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“Nichts trägt einen Sinn in sich. Der wirkliche Sinn der Dinge liegt im Gefüge.”

Antoine de Saint-Exupry: Ein Lächeln ist das Wesentliche.





Abstract

The generation of suitable body-fitted grids for Large-Eddy Simulation (LES) of

complex flows can be time-consuming and difficult. Contradictory requirements,

such as adequate local resolution and minimum number of grid points, can deteri-

orate the grid quality and therefore adversely affect accuracy and numerical con-

vergence properties. Unstructured grids without rather severe constraints on cell

size and aspect ratio, however, are known to be not well suited for time-resolving

turbulent flow computations, in particular for LES. An alternative approach is

to use Cartesian grids, which also facilitates automatic grid generation and local

grid refinement. Cartesian grids imply fewer computational operations per grid

point than body-fitted or unstructured grids. On the other hand, bounding sur-

faces of the flow or immersed obstacles need to be accounted for by mapping the

boundaries onto the grid.

For mapping the boundaries onto the grid an immersed interface method is pro-

posed that maintains conservation and second-order accuracy. This Conservative

Immersed Interface Method (CIIM) is based on a finite-volume discretization of

the incompressible Navier-Stokes equations on a staggered Cartesian grid. A

level-set technique is used for description and tracking of the interface geometry,

so that an extension of the method to moving boundaries and flexible walls is

straightforward. Numerical stability is ensured for small cells by a conservative

mixing procedure. Discrete conservation and sharp representation of the fluid-solid

interface render the method particularly suitable for LES of turbulent flows.

Accuracy, second-order grid convergence, robustness and computational perfor-

mance of CIIM are demonstrated for several validation test cases: inclined chan-

nel flow, flow over a square cylinder, laminar and turbulent flow over a circular

cylinder, as well as turbulent channel flow with periodic constrictions. CIIM in

combination with a wall-model is also applied in the investigation of two indus-

trially relevant flows: the flow over the RA16SC-1 3-element highlift airfoil and

the flow over the VFE-2 delta wing. To the author’s knowledge, these are the

first LES to predict the flow for these test cases. The promising results under-

line the suitability of CIIM for predicting complex turbulent flows in industrial

applications.
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Ũ velocity magnitude

u velocity vector

u streamwise velocity component

v wall-normal velocity component

V cell volume

w spanwise velocity component

X conserved exchanged quantity

x first coordinate component (streamwise)

y second coordinate component (wall-normal)

z third coordinate component (spanwise)

Greek Symbols

α angle (of attack)

β (channel inclination) angle

γ integer power

Γ immersed interface surface

δ walldistance measured in wallnormal direction to the immersed interface

∆t time step size

∆h grid spacing

∆x spatial extent of a computational cell in the first spatial direction

∆y spatial extent of a computational cell in the second spatial direction

xx



Symbols

∆z spatial extent of a computational cell in the third spatial direction

ε relative error

ζ volume fraction

θ angle position/azimuth in cylindrical coordinate system

κ mixing fraction

λ length scale

ν kinematic viscosity

ρ density

φ pressure correction

τ shear stress

Φ conserved quantity

ω vorticity

Ω domain

Other Symbols

〈·〉 mean value (Reynolds filter)

·′ fluctuation with respect to the mean value of a quantity

·̃ magnitude of quantity

· volume-averaged quantity

∞ free-stream value of a quantity

? intermediate value of a quantity

Subscripts

ave average (time)

b bulk property

ba property at the base (of a cylinder)

crit critical value of a quantity

D drag

f friction

i cell index

j cell index

xxi



Symbols

k cell index

L lift

max maximum value of a property

min minimum value of a property

‖ parallel/colinear to the interface

⊥ perpendicular to the interface

p pressure

r root chord

rec recirculation zone property

reatt property at reattachment

ref reference property

retr retracted

rms root-mean-square value of a property

sep property at separation

stag property at the stagnation point

tgt property of the target cell

w property at the wall

x first coordinate component (streamwise)

y second coordinate component(wall-normal)

z third coordinate component (spanwise)

∞ free-stream property

Superscripts

n time step number

? intermediate value of a quantity

+ normalized , frequently for scaling in wall units
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Chapter 1

Introduction

Fluid flows being a key element of this thesis are involved in many processes in

nature and technology, e.g. smoke rising from a chimney, blood transportation in

the veins of creatures or the waves in the wake of a sailing boat.

In 1757 Leonhard Euler [38] formulated a first set of Partial Differential Equa-

tions (PDE) describing the motion of inviscid fluid flow. These equations were

extended in 1823 by Claude Louis Marie Henri Navier [112] and, in 1845

by George Gabriel Stokes [155] independently of each other to viscid fluid

flow. These so-called Navier-Stokes equations are based on Newton’s Sec-

ond Law applied to fluid motion and presume a continuous, viscous, Newtonian

fluid [6, 122]. They follow these three conservation principles of mechanics: con-

servation of mass, momentum and energy.

At first glance, it seems astonishing that even nowadays the Navier-Stokes equa-

tions have not been fully understood and the existence and regularity of unique

solutions for problems in the three-dimensional space cannot be proven [39, 85].

However, the Navier-Stokes equations are widely used for fluid motion descrip-

tion and will be also used in this thesis. Other sets of equations such as the discrete

(Lattice-) Boltzmann equation [18, 60] are not treated here.

The complexity of the flow, as to be understood in this thesis, is characterized

by the fluid properties, the flow velocity, and involved geometrical objects. Even

higher complexity can be expected when thermal or chemical processes as well as

deforming geometries or compressibility effects are involved but these will be not

investigated here.
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In a turbulent flow state a flow is much more complex then in a laminar flow state.

The state of turbulent flow is characterized by a significant and irregular variation

of the velocity and the pressure field in space and time [132]. It was Ludwig

Prandtl in 1914 who used the expression critical Reynolds number to dis-

tinguish between these two flow states [133]. However, the terminus Reynolds

number itself was introduced in 1908 by Arnold Sommerfeld when presenting the

Orr-Sommerfeld equation [151]. It is named after Osborne Reynolds in recog-

nition of his achievements in this field of research. Above the critical Reynolds

number, i.e. in the turbulent regime, the flow is characterized by a wide range of

scales [132]: the flow geometry influence the large scales which control transport

and mixing. On the other hand, the small scales are not affected by the flow

geometry and show a universal character. The small-scale motion is determined

by the dissipation rate at which they receive energy from the large scales and

the viscosity [132]. Turbulent flows are prevalent in both, nature and industrial

applications.

Yet, due to its high complexity, turbulence is not fully understood and a precise,

generally accepted definition of turbulence does not exist so far [47].

For a better understanding of turbulent flow phenomena experiments and numer-

ical simulation are used. In comparison to experiments numerical simulations

offer a better repeatability, observationability, non-intrusiveness and are usually

cheaper. The improvement of computational resources in the past decades fur-

ther stimulated the interest in studying and understanding turbulent flows with

numerical simulations [40]. The numerical simulation of complex turbulent incom-

pressible flows based on the Navier-Stokes equations also gives the framework

of this thesis. The focus is on the industrial applicability.

1.1 Motivation: Cartesian Grids and Immersed

Interface Methods in Flow Simulations

In numerical flow simulations the Navier-Stokes equations are discretized in

space on a computational grid and in time for computing a solution.

Requirements In the industrial context simulations require [52]:
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• a straightforward set-up of computations,

• low computational resource needs, and

• sufficiently accurate results.

The setup of a computation consists of the geometry creation, the grid genera-

tion and the setting of flow-parameters and boundary conditions. Computational

resources are determined by Central Processing Unit (CPU) time, so the time to

solve the problem, and Resident Memory requirements, i.e. the amount of stor-

age needed in the solving process. Sufficiently accurate results and computational

resources are conflicting requirements. In the industrial context numerical simula-

tions should use the least possible computational resources to produce sufficiently

accurate results for the optimization processes in product development.

With respect to these requirements common numerical methods will be evaluated

in the following part. The evaluation is summarized in Table 3.9. According to

Peric [40] all numerical methods require

• Consistency : with decreasing grid spacing ∆h and time step ∆t, the dis-

crete operator converges to the continuous operator of the PDE, where the

difference decreases with O(∆ha,∆te). a and e are the respective orders in

space and in time.

• Stability : numerical errors should not amplify during the computation.

• Convergence: if both consistency and stability are provided, convergence can

be achieved according to the Lax Equivalence Theorem [84] for ”properly

posed linear initial problems and a finite difference approximation”. The

numerical solution then converges to the analytical solution with increasing

resolution in time and space. In this context the order of convergence is an

expression for the decay of the truncation error. According to Peric [40] the

Lax Equivalence Theorem is also conditionally valid for non-linear problems

provided that all approximations of the discretization process are consistent.

Another important property for accurate turbulent flow simulation is the discrete

conservation of mass, momentum and energy [57, 110, 128].
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Grids The discretization can be either on a body-fitted structured grid, body-fitted

unstructured grid or a Cartesian grid.

Body-fitted structured grids consist of families of grid lines with the property that

members of a single family do not cross each other and cross each member of the

other families only once. Structured grids can be mapped uniquely onto Cartesian

grids and have a regular algebraic equation structure allowing the usage of effi-

cient numerical solvers. On the other hand the generation of structured grids is

time-consuming and difficult. Contradictory requirements, such as adequate local

resolution and minimum number of grid points, can deteriorate the grid quality

and therefore adversely affect accuracy and numerical convergence properties.

Body-fitted unstructured grids consist of elements or volume of arbitrary shape

filling the fluid part of the computational domain. Generally tetrahedra and hexa-

hedra are possible. The vertices of the elements must be associated with a connec-

tivity list. Unstructured grids have no severe constraints on cell size and aspect

ratio and can therefore be created automatically and easily refined in important

regions [121]. Since the algebraic equation system of unstructured grids is not

regular, efficient solvers are not applicable [40] and more resident memory is re-

quired then for structured grids [47]. Above all, unstructured grids are known to

be not well suited for time-resolving turbulent-flow computations. Accurate tur-

bulent flow computations require capturing of the fine flow features, i.e. the small

scales. To achieve the same level of accuracy, computations on unstructured grids,

especially those with tetrahedra elements, generally show that due to numerical

damping more computational elements are required compared to computations on

structured grids, see e.g. Refs. [46, 180]. Higher-order methods often suffer from

insufficient robustness for industrial applications [115, 180].

Cartesian grids are the simplest form of a structured grid. They are similar to

body-fitted structured grids except that line crossings are always perpendicular

and the grid is not aligned with the geometry. As with structured body-fitted grids

efficient numerical solvers can be used. At the same time, Cartesian grids can be

generated automatically like unstructured grids. The full strength of Cartesian

grids is exploited in block-structured grids where the computational domain can

be subdivided into sub-level blocks with non-matching interfaces. Sub-level blocks

in physically important regions can be refined as desired. Since Cartesian grids are

generally not aligned with the geometry, the wall boundary condition is imposed

by an Immersed Boundary Method [129]. Immersed Boundary Methods have
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Table 1.1: Suitability of different numerical approaches for turbulent flow
simulation in an industrial context (evaluation standard: -(worst) 0 +(best).

Discretization/Grid Unstructured Structured(curvilinear) Cartesian

Finite Difference Method - 0 +
Finite Element Method + - -
Finite Volume Method + + +

been successfully used for canonical configurations in the academic environment,

e.g. Refs. [35, 78, 126], but it is still an open question whether they can model

near-wall physics accurately enough for complex turbulent flows in an industrial

context.

Discretization methods The discretization is realized by either

• Finite Difference Method (FDM),

• Finite Element Method (FEM),

• Finite Volume Method (FVM), or

• (spectral method1)

The Finite Difference Method uses finite differences to approximate partial deriva-

tives of the PDEs [164] and can be applied to any type of grid. At each grid point

these finite differences are part of an algebraic equation, in which variable values

at that point and a certain number of neighbor points appear as unknowns. The

accuracy is determined by the finite difference function, e.g. Taylor series expan-

sion or polynomial fitting. FDM is very simple and effective [40] on body-fitted

structured grids and for simple geometries. For complex geometries with industrial

relevance automatically generated unstructured grids would be more desirable but

this would deteriorate the effectiveness. Modern implementations use Cartesian

grids with their aforementioned special features. However, a general problem of

FDM remains: mass and momentum are not conserved [40, 88] and this is crucial

for accurate results in turbulent flow simulations [3, 20, 110, 176].

1For completeness spectral methods should be mentioned here, too. In spectral methods the
solution is expanded in global, and generally orthogonal polynominals, e.g. Fourier series [53].
For simple geometries and computational domains without corners spectral methods are highly
efficient [15, 99]. However, they lose their exceptional properties for complex geometries. In this
case they can be used in suitable sub-zones of the domain if desired [43]. All in all, spectral
methods are less suitable for complex turbulent flows in an industrial context [43]
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In the Finite Element Method an unstructured grid is built up by finite elements,

e.g. usually tetrahedra and/or hexahedra. On these elements the PDEs are ap-

proximated by basis functions constructed with variable values at the corners [28].

After being multiplied with weight functions the equations are integrated over the

entire domain. The result is a set of non-linear algebraic equations. The common

combination of the FEM with unstructured grids brings the usual problem of less

efficient solvers and rather high memory-consumption into play [47]. Even with

higher-order approximations, e.g. piecewise-polynomial approximations, numer-

ical damping and the lack of conservation are still a problem in turbulent flow

simulations [88].

The Finite Volume Method uses the integral form of the PDE applied to finite

control volumes filling the computational domain. The solution is to be understood

as an control volume average. Surface and volume integrals are determined by

quadrature formulae [40]. In contrast to the other methods, the FVM is generally

conservative by construction making this method highly suitable for turbulent flow

simulations. Body-fitted grids show their typical problems: unstructured grids do

not allow for efficient solvers and structured grids are difficult to be generated.

A good alternative is the usage of Cartesian grids along with the aforementioned

Immersed Boundary Method to impose the wall boundary condition. Cartesian

grids imply fewer computational operations per grid point than body-fitted grids.

Concluding remarks on employed discretization and grid It can be con-

cluded, that for this thesis, a finite-volume discretization on a Cartesian grid is the

most adequate approach. Grids can be both automatically generated and adapted

to the flow problems, efficient solving methods can be applied and discrete conser-

vation is generally ensured. This motivates the proposal of an Immersed Boundary

Method (IBM), or more generally an Immersed Interface Method (IIM), to impose

the wall boundary condition in an effective and efficient way. It must be ensured

that the proposed method is also valid for complex turbulent flows of industrial

relevance.
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1.2 State of the Art:

Immersed Interface Methods

On Cartesian grids bounding surfaces of the flow or immersed obstacles need to

be accounted for by mapping the boundaries onto the grid. The formulation of

accurate interface conditions at boundaries that are not aligned with the grid is

a major challenge. Approaches, which have been proposed in literature, can be

classified into continuous and discrete forcing approaches [103].

In the continuous forcing approach [129], a distributed forcing function is inserted

into the momentum equations to mimic the interaction at the interface. The

forcing function contains model parameters that have to be adapted to the flow

configuration. Various extensions and adaptations have been proposed [55, 77, 83,

130, 137]. Disadvantages of this approach are that sharp interfaces are smeared

over an area corresponding to the local mesh width [129], and that discrete conser-

vation is not guaranteed. An application to solid boundaries can lead to stability

and accuracy issues due to the stiffness of the forcing function [83, 154].

Mohd-Yosuf [108] and Verzicco et al. [177] developed a predictor-corrector formu-

lation for enforcing a wall boundary condition with a discrete forcing function in

the momentum equations. Whereas the accurate representation of the boundary

has been demonstrated, the approach lacks discrete conservativity. Ghost-cell ap-

proaches [168] and reconstruction methods [74, 77, 95, 126] both use interpolation

to impose the boundary conditions at the interface. While the former extrapolates

velocity and pressure field to ghost cells based on nearby fluid points to enforce the

boundary condition, the latter reconstructs the velocity field near the immersed

boundary. Both methods are attractive because of their simplicity. However, in

general these methods do not conserve discrete momentum and mass in the vicinity

of the interface [74, 77].

Another discrete forcing approach is the cut-cell method introduced first for in-

viscid flows by Clarke [26], later extended to viscous flows [170–172, 182]. Cells

cut by the immersed interface are truncated so that they conform to the shape

of the boundary surface. The cut-cell method is based on a finite-volume dis-

cretization and generally maintains discrete conservation. A sharp representation

of the immersed interface can be achieved. A common problem of cut-cell meth-

ods is the creation of very small fluid cells that lead to numerical instability if left
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untreated [78]. However, this approach seems the most appropriate for dealing

with turbulent flows when an accurate representation of the flow in the vicinity

of the immersed interface is required. Collela et al.[27, 73] applied the cut-cell

method to free surface flows in three dimensions on a collocated grid. Ye et al.

[182] proposed a finite-volume collocated-grid formulation for incompressible fluid-

flows, where the fluid part of cut cells, whose center is located within the solid, is

merged with adjacent fluid cells. To ensure second-order accuracy, the flux calcu-

lation requires an interpolation of the cell variables and their gradients at the cell

faces near the boundary. The method has been applied to simulate various two-

dimensional flows with stationary and moving boundaries [105, 106]. Chung [23]

modified the cell merging approach of Ye et al. [182] to improve the shape reso-

lution of the immersed interface. However, second-order grid convergence has not

been achieved.

For the incompressible Navier-Stokes equations pressure-velocity coupling is an

essential concern [97]. Unlike collocated grids, approaches based on staggered grids

allow for a consistent finite-volume discretization of the divergence-free constraint

and have favorable stability properties [40]. Only few cut-cell methods for stag-

gered grids have been reported in literature: Tau [159] and Tucker [169] addressed

two-dimensional problems with first-order accuracy at the boundaries. Kirck-

patrick et al. [78] presented a three-dimensional method on staggered grids, where

advective fluxes and diffusive fluxes of the cut cells are modified. The small-cell

problem is addressed by linking small cells and adjacent fully fluid cells to form a

master-slave pair. Boundary conditions for the pressure at the immersed boundary

are not imposed directly but by the projection method of Bell et al. [8], requiring

several inner and outer iteration loops. Dröge and Verstappen [35, 36] propose

a method motivated by preserving the symmetry of the convective and diffusive

operators. The authors emphasize that boundary conditions at the immersed in-

terfaces cannot be defined without adversely effecting either the symmetry of the

operators or the global accuracy. Both the method of Kirckpatrick et al. and the

method of Dröge and Verstappen achieve second-order spatial accuracy and show

good results for flows with simple solid boundaries.

