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Abstract. This paper was written on the invitation of the editors of this journal and is, in
general, a review. Its aim is to show how the theory of probability and mathematical statistics are
applied for solving problems of the insurance field. In § 2 a description of the basic probabilistic models
in risk theory is given and the problems connected with the structure of the insurance payments are
considered. Section 3 is devoted to income aspect of insurance activities and the sizes of the insurance
payments are under consideration. Statistical aspects of insurance mathematics are considered in § 4.
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1. Introduction. Approximately 300 years ago Edward Lloyd, the owner of a
coffee house in London, realized the need for insurance covering transport risks (ship-
ping industry). Today Lloyd’s of London has a premium income of more than $20
million each workday. The existence of risks to humans, property, environment, etc.,
has resulted in the establishment of an enormous world industry that offers financial
cover to losses due to risk exposure. A key item in all of this is the inherent presence of
randomness. The goal of our paper is to show how probability theory and mathemati-
cal statistics are used to solve problems in the realm of insurance. The amalgamation
of relevant theory from diverse fields has now resulted in the emergence of a full-bodied
branch of science called “insurance mathematics.” There is no way in which we will
be able to review the entire field. A glance at the variety of topics included in this
theory reveals such names as risk theory, life insurance mathematics, premium rating,
credibility theory, pension funding, solvency studies, population theory, IBNR mod-
eling, reserving, insurance and mathematical theory of finance, reinsurance, survival
modeling, and loss distributions. Books have been written on each of these topics.
This clearly shows the vast amount of material now available under the overall um-
brella of insurance mathematics. To a great extent, however, classical topics like risk
theory (from a probabilistic point of view) and credibility theory (from a statistical
one) still form a core of methodology on which many other techniques are built.

In §2 of the paper, we set up the basic probabilistic models in risk theory and
concentrate in particular on the claim structure. Various approximations for the
aggregate claim distribution will be given, concentrating both on the claim arrival
process as well as on the claim size process. Special attention will be given to the
modeling of large claims (catastrophic events). The latter is becoming more and more
a central theme to be considered in various classical models. In §3 we turn to the
income side of the company by looking at the definition of premiums. By splitting
the gross premium in a net part and a so-called loading component, a natural way
to include martingale methodology will be given. Once these two aspects (assets
(income) versus liabilities (outgoing)) have been discussed we turn to the basic risk
process and indicate how modern martingale theory yields various generalizations of
the classical Cramér-Lundberg model, allowing for economic factors (such as inflation,

*Received by the editors December 3, 1992.
TDepartment of Mathematics, ETH-Zentrum, CH-8092 Ziirich, Switzerland.

262



Downloaded 12/17/12 to 129.187.254.46. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SOME ASPECTS OF INSURANCE MATHEMATICS 263

borrowing, dividend payment, investment, etc.) to be modeled. The incorporation of
large claim structures in these models will be discussed, as well as the use of diffusion
approximations. In §4 we turn to some of the statistical aspects related to the models
treated earlier. Such themes as claim size fitting, the estimation of the adjustment
coefficient, ruin estimation and applications of bootstrap techniques to insurance data
will be included. Some recent work on the modeling of large claims via a large claim
index also figures. Although we concentrate to a large extend on parts of the theory
that are closely related to our own research interests, throughout the paper we try to
give hints for further reading so that the reader still obtains an overall picture on how
insurance mathematics is currently evolving.

