ¢; and 7; are sequences of independent random
vectors with E(¢n.) =0 for all s,¢ =1,...,T. Additionally, the initial state
ap has to be independent of ¢; and 7; with oy being normally distributed,
ie. ag ~ Ny (ag, Py) for ag € R™ and Py € R™*™,

Based on this state space model, we now present the Kalman filter algo-
rithm which will be used in order to get an estimate of a; with respect to all
available information up to time t¢.

Algorithm
o [nitialize ag and F,.
e Fort=1,...,T evaluate

— the prediction equation

ay—1 = Tiaz—1 + ¢
Pyj—1 = TP T + Qy,

— and the update equation

g = Qgjt—1 + Pt|t_1Zt’F{1(yt — Zyayp—1 — dy)
Py = Py — B|t—1Zt/Ft_IZtPt\t—1
wlth B = ZtPt|t—IZ£ + Ht'
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In order to check if the model is well-specified Harvey (1989), e.g. page 256,
suggests to test the standardized innovations

5= Yt — Zpyp—1 — dy
; VT

with f; being the corresponding element on the diagonal of F; since these
residuals should be independent and standard normally distributed. He pro-
poses testing e.g. for serial correlation, for heteroscedasticity and for nor-
mality.

Theorem 2.28 (Properties of the Kalman Filter)

It holds that
Qo
( YZ ) |Yt—1 =Yi-1,--, Y1 =11
-~ N (( Qt|t—1 ) ( Pt|t—1 Pt\t—lzt/ ))
mr Zayer +dy )\ ZiPip1 ZiPpy Z, + H,

at'n:ytv"w}/l =W NNm(atapt)

and

fort=1,....T.
Moreover, the minimum mean square estimate of oy for available data yy, . . .,y
15 given by a;.

Proof:
see Harvey (1989), page 109-110. O

With the help of this theorem we are now able to estimate any unknown
parameters of the state space model. If the disturbance terms and the ini-
tial state o are normally distributed, then by Theorem 2.28 it follows that
Elo|ye—1, .- 1] = age—1 and Cov|ag|ys—1, ..., 1] = Py—1. Hence, if we con-
dition the measurement equation with respect to ¢t — 1 we obtain a normal
distribution with

Ei1ye] = Gyje—1 = Zeagp—1 + dy

and covariance matrix F;. Since we are dealing with a normal distribution,
the log-likelihood sums up to

NT 1< I ooy
log(L(yla s 7yT7®>> = _Tlog(2W> - 5;10g |E| - §;Ut Ft Ut,
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with L denoting the likelihood function, © the vector of unknown parameters,
N the length of Y; and v; := y; — @y4—1 for t = 1,...,T. This is also called
prediction error decomposition as v; can be seen as a prediction error. For
further information about maximum likelihood estimation and the prediction
error decomposition refer to Harvey (1989), Chapter 3.4, page 125-147.

Within this thesis we use the software package S-PLUS finmetrics for any
computations regarding the Kalman filter.



Chapter 3

Pricing Credit Risk

This chapter outlines the main approaches of credit risk modelling: struc-
tural models and reduced-form models. The former approach tries to model
default by directly using the assets of the firm, whereas the latter approach
does not concentrate on modelling the firm’s asset process. Here, the default
event is typically given exogenously and default happens completely unex-
pected.

Also, there exists a third approach where so-called hybrid models use charac-
teristics of both the structural and the reduced-form models. These models
assume a linkage between the hazard rate of default and the value of the
firm’s assets. The models presented in this thesis belong to this class of
credit risk models since they do not try to specify exactly the firm’s assets
but incorporate market data as well as firm-specific information.

3.1 Structural Models

Characteristic of this approach is the attempt to model the evolution of
the firm’s assets in order to deduce the value of corporate debt and to price
credit risk. The most utilized credit event is the firm’s default. Therefore, the
attention is directed to a lower barrier which represents the default threshold.
If the firm’s assets reach this boundary for the first time, the default will be
triggered and the firm will go bankrupt. This mechanism can be seen as a
savety covenant whose goal is to protect bondholders against stockholders.

Structural models have their intellectual roots in the work of Merton (1974).
His approach to corporate debt assumes a constant rate of interest r and
several standard conditions like e.g. unrestricted borrowing and lending, no
taxes and transaction costs, and continuously trading in time. The firm is

25
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assumed to have one liability with a terminal payoff L and default may only
happen at the debt’s maturity 7. The firm’s value process is modelled as a
geometric Brownian motion

AV (t) = V(1) - ((r — k)dt + odW (1))

with constants o and k where the latter represents the payout ratio in case it
is positive otherwise the capital inflow. The price process X of the defaultable
claim is given at time 7' as:

X=1L- 1{V(T)2L} + V(T) : 1{V(T)<L} = L — max (L - V(T), O)

Hence, the payoff of a defaultable zero-coupon bond can be interpreted as
the payoff of a default-free zero-coupon bond with face value L less the payoff
of a European put option which is written on the assets V' of the firm with
strike price L and exercise date T'. Therefore, the value of the firm’s debt
at time t is the difference of a zero-coupon bond with face value L and the
price of a European put option at . The value of this European put option
can be written in closed form with the help of the Black-Scholes formula (see
Theorem 2.24). And since the assets of the firm are the sum of the firm’s
debt and equity, we get the value of the equity as the price of a European
call option also written on the firm’s assets by means of the put-call parity
for European options.

First-passage-time models are an extension to the Merton model allowing
default to happen before and at the debt’s maturity. The time of default
is specified as the first-passage time of the firm’s assets relative to a bar-
rier, which can be random and either exogenously or endogenously given.
Black & Cox (1976) extend Merton’s framework by letting default happen if
the firm’s assets are below some triggering level at maturity or if they cross
a time-dependent level before maturity. Kim, Ramaswamy & Sundaresan
(1993) and Longstaff & Schwartz (1995) incorporate stochastic interest rates
into the model by assuming either a Cox-Ingersoll-Ross process or a Vasicek
process.

An advantage of structural models is that default is modelled endogenously
by means of the firm’s assets and therefore allows for the usage of market in-
formation. But a major drawback of the above introduced structural models
is the fact that short-term credit spreads are close to zero due to the asset
value being modelled as a continuous process. In order to circumvent this
shortcoming, Zhou (2001) adds a jump process to the dynamics of the assets.
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3.2 Reduced-Form Models

The reduced-form approach is motivated by the difficulty of exactly speci-
fying default, i.e. it is often impossible to find variables such as the firm’s
assets on whose particular constellation default depends with certainity. De-
fault often happens without meeting all the defined requirements or it fails to
happen although all requirements are met. Therefore, the idea is not to focus
on the exact definition of the default event and the modelling of the firm’s
value, but to work with the evolution of the probability of default at any
point in time instead. In order to model the default event as a total surprise,
the default time (7) is set as a non-predictable stopping time (see Section
2.1). Then, default is described as the first jump of a special point process
(see also Section 2.1), i.e. a Poisson process (see e.g Brigo & Mercurio (2006),
Appendix C). The Poisson process can have either constant, deterministic or
stochastic (Cox process) intensities. For example, if we assume the inten-
sity ¢ to be a positive, stochastic, adapted and right-continuous process with
A(T) := fOT c(s)ds being strictly increasing and denoting its cumulated in-
tensity or hazard function. Then, for Poisson processes the jump time 7 can
be transformed according to its cumulated intensity A:

AT)=C=1=A)

with ¢ being a standard exponential random variable (see McNeil, Frey &
Embrechts (2005), Lemma 9.13). Therefore, using the cumulated distribution
of an exponential random variable, we can determine the probability of the
jump being after time ¢, also called the survival probability up to time ¢:

QT >1) = Q(A(1) > A(t)) = Q(C > A(t)) = Eq [e— Is c(s)ds} .

The variable ( is independent of all other variables, hence being an external
source of randomness. With these assumptions, monitoring basic market ob-
servables gives not a complete information with respect to default since the
exogenous component is independent of the default-free market data.
Jarrow & Turnbull (1992) introduce the reduced-form approach by assuming
a constant intensity and a pre-defined payoff at default. The work of Lando
(Lando (1994), Lando (1997), and Lando (1998)) extends this framework us-
ing stochastic intensities (Cox processes).

Advantages of reduced-form models are their positive credit spreads even for
short maturities as opposed to structural models and the fact that they are
completely data-driven, i.e. their parameters can be fitted easily to market
data. However, a shortcoming of this type of models is the fact that the
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intensity process is specified exogenously. Hence, there exists no linkage be-
tween default and any drivers of default, therefore making default completely
unexpected.

3.3 Hybrid Models

Hybrid models try to circumvent the drawbacks of structural and reduced-
form models (i.e. short-term credit spreads of zero, intensities that are
specified completely exogenously) and therefore combine characteristics of
structural and reduced-form models. By doing this, they provide a linkage
between the likelihood of default and data that is supposed to drive or indi-
cate default.

Starting with a structural framework, Duffie & Lando (2001) assume that
the bondholders only receive incomplete information about the firm’s value.
They show that this set-up is consistent with a reduced-form approach since
it admits an intensity and short-term credit spreads greater than zero.
Another way to build hybrid models is to start with reduced-form models
and relate the probability of default to observable or unobservable factors.
Cathcart & El-Jahel (1998) assume default to be driven by a signaling pro-
cess, whereas Bakshi, Madan & Zhang (2006) incorporate an unobservable
macroeconomic factor as well as an observable firm-specific factor for which
they use e.g. stock prices.

The models presented in this thesis are also hybrid models and are based on
the work of Schmid & Zagst (2000). Schmid & Zagst (2000) assume credit
spreads to be driven by an unobservable uncertainty index that aggregates all
available information concerning the quality of a firm. This model is further
extended with an additional observable macroeconomic factor influencing
interest rates as well as credit spreads by Antes et al. (2008).



Chapter 4

A Generalized Five Factor
Model

Within this chapter we present a hybrid model which links macroeconomic
and firm-specific information to the performance of interest rates and credit
spreads. Our framework is mainly based on the work of Schmid & Zagst
(2000) who introduced a defaultable term structure model which is driven
by an additional factor comprising an aggregation of market and/or firm-
specific data. This model is built by three factors, namley the short rate r,
the so-called uncertainty index u and the short-rate spread s. The short rate
r was first modelled as a mean-reverting Hull-White or square-root process,
both with a time-dependent mean-reversion level. The short-rate spread s
which is meant to be the difference between the spreads of defaultable and
non-defaultable bonds for an infinitesimal maturity follows a square-root pro-
cess and is influenced by the uncertainty index u. This uncertainty index is
to be understood as an aggregation of all available information regarding the
creditworthiness of the firm and/or relevant macroeconomic data. Higher
values of this index u indicate a deterioration in the obligor’s state and lead
to increasing credit spreads. As before, this index is also described by a
square-root process. Cathcart & El-Jahel (1998) were the first to introduce
a process similar to the uncertainty index u. The so-called signaling pro-
cess explicitely drives the default in their framework. Kalemanova & Schmid
(2002) tested the three factor model of Schmid and Zagst on German and
Italian government bonds and obtained good approximations of the given
term structures. The choice of square-root processes prevents the short rate
and the short-rate spread to take on negative values which is a desirable
characteristic of this framework since e.g. credit spreads should be thought
of as a compensation for bearing credit risk and thus should be non-negative.
Unfortunately, these square-root processes complicate the estimation proced-

29
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ure considerably. Therefore Roth & Zagst (2004) simplified the three factor
Schmid-Zagst model by replacing the square-root processes by Vasicek pro-
cesses. Although this change leads to possible negative values for the short
rate and the short-rate spread, the authors showed that neglecting the posi-
tivity constraint does not influence the pricing quality compared to the pre-
ceding model.

There are many articles in literature which analyze the impact of macroe-
conomic factors on interest rates as well as credit spreads. Additionally,
the dependence of credit spreads on factors stemming from firm-specific in-
formation is examined. E.g. Ang & Piazzesi (2003) analyzed the effect of
macro variables on non-defaultable bond prices and on the dynamics of the
yield curve using inflation and economic growth factors. They found that the
forecasting performance is improved by incorporating macroeconomic factors
which are also found to be able to explain a great portion of the variation
in bond yields. Krishnan et al. (2005) showed that firm-specific and mar-
ket variables are important in explaining credit spread levels and changes
for banking and non-banking firms. A similar study was done by Avramov,
Jostova & Philipov (2007) who found that more than 50 % of the variation
of credit spread changes can be explained by a combination of common and
firm-specific fundamentals.

Hence, a further enhancement of the Schmid-Zagst model was developed by
Antes et al. (2008) who incorporated an additional macroeconomic factor in
both the short rate and the short-rate spread. Since literature indicates that
there is more than just one explanatory macroeconomic variable we devote
this chapter to work out a framework which incorporates two factors repre-
senting economic data in the short rate as well as the short-rate spread.

This chapter is organized as follows. In Section 4.1 we set up our general
framework which is used to derive the various types of models which will be
presented in the following five sections. Section 4.7 is devoted to the data
and the estimation procedure. Afterwards, a comparison of the calibration
results is presented in Section 4.8.

4.1 The Set-Up

We assume a frictionless market where trading takes place continuously and
where investors act as price takers. Additionally there are no transaction
costs, no taxes and no informational asymmetries. All random variables and
stochastic processes will be defined on a probability space (£2,G, Q) which
describes the uncertainty in the financial market. Furthermore, we assume
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this probability space to be equipped with three filtrations H, F, and G which
fulfill the assumptions of completeness and right-continuity. H = (H;)y; -
is the filtration generated by the process H with H(t) = 1yra<y for a de-
fault time 77 and a fixed terminal time horizon T%. This default time is a,
non-negative random variable on the probability space with ) (Td = O) =0
and Q (T > t) > 0 for every t € (0,T%]. F = (F;)y<pp- is supposed to be
the filtration which is generated by the multi-dimensional Brownian motion
W(t) with Fy being trivial , whereas G = (G;)y<,<p~ is to be the enlarged
filtration G = HV F, namely G, = H,V.F,; for every t. Additionally, there
exist on the probability space two F-adapted processes, the short rate process
r(t) and the short spread process s(t).

In the following we will assume that under the martingale measure @ F
has the martingale invariance property with respect to G, meaning any
F—martingale follows also a G—martingale (see Bielecki & Rutkowski (2004),
page 167). This assumption is equivalent to the fact that for any ¢ € (0,7
and any @—integrable Fr«—measurable random variable X with @ being a
martingale measure it holds that E5 [X]| Gi] = E5[X]| Fi] (see Bielecki &
Rutkowski (2004), page 242).

The introduced interest-rate market contains four different types of traded
assets. As numéraire serves the non-defaultable cash account

P(t) = efot T(l)dla

which is an investment of value one for an infinitesimal short maturity with
successive reinvestment up to time ¢.

Furthermore, we can invest into non-defaultable zero-coupon bonds and de-
faultable zero-coupon bonds with maturities 7" € [0, T%].

Definition 4.1 (Defaultable Zero-Coupon Bond)

A zero-coupon bond with face value 1 and maturity T which pays 1 at matur-
ity, if there has been no default before time T, and the recovery rate z (Td)
at default T?, if TY < T, is called a defaultable zero-coupon bond with price
P(t,T).

The recovery rate is to be understood as a fraction of the market value of
the bond just before the default P4(T? T). Additionally it is assumed that
z (t) is a F-adapted, continuous process with z (t) € [0,1) for all ¢.

The fourth traded asset is the defaultable money-market account defined by

! ot
F(t) = (1 +/0 (z(1) — 1)dH(l)) eJi T+ L)L



32 CHAPTER 4. A GENERALIZED FIVE FACTOR MODEL

with L(t) = 1ypasy being the survival indicator. This defaultable account
is defined analogously to the non-defaultable case, i.e. it is an investment of
value one in a defaultable zero-coupon bond of infinitesimal short maturity
with subsequent reinvestment in case of no default.

The prices of the financial instruments can be determined under the martin-
gale measure () as the conditional present value of all future payoffs. Hence,
the price of the non-defaultable zero-coupon bond is given by

P(t,T) =Eg [e—f;Tr(l)dz‘ ft} ‘

The price of a defaultable zero-coupon bond is determined for ¢ < min(7¢,T)
by the expected value of the recovery payment in case of a default between
[t,T] and the payment at the maturity 7" if there is no default:

T
1{Td>t}'Pd(t,T) =E; [/ e~ I rOdly (4) P4 (u, T)dH (u) + e e 7”(l)dlL(T)‘ Qt} )
t

Analogously to e.g. Schmid (2004) and Antes (2004) it can be shown that
by means of some technical conditions with respect to r and s the price of a
defaultable zero-coupon bond is determined by

Pd(t,T) = E@ e ftT(r(l)Jrs(l))dl) ft]
for t < min(79,T).

Having generally introduced our financial market, we now present in de-
tail the processes which are crucial for our five factor framework.

For a fixed terminal time horizon T, let the following stochastic differential
equations be satisfied for 0 <t < T™:

The short rate r which is driven by two macroeconomic factors (w; and ws)
is described by a three-factor Hull-White process.

dr(t) = (0,(t) + bpwwi(t) + brw,wa(t) — a,r(t)) dt
+or \/1 = Pruws = Prug@Wi(t) + v pru AW, (1) + 01 pra, AW, (1)

The macroeconomic factors w; and wy are given by correlated Vasicek pro-
cesses and can be chosen to be observable or unobservable.

dwi(t) = (0w, — aw,wi(t)) dt + 04 dW,y, (1),
dw? (t) = (ewz - anwQ(t>) dt + UW2pw1w2dWw1 <t> + Owsq \/ 1- p12U1’LUQdWw2 (t)
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The uncertainty index u summarizes all available information concerning the
creditworthiness of a company. This index is assumed to be unobservable
and is described by a Vasicek process.

du(t) = (0 — ayu(t)) dt + oudW,(t).

The short-rate spread s represents the difference between the spreads of de-
faultable and non-defaultable bonds and is also given by a Vasicek process.
This process is affected by the firm-specific uncertainty index u as well as
the macroeconomic factors w; and w,.
ds(t) = (0s+ bsuu(t) — bgw, w1 (t) — bswowa(t) — agss(t)) dt
+ 08\/1 - pgu - pgwl - pngdWS(t) + JspsudWU<t)
+ 05 P51 AWy (8) + s Psuy AW, (1),

For the constants it holds
a’/‘a a’wla a’wza aua ag > 0 )

UT7 lea O-’IUQ’ O-’LL’ 08 > O I
011}1’01112761”08 Z 07
brwla b?“’w27 bsu> b5w17 bSIUQ e R 9

Pwiwss Prwr s Prwss Psuy Pswi s Psws S [_17 1] )

and 0, is a continuous deterministic function.

Furthermore, W := (W,,, Wy,,, Wy, Wo,, W,)" is a five-dimensional Brownian
motion on the filtered probability space (2,G,Q,G).

Then, the above system of five stochastic differential equations has a unique
solution for any given vector of initial values (r(0), wy(0), w2(0), u(0), s(0))’
€ R5 (see Theorem 2.11).

Suppose there exists a progressively measurable process

() = (9 (), Y (8), Yaoa (£), Yu(2), 75(£))” with

AQu _  firwaw -3 |} bl

dQ¢

where @t and @), are the restrictions of @ and @ on G;.
Additionally, let ~ satisfy the Novikov condition

Eo [e%foT* ||va>||2dl} < o0
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and let the following equations be true for real constants A,, Aw,, Aw,, Au,
pYRL

() = Aopr(t) — 0A.ows(t)
1 Puwrw
+ (Pruw — — Prwy )Y ()
\/1 - p72"w1 - P%wz ’ V 1- p12111’w2 ' '

pT’wz .

—(1-9) Awy Ty W2 (t) with 6 € {0, 1},
\/1 - p%wl - p72"w2 ’ ’

Ywr (t> = )\wl 0w, W1 (t)?

Pwiws

7“’2(25) - szawwg(t) o —Qle(t)a
V 1 - Py ws
suYu t swi Yw t swo Vv t
\/1_psu_psw1 _psw2

According to Theorem 2.19, the process

is now a @-Brownian motion. Therefore, under the measure @ the stochastic
differential equations can be written as:

dr(t) = (&(t)—l—bmlwl(t)—i—lsmzwg(t)—dﬁ(i)) dt

001 = Py = sV (8) + 0 prasy W, (1) + 0 prosy AW (1),
) = (Buy — o, w1 (1)) dt + 0y, AW, (£),
) = (Buy — Gy wa (1)) At + Oy Py @Woy (1) + Ty /1 = 2 d W, (1),
)
)

= (0u — ayu(t) dt + o, dW, (1),
— (0, + boyult) — bouywr (1) — buywa(t) — ays(t)) dt

00/ 1= P2 = Py — P AW () + Tpd W (1)
+ OsPsun dle (t) + OsPsw, dng (t)v

; I 5 2 2 2 A — 2 2
with ' a4, = a, + X\oZ\/1 = P2, — PPuys Qwy = Quy + A0y /1 — P2 s
s 2 S 2
as = as + A\oi+/1—p, — piy, — Puys Gi = ai + No7, i = wy,u, and

IThis approach is adapted to Schmid (2002), page 54.
IThroughout this work we assume @,., @, , G, Gu, @5 to be positive in order to preserve
the mean-reverting quality of the processes under the measure Q.
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Erm = by, + 5‘77"()‘7“‘77"\/1 - P%wl - p%wz - )‘wzawzprwz)a o€ {07 1}-

Within this framework the price of a non-defaultable zero-coupon bond has
an affine term structure given in the next theorem.

Theorem 4.2 (Price of a Non-Defaultable Zero-Coupon Bond)
The price of a non-defaultable zero-coupon bond is given by

P(t,T) = Eg [e—ft”(l)dlm} — P(t, T, 7(t), wi(t), ws(t)),

with
P(t T r w17w2) — eA(t,T)—B(t,T)T‘—El(t,T)wl—EQ(t,T)’LUQ
and
B(t,T) = —(1—e &I
(01) = 3 (1= o),
1 1— —Gwy (T—t) —Gwy (T—t) —ar (T—1)
E\(t,T) = b,,w“—( < 4 &
CLT awl a"u)l - a’T‘
. 1 1— e—&wQ(T—t) e—an(T t) —aT (T—t)
EQ(t7T) = brng ( = + )
r awg - ar
1, 2, 1
AWT) = [ SHBUT + 50%, (BLT)P + 502, (Ba(L T))?
t
+ Jw10w2pw1w2E1<l7 T)EQ(Z? T) + UTlepTuuB(l? T)El (lv T)
+ 0rOuw, (Prwlpwlwz + Prws 1/ - p?ulwz > B(lv T)EQ(Z> T)
—0,()B(I,T) — 00, E1(I, T) — O, Ex(1, T)d.
Proof:

According to Feynman-Kac (see Theorem 2.14) the following differential
equation must hold:

rP = Pt
+ <9r<t> + brw1w1 + Brw2w2 - &TT> PT
+ (9w1 - CALwlu}l) Pw1
+ (911; - dw2w2> Pw
1
+ — 5 < 2P + U Pwlwl + U Pw2w2 + 20w10w2pw1wzpw1w2

+ 20r0w1 Pruwy Prwl + 20—7‘0-’!,02 <prw1pw1w2 + Prws \/ 1— quﬂle ) Prwg) .
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Using the affine term structure, we derive the partial derivatives of P:!!I

P, = (At — Byr — (E1)tw1 - (E2)tw2> P,
P.=-B-P, P,=DB>-P,
P, =—E -P, Py, =(F) P,
P,,=—FEy- P, Py, = (F)?
Pmul = BEI : P) Pw1w2 = ElEZ
Pry, = BE, - P.

<

.P’
.P’

Substituting these terms and dividing by P > 0, we arrive at:

r = At — BtT' — (El)twl — (Ez)t'wg
+ <0r(t) + brwlwl + l;'rwng - &TT> (_B)
+ (ewl - dw1w1) (_El)
+ (9102 - dw2w2> (_EQ)

1
+5 <afB2 + oo (B1)? + 05 (E2)? + 200, 0wy Puyws E1 Bo

+ 20,0, pruy BE1 + 20,04, (prw1pw1w2 t Prwsy/ 1- pq%;le ) BEQ)'

Regrouping the terms, the equation takes on the form:

0 = r(@B—1-B)
+ wy (dlel - brw1B - (El)t)
03 (s Bz = by B — (Bt )
Ay — 0.(t)B — Oy, By — Oy, Bs
1
+5 (0332 + 02, (1) + 02, (E)? + 200, Cuny puosun B B

+ 20,0, pruy BE1 + 20,04, (prwuowlwz + Prws 1/ 1- p121)1w2 > BE2)-

W Throughout this thesis, we denote with Py, x € {t,r, w1, ws, 5, u} the partial derivative
of the function P with respect to x. The same logic holds for functions like A(¢,T) and
B(t,T).
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We obtain a system of linear differential equations for A, B, E;, and FEy by
comparing the coefficients:

B, = a,B-1
(El)t - &qul - brwlB
(E2)t = &ngZ - brsz

1
_At = 5 <U7%B2 + 0121)1 (El)z + 0121)2(E2)2 + 2aw10w2pw1w2E1E2

+ 20,0, pruy BE1 + 20,04, (prw1pw1wz T Pruny/ 1- p121)1w2 ) BE2>

—0,()B — 0, Ey — 0, .

Since the condition P(T,T) = 1 must be fulfilled for all r,w;,wy € R it
holds A(T,T) = B(T,T) = E\(T,T) = E5(T,T) = 0. By means of the
transformation 7 = T" — t and the given terminal conditions, the differential
equations result in (cf. Theorem 2.15):

T—t
B(t,T) = e @@ / e&rldg:efMTft)i(ear(m ~1)
0 dr

1 .
_ o —ar(T—t)
o a, (1 € ) )

T—t
E\(t,T) = e @0 / et1'p., B(0,1)dl
0

1 1 — e—buw (T—t) e~ (T—-t) _ ef&T(Tft)
= brwlT ( + ) ,

T awl awl — Qp

T—t
Ey(t,T) = e a1 / etw2'h,. B(0,1)dl
0

1 1— 6_&“’2 (T—1) e—dW2 (T—t) __ e—&r(T—t)
( ; )

- brwz A~ A~ ~ ~
r awg a’wg - a“?”

AT) = [ SoHBOT)? + 3o, (BT + 503, (Bl T))’

+ leawzpw1w2E1<l7 T)E2(l? T) + OrawlpTwlB<l7 T)El (lv T)

+ 00w, (prwlpwlwz + Prw, \/ - p%ule ) B(la T)EQ(Z> T)

—0.()B(,T) — Oy, B:(I, T) — 0, Eo(1, T)dl.
]

In Appendix A we show how the deterministic function 6, can be derived.
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Analogously to the non-defaultable case, the price of a defaultable zero-
coupon bond also exhibits an affine term structure.

Theorem 4.3 (Price of a Defaultable Zero-Coupon Bond)
For t <min(T® T) the price of a defaultable zero-coupon bond is given by

Pt,T)

with

d
Pe(t, T, r,wy, we, s,u) =€

and

D¢, T)

E{(t,T)

Ey(t,T)

AL, T)

- Eé e ftT(r(l)—’—S(l))qut] = Pd(tv T, T<t)7 w1 (t)a w2(t)7 S(t): u(t)),

Adt,T)-B(t,T)r—C%t,T)s—D*(t,T)u—E{(t,T)w1 — E$(¢,T) w2

1 .
BY(t, T) = B(t,T)=— (1- efar(Tft))

)

Qy
1 R
CUt,T) = — (1—e T
(01) = (et ),
1 1— ef&u(Tft) efdu(Tft) _ efds(Tft)
= bsuT ( < + ~ ~ ) 5
s Ay Ay — Qg
1 1 _ e—&wl (T_t) e_duq (T_t) _ 6_&5(T_t)
= bswlT ( + ~ = )
S aw1 awl — Qg
1 1— eidwl (T—-1) e*dwl(T*t) _ ede(Tft)
+brw1/\_ < ~ + ~ ~ > 5
T Qapy Aoy — Gy
1 1— 6_&’”2 (T—1) 6_[1“’2 (T—t) __ 6—&5(T—t)
- b (o e
s awg an — Qg
N 1 1 — 6_&“’2 (T—1) 6_&“’2 (T—t) _ e—&r(T—t)
+brw2A_ ( ~ + ~ ~ ) 5
Qr Aopq Aoy — Qp
Tl d 1 2 d 2 1 2 d 2
= [ 3RETI? 4 JoHCHL T + DL T))
t

1 d 1 2 d 2
+ 502, (BULT)) + 502, (B3(, T))

+ Ou, UwzpwleEf(la T)Eg(la T) + 0r0w, Pray Bd(l> T)Ef(h T)
+ Usaupsucd(la T)Dd(l, T) + 080w1psw10d(l7 T)Eii(l7 T)

+ OrOuw, (prw1pw1w2 + Prwz/ 1- p%vlw2> Bd(l T)Ed<l T)
+ 050w, <psw1pw1W2 + pswz\/ pwlwg ) Cd 1,T) Ed (1,T)

+ 070 5(Pruw, Psw, —l—perpst)Bd(l T) d<l7 T) - ()Bd(l T)
—0,CU,T) — 0,D%1,T) — 04, B{(1,T) — 04, ES(1,T)dl.
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Proof:
According to Feynman-Kac (see Theorem 2.14) the following differential
equation must hold:

(r+s)P? = P¢
+ <9r + by w1 + I;Twsz — drr) Prd
+ (9w1 - aw1w1) qu;ll

+ (91112 - &w2w2) sz

+ (0, — a,u) P?