However, for moving boundaries, fluid-structure interaction problems and turbu-

lent flows of industrial relevance not only conservativity [3, 20, 110, 176] but also

a simpler representation of the geometry are desirable. A simple representation
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of geometries is likewise useful for complex three-dimensional bodies of arbitrary

shape.

1.3 Accomplishments of this Work

The accomplishments of this work are2:

1. Immersed Interface Method Development The objective is to develop a

Cartesian cut cell method for the incompressible Navier-Stokes equations

which is applicable to any finite-volume discretization on three-dimensional

staggered Cartesian grids. Cut cell methods retain the discrete mass and

momentum conservation of finite-volume discretizations by construction.

The method should be second-order accurate and offer a simple ge-

ometry representation allowing for a straightforward extension to mov-

ing boundaries. The method should efficiently work with stretched or

locally-refined grids to meet industrial requirements [40]. All desired fea-

tures should be validated. The question whether this method can accu-

rately model near-wall physics of turbulent flows is addressed.

2. Application to Complex Turbulent Flows with Industrial Relevance

The novel Conservative Immersed Interface Method (CIIM) in combination

with a wall-modeling approach [19] is applied to two complex turbulent flow

simulations on adaptively refined grids. The test cases should prove that the

Immersed Interface Method can accurately predict complex turbulent flows

bounded by geometries of arbitrary shape and industrial relevance.

1.4 Outline

This thesis consists of six chapters including this introductional Chapter 1. For

the fast reader each chapter is summarized at its end. In Chapter 2 the governing

equations, i.e. the Navier-Stokes equations, are introduced and discretized in

time and space. Notions will be given on boundary conditions and conservation.

Different ways of turbulence modeling will be considered. The novel Conservative

2Requirements are in bold letters
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Immersed Interface Method (CIIM) is developed in detail. In Chapter 3 a broad

spectrum of test cases is used to validate the CIIM with respect to the desired

characteristics. After this validation CIIM is applied in combination with a wall-

modeling approach and an adaptive grid refinement approach to two test cases

with industrial relevance: (1) a turbulent flow over a three-element highlift airfoil

in Chapter 4 and (2) a turbulent flow over the VFE-2 delta wing in Chapter 5. In

Chapter 6 final conclusions are drawn.
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Numerical Method

In numerical simulations the part of reality relevant to a specified problem is

expressed by a mathematical model which is further translated into a numerical

model for computing dedicated solutions. Already implied by the word model,

this is an abstraction of the reality and to be understood as the best possible

compromise between completeness and complexity. The complexity determines

the feasibility of a numerical simulation and the completeness determines whether

the reality is represented sufficiently.

In the mathematical model, one necessary restriction of complexity is that not

the entire reality but a limited domain of it is represented. With respect to the

boundary of the represented domain (realistic) boundary conditions are necessary.

Similarly proper initial conditions, must be defined for a well-posed problem.

In the numerical model, the equations of the mathematical model, here the Navier-

Stokes equations, are included in a discretized fashion using numerical methods.

For numerical simulations of fluid flows the governing equations are discretized in

space and time. Further modeling is included to cope with turbulence and, in this

thesis, to impose the wall boundary condition with an Immersed Interface Method.
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2.1 Mathematical Model

2.1.1 Governing Equations

A generic conservation equation in differential form on the domain Ω is considered

∂tΦ +∇ · F = 0, (2.1)

where Φ represents a conserved quantity and F is a flux function. The Navier-

Stokes equations for incompressible fluid flows are recovered if Φ equals the

velocity u = [u, v, w] and F is the nonlinear flux function

F = uu + Ip− 1

Re
∇u, (2.2)

where p is the pressure and I is the unity tensor. The Reynolds number Re is

defined as

Re =
uref lref

ν
, (2.3)

where ν represents the kinematic viscosity, lref is a reference length scale and uref

a reference velocity. The integral form of the transport equation Eq. 2.1 is

∂t

∫
Ω

u dΩ +

∫
S

uu dS = −
∫
S

Ip dS +
1

Re

∫
S

∇u dS, (2.4)

where S denotes the faces of Ω and dS the product of S and its normal vector.

Mass conservation of Ω is ensured by

∇ · u = 0, (2.5)

or in the integral form by ∫
S

u dS = 0. (2.6)

In incompressible flows the energy equation is not an independent transport equa-

tion but can be derived from the momentum transport equation above.
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2.1.2 Boundary Conditions

For obtaining a unique solution to the Navier-Stokes equations additional in-

formation is required at the boundaries of Ω. With respect to the solution either a

specified value (Dirichlet boundary conditions), the gradient orthogonal to the

boundary of the domain (Neumann boundary condition) or a linear combination

of them (Robin boundary condition) must be given. The standard inlet, outlet,

periodic and wall boundary conditions are explained in detail in [40] and [178].

Since the incompressible Navier-Stokes equations are incompletely parabolic

coupled with an elliptic set of equations, boundary conditions for the velocity must

be prescribed at all boundaries. Because of the coupling of pressure and velocity

a condition for the pressure is possible at open boundaries (inlet or outlet) [40].

While wall boundary conditions on a body-fitted grid are straightforward, for

Cartesian grids an Immersed Interface condition must be employed. With the

presence of diffusion the wall tangential velocities of the flow are zero, which

implies a no-slip boundary condition, and the wall normal velocity of the flow is

zero, signifying the non-permeability of the wall. According to the homogeneous

Neumann condition [40], the pressure gradient normal to the wall vanishes.

2.2 Numerical Model

2.2.1 Turbulence Modeling

The Navier-Stokes equations can be used in numerical simulation to fully de-

scribe laminar and turbulent flows. However, existing computational resource

constraints still restrict the spectrum of the time and length scales that can be

resolved [40].

Direct Numerical Simulation To solve the Navier-Stokes equations for

all scales, in so-called Direct Numerical Simulations (DNS) is restricted to mod-

erate Reynolds numbers. Yet, DNS is an important approach to understand

fundamental physical processes in scientific problems.

13



Chapter 2. Numerical Method

Reynolds-Averaged Navier-Stokes equations Simulation In approaches

based on the Reynolds-Averaged Navier-Stokes equations not the instanta-

neous velocity field but the mean velocity field is calculated with the help of statis-

tical turbulence models. The high level of abstraction makes Reynolds-Averaged

Navier-Stokes Simulation (RANS) suitable for industrial application. However,

both RANS and also its extension to Unsteady RANS (URANS) often fail to pre-

dict massively separated and reattached flows, as reported by many authors e.g.

Refs. [114, 144, 152].

Large-Eddy Simulation Large-Eddy Simulation (LES) resolves the large energy-

containing structures but does not resolve down to the smallest scales, i.e. the

Kolmogorov scales [79, 80]. Small scale-motions are neglected, however, LES

uses Sub-Grid-Scale (SGS) Models to account for the nonlinear interaction between

the resolved and non-resolved turbulent scales. Yet, in attached turbulent bound-

ary layer simulations, SGS models like the eddy-viscosity based and commonly-

used Smagorinsky model [148] do not correctly reproduce the sub-grid stresses

of the near-wall regions [72]. Alternatively, to fully resolve the near-wall physics

leads to prohibitively fine resolutions being3 the biggest counter-argument against

the industrial application of LES [5, 72]. Since the outer boundary layer reso-

lution is Reynolds number independent significant efforts have been made to

find appropriate ways to cope with the Reynolds-number dependent near-wall

physics. In this context, hybrid RANS-LES [152] and LES in combination with

wall-models or wall-functions [131] have been developed.

Hybrid RANS/LES or Detached-Eddy Simulation Hybrid RANS/LES

approaches like Detached-Eddy Simulation (DES) have been developed with the

objective to efficiently and accurately predict massively separated flows while ex-

ploiting the efficiency of RANS for the attached shear layer and the accuracy of

LES for the separated shear layer

Detached Eddy Simulation is originally understood as ”a three-dimensional un-

steady numerical solution using a single turbulence model, which functions as

a SubGrid-Scale model in regions where the grid density is fine enough for a

Large-Eddy Simulation, and as a Reynolds-averaged model in regions where it

is not [166]. Traditional DES uses the Spalart-Allmaras model on the RANS

3computational cost for resolving the viscous sublayer scale with Re2.4
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side and the Smagorinsky model on the LES side, however, several derivatives

with different turbulence models [156] and RANS/LES interface treatments have

been proposed [127]. The possibility to use and adopt different turbulence models

in different flow regions is the greatest advantage of DES but also the main source

for controversy and problems.

The key practical issues using DES are grid-induced separation, modeled stress

depletion and logarithmic-layer mismatch [152]. To overcome grid-induced sep-

aration and modeled stress depletion in Zonal DES (ZDES) the user explicitly

marks regions for RANS and LES [31]. Good results have been achieved by var-

ious research groups [14, 17, 145, 147], however, in complex flows with numerous

possible RANS or LES regions the decision for explicit marking is questionable.

With the same motivation but with different implementation Delayed Detached

Eddy Simulation (DDES) [153] employs a DES limiter also depending on the eddy

viscosity instead of the grid spacing only to switch between the turbulence mod-

eling modes. Improved Delayed Detached Eddy Simulation (IDDES) [143] even

tries to overcome logarithmic-layer mismatch with additional Reynolds-number

based empirical functions. Although these approaches achieved good results for

simple configurations a convincing (comprehensive) calibration for DES of complex

flows is still out of reach [152]. Practically in DES the RANS and the LES models

are adjusted based on results rather than explicit tests like the Clark-test [25]

or a priori studies.

To the author an even more severe problem for turbulent flow prediction is the

reported uncertainty of solutions [50, 152], linked to the chosen initial conditions

and the selection of the turbulence model.

Implicit Large-Eddy Simulations In this thesis an Implicit Large-Eddy Sim-

ulation (ILES) based on the Adaptive Local Deconvolution Method (ALDM) is ap-

plied. The theoretical background of implicit LES with ALDM [1, 64] follows from

the formal equivalence between cell-averaging and reconstruction in finite-volume

discretizations, and top-hat filtering and deconvolution in explicit SGS-modeling.

With ALDM, a local reconstruction of the unfiltered solution is obtained from a

solution-adaptive combination of approximation polynomials. Deconvolution and

interpolation are done simultaneously using Lagrangian polynomials as pro-

posed by Harten [58]. Deconvolution is regularized by limiting the degree of
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local approximation polynomials and by permitting all polynomials up to a cer-

tain degree to contribute to the approximately deconvolved solution. Adaptivity

of the deconvolution operator is achieved by dynamically weighing the respective

contributions. A suitable consistent numerical flux function operates on the ap-

proximately deconvolved solution. The solution-adaptive stencil-selection scheme

and the numerical flux function contain free parameters which can be used to

adjust the spatial truncation error of the discretization.

Free parameters of ALDM are selected such that the truncation error of the dis-

cretization functions as physically motivated SGS model. Given that the primary

purpose of a SGS model is to provide the correct spectral distribution of the dissi-

pation of resolved scales through interactions with modeled SGS stresses, free dis-

cretization parameters were calibrated by constraining the numerical dissipation to

the physical SGS dissipation obtained from the analysis of nonlinear interactions

in homogeneous isotropic turbulence [64]. The general validity of the determined

model has been demonstrated for various canonical flow configurations [62–65].

In LES the chosen grid size essentially defines the smallest represented physi-

cal scale. At finite grid size, the numerical truncation errors interfere with the

SGS model and modeling errors. In particular for implicit LES, the numerical

discretization and the turbulence model are indistinguishable. For non-turbulent

flows ALDM corresponds to a standard central second-order finite-volume scheme,

whereas for turbulent flows it provides a SGS model implicitly. With respect to

ALDM Cartesian grids offer the favorable feature to easily calibrate the truncation

error.

2.2.2 Discretization in Space and Time

A finite-volume discretization of Eq. (2.4) is obtained by

1

Vi,j,k∆t

∫ tn+1

tn

dt

∫
Vi,j,k∩Ω

dx dy dz

(
∂u

∂t
+∇ · F

)
= 0, (2.7)

where Vi,j,k ∩ Ω is a computational cell (i,j,k) of a Cartesian Grid with a volume

Vi,j,k. Time integration is performed from step tn to tn+1 with the time step size
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∆t = tn+1 − tn. Volume-averaged quantities u are defined as

ui,j,k =
1

Vi,j,k

∫
Vi,j,k∩Ω

ui,j,k dx dy dz. (2.8)

Discretizing Eq. (2.7) in time with an Euler forward scheme, which corresponds

to a substep of the Runge-Kutta scheme [142] used later, results in

un+1
i,j,k − uni,j,k

∆t
=

1

Vi,j,k

∫
Vi,j,k∩Ω

∇ · F(un, pn)i,j,k dx dy dz. (2.9)

The divergence-free condition Eq. (2.6) is enforced by a fractional-step method

with the intermediate velocity

u?i,j,k = uni,j,k +
∆t

Vi,j,k

∫
Vi,j,k∩Ω

∇ · F(un, pn)i,j,k dx dy dz, (2.10)

where F(uni,j,k, p
n) includes a predictor for the pressure gradient using the pressure

at time step n. For pressure projection a Poisson equation

∇2φi,j,k = −∇ · u?i,j,k, (2.11)

is solved, leading to a divergence-free velocity field

un+1
i,j,k = uni,j,k −∇φi,j,k. (2.12)

Finally the pressure is updated by

pn+1
i,j,k = pn +

φi,j,k
∆t

. (2.13)

By the Gauss theorem, the right-hand side of Eq. (2.10) becomes

u?i,j,k = uni,j,k +
∆t

Vi,j,k

∫
∂(Vi,j,k∩Ω)

F(un, pn)i,j,k · n⊥dS, (2.14)

where ∂(Vi,j,k ∩ Ω) is the surface of Vi,j,k ∩ Ω, i.e. the six finite-volume cell faces

intersecting with the Cartesian grid at (xi ±∆x/2, yi, zi), (xi, yi ±∆y/2, zi), and

(xi, yi, zi ± ∆z/2). The normal vector on the cell faces is n⊥. Eq. (2.14) finally
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pi,j,k

vi,j,k

vi,j−1,k

ui,j,kui−1,j,k

Figure 2.1: u control volume (−−), v control volume (·− ·) and p control
volume of a cell on a staggered grid in 2D; arrows indicate locations of velocity

components, circles locations of pressure.

becomes

u?i,j,k = uni,j,k

+
4t
4x

[
Fi+1/2,j,k − Fi−1/2,j,k

]
+
4t
4y

[
Fi,j+1/2,k − Fi,j−1/2,k

]
+
4t
4z

[
Fi,j,k+1/2 − Fi,j,k−1/2

]
, (2.15)

where Fi±1/2,j,k, Fi,j±1/2,k, Fi,j,k±1/2 are the face-averaged fluxes at the cell faces.

Eq. (2.15) corresponds to a standard finite-volume discretization on a three-dimen-

sional Cartesian grid. For the following section it is important to keep in mind

that the momentum equations are discretized on a staggered grid (see Fig. 2.1).

In this work, fluxes in Eq. (2.15) are computed with ALDM.

2.3 Conservative Immersed Interface Method (CIIM)

The flux balance in Eq. (2.15) must be modified appropriately for cells that are

cut by an interface, see Fig. 2.2. For cut cells the wetted surface is defined by the

unity of the fraction of the six cell faces wetted by the fluid and the subset of the

interface contained in the cell Vi,j,k ∩ Ω. The latter is approximated by a planar

element Γi,j,k. At the interface Γi,j,k the no-slip conditions for the normal velocity
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∆x∆z

Aj+1/2∆x∆z

Ai+1/2∆y∆z

∆y∆z
Γi,j,k

i, j, k
ζi,j,k

n⊥
n‖

SolidFluid

Figure 2.2: Fluid volume fraction ζi,j,k, intersection of ∂(Vi,j,k ∩Ω) and inter-
face with cell Γi,j,k, for the cut cell i,j,k.

u⊥ = (u · n⊥)n⊥ = 0 and the tangential velocity components u‖ = u − u⊥ = 0

and the Neumann condition for pressure ∇p · n⊥ = 0 must be satisfied.

Volume balance For the cut cells the finite-volume formulation is maintained

by taking into account face apertures, volume fraction and the interface seg-

ment Γi,j,k. The fluid volume fraction of a cut cell is denoted as ζi,j,k with 0 ≤
ζi,j,k ≤ 1. The wetted segment of the cell faces can be written as Ai±1/2,j,k4y4z,

Ai,j±1/2,k4x4z, and Ai,j,k±1/24x4y, where 0 ≤ Al,m,n ≤ 1 are the face apertures.

Accordingly, the fluid volume of a cell is Vi,j,k = ζi,j,k4x4y4z. Eq. (2.15) can be

rewritten as

u?i,j,k = uni,j,k

+
4t

ζi,j,k4x
[
Ai+1/2,j,kFi+1/2,j,k − Ai−1/2,j,kFi−1/2,j,k

]
+

4t
ζi,j,k4y

[
Ai,j+1/2,kFi,j+1/2,k − Ai,j−1/2,kFi,j−1/2,k

]
+

4t
ζi,j,k4z

[
Ai,j,k+1/2Fi,j,k+1/2 − Ai,j,k−1/2Fi,j,k−1/2

]
+

4t
ζi,j,k4x4y4z

[C + D], (2.16)

where the friction term D represents the friction force at Γi,j,k and is required

to enforce the no-slip condition with respect to the interface-tangential velocity
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components at Γi,j,k. C is a momentum exchange term which imposes the no-

slip condition with respect to the normal velocity components at the interface.

All terms on the right-hand-side of Eq. (2.16) are evaluated at time tn. A more

detailed description of these terms will be given below.

The face apertures, volume fractions and the interface segment (see Fig. 2.2) can

be determined by any suitable approach. When the interface is represented by a

zero level-set contour many efficient approaches for calculating these quantities are

possible [119, 120]. The use of a level-set field description allows for the treatment

of arbitrary geometries and for a straightforward extension to moving interfaces.

Empty cells, i.e., cells with zero fluid volume fraction and zero face apertures,

are initialized with u = 0 and are left unmodified during time advancement in

fluid-solid interaction problems.

Friction term The friction force on Γi,j,k is accounted for by adding

D = −
∫

Γi,j,k

τdS, (2.17)

to the flux balance of Eq. (2.16). Similarly to [78] the velocity gradients in tangen-

tial direction are neglected because they are zero for rigid immersed boundaries.

Furthermore the continuity condition in Eq. (2.6) must be satisfied, therefore the

wall shear stress τ can be expressed in a local frame of reference (see Fig. 2.3) as

τ = ν (∇u) · n⊥, (2.18)

using the kinematic viscosity ν Eq. (2.17) becomes

D = −
∫

Γi,j,k

ν (∇u) · n⊥dS. (2.19)

For a linear approximation of the wall-normal velocity gradient the difference of

the interface velocity uΓ(P ′) and the tangential velocity u‖(P
′′) in point P ′′ is used,

see Fig. 2.3. P ′′ is located in the interface normal direction at the distance ∆h

from the foot point P ′. P ′ is the normal projection of the cell center of cell (i,j,k)

on Γi,j,k. The velocity in P ′′ is calculated by trilinear Lagrangian interpolation

of the velocities at the eight neighboring velocity-cell centers. The final form of D

is

D = −νΓi,j,k
∆h

(
u‖ − uΓ

)
. (2.20)
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P ′

P ′′

i, j, k

Γi,j,k

∆h

n⊥
n‖

interpolation volume

SolidFluid

Figure 2.3: Linear approximation of the velocity gradient of a velocity cell.

The velocity uΓ at the boundary is known and vanishes for non-moving boundaries.

The distance ∆h needs to be related to the cell volume so that

∆h = 0.5
√

(4x · n⊥,x)2 + (4y · n⊥,y)2 + (4z · n⊥,z)2. (2.21)

4x, 4y and 4z are the dimensions of the control volume i, j, k and n⊥,x, n⊥,y,

n⊥,z are components of the normal vector on Γi,j,k. We note that the friction term

in Eq. (2.16) can be extended in a straightforward way to include a wall model for

turbulence [19]. However, no wall model will be used in the validation test cases

to prevent any influence while investigating the Immersed Interface Method.

Momentum-exchange term C For impermeable interfaces the interface nor-

mal velocity of the fluid equals that of the interface. In the following it is assumed

that the interface is impermeable and does not move so that the interface normal

velocity u⊥ = (u · n⊥)n⊥ vanishes. This is achieved with a pressure-velocity cou-

pling term, which is required because some small cut cells do not contribute to the

discrete Poisson equation on a staggered grid. More details will be given in the

following paragraphs of this subchapter. For small cells that do not contribute to

the discrete Poisson equation we impose the zero-normal-velocity condition by

C = −u⊥,i,j,k
Vi,j,k
4t

. (2.22)
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(i, j, k)(i− 1, j, k)

ζxtgt

target cell
x direction

(i− 1, j − 1, k)

ζxytgt

(i, j − 1, k)ζytgt
target cell
xy direction

target cell
y direction

n⊥ n⊥,y

n⊥,x

SolidFluid

Figure 2.4: Mixing procedure for the small fluid cell (i,j,k).

C is added to the flux balance in Eq. (2.16). A generalization to moving boundaries

is straightforward.

Small cell treatment Cut cell methods, such as the one presented in this thesis,

can generate cells with a very small fluid volume fraction. A special treatment

of such cells is necessary for numerical stability if excessively small time steps

are to be avoided. For such purposes cell merging [182], cell linking [78], and

mixed approaches [59] are reported in literature. Cell merging requires calculating

additional fluxes with adjacent cells. Also, the formulation of merging algorithms

in three dimensions tends to be cumbersome [78]. Cell linking [78] can avoid such

problems. However, due to various conditional operations, this approach appears

less suitable for the treatment of moving boundaries.

In the present method, the fluid of the small cells is mixed with that of the neigh-

boring cells. The approach of Hu et al. [69] is adapted for three-dimensional

staggered grids. Target cells for mixing are determined through an evaluation of

the normal vector n⊥ = [n⊥,x, n⊥,y, n⊥,z]. Different from the original approach [69]

all next neighbor cells are included in the mixing procedure. Suppose (i,j,k) is a

cut cell, there are three target cells in two dimensions, as shown in Fig. 2.4, and

seven target cells in three dimensions. The conservative exchange between the

small cell (i,j,k) and the target cell in, e.g., x-direction, is calculated by

Xx =
κxi,j,k

κxi,j,kVi,j,k + Vtgt
[Vi,j,k(V q

?)tgt − Vtgt(V q?)i,j,k], (2.23)
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where tgt is the index of the target cell and q? is the mixed conservative quantity.

Terms for target cells in the other directions are formulated accordingly. q? can

be the flux divergence ∇ ·F, the velocity u or a scalar concentration. It has been

found that mixing ∇·F results in a more accurate pressure approximation, see also

the paragraph Implementation. κxi,j,k is the fraction of mixing with the target

cell in x direction. The mixing fractions κi,j,k are defined as

κxi,j,k =n2
⊥,xζ

x
tgt
γ, κyi,j,k = n2

⊥,yζ
y
tgt
γ,

κzi,j,k =n2
⊥,zζ

z
tgt
γ, κxyi,j,k = |n⊥,xn⊥,y|ζxytgt

γ,

κxzi,j,k =|n⊥,xn⊥,z|ζxztgt
γ, κyzi,j,k = |n⊥,yn⊥,z|ζyztgt

γ,

κxyzi,j,k =|n⊥,xn⊥,yn⊥,z|2/3ζxyztgt
γ. (2.24)

These mixing fractions are normalized subsequently in order to satisfy

κxi,j,k + κyi,j,k + ...+ κxyzi,j,k = 1. (2.25)

The contributions of cells with large volume fraction are amplified by the integer

power γ ≥ 1. This leads to a stronger contribution of cells with a bigger volume

fraction thus enhancing numerical stability. Throughout this thesis γ = 5 is used.

Note that conservation is ensured since each conservative quantity Mi,j,k that a

small cell obtains from a target cell corresponds to a loss Mtgt in the target cell.

Mx
i,j,k = Xx = −Mx

tgt, (2.26)

Once the mixing exchanges are determined for all small cells the solution q is

obtained by

qi,j,k = q?i,j,k +
1

Vi,j,k

(∑
Mx +

∑
My + ...+

∑
Mxyz

)
, (2.27)

where q? is the solution before mixing (see also the paragraph on Implementation.

Since mixing is carried out before the final pressure projection, the solution after

each time step is divergence free.

Homogeneous Neumann condition for pressure projection To satisfy the

incompressible continuity equation (2.6), a Poisson equation is solved for the

pressure correction φ

∇2φi,j,k = −∇ · u?i,j,k. (2.28)
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For consistency it is necessary to use the same discrete gradient and divergence

operators in the momentum equation Eq. (2.16) and for Eq. (2.28). Using a

staggered grid formulation, the velocities at the cell faces of the pressure cell are

known, so that the discretized Poisson equation can be written as

1

4x

[
Ai+1/2,j,k

∂φ

∂x

∣∣∣∣
i+1/2,j,k

− Ai−1/2,j,k
∂φ

∂x

∣∣∣∣
i−1/2,j,k

]

+
1

4y

[
Ai,j+1/2,k

∂φ

∂y

∣∣∣∣
i,j+1/2,k

− Ai,j−1/2,k
∂φ

∂y

∣∣∣∣
i,j−1/2,k

]

+
1

4z

[
Ai,j,k+1/2

∂φ

∂z

∣∣∣∣
i,j,k+1/2

− Ai,j,k−1/2
∂φ

∂z

∣∣∣∣
i,j,k−1/2

]
− ζi,j,kΓi,j,k rp,Γ

Vi,j,k

= − 1

4x
[
Ai+1/2,j,k u

?
i+1/2,j,k − Ai−1/2,j,k u

?
i−1/2,j,k

]
− 1

4y
[
Ai,j+1/2,k v

?
i,j+1/2,k − Ai,j−1/2,k v

?
i,j−1/2,k

]
− 1

4z
[
Ai,j,k+1/2 w

?
i,j,k+1/2 − Ai,j,k−1/2 w

?
i,j,k−1/2

]
+
ζi,j,kΓi,j,k ru,Γ

Vi,j,k
, (2.29)

where u?, v?, w? are the intermediate velocities at the cell faces and ru,Γ and rp,Γ

are the velocity and pressure interface condition at Γi,j,k. The pressure gradient

is discretized with second-order central differences. For non-moving boundaries

ru,Γ = u?Γ · n⊥ is set to zero. The homogeneous Neumann condition is imposed

with ∇φ ·n⊥ = 0 and rp,Γ = 0 at the interface. The interface treatment decouples

the fluid domain from the interior of the obstacle. The discrete Poisson equation

is solved for the fluid domain only. Note that with a staggered grid arrangement

it is possible to have cells whose velocity control volumes are not zero but whose

pressure control volume is zero and therefore does not contribute to Eq. (2.29).

For such very small cells the momentum-exchange term in Eq. (2.22) ensures zero

wall-normal velocity. Eq. (2.29) can be written as a linear equation system

Mφ = b (2.30)

and solved for φ using a standard procedure.

Geometry representation The geometry representation is based on a level-set

approach. According to [54] a level-set of the differentiable function f : Rn → R
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corresponding to a real value b is the set of points

{(x1, ..., xn) ∈ Rn → R : f(x1, ..., xn) = b}. (2.31)

The level-set function φ in the present work is discretized on the underlying nu-

merical grid. For the cell (i, j, k) the level-set φ is defined as

φ(xi, yj, zk) = (xi − xwall) · n⊥,x + (yj − ywall) · n⊥,y + (zj − zwall) · n⊥,z, (2.32)

where (xwall, ywall, zwall) are the coordinates of the closest wall point. The zero-

level-set iso-contour describes the immersed interface. Iso-contours with a negative

sign are inside, iso-contours with a positive sign are outside the geometry. The

level-set field is interpolated to the cell corners. Those cells whose corner points

show a change in sign are defined to be cut cells. For the cut cells the interpolated

level-set field is used to calculate the face apertures with the marching square

approach [87] and volume fractions with standard tetrahedral decomposition.

Implementation At the initialization of a computation a level-set field is de-

termined on the basis of a geometry input. Cut cells are subsequently identified

and their face apertures and volume fractions are determined. For non-moving

immersed interfaces this procedure is applied once at the beginning of the com-

putation. For moving interfaces, the level-set field is transported and indicates

the evolution of time interface location. The extension to moving interfaces is

straightforward and not further discussed in this thesis. The general procedure

for one Euler time step can be summarized as follows:

Step 1 The convective and diffusive fluxes are calculated for standard and cut

cells in the same way.

Step 2 The fluxes across the cell faces of cut cells are scaled with the face aper-

tures.

Step 3 Friction forces at the immersed interface are taken into account by adding

D according to Eq. (2.20). D is added to the flux balance Eq. (2.16).

Step 4 The flux divergence is computed according to Eq. (2.16), where the volume

fractions are required for a conservative formulation.
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Step 5 The flux divergence of cells with a volume fraction ζi,j,k < 0.5 is mixed

with neighboring fluid cells of the immersed interface using the conservative

mixing procedure, Eq. (2.27), with

q?i,j,k = 1
Vi,j,k

∫
∂(Vi,j,k∩Ω)

F · n⊥ dS.

Step 6 Zero wall-normal velocity for small cells is imposed by C, see Eq. (2.22),

and added to Eq. (2.16).

Step 7 The prediction for the pressure gradient is added to mixed flux divergence

and the intermediate solution u?i,j,k is computed.

Step 8 In the subsequent pressure correction, the Neumann condition for pres-

sure is ensured by locally changing the coefficient matrix close to the im-

mersed boundary, see also Eq. (2.29). The resulting velocity is divergence

free.

At the end of this procedure, mass and momentum conservation are locally and

globally ensured. Mass conservation is ensured discretely according to the accuracy

threshold chosen in the Poisson solver, up to machine precision if desired. Dis-

crete conservation is monitored throughout a computation. A third-order Runge-

Kutta time integration scheme [142] is used in this thesis. In each Runge-Kutta

sub-step, all the steps above are invoked once. After the first Runge-Kutta sub-

step the mixing procedure is invoked, which improves stability and allows for the

use of a Courant-Friedrichs-Lewy (CFL) number of 1.0 based on the full cell

sizes. For moving interfaces the level-set field needs to be advanced in time. After

each time step cut cells are identified with the instantaneous zero-level-set, and

their face apertures and volume fractions are updated.

2.4 Summary

In this chapter the applied numerical simulation approach has been described.

The approach uses the incompressible Navier-Stokes equations discretized on

a staggered Cartesian grid. Turbulence is accounted for by the Adaptive Local

Deconvolution Method (ALDM) [62, 64, 66]. The Wall boundary condition is ap-

plied with the Conservative Immersed Interface Method (CIIM) which is a cut cell

approach. Finite-volume fluxes for cut cells and fluid cells are initially treated in
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the same manner, then only cut cells are subjected to subsequent modification.

Friction forces are accounted for by a friction term. The pressure boundary condi-

tion is imposed directly without computational overhead in the pressure-Poisson

solver. To ensure numerical stability for small cells, the conservative mixing pro-

cedure proposed by Hu et al. [69] is employed. A level-set field describes the

interface geometry, so that an extension to moving boundaries and more complex

configurations is straightforward. Further details on CIIM can be also found in

Ref. [100].
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Validation

In this chapter numerical examples are provided to illustrate the performance

of the new method. Test cases have been chosen such that proof can be given

with respect the requirements defined in Subchapter 1.3 Accomplishments of

this Work. All test cases are single-phase flows and have non-moving fluid-solid

interfaces.

3.1 Computational Setup

For the spatial discretization ALDM is used for the convective terms, and a second-

order accurate Central Difference Scheme (CDS) for the viscous terms and the

pressure gradient. Note that for non-turbulent flow ALDM [64] recovers a central

second-order finite-volume scheme. No wall-modeling is used within the validation

part to offer an unbiased view on CIIM and its performance. Time advancement

is performed using a third-order explicit three step Runge-Kutta scheme [142].

The pressure Poisson equation is solved using a Bi-Conjugate Gradient Stabilized

(BiCGStab) iterative solver. All computations are carried out at a CFL number

of 1.0 based on the full cell scale. More computational details are given in the

corresponding test case sections.
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3.2 Definition of Reference Quantities

Incompressible flows with constant density and without heat transfer are primarily

characterized by the Reynolds number, defined as

Re =
ρrefuref lref

µref
, (3.1)

where ρref is the reference density and µref is the reference dynamic viscosity. The

test case related reference velocity uref and the reference length scale lref are given

in each corresponding test case section. The velocity vector is defined to be

u =


u

v

w

 , (3.2)

where u, v, w are the streamwise, crossflow and spanwise velocity components.

Instantaneous velocities are normalized with uref

u

uref
,

v

uref
,

w

uref
. (3.3)

Time averaged quantities are indicated by 〈·〉. Applied to the first order velocity

statistics which are normalized with uref these become

〈u〉
uref

,
〈v〉
uref

,
〈w〉
uref

. (3.4)

Based on the time-averaged or non-averaged velocity field the time-averaged or

non-averaged vorticity is defined to be

〈ω〉 = ∇× 〈u〉 or ω = ∇× u. (3.5)

Similarly the shear is defined to be

〈τ〉 = ν∇〈u〉 or τ = ν∇u. (3.6)
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Fluctuations with respect to the time-averaged mean are indicated by ·′. The

second-order velocity statistics in time, i.e. the velocity fluctuations, are normal-

ized with u2
ref .

〈u′u′〉
u2
ref

,
〈v′v′〉
u2
ref

,
〈w′w′〉
u2
ref

. (3.7)

They are used to determine the Turbulent Kinetic Energy (TKE)

tke =
〈u′u′〉+ 〈v′v′〉+ 〈w′w′〉

2u2
ref

. (3.8)

The normalized crossflow correlations are defined to be

〈u′v′〉
u2
ref

,
〈u′w′〉
u2
ref

,
〈v′w′〉
u2
ref

. (3.9)

Unsteady flow phenomena are characterized by the Strouhal number

St =
flref
uref

, (3.10)

where f is a characteristic frequency of the considered test case. The frequency

f is determined with a Fast Fourier Analysis of an instantaneous velocity time

signal.

For evaluating the representation of the flow physics at the interface the time-

averaged pressure coefficient is needed. The dimensionless time-averaged pressure

coefficient is defined to be

〈Cp〉 =
〈p〉 − p∞
0.5ρu2

∞
, (3.11)

where 〈p〉 is the time-averaged local pressure and p∞, ρ∞ and u∞ are the pressure,

density and velocity in the freestream at infinity. For the same purpose, the friction

coefficient is employed

〈Cf〉 =
〈τw〉

0.5ρ∞〈u〉2
, (3.12)

where 〈τw〉 is the time-averaged wall shear stress defined in Eq. (2.18)4. With

〈Cf〉 = 0 the separation angle 〈θsep〉 is defined.

Global integral quantities like the drag and lift coefficient are used for the in-

vestigation of flows around bodies of arbitrary shape. The time-averaged drag

4here defined with the time averaged velocity 〈u〉
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coefficient per unit length is defined to be

〈CD〉 =
〈FD〉

0.5ρu2
∞lref

, (3.13)

〈FD〉 is the force in streamwise direction and consists of the friction force 〈FD,f〉 and

the pressure force 〈FD,p〉 acting in streamwise direction at the immersed interface.

〈FD,f〉 is determined by integrating the streamwise component of the friction term

D, see Eq. (2.20), over all cut cells. For 〈FD,p〉, the pressure force is integrated

over all cut cells. Similarly, the maximum and the root-mean-square (rms) lift

coefficient are defined

CL,max/rms =
FL,max/rms
0.5ρu2

∞lref
, (3.14)

where FL,max/rms is the force in transverse direction and consists of FL,p,max/rms

and FL,f,max/rms.

3.3 Inclined Channel Flow at Re = 20

The first test case is the laminar flow through a plane channel that is inclined

at β = 20◦, 30◦, 40◦ and 50◦ with respect to the grid. Based on the channel half

height h and the mean velocity ub, the Reynolds-number is Re = 20. This test

case in particular validates the viscous term of CIIM. The computational domain

is shown in Fig. 3.1.

The length of the channel is at least ten times the channel height. The spanwise

extent is one channel height. A parabolic velocity profile is defined at the inlet

boundary with the velocity aligned parallel to the axis of the channel. At the

outlet a pressure boundary condition is imposed. In spanwise direction periodic

boundary condition are used. At the walls of the channel, a no-slip condition is

imposed by CIIM.

The order of accuracy is determined from error estimates of the velocity profiles

on six successively refined equidistant grids, see Table 3.1. Nx and Ny are the

number of cells in the respective direction of the computational domain.
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Figure 3.1: Computational setup for the inclined channel flow at Re = 20.

Table 3.1: Grids and number of computational cells over channel height 2h
for the inclined channel flow at Re = 20.