+(

+ (05 + bsytt — by, w1 — bgy,Wo — A5S) Psd

1
+5(02P% + 2 PL + 2P, + 0% P, + 02, P,
+ 20w, Ows Puyws P’Iﬁl’wz + 20,04, Prwlp;iwl

+ 20T0w2 (pf’w1pw1w2 + Prws \/ 1- pwlwz ) Prdwz + QJsaupsngu

+ ZUrUs(prwlpswl + prwgpswg)Psci + 2050w1p5w1 Psdw1
+ 2080w2 <p8w1pw1w2 + Pswo \/ 11— p%ulua ) Psdw2>

Using the affine term structure, we get the following partial derivatives:

Pl = (A{ = Bir — (Ef)qw; —

(
Pl=-B'. Pt Pl =(E
E

Ed)ywy — Cls — D) - P4
d) Pd, Pd —EdEQd'Pd,

wiwi wwe
B = ~E{- Pl P = (B PL Py = BYC! P

Pl —_g.pl, PLZ(C4?.pi, Pl = CUEY. PO
PY=—c?. pe, Pd — (D)2 pt, Pt = CIES. P
Pi=—_pi.pi  pi —pigi.pi  pi’=cipd. pi

PL=(BY. P!, PL =BiES P

Two

Substituting these terms and dividing by P¢ > 0, we arrive at:

r+s = Atd—Bfr—(Ed)twl—(E )tw2 Cd u
(07«( ) —+ brwlwl + brw2w2 > ( Bd)
(Ouwy — Guywr) (_Eii>

(6102 - fLwaz) (—Eéi)
(
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+ (O 4 beutt — by, w1 — by, ws — Gg5) (—C?)

1
+ 5 (02BN + 4O + (DY) + 02, () + o2, (E3)?

+ 204, 0w2pw1w2E(11Eg + 200w, Prun BdEil

+ 20r0w2 (prw1 Iowlw2 + prwz \/ 1 - pgmwz ) BdEéi + QUSUupsquDd

+ QO-TJS (prwlpswl + pT”lUstwg)BdOd _'_ 2O-S(T’Lln pS’LUl CdEf

+ 20—50-11)2 (pswlpwlwz + pswz \/ 1— p’L21}1u)2 ) CdE2d> .

Regrouping the terms, the equation takes on the form:

0 = r(aB'—1-BY)
+ w1 (Guy B = byopy B + bsup, C — (EY),)
+ws (&ngg Dy B+ by, O — (E;’)t)
+u (4, D = b5, C* — DY)
+s(a,C*—1-CY)
+ A —0.(t)B* — 0,0¢ — 0,D? — 0, B! — 0, ES

1
+ 5 (02BN + 02O + 02D + 02, () + 02, (BS)?

+ Qawlawzpwlszng + 2UT‘7w1Prw1BdEf

+ 20,04, (pmlpwm2 + Prws /1 = P2 ) BES + 20,0,p,C*D*

+ 20,05 (Prw, Psw, + prwzpswz)BdCd + 20500, Psur CdEil

+ 20504, <p8w1 Pwiws T+ Psws \/ - p’121)1’w2 ) CdEg>'

We obtain a system of linear differential equations for A4, B4, C? D? E¢ and
E¢ by comparing the coefficients:

B! = 4,B"—1

ct = a,C%—1

D! = a,D% —b,C*
(ED)e = aun B = byuy B + b, C°
(ES)e = Gy B — by BY + b, C°
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— A —
t 2

1
(2B 4+ 03O + 02D + 02, (B + o2, (E5)?

+ 20w10w2pw1w2Eng + 200w, Pru, BdE?

+ 20,04, (,omlpww2 + Pruwsa/ 1 — pfvlw ) BdEg + QO'SUupsuC'dDd

+ 20ras (prwl Pswq + Prws pswz)BdCd + 2O'so'wl Psw CdE;l

+ 20504, <psw1 Puwiws + Psws/ 1- 10121)1w2 ) CdEg)
—0,.(t)B*

- 6,04 —6,D* — 0, E? —0,,E4.

Since the condition P4(T,T) = 1 must be fulfilled for all 7, wy, ws, s,u € R
it holds that A%(T,T) = BUT,T) = CUT,T) = DYT,T) = E{(T,T) =
E3(T,T) = 0. By means of the transformation 7 = T — ¢ and the given
terminal conditions, the differential equations result in (cf. Theorem 2.15):

B(t,T)
CUt,T)

D¢, T)

E{(t,T)

E3(t,T)

- bswl ~ +

S aw1 awl -

1 1 — eidwl (T—-1) e —au, (T—-t)
+ bT'UJl d_ < ~ + >

T Ay aw1 - a,,

1 (1 o 6_&“’1 (T—¢) e—dwl(T—t) o —&S(T—t)>

T—t
e—&wg(T_t)/ ed"’?l <Brw2Bd(0, l) bswgcd(o l)) dl
0

1 1— e—&wz(T—t) e—aw2 (T—1) —as
- bstT ( + >

S awg awg - as

R 1 (1 o e—fzu;Q(T—t) e—an(T t) —ar (T—t) )

+ brwg ~ +

T a”u)2 aw2 - CLT
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T1 2 2 1 2 2 1 2 2
A, T) = /t 5a,,(Bd(z,T)) +§as(cd(z,T)) +§Ju(Dd(l,T))

1 d d
+ 502 (B T) + 502, (B30, T))?

+ 0w10w2pw1w2Ef<l7 T)Eg<l7 T) + Urauuprwle(lv T)Eii(lv T)
+ Usaupsucd(la T)Dd(l7 T) + 050w, Poun Cd(lu T)Ef(lv T)

+ 00wy, (pmvlpunwz t Prwsy/ - p%ule ) Bd(l7 T)Ed(l7 T)
+080w2 <psw1pw1w2 + pswg \/ pwlwz) C l T Ed l T)

(1,
+ 00 5(Pruwy Psun —l—perpst)Bd(l T)Od( ,T) —0.(1 )Bd(l T)
— 0,01, T) — 0,D (1, T) — 0, (1, T) — 0, ES(1, T)dl.

0

In the following, we want to test this general framework by specifying and
comparing various types of models stemming from this setting.

4.2 The Extended Schmid-Zagst Model

This model is an extension of the three factor model introduced by Schmid
& Zagst (2000) where additionally to the short rate r, the short-rate spread
s and the uncertainty index u a macroeconomic factor w; is incorporated.
This factor which acts as an indicator of the economy’s state influences both
the short rate » and the short-rate spread s. We assume the macroeconomic
factor to be positively related to interest rates (i.e. b, > 0 with a positive
sign in the drift of r) and oppositely to credit spreads (i.e. by, > 0 with
a negative sign in the drift of s). That is, increasing values of w; indicate
a healthy economy which is often accompanied by increasing interest rates
and decreasing credit spreads. Therefore, the extended model of Schmid and
Zagst is a special case of our generalized framework and is derived by setting
Pruy = Pruws = Pswy, = Psws = Psu = 0, 0 = 0 and by eliminating the second
macroeconomic factor ws as well as all coefficients with respect to ws, e.g.
Pwiwys Orw, a0d Dy, .

This approach is therefore based on the following stochastic differential equa-
tions.

Model 4.4 Let W = (Wr,le,Wu,Ws)' be a four-dimensional Brownian
motion on the filtered probability space (2,G,Q,G), then the extended model
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of Schmid and Zagst (SZ4) is given by

(0,(t) + bpw,wi (t) — a,r(t)) dt + o, dW,.(t)
(O, — w1 (1)) dt 4 0y AWy, (1),
(0, — ayu(t)) dt + o, dW, (1),

(05 + bsuu(t) — by, w1 (t) — ass(t)) dt + o, dW(t),

wlth Qpy Ay y Ay Asy Oy Oqyy 5 Oy Osy bTw17 bsu7 bswl > 07 911)17 6114 68 Z 0 and 97‘
being a continuous deterministic function.

The prices of non-defaultable and defaultable bonds within this approach are
as follows:

Lemma 4.5 In the extended model of Schmid and Zagst (SZ4), the price of
a non-defaultable zero-coupon bond is given by

P(t, T, T" U}l) — eA(t’T)*B(th)T*El (t,T)wl
with

1 .
Bt,T) = — (1—e D),
ar
1 — _dwl (T-1) e_&wl (T—-t) _ e_dr(T_t)

1
El(th) = brwlT( ¢ + )’

T awl aw1 — Qp

ART) = [ SoHBOT)? + 3ot (BT = 0,0 B(.T)
0, B, (1.T) dl.

For a defaultable zero-coupon bond the price is determined by

Pd(t T.r wy,s u) _ eA’i(t,T)de(t,T)rde(t,T)std(t,T)ufEf(t,T)wl
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with

1 .
BYt,T) = B(t,T)=—(1—e ™),

Qay
1 .
CUt,T) = — (1—e %D
( ’ ) &S ( € ) )
1 /1 — e—@u(T—1) —au(T—t) _ ,—as(T—t)
DUELT) = bou < € L& - ¢ ) ,
as au au - as
1 /1 — e—tuw (T—1) —Gw, (T—t) _ ,—as(T—t)
BNt T) = —bsw“—( c o e e )
S awl awl — Qg
11— e—tuw (T—1)  g=dw, (T—t) _ o—ar(T—1)
o (S ),
awl awl — Ay
1 1
ALY = / BT 4+ 5o (CU0L T + 503D, T))
+ o2 (B{(1,T))* - 0,()B*(1,T) — 6,C*, T) — 6,D%(1,T)

5
— 0, B, T)dl.

Schmid et al. (see Antes et al. (2008)) showed that the introduction of a
macroeconomic factor improves the power of the Schmid and Zagst frame-
work by comparing the extended version with its preceding three factor ver-
sion. They obtained as a result that both the levels and the changes of credit
spreads could be explained better by this additional factor.

Following the work of Schmid et al. we test five factor models against the
extended model of Schmid and Zagst. Furthermore, since Schmid et al. used
the growth rate of the nominal GDP as representative of w;, we want to ana-
lyze the impact of other macroeconomic indicators, which are supposed to be
good proxies of the economy, on the performance of the extended framework.

4.3 A Further Enhancement of the Schmid-
Zagst Model - The Five Factor Approach

Since the introduction of a macroeconomic factor yields promising results
in explaining credit spreads and pricing defaultable bonds (see Antes et al.
(2008)), the performance could be further improved by a second macroe-
conomic factor. There can be found various articles in the literatur which
analyze the impact of macroeconomic factors on credit spreads and which
found that there is more than just one explanatory variable. E.g. Amatoa
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& Luisi (2006) analyzed the impact of aggregate risk factors on corporate
spreads. These risk factors comprised of macroeconomic data like consumer
price index, industrial production and unemployment rates. The authors
found several factors which exhibit strong effects on corporate spreads. Wu
& Zhang (2008) used a dynamic factor model in order to identify three fun-
damental risk dimensions namely inflation, real output growth, and financial
market volatility. For each risk dimension they summarized several time
series and extracted a common factor capturing the systematic dynamics.
Then, they linked the fundamental risk dimensions to US Treasury yields
and corporate bond spreads.

The model is reached by enhancing the extended four factor model with
an additional macroeconomic factor wy and by allowing this factor to be cor-
related with w;. As before, we set prw, = Prws = Psw; = Pswy, = Psu = 0 and
6 =0, 1. by = by

Model 4.6 Let W := (W,, W, , Wa,, Wo,, W,)" be a five-dimensional Brown-
ian motion on the filtered probability space (Q2,G,Q,G), then the five factor
version of the model of Schmid and Zagst (SZ5) is given by

dr(t) (0,(t) + brwy w1 (t) + bpwywa(t) — apr(t)) dt + o,.dW,.(t)

dwi(t) = (0, — aw,wi(t)) dt + 04, dWy, (1),

dwy(t) = (Ow, — Guwyw2(l)) Al 4 Tun Puywy AW, () + Ty /1 — P21, AWy (1),
du(t) = (0, — ayu(t))dt + o, dW, (1),
A5(1) = (Bu + bauti(t) — Duun(£) — buyton(t) — 1,5(0)) dt + 0, W (1),

’LUZth a”f) awla a’wza au, CLS, 0-7’) Jw1 9 O-’LU27 O-’UJ 0-87 bT’wla b8u7 bsw1 > O; b’l‘wz) bsw2 S R;
Owys Oy Ous0s > 0, puwyw, € [—1,1] and 8, being a continuous deterministic
function.

Here, we skip the restrictions regarding the influence of ws on the short rate
and the short-rate spread, i.e. byy,,bsw, € R, since there are macroeconomic
factors, e.g. inflation, whose impact is not known for sure.

Prices for zero-coupon bonds also exist within this framework and can be
derived from the general case, see Theorem 4.2 and Theorem 4.3.

Lemma 4.7 In the five factor version of the Schmid-Zagst model (SZ5), the
price of a non-defaultable zero-coupon bond is given by

P(t, T’ r’ w1’ w2) — eA(t,T)fB(t,T)TfEl (t,T)wleg(t,T)wg
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with
1 R
B(t,T) = — (1—e @I
( ) ) dr ( € ) ’
1 /1 — et (T=t)  g=iuw, (T—t) _ p—ar(T—1)
Ei\(t,T) = buy,— ( — + - - ) ,
T aw1 awl — Qp
1 /1 — e-tua(T—t)  p=duy(T—1) _ g—ar(T—1)
EQ(taT) = berT < < + < N ) y
r awg awg — Qp

AT) = [ SoHBATIF + 5ok, (Bl T)P + 5ot (Ba(.T))?
+ Ow,y Own Puywy 1 (L, T)Eo (1, T) — 0,.(1)B(1,T)
O By (1,T) — 0, B (1,T) dl.

For a defaultable zero-coupon bond the price is determined by

Pd<t T, 7, wy, wo, 8 u) _ eAd(t,T)—Bd(t,T)r—Cd(t,T)s—Dd(t,T)u—Eld(t,T)wl—Eg(t,T)wg

with
1 .
BULT) = BUT) = - (1= o)
a”’
1 .
CULT) = L (1 =m0,

DYt T) = by,

- + - -
o Gy — Qs

1 (1 _et(T—t)  pmau(T—t) _ &S(Tt))

1 1 — ¢ 0w (T—t) —Ga, (T—1) —as
Ef(ty T) — - bswl ~ ( e,\ : + ¢ ' >
S awl awl -
1 1 — e—&wl (T—1) e—aw1 (T—t) —ar (T—-1)
+ brwlT < ~ + )
Ay awl awl -
1 1 — 0w (T—t) — b (T—1) 7a5 (T—t)
Eg(ty T) p— - bsw2 ~ ( ¢ N - + ¢ : )
Qs Qg ng
1 1 — e—dw?(T—t) e—an(T t) —ar(T t)
e )
T awg awg - ar
d Tl 2 d 2 1 2 d 1 d
AT) = [ SoHBT) 4 GoHCHLT + g (DAL TP
t

1
+ 503,1(Ef(l7 7)) + §0i2(E§l(l, T))?
+Uw10w2pw1szf(laT)Ed<l T) - (Z)Bd( T)
—0,CU,T) — 0,D%1,T) — 04, E{(1,T) — 04, ES(1,T)dl.
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As a special case of this approach, we follow the work of Merz (2007) where
wy is supposed to be an unobservable factor. Therefore, w, takes on the
role as an unobservable macroeconomic index which is orthogonal to w; and
which could be seen as an aggregation of influences on the economy. This
means that in Model 4.6 py,, 1s set to zero as well as bg,,,. The last condition
is necessary since otherwise there would be two unobservable terms in the
drift of the short-rate spread which could be hard to discriminate. Hence,
for this special case, the pricing formula of a defaultable zero-coupon bond
Pa(t,T) simplifies to the one given in Lemma 4.5.

4.4 The Real and Inflation Short-Rate Model

The real and inflation short-rate model was first introduced by Hagedorn
et al. (2007)(see also Hagedorn (2005) and Meyer (2005)). It decomposes the
short rate r into the real short rate rr and the inflation short rate r;:

r(t) = rr(t) +ri(t)
where the real short rate evolves according to the SDE
dTR<t> = (QR('LL) + bRwlwl(t) - CLRTR<t)) dt + O'RdWR(t),

with positive constants bgy, , ar, og and a continuous, deterministic function
Or(t). Furthermore, the inflation short rate follows the SDE

d?“](t) = (9[ — a[T[<t>) dt + Ulpw1IdWw1(t) + 014/ 1— pilldW[@),

with positive constants ay, o7, a non-negative constant 6; and independent
Brownian motions Wg, W; and W,,. In contrast to Hagedorn et al. (2007),
where the constant p,,; was set to zero, we allow p,,; to be within [—1, 1].

As in the models before, w; is a macroeconomic factor represented here by
the growth rate of the real GDP and satisfies the SDE

dwi(t) = (O, — @, w1 (t)) dt + 04, dWy, (1),

with positive constants a,,, 0, and a non-negative constant 0,,, .

This approach also fits in our general framework of a five factor model. If we
let the inflation short rate r; be represented by the second macroeconomic
factor wy, and if we take the process r as the sum of real short rate rg and
inflation short rate 7, respectively wsq, with

er(t) = 9R<t) + 91 , Ap = AR, brw1 = bRw1 7Wr = WR,
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brw, := QR — (i)m2 = agr — a; with § = 1),

o, := o where o equals the term o5 \/1 — P2, — Ph,, of Section 4.1,

T o = 222 /1 — 2 = Pow = Psu =0
Prw; = P Pwiws s Prwg = O - Pw1w2 y Pswy = Pswa = Psu = Y,

7 T

o Y ; : I\%
and A\, := Wi, we end up with the following model. Model 4.8
extends the non-defaultable set-up of Hagedorn et al. (2007) by introducing
a firm-specific uncertainty index u and the short-rate spread s.

Model 4.8 Let W = (W,, Wy, , Wa,, Wy, W) be a five-dimensional Brown-
ian motion on the filtered probability space (Q,G,Q,G), then the real and
inflation short-rate model (INF) is given by

dr(t) = (0,(t) + brw,wi(t) + brw,wa(t) — a,r(t)) dt + o,.dW,.(t)

+ Oy Proyws AWy (t) + Ouw, \/ - p?ulwgdwwz (t)

dwy (t) = (01111 T Oy W (t)) dt + Oun dWw1 (t)v

dw? (t) (0 aw2w2(t)) dt + 0w2pw1w2dWw1 <t> + Ows \/ I p%ulwgdWU& (t),
du(t) = (0, — ayu(t))dt + o, dW,(t),
ds(t) = (054 bsuu(t) — bsw, w1 (t) — bswywa(t) — ass(t)) dt + osdWi(t),

wlth aTJ awu aw2> a’lL? a87 UT) O-’LU17 011)27 Gua 0-87 bTu)p bSU? bswl > 07 bT’LU27 bsw2 S R;
Owy s Ouwns Ous 05 > 0, puwiw, € [—1,1] and 0, being a continuous deterministic
function.

The pricing formulas of zero-coupon bonds for this set-up are a special case
of Theorem 4.2 and Theorem 4.3.

Lemma 4.9 In the real and inflation short-rate model (INF) the price of a
non-defaultable zero-coupon bond is given by
P(t T r wl,w2) — eA(t,T)—B(t,T)'I’—El(t,T)wl—EQ(t,T)wQ
— eA(t,T)fB(t,T)TRfEl(t,T)wl7(E2(t,T)+B(t,T))w2
= P(t7 Ta Tr, Wy, wZ)
with

B(t,T) = i(l—e—&r<T—f>),

Gy

IVWe use here the notation 7 in order to indicate the theoretical framework of Section
4.1.
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El(t,T) = brwlT -+

oy, Uy, — @

1 1 _ 6_&1412 (T_t) e_dwg (T_t) — 6_&1"(T_t)
(e )

1 (1 ety (T=t) gty (T—1) _ ear(Tt))

T

E2<t> T) = i)rwg ~

T

AGT) = [ 5+ 0L) (BUTIP + 50b (BT + 5oL, (B, 7))

+ O-w10-w2pw1w2E1(lv T) (B(l’ T) + Ez(lv T)) + UwgB(lv T)E2(l’ T)
0. ()B(U,T) — 0w, By (I, T) — 0, E» (I, T) dl.

For a defaultable zero-coupon bond the price is determined by
Pd(t T. 7wy, ws, s u) _ eAd(t,T)—Bd(t,T)r—Cd(t,T)s—Dd(t,T)u—Eii(t,T)wl—Eg(t,T)wg

eAd(t,T)de(t,T)rRde(t,T)std(t,T)ufE‘f(t,T)w1

) 6_(Eg(t,T)+Bd(t,T))w2

d
= P (t7 TJ 'r, W1, W, S, U’)

with
1 R
Bd(t7T) = B(t,T)=— (1 _ e—ar(T_t)) :
Qr
1 R
( ) ) ds ( € ) I
1 1 — e~ @u(T—t) —ay(T—t) _ ,—as(T—t)
Dd(t7T> = bsuT ( eA + ¢ ¢ )
s Ay au - as
1 1 — e~ uw (T—1) —Gw, (T—1)
Ef(ty T) — - bswl ~ ( ¢ N + ¢ i )
s Ay aw1 — CLS
1 1 — e—dwl (T—1) e —aw, (T—t) —ar (T—-1)
+ brwlT < ~ + )
r awl aw1 — a,r
1 /1 — e Guwe(T—1) —bwy (T—t) _ p—as(T—t)
EQd(ty T) p— - bsw2 ~ ( ¢ N - + ¢ :
s Ay an
R 1 1 — e—de(T—t) e—an(T t) —ar(T t)
bruws = ( - + )
r a/w2 an

A1) = [ 5ol (BT g AT LoD )

1 1
+ 20 (B, T)* + QUiQ(ES(l,T)V+0igBd(l,T)E3(l,T)
+Uw10w2pw1w2E{l(la T) (Bd<lv T) + Eg(la T)) - er(l)Bd(la T)
—0,CU,T) — 0,D%1,T) — 04, E{(1,T) — 04, E3(1, T)dl.
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We consider this framework for two cases. First, we set py, 4, = 0 following
the work of Hagedorn et al. (2007). Then, as a second step we allow py, .,
to be non-zero.

4.5 A Simplified Version of the General Set-
Up - The Correlated Five Factor Approach

This model is a combination of all previously introduced models and addition-
ally is closely related to the general framework introduced in the first section
of this chapter. It assumes both the short rate » and the short-rate spread s
to be dependent on an observable macroeconomic factor and an unobservable
factor aggregating information inherent in the market. Furthermore, both
SDEs are driven by the Brownian motions of all factors represented in the
drift term as it is done in the short-rate model with real and inflation short
rates (see Model 4.8). We obtain this model from the general framework
by assuming w, to be the unobservable factor of the short rate as described
in Section 4.3 and by setting pu,w, = 0, = 0 (ZA),,W = brwy); bsw, = 0,
and pgy, = 0. The last assumptions are due to the factor u already being
unobservable.

Model 4.10 Let W := (W,, W, , W, W, W) be a five-dimensional Brown-
ian motion on the filtered probability space (Q,G,Q,G), then the correlated
five factor model (5corr) is given by

dr(t) = (0,(t) + brw,wi(t) + brw,wo(t) — a,r(t)) dt
+ oy \/1 - wal - pngdWT (t) + 0 Prwy AWy (t> + O Prwy AW, (t)a

dwi(t) = (Bu, — aw,wi(t)) dt + 04, dWy, (1),
dwy(t) = (Ouy — Quywa(t)) dt + 04, dWy, (1),
du(t) = (0, — ayu(t))dt + o, dW,(t),
ds(t) = (0s+ bsuu(t) — bsw,wi(t) — ass(t)) dt

T 054/ 1- pgu - pgwldWs(t) + Uspsuqu<t) + 05 Psw AW, (t)a

thh a’l‘v a’wla a’wza aua CLS, 0-7’7 Jw1 9 O-’wga O-Ua O-Sa b?“’wla brw27 bsu7 bsw1 > 07
Owys Owss Ous 05 = 0, Prwys Pruwgs Psus Pswy € [—1,1] and 6, being a continuous
deterministic function.

The pricing formulas for non-defaultable and defaultable bonds are similar
to the ones presented in Section 4.1.
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Lemma 4.11 In the correlated five factor model (5corr) the price of a non-
defaultable zero-coupon bond is given by

P(t, T’ 7,’ wl, ?,UQ) — eA(t,T)*B(t,T)T*El(t,T)’LUl*EQ(t,T)UJQ

with

B(t,T) = i(1—e*@r<T*t>),

r
1 1— 6_&’”1 (T—t) e—dwl(T—t) . 6_&T(T_t)
E1<t>T) - brwlT ( ~ + ~ ~ ) )
r awl awl — Qp
1 1— — Gy (T—1) —auo (T—t) _ —ar(T—t)
E2<t7T) = brng_ ( eA - ‘ - ~ ? ) )
ar Qo Ay — Ay

ART) = [ 5B + 50k (BLT)P + 50, (B, T

+ 00w, Prwy, B, T)E1 (1,
+ 010wy Prwy B(L, T) E (1
—0.()B(,T) — O, Ex

T)
,7T)
1,T) — 04, Ex(1, T)dl.

For a defaultable zero-coupon bond the price is determined by

Pd(t T, 7, wy, ws, u) _ eAd(t,T)de(t,T)rde(t,T)std(t,T)ufEfl(t,T)wlfE‘g(t,T)wg
with

1 .
Bd(t’ T) = B(t,T) = — (1 _ e*ar(Tft)) )

ay

CUt,T) = %(1—65%(“)),

1 1— —ay, (T—t) —ay(T—t) _ —as(T—t)
DULT) = bou ( < . ) ,
Qs Ay Gy — Qg
1 1 — e~ 0wy (T—1) —bwy (T—t) _ ,—as(T—t)
B, T) = —bsw“—( - TR —— )
S awl awl — Qg

1 /1 — et (T=t)  g=auw, (T—t) _ p—ar(T—1)
+brw1A_ < + N ) )

r Ay wy — Ar
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1 /1 — e-iwa(T—t)  gmiug(T—t) _ g—ar(T—0)
Eg<t7 T) = E2(t7T> = brsz_ < eA - + ¢ - N ? > 5
CLT a/w2 a'u)g - a'f'

v = | Lomip + Lt + Loty

1 1
+ 500 (BL(L D)) + Sou, (B3 (1, T))*

+ 020wy Pray B T)YEF (1, T) + 010wy ru BHL, T)ES(1, T)
+ 050upsu CU L, T)DY (1, T) 4 050w, pow, C%(1, T)ES(1,T)
+ 0105 pruy sy B, T)CU(1,T) = 6,(1)BY(1,T)
—0,C%1,T) — 0,DU1,T) — 04, EX(1,T) — 0,4, ES(1,T)dl.

4.6 Summary of Models

Table 4.1 and Table 4.2 outline all used models and parameter settings within
this thesis. In the following, the extended model of Schmid and Zagst will
be abbreviated by SZ4, the enhancement of this model by SZ5. Both frame-
works will be further differentiated by the used macroeconomic factors, e.g.
gross domestic product (GDP) or inflation (CPI), or by the unobservability
of the newly introduced factor, i.e. SZ5 versus SZbu. Also within the real
and inflation model there will be two settings, namely one assuming uncorre-
lated macroeconomic factors (INF) and another abandoning this assumption
(INFcorr). Furthermore, the correlated five factor model, which is a simpli-
fied version of the general set-up, will also be presented within these tables
by the label 5corr.

Altogether, the newly introduced models can be summarized as follows:
The correlated five factor model (5corr, see Model 4.10, page 50) is the most
general set-up because it assumes two macroeconomic factors (w; observable,
wy non-observable) driving the short rate r. For the short-rate spread s it
allows one observable macroeconomic factor (w;) and one unobservable firm-
specific factor (u). Additionally, the dynamics of the short rate r and the
short-rate spread s make use of the Brownian shocks of the macroeconomic
and firm-specific factors.

Omitting the Brownian shocks of the macroeconomic and firm-specific fac-
tors in the dynamics of the short rate r and the short-rate spread s leads us to
the five factor approach of the Schmid-Zagst framework (see Model 4.6, page
45). Again, we incorporate two macroeconomic factors (w; and ws). In the
setting of SZ5 we assume both macroeconomic factors to be observable and
both entering the drift of the short rate r and the short-rate spread s. The
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setting SZ5u works with an observable (w;) and an unobservable macroeco-
nomic factor (wsy) in the short rate r and an observable macroeconomic (w;)
and an unobservable firm-specific factor (u) in the short-rate spread s.

Further, relaxing the assumption of a second macroeconomic factor driv-
ing the short rate r leads us to the four factor version of the Schmid-Zagst
framework (SZ4, see Model 4.4, page 42). Here, only one observable macroe-
conomic factor (wy) enters the short rate r and the short-rate spread s.

Finally, the real and inflation short-rate model with its two settings (INF
and INFcorr, see Model 4.8, page 48) also assumes two macroeconomic fac-
tors (wy and ry), where the second is thought to be unobservable and stems
from an additional set of market data (inflation linked bonds) on which the
model is calibrated. INFcorr assumes the second macroeconomic factor, the
so-called inflation short rate r;, to be also driven from the Brownian shocks
of the observable macroeconomic factor (w;). The variant called INF does
not incorporate these shocks. Like 5corr, the real and inflation short-rate
model makes use of several Brownian shocks driving the short rate r. But
unlike 5corr, it does not incorporate any additional Brownian shocks in the
short-rate spread s. Therefore, INF and INFcorr are similar to the SZ5 set-

up.