Nx x Ny n20◦ n30◦ n40◦ n50◦

40 x 60 11 13 13 14
60 x 90 16 17 17 18
120 x 180 25 27 27 28
180 x 270 35 37 37 39
360 x 540 64 69 69 72

To compute the error, the following equation is applied to compare the velocity

profile of the computations to the analytical profile at half the channel length

ε =

(
1

n

n∑
r=1

(unumericalr − uanalyticalr )2

)1/2

, (3.15)

where n is the total number of cells across the channel. In Fig. 3.2 the error of the

velocity profile with respect to the analytical profile for the different grid resolu-

tions and inclination angles is shown. For all inclination angles the error decreases

with about second-order. CIIM is compared to a simple blocking method [65]

in Fig. 3.3(a). The blocking method shows a higher error than CIIM and only

first-order convergence. In Fig. 3.3(b) the velocity profiles with CIIM for different

grid resolutions are compared to the analytical profile for β = 20◦. The highest
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Figure 3.2: Error for different grid resolutions and different inclination angles
for the inclined channel flow at Re = 20 (−−�: β = 20◦, · · · · ·◦: β = 30◦,

− · ·∗: β = 40◦, −−�: β = 50◦).
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Figure 3.3: (a): Error for different grid resolutions with an inclination angle
β = 20◦ for CIIM and for the blocking method (−−�: with CIIM, ·− ·∗: with
blocking method). (b): streamwise velocity profiles for the inclined channel flow
at Re = 20 β = 20◦ with CIIM for different grid resolutions (· · · · ·: n = 11,
−−: n = 16, ·− ·: n = 25, ·−−: n = 35, − · ·: n = 64, −−−−: analytical

profile).

error occurs at the immersed interface and amounts to 1−2% in the first full fluid

cell on the fine grid (n = 64) in normal direction of the interface. Already for

moderate resolutions the global agreement with the analytical solution is good.

3.4 Flow over a Square Cylinder at Re = 100

Two square cylinder cases are investigated: a) the non-inclined square cylinder

(see Fig. 3.5(a)) b) a square cylinder inclined by α = 45◦ with respect to the

incoming flow (see Fig. 3.5(b)). At a Reynolds-number Re = 100 based on the

projected cylinder width d in the streamwise direction and the free stream velocity
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Figure 3.4: Computational setup for the 2-D flow over an inclined and a non-
inclined square cylinder at Re = 100 (every ninth computational cell is shown,

zoom on cylinder cross-section).

u∞ the flow over a square cylinder is unsteady, two-dimensional and laminar. The

computational setup used for all cylinder flow computations follows that of Fig. 3.4.

Note that for both cases the cylinder boundaries do not coincide with the grid lines.

3.4.1 Non-inclined Square Cylinder

Vortex shedding occurs at a St = 0.151 based on the shedding frequency. The fre-

quency in this and the following cylinder cases are determined through a Fourier

transform of a velocity time signal obtained in the wake of the cylinder. The com-

puted Strouhal-number agrees well with the experiments conducted by Oka-

jima [117].

The Strouhal number, the time-averaged drag coefficient per unit length 〈CD〉
and the maximum lift coefficient per unit length CL,max are compared to results

from literature in Table 3.2.

The lift coefficient agrees very well with the simulation by Franke et al. [45],

whereas the drag coefficient of the present calculation is slightly lower. All in all,
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(a) (b)

Figure 3.5: (a) Streamwise velocity and velocity contour lines for the flow over
a non-inclined square cylinder and (b) 45◦-inclined square cylinder at Re = 100.

Table 3.2: Inclination angle, time-averaged drag coefficient, maximum lift
coefficient, root-mean-square lift coefficient and Strouhal number for a non-

inclined and 45◦-inclined square cylinder flow at Re = 100.

Study α 〈CD〉 CL,max CL,rms St

Okajima [117], experiment 0◦ - - - 0.149
Davis and Moore [30], simulation 0◦ 1.63 - - 0.152
Franke et al. [45], simulation 0◦ 1.61 0.27 - 0.154
Sohankar et al. [150], simulation 0◦ 1.48 - 0.18 0.150
Simulation with CIIM (n = 76) 0◦ 1.57 0.27 0.19 0.151
Sohankar et al. [150], simulation 45◦ 1.72 - 0.48 0.182
Simulation with CIIM (n = 79) 45◦ 1.76 - 0.49 0.184

the differences are well within the range of variation for numerical and experimen-

tal data reported in literature [175].

To determine the order of grid-convergence of CIIM also for this test case, the

drag and the lift coefficient have been calculated on five grids not aligned to the

cylinder, with different resolutions and the same domain size. All grids are refined

according to a hyperbolic tangent function centered around the xz-, yz- symmetry

planes of the cylinder. Grid parameters are summarized in Table 3.3.

The error is calculated with respect to the solution on the finest grid. Fig. 3.6

shows a double-logarithmic plot of the errors for 〈CD〉 and CL,max. n is the number

of cells over the projected cylinder width. The error decreases with approximately

second-order.
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Table 3.3: Grids and number of computational cells n over the projected
cylinder width for the non-inclined and 45◦-inclined square cylinder flow at

Re = 100.

Nx x Ny n0◦ n45◦

128 x 64 15 17
192 x 96 23 25
256 x 128 34 36
384 x 192 51 53
512 x 256 76 79

3.4.2 45◦-inclined Square Cylinder

This test case evaluates the influence of the geometry representation given by the

level-set field on the accuracy. The level-set approach is known to smoothen sharp

corners. The same grids are used as for the non-inclined case (see Table 3.3).

The Strouhal-number, the time-averaged drag coefficient per unit length 〈CD〉
and the root-mean-square lift coefficient per unit length CL,rms of the current

calculation are compared to the results of Sohankar et al. [150] in Table 3.2. The

simulations of Sohankar et al. [150] have been carried out on body-fitted grids.

The agreement with the present results is good, which gives direct evidence of the

accuracy of the level-set description. The order of grid convergence is determined

with the grids shown in Table 3.3. Fig. 3.6 shows a double-logarithmic plot of the

errors for 〈CD〉 and CL,rms. n is the number of cells over the projected cylinder

width. Note that about second-order convergence rate is also achieved for the

inclined square cylinder.

3.5 Flow over a Circular Cylinder

In the following examples the flow over a circular cylinder for a wide range of

Reynolds-numbers is investigated. The computational setup is shown in Fig. 3.7.

The circular cylinder is a standard configuration for testing Immersed Boundary

and Immersed Interface Methods and a huge amount of reference data are available

from literature. The Reynolds-numbers of all cases is based on the cylinder

diameter d and the free stream velocity u∞.
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Figure 3.6: Error in 〈CD〉 (· · · · ·◦) and CL,max (−−�) for the flow over a
non-inclined square cylinder and error in 〈CD〉 (·− ·�) and CL,rms (− · ·4) for
the flow over a 45◦-inclined square cylinder at Re = 100 calculated on different

grids.
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Figure 3.7: Computational setup for circular cylinder flow.

3.5.1 Flow over a Circular Cylinder at Re = 40

At Re = 40 laminar separation occurs and exhibits a two-dimensional symmetric

wake. The calculation is carried out on a locally refined grid close to the immersed

boundary with a total number of 175,000 computational cells and 72 computational

cells over the cylinder diameter. The surface pressure coefficient 〈Cp〉 is compared

with experimental and numerical results in Fig. 3.8. Note that the calculation with

CIIM shows a smooth 〈Cp〉 profile unlike that often reported for discrete forcing

approaches [20, 74, 111].
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Figure 3.8: The pressure coefficient 〈Cp〉 along the surface of a circular cylinder
at Re = 40 (θ = 0 in the stagnation point; �: experimental data Grove [56], ◦:

experimental data Thom [163] −−: Dröge [35], −−−−: present method).

Table 3.4: Drag coefficient, pressure drag coefficient, friction drag coefficient,
separation angle and recirculation bubble length for the circular cylinder flow

at Re = 40.

Study 〈CD〉 〈CD,p〉 〈CD,f〉 〈θsep〉 〈Lrec/d〉

Tritton [167], experiment 1.58 - - - -
Grove et al. [56], experiment - 0.92 - 137.2◦ -
Coutanceau et al. [29], experiment - - - 126.5◦ 2.13
Dennis and Chang [32], simulation 1.52 0.99 0.524 126.2◦ 2.35
Ye et al. [182], simulation 1.52 - - - 2.27
Dröge [35], simulation 1.58 1.02 0.56 126.67◦ 2.22
Simulation with CIIM (n = 72) 1.56 1.04 0.52 126.4◦ 2.28

The drag, the separation angle and the length of the recirculation bubble com-

pare well with reference data both from experiments and other simulations, see

Table 3.4. The agreement for the individual contributions of pressure and friction

to the drag coefficient is also good.

3.5.2 Flow over a Circular Cylinder at Re = 100

At Re = 100 the flow is unsteady, two-dimensional and laminar, see Fig. 3.9(a).

For CIIM flow separation occurs at a an angle of 119◦ measured from the stagnation

point. Vortex shedding occurs at St = 0.165. A comparison of 〈CD〉, CL,max and

St for the present results with experimental and numerical results is given in

Table 3.5. All results are well within the range reported in the literature.
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Figure 3.9: (a): Contour map of the pressure coefficient Cp for the flow over
a circular cylinder at Re = 100. (b): Error in 〈CD〉(−−�) and CL(−−−−◦) for

the flow over a circular cylinder at Re = 100 calculated on different grids.

Table 3.5: Drag coefficient, maximum lift coefficient, separation angle and
Strouhal number for the circular cylinder flow at Re = 100.

Study 〈CD〉 CL,max 〈θsep〉 St

Tritton [167], experiment 1.26 - - -
Henderson [61], experiment 1.3 - 122◦ -
Fey et. al [41], experiment - - - 0.165
Kim et. al [77], simulation 1.33 0.32 - 0.165
Dröge [35], simulation 1.24 0.30 117◦ 0.165
Present, simulation (n = 76) 1.26 0.34 119◦ 0.165

In this investigation the influence of the amount of mixing, i.e. the effect of the

mixing threshold ζcrit, on the accuracy of the solution is analyzed. A variation

of the small-cell mixing criterion down to ζcrit = 0.2 leads to a decrease of 0.9%

for the drag coefficient and a variation up to ζcrit = 0.7 to an increase of 1.6%

with respect to the CIIM-standard solution. The amount of mixing was chosen as

best compromise between accuracy and overall efficiency and does not significantly

affect the computed flow field.

For a convergence study calculations have been performed on five grids with dif-

ferent resolution. All grids have been refined according to a tangent hyperbolic

function centered at the xz-, yz- symmetry planes of the cylinder. The different

grid resolutions are summarized in Table 3.6, where the finest grid is taken as

reference for the error estimation. For 〈CD〉 and CL,max second-order accuracy are

found, see Fig. 3.9(b).
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Table 3.6: Grids and number of computational cells n along the diameter for
the circular cylinder flow at Re = 100.

Nx x Ny n

128 x 64 15
192 x 96 23
256 x 128 34
384 x 192 51
512 x 256 76

3.5.3 Flow over a Circular Cylinder at Re = 3900

At Re = 3900 the separated, unsteady laminar shear layers undergo transition

in the near wake of the cylinder. An accurate representation of the flow at the

immersed interface is crucial for a correct prediction of the global flow physics,

making this test case especially suitable for the assessment of CIIM.

This case is widespread in literature and can be considered as an established

reference, despite the discrepancies of published results and sometimes not very

clearly specified configurations. Many DNS (Dröge [35]; Ma et al. [91]) and

LES (Breuer [9]; Fröhlich et al. [49]; Kravchenko and Moin [82]; Franke and

Frank [44]; Mahesh et al [92]; Park et al. [123]; Parnaudeau et al. [124]) have

been conducted for this flow.

In order to address the particular concern of accurate boundary treatment, this in-

vestigation includes a quantitative comparison of statistical results of two implicit

LES with ALDM, one on a curvilinear body-fitted grid with a usual formulation

of the wall-boundary condition, and one on a Cartesian grid with CIIM.

Reference Data and Previous Studies The pressure measurements of Nor-

berg (data extracted from Kravchenko and Moin [82]) provide the only experimen-

tal surface pressure data known to the author. Turbulent statistics in the very near

wake of the cylinder have been measured by Lourenco and Shih [89]) using PIV.

These data are commonly used in numerical studies for validation (e.g. Franke and

Frank [44]; Dröge [35]) and investigation (e.g. Kravchenko and Moin [82], Ma et

al. [91], Parnaudeau et al. [124]), yet their validity in the recirculation zone is often

subject to discussion. Beaudan and Moin [7] attribute discrepancies in the velocity

profiles to asymmetric experimental conditions. This disagreement is confirmed by
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Mittal and Moin [104] as well as by Kravchenko and Moin [82]. Kravchenko and

Moin [82] further argue that observed differences can be attributed to transitional

effects in the separating shear layers of the experiment. Norberg [116] showed

that aspect ratios of 60-70 are required to obtain results unaffected by cylinder

length under experimental conditions. Szepessy and Bearman [157] report differ-

ences in the vortex formation length for different aspect ratios. In consideration of

these findings the aspect ratio of 21 in the experiments of Lourenco and Shih [89]

appears to be rather small.

However, Parnaudeau et al. [124], whose PIV data are also used for comparison

here, have the same aspect ratio in their experiment as Lourenco and Shih [89]

but obtain different results. Furthermore, the PIV data of the experiments of

Parnaudeau et al. [124] for mean velocity on the wake centerline are consistent with

the hot-wire measurements of Ong and Wallace [118] but inconsistent with their

own hot-wire data. Due to these discrepancies, both the PIV data of Lourenco

and Shih [89] and Parnaudeau et al. [124] for the very near wake and the hot-

wire measurements of Ong and Wallace [118] for the near wake comparisons are

considered.

Computational Details Calculations were done on a locally refined grid with

a total of 7 million cells, see Fig 3.10 and a curvilinear body-fitted grid with a total

of 6 million cells and an O-H topology, see Fig. 3.11. The cell size of all cells at the

fluid-solid interface is 4x = 4y = 0.0025/d, so that the resolution is similar to

the LES of Franke and Frank [44] and Fröhlich et al. [49]. The first computational

cell in the wall normal direction is within the viscous sublayer of the cylinder. At

the boundary of the obstacle a viscous-wall boundary condition is prescribed for

the calculation on the curvilinear grid, and for the calculation on the Cartesian

grid the immersed interface condition is imposed by CIIM. In the region 1.5d away

from the fluid-solid interface, the resolution is 3 timer coarser than at the interface.

The region of the turbulent wake is resolved with a 9 times coarser grid than at

the interface. The Cartesian grid was automatically generated with a local mesh

refinement algorithm based on ghost cells in the grid transition regions. Data are

assigned to ghost cells by a third-order conservative interpolation scheme. This

scheme ensures mass and momentum conservation. The computational stencil

does not change at grid transition. All cut cells are on the finest grid level.
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Figure 3.10: Locally refined grid for the circular cylinder flow at Re = 3900
(every ninth computational cell is shown).

Figure 3.11: Curvilinear grid for the circular cylinder flow at Re = 3900
(every ninth computational cell is shown).

For both simulations the SGS modeling is realized with ALDM. ALDM has been

developed primarily for Cartesian grids due to the superior computational effi-

ciency and because Cartesian grids allow for an easy control of the truncation

error (see also Section 2).

ALDM has also been translated to general curvilinear coordinates and imple-

mented in a finite-volume solver for the incompressible Navier-Stokes equations

43



Chapter 3. Validation

on three-dimensional block-structured, body-fitted grids [67]. Boundary conditions

are imposed in a natural way on body-fitted grids, which facilitate accurate nu-

merical predictions of the wall-layer. The simulation code Large-Eddy Simulation

On Curvilinear Coordinates (LESOCC2) [68] employs non-orthogonal, boundary-

fitted, block-structured grids. Boundary-fitted block-structured grids can offer

considerable computational advantages for predicting wall-bounded turbulence:

Imposing no-slip wall boundary conditions is straightforward for grid-aligned do-

main boundaries. The algorithm uses a cell-centered variable arrangement and

Cartesian velocity components. The convective fluxes are discretized by ALDM in

an algorithmically simplified version (SALD) [64]. SALD preserves the modeling

capability of ALDM while significantly reducing computational costs. Another ad-

vantage of SALD is that it allows for a straightforward application to curvilinear

grids as the reconstruction of the unfiltered solution at cell faces by Harten-type

deconvolution polynomials can be done dimension by dimension [67]. Viscous

fluxes are discretized by centered differences. Numerical stability for the collo-

cated grid arrangement is maintained by employing a momentum–interpolation

technique.

Instantaneous Flow Field Fig. 3.12 gives an impression of the instantaneous

turbulent wake behind the cylinder. On both, the upper and the lower side of the

cylinder, a long shear layer with a longitudinal extent of one cylinder diameter sep-

arates, see also Fig. 3.13. Instabilities of the shear layers lead to the development

of vortices which mix in the primary von Kármán vortices before propagating

downstream as von Kármán vortex street. A good qualitative agreement with

the investigations of Ref. [24, 49] is observed. However, laminar-turbulent tran-

sition of the separated shear-layer on the body-fitted grid occurs closer to the

cylinder than on the Cartesian grid.

Instantaneous streamwise, cross-flow and spanwise velocity fields in the plane y = 0

of the first nine diameters of the cylinder are shown in Figs. 3.14 – 3.16. An un-

steady recirculation region in Fig. 3.14 and alternating regions of positive and neg-

ative cross-flow vortices in Fig. 3.15 corresponding to the von Kármán vortices

can be observed. The wake appears to be highly turbulent and three-dimensional.

Both large and small-scale structures are present in the wake. Flow structures

tend to increase in size downstream, see also Fig. 3.16 showing the instantaneous

spanwise velocity. However, small scale fluctuations are present even 9 diameters
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Figure 3.12: Isometric view on isosurfaces of instantaneous vorticity magni-
tude ωd/u∞ = 3 and ωd/u∞ = 10 for the circular cylinder flow at Re = 3900

on a Cartesian grid (top) and body-fitted grid (bottom).

downstream of the cylinder. Similar observations have been made by Kravchenko

and Moin [82]. This separation of scales downstream seems more prevalent and

regions of dense contour lines implying laminar-turbulent transition appear further

away from the cylinder for the simulation on the Cartesian grid. This supports

the previous findings.

Isosurfaces of the streamwise vorticity in the planes y = 0 and z = 0 are shown in

Fig. 3.17(a) and (b). For both simulations the quasiperiodic streamwise vortical

structures agree both in size and shape with the experimental findings of [94, 179].

The spanwise length scales are of the order of one-fourth to one-half with respect

to the cylinder diameter (see Fig. 3.13) and correspond to the scale estimation of

Mansy et al. [94, 179]

λz
d
∼ 25Re−0.5 ⇒ λz

d
|Re=3900 = 0.4. (3.16)

Averaged Flow Field For a quantitative validation, turbulence statistics are

sampled over 50 shedding cycles after steady vortex shedding was established and

are averaged in spanwise direction.
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Figure 3.13: Topview on isosurfaces of the instantaneous vorticity magnitude
ωd/u∞ = 10 for the circular cylinder flow at Re = 3900 on a Cartesian grid

(top) and a body-fitted grid (bottom).

Figure 3.14: 52 contours from -1.5 to 1.5 of the instantaneous streamwise
velocity in the plane y = 0 of the circular cylinder flow at Re = 3900 on a

Cartesian grid (top) and a body-fitted grid (bottom).
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Figure 3.15: 52 contours from -1.5 to 1.5 of the instantaneous crossflow veloc-
ity in the plane y = 0 for the circular cylinder flow at Re = 3900 on a Cartesian

grid (top) and on a body-fitted grid (bottom).

Figure 3.16: 52 contours from -1.5 to 1.5 of the instantaneous spanwise veloc-
ity in the plane y = 0 of the circular cylinder flow at Re = 3900 on a Cartesian

grid (top) and on a body-fitted grid (bottom).
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(a) (b)

Figure 3.17: Streamwise vorticity-isosurfaces ±5.5 s−1 of the circular cylinder
flow at Re = 3900 on a Cartesian grid (a) and on a body-fitted grid (b).
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Figure 3.18: (a): 〈Cp〉 along the cylinder surface for the circular cylinder flow
at Re = 3900 (θ = 0 in the stagnation point) and (b) 〈u〉/U∞ on the centerline
of the cylinder for the circular cylinder flow at Re = 3900 (∗: experimental
data Norberg extracted from Kravchenko and Moin [82], +: experimental data
of Lourenco and Shih [89] ,�: experimental data of Parnaudeau [124] ,−−:
Kravchenko and Moin [82], ·− ·: ILES on a body-fitted grid, −−−−: ILES on a

Cartesian grid + CIIM).
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The pressure coefficient 〈Cp〉 shows good agreement with the experimental results

of Norberg [extracted from Ref. [82]] and numerical results of Kravchenko and

Moin [82], see Fig. 3.18(a). The results of the ILES on the curvilinear grid do not

fully recover the recirculation zone. Note that the calculation with CIIM shows

a smooth 〈Cp〉 profile unlike that often reported for discrete forcing approaches

(Cheny and Botella [20]; Kang et al. [74]; Muldoon and Acharya [111]).

The mean streamwise velocity along the centerline is shown in Fig. 3.18(b). The

recirculation zone in the experiments of Lourenco and Shih [89] is shorter than

in the experiments of Parnaudeau et al. [124]. The calculation on the curvilinear

grid shows good agreement with the results of Lourenco and Shih [89] while the

calculation on the Cartesian grid shows good agreement with the experimental

results of Parnaudeau et al. [124] and the LES of Kravchenko and Moin [82].

The dip at x/d = 3 seen in the experiments of Lourenco and Shih [89] is neither

reproduced by the experiments of Parnaudeau et al. [124] nor by any simulation

reported in the literature.

Figs. 3.19 compare the statistics in the very near wake of the cylinder with the

experiments of Lourenco and Shih (1993) and Parnaudeau et al. [124]. Fig. 3.19(a)

shows velocity profiles at four different downstream locations (x/d = 0.58, 1.06,

1.54, 2.02) of the mean streamwise velocity 〈u〉/U∞. A strong velocity deficit occurs

in the region of the recirculation bubble. The mean velocity-profile shows a U-

shape close to the cylinder which evolves towards a V-shape further downstream.

At x/d = 0.58 the implicit LES on the curvilinear grid and the data of Lourenco

and Shih [89] are in good agreement. Please note the different shape of the profiles

at x/d = 1.06 for the two experiments. The results of Lourenco and Shih [89]

show a V-shape whereas Parnaudeau et al. [124] show a U-shape profile. Both

shapes have also been observed in various numerical studies. A V-shape profile

at x/d = 1.06 along with a longer recirculation length has been observed by

e.g. Kravchenko and Moin [82], Parnaudeau et al. [124] and also in the present

implicit LES on the Cartesian grid. On the other hand, the present calculation

on the curvilinear grid agrees with the results of Lourenco and Shih [89] and

the LES of Fröhlich et al. [49] and Fröhlich et al. [47]. Ma et al. [91] were able

to reproduce both shapes by DNS, where doubling the spanwise extent of the

domain changes the mean profile form U-shape to V-shape. Results for the mean

normalized transversal velocity 〈v〉/U∞ are shown in Fig. 3.19(b). It should be

mentioned that the profiles of Lourenco and Shih are shifted such that 〈v〉 = 0 is
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Figure 3.19: (a) Mean streamwise velocity, (b) mean crossflow velocity, (c)
streamwise velocity fluctuations and (d) crossflow velocity fluctuations at differ-
ent locations in the near wake of a circular cylinder at Re = 3900 (+: experimen-
tal data of Lourenco and Shih [89] ,�: experimental data of Parnaudeau [124]
,−−: Kravchenko and Moin [82], ·− ·: ILES on a body-fitted grid, −−−−: ILES

on a Cartesian grid + CIIM).

recovered for large y/d, as done also by Franke and Frank [44]. This anomalous

behavior in the data of Lourenco and Shih [89] can be attributed to experimental

disturbances (Parnaudeau et al. [124]). Despite the shifting, calculations in general

agree better with the data of Parnaudeau et al. [124]. Possible explanations are

discussed below.

In Fig. 3.19(c) the Reynolds normal stresses 〈u′u′〉/U2
∞ are shown. At x/d =

0.58 the calculation on the curvilinear grid shows higher peaks in the Reynolds

normal stresses than the calculation on the Cartesian grid. The two sharp peaks

at x/d = 1.06 can be attributed to the transitional state of the shear layers, which

show a flapping behavior due to primary vortex formation. The two peaks can

be matched in magnitude and position by the implicit LES on the Cartesian grid.

The results on the curvilinear grid again show an overshoot with the respect to
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(b) x/d

y
/d

Figure 3.20: Contour maps of 〈u〉/U∞ for the circular cylinder flow at Re =
3900 on a Cartesian grid (left) and on a body-fitted grid (right).

other data. For all data better agreement is reached further downstream. For the

crossflow normal Reynolds stresses 〈v′v′〉/U2
∞ the calculation on the Cartesian

grid shows reasonable agreement with both experiments, see Fig. 3.19(d), while

the calculation on the curvilinear grid shows an overshoot at x/d = 0.58, 1.06, 1.54.

This overshoot implies that with respect to the Cartesian-grid calculation laminar-

turbulent transition of the separated shear layers occurs closer to the cylinder,

which leads to a shorter length of the recirculation bubble. This is also confirmed

by the contour maps shown in Fig. 3.20-3.21. The mean velocity fields in Fig. 3.20

and Fig. 3.21 are similar apart from the size of the recirculation bubble, whereas

the velocity fluctuations in Fig. 3.22-3.24 clearly show the earlier transition in the

detached shear layers of the calculation on the body-fitted grid.

Figs. 3.26 compare the statistics in the near wake (x/d = 4, 6, 7, 10) with the

experiments of Ong and Wallace [118]. Fig. 3.26(a) shows the mean stream-

wise velocity at four different locations. The slightly lower velocity at x/d = 4

and x/d = 6 on the wake centerline indicates that the recirculation length in

the experiment is longer than the computed ones. Accordingly, the calculated

streamwise Reynolds stress is slightly larger than the experimental Reynolds

stress (see Fig. 3.26(b)). However, this finding confirms the numerical studies of

Ma et al. [91], Franke and Frank [44] and Kravchenko and Moin [82]. Further

downstream the agreement of the mean streamwise velocities and the stream-

wise Reynolds stresses is good for the Cartesian-grid calculation and satisfac-

tory for the curvilinear-grid calculation. For the cross-flow normal stress and the
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Figure 3.21: Contour maps of the 〈v〉/U∞ for the circular cylinder flow at
Re = 3900 on a Cartesian grid (left) and on a body-fitted grid (right).
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Figure 3.22: Contour maps of 〈u′u′〉/U∞for the circular cylinder flow at Re =
3900 on a Cartesian grid (left) and on a body-fitted grid (right).

Reynolds shear stress, plotted in Fig. 3.26(c) and Fig. 3.26(d), there is also a

slight overprediction at x/d = 4. Further downstream the cross-flow stresses show

that the calculated wake is wider than the measured one.

One Dimensional Energy Spectra In Fig. 3.27 the one dimensional energy

spectrum of the u-velocity component on the centerline of the wake at x/d = 3 is

plotted. The Lomb-periodogram technique with an oversampling of 4 and a Hann

window were used to perform the spectral analysis of unevenly sampled u-velocity

data for the two LES simulations. About 330,000 samples of the u-velocity were
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Figure 3.23: Contour maps of 〈v′v′〉/U∞ for the circular cylinder flow at
Re = 3900 on a Cartesian grid (left) and on a body-fitted grid (right).
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Figure 3.24: Contour maps of 〈u′v′〉/U∞ for the circular cylinder flow at
Re = 3900 on a Cartesian grid (left) and on a body-fitted grid (right).

collected over a time interval of TU∞/d = 300. The frequencies are normalized

with the Strouhal shedding frequency ωSt. In Fig. 3.27 the one dimensional

energy spectrum of the u-velocity component on the centerline of the wake at

x/d = 3 is plotted. The Lomb-periodogram technique with an oversampling of

4 and a Hann window were used to perform the spectral analysis of unevenly

sampled u-velocity data for the two LES simulations. About 330,000 samples of

the u-velocity were collected over a time interval of TU∞/d = 300. The frequencies

are normalized with the Strouhal shedding frequency ωSt.

Also displayed in Fig. 3.27 are the experimental results of Parnaudeau et al. [124]
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Figure 3.25: Contour maps of 〈Cp〉/U∞ for the circular cylinder flow at Re =
3900 on a Cartesian grid (left) and on a body-fitted grid (right).
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Figure 3.26: (a) Mean streamwise velocity, (b) mean crossflow velocity, (c)
streamwise velocity fluctuations and (d) crossflow velocity fluctuations at differ-
ent locations in the far wake of a circular cylinder at Re = 3900 (�: experimental
data of Ong and Wallace [118] ,−−: Kravchenko and Moin [82], ·− ·: ILES on

a body-fitted grid, −−−−: ILES on a Cartesian grid + CIIM).
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Figure 3.27: One dimensional velocity spectra at x/d = 3 in the wake of
a circular cylinder at Re = 3900 (·− · line: -5/3 slope, · · · · · line: cut-off
frequency, −−−− with ω/ωSt < 35: experimental data of Parnaudeau [124]
,−−: Kravchenko and Moin [82], ·− ·: ILES on a body-fitted grid, −−−−:

ILES on a Cartesian grid + CIIM).

and a −5/3-slope. The spectra of the two LES and the experiment clearly show

the inertial range. The good agreement for high wavenumbers of the ILES on the

Cartesian grid with the experiment implies a correct representation of the flow

down to the smallest scales. The three peaks of the u-spectrum at x/d = 3 of the

experiment are the shedding frequency and the first and second harmonic [124].

The peak at ω/ωSt = 1 is an experimental artefact that should not be present at

the centerline [124]. The first harmonic can be reproduced by the simulation on

the body-fitted grid and by the on the on the Cartesian grid, whereas the one on

the body-fitted grid also reproduces the second harmonic correctly.

Global Quantities Table 3.7 compares the mean drag coefficient, base suc-

tion coefficient (〈Cp,ba〉 = 〈Cp〉|θ=180◦), mean separation angle, mean recirculation

length and Strouhal number for the vortex shedding of the two simulations with

the data from literature.

All presented data for the drag coefficient are in good agreement. Ma et al. [91]

reported the lowest drag coefficient with 0.96 and Fröhlich et al. [49] obtained the

highest with 1.08. In the present simulation on the curvilinear grid a similar value

is obtained as in the LES of Fröhlich et al. [49] who also used LESOCC2 but in

combination with a dynamic Smagorinsky model. The drag coefficient obtained

on the Cartesian grid is close to the value obtained in the LES of Kravchenko and

Moin [82].
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The base suction coefficient is strongly dependent on the drag coefficient, since drag

is mainly due to pressure drag and the pressure varies the strongest at θ = 180◦

in all simulations and experiments. The results on the curvilinear grid are again

close to the results obtained by Fröhlich et al. [49]. The results obtained on

the Cartesian grid are close to the experimental data of Norberg (extracted from

Ref. [82]), see also Fig. 3.18(a).

The separation angle in the experiment by Lourenco and Shih [89] is considerably

smaller than the angles in the simulations. However the angles found in the sim-

ulations including the simulations presented here are all in good agreement. The

difference in length of the recirculation bubble Lrec/d between the experiments

and the simulations are significant. Fröhlich et al. [49] and Ma et al. [91] as well

as the current calculation on the curvilinear grid have the shortest recirculation

bubble, which is also in rather good agreement with the experimental results of

Lourenco and Shih [89]. The largest recirculation length has been reported by

Franke and Frank [44]. The results obtained on the Cartesian grid are close to the

experimental results of Cardell [16], the results obtained in the DNS of Dong et

al. [34] and the results obtained in the LES of Kravchenko and Moin [82].

The results for the Strouhal number in the simulations are all within the range

of the experimental data, only Ma et al. [91] and Dong et al. [34] reported results

that are lower. The results of both current simulations match the experimental

results of Cardell [16] and Lourenco and Shih [89].

Discussion of Differences Differences between the two calculations in the

present study certainly can be attributed to the effect of CIIM in the Cartesian

grid calculation, differences in local grid resolution, and differences in the pres-

sure treatment (staggered grid vs. collocated grid and stabilization). Fröhlich et

al. [44] also used LESOCC2 in their LES on a curvilinear grid with a dynamic

Smagorinsky model and obtained for the very near wake mean velocity profiles,

the Reynolds stresses and the respective length of the recirculation bubble (see

also Table 3.7) very similar results to our LESOCC2 calculation with ALDM. It

is emphasized that, despite these differences, results of both implicit LES are well

within the range of available experimental and numerical reference data. Overall,

the results of the Cartesian-grid calculation with CIIM can be considered at least

as reliable as that on the curvilinear grid.
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Table 3.7: Drag coefficient, base suction coefficient, separation angle, recir-
culation bubble length and Strouhal number for the circular cylinder flow at

Re = 3900.

Study 〈CD〉 〈Cp,ba〉 〈θsep〉 〈Lrec/d〉 St

Cardell [16], experiment - - - 1.33 0.215
Norberg taken from [82], experiment 0.98 -0.9 - - 0.21
Lourenco and Shih [89], experiment 0.99 - 86◦ 1.19 0.215
Ong and Wallace [118], experiment - - - - 0.21
Parnaudeau et al. [124], experiment - - - 1.51 0.208
Dong et al. [34], simulation - - - 1.47 0.203
Dröge [35], simulation 1.01 -0.88 87.7◦ 1.26 0.210
Franke and Frank [44], simulation 0.98 -0.85 88.2◦ 1.64 0.209
Fröhlich et al. [49], simulation 1.08 -1.03 88.1◦ 1.09 0.216
Kravchenko and Moin [82], simulation 1.04 -0.94 88◦ 1.35 0.210
ILES on body-fitted grid 1.07 -1.05 88.9◦ 1.18 0.215
ILES on Cartesian grid + CIIM 1.05 -0.92 88◦ 1.38 0.210

Computational Performance In this test case, the computational cost for

CIIM and the flux calculation with ALDM, each amounts to 2% of the overall

computational time, while the Poisson solver needs about 80%. Compared to

the ILES on the curvilinear grid the simulation on the Cartesian grid with CIIM

is four times faster with respect to the wall-clock time per timestep and per mesh-

node. Please note that both simulations have been conducted on the same system

architecture, a SGI-ALTIX with ItaniumII processors. Further information on

performance is given in [102].

Further information on this test case with more physical interpretation can be

found in Meyer et al [101].

3.6 Turbulent Periodic Hill Flow at Re = 10, 595

The incompressible turbulent flow in a channel with a periodic arrangement of

smooth constrictions is calculated at Re = 10, 595 based on the constriction height

h and bulk velocity ub above the constriction. The major challenges of this test

case is to predict the turbulent flow separation from a curved geometry and the

reattachment on a flat plate, see Fig. 3.28.
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Figure 3.28: Slice in midplane in spanwise direction of instantaneous shear
(top) and instantaneous streamwise velocity (bottom) for the flow over periodic
hills at Re = 10, 595 ((1): separation from smooth curved surface, (2): unsteady
reattachment on flat plate, (3): acceleration in post-reattachment region, (4):

acceleration on windward hill).

Previous Studies Motivated by these challenges many numerical and experi-

mental studies have been conducted on different periodic hill set-ups. The present

study uses the specific setup proposed by Mellen et al. [98] which is a modification

to the experiment of Ahmeida et al. [2]. With respect to Ahmeida et al. [2] Mellen

et al. [98] double the streamwise distance between the hills allowing for natural

reattachment, halve the channel height for reduction of the computational effort,

assume periodicity in spanwise direction instead of sidewalls in the experiment

and reduce the Reynolds number.

In this configuration the periodic hills have been widely used in workshops like

ERCOFTAC/IAHR/COST Workshops on Refined Turbulence Modeling [70] and

[93] to study and compare the ability of different numerical methods. Thanks

also to additional investigations many results of RANS [70, 93], LES [70, 93, 98,

160, 161] and hybrid LES-RANS approaches including Detached-Eddy Simulations

DES [10, 11, 70, 141] are available.

The Reynolds number influence has been studied by Refs. [11, 13]. It was shown

that gross-flow parameters, such as the separation bubble length, are sensitive to
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grid quality [160] and modeling approximations (e.g. SGS modeling [98, 161] or

wall modeling [160]).

To capture the flow physics computational grids require sufficient resolution in

streamwise direction near the separation bubble [161] and in spanwise direction

in the post-reattachment region [48]. As stated by Fröhlich et al. [48] most of

the statistical RANS turbulence models fail even with second-moment closures

to capture the ”splatting of large-scale eddies originating form the shear layer

and convected downstream towards the windward slope” [48] because they do not

account for the high level of spanwise velocity fluctuations in the post-reattachment

region. DES approaches perform better provided that the LES-RANS interface

lies inside of the boundary layer on the crest of the hill [141]. In LES recovering

near-wall physics has proven to be more influential then SGS-modeling making

this configuration particularly suitable for testing CIIM.

For a qualitative comparison the well-resolved LES of Breuer [9] and the experi-

ment of [13] are used.