The next sections are dedicated to the calibration and the comparison of
the above introduced models. First, we want to analyze which observable
macroeconomic factor is the best input. For this purpose, we use the most
simple of the above models namely the extended model of Schmid and Zagst
(SZ4) which contains only one observable macroeconomic factor (w;). Sec-
ondly, we further analyze if the introduction of a second macroeconomic
factor improves the pricing ability of the models. Especially, we study if the
observability of the second macroeconomic factor and correlated Brownian
shocks have an impact on the pricing.



dr(t) = (0r(t) 4 bpwy, w1 (t) + bruwywa(t) — apr(t)) dt 4+ op /1 — p2,,

- Png dWT(t) + O Prwy AW, (t) + O Prwy AW, (t)

| L 60 | b [ by | o | o | ow | Prus | |
S7Z4 eR >0 =0 >0 >0 =0 =0 one m.f.
(€R)
S7Z5 eR >0 eR >0 >0 =0 =0 two m.f.s
SZ5u eR > 0 =1 >0 >0 =0 =0 2nd m.f.
unobs.
INF =0r(t)+ 07| :=brw, | :=ar—a; | :=ag | = \/ﬁ = a;‘f wiws | = %\/1— P2 0, | 20nd m.f.
eR >0 eR >0 >0 = >0 unobs.
INFcorr |:=0r(t)+ 07| := bpuw, | :=ar —a; | :=ag | := \/ﬁ = aawr Puwrws | = U{%\/I— 02w, | 20nd m.f.
eR >0 eR >0 >0 €[-1,1] >0 unobs.
5corr eER >0 =1 >0 >0 €[-1,1] €[-1,1] 2nd m.f.
unobs.
dw(t) = (O, — ay,w1(t)) dt + o, dW,, (1)
| L O | aw [ ow | |
S74 >0 >0 >0 m.f. given by GDPn, GDPr, CPI, IP, Prod, CILI, CICI
SZ5 >0 >0 >0 m.f. given by GDPr
SZ5u >0 >0 >0 m.f. given by GDPr
INF >0 >0 >0 m.f. given by GDPr
INFcorr >0 >0 >0 m.f. given by GDPr
Hcorr >0 >0 >0 m.f. given by GDPr

Table 4.1: Assumptions regarding the parameters for the different models which are derived from the general
framework in Section 4.1. Macroeconomic factor is abbreviated by m.f. and unobservable by unobs.
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Cl’LUg(t) - (ewz - awsz(t)) dt + szpw1w2dWw1 (t) + Oy \Y; I p%ulwdeMQ (t)
| L O [ w [ 0w | Puw | |

S74 = = =0 =0 no 2nd m.f.

SZ5 >0 >0 >0 € [-1,1] m.f. given by CPI
SZ5u >0 >0 >0 =0 m.f. unobs.
INF =0;>0|:=a;>0|:=0;>0 =0 m.f. unobs.
INFcorr | :==6; >0 |:=a;>0|:=0; >0 €[-1,1] m.f. unobs.
Hcorr >0 >0 >0 =0 m.f. unobs.

du(t) = (0, — ayu(t)) dt + o, dW,(t)

| I 6 [ e | ou | |
’ H >0 \ >0 \ >0 | unobs. in all models ‘
ds(t) = (0s + bsyu(t) — by, w1 (t) — bswy,wa(t) — ass(t)) dt + ospsudWy(t)
+ 0y \/1 - pgu - pgwl - pngdWs (t) + Uspsw1dWw1 (t) + Uspsw2dWw2 (t)
| I 0 1 b | b | bews | @ | os | peu | pew | Pews | |
SZ4 >0 =1 >0(e R) =0 >0]>0 =0 =0 =0 one m.f.
SZ5 >0 =1 >0 cR >01]>0 = =0 = two m.f.s
SZ5u >0 =1 >0 =0 >0|>0 = =0 = w/o 2nd m.f.
INF >0 =1 >0 eR >01]>0 = =0 = two m.f.s
INFcorr >0 =1 >0 eR >01]>0 =0 =0 = two m.f.s
Scorr >0 =1 >0 =0 >0|>0|€[-1,1] | €[-1,1] | :==0 | w/o 2nd m.f.

Table 4.2: Assumptions regarding the parameters for the different models which are derived from the general
framework in Section 4.1. Macroeconomic factor is abbreviated by m.f. and unobservable by unobs.
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4.7 Calibrating the Models to Market Data

In this section we calibrate the above mentioned models on given US data
for an insample period from January 1 1999 to December 27 2002. The
calibration is done in several steps. First, the parameters of the observable
macroeconomic factors are estimated. Then, in the second step we calibrate
the short-rate models on non-defaultable zero rates. The last step consists
of the estimation of the parameters for the short-rate spreads by means of
defaultable zero rates. For all estimations we use the software package S-
PLUS finmetrics whereas the optimization is mainly based on a combination
of Downhill Simplex and Simulated Annealing Algorithm described in Press,
Teukolsky, Vetterling & Flannery (1992).

Estimating the parameters of the observable macroeconomic factor
Since we use observable data for the macroeconomic factor wy, respectively
wy in the SZ5 framework, and since the SDEs of these factors do not depend
on any unobservable processes, we use a maximum likelihood estimation
procedure to determine those parameters.

The solution (see Theorem 2.11) of w,’s SDE is

tet1
wl(tkH) = e‘“wlAt’““wl(tk)—i—/ e_awl(tk+1_l)9w1dl

ty

trp41
i / e~ w1 (tk+1_l)o'w1 dWw1 (l>

2

with Atgyq = tgs1 — tg. Thus, w; conditioned on a previous realisation
follows a normal distribution

Wi (1) wi(tr)

~ N efawlAtk+1w1(tk) + 811)1 (1 . efawlAthrl)’ Uw1 (1 . 672aw1Atk+1> ’
Uy, 20,

and the likelihood function L is given by

L(lea Aoy 0w1> = H fwl(ti”wl(tifl)’
=1

where fu,, (t,)jw t,_,) denotes the conditional density of w,(¢;) given wy(t;—1)
and m is the length of the time series w.
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Within the SZ4 framework (see Model 4.4) we test seven different macroe-
conomic factors as representatives for wy. All of those factors are commonly
supposed to have good predicting power with respect to the state of the
economy.

(i)

Nominal Gross Domestic Product (GDPn)

The gross domestic product is a measure of total production and total
consumption of goods and services within the United States. Hence, it
gives the most comprehensive picture of the power of the U.S. economy.
Its value is published quarterly with a delay of one quarter, i.e. it is
finally known at the end of the following quarter. Therefore we take
into account a lag of 6 month in our calibration procedure.

The growth rate of GDP is used e.g. by Bonfim (2009) who analyzes
empirically the determinants of corporate credit default taking into
account firm-specific and macroeconomic information. The obtained
results suggest that the GDP growth rate belongs to the most impor-
tant ones within the group of all considered variables.

Furthermore, the growth rate of GDP is incorporated in several studies
analyzing the impact of macroeconomic variables on credit risk and
sovereign ratings: Glen (2005) finds with the help of GDP growth
rates a strong link between macroeconomic conditions and the abil-
ity to service debt. Hilscher & Nosbusch (2010) investigate the impact
of macroeconomic fundamentals on sovereign credit spreads with the
GDP being the main input in form of its growth, its volatility and
several ratios, e.g. debt/GDP.

Real Gross Domestic Product (GDPr)

The real gross domestic product is adjusted for price changes in order
to measure the GDP, respectively the production within the United
States, regardless of changes in the purchasing power. The publication
follows the same schedule as for the nominal GDP. Thus, we also con-
sider a time lag of 2 quarters. Both the nominal and the real GDP are
published by the U.S. Department of Commerce: Bureau of Economic
AnalysisV.

As mentioned above, the growth rate of GDP is often used in empiri-
cal studies regarding credit risk and ratings. Some explicitly state the
real GDP as input variable. E.g. Rowland (2005) incorporates the real
GDP growth rate in his study of determinants of ratings, creditwor-
thiness and spreads for emerging market sovereign debt. Omne of his

Vhttp://www.bea.gov
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findings is that the real GDP growth rate seems to have a significant
impact on spreads.

Consumer Price Index (CPI)

The consumer price index measures the development of the average
price of goods and services consumed by households. Thus, its per-
centage change indicates inflation. Since around 80 % of the U.S.
population lives in urban areas, the CPI-U is the most popular rep-
resentative of the CPI. A further differentiation within the CPI is its
value apart from prices of energy and food. Since those products lead
to a high volatility within the CPI time series and often overlap long-
term trends, we use the index called: ”Consumer Price Index for All
Urban Consumers: All Items Less Food & Energy” which is published
by the U.S. Department of Labor: Bureau of Labor Statistics¥'. The
CPI is published on a monthly basis with a delay of two and a half
months. Therefore, we incorporate the CPI with a lag of three months
in our calibration.

Some of the above works also make use of the CPI next to the GDP,
e.g. Glen (2005) and Rowland (2005). Additionally, Ang & Piazzesi
(2003) incorporate the CPI in their analysis of macro variables and
their effect on bond prices and on the dynamics of the yield curve.
Cantor & Packer (1996) study determinants of sovereign ratings and
find that inflation belongs to the group of factors which seem to play
an important role.

Industrial Production (IP)

This production index measures real output. Since the majority of vari-
ation in the national output of the U.S. is due to the industry sector,
this index indicates structural developments in the U.S. economy. It is
released by the Board of Governors of the Federal Reserve SystemY!!
with a monthly frequency and a time delay of 1 and a half months
including revisions for the previous 3 months. Hence, we allow for a
time lag of 3 months which is in line with the above indices whose final
publications are also preceded by preliminary reports.

The growth rate in industrial production is used by Figlewski et al.
(2012) who analyze reduced-form models by allowing the hazard rate
to depend on firm-specific factors and macroeconomic conditions. They
include the industrial production as a factor that indicates the direction
where the economy is moving to. They also claim that the growth rate

Vihttp://www.bls.gov
Vhttp: / /www.federalreserve.gov
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in industrial production might be a better measure than the growth
rate in real GDP since the latter covers all economic activity including
sectors which may be unrelated to corporate credit conditions.

Also, Ang & Piazzesi (2003) include the growth rate of industrial pro-
duction in their study of a term structure model with inflation and
economic growth factors. Here, IP is assumed to capture real activity.
Furthermore, Krishnan et al. (2005) and Krishnan et al. (2010) use
the growth rate in industrial production for their analysis of changes
in credit spreads and their study in predicting future firm-level credit
spreads.

Productivity (Prod)

The most often used measure of productivity within the United States
is the so-called labor productivity which determines the output per
hour of all persons. Its importance stems from the fact that labor costs
are easily identified and account for the majority of the output’s value.
The most comprehensive measure of productivity is that of the business
sector whose output covers about 80 % of the GDP. Hence, its growth
is strongly correlated with the growth of the GDP. The publication
of the labor productivity is every quarter by the U.S. Department of
Labor: Bureau of Labor Statistics. Like the GDP this index is released
at the end of the following quarter which leads to a lag of 6 months in
our analysis.

Composite Index Of Leading Indicators (CILI)

The composite index of leading indicators (CILI) is an aggregate of ten
economic releases which all show patterns that are related to the busi-
ness cycle, e.g average weekly hours worked in the manufacturing indus-
tries as a predictor for changes in unemployment, manufacturer’s new
orders for consumer goods/materials indicating future revenues, S&P
500 and interest rate spread reflecting investors’ expectations about the
economy and changes in the yield curve (see TCB (2001)). This index
of leading indicators tries to cover the overall state of the macroeco-
nomy and to reveal common turning point patterns within the series
of indicators in order to judge the future state of the economy, i.e. the
next six to nine months. By aggregating several economic indicators it
gives a summary of the economy and additionally decreases the impact
of volatility given by a single indicator. The composite index of leading
indicators is published by The Conference Board VI X at the end of

VHThttp: / /www.conference-board.org and http://tcb-indicators.org
XWe got the time series from Reuters using its RIC aUSCLEAD/A.
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every month with a lag of one month. Since several indicators within
the composite index are also published with a timing lag and are hence
represented by projected data, the composite index allows for revisions
of the most recent months. Consistent to the above data, we use a
three month publication lag.

Huang & Kong (2003) examine determinants of corporate bond credit
spreads by using explanatory variables which capture different aspects
of credit risk, e.g. default rates, interest rates, equity market factors
and macroeconomic indicators. Their main findings are that also vari-
ables like the Conference Board’s composite indices of indicators, which
have not been used before in the literature, have significant explaining
power for credit spread changes.

(vii) Composite Index Of Coincident Indicators (CICI)

The composite index of coincident indicators (CICI) is also published
by The Conference Board®X. The main purpose of this index is to de-
scribe the current state of the economy. It is composed by four individ-
ual indicators which are said to be in-step with the current economic
cycle. These indicators are employees on non-agricultural payrolls re-
flecting actual changes in hiring and firing, personal income less trans-
fer payments measuring the general health of the economy, index of
industrial production which historically captured most of movements
in total industrial output, and manufacturing and trade sales measur-
ing real total spending. Like CILI, the composite index of coincident
indicators is published on a monthly basis including available data as
well as estimates. Hence, this index will also be revised in the following
months when the actual data of the underlying indicators are finally
published. In order to justify the publishing delay of almost 2 months
and the revisions we allow for a lag of 3 months.

The model is calibrated on weekly data, therefore we need to break down
the given macroeconomic data with a frequency of 1 respectively 3 months
to a weekly time series. This is done by means of the interpolation used for
inflation-linked bonds*!:

t — 1
d(m)

W(tm) = Wm—3 + (Wm—2 — Wm—3),

where d(m) indicates the number of days in the corresponding month m, re-
spectiveley quarter, t,, the actual date where we want to get a value of w with

XWe got the time series from Reuters using its RIC aUSCOINDIF/A.
XIFor further information refer to e.g. Agence France Trésor (http://www.aft.gouv.fr/)
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0 < t,, < d(m) and w,, the published index value for the month (quarter) m.
The lag of one month (quarter) inherent in the above interpolation is due to
the fact that the index value w,, for the month (quarter) m will be valid for
the whole month (quarter), i.e. starting from the first day and lasting until
the last day of the month (quarter), but will be available at the earliest on
some day in the following month (quarter) m + 1. Since it is unlikely that
the publishment is on the very first day of the following month (quarter)
and therefore, it cannot be assumed that the index value w,, of the month
(quarter) before is already known on all days of the next month (quarter)
m + 1. If the lag between the end of the respective month (quarter) and the
publishment of its index value is even longer, the interpolated index value is
obtained by

with d denoting the lag between the end of the period for which the index
value is valid and its publishment.

Afterwards, we need to calculate growth rates for the respective macroeco-
nomic data. As the original GDP time series is released quarterly we calculate
every week the growth rate with respect to 3 months. For the CPI we deter-
mine annual growth rates because the index is published with an accuracy of
just one decimal place and we observed that the values of the index do not
change for several months. In order to prevent low growth rates and a fluctu-
ation around zero we again use annual growth rates for industrial production
and the composite indices since changes for months as well as quarters are
negligible. For the growth rate in productivity we proceed as with the GDP
and determine growth rates with respect to a quarter.

Although the whole model is calibrated on weekly data, we only use monthly
data for calibrating the macroeconomic factors. This is done in order to avoid
a possibly high autocorrelation within the interpolated data set. The results
of the maximum likelihood estimation for the macroeconomic factors are
given in Table 4.3. In all cases, the given data seem to fit into our model
assumption since the mean reversion levels which are determined by 2“’71 are

near the corresponding empirical means.

Estimating the parameters of the short rate r

In order to get the parameters of the short rate (a,, by, 0y, Prwys Prws> Ars Moy s Awsy )
we use the Kalman filtering method (see Section 2.4) which requires a state
space form consisting of a measurement equation and a transition equation.
The measurement equation is derived from the affine relationship between
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’ H O, \ Ay, \ Ouy \ mean reversion level \ empirical mean ‘
GDPn | 0.0168 | 1.387 | 0.0075 1.21% 1.17%
GDPr | 0.0091 | 1.338 | 0.0084 0.69% 0.70%

CPI || 0.0217 | 0.914 | 0.0033 2.38% 2.38%
IP 0.0049 | 0.311 | 0.0359 1.59% 1.53%
Prod | 0.0131 | 1.800 | 0.0129 0.72% 0.78%
CILI || 0.0035 | 0.1793 | 0.0200 1.94% 1.99%
CICT | 0.0015 | 0.0846 | 0.0084 1.78% 1.57%

Table 4.3: Estimated parameters for the growth rates of different macroeco-
nomic factors, namely the nominal gross domestic product (GDPn), the real
gross domestic product (GDPr), the consumer price index (CPI), the indus-
trial production (IP), the productivity (Prod) and the composite indices of
leading (CILI) and coincident (CICI) indicators.

zero rates and the unobservable factor r:

lnP(tk, T) = (ll(tk, T) + b1<tk, T)T(tk),

1
R(T) = 5

. Aty T E1(tg, T Eo(ty, T
with a1<tk,7;2t— —AeD) | By, (1) + 208Dy (1) and

by(te, T) = +t? Thus, we get for the measurement equation

R(tk,tk—i-ﬁ) aq (tk,tk—i-Tl) bl (O,Tl)
: = : + : 7(te) + e
R(tk, tk + TN) aq (tk,tk -+ TN) bl (0, TN)

where 71, ..., v denote the maturities of the zero rates and € represents the
measurement error which we assume to be normally distributed with

h% 0O --- 0
9 .
EkNNN O, 0 ‘h2

0O --- 0 h?\,
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The transition equation is derived from the solution of the SDE (see Theorem
2.11) of the short rate r which yields

tet+1
F(ther) = e @Btrip(t,) + / e~ 170 (0 (1) + by, wi (1) 4 by, ws(1))dl

123

let1
+ / eiar(tk+1il)0r\/1 - p%wl - pngdWr(l)

tk

Tt1 Tt1
+ / e—ar(tk+1—l)O_TpTw1 dle (l) + / e—ar(tk+1—l)o'rp7,w2 dWw2 (l),

ti 123

Approximating 0,.(1), w; (1) and ws(l) by 0,(tx), w1 (tx), we(ty), we obtain the
transition equation

Atgyr
Ptepr) = e Arip(t) + / e 0,(t) + Dpwy w1 (t) + by wa(ty))dl
0

tet1 tet1
i / e 100,y AWy (1) + / e 0, AWy (1)
ti tg
+ Mk,
where 741 is defined as f;:““ et =Dg dW, (1) with

At o2
Nk ~ M (0,/ €2arl03dl) =M <07 5 -
0

r

(1 o eZaTAtk+1)) )

The two stochastic integrals in the above equation are approximated with
tt:“ e~ 1 =Dg o dWy, (1) = e Bt g o AW, (try1), i = 1,2, where
AWy, (tes1) := W, (tks1) — Wi, (tx) is obtained by inserting the time series
of w;, 1 = 1,2, into the solution of its SDE (see page 56).
This procedure is used if we have observable time series for w; and w,. If one
of these processes is unobservable the above equations have to be rewritten.
We do not perform this in detail but refer to the next passage where we
explain the procedure for two unobservable processes, namely s and u.
The vector of parameters for the short rates of the models SZ4, SZ5, SZ5u
and 5corr, which only differ by the number of macroeconomic factors, by their
correlation and by their observability, are determined by the same procedure.
The data is given by weekly par yields of US Treasury Strips of maturities
(7) 3 months, 6 months, 1 year, 2, 3, 4, 5, 7, 10, 20 and 25 years which are
collected from Bloomberg®!. We transform these par yields in continuous

XIIThe Bloomberg tickers for the US Treasury Strips are: C0793M, C0796M, C0791Y,
C0792Y, C0793Y, C0794Y, C0795Y, CO797Y, C07910Y, C07920Y, C07925Y.
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| | GDPn | GDPr [ CPI | TP [ Prod | CILI | CICI |

ay 0.6042 | 0.5922 | 0.3144 | 0.6188 | 0.4707 | 0.3258 | 0.3290
by, 0.0355 | 0.0532 | 0.0416 | 0.0263 | 0.0971 | 0.0527 | 0.0042
oy 0.0095 | 0.0092 | 0.0101 | 0.0117 | 0.0124 | 0.0099 | 0.0113
Ar -2204.3 | -1344.0 | -1082.6 | -1559.1 | -471.0 | -575.5 | -561.4
Awy -13605.2 | -3475.3 | -4023.9 | -66.4 | -538.3 | -54.3 | -359.6
hy 0.0103 | 0.0137 | 0.0130 | 0.0075 | 0.0122 | 0.0101 | 0.0106
ho 0.0124 | 0.0094 | 0.0106 | 0.0105 | 0.0097 | 0.0119 | 0.0118
hs 0.0089 | 0.0063 | 0.0094 | 0.0035 | 0.0068 | 0.0066 | 0.0080
g 0.0048 | 0.0021 | 0.0027 | 0.0019 | 0.0024 | 0.0026 | 0.0027
hs 0.0021 | 0.0023 | 0.0017 | 0.0053 | 0.0007 | 0.0006 | 0.0003
he 0.0019 | 0.0047 | 0.0008 | 0.0048 | 0.0011 | 0.0019 | 0.0019
hr 0.0025 | 0.0054 | 0.0023 | 0.0044 | 0.0035 | 0.0028 | 0.0028
hsg 0.0049 | 0.0058 | 0.0046 | 0.0062 | 0.0063 | 0.0045 | 0.0040
hqg 0.0063 | 0.0092 | 0.0050 | 0.0091 | 0.0062 | 0.0064 | 0.0050
hio 0.0032 | 0.0028 | 0.0029 | 0.0071 | 0.0054 | 0.0037 | 0.0039
hi1 0.0133 | 0.0113 | 0.0127 | 0.0090 | 0.0110 | 0.0098 | 0.0111
Qy 0.4070 | 0.4775 | 0.2030 | 0.4066 | 0.3980 | 0.2698 | 0.2570
(o, 0.6195 | 1.0810 | 0.8710 | 0.2254 | 1.7100 | 0.1577 | 0.0593
mean
reversion | 3.18% | 3.84% | 3.24% | 3.07% | 4.08% | 4.07% | 3.84%

Table 4.4: Estimated parameters for the short rate r within the SZ4 frame-
work for different macroeconomic factors w;. The mean reversion of r, which
is given in the last row, compares to an empirical mean of 3.91% of the zero
rates with a maturity of 3 months.

zero rates and use them as input for R(ty,tx + 7) of the measurement equa-
tion.

As previously mentioned, it is not always clear in which way interest rates are
influenced by macroeconomic factors. Therefore, we relax the restrictions of
non-negativity regarding b,.,, for the factor CPI in the SZ4 model (see Model
4.4). The results of the estimation (see Table 4.4) propose that all factors’
influence is in the same direction. Table 4.4 shows the estimated parameters
of the SZ4 framework for different representatives of the factor w;. Based on

these estlmates we can calculate the mean reversion of the short rate r by

median(0r)+brw a—
~“1 and compare it with the empirical mean of 3.91% of the ob-

served 3-months zero rates. The fit of the different four factor models (Sz4)
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is promising since the calculated mean reversion levels are near the empirical
mean especially for GDPr, Prod, CILI, and CICI. In addition, the scales of
the estimated volatilities of the measurement errors hq, ..., h;; indicate that
all seven versions of the SZ4 framework have a similar ability of explaining
non-defaultable zero rates.

For the five factor versions of the SZ and the correlated framework (i.e. SZ5,
SZbu, beorr) we use the real gross domestic product (GDPr) as representative
of wy. The second factor is represented by the consumer price index (CPI)
in the case of SZ5 (see Model 4.6) and it is chosen to be unobservable in
the case of SZ5u (see Model 4.6) and 5corr (see Model 4.10). We assume for
the estimation of the parameters of SZ5 that b,,, € R since the interaction
between the two given factors is not known for sure. Within the framework
of SZ5u and 5corr we define b,.,,, to be 1 and py,, to be 0 in order to pre-
vent problems of identification. Table 4.5 presents the estimated parameters.
We do not give the parameters of w; and of wy if they are assumed to be
observable, since we already estimated these parameters in the first step (see
Table 4.3). Compared to the results of the four factor model (SZ4) e.g. with
input GDPr or the composite indices (see Table 4.4) we can conclude that
the five factor versions (SZ5, SZ5u, 5corr) yield promising results especially
if we look at the volatilities of the measurement errors hq, ..., hy; which are
on average smaller than the ones of the SZ4 frameworks with the exception
of the long-term maturities, i.e. hjg and h;;. This indicates that the addi-
tional factor is able to explain an extra portion of the variation. The second
macroeconomic factor (ws) also changes the influence of the GDPr. If we
incorporate the CPI as an additional factor, the value of b,,, increases in-
dicating a bigger impact of the GDPr. But since the CPI affects the short
rate in the opposite direction (b, < 0) the increase in b,,, is mostly due
to the interaction between GDPr and CPI. In the case of an unobservable
factor wy, where we assume the same direction of influence as for the GDPr,
the impact of the GDPr decreases in the case of the SZ5u framework as b,.,,
is smaller than in the SZ4 framework. Here, the unobservable factor seems
to be able to better explain the variation and therefore reduces the influence
of the GDPr. In the case of the 5corr framework, where it is assumed that
the short rate is correlated with both the macroeconomic factor and the un-
observable factor, b,.,, increases compared to the SZ4 framework in response

to the newly incorporated shocks of the factors w; and ws. If we calculate

median (0, )+brw1 + Twy g
the mean reversion level of the short rate r by 2 and

compare it to the mean of the given 3-months zero rates We see that all three
models obtain a good fit. Especially the models with an additional unob-
servable factor approach easily the empirical mean.
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The parameters of the short rate within the real and inflation short-rate
framework (INF and INFcorr, see Model 4.8) are estimated in a different way
than the parameters of the other models. Since it is assumed that the short
rate r is the sum of the real short rate rz and the inflation short rate r; the
parameters of these processes are estimated independently but both with the
help of a Kalman filter and a state space model similar to the above men-
tioned. We use the same data as Hagedorn et al. (2007) who first introduced
this interest rate model based on real and inflation short rates. The real zero
rates are generated with the help of inflation-linked bonds *". In the U.S.
these bonds come in the most common structure of capital-indexed bonds
like in Sweden, the United Kingdom, France and Canada. Capital-indexed
bonds pay a real coupon as the nominal of these bonds is indexed by a capital
multiplier which is given as the ratio of an inflation-indexed process at time ¢
and at a certain reference day tyq5.. Furthermore, a deflation floor is built in
which prevents the capital multiplier of being smaller than 1. The indexing
is based on the CPI-U with the linear interpolation technique introduced in
the previous passage. The real rates are determined by assuming a Nelson-
Siegel structure and by approximating at weekly measurement points the
market prices of US Treasury Inflation Protection Securities (TIPS). The
input data for estimating the parameters of the inflation short rate is de-
termined by substracting the real rates from the nominal rates which we
derived from US Treasury Strips. As the real rates are calculated by as-
suming the Nelson-Siegel framework, the nominal rates are also smoothed
by Nelson-Siegel curves in order to avoid any systematic errors. For further
information about the derivation of the real rates see Hagedorn et al. (2007).
Table 4.6 gives the estimated parameters of the real short rate rg and the
inflation short rate r; which is assumed to be uncorrelated with w; (GDPr)
in the framework INF (pu,u, := 0) and correlated with w; in the framework
INFcorr (pu,w, € R). We can observe that the influence of the real gross
domestic product (measured by b,,,) is bigger for the real rates than the
nominal ones (see Table 4.4). Both versions of the inflation short rate r; do
have a good fit since the volatilities of the measurement errors hq, ..., h1;
are of similar scale. As in the case of the five factor model of Schmid-Zagst,
SZ5 (see Model 4.6), the correlation between the factors w; and wy takes on
a negative value. The additional impact of the inflation rate for the nomi-
nal short rate is given by the parameter b,,, which is determined under the
real-world measure by ag — a,, and results in -0.1753 (INF), i.e. an opposite
impact of w; and ws, respectively 0.3111 (INFcorr), also indicating together

XIMEor further information about inflation-linked bonds see Deacon, Derry & Mirfend-
ereski (2004).
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] H SZ5u \ S7Z5 \ Scorr
a, 0.6918 0.4841 1.5860
by, 0.0160 0.3214 0.2410
Dros 1 20.1527 1
Oy 0.0001 - 0.0154
Uy 0.0533 - 0.2758
G 0.0081 | - 0.0096
oy 0.0091 0.0117 0.0130
Ay -2118.1 | -591.9 -6037.8
Ay -4549.4 | -13551.8 | -10620.1
Aws -44.4 | -84996.8 | -2215.0
Dot 0 | -0.1477 0
v 0 0 0.5469
Pros 0 0 0.2122
hq 0.0038 0.0010 0.0050
ho 0.0032 0.0039 0.0012
hs 0.0012 0.0003 0.0013
hy 0.0011 0.0029 0.0019
hs 0.0009 0.0054 0.0014
he 0.0004 | 0.0040 0.0008
hr 0.0003 0.0059 0.0004
hg 0.0010 0.0072 0.0017
hg 0.0021 0.0073 0.0028
h1o 0.0067 0.0124 0.0055
hiy 0.0207 0.0253 0.0171
a, 0.5152 0.4028 0.7639
oy, 1.0052 0.3694 0.5764
Uy, 0.0503 0.0130 0.0716
mean reversion | 3.92% | 4.70% 3.90%
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Table 4.5: Estimated parameters for the short rate r within the frameworks
SZ5u, SZ5 and bcorr where the first macroeconomic factor w; is given by the
GDPr and the second factor ws, is chosen to be unobservable for SZ5u and
5corr, respectively is represented by CPI for SZ5. The mean reversion of r,
which is given in the last row, compares to an empirical mean of 3.91% of
the zero rates with a maturity of 3 months.
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with the negative correlation a tendency of opposite impact . Hence, if we
allow for correlated factors w; and wy the sign of the correlation is the same
as in the framework SZ5, but the direction of the impact of the factor ws
changes since the sign of b, is the same as for b,,, as opposed to b, > 0
and b, < 0 for SZ5. But otherwise, if p,,q., is to be 0, b, takes on the
same sign as in the case of SZ5 namely opposite to the impact of the GDPr,
though py,w, < 0in SZ5 . This result - in addition with the results for SZ5
- emphasizes the previously stated fact that the influence of certain factors
on the short rate respectively interest rates is an open question. The mean

reversion level of the short rate inethe real and inﬂation short-rate model
median(0r)+0wy +bRuw, o L +(aRf Ay ) 2

is determined by muz resulting in 3.30% (INF)
and 3.32% (INFcorr). Compared o the empirical mean of the 3-months zero
rates (3.91%), the real and inflation short-rate framework (INF and INFcorr)
fits the data as good as the other discussed frameworks.