Computational Details ALDM is employed as subgrid-scale model. The di-

mensions of the computational domain and the boundary conditions are shown

in Fig. 3.29. The size of the computational domain corresponds to the one used

in Ref [48]. A fixed Reynolds-number and a constant mass flux is ensured by

a volume force term in the Navier-Stokes equations. A total number of 1.6

million cells is used: 192× 128× 64 (streamwise × wall-normal × spanwise). The

grid is stretched in streamwise and wall-normal direction to resolve the crest with

∆xcrest/h = 0.0375 and ∆ycrest/h = 0.0051 comparable to Ref. [13]. Top and

bottom wall are resolved with ∆y/h = 0.008 in wall normal direction. In spanwise

direction the grid is equidistant with ∆z/h = 0.0703.

Instantaneous Flow Field At the considered Reynolds-number the flow evo-

lution is dominated by the detached shear layer above the unsteady recirculation

zone. Fig. 3.28 gives an impression of the flow field of the present simulation. The

flow separates downstream of the hill crest and reattaches in the middle of the

hills. A good qualitative agreement is observed with Ref. [13, 48].
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Figure 3.29: Computational setup for the flow over periodic hills at Re =
10, 595 (every ninth computational cell is shown).
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Figure 3.30: 〈Cf 〉 and 〈Cp〉 distribution on the surface for the flow over pe-
riodic hills at Re = 10, 595 (◦: experiment [134], −−: well-resolved LES on a

grid with 13× 106 cells [13], −−−−: present method).

Averaged Flow Field For a quantitative validation, turbulence statistics are

sampled over 25 flow-through times and averaged in the homogeneous spanwise

direction. The results are compared with the experimental data of Rapp [134]

and the well-resolved LES of Breuer et al. [13]. Breuer et al. [13] used a dynamic

Smagorinsky SGS model and a grid with 13 million cells.

Fig. 3.30 shows (a) the skin-friction coefficient 〈Cf〉 and (b) the pressure coefficient

〈Cp〉. The skin friction distribution along the bottom wall shows an irregular,

geometry-induced variation of the near-wall velocity, as reported by [48]. At the

leeward side of the hill the reverse flow in the recirculation region decelerates and

almost reverses its direction. Over the upstream half of the recirculation zone on

the lower wall 〈Cp〉 is nearly constant before rising dramatically downstream of

the left crest. According to Ref [48] the pressure plateau in this area is typical

for separated regions bordered by an outer flow with minor streamwise velocity

variations. The minimum skin friction occurs at x/h = 2.5 − 2.6, where the
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Figure 3.31: Mean streamwise and cross flow velocity for the flow over periodic
hills at Re = 10, 595 (◦: experiment [134], −−: well-resolved LES on a grid

with 13× 106 cells [13], −−−−: present method).

reverse flow reaches a maximum. Approaching the reattachment point, the near

wall velocity and the skin friction tend to zero. The positive pressure gradient is

related to the deceleration of the outer flow and a laterally shrinking recirculation

zone [48]. The incipient separation at x/h = 7.2 is not recovered by the present

simulation. On the windward side of the hill the flow accelerates toward the hill

crest leading to a sharp increase in skin friction.

The results for four stations are shown: a short distance beyond the hill crest at

x/h = 0.05, in the middle of the recirculation region at x/h = 2.0, close to the

reattachment at x/h = 4.0 and in the post-reattachment region, halfway between

reattachment and the foot of the next hill at x/h = 6.0.

In Fig. 3.31 the mean streamwise and crossflow velocity are shown. Overall, a good

agreement with the reference data [13, 134] is observed. Deviations are visible at

x/h = 4.0 in the cross flow velocity. This might be linked to a shorter recirculation
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Figure 3.32: Streamwise velocity fluctuations for the flow over periodic hills
at Re = 10, 595 (◦: experiment [134], −−: well-resolved LES on a grid with

13× 106 cells [13], −−−−: present method).

bubble in the present simulation compared to the references. However, it should

be noted that the crossflow velocity is about one order of magnitude smaller than

the streamwise component and thus more sensitive [9].

Looking at the streamwise velocity fluctuations (Fig. 3.32) the simulated and the

measured data are found to be in close agreement. The present simulation even

reproduces the strong measured peak at x/h = 0.05.

The crossflow velocity fluctuations are depicted in Fig. 3.33. Considering the

sensitiveness of the mean cross flow velocities the fluctuations show satisfactory

agreement with the references.

In case of the Reynolds shear stresses (Fig. 3.33) the order of magnitude of the

deviations is similar to the streamwise velocity fluctuations.
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Figure 3.33: Cross flow velocity fluctuations for the flow over periodic hills
at Re = 10, 595 (◦: experiment [134], −−: well-resolved LES on a grid with

13× 106 cells [13], −−−−: present method).

Table 3.8: Separation and reattachment points for the flow over periodic hills
at Re = 10, 595.

Study (x/h)sep (x/h)reatt

Breuer [9], simulation 0.19 4.69
Hickel et al. [65], simulation 0.34 4.30
Fröhlich et al. [48], simulation 0.2 4.56
Simulation on Cartesian grid + CIIM 0.19 4.45

Global Quantities The flow separates at (x/h)sep = 0.19 downstream of the hill

crest and reattaches at (x/h)reatt = 4.5 − 4.65, see also Fig. 3.35. The respective

recirculation zone occupies about 50% of the streamwise domain. Good agreement

with reference literature is found, see also Tab. 3.8.
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Figure 3.34: Reynolds shear-stresses for the flow over periodic hills at Re =
10, 595 (◦: experiment [134], −−: well-resolved LES on a grid with 13 × 106

cells [13], −−−−: present method).
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Figure 3.35: Contour map of the mean streamwise velocity for the flow over
periodic hills at Re = 10, 595.
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Computational Performance For this test case again a SGI-ALTIX with Ita-

niumII processors have been used. CIIM consumes 3% of the overall computational

time, the flux calculation with ALDM accounts for 8% and the Poisson solver

uses 81%.

3.7 Summary

This chapter has validated and tested the performance of the Conservative Im-

mersed Interface Method (CIIM) with respect to the previously defined require-

ments, see also Chapter 1.3. The test matrix is shown in Table 3.9.

Table 3.9: Summary of validation test cases and defined requirements.

Requirements/ convergence conservation interface efficiency
Test case physics

Incl. channel flow Re=20 X X X -
Square Cylinder flow Re=100 X X - -
Circ. Cylinder flow Re=40 - X X -
Circ. Cylinder flow Re=100 X X - -
Circ. Cylinder flow Re=3900 - X X X
Turbulent hill flow Re=10,595 - X X X

Second-order grid convergence has been proven for the decrease of the velocity

profile error of the inclined channel flow at Re = 20 simulated on a equidistant

grid and for the decrease of the lift and drag coefficient error of the circular and

square cylinder flow at Re = 100 simulated on a stretched grid. For all simulations

mass and momentum conservation are both locally and globally ensured. Mass

conservation is proven to be ensured discretely according to the accuracy threshold

chosen in the Poisson solver, up to machine precision if desired. The local flow

physics at the interface are proven to be modeled correctly for the developed

laminar channel flow at Re = 20, the separated laminar circular cylinder flow at

Re = 40, the separated circular cylinder flow with laminar-turbulent transition

at Re = 3900 and the separated and reattached turbulent periodic hill flow at

Re = 10, 595. Even for complex flow cases, i.e. circular cylinder at Re = 3900

and the turbulent periodic hill flow at Re = 10, 595, CIIM consumes only an

insignificant amount of computational time and allows for a four times faster

simulation compared to a respective simulation on a curvilinear grid with standard
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wall boundary conditions. All in all, CIIM fulfills all stated requirements and shows

a good performance.
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Application to the Flow over a

3-element Highlift Airfoil

One major objective of this thesis is to show that CIIM is also suitable for the sim-

ulation of turbulent flows bounded by geometries of arbitrary shape and industrial

relevance.

An industrially relevant test case is the turbulent flow over a 3-element highlift

airfoil [173]. In aeronautics 3-element highlift airfoils or other highlift systems are

employed to control the aerodynamic characteristics of aircraft [42, 136]: for steep

climb-out and landing approaches or, more unconventionally, for improving the

cruise flight performance [135]. The cruise flight performance can be improved

by, e.g., novel seamless leading edge moveables to increase the portion of laminar

flow on the wing during cruise, novel trailing edge devices for slatless leading edge

wings or variable camber wings for better lift or even shock control.

An improvement of highlift systems can help to reduce fuel consumption and emis-

sions, noise impact and to better exploit airport capacities [162, 181]. The neces-

sary comprehensive understanding of the complex flow physics in the design and

optimization process of such system, especially in the case of the unconventional

or novel ones, can be achieved by high-fidelity numerical simulations. With in-

creasing computational, capabilities numerical simulations can partially replace or

complement time-consuming and expensive experimental investigations and there-

fore play an important role in the reduction of development cost and development

time of new aircraft.
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(1)

(2)

(3)
(4)

Figure 4.1: Contour map of the mean streamwise velocity for the flow over the
RA16SC1 three-element airfoil at Re = 1.7× 106 ((1): unsteady flow dynamics,
(2): laminar-turbulent transition region, (3): flow separation, (4): confluence of

boundary layer and wake).

The flow over highlift configurations, such as shown in Fig. 4.1, exhibits a wide

range of physical phenomena including highly unsteady flow dynamics in the cove

of the slat (1), laminar-turbulent transition (2), strong pressure gradients possibly

leading to flow separation on the flap (3), and the confluence of boundary layers

and wakes (4).

Previous studies [31, 139] have shown that classical RANS simulations cannot fully

reproduce the flow around a three-element airfoil due to the unsteady nature of

the flow. Fully turbulent Unsteady RANS (URANS) simulations with turned-off

turbulence modeling in the cove region of the slat made a better overall agreement

possible [75, 76, 86]. However, in order to account for strong three-dimensional

effects and a possible recirculation zone on the upper flap surface, researchers,

e.g. Deck [31], considered LES but deemed it to be beyond feasibility. Instead

Refs. [31, 138] use hybrid RANS/LES approaches or DES, and apply LES only

in the slat cove and the flap region. However, according to Ref. [31] and to the

knowledge of the author DES has not yet been able to accurately reproduce the

flow physics on the flap. Since the flap contributes to the lift and respectively

to the maximum possible lift coefficient5, knowing and understanding the flow

physics on the flap is crucial for the multi-element airfoil design [149] and an

accurate prediction with numerical simulation is strongly desirable.

5In the design of conventional transport aircraft generally the maximum lift coefficient is the
sizing parameter at landing, while at take-off rather the lift-to-drag ratio and the related required
thrust and fuel burn for reaching a defined climb rate are important, see also Ref. [173]
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As opposed to former studies this investigation accounts for the strong down-

stream influence of the slat [33, 107] on the turbulent-boundary layer development

on the main wing [140] and on the flap by performing a LES of an entire highlift

configuration. This is made feasible by several efficiency-increasing means such as

modeling near-wall turbulence and the usage of adaptively refined computational

grids. The study will answer the question to what extent an efficient LES ap-

proach can accurately reproduce the flow physics that was observed in a highlift

configuration experiment.

4.1 Description of RA16SC-1 Experiments

The highlift airfoil of the current study has been designed and manufactured by

ONERA Lille (France) for the EUROPIV 2 project G4RD-CT-2000-00190 and

has used as a test case in the European DESider Project AST-CT-2003-502842.

The airfoil model is based on the two-dimensional RA16SC-1 profile and consists

of a slat, a wing and a flap in landing configuration, i.e., with the slat 30◦ and

the flap 40◦ deflected. In this extended configuration the wing has a chord length

ce = 0.691 m. The wing span is 2.1 m and maximum profile thickness measures

0.08 m.

The current investigation uses the experimental data of the EUROPIV 2 project, in

which the DLR and Airbus Bremen (Germany) jointly performed static pressure

and Particle Image Velocimetry (PIV) measurements in the Low Speed Wind

Tunnel (LSWT) of Airbus Bremen [4, 113]. LSWT is an Eiffel-type wind tunnel

with a closed test section with a cross section of 2.1 × 2.1 m2 and a test section

length of 4.45 m.

The vertically installed model has been passed through the tunnel floor and has

been attached a short distance underneath to a motorized turntable. The gap

between wind tunnel floor and model has been filled by two wooden plates cut

specially to fit around the model profile.

Optical access for the PIV system has been provided by several glass windows in

the bottom, top and side walls of the test section. At the side walls outside the test

section two pairs of Quantel Brilliant-B pulsed lasers plus associated optics have

been mounted to form the light sheets. The light sheets have been set up to enter

the test section horizontally at the height of the mid-span of the model. Seeding
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has been produced by two DLR generators [81] filled with DEHS (Di-2-Ethylhexyl-

Sebacat) oil and has been carried out in the complete hall surrounding of the wind

tunnel. Data acquisition has been performed simultaneously by four cameras PCO

SENSICAM digital cameras with Zeiss and Tamron lenses of maximum aperture

fl 2.8 and various focal lengths.

PIV measurements have been performed in four camera setups (see Fig. 4.2) con-

centrating on the slat wake, the slat-wing gap, the flow mixing over the main

wing, the wing-flap gap and the wing wake. Three angles of attack α have been

investigated: 12◦, 17.5◦ and 19◦. Based on the retracted chord length of the wing

cretr = c = 0.5 m, the wind tunnel freestream speed of u∞ = uref = 54 m/s and

atmospheric conditions the Reynolds number has been equal to 1.7× 106.

During PIV measurements the tunnel hall has been blacked out. Before starting

data acquisition fine adjustments to the focii of the cameras have been carried out

on the seeding particles themselves. For each incidence a sequence of 34 images

pairs has been acquired from each camera with an inter-pair interval of 1/3 s. This

procedure has been then repeated twice to give 102 image pairs for each window

allowing for averaging over approximately 100 image pairs per window. All data

have also been averaged in spanwise direction.

In the post-processing process, perspective distortions have been removed by de-

warping all images in the first step [37].

4.2 Computational Setup

4.2.1 Numerical Method

The flow is described by the incompressible Navier-Stokes equations discretized

on a staggered Cartesian grid. The convective terms are discretized with ALDM [64].

As opposed to other studies, e.g. Refs. [21, 31, 76], the turbulence model is not

modified or even switched off in the cove of the slat or other regions. The explicit

third-order Runge-Kutta scheme of Shu [142] is used for time advancement. The

time-step is dynamically adapted to satisfy the Courant-Friedrichs-Lewy

condition CFL = 1.0. Diffusive terms and the pressure-Poisson equation are dis-

cretized by second-order centered differences. The Poisson solver employs fast
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Figure 4.2: Four camera arrangements for PIV measurements for the flow
over the RA16SC-1 three-element airfoil.

Fourier transforms in the spanwise direction and the stabilized bi-conjugate gra-

dient (BiCGstab) method [146, 174] in the streamwise and wall-normal directions.

The Poisson equation is solved at every Runge-Kutta substep.

4.2.2 Computational Domain and Boundary Conditions

The computational domain is shown in Fig. 4.3. The farfield is chosen to be at

at least 30 c away from the profile. At the inlet a uniform velocity profile and at

the outlet a pressure condition is defined. At the upper and lower side free-slip

boundary conditions are imposed. In spanwise direction the domain extent is 0.2 c

and periodicity is assumed. In all directions the domain extent is larger or at least

as large as in comparable studies [21, 31, 75].
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Figure 4.3: Computational setup for the flow over the RA16SC-1 three-
element airfoil at Re = 1.7 × 106 (every third computational cell is shown,

spanwise extent is 100 times magnified for better visualization).

Wall boundary conditions are imposed with CIIM in connection with a Thin-

Boundary-Layer-Equation (TBLE) based wall-model [19]. The coupling position

between wall-model and LES is located in the logarithmic region of the boundary

layer.

Please note that laminar-turbulent transition in this simulation is fully natural.

Neither fully turbulent flow is assumed as in Deck [21, 31] nor turbulence is trig-

gered by, e.g., suction/blowing approaches as in Refs. [22, 86].

4.2.3 Computational Grid

The computational domain is subdivided into 2000 blocks with 7 different grid

refinement levels. In the vicinity of the immersed interface cell sizes correspond to

a non dimensional value of ∆y+ = 60, based on the experiences made for turbulent

boundary layers with a TBLE wall-model [19]. Refined regions are located in the

slat cove, the wake of the flap and up to distance of 0.15 c away from the profile

on the suction side of the slat, wing and flap (see Fig.4.4). The planar xy-grid

consists of approximately 300, 000 square-shaped computational cells. The basic

planar xy-grid is simply duplicated to obtain the spanwise grid that consists of

128 equidistantly distributed cells. Please note that as opposed to Deck [31] this

is a fully three-dimensional simulation without any two-dimensional regions. In
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Figure 4.4: Computational grid for the flow over the RA16SC-1 three-element
airfoil at Re = 1.7× 106 (every third computational cell is shown).

all directions the grid resolution is higher than in the previous study by Deck [31].

The total number of cells of this study is 38× 106.

4.2.4 Statistical Analysis

For statistical analysis the simulation was run for ∆tave = 0.3 s of physical time

after reaching a statistically steady state. A clearer picture of the sample size for

the flow over a wing is obtained with the Convective Time Unit (CTU), i.e., the

time the flow needs to pass the wing, which is defined to be

CTU =
c

uref
. (4.1)

The number of Convective Time Units nCTU is calculated with

nCTU =
∆tave
CTU

. (4.2)

Respectively, the flow of this study has been averaged over 30 Convective Time

Units (CTU’s) after the transient was washed out and the flow has reached a

statistically steady-state. Statistics have been also averaged in the homogeneous

spanwise direction.
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Figure 4.5: RA16SC-1 model and rake locations.

4.3 Results and Discussion

This investigation uses the conventions and variable definitions of Chapter 3.2.

Further variables are defined in the respective section before their usage.

This investigation pertains to the experiment with the angle of attack α = 12◦.

According to Refs. [31, 165] the presence of separation on the tunnel walls caused

by the lack of suction devices affected the recirculation and respectively the loading

on the slat. An adaptation of the angle of attack in the calculation is a commonly

used methodology for highlift device computations, see also Ref. [75]. In a study

related to this test case, Tran [165] showed, that, based on a comparison of the

experimental and calculated slat lift coefficient, the correction for α = 12◦ is equal

to −4◦. However, Deck [31] showed, that, based on a comparison of the pressure

coefficient distribution between the experiment and precursor RANS calculations,

a correction of −3◦ is sufficient for his DES. For the current simulation a correction

of −3◦, i.e., α = 9◦, is chosen.

The investigation is divided into: a) Global Surface Pressure Distribution, b) Flow

over the Slat, c) Flow over the Main Wing and d) Flow over the Flap. Both, the

instantaneous flow field and the averaged flow field are studied. For comparing

the turbulent statistics of the current simulation with experimental data six rake

positions are defined, see Fig. 4.5. The experimental profiles at the rake positions

are extracted from the PIV maps shown in Fig. 4.2. The profiles are plotted

against the local wall-normal distance normalized by the reference chord length,

i.e. δ/c.

74



Chapter 4. Application to the Flow over a 3-element Highlift Airfoil

0 0.5 1

8

6

4

2

0

2

〈Cp〉

x/c

Figure 4.6: Pressure distribution 〈Cp〉 on the surface of the slat, main wing
and flap for the RA16SC-1 three-element airfoil at Re = 1.7×106 (◦: experiment
8◦ angle of attack, �: experiment 12◦ angle of attack, �: experiment 13◦ angle

of attack, −−−−: present simulation at 9◦ angle of attack).

4.3.1 Global Surface Pressure Distribution

Fig. 4.6 compares the distribution of the mean surface pressure coefficient 〈Cp〉 of

the present simulation with the experimental results of the EUROPIV 2 project at

α = 8◦, 12◦ and 13◦. The good agreement with the experimental 〈Cp〉 distribution

at α = 12◦ gives evidence that the correction to α = 9◦ for the simulation is

adequate. From here on only the experiment at α = 12◦ and the simulation at

α = 9◦ are considered.

On the slat surface the experimental pressure coefficient 〈Cp〉 distribution is well

reproduced by the simulation. Please note the good agreement for the highest

positive 〈Cp〉 at the stagnation point, the slightly lower 〈Cp〉 at the slat cusp and

the 〈Cp〉 distribution of the pressure recovery region starting at the suction peak

〈Cp〉min,slat and ending at the slat trailing edge.

On the main wing surface the experimental 〈Cp〉 distribution is also predicted well

by the simulation. Near the leading edge the good agreement between measured

and computed 〈Cp〉 distribution gives proof that flow physics in the slat cove are

represented correctly [21, 22]. A good agreement is also found on the lower main

wing surface including the flap cove. The discrepancy near the trailing edge is

also visible in all other related simulations [31, 165] and is likely to be due to
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(a) (b)

Figure 4.7: Contour maps of the shear and the spanwise vorticity ωzc/u∞ in
the slat area of the RA16SC-1 three-element airfoil at Re = 1.7× 106.

experimental issues. On the first 70% of the upper wing surface, i.e. the suction

side, the simulation and the experiment agree well; especially the experimental

pressure peak (〈Cp〉)min,main is predicted perfectly both in position and in magni-

tude. However, near the wing trailing edge the agreement on the upper wing is

less satisfactory.

On the flap surface the 〈Cp〉 distribution of the experiment and the simulation

agrees less than on the slat and on the main wing. This confirms previous obser-

vations of Deck [31].

Please note that the 〈Cp〉 distribution on the flap is almost independent of the

angle of attack, see also Fig. 4.6 and similar findings in Ref. [21, 165]. Thus, it is

concluded that the angle of attack and its correction are most likely not the cause

of the discrepancy between experiment and simulation. This discrepancy will be

investigated later on.

4.3.2 Flow over the Slat

As the flow physics at the slat have a strong downstream influence and respectively

influence on the angle of attack limits, wing loading etc., they are studied first.

Instantaneous Flow Field Fig. 4.7(a) shows the shear layers emanating from

the slat trailing edge and the slat cusp. Almost immediately downstream of the
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(a) (b)

Figure 4.8: Contour maps of the streamwise ωxd/u∞ and the crossflow
vorticity ωyc/u∞ in the slat area of the RA16SC-1 three-element airfoil at

Re = 1.7× 106.

cusp the shear layer rolls up and evolves into a stream of discrete quasi-2D, elon-

gated vortices co-rotating in spanwise direction with a positive sign, see Fig. 4.7(b).

Convected towards the lower surface of the slat within the shear layer the vortices

progressively become three-dimensional and distorted, see vorticity in streamwise

and crossflow direction in Fig. 4.8(a) and (b) as well as the vorticity magnitude

in Fig. 4.9. The shear layer reattaches and forms a recirculation region to which

some vortices temporarily entrain while other vortices are drawn towards the slat

trailing edge.

The entrained vortices are diverted downwards to the cusp and induce unsteady

eruptions of secondary vortices from the recirculating boundary layer flow along

the slat surface, see Fig. 4.7(b). When swept upwards again by the recirculating

boundary layer flow the vortices partially merge with those convected by the shear

layer separated from the slat cusp in a mixing layer.

The vortices directed towards the slat trailing edge get distorted by the local mean

flow strain, see also Fig. 4.8 (a) and (b). Specifically, the stretching of streamwise

vorticity, as a result of the mean flow acceleration behind the reattachment, leads

to streamwise elongated vorticity structures convecting underneath the slat trailing

edge, see also Fig. 4.10. The convected slat cove structures interact with the small-

scale vortices shed behind the relatively thin slat trailing edge.
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Figure 4.9: Instantaneous vorticity magnitude isosurface colored by
streamwise-velocity in the slat area of the main wing of the RA16SC-1 three-

element airfoil at Re = 1.7× 106.

Figure 4.10: Instantaneous vorticity magnitude isosurface colored by
streamwise-velocity in the gap between trailing edge of the slat and the main

wing of the RA16SC-1 three-element airfoil at Re = 1.7× 106.
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(a) (b)

Figure 4.11: Streamlines in the slat region for the experiment and the simu-
lation with CIIM of the RA16SC-1 three-element airfoil at Re = 1.7× 106.

The vortical structures shed at the trailing edge of the slat show negative and

positive signs for spanwise vorticity indicating classic vortex shedding, see also

Fig. 4.7(b). These vortices evidently do not pass through the gap between the slat

and the main wing.

The vortical structures leaving the slat downstream perturb the main wing bound-

ary layer beneath them, see Fig. 4.10. According to Paschal et al. [125] the vortical

structures emerging from the slat cove hereby play a more important role than the

ones shed at the trailing edge. Overall, qualitatively good agreement is observed

with the related PIV experiments of Takeda [158] and Paschal et al. [125] as well

as the DES of Deck [31].

Averaged Flow Field Fig. 4.11 compares the time-averaged streamlines in the

slat region of the current simulation with the experimental PIV data of the EU-

ROPIV 2 project. The experiment and simulation clearly show the same position

for the stagnation point at (x/c)slat,stag = −0.19 which gives further evidence that

the chosen angle of attack in the simulation is correct. Experimental and numer-

ical results exhibit a large recirculation region with separation at the slat cusp

and reattachment in the slat cove near the trailing edge. The distance between

the slat trailing edge and the reattachment point is (l/c)slat,reatt = 0.034 in the

experiment and (l/c)slat,reatt = 0.033 in the current simulation, see also Table 4.1.

The reattachment produces large velocity fluctuations as reflected in the turbulent

kinetic energy contours in Fig. 4.12(a) and as reported by Moriatry et al. [109].
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Table 4.1: Characteristic quantities for the RA16SC1 three-element airfoil at
Re = 1.7× 106.

Study (x/c)slat,stag (l/c)slat,reatt (Lr/c)flap,sep

EUROPIV 2, experiment -0.19 0.034 0.12
Deck [31], simulation (DES) -0.19 0.035 0.0
Simulation on Cartesian grid + CIIM -0.19 0.033 0.08

(a) (b)

Figure 4.12: Contour maps of the turbulent kinetic engery (tke) in the slat
area and on the suction side of the main wing of the RA16SC-1 three-element

airfoil at Re = 1.7× 106.

Hereby the aforementioned secondary vortices are initiated [71], which are then

distributed over the slat lower surface by the recirculation movement.

Fig. 4.11 also shows that the flow on the upper surface of the slat is attached. The

high density of streamlines in the gap between slat and main wing, adjacent to the

recirculation zone and near to the stagnation point imply strong flow acceleration

in the slat region.

Zones of flow acceleration are clearly visible in the contour maps of the measured

and the computed velocity magnitude shown in Fig. 4.13. The flow is accelerated

on both sides of the stagnation point. On the suction side the flow is further

accelerated up to the velocity peak and associated pressure peak (see also Fig. 4.6)

at x/c = −0.19, then slightly decelerated down to the trailing edge of the slat.

On the pressure side the flow is further accelerated until the slat cusp before it

separates as a free shear layer, i.e. a mixing layer. This shear layer bounds the
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(a) (b)

Figure 4.13: Contour maps of the velocity magnitude in the slat area for the
experiment and the simulation with CIIM.

recirculation zone associated with low velocities. Across the shear layer a strong

velocity differential is apparent. When the shear layer passes through the gap

between slat and main wing, the flow is considerably accelerated leading to the

aforementioned stretching of vortical structures in streamwise direction. Please

also note the unsteadiness of the slat wake implied by the high level turbulent

kinetic energy, see Fig. 4.12(b).

For a more detailed study of the recirculation region and the bounding shear layer,

turbulent statistics of the current simulation are compared to the experiments of

the EUROPIV 2 project of Rake0. Fig. 4.14(a) shows the computed and measured

mean velocity magnitude. The velocity gradient between the cove and the outer

flow is significant. The simulation reproduces the measured center of the recircu-

lation bubble defined by (〈u〉/u∞) = 0 at δ/c = 0.04 and the measured shear layer

boundary defined by (〈u〉/u∞)max at δ/c = 0.1.

Fig. 4.15(a)-(d) show the streamwise velocity fluctuations, the crossflow velocity

fluctuations, the spanwise velocity fluctuations and the turbulent kinetic energy

for Rake0. Peaks for all components are visible in the region of the shear layer

at δ/c = 0.1 indicating that the shear layer is unsteady. For the streamwise and

crossflow velocity fluctuations another peak is located in the recirculation bubble

at δ/c = 0.02. The flow seems to be highly three-dimensional in the region where

the flow reverses as reflected by the spanwise velocity fluctuations in Fig. 4.15(c).
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Figure 4.14: Velocity magnitude at Rake0 and Rake1 for the RA16SC-1 three-
element airfoil at Re = 1.7 × 106 (�: experimental data EUROPIV 2, −−−−:

present method)

0 0,05 0,1 0,15 0,2 0,25
0

0,05

0,1

(a) 〈u′u′〉/u2
∞

δ/
c

0 0,05 0,1 0,15 0,2 0,25
0

0,05

0,1

(b) 〈v′v′〉/u2
∞

δ/
c

0 0,05 0,1 0,15 0,2 0,25
0

0,05

0,1

(c) 〈w′w′〉/u2
∞

δ/
c

0 0,05 0,1 0,15 0,2 0,25
0

0,05

0,1

(d) kuv

δ/
c

Figure 4.15: Streamwise velocity fluctuations, crossflow velocity fluctuations,
spanwise velocity fluctuations and turbulent kinetic energy at Rake0 for the flow
over the RA16SC-1 three-element airfoil at Re = 1.7×106 (�: experimental data

EUROPIV 2, −−−−: present method).
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Figure 4.16: Instantaneous vorticity magnitude isosurface colored by
streamwise-velocity on the suction side of the main wing of the RA16SC-1 three-

element airfoil at Re = 1.7× 106.

4.3.3 Flow over the Main Wing

The main wing takes the major part of the aerodynamic wing loading. An accu-

rate prediction is therefore necessary for determining correct global aerodynamic

coefficients and the overall aerodynamic characteristics of the wing configuration

in the preliminary design process.

Instantaneous Flow Field The vortices leaving the slat impinge into the main

wing boundary layer and trigger its development and laminar-turbulent transition,

see Fig. 4.16. When the longitudinal vortices from the slat cove hit the boundary

layer they are partially merged with the vortices of the boundary layer, partially

convected downstream. Moving towards the trailing edge of the main wing the

turbulent boundary layer flow is slowed down by the adverse pressure gradient.

In the flap cove of the main wing the turbulent structures are similar to those

found in the slat cove. Again a recirculation zone dominates the flow physics.

It is bounded by a shear layer that separates from the flap cove lip on the lower

surface of the main wing, rolls up into vortices rotating in spanwise direction with a

positive sign (see Fig. 4.17(a)) that become three-dimensional and unsteady when

approaching the reattachment zone in the flap cove, see Fig. 4.18. Some of these

vortices interact with the recirculation bubble and induce eruptions of secondary
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(a) (b)

Figure 4.17: Contour maps of the spanwise ωzc/u∞ and the streamwise
vorticity ωxc/u∞ in flap cove area of the RA16SC-1 three-element airfoil at

Re = 1.7× 106.

Figure 4.18: Instantaneous vorticity magnitude isosurface colored by
streamwise-velocity in the flap cove of the main wing of the RA16SC-1 three-

element airfoil at Re = 1.7× 106.

vortices in the near wall region of the flap cove. When diverted back towards the

reattachment region, the entrained vortices partially merge with the vortices of

the separated shear layer, see Fig. 4.17(a). Vortices that are not entrained in the

recirculation region are directed towards the trailing edge of the main wing. The

vortical structures are deformed and stretched in streamwise direction when the

flow is accelerated in the gap between main wing and flap, see Fig. 4.17(b).
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(a) (b)

Figure 4.19: Contour maps of the spanwise vorticity and the shear in the flap
area of the RA16SC-1 three-element airfoil at Re = 1.7× 106.

At the trailing edge of the main wing vortex shedding occurs, see Fig. 4.19(a) and

(b). These vortices partially interact with those generated in the flap region and

those of the turbulent boundary layer of the main wing before impinging into the

boundary layer of the flap.

Averaged Flow Field Fig. 4.20(a) and (b) show the contour maps of the mea-

sured and the calculated time-averaged velocity magnitude near the leading edge

of the main wing. Both in the experiment and the simulation the flow acceler-

ates up to the position x/c = 0.025 where (〈Cp〉)min,main is reached and is then

decelerated down to the trailing edge due to the adverse pressure gradient. The

merging process of the slat wake with the main wing boundary layer is clearly

visible. With increasing running length the growing wing boundary layer pushes

the slat wake away from the surface. However, in the simulation this phenomenon

is more pronounced than in the experiment. This difference between experiment

and simulation will be studied more thoroughly by comparing the measured and

computed turbulent statistics at Rake1, Rake2 and Rake3.

Fig. 4.14(b) displays the measured and computed mean velocity magnitude at

Rake1. The mass deficit due to the slat wake is slightly more pronounced in the

simulation than in the experiment. This can be attributed to a higher turbulence

level in the experiment leading to a more intense merging process. The agreement

between simulation and experiment is good.
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(a) (b)

Figure 4.20: Contour maps of the velocity magnitude in the main wing area
for the experiment and the simulation with CIIM.

The velocity fluctuations at Rake1 shown in Fig. 4.21(a)-(c) indicate the unsteadi-

ness of the impinging slat wake. For the streamwise velocity fluctuations the same

peak as for the mean velocity magnitude is visible. The considerable values of the

spanwise velocity fluctuations underline the three-dimensionality of the flow. The

high values for the turbulent kinetic energy (see Fig. 4.21(d)) at the wall can be

attributed to the turbulent flow structures emanating from the slat cove, see also

Fig. 4.12(b).

Further downstream at Rake2 the agreement of computed mean streamwise ve-

locity (see Fig. 4.22(a)) is good. The mass deficit, i.e. the slat wake, is located

at δ/c = 0.03 in the experiment and at δ/c = 0.032 in the simulation. Please

note that this merging process is most important for the correct prediction of the

maximum lift coefficient [149]. According to the profiles’ characteristics, e.g. the

velocity gradient at the wall, the turbulence level of the boundary layer is slightly

higher in the experiment. This can be at least partially attributed to the high

turbulence level of the experimental setup already discussed in Deck [31]. An-

other influence can be expected from the wall-modeling approach that does not

account for the strong pressure gradient and/or a lack of grid resolution6. This

discrepancy is also responsible for the difference in measured and calculated 〈Cp〉
discussed before.

6This test case has been simulated three times; with increasing resolution related results
improved slightly. However, a further increase of resolution would make the simulation impossible
with available computational resources.
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Figure 4.21: (a) Streamwise velocity fluctuations, (b) crossflow velocity fluc-
tuations, (c) spanwise velocity fluctuations and (d) turbulent kinetic energy at
Rake1 for the RA16SC-1 three-element airfoil at Re = 1.7×106 ( −−−−: present

method).
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Figure 4.22: Velocity magnitude at (a) Rake2 (b) Rake3 for the RA16SC-1
three-element airfoil at Re = 1.7 × 106 (�: experimental data EUROPIV 2,

−−−−: present method).
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The findings at Rake2 also apply to the mean velocity magnitude at Rake3, shown

in Fig. 4.22(b).

4.3.4 Flow over the Flap

The flow over the flap is strongly affected by the flow physics upstream (see

Fig. 4.23) and their correct representation by the simulation. Previous simula-

tions [31] of this test case have not been able to reproduce the separation of the

experiment. However, the correct prediction of the flow over the flap is essential

for the sustainable usage of CFD in the industrial environment.

Instantaneous Flow Field Most of the vortices passing the trailing edge of

the main wing penetrate into the developing boundary layer on the flap and trig-

ger laminar-turbulent transition, i.e., vorticity is distributed in all three space

dimensions, see Fig. 4.19(b) as well as Fig. 4.24(a) and (b).

The vortical structures turning with a positive sign in spanwise direction seem to

induce a ”flapping” separation of the flap shear layer, see Fig. 4.19(a). Hereby

the flap-cove flow with vortical structures elongated in streamwise direction show

a cushioning or shielding behavior. Excited by the discrete vortices of the Kevin

Helmholtz instability of the trailing edge of the main wing the separated shear

layer becomes almost immediately unstable and rolls up into discrete vortices, see

Fig. 4.19(b).

Close to the separation of the unsteady shear layer the flapping of this separated

shear-layer induces secondary vortices, see Fig. 4.19(a). The separated shear layer

bounds a recirculation zone entraining some of the vortices. Again these vortices

generate further vorticity when the shear layer convects them along the upper

surface of the flap. Vortex merging is also visible.

Averaged Flow Field The averaged streamlines of the experiment, Fig. 4.25(a),

show a smaller recirculation bubble than the current simulation, Fig. 4.25(b), see

also Table 4.1. This will be investigated in the following paragraphs.

In Fig. 4.26(a) and (b) the measured and the calculated velocity magnitude contour

are compared. Both show the acceleration of the flow in the gap between the main
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Figure 4.23: Instantaneous vorticity magnitude isosurface colored by
streamwise-velocity in the flap region of the RA16SC-1 three-element airfoil

at Re = 1.7× 106.