Estimating the parameters of the short-rate spread s and the un-
certainty index u

The parameters (as, os, As, Os, bsus bswy s Dsws s Qs Tus Aus Oy Psus Pswr s Pswy) OF
the processes s and u are also estimated by means of the Kalman filter.
Here, we obtain the measurement equation by substracting non-defaultable
zero rates R(ty,T) = —T_;tklnP(tk, T) from defaultable zero rates

R(t,,T) = —ﬁlnPd(tk, T) in order to obtain the spread S(tz, T'):

S(ty, T) = R4 ty,T)— R(t,T)
Cty, T) D(ty,, T) Ad(ty, T) — A(ty,, T)
T T, s(t) + Tt ulte) — T —t,
Ed(ty,, T) — B (tp, T Ed(t,, T) — Ey(ty, T
+ 1(’9 ) 1(k )wl(tk)+ 2(k ) 2(16 )w2( k)
T—tk T—tk

If we define c?(ty, T) = M , dty, T) = T(f’“t;T), al(ty,,T) as the sum of
all terms independent of s and u, and

<o0e= ()

the measurement equation yields

S(te,ty +11) a® (t, ty + 71) ¢ (0,7) d*(0,7)

S(tk,tk+TN) ad (tk,tk—i-TN) Cd (O,TN) dd (O,TN)
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’ H TR H H rr (INF) ‘ r; (INFcorr) ‘
apR 0.4654 g 0.6407 0.1542
brw, | 01554 | Bu, | 0.0105 |  0.0026
OR 0.0084 Ows, 0.0145 0.0089
Mo | 44263 || pures 0 20.3514
Aw, | -15362.2 Aw, -659.0 -228.3
hy 0.0014 hy 0.0026 0.0076
ho 0.0013 ho 0.0021 0.0061
hs 0.0010 hs 0.0012 0.0041
hy 0.0004 hy 8e-11 0.0017
hs 8e-10 hs 0.0008 0.0002
he 0.0004 he 0.0014 0.0019
hy 0.0007 ho 0.0020 0.0032
hg 0.0012 hg 0.0029 0.0051
hg 0.0018 ho 0.0040 0.0061
hio 0.0018 hio 0.0046 0.0054
hiy 0.0029 hi1 0.0040 0.0056
y, 0.2392 oy 0.5032 0.1373
ar 0.1501

Table 4.6: Estimated parameters for the real short rate rg within the real and
inflation short-rate model (INF and INFcorr) where the first macroeconomic
factor w; is given by the GDPr and the second factor, the so-called inflation
short rate ry, is filtered by means of inflation-linked bonds.

where 74, ..., 7n denote the maturities of the spreads and ¢, represents the
measurement error which we assume to be normally distributed with

g% 0O --- 0

9 .

EkNNN O, 0 :92 0
0O --- 0 9]2\[

In order to get the transition equation we define the matrices H, J, V and
W with

J(tk> = ( 05 - bswlwl(tk) - bsw2w2 (tk’) + Uspsqule (tk—}—l) + OspstAng (tk+1) )
= eu ,
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— 2 2 2

V = ( O's\/l pSU + pswl + pSwQ Uspsu ) ,W = (W57 Wu)/ )
0 Oy

where dW,,, , respectively dW,,,, is approximated by AW, (tx41) := Wiy, (tr41)

—Wa, (tr). Thus, the SDEs of s and u can be written as

dX (1) = HX (t) + J(t)dt + VAW (1)

Using Theorem 2.11 the solution of dX is

ti

tet1 +1
Xk+1 _ eHAt’“'le +/ eH(tk“_l)J(l)dl +/ 6H(tk+1—l)VdW(l).

ty ty

If we approximate J(l) by J(t;) the transition equation can be written as
Atgyr
X (tps1) = "3 X (1)) + / e T (tr)dl + Mg,
0

with ng 1 = tik“ eH =DV dW (1) following a normal distribution

Atpyr ,
Nes1 ~ Na (0, / ey et ’dl) .
0

The procedure to determine the parameters for the processes s and u is the
same throughout all discussed models since the only differences are the use
of a second factor wy and the correlated shocks in the SDE of the short-
rate spread. The data is given by weekly par yields of US Industrials rated
BBB1 and A2 whose maturities are 3 months, 6 months, 1 year, 2, 3, 4,
5, 7, 10, 20 and 25 years. As before this data stems from Bloomberg*!V.
Again, we transform these par yields in continuous zero rates, substract the
non-defaultable zero rates in order to derive the credit spreads and smooth
the resulting rates by means of Nelson-Siegel curves. We use these credit
spreads as input for S(t,t; + 7) of the measurement equation.

Throughout all models we assume by, to be 1 as the process u is already un-
observable. In the case of the five factor models with an unobservable second
macroeconomic factor wsy, SZ5u (see Model 4.6) and 5corr (see Model 4.10),
we additionally assume by, = 0 since there is already an unobservable factor
u in the short-rate spread. Including a second unobservable factor would
have led to problems regarding the differentiation of the two unobservable
factors. This assumption gives the short-rate spread of the SZ5u framework

XIVThe Bloomberg tickers are for the rating A2: C0063M, C0066M, C0061Y,... and
C0083M, C0086M, CO081Y,... for the rating BBBI1.
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the same form as the short-rate spreads within the four factor framework
(SZ4, see Model 4.4) and a similar appearance to the SZ4 framework in case
of the 5corr framework. Hence, we expect similar results for SZ5u, 5corr and
SZ4 frameworks with respect to the short-rate spread s.

Figlewski et al. (2012) indicate in their study of corporate defaults that in-
flation is understood to be an important macroeconomic factor but its effect
is unclear, since, unlike the common perception, high inflation could also de-
crease default risk by reducing the value of required debt service payments.
Hence, as in the case of the short rate r we do not restrict the parameter by,
in the case of the SZ4 model with CPI to non-negative values, but as before
the results indicate that the impact of the CPI is of the same direction as for
the other macroeconomic factors. Table 4.7 and Table 4.8 give the results of
the four factor models (SZ4) where we can observe that the models exhibit

a similar fitting ability with respect to the mean reversion levels. The mean

9w ]
s Uswy awi +bsuﬁ

reversion levels are determined with - and are close to the
empirical means of the given 3-months credit sspreads, which yield 0.83% for
the rating A2 and 1.08% for the rating BBB1. Additionally, the volatilities
of the measurement errors ¢q,..., g1 are of the same scale indicating that
all macroeconomic factors have a similar ability to explain the variation.

Table 4.9 and Table 4.10 present the estimated parameters for the five factor
models (SZ5, SZ5u, 5corr, INF, INFcorr). Like before, we do not restrict
the parameter bg,, and find that in case of the SZ5 framework where the
factor ws is given by the CPI, its impact is opposite to the impact of the
first factor wy; (GDPr). Whereas for the two versions of the real and infla-
tion short-rate framework (INF, INFcorr) the impact of the inflation short
rate is of the same direction as for the GDPr regardless if we account for
correlation between w; and wy. The only difference seems to be the fact that
there is a shift in the impact of the two factors meaning that by, decreases
and by, increases if we allow py, ., to be non-zero. The different impact of
inflation is in line with the findings of Figlewski et al. (2012) who show that
incorporating several macroeconomic factors can lead to unexpected results
in explaining credit risk. Although the 5corr model is a five factor frame-
work, its short-rate spread is built similarly to the factor s of the four factor
versions (SZ4) since it makes no use of the factor wy. Therefore, we expect
the parameters of the 5corr model for credit spreads to behave similarly to
the parameters of the four factor version (SZ4) with GDPr input. Especially,
since the only difference of these two versions are the correlated shocks in the
SDE of the short-rate spread s (cf. Model 4.4 vs. Model 4.10). As expected,
the impact of the macroeconomic factor w; measured by the parameter by,
is of the same scale for both models and rating classes. Furthermore, the
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volatilities of the measurement errors gy, ..., g1; also behave like the ones of
the other four factor models (SZ4), i.e. there seem to be difficulties for very
short and long maturities. But the incorporation of correlated shocks leads
to smaller volatilities for mid-term maturities than it is the case for the SZ4
framework. As expected above, the SZ5u framework also exhibits the same
behaviour with respect to parameters and volatilities of measurement errors
as the models of the SZ4 framework. Compared with the four factor versions
of SZ4 (see Table 4.7 and Table 4.8) the five factor models’ mean reversion

Ow O 0.
— 1 w2 Yy
0s bswl aw swo aws SU G,

levels - come as close to the empirical means and the
volatilities of the measurement errors (especially for SZ5, INF and INFcorr)
are on average smaller as the ones for the four factor model. Thus, the in-
corporation of a fifth factor does also improve the fitting ability for credit
spreads given this factor appears both in the short rate » and the short-rate
spread s. Whereas the usage of correlated shocks within the credit spread
framework does not seem to improve the fitting ability as opposed to an ad-
ditional factor.



GDPn GDPr CPI 1P
A2 [ BBBI | A2 | BBBI | A2 | BBBl | A2 | BBBI
a, 1.2514 | 0.5835 | 1.7272 | 0.7287 | 1.1336 | 0.6143 | 0.7883 | 0.3368
bow, | 0.0694 | 0.0976 | 0.0549 | 0.1266 | 0.0650 | 0.1608 | 0.0285 | 0.0093
o, 0.0012 | 0.0025 | 0.0092 | 0.0055 | 0.0044 | 0.0051 | 0.0042 | 0.0043
0, 0.0006 | 0.0004 | 0.0116 | 0.0075 | 0.0050 | 0.0039 | 0.0042 | 0.0029
A | -37608.5 | -7492.3 | -13206.3 | -11908.4 | -7793.7 | -5079.6 | -1121.3 | -8268.9
. 0.0059 | 0.0016 | 0.0004 | 0.0005 | 0.0006 | 0.0013 | 0.0028 | 0.0005
au 0.5514 | 0.2287 | 0.1160 | 0.4612 | 0.0970 | 0.1953 | 1.0004 | 0.5993
ou 0.0044 | 0.0056 | 0.0038 | 0.0066 | 0.0031 | 0.0060 | 0.0096 | 0.0074
Mo || -11538.0 | -4550.6 | -5251.9 | -8501.3 | -7001.3 | -3477.9 | -8200.1 | -2834.4
I 0.0056 | 0.0009 | 0.0004 | 0.0007 | 0.0063 | 0.0013 | 0.0014 | 0.0007
9 0.0076 | 0.0023 | 0.0006 | 0.0004 | 0.0005 | 0.0002 | 0.0002 | 0.0003
9 0.0006 | 0.0007 | 0.0001 | 0.0001 | 0.0008 | 0.0003 | 0.0005 | 0.0004
% 0.0004 | 0.0005 | 0.0002 | 0.0003 | 0.0006 | 0.0011 | 0.0002 | 0.0004
9 0.0005 | 0.0006 | 0.0002 | 0.0002 | 0.0003 | 0.0049 | 7e-5 | 0.0038
9 0.0019 | 0.0002 | 0.0002 | 5e-5 | 0.0026 | 0.0095 | 0.001L | 0.0003
g7 0.0030 | 85 | 0.0008 | 0.0003 | 0.0011 | 0.0007 | 0.0064 | 0.0001
9 0.0014 | 0.0006 | 0.0011 | 0.0009 | 0.0030 | 0.0004 | 0.0099 | 0.0029
9 0.0015 | 0.0070 | 0.0036 | 0.0131 | 0.0086 | 0.0005 | 0.0021 | 0.0014
910 0.0031 | 0.0067 | 0.0032 | 0.0058 | 0.0057 | 0.0030 | 0.0048 | 0.0085
g 0.0093 | 0.0098 | 0.0096 | 0.0046 | 0.0121 | 0.0130 | 0.0065 | 0.0113
, 1.2012 | 0.5380 | 0.5914 | 0.3711 | 0.9852 | 0.4844 | 0.7689 | 0.1810
Qu 0.3327 | 0.0846 | 0.0414 | 0.0946 | 0.0299 | 0.0708 | 0.2495 | 0.4459
mean
reversion | 0.83% | 1.08% | 0.83% | 1.05% | 0.82% | 1.06% | 0.83% | 1.07%

THAOW HOLOVA HAIA AAZI'TVHANAD V 7 HHLdVHD
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Table 4.7: Estimated parameters for the short-rate spread s and the uncertainty index v within the SZ4 framework
for different macroeconomic factors w;. The mean reversion of s, which is given in the last row, compares to an
empirical mean of 0.83% (A2) and 1.08% (BBBL1) of the credit spreads with a maturity of 3 months.



74 CHAPTER 4. A GENERALIZED FIVE FACTOR MODEL
Prod CILI CICI
A2 \ BBB1 A2 \ BBBI1 A2 \ BBB1
Qs 1.9363 1.2145 | 0.6851 | 0.6544 | 0.5167 | 0.3484
bsw, 0.1541 0.1327 | 0.0168 | 0.0142 | 0.2534 | 0.0684
O 0.0056 0.0063 | 0.0074 | 0.0061 | 0.0039 | 0.0047
0, 0.0163 0.0129 | 0.0017 | 0.0019 | 0.0003 | 0.0004
Ag -6142.2 | -2961.2 | -8776.9 | -8554.3 | -13735.9 | -1907.7
0. 0.0023 0.0009 | 0.0003 | 0.0003 | 0.0007 | 0.0004
Ay 1.9219 0.7769 | 0.0639 | 0.0499 | 0.0839 | 0.0954
Ou 0.0125 0.0070 | 0.0019 | 0.0018 | 0.0021 | 0.0027
Au -11620.9 | -15598.6 | -5026.1 | -5687.4 | -11403.2 | -9697.5
g1 0.0008 0.0011 | 0.0028 | 0.0019 | 0.0015 | 0.0016
g2 0.0005 0.0010 | 0.0014 | 0.0019 | 0.0028 | 0.0021
g3 0.0007 0.0002 | 0.0013 | 0.0008 | 0.0017 | 0.0014
I 0.0005 0.0011 | 0.0005 | 0.0007 | 0.0005 | 0.0005
Js 0.0005 0.0005 | 0.0001 3e-5 0.0004 | 0.0002
6 0.0001 0.0002 2e-5 0.0001 | 0.0005 | 0.0001
g7 0.0002 8e-5 0.0002 4e-5 0.0001 2e-5
gs 0.0011 0.0004 | 0.0006 | 0.0006 | 0.0004 | 0.0013
9o 0.0056 0.0019 | 0.0008 | 0.0010 | 0.0004 | 0.0012
g10 0.0041 0.0027 | 0.0021 | 0.0054 | 0.0014 | 0.0016
g11 0.0079 0.0031 | 0.0028 | 0.0050 | 0.0019 | 0.0047
Qs 1.7451 1.0955 | 0.2053 | 0.3331 | 0.3050 | 0.3055
(i 0.0933 0.0120 | 0.0459 | 0.0323 | 0.0327 | 0.0226
mean
reversion 0.85% 1.08% 0.80% | 1.09% 0.78% 1.09%

Table 4.8: Estimated parameters for the short-rate spread s and the uncer-
tainty index uw within the SZ4 framework for different macroeconomic factors
wi. The mean reversion of s, which is given in the last row, compares to an
empirical mean of 0.83% (A2) and 1.08% (BBB1) of the credit spreads with
a maturity of 3 months.



SZ5u S75 Scorr INF INFcorr

A2 \ BBB1 A2 \ BBB1 A2 \ BBB1 A2 \ BBB1 A2 \ BBB1
g 0.6774 | 0.5963 | 1.7385 1.3715 | 0.3742 | 0.3430 | 1.2941 1.2482 1.1084 0.9528
bsw, || 0.0524 | 0.0114 | 0.0131 0.0473 | 0.0882 | 0.1343 | 0.1295 0.0483 0.0157 0.0340
bsuw, 0 0 -0.0028 | -0.0052 0 0 0.0729 0.0611 0.2205 0.1801
O 0.0086 | 0.0102 | 0.0097 0.0083 | 0.0094 | 0.0099 | 0.0077 0.0056 0.0073 0.0067
0, 0.0030 | 0.0011 | 0.0113 0.0123 | 0.0029 | 0.0039 | 0.0035 0.0035 0.0015 0.0010
As || -2575.5 | -1910.9 | -13131.8 | -12954.9 | -3151.3 | -3353.6 | -18367.2 | -29956.5 | -11967.6 | -13148.1
0. 0.0006 | 0.0005 | 0.0003 0.0002 Te-5 0.0001 | 0.0010 0.0005 0.0005 0.0006
(U, 0.1969 | 0.0872 | 0.0971 0.0802 | 0.0958 | 0.1619 | 0.1124 0.0449 0.0446 0.0502
o, || 0.0042 | 0.0028 | 0.0038 0.0037 | 0.0033 | 0.0028 | 0.0043 0.0037 0.0035 0.0035
Au || -5206.4 | -5124.7 | -4721.4 | -4821.1 | -4756.5 | -3991.4 | -3003.0 | -1751.1 | -2366.2 | -1521.7
Psu 0 0 0 0 0.1401 | 0.1737 0 0 0 0
Psw; 0 0 0 0 -0.0591 | -0.0842 0 0 0 0

Table 4.9: Estimated parameters for the short-rate spread s and the uncertainty index w within the five factor

frameworks SZbu, SZ5, 5corr, INF and INFcorr.

THAOW HOLOVA HAIA AAZI'TVHANAD V 7 HHLdVHD
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SZ5u S75 Scorr INF INFcorr

A2 \ BBB1 A2 \ BBB1 A2 \ BBBI1 A2 \ BBB1 A2 \ BBB1

g1 0.0005 | 0.0010 | 0.0011 | 0.0015 | 0.0022 | 0.0016 | 0.0012 | 0.0014 | 0.0010 | 0.0013
g2 0.0006 | 0.0013 | 0.0008 | 0.0012 | 0.0012 | 0.0039 | 0.0009 | 0.0006 | 0.0006 | 0.0006
g3 0.0005 | 0.0010 | 0.0004 | 0.0003 | 0.0010 | 0.0006 | 0.0004 | 0.0003 | 0.0003 | 0.0003
J4 0.0009 | 0.0002 | 3e-5 9e-5 | 0.0005 | 0.0002 | 9e-5 9e-5 2e-5 8e-5
Js 0.0009 | 0.0003 | 6e-5 9e-5 | 0.0001 | 5e-5 | 0.0002 | Te-5 | 0.0001 | 2e-5
Js 0.0003 | 0.0007 | b5e-6 8e-5 2e-5 8e-6 8e-5 8e-5 9e-5 8e-6
gr 0.0005 | 0.0011 | 0.0001 | 0.0001 | 4e-5 5e-5 8e-6 8e-6 | 0.0001 | b5e-5
Js 0.0010 | 0.0004 | 0.0004 | 0.0004 | 0.0002 | 0.0012 | 0.0003 | 0.0003 | 0.0003 | 0.0003
9o 0.0027 | 0.0005 | 0.0010 | 0.0013 | 0.0008 | 0.0006 | 0.0007 | 0.0005 | 0.0007 | 0.0006
J10 0.0048 | 0.0020 | 0.0025 | 0.0018 | 0.0026 | 0.0029 | 0.0015 | 0.0016 | 0.0015 | 0.0014
g1 0.0034 | 0.0046 | 0.0024 | 0.0032 | 0.0051 | 0.0042 | 0.0029 | 0.0026 | 0.0022 | 0.0020
s 0.4859 | 0.3976 | 0.5024 | 0.4849 | 0.0966 | 0.0188 | 0.2191 | 0.3060 | 0.4641 | 0.3632
QU 0.1055 | 0.0464 | 0.0291 | 0.0124 | 0.0430 | 0.1300 | 0.0560 | 0.0211 | 0.0163 | 0.0313
mean reversion | 0.87% | 1.08% | 0.81% | 1.08% | 0.83% | 1.07% | 0.81% | 1.09% | 0.83% | 1.09%

9L

Table 4.10: Estimated parameters for the short-rate spread s and the uncertainty index u within the five factor
frameworks SZ5u, SZ5, 5corr, INF and INFcorr. The mean reversion of s, which is given in the last row, compares
to an empirical mean of 0.83% (A2) and 1.08% (BBB1) of the credit spreads with a maturity of 3 months.

THAOW HOLOVA HAIA AAZI'TVHANAD V 7 HALdVHD
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4.8 Comparing the Models

Having calibrated the different models with the help of market data, we now
want to find out which model yields the best results in explaining the data.
First of all, we compare the average pricing errors of the different frameworks
by calculating the absolute deviations for the insample period from January
1 1999 to December 27 2002 and for the out-of-sample period from January
3 2003 to December 31 2004%V. In order to identify any structural differ-
ences we do this for every single maturity as well as for the average over all
maturities. Then, we will apply a linear regression to the market prices for
determining whether they are explained well by model prices. Afterwards,
we analyze by means of the Akaike Information Criterion if the fitting abil-
ity is just due to an increase of factors. Finally, we conclude by testing the
standardized innovations with respect to the requirements of the state space
model.

Absolute Deviations: Pricing errors between US Treasury Strips
and non-defaultable model prices

Table B.2 in the Appendix illustrates the pricing errors between the zero
rates of US Treasury Strips and the ones determined by the various models.
The introduction of a second macroeconomic factor wy improves the pricing
power as long as this second factor is chosen to be unobservable as in the
SZbu and the 5corr frameworks. This is in line with Antes et al. (2008)
who found that the short-rate model of Bakshi et al. (2006) outperforms the
extended Schmid-Zagst model (SZ4) since Bakshi et al. (2006) assume their
macroeconomic factor to be unobservable. Due to the fact that all short-rate
models within this thesis incorporate at least one observable macroeconomic
factor into the short-rate, we omit a comparison with the model of Bakshi
and concentrate instead on models that are based on macroeconomic input.
For most of the maturities between 3 months and 10 years the SZ5u or the
Scorr version are the best models with respect to pricing error, often far bet-
ter than the others. Only for long-term maturities, i.e. 20 and 25 years, these
models exhibit the same problems as can be observed for the majority of the
models. The SZ5 framework which consists of two observable processes w;
and wy driven by the real gross domestic product and the consumer price
index yields promising results for short-term maturities which are addition-
ally to the maturities at the long end often problematic to fit. The pricing of
S7Z5 shows like the ones of SZ5u and 5corr better results for short maturities

XVWe use this time period in order to match the calibration period and results of Hage-
dorn et al. (2007).
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indicating that a second factor - even if it is observable - helps to explain
the market data. But for mid-term and long-term maturities this effect fades
and the SZ5 framework tends to reach worse results than the rest. The two
versions of the five factor model built on a real and an inflation short-rate
(INF and INFcorr), where the second factor ws, the so-called inflation short
rate, is also unobservable and filtered with the help of inflation-linked bonds,
take on positions between the other five factor models. They do not reach
the low pricing errors as SZ5Hu and 5corr do, but most of the time they range
among the best models. Astonishingly, these two models yield the lowest
pricing error for the maturity of 25 years. Within the extended model of
Schmid and Zagst (SZ4) we tested seven different economic factors GDPn,
GDPr, CPI, IP, Prod, CILI and CICI. By means of the absolute deviations
there is no factor which can be singled out as the best one. The pricing errors
are in the same range for all seven economic factors. For short-term matur-
ities there are the industrial production (IP) and the real gross domestic
product (GDPr) followed by the composite indices of leading (CILI) and co-
incident indicators (CICI) which perform best. But it changes for mid-term
and long-term maturities where the consumer price index (CPI), the nominal
gross domestic product (GDPn) and the composite index of leading indic-
ators (CILI) take over the leading position among the four factor models.
For the out-of-sample period we get a similar picture as the SZ5u as well as
the Scorr framework yield good results for short-term and mid-term matur-
ities. But for longer maturities both versions are outperformed by almost
all other models. The same holds for the other five factor models even for
almost all maturities. This is in line with the common expectation that the
out-of-sample performance gets worse if additional factors are incorporated,
especially if they are observable. Within the four factor models (SZ4) it is
again difficult to determine the best macroeconomic factor since the ranking
within the seven factors changes often. But next to the industrial production
(IP) for short maturities, the productivity (Prod) for mid-range maturities,
and the gross domestic product (GDP) for long maturities, it is the com-
posite index of leading indicators (CILI) that obtains one of the best results
across all maturities.

With the help of Table B.1 showing the absolute deviations averaged over all
maturities and over the maturities between one and ten years, we can con-
clude that the incorporation of an additional factor wy can help to improve
the pricing power for non-defaultable bonds if this factor is chosen to be un-
observable as in the frameworks SZ5u and 5corr, or if this factor is filtered
with the help of inflation-linked bond data. Choosing ws to be observable
like it is done in SZ5 does not have any additional impact as it can be seen
in Table B.2 where its absolute deviations are one of the worst. The ranking
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of the four factor models indicates CILI to be the best for the insample and
out-of-sample.

Absolute Deviations: Pricing errors between US corporate credit
spreads and defaultable model prices

Tables B.3 and B.4 in the Appendix contain the average pricing errors for
the credit spreads rated A2 and BBB1. Here, we emphasize that the model
Scorr is actually a five factor model but as in the case of SZ5u the short-rate
spread is not influenced by the fifth factor. The only difference to the models
of SZ4 are the correlated diffusion terms which appear in the SDE of the
short-rate spread s. The diffusion term of the first macroeconomic factor
links the short-rate spread of 5corr to the short-rate spreads of the other five
factor models since the values of AW, are exogenously given by the data of
factor wy and the previously estimated parameters of its SDE (see Section
4.7). Therefore, we expect 5corr to behave similarly to both the four factor
and the five factor models regarding the pricing of defaultable bonds. The
insample pricing errors of the rating A2 (see Table B.3) indicate that the five
factor models perform best as opposed to the four factor versions with 5corr
marking the transition between both frameworks: For short-term maturities
(3M, 6M, 1Y) almost all four factor versions (SZ4) yield better results than
the five factor models with 5corr even being the worst of all. For the matur-
ities from 2 years to 25 years the five factor models including 5corr take on
the leading position. Only for long-term maturities (20Y, 25Y) 5corr gets in
line with the four factor models at the end of the ranking. Except for short
maturities the composite indices (CILI, CICI) tend to be the best four factor
versions. As predicted, the performance of SZ5u is similar to the four factor
version with GDPr since both are based on the same macroeconomic factor
and the same set-up for the short-rate spread s. If we take a look at the
averages over all maturities for rating A2 in Table B.1, we see the dominat-
ing role of the five factor frameworks over the four factor ones whose best
insample representatives seems to be the composite indices CILI and CICI.
Within the five factor framework the models which are based on the infla-
tion short rate tend to be the best. For the credit spreads rated BBB1 (see
Table B.4) we get a similar picture since the five factor versions are among
the best ones for the maturities from 2 years to 25 years with 5corr being
the exception as before for long-term maturities. Especially the model based
on the incorporation of an inflation short rate takes on the majority of the
top positions. As in the case of the A2 rated credit spreads, almost all four
factor versions outperform the models with an additional factor for short-
term maturities. The means over all maturities, respectively the ones from
1 to 10 years, also indicate the dominance of the five factor frameworks and
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the composite indices being the best four factor ones (see Table B.1). The
out-of-sample pricing errors for credit spreads rated A2 and BBB1 show that
on average the totality of the five factor versions performs better than the
four factor ones but there are exceptions like CPI, CICI and CILI for rating
A2 and Prod, CICI and CILI for rating BBB1 (see Table B.1). Considering
the absolute deviations for every single maturity shows that the five factor
models are always under the best models for maturities longer than one year.
But as before there are four factor versions like CILI, CICI, Prod, CPI and
GDPr as well as the special five factor cases Hcorr and SZ5u, whose credit
spread set-up is similar - respectively equal - to the four factor case, which
also yield top positions for several maturities (see Tables B.3 and B.4).
Altogether, the results for credit spreads confirm that the introduction of
an additional factor improves the pricing power of our framework. An al-
ternative to an additional factor in the short-rate spread s seems to be the
incorporation of the diffusion terms of all factors influencing the short-rate
spread, as it is done in 5corr. But since the differences in the pricing errors
are small, it is difficult to determine the best model within the generalized
framework as well as within the SZ4 framework.