(a) (b)

Figure 4.24: Contour maps of the streamwise ωxc/u∞ and the crossflow
vorticity ωyc/u∞ in the flap area of the RA16SC-1 three-element airfoil at

Re = 1.7× 106.
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(a) (b)

Figure 4.25: Streamlines in the flap region for the experiment (a) and for
the simulation with CIIM (b) of the RA16SC-1 three-element airfoil at Re =

1.7× 106.

(a) (b)

Figure 4.26: Contour maps of the velocity magnitude in the flap area for the
experiment (a) and for the simulation with CIIM (b) of the RA16SC-1 three-

element airfoil at Re = 1.7× 106.

wing and the flap. However, the contour lines of the shear layer leaving the upper

surface of the main wing differ: in the experiment the dip for the mass deficit due

to the slat wake is closer to the surface than in the simulation.

For a more detailed investigation the measured and calculated turbulent statistics

at Rake4 are compared. In Fig. 4.27(a) the mean velocity magnitude shows good

agreement for the accelerated gap flow. It is therefore concluded that the simu-

lation correctly predicts the flow physics of the flap cove. The agreement for the
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Figure 4.27: Velocity magnitude at Rake4 and Rake5 for the RA16SC-1 three-
element airfoil at Re = 1.7 × 106 (�: experimental data EUROPIV 2, −−−−:

present method).

mass deficit for the main wing wake is also good. However, the agreement for the

main wing boundary layer now separated from the main wing, i.e. δ/c > 0.03, is

in line with the findings for the previously discussed rakes and is considered less

satisfactory.

The velocity fluctuations in Fig. 4.28(a)-(d) show two considerable peaks: at δ/c =

0.01 for representing the small-scale vortex shedding at the blunt trailing edge of

the main element and at δ/c = 0.03 associated with the turbulent boundary layer

over the main wing and the slat wake. Fig. 4.28(a) and (c) clearly depicts the

unsteadiness in all three spatial directions. The higher turbulent kinetic energy

Fig. 4.28(d) implies a higher turbulence level of the numerical simulation compared

to the experiment. This higher turbulence level is assumed to delay the separation

of the flap boundary layer making the recirculation bubble smaller compared to

the experiment.

Fig. 4.27(b) shows the measured and the calculated mean velocity profiles at Rake5

located in the region of the recirculation bubble. In comparison with the exper-

iment the simulation shows an established recirculation region and it places the

mass deficit at a low position. On the simulation side discrepancies can be at-

tributed to differences in the characteristics of the impinging main wing boundary

layer and to the lack of consideration of strong pressure gradient effects in the

wall-model, i.e., incorrect prediction of the boundary layer growth and respec-

tive deflection of the wake. Furthermore, discrepancies are expected due to the

non-constant pressure gradient in the experiment [31].
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Figure 4.28: Streamwise velocity fluctuations, crossflow velocity fluctuations,
spanwise velocity fluctuations and turbulent kinetic energy at Rake4 for the
RA16SC-1 three-element airfoil at Re = 1.7 × 106 (�: experimental data EU-

ROPIV 2, −−−−: present method).

4.4 Summary

In this chapter CIIM in combination with a wall-model based on the Thin-Boundary

Layer Equations (TBLE) [19] has been applied in the investigation of the flow over

the 3-element RA16SC-1 airfoil.

The use of this configuration was the best compromise between a geometry model

that was not too complex in shape to gain optical access for PIV, but from a

flow physics point of view still complex enough to be representative for industrial

highlift systems. The correct prediction of the global flow physics requires an

accurate representation of wall-bounded turbulence and poses a major challenge

for LES on a Cartesian adaptive grid on which the wall-boundary condition is

imposed by CIIM.

The simulation has predicted the unsteady three-dimensional flow in the slat region

correctly. The development, evolution and interaction of primary and secondary

vortices in the simulation qualitatively has corresponded to the experimental data.
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Further quantitative comparisons with experimental results have confirmed this

agreement.

The flow of the slat influences the boundary layer development on the main wing.

On the first part of the main wing the quantitative and qualitative agreement

between experiment and simulation is good. Further downstream the simulation

shows a more prominent growth of the turbulent boundary layer deflecting the

slat wake upwards. Possible reasons have been identified: a lack of grid resolution,

lack of consideration of pressure-gradients in the TBLE formulation, a higher

turbulence level in the experiment as well as a non-constant pressure gradient in

the experiment.

Despite this discrepancies, the experimental flow physics on the flap are repre-

sented qualitatively well in the simulation. In particular this LES, as opposed to

former simulations, is capable to reproduce the separation on the flap observed in

the experiment. However, due to an over-predicted boundary layer growth with

respect to the experiment the upward deflection of the main wing wake is overpre-

dicted and the quantitative agreement is less satisfactory. Here, in particular it is

assumed that the TBLE formulation has problems with large flow separation.

Considering that no parameter adjustments in turbulence model or wall model

have been made, the agreement between experiment and simulation is promising.

The good agreement with the experiment in regions not-requiring any wall model,

underlines the modeling ability of CIIM. Its usage of less than 2% of computa-

tional resources7 throughout the computations further underlines its suitability for

industrially relevant configurations.

7Simulations have been performed on a NEC architecture using Intel Westmere X5650 pro-
cessors with a Nehalem microarchitecture.
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Chapter 5

First Results for the Application

to the Flow over a Delta Wing

The industrial application of slender delta wings is manifold and reaches from

the classical aerospace engineering, e.g. highly agile aircraft, aerodynamic de-

vices or control surfaces, to unique environmental technologies, such as devices for

snow clearance. In all cases the development of leading edge vortices is exploited.

However, steadiness and stability of these leading edge vortices are essential for

controllability, particularly for highly agile aircraft. These vortices can undergo a

sudden expansion often related to vortex breakdown [90].

As a generic aerodynamic configuration the international Vortex Flow Experiment

2 (VFE-2) Delta-Wing, which has been used within the RTO/AVT 113 project

for extensive experimental as well as theoretical investigations, has been chosen.

The VFE-2 has 65◦ leading edge sweep and is equipped with different Leading

Edges (LE): Sharp (S), Rounded with a Small radius (RS), with a Medium radius

(RM) and a Large radius (RL). Here the RM-case is considered for which shear

layer separation is not purely geometrically-defined as for the S-case. Instead the

shear-layer laminar-turbulent transition constitutes a sensitive interaction process

with separation and roll-up. For a Reynolds number of 1.0 × 106 based on the

root chord length cr and with increasing angle of attack α, the flow around the

RM-case wing undergoes three major regimes: (1) at α = 13◦: partially attached,

partially separated flow, (2) at α = 18◦: separated flow without vortex breakdown

and (3) at α = 23◦: separated flow with vortex breakdown.
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A profound understanding of vortex formation and breakdown requires a com-

prehensive insight into the complete unsteady flowfield. This insight can only be

obtained from time-accurate simulations accompanied by experiments. Previous

RANS simulations with statistical turbulence models have failed to accurately

predict the separation of a comparable test case, i.e. the separated flow around

a flat plate at high incidence [12]. In the case of the VFE-2 Delta-Wing RANS

results so far do not compare well with existing experimental data [111]. Slightly

better results have been achieved with DES with appropriate modifications [111].

A first LES employing wall functions with acceptable results was carried out by

Mary [96]. Better results can be expected from an Implicit LES with a more so-

phisticated wall-modeling approach based on the Thin Boundary Layer Equations

(TBLE) [19]. Here some first results on a coarse grid will be shown. This test

case proves that CIIM goes beyond other reported cut-cell methods [103] by being

applicable to three-dimensional geometries of arbitrary shape.

5.1 Computational Setup

5.1.1 Numerical Method

The flow is described by the incompressible Navier-Stokes equations discretized

on a staggered Cartesian grid. The convective terms are discretized with the Adap-

tive Local Deconvolution Method (ALDM) [64], in which Sub-Grid Scales (SGS)

are implicitly modelled by the truncation error of the discretization. The explicit

third-order Runge-Kutta scheme of Shu [142] is used for time advancement. The

time-step is dynamically adapted to satisfy the Courant-Friedrichs-Lewy

condition CFL = 0.3. The diffusive terms and the pressure-Poisson equation

are discretized by second-order centered differences. The Poisson solver employs

the stabilized Bi-Conjugate Gradient (BiCGstab) method [146, 174] in all flow

directions. The Poisson equation is solved at every Runge-Kutta substep.

5.1.2 Computational Domain and Boundary Conditions

The computational domain is shown in Fig. 5.1. Since no vortex burst is expected

at α = 13◦ simulating a half-model with symmetry conditions is suitable. The
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Figure 5.1: Computational setup for the flow over the VFE-2 Delta Wing at
Re = 0.5× 106 and α = 13◦ (every third computational cell is shown, spanwise

extent is 100 times magnified for better visualization).

farfield is chosen to be at least 45 cr away from the profile. At the inlet a uniform

velocity profile and at the outlet a pressure condition is defined. At the other sides

free-slip boundary conditions are imposed.

Wall boundary conditions are imposed with CIIM in connection with a Thin-

Boundary-Layer-Equation (TBLE) based wall-model [19]. The coupling position

between wall-model and LES is located in the logarithmic region of the boundary

layer.

5.1.3 Computational Grid

The computational domain is subdivided into 5400 blocks with 7 different grid

refinement levels and consists of a total number of 16 × 106 cubic computational

cells, see Fig. 5.2. In the vicinity of the immersed interface cell sizes correspond

to ∆y+ = 60 being a good value based on the experiences made for turbulent

boundary layers with a TBLE wall-model [19]. Refined regions are located on the

upper surface of the wing up to the wall distance d/cr = 0.15. Downstream of the

wing the sting is not as well-resolved since it is assumed to have only displacement

character.
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Figure 5.2: Computational grid for the flow over the VFE-2 Delta Wing at
Re = 0.5× 106 and α = 13◦ (every third computational cell is shown).

Figure 5.3: Isosurface of streamwise vorticity colored by streamwise velocity
for the VFE-2 Delta Wing at Re = 0.5× 106 and α = 13◦.

5.2 Results

The results have been obtained for a Reynolds number Re = 0.5 × 106 based on

the root chord length cr and α = 13◦. The objective is to reach a qualitative

agreement with the respective experiments of Furman and Breitsamter [51].

For this angle of attack both, experiment [51] and the current simulation, show

vortex formation over half chord length, see Fig. 5.3. Close to the apex the bound-

ary layer flow accelerates over the leading edge and undergoes laminar-turbulent

transition. This is also reflected by the high suction levels visible in Fig. 5.4. Severe

pressure gradients in lateral direction provoke boundary layer separation further
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Figure 5.4: Cp distribution on the upper (top) and front (bottom) surface of
the VFE-2 Delta Wing at Re = 0.5× 106 and α = 13◦.

downstream. The separation region is indicated by the low pressure regions on

the upper surface of the wing (see Fig. 5.4).

Fig. 5.5 shows the shear in the vortex cross flow area at different streamwise

positions (x/cr = 0.6, 0.7, 0.9 and 1.1). The separated boundary layer rolls up by

self-induction and creates a large-scale primary vortex at x/cr = 0.6 inducing a

secondary vortex at x/cr = 0.7. At x/cr = 1.1 only the wake vortices are visible.

Similar findings have been made in the experiment [51].

Fig 5.6 shows the pressure coefficient distribution in the vortex cross flow area at
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Figure 5.5: Slices at x/cr = 0.6, 0.7, 0.9 and 1.1 showing τ for the VFE-2
Delta Wing at Re = 0.5× 106 and α = 13◦.
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Figure 5.6: Slices at x/cr = 0.6, 0.7, 0.9 and 1.1 showing Cp for the flow over
the VFE-2 Delta Wing at Re = 0.5× 106 and α = 13◦.
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Figure 5.7: Slices at x/cr = 0.2, 0.4, 0.6, 0.7, 0.9 and 1.1 showing the
streamwise velocity for the flow over the VFE-2 Delta Wing at Re = 0.5× 106

and α = 13◦.

the same streamwise positions. In agreement with the previous findings, rotational

cores at x/cr = 0.6 with embedded subcores at x/cr = 0.9 can be seen. The

vortices on top of the wing are characterized by high axial velocities as indicated

in Fig. 5.7. Please note that the high suction levels are not generated by the leading

edge vortices themselves but by the induced vortices on top of the wing. With

increasing angle of attack the induced vortices become stronger before they burst.

This bursting process is not fully understood and thus the desire to fully exploit

the beneficial effect of the induced vortices on the total lift gives the motivation

for further investigation also at α = 18◦ and 23◦.
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5.3 Summary

In this chapter CIIM has been applied in the simulation of the flow over the VFE-2

Delta Wing at an angle of attack of 13◦ and a Reynolds number of Re = 0.5× 106

based on the root chord length. While the industrial application of delta wings

is vast and, their complex flow physics are yet not well understood. The good

qualitative agreement with respective experiments gives proof that CIIM is also

applicable to three-dimensional geometries of arbitrary shape and can be used in

further investigations of this test case.
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Chapter 6

Summary and Conclusion

In this thesis, a Conservative Immersed Interface Method (CIIM) has been de-

veloped for imposing the wall boundary condition of bodies of arbitrary shape in

incompressible LES on Cartesian grids. For industrial applicability of LES compu-

tational resources should be minimal and grids should be generated automatically.

The generation of suitable structured body-fitted grids for LES of complex flows

can be time-consuming and difficult. Contradictory requirements, such as ade-

quate local resolution and minimum number of grid cells, can deteriorate the grid

quality and therefore adversely affect accuracy and numerical convergence prop-

erties. Unstructured body-fitted grids without rather severe constraints on cell

size and aspect ratio, however, are known to be not well-suited for time-resolving

turbulent flow computations, in particular for LES. The alternative approach is

to use Cartesian grids, which also facilitates automatic grid generation and local

grid refinement. Cartesian grids imply fewer computational operations per grid

point than body-fitted or unstructured grids. On the other hand, bounding sur-

faces of the flow or immersed obstacles need to be accounted for by mapping the

boundaries onto the grid with an Immersed Interface Method (IIM).

For combined usage with LES, the IIM should maintain accuracy and conservation

as well as should offer a sharp interface representation also for moving interfaces.

In IIMs using a continuous forcing approach a distributed forcing function inserted

into the momentum equations mimics the interaction at the interface. This ap-

proach smears sharp interfaces over an area corresponding to the local mesh width

and lacks of discrete conservation. For IIMs with a discrete forcing function in the
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momentum equations accurate representation of the boundary has been demon-

strated while the approach also lacks discrete conservation. Similarly, ghost-cell

approaches and reconstruction methods, both employing interpolation to impose

the boundary conditions at the interface, are generally not conservative. Another

discrete forcing approach is the cut-cell method in which cells cut by the immersed

interface are truncated so that they conform to the shape of the boundary sur-

face. The cut-cell method is based on a finite-volume discretization and generally

maintains discrete conservation. A common problem of cut-cell methods is the

creation of very small fluid cells that lead to numerical instability if left untreated

but according to more recent publications this problem can be overcome. On

the other hand, second-order accuracy has been achieved only by a small number

of methods and methods based on a staggered formulation having better stability

properties then those methods with a collocated formulation are even more scarce.

Above all, for industrial applications, complex geometries and moving boundaries,

not only accuracy and conservation but also a simpler geometry representation is

desirable.

The purpose of this thesis has therefore been to develop CIIM, an efficient, con-

servative, second-order accurate Cartesian cut-cell method for the incompress-

ible Navier-Stokes equations on three-dimensional non-uniform staggered grids

which is suitable for an extension to moving boundaries and fluidstructure in-

teraction. CIIM is applicable to any underlying finite volume discretization. A

zero-level-set contour represents the interface, which also allows to handle topo-

logical changes naturally. CIIM operates on fluxes of cut cells only and therefore

ensures both mass and momentum conservation. Friction forces on the immersed

interface are accounted for by a friction term. The boundary condition of the

normal velocity is satisfied by a momentum-exchange term and by imposing a ho-

mogeneous Neumann condition in the pressure projection. To ensure numerical

stability a conservative mixing procedure is employed.

The performance of CIIM is studied in various validation cases. Second-order

grid convergence has been proven for the decrease of the velocity profile error

of the inclined channel flow at Re = 20 and for the decrease of the lift and

drag coefficient error of the square and circular cylinder flow at Re = 100. For

the flow over a circular cylinder at Re = 100 it was furthermore proven that

the threshold for the small cell mixing does not significantly affect the accuracy

of the results. The local flow physics at the interface are proven to be modeled
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correctly for the developed laminar channel flow at Re = 20, the separated laminar

circular cylinder flow at Re = 40, the separated circular cylinder flow with laminar-

turbulent transition at Re = 3900 and the separated and reattached turbulent

periodic hill flow at Re = 10, 595. For all simulations conservation is ensured

both locally and globally. Mass conservation is proven to be ensured discretely

according to the accuracy threshold chosen in the Poisson solver, up to machine

precision if desired. Even for the complex flow cases, i.e. the circular cylinder at

Re = 3900 and the turbulent periodic hill flow at Re = 10, 595, CIIM consumes

only an insignificant amount of computational time and allows for a four times

faster simulation compared to a respective simulation on a curvilinear grid with

standard wall boundary conditions. It can be concluded that CIIM fulfills all

desired features and shows a good performance.

To go a step beyond the scope of previously developed cut-cell methods CIIM

is also applied in combination with a Turbulent-Boundary-Layer-Equations-based

wall-model in two LES of industrial relevance: the flow over the RA16SC-1 3-

element highlift airfoil and the flow over the VFE-2 delta wing. Both flows have

never been studied with full LES on Cartesian adaptively refined grids before.

The LES of the turbulent flow over the RA16SC-1 3-element highlift airfoil shows

good agreement with experimental reference data and gives new insights into the

prevailing flow physics. As opposed to former DES, the current investigation uses

LES also for the representation of the merging process of the slat wake with the

turbulent boundary layer on the main wing. Caused by the strong downstream

influence of this process, the flow separation process on the flap observed in the

experiment could be correctly predicted for the first time by this LES as opposed

to previous DES. It is well-known, that this prediction-ability is an all-important

feature for a simulation tool employed in highlift-system (preliminary) design.

The LES of the flow over the VFE-2 delta wing shows that CIIM works for three-

dimensional geometries of arbitrary shape. Qualitative flow physics are recovered

in a coarse simulation. More thorough investigation on this test case will follow

in subsequent works.

In conclusion, the novel Immersed Interface Method CIIM has been proven in

various selected test cases to be an efficient, conservative and second-order accu-

rate method with a sharp description of arbitrary bounding surfaces suitable for

complex turbulent flow simulations on Cartesian (adaptive) grids.
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[35] Dröge, M. Cartesian Grid Methods for Turbulent Flow Simulation in

Complex Geometries. PhD thesis, University of Groningen, 2007.
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