Absolute Deviations: Summary

Taking also into account the results for non-defaultable interest rates, we can
conclude that incorporating an additional factor yields promising results. But
since it is difficult to choose the best macroeconomic factor we propose to
use one observable macroeconomic factor w; which would probably be rep-
resented best by the real gross domestic product (GDPr) or the composite
index of leading indicators (CILI). Our choice is based on the promising re-
sults obtained by all models that are based on the former factor (SZ4 with
GDPr, 5corr, SZ5u, INF, INFcorr) and the fact that the four factor version
(SZ4) using the composite index always yielded good results as opposed to
the other tested macroeconomic factors. For the second macroeconomic fac-
tor wy we suggest to use an unobservable macroeconomic index which only
drives the short rate r, or to filter the inflation short rate which is supposed
to influence the short rate r as well as the short-rate spread s from additional
data provided by inflation-linked bonds.

Comparing the pricing errors for the three tested categories (US Treasury
Strips, US Industrials rated A2 and BBB1) we can conclude that the riskier
the category, the closer are the results of the different models (see Table B.1):
For credit spreads rated BBB1 the average pricing errors are the smallest of
the three categories and do not differ much between the models. But the
average pricing errors become already bigger for credit spreads rated A2 in-
dicating that there are influences which cannot be captured by one or two
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macroeconomic factors. The pricing errors of the interest rates finally display
the importance of the right choice for the macroeconomic factor as well as
the model set-up since there are big differences between the insample and
out-of-sample performances of the different factors.

Linear Regression: Market price versus model implied price
As a further quantitative measure we apply the linear regression model

PMarket@’T) _ ﬁO + ﬂIPMOdel(t,T) +e €~ N(O,U?) 1.1.d

where PMarket denotes the market price and P*°%! the corresponding model
price of non-defaultable zero rates respectively defaultable credit spreads.
For good working models we expect the regression parameters (3, and (3; to
be near 0 and 1 and the confidence intervals to be more dense. Tables B.5
to B.16 contain the values of R? and the 95%-confidence intervals of the dif-
ferent models for all given maturities.

Linear Regression: Non-defaultable bond prices

For non-defaultable zero rates we observe the same ranking and findings
within the five factor frameworks as before. The SZ5u and the 5corr models
yield the best R? values among the five factor models but have some prob-
lems for the two longest maturities (20Y, 25Y) where the R? decreases and (3,
as well as 1 take on values significantly different from 0 and 1, respectively.
The SZ5 model with two observable macroeconomic processes reaches high
R? and dense intervals for short-term maturities 3M, 6M and 1Y. But re-
sults for the following maturities reflect the problems of this model since the
values of R? are decreasing and the confidence intervals widen considerably
and depart of the expected values, especially for the longer maturities. The
two versions of the real and inflation short-rate model (INF, INFcorr), which
only differ by the assumptions about py,w,, can be grouped in between the
other five factor models regarding their results for non-defaultable zero rates.
For the majority of the maturities they yield better results than SZ5 but per-
form worse than SZ5u and 5corr. As observed for the other models, R? and
especially the confidence intervals for longer maturities worsen. Within the
four factor models the results do not differ very much. These models exhibit
the same problems as the five factor models for longer maturities, namely
lower R?, wider confidence intervals and 3;, i = 0, 1, which back away from
their expected values. In comparison to the five factor models we see that
all four factor models are outperformed by SZ5u and 5corr but obtain bet-
ter results than SZ5 apart from the short-term maturities. A differentiation
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between the four factor models and the real and inflation short-rate models
(INF, INFcorr) is not possible because the results do not favour any versions.

Linear Regression: Defaultable bond prices

The regressions for credit spreads yield results which are very similar across
all models. Here, we omit the model SZ5u since its short-rate spread is mod-
elled according to the short-rate spread in the SZ4 framework. The fifth
factor within SZ5u only appears in the short rate r leaving the short-rate
spread as in SZ4. The real and inflation short-rate models (INF, INFcorr)
obtain better results than the SZ5 framework for longer maturities. Simi-
lar to the non-defaultable case the confidence intervals widen for short-term
and long-term maturities but in contrast to the non-defaultable results the
confidence intervals stay close around the expected values of 0 and 1. How-
ever, this does not hold for the 5corr model where the confidence intervals of
0y for long-term maturities are far away from 1 although they yield better
values of R? as e.g. SZ5 and the four factor models. Additionally, the R? of
Scorr for short-term maturities are the worst across all models emphasizing
the above mentioned problems. As before, the results within the four factor
models do not differ very much. There are maturities or even rating classes
for which one four factor model outperforms the others but it is impossible
to single out one model as the best. Compared to the five factor models we
conclude that for mid-term maturities there is almost no difference. The four
factor models yield slightly better results for short-term maturities but are
outperformed by the five factor models except bcorr for long-term maturities.
Here, the R? are lower and the confidence intervals are considerably wider
than those of the five factor models. Especially the confidence intervals for
0, are often placed far away from 1, e.g. for the four factor versions with
GDPn, Prod and IP. The only exceptions at the long end are the composite
indices CILI and CICI whose confidence intervalls and R? differ distinctively
from the other four factor versions and perform similar or even better, e.g.
CICI, than several five factor models.

Linear Regression: Summary

Summarizing these results we conclude that the incorporation of an addi-
tional factor does improve the short rate r if this factor is unobservable. In
case of the short-rate spread s the results are too close across all presented
models to give a distinct answer. It seems that a second observable factor as
in SZ5 and additionally included diffusion terms as in bcorr do not improve
the performance and do not solve the problems arising for short and long
maturities; on the contrary, they tend to further intensify those effects (e.g.
5Scorr).
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Akaike Information Criterion: Best fit versus minimum number
of parameters

A model’s ability to fit the data is generally increased by including an addi-
tional factor. In order to justify the additional factors we compare by means
of the Akaike Information Criterion (AIC, see Akaike (1974)) the five factor
models with the four factor models which are considered as a reduced form
of the previous mentioned ones. The AIC which is defined as

AIC =2k —2InL

with k& being the number of parameters and L the likelihood function, links
the number of parameters with the fitting ability of a given model. Hence, its
aim is to find a model which explains best the data using a minimum number
of parameters at the same time. By applying the AIC we want to verify that
the improvement of the model’s performance does not only depend on the
increase of factors.

Table 4.11 shows the loglikelihoods for the different models. The loglikeli-
hoods of the five factor models exceed the loglikelihoods of all four factor
models even after controlling for the additional factors. There is just one ex-
ception for the non-defaultable case, namely the model of Schmid and Zagst
(SZ5) where two given macroeconomic factors are incorporated. It yields a
loglikelihood which has the same order of magnitude as the loglikelihoods of
the four factor models. Even the loglikelihoods for credit spreads (A2, BBB1)
suggest that Scorr takes on a position between the four and five factor mod-
els. Although its short-rate spread s involves as many factors as the models
of the SZ4 framework, its loglikelihood yields higher values which, however,
do not reach the level of the other five factor models. The loglikelihoods of
the other special case SZ5u illustrate the fact that its credit spreads have
the same set-up as the SZ4 framework, i.e. for rating A2 and BBB1 SZb5u
ranks between the four factor versions with input Prod and GDPr, although
its loglikelihood for the non-defaultable case is the best of all models. The
fitting ability of the composite indices of several macroeconomic factors, CILI
and CICI, tend to be better than the ability of one single factor and come
extremely close to the results of 5corr.

Summarizing the outcome of the Akaike Information Criterion we infer that
the five factor models can be considered better models than the four factor
versions, although a second observable macroeconomic factor as in SZ5 con-
tinues to be questionable.
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GDPn | GDPr | CPI IP Prod CILI
TS 8919 | 8832 | 9119 | 8719 | 9001 9143
A2 11150 | 12991 | 11471 | 11678 | 12476 | 13278

BBB1 || 12655 | 13202 | 11955 | 12396 | 13270 | 13413

CICI | SZ5u | SZ5 | bcorr | INF | INFcorr
TS 9146 | 10885 | 8745 | 10689 - -
A2 13141 | 12672 | 13748 | 13330 | 13826 | 13896

BBB1 || 13408 | 13125 | 14054 | 13620 | 14555 14746

Table 4.11: Loglikelihoods of the zero rate and credit spread estimations for
the different models. The real and inflation short-rate framework (INF, INF-
corr) is excluded for the non-defaultable case since its short rate is estimated
in two steps and therefore the comparison of its loglikelihoods is not ap-
propriate. The row labeled "TS” shows the results for the non-defaultable
interest rates. The rows marked ” A2” and ”BBB1” contain the loglikelihoods
for credit spreads rated A2 and BBB1.

Standardized Innovations: Independent, normally distributed ran-
dom variables

Finally, the standardized innovations stemming from the Kalman filter have
to be tested for being i.i.d. random variables (see e.g. Harvey (1989), Schmid
(2002)). Additionally, the state space model requires the standardized inno-
vations to be normally distributed with mean 0. Therefore, we apply the
Jarque-Bera test (see Jarque & Bera (1987)) for normal distribution and the
Ljung-Box test (see Ljung & Box (1978)) against autocorrelation (both pro-
vided by S-PLUS) in order to verify these assumptions. Furthermore, we use
a test for homoscedasticity described by Harvey (1981) and a t-test for the
hypothesis regarding a mean of zero. We apply these tests for every maturity
and every model. The results are presented in the Appendix, Tables B.17 to
B.28.

For the short-rate models™"" we cannot reject the hypotheses of homoscedas-
ticity and of normal distribution for almost all maturities throughout all
frameworks, whereas the hypothesis concerning the mean can only be ac-
cepted for the five factor frameworks. Unfortunately, we must reject the
hypothesis of no autocorrelation for every framework.

XVI

XVIWe do not include the real and inflation short-rate model (INF, INFcorr) in this
analysis since the short rate within this framework is built of two independent processes
whose parameters are estimated seperately. Thus, there are no standardized innovations
for the short rate but for the real short rate and the inflation short rate. Meyer (2005)
and Hagedorn (2005) analyzed those standardized innovations separately.
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The tests of the standardized innovations received from credit spreads favour
the real and inflation short-rate framework (INF, INFcorr) over SZ5 and 5corr
since the hypotheses of homoscedasticity, of normal distribution and of a zero
mean cannot be rejected for the majority of maturities. However, within the
SZ5 and 5Hcorr models we must often reject the hypotheses of no autocor-
relation, of homoscedasticity and of zero mean. In contrast to the short-
rate models, the hypothesis of no autocorrelation cannot always be rejected
throughout all frameworks. Analogous to previous findings, the results of the
5corr model resemble those of the four factor models, e.g. CILI, CICI, GDPr,
GDPn and CPI, as well as the results of the five factor models, e.g. SZ5. De-
pending on the macroeconomic factor, the four factor models yield different
results. The performance of the composite indices CILI and CICI are similar
to the performances of five factor models like INF and INFcorr. The Tables
B.22 and B.23 in the Appendix display more entries, especially for the cat-
egories normal distribution (ND), homoscedasticity (HS) and mean of zero
(MO), than the tables of other SZ4 versions indicating that these hypotheses
cannot be rejected for more maturities. The hypotheses of no autocorrelation
and of a mean of zero must still be rejected for many SZ4 cases but there
are exceptions, e.g. the models based on the gross domestic product (GDPn,
GDPr) and the composite indices (CILI, CICI). For the frameworks depend-
ing on the productivity (Prod) and the industrial production (IP) even the
hypotheses of homoscedasticity and of normal distribution must be rejected
for many maturities.

Altogether, we can conclude that the assumptions regarding the standardized
innovations are fulfilled sufficiently throughout all models whereas the five
factor frameworks tend to yield more stable results with respect to the short-
rate models. If we additionally consider the tests based on credit spreads,
the real and inflation short-rate models (INF, INFcorr) seem to reach the
most satisfactory results within the five factor models. Within the four fac-
tor frameworks the composite indices CILI and CICI tend to work best.

Conclusion

The pricing errors as well as the various tests lead us to the conclusion that
the incorporation of an additional factor does indeed improve the perfor-
mance of our framework. We showed that the better ability to fit market
prices is not only due to the increased number of parameters. Furthermore,
an additional factor seems to stabilize the estimation procedure as suggested
by the results of the tests of the standardized innovations.
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Within our different five factor frameworks the models with a macroeconomic
factor which is not observable (SZu, 5corr, INF, INFcorr) yield the most
promising results. Especially the performance of the short rate r improves
by this additional factor (see SZ5u and 5corr). However, the results for the
short-rate spread s do not clearly favour five factor models over four factor
ones, but they do suggest that introducing a second observable macroeco-
nomic factor (SZ5) and correlated diffusion terms (5corr) do not improve the
models’ overall performance.

We tested several macroeconomic fundamentals in order to get a proper
choice for the economic factor. The results indicate that all tested vari-
ables do a good job in explaining non-defaultable and defaultable zero rates
but altogether the composite indices of leading (CILI) and coincident indic-
ators (CICI) as well as the gross domestic product (GDPn, GDPr) seem to
be plausible representatives for the state of an economy.

Dependent on the purpose, we recommend the usage of the SZ5u or 5corr
frameworks if the main intension lies on the pricing of non-defaultable and
defaultable interest-rate products. However, if the focus is mainly on the
pricing of defaultable assets, the choice of the four factor framework SZ4
would reduce the complexity of the calculations and would still yield satis-
fying results when using one of the composite indices (CILI, CICI) or the
domestic product (GDPn, GDPr). For pricing inflation-linked products, we
suggest the usage of the real and inflation short-rate model (INF, INFcorr).
Since the results of INF and INFcorr only differ slightly, we favour the set-up
INF because of its reduced number of parameters and therefore its reduced
complexity. Although, we found the real and inflation short-rate model to
be one of the best, we do not recommend it for pricing purposes in general
since the availability of inflation-linked bonds for the calibration procedure
is limited. Due to these findings, we continue in the next chapter to develop
the pricing formulas for our general set-up of Section 4.1 such that the results
will hold for all models discussed in this chapter. In order to get a better
insight into the proposed dynamics of Section 5.4.2 and pricing formulas of
Sections 5.5 and 5.6, we will use the four factor model SZ4 because of its re-
duced complexity and its good performance. But all results obtained for the
S7Z4 framework can be derived analogously for all other frameworks within
this thesis.

Our findings are in line with the literature. First, the fact that the perfect
macroeconomic factor is not easy to get is indicated by Figlewski et al. (2012)
who try to find "stylized facts” about the importance of specific macro-factors
and their impact on credit risk. Though there is an increase in explanatory
power by adding macroeconomic factors, it is difficult to single out factors
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which dominate alternative ones. Furthermore, their work shows that the
estimated relationships are not stable over time and that the coefficients
and the signs of the macroeconomic factors vary widely depending on the
additionally included factors. This suggests that there is a considerable cor-
relation among the factors and that their inherent information about credit
risk overlap. Second, the closeness of the four and five factor models in pric-
ing credit spreads can be explained by the work of Collin-Dufresne, Goldstein
& Martin (2001). Using a regression analysis they conclude that only one
quarter of the variation in credit spreads can be explained by economic fac-
tors as e.g. the return on S&P and the change in its implied volatility (VIX),
whereas the remaining residuals are highly cross-correlated and are mostly
driven by a common factor. Hence, they suggest that this common factor
is unlikely a firm-specific but a systematic one. Therefore, they redo the re-
gression by incorporating several proxies for this macro factor and find that
this only adds limited extra explanatory power. They conclude that there is
an aggregate factor which is common to all corporate bonds and which seems
to be more important in explaining credit spread changes than firm-specific
factors. So, our incorporation of one macroeconomic factor like GDP or es-
pecially one of the composite indices in addition to an unobservable factor
as an aggregation of firm-specific and/or systematic information, is justified
by their findings. Furthermore, the disappointing results of the SZ5 model,
which uses two observable factors, and the promising results obtained by
the INF and INFcorr frameworks, which are based on a second unobservable
factor entering the short-rate spread, are along the line with the study of
Collin-Dufresne et al. (2001).

However, two developments which took place in the markets during the first
decade of the new millennium are strongly related to the topic of determi-
nants of credit spread and need to be stressed: the recent financial crisis and
the growing importance of credit default swaps (CDS). While the majority
of studies about determinants of credit spreads rely on bond data before
the crisis, newer studies are based on spreads of credit default swaps also
incorporating post-crisis data sets. This leaves us wondering whether the
previously found determinants still influence credit spreads and whether the
results obtained for bond spreads are still valid for CDS spreads.

Apart from the fact that CDS spreads already come as a spread and do not
need the specification of a benchmark risk-free curve as it is required for
extracting the credit spread out of bond data, CDS spreads also appear to
reflect changes in credit risk more efficiently (cf. studies analyzing the re-
lationship between CDS spreads and rating changes, e.g. Hull, Predescu &
White (2004), Di Cesare (2005)). Blanco, Brennan & Marsh (2005) claim
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that CDS spreads reflect more quickly changes in the underlying’s risk than
bond spreads do. Further, Blanco et al. (2005) provide evidence that CDS
as well as bond markets work quite well in the long run, but in the short run
CDS spreads react more timely. They also study the determinants of changes
in credit spreads and CDS spreads and conclude that analogous to the study
of Collin-Dufresne et al. (2001) a large part of the variation of both spreads
cannot be explained and furthermore, that the "first principal component
explains a large and essentially identical proportion of the variation of the
residuals”.

Ericsson, Jacobs & Oviedo (2009) analyze by means of a linear regression
approach the dependence of CDS premia and variables suggested by eco-
nomic theory for the period of 1999 until 2002. Their findings are that the
estimated coefficients are consistent with theory and the explanatory power
is higher than in existing works on corporate bond spreads, also emphasized
by a limited evidence for a residual common factor. This indicates that the
variables suggested by economic theory are important for describing the pric-
ing of such instruments. Further, they argue by the similarity of bond and
CDS cashflows that occur until (bond coupons vs. CDS spreads) - respec-
tively at (loss in bond vs. replacement of loss for CDS buyer) - default that
the implied relationship between theoretical factors and spreads still hold.
Di Cesare & Guazzarotti (2010) study the effects of the financial crisis on
determinants of CDS spread changes for the period from January 2002 until
March 2009. They confirm that the factors identified by the literature have
maintained their importance by showing that the models explain the changes
almost the same way before and during the crisis. Further, they claim that
the CDS spreads were moving increasingly together during the crisis, indi-
cating the existence of a common factor that still remains unexplained.
Taking this altogether, we are confident that our findings will also hold for
the recent time period and for CDS spreads, respectively credit derivatives
based on CDS in general. Therefore, we will develop in the next chapter
a consistent pricing framework for derivatives written on CDS by deriving
dynamics of the CDS spread that reflect the dependence on firm-specific and
macroeconomic risk factors.



Chapter 5

Pricing Credit Derivatives

So far, the bond market was assumed to be the best place to monitor the
creditworthiness of a borrower. But in the last decade, the market for credit
derivatives has grown substantially. Credit derivatives allow investors to buy
or sell easily the credit risk of a certain reference entity without being ex-
posed to its default risk, e.g. not owning the defaultable bond of a company
on which the derivative is written. Therefore, credit derivatives are used for
hedging against credit risk of a certain reference entity as well as for pure
speculation, e.g. short-selling credit risk. The most popular credit derivative
is the Credit Default Swap (CDS) which works like an insurance. The buyer
of a CDS (the protection buyer) makes regular premium payments to the
protection seller in order to be compensated if a certain credit event (de-
fault) occurs. Usually, credit events that trigger such protection payments
are bankruptcy, failure to pay or restructuring.

Antes et al. (2009) determine closed-form solutions for credit default options
and credit default swaps for the extended Schmid-Zagst model which we
study in Chapter 4 (see Model 4.4). In their work, the four factors of the
SZ4 model are calibrated to historical data of the period 2002-2008 and fitted
to market prices of credit default swaps. Antes et al. (2009) show that the
model performs well even during the crisis of 2007/2008 and is capable of
displaying the latest market signals, e.g. an increase of credit risk.

In this chapter we will build on the work of Antes et al. (2009) and rewrite the
pricing of credit default options and swaps for our general five factor frame-
work that was introduced in Section 4.1 of Chapter 4 and from which all
previously discussed models were derived (cf. Sections 4.2 - 4.5). Therefore,
if not stated otherwise all results refer to the pricing framework of Section
4.1. Further, we extend it to more complex derivatives like Credit Default
Swaptions (see Section 5.5) and Constant Maturity Credit Default Swaps
(see Section 5.6) which both rely on the future spread of a CDS. Therefore,
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we introduce in Section 5.4 so-called Forward Credit Default Swaps for dif-
ferent assumptions concerning the proctection payments. Further, we derive
the dynamics of the FCDS spread by means of its closed-form solution while
keeping the link to macroeconomic and firm-specific factors. Our procedure
ensures that we are consistent with our defaultable term structure model
of Chapter 4 in addition to being able to price analytically complex credit
derivatives.

During the credit crisis, investors began to worry about the creditworthiness
of their counterparties as well as the missing standardization of credit deriva-
tives, making it impossible to compare contracts. Especially for CDS, the
tailor-made contracts lead to spreads that are not comparable. Therefore,
a new quoting mechanism was introduced in 2009 (see e.g. Markit (2009a))
which proposes to only use a constant set of spreads for pricing CDS and
exchanging an upfront payment instead. We outline in Section 5.5.1 how the
pricing of a Credit Default Swaption could be amended in order to account
for this standardization. In addition, we show how to include the creditwor-
thiness of the derivative’s counterparty in the derivation of a CDS spread
(see Subsection 5.4.3).

In the following three sections, we introduce the necessary building terms for
valuing CDS. The definitions, theorems and propositions of these subsections
are cited or inspired by the work of Schmid (2002) and Antes et al. (2009).

In the previous chapter the short-rate spread s was used to price default-
able zero-coupon bonds. In this chapter, we want to price derivatives whose
underlying is such a defaultable zero-coupon bond or is related to one. But,
since the recovery rate of such a derivative deviates from the recovery rate of
the underlying, we need a short-rate spread s**"° which is of the same quality
as the short-rate spread s but with a recovery of zero.

Definition 5.1

The zero-recovery short-rate spread s*™°

15 implicitely given by
(1—2(t))-s*°(t) = s(t) ,0<t <T",

where s(t) is the short-rate spread process and z(t) is the recovery-rate process
with 0 < z(t) < 1.

By introducing the zero-recovery short-rate spread, we are now able to price
under a zero-recovery assumption. As opposed to reduced-form frameworks
we do not rely on a non-negative intensity for pricing defaultable contingent
claims. Instead our model as well as the models in e.g. Antes et al. (2009)
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and Schmid (2004) are based on a defaultable money-market account, i.e.

t
Fﬁ@)z(F+ié(zU)—lyMun)eﬁrwﬂmme

where the short-rate spread s is not necessarily non-negative.

Proposition 5.2

Let Y be a Fr—measurable random variable with Eg [|Y']"] < oo for some
q > 1. Under the zero-recovery assumption, i.e. under the assumption that
the contingent claim is knocked out at default of the reference credit asset,
and with the stochastic processes specified for r,wi,ws, s, u, and s*°°, the
price process, Vi :

L@ﬂw:E@eﬁﬁmﬂYan‘@yogt<T{

1S given by
Vir (t)=L(t)-Vr(t),

with L(t) = Lipasyy. The adapted continuous process Vr is defined by

Vi (t) = Eg

QF?HWW#W@WY‘f%’O§t<T

and Vi (t) = 0 for t > T. This equation has a unique solution in the space
consisting of every semimartingale, J, such that Eg [sup, |J;|"] < oo for some
qg > 1.

Proof:

See Proposition 6.4.1 in Schmid (2004), page 230, where F; needs to be re-
placed by G, in order to get the result under the enlarged filtration G. Using
the martingale invariance property (see page 31 in Chapter 4) yields the
stated result. U

Remark:

The above Proposition holds for our general framework of Section 4.1 as well
as for all models derived from it (cf. Sections 4.2 - 4.5), since in all set-ups
the processes r and s are solutions of linear stochastic differential equations
or are an affine linear function of such solutions (cf. the short-rate r in Sec-
tion 4.4 where the short rate is the sum of the inflation short rate and the
real short rate). Therefore, r and s fulfill the technical requirements needed
for Proposition 5.2.
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In the following, we assume the recovery rate z to be a known constant.
With this assumption, we are able to state the dynamics for s**"° as well as
the price of a defaultable zero-recovery zero-coupon bond.

Proposition 5.3
Let z(t) = z be a constant for all 0 < t < T*, then the SDE for the zero-
recovery short-rate spread under the equivalent martingale measure Q) is given

by
dSZeTO(t) = [Oszero + bszerouu(t) — bszerowl w1 (t) — bszerowg'l,UQ (t) — dsszero(t)]dt
- eero 1= PR = Py — D@V (8) + Tasero ps W (1)

—l— O'Szero psw1 dle (t) + Uszero psw2 dng (t) 3

- 0 b _ bswl _ bsw2 o
with GSZem = ﬁ, bszerou = ﬁuz, bszerowl =1 bszerow2 =1 Ogzero = ﬁ

Furthermore, the price of a zero-recovery zero-coupon bond is given by

Pd,Z@T‘O (t T) o eAd’ZETO(t,T)7Bd’ZETO(t,T)chd’zero (t7T)8267‘07Dd,267‘0 (t,T)u
, =

) eiElli’ze’ro(th)wl 7E(27l,zer0(t’T)w2

where the functions A%< (t,T), B&#ro(t,T), C*ero(t,T), D% (t,T),
E&20 (4, T and ES*™(t,T) have the same structure as in Theorem 4.3 with
Os, Dsus bsw,, bsw, and os substituted by Ogzero, bgzeroy, bgzeroy,, bgzeroy, and

O-Sze’ro .

Proof:
Analogously to the proof of Theorem 4.3. O

5.1 Survival Probability

With s*¢° being an approximation of the intensity, it holds

QT >t|F) = EglL(t)|F]
- ft s¥ero(l)dl
— e 0

Hence the survival probability within our general framework is as follows.
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Theorem 5.4 (Survival Probability)
For 0 < t < T the survival probability up to time T conditioned on the
information of time t is:

L(t)- P°(t,T): = Eg[L(T)|G]

T s=eroyal
e t |ft]

— L(t) X eAS(lt,T)_CS(,57T)Szero_[)s(zt,T)u—ElS(t,T)wl_EQS(7577~)w2

= L(t)- P(t, T, 5°°, u, wy, wy)

= L(t)-Eg

with
1 R
CS t T — JE— 1 _ _as(T—t)
( ’ ) ds ( e )7
bszcrou 1 — 76"“(T7t) 7du(T7t) _ *(Als(T*t)
DY, T) = = ( - T —— )
as Ay Ay — Ag
Ef(t,T) _ _bszi“’wl <1 _ etawl(T—t) N e—fml(TA—t) _ (f—as(:r—t)) |
Qg Aoy Aoy — Qg
Eég t.T) = _bszimw2 <1 _ etﬁwz(T—t) . e—de(TA—t) _ (f—as(:r_t)) |
ag CLwQ an — Qg
and
S Tr1 s o 1 5, g s 1 5, )
AS(T) = / 505 (O3 T))? + 502D AT + 503, (BY (1, T))
t

- %0i2(E§ (1, T))? + Cw, O Proyu B (1, TVES (1, T)

+ 00 geero ps O (1L, TYDP (1, T) 4 0y Oszero psus, C2 (1, T)EZ (1, T)
+ Gy Tgrer (pswl Puwrwy + Prwgr /1 — ngm) CS(,T)ES(I,T)
—Ogoere C3 (1, T) — 0,D°(1,T) — 0, ES (1, T) — 0, E5 (1,T) | dl.

The proof of this Theorem follows directly from Theorem 4.3 by setting all
terms related to r equal to zero and replacing all terms indexed by s with
equivalent terms indexed by s*"°.

5.2 Default Digital Put Option

Credit derivatives are mainly dependent on the time of default (7¢) and
payments that are triggered by the default event. A simple credit derivative
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pays a fixed payoff that is due on the default of a reference entity.

Definition 5.5
A default digital put option pays a fived payoff p at the time of default (T?)
of a reference credit asset.

Theorem 5.6
The time t price of the default digital put option is given by

T
E@ {/ P s r(l)dldH (u) gt} — I (t) p- V;;lp (t,T)
t
with
T U
Vi, T) = Eg { / e RO (1) du f}
t
T u
_ /t E@ |:€7 ft (r()+s (l))dlszero (U)’ ft] du.
Proof:

See page 243 in Schmid (2004) where F; needs to be replaced by G, in order
to get the result under the enlarged filtration G. The stated result follows
from using the martingale invariance property (see page 31 in Chapter 4). [

Remark:

Analogously to Proposition 5.2, the above result also holds for our general
framework of Section 4.1 because of r and s**"° being solutions of linear
stochastic differential equations. Therefore, the necessary technical condi-
tions hold for applying Corollary 6.2.1 in Schmid (2004) and for interchang-
ing expectation and integration.

In order to calculate the expected value we need the following theorem.
Theorem 5.7

U(T’, Szero, w, Wy, W, t, T) pp— ]Eé |:€7 ftT(T(l)Jrszem(l))dlszero (T)‘ —E:|
— Pd,zero(t7 T)
(F(t,T)+ H(t, T)s*™(t) + I(t, T)u(t)
+ Jl (t, T)’LUl (t) + JQ(t, T)wg(t))
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with
HtT) = e @0,

—as(T—t) _ =y (T—t)
Jl(t,T) = bszerowl . ¢ €

8o — Gy :
—as(T—t) __ ,—Guwy(T—1)
€ € 2
J t, T — bszerow N ~ ~ 9
2( ) 2 Gy — gy
—as(T—t) _ ,—au(T—t)
I(t,T) == —bszerou : ¢ ~ ? I
Qs — Gy
1
F(t, T) _ _5 ((O_Szewcval,zeTO(t7 T))2 + (O_uDd,zer0<t7 T))Z)

+0w1 ’ (Eil,zem(t’ T) - El (t’ T)) + 9w2 ' (Eg,zem(t’ T) - EQ(tv T))

+8uDd,zero (t, T) + eszem C«d,zero (t, T)
T

o2 EP(L, T (1L, T) + 02, By* (1, T) Jo (1, T)dl

T

Owy Ows Pwywy (Efﬂzem(l’ T) ‘]2([7 T) + Eg7zero(l7 T) Ji (l’ T>>dl

N

Oy, OpPrwy BEZ(1,T) Jy (1, T)dl

T O (Prun Punws + Pruws \/ 1- p%ulwg)Bd7zerO(lu T)Jo(1, T)dl

Ogeero Oy (CH* (L, T)I(1,T) + D¥*°(1, TYH (1, T))dl

N

N

S

O geero O, Pswy (ET*°(L, TYH (I, T) + C4*r°(1, T)Jy (1, T))dl

S

T szero O ( Druwy Pswy + Prwg Pswy ) B (L, TYH (1, T)dl

T

Oy O gzero <p8w1 Pwiws + Psws \/ 1- 10121}1’1,U2>(Cd7ze7‘0<l7 T) JQ(lv T)
+EF*(, TYH(I,T))dl.

e S S S S S

The proof of this Theorem can be found in Appendix C on page 261.



96 CHAPTER 5. PRICING CREDIT DERIVATIVES

5.3 Default Put Option

Instead of just paying a fixed amount at default, a Default Put Option makes
a payment at the time of default (T¢) that is linked to the value of the
reference asset at T%.

Definition 5.8
A default put on a zero-coupon bond pays at the time of default (T¢) of the
bond a payoff which depends on the underlying’s value at default.

Theorem 5.9
Fort <T <T* the price of a default put with maturity T whose underlying
reference asset is a zero-coupon bond maturing at T™ is given by

Eq [ / ' e @1 — Z(1))dH (1) ‘ gt]

= L(t)- ViRt T,T7)
= L(t)- (VyiP(t,T) = P&, T") + P (¢, T,T7))

where the payoff takes place at default (T¢) by replacement to the difference
of par, i.e. the difference between the face value and the market value Z at
default. P%*(t,T,T*) is derived in Proposition 5.10.

Proof:

The proof is given by Antes et al. (2009). For a better understanding, we
will state the proof as well.

Let Z be the value of the zero-coupon bond upon default, then we obtain

/T e fir@de (1 7(1))dH (1) ' gt}

E, [
t
-
= L)V (t,T) - Eg [ / e—ff“z)de(Z)dH(Z)’ gt]
t

+E [e‘ftTT(r)d‘”L(T) /

T

T*

e~ Jrr@d 7V (1) ’ gt}
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= L(t)- (V% (t,T) — PUt, T%) + P™°(t, 7))
+EQ e‘ftTr(a:)d:cL<T)]E@ l/ e—f%r(m)dmz(l)dH(l)‘ gT] ‘ gt}

T

+ E -~ -6_ ftT T(z)de(T>E@ [6_ fjj:* r(.t)dzL(T*)

o) 5]

'e—ftT’"(x)de(T)]E@ [e_fz?* T(J;)de(T*) gT] ’ gt}

= L(t)- (VAP(t,T) — P4t T*) + P, T"))
+Eg [ K@ LT PYT T | 6

—67 ftT r(z)dmL(T)Pd,zero (T, T*)

g/
Pr(ﬁ.SQ L(t . (Vﬁjp(t;T) _ Pd(t,T*) + Pd,zero(t,T*))
e~ Ji r@+s*T@)dw pd( T %) J—“J

-6_ ftT (r(m)+sz"°(m))dxpd,zero (T7 T*)

]-‘t]
= L(t)- (Vd‘“_"(t,T) — PU(t,T*))

b LR, [~ i taresre@)s pd ey ft}
= L(t)- (tilg;)(taT) — PYt, T*) 4+ P> (t,T,T%))
= L(t)- V%, T,T%),

with P (t, T,T%) := Bg | ™l @ @de pd( 1)
the following proposition. O

.7-}] which is given in

Proposition 5.10

Fort < T
PY(t,T,T) = Eg|e [ r@) s e @de pd(p 7y | }
= PY(,T, T, r(t), s(t), u(t), w (t), wy(t))
1S given by
Pd7*<t T T*) = eAdy*(thvT*)_Bd’*(t,T,T*)T—Cd’*(t7T’T*)S_Dd,*(t7T’T*)u

e BT wi - By (4T ws
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with

B (¢, T, T*) = B(t,T%),

i 1
C(t, T, T") = e’“S(T’t)Cd(T,T*)—Fl—
—Z

CYt,T),

i 1
DY (t, T, T*) = e*au<T*t>Dd(T,T*)+1—Dd(t,T)
—Z

N

—as(T—t) _ ,—au(T—t)
_bsqu(Ta T*) (e ? ) )
Qg — Uy

E{*(t,T,T%)
= e TR T%)
by, (1 — ey (T—1)

Qy

_|_

+ 7o) et (0 — e_&T(T—t))
6 T

Gy Qyyy — Ay

—au(T—t) _ =, (T—1)
by, CUT, T7) (6 - )

ag — awl

+1T1Z(Ef(t,T) ~ Ey(t,T)),

E3*(t,T,T")
= e teUEY(T,TY)
Ber (1 _ efde(Tft) an (T*—T) ef&wz(Tft) o G@T(Tt))
+ e\~

ar Aoy Qopy — Ay

_|_

—as(T—t) _ =ty (T—1)
4 by, CUT, T¥) <e I )
ag — awz

+1L(Eg(t,T) —~ By(t,T)),
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and
AS* (¢, T, T)
T
1
= AUTT) + / S(HBY T T))? + 02O (1T, T))?
t

+ o2 (DML, T, T))? + 02, (EP*(1, T, T*))? + o2 (Ey™ (1, T, T*))?
+ O, Oy Provuoy B (L, T, T ES™ (1, T, T™)

+ 010w, Proy BY (L, T, TYE* (1, T, T™)

+ 030w ps O (1, T, T*) D™ (1, T, T™)

+ 050w, Psu, OV (I, T, TV ES*(1, T, T*)

+ 0r O,y (prwlpwlwg + PruwsA/ 1— pi,lwz > Bd’*(l, T, T*)Eg’*(l, T, T*)
T 050w, <psw1pw1w2 + Pswa/ 1 - p?ulwg > Cd7*(l> T, T*)Eg’*(l, T,T")

+ 0,05 (Prwn Pswy + prw2p5w2>Bd7* (I, T, T*)Cd7*(la T,T)
—0,()BY (1, T, T*) — 0,0 (1, T, T*) — 0,D* (I, T, T*)
— 0, B (1, T, T*) — 0, ES*(1, T, T*)dl.

The proof of this proposition is given in Appendix C on page 263.

5.4 Forward Credit Default Swap

Credit Default Swaps (CDS) are recently the most popular credit derivatives.
The CDS market has grown fastly during the last years due to the character-
istics of these derivatives. Although a CDS is a form of insurance, it is not
dependent on the real exposure of the underlying asset. Hence, Credit De-
fault Swaps allow to buy and sell protection without the need of holding the
respective underlying asset. Therefore, CDS are not only used for hedging
purposes but also for taking speculative positions.

Definition 5.11 (Credit Default Swap)

A Credit Default Swap (CDS) is a contract where the protection buyer pays
a reqular spread s(To, Ty, Tp,) at times T;, i = 1...m to the protection seller
as long as the reference entity has not defaulted. At default (T* < T,,) of
the reference asset, the protection seller makes a replacement payment to the
protection buyer.
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Definition 5.12 (Forward Credit Default Swap)

A Forward Credit Default Swap (FCDS) is a contract which is entered at
time t < Ty and which consists of a CDS starting in Ty with payments of
s(t, Ty, Tpn) at times T;, i = 1...m. The contract expires without any pay-
ments if there is a default before Tj.

The value of a Credit Default Swap is mainly determined by the sort of pay-
ments that are made at the time of default 7¢. Assuming that the protection
payment is linked to the value of the reference entity by replacing its differ-
ence to par at default, the price of the CDS can be derived by means of the
Default Put Option of Theorem 5.9.

Theorem 5.13
If the underlying reference asset is a zero-coupon bond with maturity T, then
fort <Ty < T, <T* the spread s(t, Ty, T,,) of the FCDS is

ViR (t, Ty, T, T)
Zﬁl Pd,zero(t’ 7‘;)

5<t7 T07 Tm) -

with V2 (t, Ty, Trn, T*) = VasP (t, Tr) = Vi (¢, To) + P4 (t, Ty, T*)— P*(t, T, T*).

Proof:
The value of the premium leg of a swap starting at Ty and ending at T, is
given by the discounted sum of swap spread payments:

m T,L-
Es sZe’ft T(l)dlL(Ti) G
i—1

m Ti .
— Y E, [e*ft Wi ()
=1

9

PT(£52 s Z L(t) . ]Eé |:e_ ftT’i T(l)+szero(l)dl ‘ E:|
=1

m

= s L(t) Y P™°(t,T))

=1

The value of the protection leg at time t equals the value of a default put
(c.f. Theorem 5.9) starting at Ty and maturing at Ty,:'

IFor Fubini’s Theorem see Duffie (1996), page 282.
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T T77L
Bg | Fr(ry) [ e et - zya)]| o

T Tm
e~ 10T () Eg {/ oIy ride g Z(l))dH(l)‘ QTO] G
To

/

~~

T L(To) VI (To T 1) with Vi1 (To ) Fro —measurable

Pro:p.5.2 L(t)Eé |:6_ ftTO r(l)+sZ€r°(l)le1€l§(T0’ ij T*)

Ft]
Ti5'

9 L(t) (E@ |:6_ff 0 r(l)_;_SZETO(l)dl(V;jp(TO’ Tm) . Pd(TQ, T*)) ) E}

FEg o IOt pl gy 7, 7)) | )

= 10 (Eg [0y, )

ft} — P, Ty, T)

#n | 7))

_ L(t) <Eé [e_ ftTO r(l)+szero(l)dlvﬁgp(TO’ Tm) ) ‘Ei| . Pd’*<t, T0> T*)

7|)

/

4 E@ [ = o r(l)+sz”°(l)dlEé [ e—]ﬁ)’" r(1)+s*ero(l)dl Pd(TW T

+ Eg [6_‘[;% rO+s*roWd pd (e

g

=Pdo* (¢, Ty T)

T’"L
— L(t) (Eé{e—.ffor(l)+sm(l)dl / E@[e’f%o r@tsTre (e gzero ) ) JTTOi|dl‘ }}}

To

T

Tm l zZero
_ L(t) <E@ |:/T e~ J; r(@)+s (a:)dxszero(l)dl ‘ f't:|

—Pd’*(t,To,T*) + Pd’*(t,Tm,T*)>

. . Tm
Fuiznz L(t)(/E@ [6_ ftlr(gp)—kSZero(z‘)dﬂcszero(l) ‘ E:| dl
To

— P (t, Ty, T*) + pd’*(t,Tm,T*))
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= L(t)(/tji[;jn@ [e— ftlT($)+526r0(x)dx8ze7“0<l) ’ j:t} dl

To
_ /E@ [6_ Ik r(a:)—i—sz”o(f)dxszem(l) ‘ ft] dl
t

— P4, Ty, T + P&*(t, Ty, T*)>

= L)V (t, T) — Vb (¢, To) — P¥(t, Ty, T*) + P (t, Ty, T™))

= The swap spread of a Forward Credit Default Swap is determined by
equating the premium leg and the protection leg:

VAP, Tn) — VasP (8, To) + P2(t, Ty, T*) — P (8, Ty, T*)
2?;1 Pd,zero(t, 772)

VA2(t, Ty, Trn, T*)

Z;’Zl pd,zero(t’ T’Z)

S(t,To, Tm) =

Proposition 5.14
The spread s(Ty, To, Trn) at Ty of a CDS contract starting in Ty with the same
characteristics as in Definition 5.12 is given by

VAP (Ty, Trn) + P (To, Ty, T*) — PU(Tp, T*)

Ty, To, ) = -
S( 0,40, ) Zi:1 Pd’zerO(T07 7—;)
Proof:
For t := Ty the spread s(t, Ty, T,,) of Theorem 5.13 simplifies to the stated
result with V5% (Ty, Ty) = 0 and P4 (Ty, Ty, T*) = P4Tp, T*). O

Alternatively, the protection payment of a Credit Default Swap can be fixed
in advance similar to a Default Digital Put Option of Theorem 5.6. For ex-

ample, it is common to assume for quoting purposes a recovery rate Z of
40% in the CDS market.
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Theorem 5.15
If the CDS pays at default a fraction of the face value, the swap spread of a
Forward Credit Default Swap simplifies to
Ve (t, Ty, Tim
S<t7TO>Tm) - 'rgTd<d - )
Zi:l P ,zero(t’ E)

with V2P

a6, 10, 1) = (1— Z)(ijljp(t, Tm)— ijlfp(t, To)) and recovery rate Z.

Proof:
The premium leg is the same as in Theorem 5.13. The protection leg is
calculated analogously to Theorem 5.13:

Ty Tm
Es [e_ft rOdLL(Ty) / o dmy @ (g _ Z)dH(l)‘ gt}

To

Tm
— (1-2)Bg | Fr0rL Ty R [ / 6f%0T<"’“”“dH(l>‘gTo}
To

/

~-
Th.5.6

L(To)-Vﬁjp(To,Tm) with Vﬁgp(To,-) Fr,—meas.

L) (1 Z)Eg [ KOO, 1) |

= ... (see Theorem 5.13)

= L(t)- (1= Z) (VP (t, T,n) — VP (t, Tp))

= L(t)- V&, (t, To, Tpn) -

By equating the two legs and solving for s(t,7y,T,,) we obtain the stated
result. O

Proposition 5.16
The spread s(Ty, To, Trn) at Ty of a CDS contract starting in Ty with the same
characteristics as in Theorem 5.15 is given by

5<T07T0,Tm) = Zzyil Pd7ze7‘O(TO’E)

Gt
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Proof:
For t := Ty the spread s(t,Tp,T,,) of Theorem 5.15 simplifies to the stated
result with ngp(TO, Ty) = 0. O

In order to calculate the protection leg of the above CDS, a numerical in-
tegration has to be performed since the function Vrﬁ;ip cannot be calculated
analytically. For an approximation, we use the so-called default bucketing
(see Brigo & Chourdakis (2009)) where we divide the period [Tp,T,] in in-
tervals [T’j,l,fj], j=1...n, Ty = To<Ty<-<T,=T, and delay the
default payment until the end of the corresponding interval. If the length of
such an interval is chosen adequately, the time gap between the times when
the payment should be due (7%) and when it is assumed to be made (7j) is
almost neglectable.

For the approximated CDS rate, we need the following proposition:

Proposition 5.17
Fort < T4

o [T @) @) p (Tj1,T5)

J

P, T, Ty) = Eg

7
= Pt Ty (), 577 (), ult), wn (), walt))
s given by
p* (t,ijl,Tj) _ eA*(t,”T“j,l,Tj)fB*(t,Tj,l,Tj)rfc*(t,@,l,fj)szemfp*(t,fj,l,ﬁ)u
e Bl (t.Tj—1,T;)wr—E5 (t,T;_1,Tj )ws
with A*, B*,C*, D*, EY, and E; given in the proof in Appendiz C.

The proof of the proposition is given in Appendix C on page 266.

The next theorem illustrates how the default bucketing leads to a simpli-
fied calculation of the FCDS spread since the terms of the Default Digital
Put Option (ijlfp ) vanish.

Theorem 5.18
If the protection is paid as a fraction of the face value as in Theorem 5.15
and the protection payments are only made at certain dates T;,j = 1...n,
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the swap spread of a Forward Credit Default Swap simplifies to
1— )" (P (t,Ti_1,T;) — P (¢, T
S(t,Tg,Tm) _ ( )Z]-l( m( Jj—1 J) ( ]))
Zi:l Pd,zero (t7 ﬂ)
VR (t, Ty, Ton)

Z
UL PRe(i.T)

with recovery rate Z.

Proof:
The premium leg is the same as in Theorem 5.13. The protection leg is given

by:
— [0 r@ydt ~ [ r(z)da
e i L(Ty) Y e 'm (1= 25 cqaciy | G

J=1

Eg

- =2 g [T - 1(E) | )

g

= (1-2) Z (s [e I e (3

Jj=1

B ]EQ {e ftTj r(x)de(fj) ‘ gt} >

n

T L0 -2)Y (B

=1

- T.
T, _ J
6_ ft j—1 T($)+Szero($)d$e ijfl T’(x)d:p

d

¢

- 002y (P T T - P )

j=1
= L()VE(t, Ty, Trn) -

By equating the two legs and solving for s(t, Ty, T},) we obtain the stated

result. O
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5.4.1 The Dynamics of the Forward Credit Default
Swap Spread

So far, we derived semi-analytical solutions for credit derivatives within our
proposed framework incorporating macroeconomic and firm-specific factors.
However, there exist credit derivatives that rely on the evolution of a CDS
spread over time or its value for a certain future time. Determining such a fu-
ture CDS spread can be time consuming as well as CPU consuming if factors
have to be simulated and numerical integrals have to be calculated for each
scenario. A popular way to overcome this is to just assume dynamics for the
CDS spread that can be easily handled, e.g. lead to closed-form solutions for
certain derivatives, or to use models that work well for interest rate deriva-
tives and adapt it to a credit risk framework (see e.g. Schoenbucher (2000)
for a LIBOR market model inspired adaption). The purpose of this section
is to derive FCDS spread dynamcis that are consistent with our framework
and that keep the link to macroeconomic and firm-specific factors.

Since all formulas are based on the generalized five factor framework of Chap-
ter 4 we introduce for the sake of convenience the following notation

dx(t) = p.(t)dt + (o )dW( )

with x € {r, u, w1, ws, s,s**"°} based on the SDE of pages 34 and 92, and
AW (t) == (AW, (1), dW, (), AWy, (t), dW, (), dW(t))'.

First, we derive the dynamcis for a FCDS that assumes a replacement to
the difference of par for the protection payment.

Theorem 5.19 B

Under the equivalent martingale measure () the dynamics of a Forward Credit
Default Swap spread determined by Theorem 5.13 evolve according to the
following stochastic differential equation:

(t TU7 )
= Nfcds(t To, Tm, T*)dt + J}Cds(t’ TQ, Tm, T*)dWr(t)
0% s (T, Ty T AW () + 0% (t, To, Ty T*) AW, (2)

(
+ O-?clds(t> 1o, T, T*)dle (t) fcds (t 1o, T, T*>dWw2( ) :
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The functions fifeas(t, To, Ty T), 0foas (s Tos Tony TF), 05 s (8, To, T, T),
0%eqs(t To, T, T), O'fcds(t To, T, T*) and U}”ﬁds(t,To,Tm,T*) are defined in
the proof.

Proof:
According to Theorem 5.13 the dynamcis of the Forward Credit Default Swap

spread are determined by !
ds (t, To, Tm)

m —1
_ (Z Pd,zero@,ffi)) -d <Vj€l5(t’T07Tm,T*>)
=1

m

-1
+ VR, Ty, T, T7) - d (Z pere(t, T;-))

=1

m —1
+d<v;’5<t,To,Tm,T*>, (Z Pd’“m(t,n>> >

=1

We obtain the following results by splitting this formula in several building
blocks.

(i)

d (i Pd,zero(t’ T;))

i=1

szero t T )

dzero t T dt_'_szero(t T)[— Bd’zeTo(t,ﬂ)dT(t)

- cd,zem( JT)ds*7(t) — DY (t, Ty)du(t) — EF*"(t, T;)duw (t)
_ Egvzem(t,:n)dm(t)} + [

Xy, Xo) = Z;”:l fot 01;(8)-02;(s)ds denotes the quadratic covariance of the processes
Xy and X with dX;(t) = p(t)dt + 3770 03 (t)dW;(t),i = 1,2.
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\

%]Dd,zero(t7 T’z) [Uz(Bd,zero(t’ 7’;))2

+ O-Ezero (Cdzero (t, E))Q + Ug(Dd,zero (t, E))Q

+ oo, (B4, T0))* + o0, (By™°(1, T;))?
d,zero d,zero

+20w10w2pw1w2E1 (t’Ti)EQ (t7Ti)

+ 200w, Pruy Bd’zem(ta Ti)Eihzem(t T;)

+ 20,00, (prw1pw1w2 + Prus /1 — /)%ulwg ) J

. Bd,zero (t, TDEéi,zero (t, Tz) =: Pxi;zero(t, Tz)

+ 2O.szem Uupsucd,zero(t’ Cn)l)d,zero(ﬁ7 E)

+ 20,0 gzero ( Pruy Pswy + Prws Psws)
Bd zero (t T. )Cd zero(t T. )

+ 20 4zero Ow, Psw, Cd zero (t T )Ed zer()(t T )

+ ZO'SzeroO'WQ (psw1 Pw1w2 + psu& \V 1 pwlwz )

L Cdzero(t T ES#ro(t, T)}

| @

. Cd,zero(t’ ,,Ti)luszero< ) Dd zero (t, l)
— B T ()] + P4, T) )| at

+

[i(szero(t T)+szerotT deerotT)luT()

i=1

pa(t) = B0 (8, T)) s, (1)

- Z Pd}zero(t’ E)Bd,zero(t, 7‘;):| (6.’T>/dW(t)

T =1

3 P, T, 1) G TV 1)
T =1

[ Z Pd,zero (t, T;)Dd,zero (t, E)_ (Eu),dW(t)

T =1

S P T B, ) (8 A (1)

S =1

D PR T B T (G ) A1)

T =1

B P (t)dt + UTZi pd.= (t)dﬁ//,«(t) + Usz,pd,z (t)dws(t)

O'uzz Pd.z (t)dﬁ//u(t) + O'%li Pz (t)dle( ) + 0—%2 P,z (t)dWw2 (t)
s, pas (Dt + (T, pas (0) AV (2)
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with
/'LZiPd’Z (t) _ ( zero Z Pd zero t T

according to the differential equations which hold for the functions
Ad,zero) Bal,zero7 Cd,zero’ Dd,zem7 Ef’zem and E2d7267“0_

Using It6 (see Theorem 2.7) with

1 ] )
g(x’t) - ; = gt(x’t) - 07 g;p(ﬁC,t> = _P7 gzx(xat) - 57

we determine the first building block:

-1

d (Z Pd,zero(t’/I%))
=1
1
— Pd zero t T
[Zz 1 Pd zero t T (Z )

1 2 . '
S — (s, pa=(t)) Oy, pa:(t)dt
2 [0, pheero(t,T,))

1
- - m * /,lle pd,z (t)
( [Zi:l ‘Pd,zero(t7 7’2)]2

1 ~ ;.
+ [Zm Pd,zero(t T)]3 : (O’ZiPd,z (t)) UZZ_ pd,z (t))dt
i=1 y L
1 ) L
— [Zm Pduze”}(t T)]2 . (UZiPd,z (t)) dW(t)
=1 y L4
1

=t s, paey- (t)dt — S P T (G5, pa(t)) AW (t)
i=1 4

+

(i)
d(P*™(t,T,T))
= PM(t, T, T*)dt + P**(t,T,T*) [-B**(t, T, T")dr(t)

— O (t, T, T*)ds(t) — DU (t, T, T*)du(t) — EX*(t, T, T*)dw, (t)
— BT, T*)dwg(t)] n [
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)

Lpds (¢, T, T%) [JZ(Bd’*(t, T,T%))?
+2(CW*(t, T, T*))* + o2(D4* (L, T,T*))?
+ol (EV (6T, T) + o2, (Ey™(t,T,T%))?
+20w10w2pw1w2Ef7*(tv T, T*)Eg*(t? T,T7)

+ 20,00, prow, BE(t, T, T*)E*(t, T, T*)

+ 20,00, (prwl Pwiws T Prws m)
B (t, T, T*)ES*(t, T, T*) —: P2 (t,T,T*)
+20,0up5uCO* (¢, T, T*) DO (t, T, T*)
+20,05(Prw, Pswr + PrwsPsws)

B (¢, T, T*)C% (¢, T, T*)

+ 2030w, P, C*(t, T, T*)EL*(t, T, T*)
+ 20500, (Pswl Pwiws Tt Psws m)

OO (4, T, T ES* (4, T, T*)}

]dt
= [PM(LT T + PR T, T | = B2 (47,7 ) (1)
— O (b, T, T ps(t) = D (t, T, T pa(t) — V7 (6, T, T) pra (1)
BT Ty (¢ )} 4 P T, T*)] dt
— PY(t,T,T%) [B*(t,T,T%) (3,) + C**(t,T,T*) (55)
+ DY (T, T%) (3,) + EP (4, T, T*) (Fu )’
BT, T (Gos) | W (1)
—: ppar (t, T, T*)dt + 0pa (8, T, T)dW,.(t)
+ 05 (8, T, THYAW, () + 0. (£, T, T )dW, (¢)
0 (4, T, T AWy, (1) + 02, (8, T, T*)dW,,, (t)
= pupa (6, T, T*)dt + (Gpar (t, T, T*)) dW (t)

with

ppas (8, T,T7) = (r(t) + s™7°(8)) P** (¢, T, T7)

according to the differential equations which hold for the functions A%*,
Bd* Cd* Dé* EY* and E$* (see the proof of Proposition 5.10).
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(iii)

d (Vﬁjp(t, T))

d Pd wrot x) (F(t,x) + H(t,x)s*°(t) + I(t, v)u(t)

t

To(t, 2w (£) + Ja(t, 2)ws(t )))d:z:)

+

T

d(/ PhEero(t ) F(t x)dx) + d(szem(t)/Pd’zem(t,x)H(t, x)dx)
+ d(u /Pd ot x)I(t, x)dx) + d(wl(t)/;d’zem(t, x)Jy(t, x)dx)

t

+ d(wg(t)/th’Zem(t, x)Ja(t, x)dx)

We show the calculation only for the second term since the other terms
will be done analogously. First, we consider the parametric integral

T
H(t,r, s u,wy,we) := /h(t,x,r,szem,u,wl,wg)dx
¢
T
= /P”l’zem(t7 x)H(t, x)dx
¢

with the function h being continuous on

0,7 x [t,T] x I, x Iy x I, x 1, x I, for intervals I,

y = 7,8°° u,wy, wy since PH*°(t, x) and H(t,z) are continuous on
this domain. Therefore H (t,r, s%"°, u,wy, wsy) is continuous on

[0, 7] x I, X Iy x I, X I,; X I, (see e.g. Walter (1990), page 241).
Furthermore, h is continuously partially differentiable with respect to

t, r, %" u, wy, and wy, hence H(t,r, s*"°, u,wy,ws) is continuously
differentiable with respect to either ¢, r, s**™° wu, wy, or wy (see Walter
(1990)):

SH T 5h

zero
, Uy, W1, w2)dl’

_(t7Ta Szeroauﬁwlan) = / —(t,l',’I",S
0y ¢ 0y

y — t7 C, 8267'0
that %—I;(t, 7, 8% u, wy, wy) is also differentiable with respect to z,

z = t,r,$*"° u,wy,wy (also see Walter (1990), page 242). Applying
It6 to the parametric integral H(t,r, s**"°, u, wq,wy) we obtain the dy-

, U, Wy, we. By means of the same arguments we can show
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namics of LTPd7zero(t, x)H(t,x)dx:

a / PA=ero(s o) H(t, )

t

-~ §H SH 1 §2H
— dH = ——dt —dy; + = d <y, y;
ot +;5%y+2¢zj5yi5% =l

with
oH T 5h
Tl o —(t,x,r, s%° u, wy, wy)dr — h(t, t,r, s u, wy, wo)
t
—5ﬁ ’ 5]’1/ zero zero
5y ey 5 (t :C T S 7U/7 wl,WQ)dl‘, y —= T,S 7'1,[,7 w1’w2
t
52ﬁ ’ 52h zZero zero
0Y;0Y,; B 5y‘5y‘(t,x,r,s sy Wi, wa)dx, Y,y = 1,870 u wy, ws.
v t 1995

Therefore we obtain

d( /ITDd’“m(t, x)H(t, x)dm)

t

T
- ( / Phero(s oV Hy(t,2) + H(t, 2) P& (1, 2)da

t

— PhEFro(t ) H(t,t) )dt

=1

H £, ) PAEero(¢, ) Bhero x)dx) dr(t)

H t, x) PO (¢, 1) O (t, ) da

-

-

( Ht:csze’""( ) Dot x)daz)du(t)
( Htdew""(t ) E-ro (¢, :c)dx)dwl(t)
( Htxpdm(t ) ESro (¢, :c)d:c)dwg(t)
(

H t, x) Phzero(t x)dx)d
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zero

=: fpp (t, T)dt + 0y (8, T)AW,(t) + 05y (8, T)dW.(2)
0ty (6 TYAWL (1) + 0 (1, T) AWy, (1) + 02, (1, T) AW, (1)
=: pppp(t, T)dt + (3 pu(t,T)) dW (t)

Finally, using Ito we get as a result for the second term:

T

d(szem(t) /t P 2V H{(t, w)da:)
- /t ITDd’ZCTO(t, 2)H (t, x)dz - d<szem(t))
FsPero(t) d( / ITDd’“”’(t, o) H(t, x)dm)

T
+d <szem(t), /Pd’zem(t, x)H(t, x)dx>
¢

_ /t PR (1, a)H (1, ) - (oo (1)t + (o) V(1)
+57(0) « (pgpar (8, Tt + (Fpn(t, T))'dW (1))

+((Gosere) G ppn (8, T)) ) .

Therefore by doing the analogous calculations for the other terms and
summing up the resulting terms with respect to dt and dW, we get the
following result:

d (Vﬁfp(t, T))

zero

=t fryyasy (£, T)dt + 0Yaay (. T)AW,(t) + 05aay (8, T)dW,(2)
O Baay (8, T)AW, (£) 4 0%, (8, TYAW, (£) + 02, (8, T AW, (£)
= puyaar (t, T)dt + (Fyaan (t, T)) dW (¢).
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(iv)
m -1
fstonzm ($ o)
i=1

TR G (VAR(E T) = V(L T) + P (4 T, TY) = P2 (1T, T,

(zm: Pd,zero(t7 T;)) . >

0 _G#) K&Vdd,, (t, Tyn) — Gyaan (t, To) + Gpas (t, To, T*) — Gpa- (t, T, T*))

-1 .
. [Zm Pd7zero(t T)]2 <O'Zipd,z (t)>:| dt
=1 ’ e
= My >(t, TO, Tm, T*)dt

By combining (i)-(iv) we get the dynamics of s(t, Ty, T;,):

dS(t, TO7 Tm)

m -1
- (Z Pd’z“’”‘)(t,ﬂ)> - (Vi (T, T, T))
1=1

m

-1
+ VI Ty, T, TY) - d (Z phzere(t, E))

i=1

m -1
‘I’d <Vf12l5(t7T07TmaT*)a (Z Pd’ZETO(tE)) >

=1
1
- 71 Ppd,zero t’T’Z
=1

— U pdx (t, To, T*)>dt

!
+ (&Vm (t, Ton) — Gyaan(t, To) + G pte (£, Ty, T*) — & pae (t, T, T*)) dW(t))

((Mvddp (t, Ton) — piyaan (£, To) + pupa- (8, Tony T)

(G, pas (1)’ dW(t))

+Vdg(taTme,T*)<M(Z‘pd,z)71(t)dt — — 5
T i [Zi:l Pd,zero (t’ T’Z)]

+ 14 >(t, To, Tpn, TF)dt
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== 5eds(t, To, Ty T*)dt + 0% g, (8, To, Ty T*) AW, (2)

+ 0% (t, To, Ty T AW, () + 0% (8, To, Ty T*) AW, (2)
+ 0 (8, To, T, T AW,y () + 02, (t, To, Ty, T*) AW, (£)
= Wseas(t, To, T, T™)dt + (afcds(t,To,Tm,T*)) dW( ).

O
The determination of the FCDS dynamics in case of protection payments
by replacement to par and its results enable us to also give the dynamics of
Forward Credit Default Swaps that pay a fraction of the face value in case
of default.

Theorem 5.20

If the recovery of the reference asset is paid as a fraction of the face value
(see Theorem 5.15), the dynamics of a Forward Credit Default Swap spread
under the equivalent martingale measure @ evolve according to the following
stochastic differential equation:

ds(t, To, Tyn)
= chds(t To, Tpp)dt + Ofcds(t T, T)dW, (1) + Ufcds(t Ty, T, AW, (t)
+<7fcds(t To, T ) AW (t) + 01200t T, T )Wy, (8)

(t,To, T, )dWwQ( ).

'LU2Z
fcds

The functions p7.q,(t, To, Tm), 0ogs(t, To, Tin), 05245 (t, To, T, 043 (t, To, Thn),
U}Ucldzs(t, To, T)n), and U}U(fdzs(t, To, T,n) are defined in the proof.

Proof:
Since the value of the protection leg simplifies to (1 — Z)(V;fp (t,T,,) —

ijlffp (t,Tp)), the building block (ii) in the proof of Theorem 5.19 is not needed
anymore and the building block (iv) is reduced by the parts of P%* and mul-
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tiplied by (1 — Z). Therefore we get for the dynamics

ds(t, Ty, Tyn)

_ ( szerotT
=1

—1
+ V(T T) - d ( pheere(t T))

m -1
fsanaa ()
=1

= Zizl Pd ze’r’o(tj I—YZ) < My ddp (t, Tm) — Uy ddp (t’ TO)) dt

(G (b, Ton) = G, T0)> aw(t))

Ve (t, To, T, ))

Ms

Il
—

v;;d(t,To,Tm)(u@ pey-a ()t — (%, pe- (1) dW(t))

[0, Pheero(t, T,)]*

+ uly(t, To, T )dt

= §1Foqo (8, To, T )dt + o2, (8, T, Tm)dWr(t) + 07t To, Tm)dWs(t)
+ 01t T, T AW () + 0127 (8, To, T )W, (1)

+ 2L (4, Ty, Trn) AW,y (1)

=1 1205 (8, To, T )dt + (G245 (t, To, Tr)) AW (2).

0

For the FCDS spread where we use the so-called default bucketing in order
to approximate the protection leg, the dynamcis further simplify as opposed
to the above cases.

Theorem 5.21

If the recovery of the reference entity is paid as a fraction of the face value and
the protection leg is approximated according to Theorem 5.18, the dynamics
of a Forward Credit Default Swap spread under the equivalent martingale
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measure @ evolve according to the following stochastic differential equation:

ds(t, Ty, T)n)
= 204, To, Tyn)dt + 0520 (8, To, Ty ) AW, () + 032 (¢, To, T, ) AW (1)
+ 02 (1, Ty, Ty AW, (1) + 02T (1, To, Ty ) AW, (1)
+ 022 (1, Ty, T ) AW (1) -

The functions ,ufcds(t,TO,T ) U;fg;(t To, Thn), J}qu;(t,To,T ) U?ilf(t,ToaTm)a

}UcleST(t To, Tyn), and a}”ﬁdZST(t,TO,Tm) are defined in the proof.

Proof:
The protection leg of the previous theorem is further simplified by the as-
sumptions of the protection payments. Therefore, the dynamics result in:

dS(t, To, Tm)
_ (Z Pd,ze%,m) y ((1 NPT T) - Pdwo<t,fj>>)

n -1

+(1=2)Y (P (t, Ty, Tj) — P (t,T)) (Z POt T, )

J=1

+d <<1 - Z) i(P*(t, Ty, Tj) — P(1,T))), (i PWO(t,ﬂ)) * >

= Zm <;c;ei)(t T) <Z <[Lp* (taT‘j—bT’j) — Hpdz (@E))dt
i=1 ] j=1

+z (-4, T5 1, Ty) = puc(,T)) AW (1)

+ (1 N Z) Z(P*<ta j;j—la f’fj) . Pd,zeTO(t’ f’f])) (M(Zipd’z)71 (t)dt

j=1
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1 ) o
_ [Zfil Pd7zero(t711';)]2 . (Uzipd,z(t)) dW(t))

+ ((1 A i (513*(@37}'—17@) - ‘?Pd’z(t’fj)))/

J=1

' D pd,_zjro(t7 )P (5ZiPde(t))dt

= (8, To, T )dt + 072 (8, To, T AW, (1) + 0320 (8, To, Ton) AW, (1)
+ oYL (8, To, Ty ) AW, () + 08127 (¢, Ty, Ty ) AW, (8)

+ 02 2T (4, Ty, T ) AW (1)

~ ~ !
— T (4, Ty, T )t + (5f£5(t,T0,Tm)) AW (t) .

The dynamics of P*(t,f}_l,fj) are calculated similar to the dynamics of
P%=er (see pages 107ff, (i) with m = 1 such that ppa-(t) = pis> pe-(t) and
Gpiz(t) = Gy, pa:(t)) and P** (see pages 109ff, (ii)) and evolve according
to:

dP*(t,T;1,T;)

= [Pt T T + P T T) | = B (6 T, Bt

= O (8, Ty, Ty prero (8) = D7 (8, Ty Ty)pra(t) = B3 (8, Ty, T) s (8)
B*<tv Tj*h TJ) (57’), + C*(tv Tj*h T]) (5SZET°>,

(Eu)/ + T(t7Tj—17Tj) (5:101)/
( —
)

~ ~ ! —
=: pup+(t, Tj—1, Tj)dt + (513*(15,7}—1, Tj)) AW (t)

where pp«(t, Tj_1,T}) equals (r(t) + s*7°(t)) P*(t,T;_1,T}) according to the
differential equations in the proof of Proposition 5.17. 0

The following lemma is an important input to further simplify the FCDS
spread dynamics.
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Lemma 5.22
In the dynamcis of Vﬁjp (cf. (iii) in the proof of Theorem 5.19) the drift is

pvaan (8, T) = (r(t) + *7°(0)Vya" (8, T) — s7°(t) .

Proof:
This follows directly from Corollary 6.2.1 in Schmid (2004), page 193, with
(cf. Theorem 5.6)

i)

Analogously to pages 242 - 243 in Schmid (2004), we obtain

T
L(t) Vi (t,T) = Eg [ / e~ S Odl T (4)

t

d (L(t)v;ljp(t)) = —dH(t) + r(t) LV (£)dt + dm(t)
= —s"(t)dt + (r(t) + s7(4)) L) VAP (t)dt + din(t)

for some martingales m and m and t < T O

With these results the dynamics of the Forward Credit Default Swap spread
can be simplified for the three cases introduced above: namely a CDS where
the default payment takes place at default by replacement to the difference
to par (see Theorem 5.13 and Theorem 5.19), a CDS where the default pay-
ment is assumed to be a fraction of the face value (see Theorem 5.15 and
Theorem 5.20), and a CDS which also pays a fraction of the face value in
case of default but where the payment is assumed to take place at certain
dates (see Theorem 5.18 and Theorem 5.21).

Proposition 5.23
In the case of Theorem 5.19 the dynamics can be written as
dS(t, To, Tm)

_ (GZiPd’Z(t))/&ZiPd»z(t)
[Z:il Pd,zero(t’ E)]Q

S(6 To, Thn) + i ><t,To,Tm,T*>)dt

/
+ ((5vddp(t,Tm) — Gyaap (t,T0) + Gpax(t, T, T™) — T pa- (t,TO,T*)>

N 1 o
—S(t, TQ, Tm) (O'Zipd,z (t)),) Zm Pd,ze’l’o(t T)dW(t) )
i=1 r e

with g y(t, To, T, T*) given in the proof of Theorem 5.19, (iv).
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Proof:

With the help of Theorem 5.13, of Lemma 5.22 and of the relations
ppas(t, T, T*) = (r(t) + s*7°(t)) P> (¢, T, T*) and

ps, paz(t) = (r(t) + s77°(t)) 3oim ) P2*°(t, T;) (see (i) and (i) in the proof
of Theorem 5.19) , the dynamics of the Forward Credit Default Swap derived
in Theorem 5.19 simplify to

dS(t, To, Tm)
_ Hyadp (t, ) — poyaan (t, To) + ppas (t, T, T) — ppax(t, Ty, T)
Z:’il Pd,zero(t’ T‘Z)
+ Vﬁf(t, T(), Tm),u(zl pd.z)—1 (t)dt
=+ 1y )(t, Ty, Thy, T*)dt
(5Vdd,, (1, Ton) — Gyaan (L, Ty) + G pa (£, Ty, T*) — & pae (t, Ty, T*

Z;il Pd,zero(t’ T’Z)
d 1 = ! T
- VT‘Z;(t7 T07 Tm) [Z'rril Pd,zero(t’ ﬂ)]Q ’ (O-Zipd,z (t)) dW(t)

— (1 (1) + 5°(8))s(t, Ty, Ton)dt — (r(£) + 577 (1))s(t, To, Tyt
(G, poe (1)) 35 s (1)
(S, Phzero(t, T;))
(v (8, T) = Gy (1, Ts) + G (4, T, T*) = G (1, T, T*))' -

Z:il Pd,zero(t7 7"@) dW(t)

(G5, pac(t))
Z;ﬂ ) Ppd,zero (t’ T’Z)

dt

)> AW (t)

+

S(t, T(), Tm)dt + o )(t, T(), Tm, T*)dt

+

—s(t, Ty, Ty) AW (t)

O-Z sz O‘Z sz(t) % )
s(t, Ty, Ton) + pu0 3 (t, Ty, T, TF) ) dt
( szero(t T)] ( 0 ) 'u< >( 0 )

!
+ O'Vddp t T - Evddp(t, TO) + O pax (t, T, T*) — O pax (t, Ty, T*)>

S(t 1o, T, )<UZ sz( ))/> Znil delzGTO(t Tl)dﬁ;(t) .

Proposition 5.24
If the recovery of the reference entity is paid as a fraction of the face value,
the dynamics of Theorem 5.20 simplify to
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dS(t, T(), Tm)
B ((5Zipd,z<t>)’azipd,z(t)
[SoF, Pheere(t, T)J*

! - . /
+ Z?ll Pd,zero(t, E) ((1 — Z) <0Vddp <t7 Tm) — Oy/ddp (t’ TO)>

s(t, Ty, Tp) + M<Z>(t,T0,Tm)) dt

—5(t, Ty, Trn) - (G, pa- (t))’)d’vv(t)

with
N’(Z)(thme)
/
= (1 — Z) (Evddp(t, Tm) — 5vddp<t, T()))
-1
* O_: . yZ t .
[Zzl Pd’zero(t,ﬂ)F( Zz pd ( ))
Proof:

By means of Theorem 5.15, of Lemma 5.22 and the relation which holds for
prs> pa= (cf. (i) in the proof of Theorem 5.19), the dynamics can be written
as follows:

dS(t, T07 Tm)

(1-2) (/,Lvddp (t,T,n) — phyaan(t, TO)) ;
p— t
21‘11 Pd,zero(t’ E)

+ VZd;d (t, TO, TWL)M(ZZ pd,z)—l (t)dt —|— ,LL<Z>(t, To, Tm)dt

1-7 . . I~
+Zm (Pd,zero)<t T) <UVddP (t, Tm) — Oyddp (t, TO)) dW(t)
=1 s L4
1 ) _
—Vb(t, To, Trn) (G, pa=(t)) dW(t)

[Z:il Pd,zero(t) T’Z)]Q



122 CHAPTER 5. PRICING CREDIT DERIVATIVES

= (r(t) 4+ s77°(t))s(t, Ty, Ty )dt — (r(t) + s*7°(t))s(t, Ty, Ty, )dt
(G5, pas(t)) G5, pas(t)
[Soi, Ph=ero(t, To))”

s(t, To, Tn)dt + uf (¢, Ty, Tr)dt

1-7 B = I~
+Zm (Pd,zero)(t T) <‘7vddp (ta Tm) — Oyddp (t, TO)) dW(t)
=1 y L1
g5 pac(t) ~
_S<t7T07Tm) (022 P ( )) dW(t)

ZZI Pd,zera(t’ ’_Fz)
B ( (G5, pac(t)) G5, pas(t)
[oim, Pasero(t, T;))”

1 B ) :
e e n CRICTE AR D)

s(t, To, Trn) + (¢, T, Tm)) dt

—s(t, Ty, T} - (5Zipd,z(t))’)dW(t) .

u<Z>(t,T0,Tm) is calculated according to (iv) in the proof of Theorem 5.19
with Vﬁf(t, To, T, T*) being replaced by Vngd (t,To, T,,,) of Theorem 5.15:
#(Z)(t> TO) Tm)

= (1= 2)(Fuanlt. o) — Gy T@)' S e T (7, met0))

O

Proposition 5.25

If the recovery of the reference entity is paid as a fraction of the face value
and the protection leg is approrimated by a sum, the dynamics of Theorem
5.21 can also be written as

dS(t, To, Tm)

_ ( (G5, pas(t) Fs, pa-(t)
[Z:il Ppdszero(t, TZ)]Q

S(ta TO; Tm)
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H(0-2 (3T ) - (T) )
1

. > pd,zem(t,Ti)P (Ezipd,z(t)))dt

(1-2) ST B =N Y

j=1

(5Zipd,z (t)), —
s g )0

- S(ta To, Tm)

Proof:
Using Theorem 5.18, Theorem 5.21 and the relation for ppa- as in the proofs
before, the FCDS dynamics reduce to

dS(t, T(), Tm)
(1-2) - < ~ ~ ~
- m zero Hp+ (t7 T, T) — Kpdz (t7 T)) dt
Zi:l pzero(t T;) ]Z:; ’ ’ !
+(1=2) > (P*(t, Ty Ty) — P4, T))) s, posy - (1)t
j=1
n /
(0= 2% (et T T) - aet0.) )
7j=1
- <* (ﬂ)dt
: m O-Eipd,z
[Zi:l Pd,zero(t) 7”1)]2
(1-2) /. ~ o~ . N
+ZZ’;1 Pd,zero(t7 T‘Z) Z (UP* (ta 7}—17 ,Tj) — Opd.z (t) Y})) dW(t>

(1= 2) S0 (PH(t, Tj1T) — P&=ro(t,T})) .
N [2111 Pd,zero(t7j’i)]2 ' (O-Zipd’z (t)) dW(t)
= (r(t) + 5*7(t))s(t, Ty, Tp)dt — (r(t) 4+ s°7°(t))s(t, Ty, Ty )t

(G5, pas(t)) G5, pas(t)
m 2
[Zi:l Pd,ze’/‘o (t7 ﬂ)]

s(t, Ty, T dt
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H0-2 (3T ) - T)) )

=1
_1 B
[Z Pad, zero ( PIFR ))dt
- : L
+E Ppd,zero t T (UP* ] 1 ) O pd,z (t,q_;)) dW(t)

J=1

(6Zi pd,z (t)),

Z?il pd,zero(t’ T‘Z) dW(t)

- S(ta To, Tm)

5.4.2 Exact versus Approximated Dynamics of the For-
ward Credit Default Swap Spread

In order to get a better insight into the proposed dynamcis, we now leave
the general framework of Section 4.1 that was used so far and take one of its
special cases, the four factor framework of Schmid and Zagst (SZ4, cf. Model
4.4), for an example and present its dynamics of a Forward Credit Default
Swap in a more detailed way. The proposed dynamics can then be used e.g.
for pricing derivatives written on a CDS.

If we want to work with these dynamics we can choose between the following
alternatives:

1. We can simulate the exact dynamics. Hence we need for every time
step the values of the factors r(t), s(t), u(t) and wq(t). Also we have to
integrate numerically several intergrals. Therefore, it would be easier
to just simulate the factors over time and calculate the CDS spread
s(t, To, Trn) at the specific point in time we need.

2. We approximate the exact dynamcis in order to get dynamics that
can be handled much easier (e.g. for simulation) and can be further
processed, i.e. yielding closed-form solutions for certain derivatives.

Assumption 5.26
In the SZj framework the exact dynamics of the FCDS spread presented in
Proposition 5.23, Proposition 5.2/, and Proposition 5.25 can be approximated
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by lognormal dynamcis

ds(t, To, Trn)
B ( (G5, pac(t)) G5, pas ()
-\, Phsere(t, )P
+ (O_TBd,ZGTO(t7 ﬂ), O gzero Cd,zera (t, g)) UuDd’Zem (t, g)) O, Ef’zero(t, g))

=, pd,lzem(t’Ti)] (521.13@(25)))s(t,TO,Tm)dt

_ ((O.TBd,zero (t, g>7 O_szemcd,zero(t7 g)7 O'UDd’Zem(t, g)’ T, Eil,zero (t, g>)

= /
(O'Z_Pd,z (t)) —~
: t, Ty, T,,)dW (t
+Z;11 Pd,zero(t7ﬂ) S( » 405 ) W( )

ZEero

with § € [Ty, Tr] and frozen factors of v, s*"°, u,wy in &y pa- and P**° at

time t.

Approximation for Proposition 5.23: Within the SZ4 framework the

pg — r S w1 = — r s u w1 /
teI‘IIlS Upd* — <O-Pd* y O-Pd"" JPd*7 OPd*> al’ld Uvddp — (O-Vddpa O-Vdd;n O-Vddpa Uvddp>

of the above dynamics are as follows. The vector & pa« (t, Ty, T*)—0 pa-(t, Ty, T™)
consists of

Oan (t, Ty T*) — 0 (2, To, T™)
—0, P*(t,T,,, T*)B*(t, T),, T*) + 0, P (t, Ty, T*) B™ (t, Ty, T*)
_ _O_TBd,zero(t7T*)(Pd*(t’Tm’T*) _ Pd*(t,TO,T*)) :
Oan (t, Ty T*) — 0 (t, To, T™)

= —0, PY(t, T, T)C™(t, T, T*) + 0 P (t, To, T*)C¥(t, Ty, T) ,
o pax(t,

Tm,T*> - O-Pd* (t TOJ T*)
—0u P (t, Ty, T) DU (t, Ty, T%) + 0 P (8, Ty, T*) D™ (8, To, T*)

and

(t, T, T™) — opi (£, T, T)
= —0u, PY(t, Ty, T*)ES (8, Ty, TF) + 0, P™(t, Ty, T*)E (8, To, T*)

Pd*
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For the vector Gyaap(t, Ty,) — Gyraan(t, Tp) it holds that
Urvddp (t, Tm) — O’(‘/ddp (t, To)

= o, [ Bty Pt (Fitg) + SO ) +ul)](0,y)

To
i)t y) ) dy
Uig/ddp (ta Tm) - UxS/ddp (t> To)

Tm
s / Ot (t, ) Pt ) (Fit ) + 5 () H (1, y) + u(0) (1)
To
Tm

+w1(t)J1(t,y))dy+ O gzero / Pt y)H (L, y)dy

To
O’gddp <t7 Tm) — O"u/ddp (t, To)

Tm
= o [ "Dy Py (Plty) + S0 ) + u(O)](E)
To
T7TL

+wl(t)J1(t,y))dy + ou/ prEero(t y)I(t,y)dy |

To

and

0‘5}1(1;} (tﬂ Tm) - O-‘Lj'tlidp (t7 TO)

T
= —0Ou, / EP (8, y) P47 (8, y) (F (t,y) + s H(E, y) + u()I(t,y)
To
T77L

+wl(t)J1(t,y))dy+ owl/ PEEEre(t )y (¢, y)dy .

To

Therefore, the components of the vector &pa-(t, Ty, T*) — &pa- (t, Ty, T*) are
approximated as follows with g € [Ty, T,,].
U;d* (t’ T, T*) - Uf?d* (ta T, T*)

N —Ogero O (t, §) (P (¢, T, TF) — P™(t, Ty, T))

since it holds (see Proposition 5.10 on page 97)
1

—Z

C(t,T,T") = CUt, T) + e~ =T=004 (T, T*)

and we assume it to be approximately

Os

O‘SCCL* (t, T, T*> ~ Cd(t, T) — O gzero Cd’zer()(t, T) s

—Z
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Figure 5.1: Each subplot of this figure gives the exact result (represented
by squares) as well as the approximation (represented by diamonds) of
Gpas(t, T, T*) — Gpa-(t, Ty, T*) (see page 126) for the factors r, w, s*"°
and u in the SZ4 framework for different maturities (1Y, 3Y, 10Y), i.e.
T — To € {1,3,10}. The results are based on the parameters of GDPr
for rating A2 (cf. Tables 4.4 and 4.7), T,, = Ty, §y = Ty and z = 0.1. The
x-axis represents the forward starting time, i.e. Ty — ¢.

especially for close T" and T™*. Analogously, we assume

0% (t, Ty T) — 0% (t, Ty, T™)
~ —0, DYt ) (P™(t, T, T*) — P™(t, Ty, TY)) |

with (cf. Proposition 5.10)

D& (t, T, T*) ~ D4t T) = D4 (t,T)

—z

SlHCG % - bszercu7 a,nd

O-Ilgcll* (t7 TTTU T*) - Uﬁ;* (ta T07 T*)
~ _O-leii,ZeTo(ug)(Pd*(t7Tm7T*) - Pd*(t7T07T*)) 5
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factor r, maturity 1Y factor r, maturity 3Y factor r, maturity 10Y
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Figure 5.2: Each subplot of this figure gives the exact result (represented
by squares) as well as the approximation (represented by diamonds) of
Gpas(t, T, T*) — 0pa-(t,To, T*) (see page 126) for the factors r, w, s*"°
and u in the SZ4 framework for different maturities (1Y, 3Y, 10Y), i.e.
T — To € {1,3,10}. The results are based on the parameters of GDPr
for rating A2 (cf. Tables 4.4 and 4.7), T,, = Ty, § = To and z = 0.9. The
x-axis represents the forward starting time, i.e. Ty — t.

with (cf. Proposition 5.10)

E&* (¢, T,T%)
b, (1 — e @M=t g=au, (T=t) _ g=ar(T—1) 1
~ EYt, T)— E\(t, T
e (L ) (BT - Bl T))
_ Eil,zer()(th)

since blf”; = Dgzerog, .

These approximations will especially be satisfied if T,, - even better if Tj
also - is near T* since P¥(¢t,T*,T*) = P%**™(¢t,T*). Figure 5.1 and Fig-
ure 5.2 compare the exact results of &' pa.(t, Tp,, T*) — &' pa- (t, Ty, T*) with the
approximations obtained above for different maturities (1Y, 3Y, 10Y), i.e.
T — Ty € {1,3,10} and different values of z, z = 0.1 (see Figure 5.1) and
z = 0.9 (see Figure 5.2). For z = 0.1 (see Figure 5.1) the approximated



CHAPTER 5. PRICING CREDIT DERIVATIVES 129

values are close to the exact results of &'pa-(t, Ty, T) — & pa-(t, Ty, T*) for
all factors and maturities, especially for short maturities, i.e. T,, — Ty = 1.
However, for z = 0.9 (see Figure 5.2) the differences between the exact and
approximated values increase especially for the factors s**"° and u. Here,
the approximation seems to work better for longer maturities (10Y) for the
factors w, u and s**"° indicating interdependencies between maturity and z.

Further, we approximate &'yaap(t,T},) — Gyain(t, To) as follows where we as-
sume certain integrals to be neglectable.

factor szero, maturity 3Y factor u, maturity 3Y factor w, maturity 3Y
12% 12% 0% fo—
8% 8%
-0.25%

4% 4%

-‘H—H_._. - 5uu
0% 0% -0.5%

0 02505075 1 12515 0 02505075 1 12515 0 02505075 1 12515

time (in years) time (in years) time (in years)

Figure 5.3: This figure contains the integrals (see page 129)
Tm zero Tm zero
O gzero fTo pdzero(t y)H (t,y)dy, Oy fTo phzero(t y)I(t,y)dy and

Oy fTTO’"Pd’Z”O(t,y)Jl(t,y)dy for z = 0.1 (represented by squares) and
z = 0.9 (represented by diamonds). The values are based on the parameters
of GDPr for rating A2 (cf. Tables 4.4 and 4.7) and the maturity 3Y, i.e.
Tm - TO - 3

Orvddp (ta Tm) - o-TVddP (t7 TO)

T77L
~ 0B () [Py (Pl + 50 H(EY)
To

+u(t)I(t,y) + wy (t)Ji(t, y)>dy
= —0 BP0, §) (Vi (¢, Ton) — Vial (. Th)

O-‘S/ddp (t; Tm) - U\S/ddp <t7 TU)
R —0geera OV (1, ) (VISP (8, Tr) — Vi (£, Ty))
Tm
40 gzero / Pt y) H(t, y)dy

To

=~ —Uszerocd’zero(t, g)(v,;,l:iip(t, Tm) - Vﬁjp(ty TO)) )
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O"ijvddp (t, Tm) — O"qiddp (t, TO)
~ =0, DYt §) (Via? (1, Tn) — Vi (8, T))

Tm
—l—au/ Pd’zem(t,y)f(t,y)dy

To
~ —a, DYt ) (VAP (1,T,,) — VEP(1,Ty))

and

O-,l‘j)(lidp (tﬂ Tm) - O‘li)'lddp (t7 TO)

R =0, B 5) (Ved (1 Tn) — Vid™ (8, T))

Tm
—l—awl/ Pd’zem(t,y)Jl(t,y)dy

To

N — 0, BY (4 5) (VAP (8, T) — ViasP (8, Tp))

with g € [Ty, T))-

Figure 5.3 shows the values of the three integrals which we assume to be
neglectable for a maturity of three years and different values of z, z = 0.1
and z = 0.9. As before, the approximation works well for z = 0.1 since
the values of the integrals for all factors are close to zero. For z = 0.9 the
values deviate from zero especially for the factors v and s**™°. Figure 5.4
and Figure 5.5 compare the exact results of Gyaa(t, T),) — Gyaan(t, Tp) with
the approximations obtained above for different maturities (1Y, 3Y, 10Y),
ie. T, — Ty € {1,3,10} and different values of z, z = 0.1 (see Figure 5.4)
and z = 0.9 (see Figure 5.5). Similar to the results of the approximation
for & pa« (t, Tpy, T*) — & pa- (t, Ty, T*), the approximations are close to the exact
results for z = 0.1 and the differences increase for z = 0.9, mainly for the
factors u and s*"°.

Hence, by means of incorporating these approximations (see also page 114
for p(y) and by neglecting certain terms we obtain for the dynamics of the
FCDS spread as given in Proposition 5.23

dS(t, To, Tm)

_ ((Ezip“’z<t>>’6zipd,z<t>
[ZZI Pdzero(t, TZ)]Q

S(t,TO, Tm) + 1y >(t,T0,Tm,T*))dt
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/
+ (<5vddp(t, Tm) — 5Vddp(t, TO) + O pax (t, T, T*) — O pax (t, To, T*)>

—S(t, TO; Tm) (O—Zl Pd;z (t)) ) Zm Pd,zero(t T)
i=1 vt

Th5.13 ( (d, pa-(t)) 05 pa=(t)
~ m 2
[Zi:1 Pd’zero(ta Tz)]

+ (UTBd,zero@, Zj), O gzero C«d,zer‘o (t, g)7 UuDd,zero (t, g)) Oy Eld,ZETO(t7 Zj))

AW (¢)

1 .
. [Zm Pd,zero(t T)] (0’2Z pd,z (t)) ) S(t, To, Tm)dt
1=1 s i
+ ( - (UTBd7Z€T0 (ta g)) O.Szemcd,ze’r‘o(t7 g)a O-uDd7zero(t7 g)a Oy Ef,ZCTO (ta g))

(@, ) . N
S pleero(t) Tz)) (t,To, T5,)dW ()

Approximation for Proposition 5.24: Also, in case of SZ4 it holds that

0 >(t 1o, T
o, ZZ 1szero(ﬁ T)deero(t T)
sz Pd zero(t T)]

<Uvddp t T Uvddp t T()

0vraan (t, Thn) — 04raan (t, To)
! e [, Paere(, T,

Ou Pd zero(t T)Dd zero(t T)
Z Pd, zero(t T)]

T S, Pd zero(t T BV (t, T))
Z P4, zero(t T)]

(t, Ty

Vddp vddp

)
) Ggrero ST PAZr0 (L T)Cb3ero(¢, T))
)7
)

<0'Vddp t T Uvddp t T()

with the vector &y as before (see page 124ff).
Then, similar to the case discussed before (see also Proposition 5.24 for u?
and Figures 5.3 -5.5 for the approximations of &'y.aap (t, T),) — Gyraar (t, Tp)), the
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Figure 5.4: Each subplot of this figure gives the exact result (represented
by squares) as well as the approximation (represented by diamonds) of
Gyraan (t, Ty) — Gyaan(t, Tp) (see page 129) for the factors r, w, s*"° and u
in the SZ4 framework for different maturities (1Y, 3Y, 10Y), i.e. T,, — Tp €
{1,3,10}. The results are based on the parameters of GDPr for rating A2
(cf. Tables 4.4 and 4.7), § = Ty and z = 0.1. The x-axis represents the
forward starting time, i.e. Ty — t.

approximated dynamics for Proposition 5.24 are

dS(t, To, Tm)
(G5, pas(t)) G5 pas(t)
[Z:il ‘Pd,zero(t7 j’l)]z

1 } ) :
T ((1 = Z)(Fvan (1, T) = Fann(t, Ty) )

s(t,To, Ton) + 1 (8, To, Tr) ) dt

—s(t, Ty, Trw) - (G52, pa(t)) |dW (t)

Th.5.15 (6:21' pd. (t))/ o5 paz(t)
[>oimy Pheere(t, T;)]
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+ (arBd’zem(t, ), Ogzere CH*70 (£, ), 0y DY (4, ), 0 B2 (8, g))

>, pd,lzero@,Ti)] (521-%2(75)))S(t,To,Tm)dt

+ ( . O'TBd’ZeTO (t, g)’ — O grero Od,zero<t’ g)7

O_UDd,zero (t, g)7

(G5, pas(t))

— O, Ewii,ze'm(t7 g)> .

with § € [Ty, Th).
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Figure 5.5: Each subplot of this figure gives the exact result (represented
by squares) as well as the approximation (represented by diamonds) of
Ovaap (t, Ty) — Oyaan(t, 1) (see page 129) for the factors r, w, s**"° and u
in the SZ4 framework for different maturities (1Y, 3Y, 10Y), i.e. T,, — Tp €
{1,3,10}. The results are based on the parameters of GDPr for rating A2
(cf. Tables 4.4 and 4.7), § = Ty and z = 0.9. The x-axis represents the
forward starting time, i.e. To — t.
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Approximation for Proposition 5.25: Finally, for the third case we need
the vector (C_fp* (t,Tj_1,T;) — dpas(t, T])> which consists of

e (t, Tj-1,T}) = Opa-(t, T)

= —0,(B*(t, Tj-1, Tj) P*(t, Tj_1, Tj) — B¥*7°(t,T;) P**"°(t, T}))

= —0, B¥0(t, T)) (P (t, Tj—1, T;) — P**°(t, T}))
05 (6, Tj-1,T}) — Opa-(t,T)

= —Ggeero(C*(t, Ty, Tj) P (t, Ty, Tj) — O (8, T) P47 (£, T5))

_ _aszem(cd,zero(t, fj,l)P*(t, qu, f]) N Cd,zero<t7 T})Pd,zero(t’ i)) 7
b (t, Tyo1, Ty) — o (8, T)

= —0u(D*(t, Tj-1, Tj) P*(t, Tj_1, T;) — D74, Tj) P**"°(t, T5))

_ _Ou(Dd,zem(t7 Tj_ﬁp*(t, fj—l; ffj) o Dd,zem(t7 z”wj)Pd,zero(t7 fj)) :

Y

and

o (t, Tjo1, Tj) — o (1, T))

* =~ = * = i~ d,zero T ,zero o
= _le(E1<t77}*177})P (t77}*17j}) - El (t,j})Pd <t7T’J)) :

The components of the vector (5:]3* (t, fj_l, T]) — dpa.-(t, i)) can be approx-
imated by assuming fj_l ~2 TJ with
0}93* (t’ Tj—lv i) - U;dvz <t7 T])

~ = enn O (4, T) (P (8 Ty, Ty) — P*7(t, T))
0-1%* (tv Tj*h TJ) - O-I%d’z <t7 TJ)

o~ —O'uDd’Zero(t, TJ)(P*(L ﬁ—l) j—?]) . Pd’zem(t, ij)) ,

and

o (t, Tjo1, Tj) — o (1, T))

where we use (see also page 268 for Et(t, Tj_1,T}))

Ei(t,Tjo, 1)) = BEa(t. 1)) + (BY™° (. Timr) = Ba(t, Tj0)
~ BT
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for IN’j_l ~ f’j
The dynamics of the FCDS according to Proposition 5.25 can now be written
as

dS(t, To, Tm)

N ((@Pd,z(t))’ezipd,z(t)
[Z:’;l Ppd,zero (t’ ﬂ)]z

(1= 2) 5, (P T T) - PR 1)) ,
m d,zero 2 O'Zi pd= (t) ‘
D2y Phere(t, Th)]
!
(0 BH=72(, ), 7yeere CH72(1, ), 00 D271, ), 00y B (1, )) )dt
( (1= 2) S (P8 T, Ty) = PEero(t,T)))
+ - m
Zi:l Pd7zero(t’ T’Z)
. (arBd’Ze“’(t, ), Oorera Ot 7). 00 DE10(1,5), 00, EXZ(1, zj))

S(ta TO; Tm)

+

o /
(O-Z:.Pd,z (t)) —~
(L, Ty, Tyy) e AW (t
8( s £ 0y )ziZI Pd’zem)(t,ﬂ) ( )
Th.5.18 (5ZiPd’z<t))/EZiPd,z<t) (&Eipd,z(t))/
- S(t7TO7Tm> m 2 + m d,zero '
[>oimy Phzere(t, Th)] Doing Pé=ere(t, T;)

/
(0 BH=72(, ), 0,eere CH72(1, ), 00 D71, ), 00y B (1, ) ) dt

— ((O'TBd’Zem(t, @7 O gzero Cd,zero<t’ ?7)7 O‘uDd’Zem(t, ?7)’ Ty Eil,zero (t, 37))

(G5, pa=(t)’

+ ZZI Pd,zero (t7 ’_Z’Z)

) S(ta TO; Tm)d/w/@) )
with § € [Ty, Th. O

Note that we can end up with the same lognormal dynamics no matter
which recovery assumptions for the reference entity we make. Also, using
the default bucketing approach in order to circumvent certain integrals has
no advantages so far, since the critical terms vanish during the above ap-
proximations. But, assuming a fine grid for the default bucketing results in
another version of lognormal dynamics as shown in the next Corollary.
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Corollary 5.27
For fine time steps T; — T;_1 in Proposition 5.25, the dynamics reduce to

dS(t, Tg, Tm)

B (G, po- (1) G5 pas(t) ~ (Fg,pes()
T ) (e~ S e )

Proof:

Assuming the time steps T; — T;_; in the numerator of Proposition 5.25 to
be very fine, we get P*(t,T;_1,T;) ~ P*(t,T;,T;) = P**°(t,T;). With an
analogous approximation as above, we obtain the dynamics.

O

There exists another useful approximation of the dynamics in Proposition
5.24, the so-called shifted-lognormal distribution (see Brigo & Mercurio (2006),
page 454ff). It assumes the FCDS spread to be the sum of a lognormally
distributed X (¢) and a real constant ~, i.e.

s(t, To, Trm) = X(t) + .

Assumption 5.28
In the SZj framework the exact dynamics of the FCDS spread presented in
Proposition 5.2/ can be approximated by shifted-lognormal dynamcis

dS(t,To,Tm)
Fs~ pa-(t)) G5 pa-(t)
_ ([%Ij pd,z)ero?;)]Q (s(t,To,Tm)_u—Z)AnK)dt
=1 )

(T, e ()
Z:Zl Ppd,zero (t’ 771)

(s(t, To, ) — (1 — Z)ATJ() AW (1)

ZETO

with equidistant AT; :=T;, —T,_1 i = 1...m, frozen factors r,s*"° u,wy in

Oy pi= and Pdzero gt time t, and a constant K.

Approximation for Proposition 5.24: Within the SZ4 framework we
assume the following approximations to hold by fixing § € [Ty, T,,] and by
assuming as before certain integrals to be neglectable (see also Figure 5.3 for
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an analysis of these integrals).
Urvddp (ta Tm) - Urvddp (t, TO)
~ —0, Z Pd,zero(t, TZ‘)Bd,zero(t7 E) (F(t, TZ) + Szero(t>H(t7 771)

=1

Fu(®I(T) +wi (84T ) (T~ Tioy)

= (P(t.9) + ™" (VH(L,§) + (D) I(1,5) + 0 () 1 (6,9) | ATio% pu (1)

Ovraan (t, Tin) — 0raan (t, To)
~ (F(t, g) + 7 H(t, ) +ut)(t,§) +wi(t)I(t, g)) AT0% pu-(t)

Tm
+ O gzero / Pd’zero(t, y)H(t, y)dy

To

~ (F(t, g) + s () H (L, g) +u(t)I(t, g) +wi(t)J1(t, g)) AT;0%- pa-(t)

Ovaap(t, Tn) — Oraan (£, 1)
~ (F(69) + s (VH (4 5) + u(®)1(t§) + wi ()1 (45) ) ATio% pa (1)

Tm

+ 0y Pt y)I(t,y)dy
To

~ (F(69) + 5™ (O H(E §) + u(®)1(E§) + wi ()4 (4,5) ) ATiogs pa (1)

Oy (t, ) — 04, (, To)

Vddp

~ (F(69) + 5™ (O H(E §) + u(®1(E§) +wi ()4 (4,9) ) AT . (1)

Tm
+ 0w, / PE=re(t ) Ji(t, y)dy

~ (F(t5) + s (VH(E,5) + u®1(E§) + (D1t 5) ) ALY p. (1)

with g € [Ty, T,,,] and AT, :=T; — T;_; equidistant for i = 1...m.

Figure 5.6 and Figure 5.7 compare the exact results of &'y-aap (t, Ty, ) —0yraap (£, Tp)
with the approximations obtained above for different maturities (1Y, 3Y,
10Y), i.e. T,,, — Ty € {1, 3,10} and different values of z, z = 0.1 (see Figure
5.6) and z = 0.9 (see Figure 5.7). We obtain results that are very similar
to the previous approximation for &'yaap (t, 1)) — Oyaar (t, Tp) (see page 129).
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Analogously to Figures 5.4 and 5.5, the approximations work well for all fac-
tors r, w, u, s*"° and z = 0.1, also for the factors r and w if z = 0.9. But
the differences in the results increase for z = 0.9, especially for v and s*"°.

Hence, we obtain for the dynamics with a fixed g € [Tp, T,,] (see also Propo-
sition 5.24 for u7’))

dS(t, T(), Tm)
B ( (G5, pas(t)) G5, pas(t)
[, Ph=ero(t, T,)]

1 = . '
Z;’il Pd,zero(t) 7—;) ((1 - Z) (Uvddp (ta Tm) — Oyddp (t, T0)>

—5(t, Ty, Tn) - (5Eipd,z(t))’>dW(t)

5 ( (G5, pas(t)) G5, pas(t)
[, Ph=ero(t, T,)]

+(1 = 2) (F(t§) + s (O H(E ) + u()I(1,§) + wi(8) 11 (1, 5) ) AT,

S(t> TO) Tm) + IU“<Z>(t7 TO) Tm)) dt

+

8<t7 TO> Tm)

. (O-TZz pd,z (t)7 Uszi pd,z (t)y O-UZZ pd,z (t), 0'%11' pd. (t))

= P T (Fer0) )

+ ((F(t, g) + s* () H(t, g) +w(t)I(t,5) + wi(t)J1 (¢, g))

: (1 - Z)AE (Jrzz pd.z (t)’ O—SZ—; pd:z (t)’ JuZi pd.z (t)7 Ugjli pd= <t)>
(o, T) - (G5 pac (8)) ! 4V (1)
Uy mm > P Z:’;l Pd,zero(t,j"’i)
5 < (G5, pas(t)) G5, pas(t)
[Zzl ‘Pd,zero(t7 T‘Z)]Q
G OV,
(o, Phzere(t, T,)]
(1= Z)AT (G, pae(1) = (8. T0.T) - (G, pae(t)))
Z;’Zl Pd,zero(t’ ’172)

S<t7 T07 Tm)

—(1 - 2)AT,K -

AW (¢)
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T~ pa:(t)) G pa-(t
_ (O-Zin]jd ( )) oy, pd g ) (S(t,TO,Tm) — (1 — Z)ATJ() dt
[Zi:l Pd,zero(t’ T‘z)]
_ (0_:21 pd,z (t))
Z;’ll Pd,zero(t7 ﬂ)

<s(t, Ty, Ty) — (1 — Z)ATZ-K) AW (1),

where the last approximation is obtained by substituting (F (t,7)
POV H(,§) + u()I(t,§) +wi () (¢, g)) with a constant K. 0
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Figure 5.6: Each subplot of this figure gives the exact result (represented
by squares) as well as the approximation (represented by diamonds) of

Gyaan(t, ) — Gyann(t, Tp), ie. <F(t,gj) + s H(E G) + u(t)I(t§) +

wy (t)Jy (t,gj)) - AT - 05> pa(t), for the factors r, w, s*" and u in the SZ4

framework for different maturities (1Y, 3Y, 10Y), i.e. T,, — Ty € {1,3,10}.
The results are based on the parameters of GDPr for rating A2 (cf. Tables
4.4 and 4.7), AT; = 0.1, § = Ty and z = 0.1. The x-axis represents the
forward starting time, i.e. Tg — t.
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Figure 5.7: Each subplot of this figure gives the exact result (represented
by squares) as well as the approximation (represented by diamonds) of

Gyain(t, Ton) — Gyraan(t, Th), (F(t.9) + s*r°(H(t. ) + w(d)I(t5) +

wy (t)J1(t, gj)) - AT; - 0y pa=(t), for the factors r, w, s*™ and u in the SZ4

framework for different maturities (1Y, 3Y, 10Y), i.e. T,, — Ty € {1,3,10}.
The results are based on the parameters of GDPr for rating A2 (cf. Tables
4.4 and 4.7), AT, = 0.1, § = Ty and z = 0.9. The x-axis represents the
forward starting time, i.e. Ty — t.

1.e.

In order to obtain the constant K we match moments as it is proposed by e.g.
Brigo & Masetti (2006), page 15. Also, we follow the approach heavily used
for LIBOR models (see e.g Mercurio & Morini (2007)) where freezing certain
factors at time ty has shown to have no major impact on the dynamics. We
work with the frozen dynamics of r,wy,s and u. Therefore, the functions
0y pa=(x), P¥*°(x,T) and ,u<Z>(x,T0,Tm) are now deterministic. Assum-
ing the existence of the following expected values, we equate the dynamics
of Proposition 5.24 with the dynamics of the above approximation: ™
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Eg[s(t, To, Tn)| Fi]

t (= /R
~ s(t, To, Trn) (1 +/ (UZi:;d, (i)irjzipd, (f)dx)
o (XL P, T))]

g

(%)

N

/M (2, To, Tn)dx
!

= approac(t To, )‘ ./T;g]
( Z)AT,K

J/

f{ (5Zi Pd,z(ﬂ&))’gzipdyz(:c)d
£ m zero 2
+<8(t7T07Tm) - (1 — Z)ATZK)Q [Zi:1 pd, (377Ti)]

T

Using the approximation e* = 1 + x for (*), it holds

ft_ (5Zipd’z(x)),32i Pd’z(m)d t

t m zZero 2 r

s(t, Ty, Trn)e £y phzeretm)] +/ ufy(x, Ty, T )da
¢

= (1- 2)AT,K

dx

t p)
+(8(t7T07Tm) - (1 — Z)AEK)e [217 PdZETO(IT):I
Therefore, the constant K is calculated as

" Jiu? (2, Ty, Ty dx

f{ (521' Pd,z(z))’c?zi P,z (@) "

t

(1—2)AT, [1—¢" [Emireeremn]

WFor the shifted-lognormal dynamics dX (t) = a(t)(X (t) — v)dt + B(t)(X (t) — ~v)dW (t)
with a real constant 7, and deterministic functions «(t) and 3(t), it holds

X(T) =7+ (X(t) —y)eld a@da=3 [ B @)dat [T p)dW (@)

(see e.g. Brigo & Mercurio (2006), page 454).
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In the following we analyze how well the approximated dynamics work as op-
posed to the FCDS spread we would get by simulating the factors r, s, u, w;
and using the formulas for the FCDS spread given in Section 5.4. The analy-
sis is based on the set of parameters called GDPr of Chapter 4 for the rating
class A2. We want to emphasize that this analysis is of theoretical nature and
therefore assume the parameters as appropriate although they are obtained
by means of defaultable bonds. However, parameters that are calibrated
on defaultable bonds are not always suitable for pricing credit derivatives.
The quoting mechanism and especially the assumptions concerning recovery
rates differ within the markets. Hence, it would be appropriate to calibrate
on quoted CDS spreads with the help of the closed-form solution of Section
5.4.

The following figures outline the evolution of Forward Credit Default Swaps
for different maturities (3Y, 5Y, 7Y, 10Y) of the CDS and for different for-
ward starting times (0.25Y, 0.5Y, 0.75Y, 1Y, 1.5Y). We use 20,000 scenarios
and set z to 0.9 in line with the results of Antes et al. (2009) (see Defini-
tion 5.1). In Figure 5.8 the FCDS spreads assuming a protection payment
of replacement to par are determined by simulating the factors r, s, u, w;
until end of the forward starting time and then using the formula of The-
orem 5.13. In addition to that, the approximated lognormal dynamics of
Assumption 5.26 are used with § = Ty. For forward starting times under
one year, the differences between the FCDS spreads are less than 5bp. For
forward starting times over a year, the differences increase up to 10bp for a
maturity of ten years. Furthermore, the differences seem to be dependent on
the maturity of the underlying CDS. The longer the maturity of the CDS,
the more the FCDS spreads deviate - especially for longer forward starting
times. Analogously, Figure 5.9 shows the FCDS spreads assuming recovery as
a fraction of face value and protection payments at certain dates. The results
are obtained by means of Theorem 5.18 and by means of the approximated
lognormal dynamics under the recovery assumption Z = 0.75. This value is
chosen arbitrarily in order to get results of the same dimension as in Figure
5.8. Here, the differences between the FCDS spreads are smaller for shorter
forward starting times as in the aforementioned case. But unlike before, the
differences (especially for longer forward starting times) become smaller for
increasing maturities of the underlying CDS. Figure 5.10 until Figure 5.13
outline the results for the FCDS spreads asuming recovery as a fraction of
face value with Z = 0.75. Each figure represents the results for a given
CDS maturity (3Y, 5Y, 7Y, 10Y) in order to account for the second approx-
imation (shifted-lognormal) of the FCDS spread dynamics (see Assumption
5.28). The differences between the FCDS spread determined by means of
Theorem 5.15 and by means of lognormal dynamics behave as in the case
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of Figure 5.9. But the FCDS spreads determined with the shifted-lognormal
assumptions match extremely well the results obtained via simulating the
factors and using Theorem 5.15.

Summarizing the above results, we can claim the approximated dynamics to
work well up to a forward starting time of one year no matter which recovery
assumptions hold. Further, in case of recovery as a fraction of face value
the approximation using shifted-lognormal dynamics even yields promising
results for longer forward starting times.
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Figure 5.8: Each subplot of this figure shows FCDS spreads for different forward starting times (0.25Y, 0.5Y, 0.75Y,
1Y, 1.5Y) and for a given maturity of the corresponding CDS (3Y, 5Y, 7Y, 10Y). The broken line represents the
results obtained by the approximated lognormal dynamics, whereas the diamonds give the solutions of Theorem
5.13. The plot is based on 20,000 scenarios and z = 0.9.
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Figure 5.9: Each subplot of this figure shows FCDS spreads for different forward starting times (0.25Y, 0.5Y, 0.75Y,
1Y, 1.5Y) and for a given maturity of the corresponding CDS (3Y, 5Y, 7Y, 10Y). The broken line represents the
results obtained by the approximated lognormal dynamics, whereas the diamonds give the solutions of Theorem
5.18. The plot is based on 20,000 scenarios, Z = 0.75 and z = 0.9.
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Figure 5.10: Each subplot of this figures shows FCDS spreads for a given forward starting time (0.25Y, 0.5Y, 0.75Y,
1Y, 1.5Y) in case of a CDS with maturity of 3 years. The broken line represents the results obtained by the
approximated lognormal dynamics, the solid line shows the results of the shifted-lognormal dynamics, whereas the
diamonds give the solutions of Theorem 5.15. The plot is based on 20,000 scenarios, Z = 0.75 and z = 0.9.
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Figure 5.11: Each subplot of this figures shows FCDS spreads for a given forward starting time (0.25Y, 0.5Y, 0.75Y,
1Y, 1.5Y) in case of a CDS with maturity of 5 years. The broken line represents the results obtained by the
approximated lognormal dynamics, the solid line shows the results of the shifted-lognormal dynamics, whereas the
diamonds give the solutions of Theorem 5.15. The plot is based on 20,000 scenarios, Z = 0.75 and z = 0.9.
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Figure 5.12: Each subplot of this figures shows FCDS spreads for a given forward starting time (0.25Y, 0.5Y, 0.75Y,
1Y, 1.5Y) in case of a CDS with maturity of 7 years. The broken line represents the results obtained by the
approximated lognormal dynamics, the solid line shows the results of the shifted-lognormal dynamics, whereas the
diamonds give the solutions of Theorem 5.15. The plot is based on 20,000 scenarios, Z = 0.75 and z = 0.9.
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Figure 5.13: Each subplot of this figures shows FCDS spreads for a given forward starting time (0.25Y, 0.5Y, 0.75Y,
1Y, 1.5Y) in case of a CDS with maturity of 10 years. The broken line represents the results obtained by the
approximated lognormal dynamics, the solid line shows the results of the shifted-lognormal dynamics, whereas the
diamonds give the solutions of Theorem 5.15. The plot is based on 20,000 scenarios, Z = 0.75 and z = 0.9.
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5.4.3 Introducing Counterparty Risk

All previously calculated credit default swaps share the assumption that nei-
ther the protection payer nor the protection seller will experience any de-
faults. Hence, these events are not priced into the credit default swap. But
since the collaps of Lehman Brothers in 2008 and the problems of AIG, one of
the biggest players in the CDS market, counterparties of OTC transactions
are not considered undefaultable anymore.

Schmid (2002) suggested an approach how to price defaultable interest-rate
swaps for a predecessor of our framework. In this section we introduce a first
step towards pricing counterparty risk inherent in credit default swaps. We
adopt the view of the protection buyer who considers her counterparty risky
as opposed to herself. But the following calculations can be generalized in
order to incorporate both counterparties as risky ones.

In the literature there are several approaches for calculating counterparty risk
adjustments (CVA) for credit default swaps. The structural default model
is used by e.g. Liang, Zhou, Zhou & Ma (2011) who model the correla-
tion of the counterparty and the reference entity by two correlated geometric
Brownian motions assuming a constant interest rate. Lipton & Sepp (2009)
propose a multi-dimensional jump-diffusion process that drives the joint dy-
namics of asset values. Intensity contagion models where default intensities
of the surviving firm are dependent on the default of the counterparty are
used by e.g. Jarrow & Yu (2001), Leung & Kwok (2005) and Bao, Chen &
Li (2012). Brigo & Chourdakis (2009) determine unilateral CVA for CDS
assuming the intensities to be CIR processes and using a Gaussian copula
for the dependence structure. Brigo & Capponi (2010) generalize the work
of Brigo & Chourdakis (2009) in order to calculate bilateral CVA. Bielecki,
Crépey, Jeanblanc & Zargari (2012) introduce a Markovian copula set-up
in order to model the joint default between counterparty and the reference
entity.

We follow the approach of Jarrow & Yu (2001) who use so-called primary
and secondary firms in order to model default dependencies, but we do not
restrict ourselves to constant interest rates or intensities as it is partially
done in the above mentioned approaches. The default intensity of the pri-
mary firm is assumed to only depend on the filtration F which is generated
by the state variables, whereas the default intensity of the secondary firm
is dependent on the filtration F as well as the status of the primary firm.
In our case, the protection seller is categorized as a secondary firm and the
reference asset of the CDS is assumed to be a primary firm. We extend our
notation as follows: The superscript ? indicates that the variable belongs
to the counterparty and the superscript "/ refers to variables belonging to



CHAPTER 5. PRICING CREDIT DERIVATIVES 151

the reference asset. Further, the enlarged filtration G/ = FVH®VH"/
is given as G;” el — FVHEPVHY for every t, whereas G is built by

P — FroVHIVHLE for every t € [0,T%], with GF = Fr.VHL for t = 0.
Hence, the default intensity of the reference asset is adapted to the filtration
F = (Fi)g<;<r~ and the default intensity of the protection seller is adapted to

the filtration G = <~fp . In this context the default intensity of the

>O<t<T*
reference asset 5%/ takes on the form as in Proposition 5.3 and the default
intensity of the protection seller is given by 5*7>%P(t) = s*7>P(t)4-clpares <
with s*7 as in Proposition 5.3 and ¢ a constant.

Again, we pose ourselves into our general framework introduced in Chapter
4. Therefore, the results obtained in this section can be used for all mod-
els derived from the general framework. Further, we take on the view of
the protection buyer who assumes herself to be free of default risk and the
counterparty to be defaultable with a recovery rate of zero. The reference
asset of the CDS is deemed to be a primary firm in a sense that its default
intensity is not dependent on the defaults of the protection buyer and seller.
However, we assume that the default of the reference asset increases the de-
fault intensity of the protection seller, i.e. the protection seller is a secondary
firm. This assumption is not unrealistic if we assume the protection seller
to be e.g. a big player on the CDS market where contracts on that specific
reference asset are traded on a large scale. Hence, a default of the reference
asset would lead to protection payments to be made by the protection seller
on every sold CDS written on that reference asset.

First, we give the spread of a FCDS according to the assumptions of The-
orem 5.18. In the following, we assume the recovery of the counterparty to
be zero. Though, this assumption can be easily changed.

Proposition 5.29 (¢f. Theorem 5.18)

If the recovery of the reference asset is paid at certain dates and as a fraction

of the face value, the swap spread of a Forward Credit Default Swap which

incorporates counterparty risk is

s?(t, To, Tn)

(1 _ Z) Z?:l (670(’@7%]',1) . <Pd,z,cp,1”ef(t7 T}—lv i) . Pd,z,cp,ref(t’ Tjj)) )
Z;L ‘Pd,zero(t7 E)

where we assume the recovery of the counterparty to be zero. The functions

Pd’z""p’”f(t,le}) and Pd’Z’Cp””ef(t,Tj_l,’l}) are given in Appendiz D, Lemma
D.1 and Lemma D.2.

Proof:
Since we assume the protection buyer to be safe, the payment leg is calculated
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as before (see Theorem 5.13). However, the protection leg is now given by
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