There are a few books that attempt to cover insurance mathematics as a whole.
One interesting attempt is [12]. Over the recent years, many books have been written
on risk theory. The classic by Bithlmann [15] is still worth reading. The more modern
approach based on martingales is to be found in [41] and [45]. The analysis of risk
processes on the basis of queueing methodology is nicely presented in [6]. The link be-
tween the more practical background to risk theory and its mathematical counterpart
is well-presented in [9]. From a teaching point of view, [48], [72], and [52] are to be
recommended. The latter text investigates in more detail relevant statistical questions
in nonlife insurance mathematics. An interesting step further in this direction is [43]
where the main topics are ordering of risks, credibility theory, and IBNR-techniques.
An excellent recent review article on credibility theory is [57]. The more data-analytic
(statistical) aspects of nonlife insurance are discussed in [54], whereas the more nu-
merical analysis aspects are summarized in [37]. The above list clearly indicates that
the nonlife side of insurance mathematics is well covered in textbook format. With
respect to life insurance, the main transitions go from (classical) deterministic theory,
over probabilistically founded presentations to those using the theory of stochastic
processes for a more dynamic modeling. A useful textbook in the spirit of the middle
approach, keeping the link with classical terminology, is [42]. The more dynamic mod-
eling, via the theory of stochastic processes, has not yet entered the textbook stage.
One of the many interesting papers on this topic is [53]. See also [66] and [77]. Finally,
the transition from classical actuaries of the “first and second kind” toward actuaries
of the “third kind” (Biihlmann terminology) manifests itself in the increasing effort
to stress the modeling of the asset side of the risk process using the modern theory of
mathematical finance. We shall not deal with these matters in our paper; an anno-
tated list of references in finance, useful for insurance mathematicians, is to be found
in [3]. For a discussion on the interplay between insurance and finance, see [71] and
[64].

Finally, we would like to stress that there are various research journal in the field
of insurance mathematics. The following are the more interesting ones for probabilists
and statisticians: The Journal of Risk and Insurance,Insurance: Mathematics and Eco-
nomics, The ASTIN Bulletin, The Scandinavian Acturial Journal (previously known as:
Skandinavisk Aktuarietidsskift), Transactions of the International Congresses of Actu-
aries, Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker,Bldtter
der Deutschen Gesellschaft fir Versicherungsmathematik.

2. The accumulated claims process. We consider the collective model where
the whole portfolio of a certain insurance business represents the source of risk. We
formulate the classical risk model in §2.1 and study generalizations of the underlying
point process in § 2.2. This approach is mainly based on the excellent monograph [45].

2.1. The compound Poisson model. In the classical risk model the claim
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sizes (Yx)reN are a sequence of independent and identically distributed random vari-
ables having common distribution function F with F(0) = 0, mean value g, and
variance 02. The point process N = (N(t));>>o with N(0) = 0, which represents
the number of claims in the time interval [0,], is assumed to be a (homogeneous)
Poisson process with intensity x. Furthermore, N and (Yx)ken are assumed to be
independent. Then S(t) = ZN(t) Y; represents the accumulated claims up to time t
and has distribution function

(o<}

Gi(z) = P (S(t) <) = 2: M“tpm() x>0,

where F™*(z) = P {3}, Y; <z} is the n-fold convolution of F.

N is a point process on Rt and at each point of N the company must pay out a
stochastic amount of money. The assumption that N is a Poisson process is equivalent
to independent identically distributed exponential interarrival times (T%)gen of the
claims.

The risk process U is defined by

Ut) = u+ct— S(t),

where u is the initial capital and ¢ > 0 is the constant premium rate.
For N with intensity x we have

E N(t) = wt.
Then the “profit” over the interval (0, 1] is
Q(t) = ct — 5(t)

with
EQ(t)=c— ENQG)EY; = t(c— kp).
The relative safety loading p is defined by

c—Kup c

KLt KL

If the risk process U has positive safety loading p > 0, then U(t) almost surely drifts to
+00. The condition p > 0 is also restated as the so-called net profit condition ¢ > rp.

As a measure for the long-term stability of the risk process the ruin probability
1 (u) as a function of the initial capital u has been considered. It is defined as

Y(u) = P (U(t) <0 for some t>0).
A similar definition can be given for a ruin in a finite time interval [0, T7,
Y(u,T)= P (U(t) <0 forsome t<T).

Stability is achieved by the requirement that ¢ (u, T) does not fall below a certain level
¢ (e.g., 0.1%), for a given value of T'. For most of this paper, we restrict our attention,
however, to 9(u), i.e., T = oo. This probability of ruin is calculable for positive
safety loading p. An asymptotic expression for u — oo can be obtained by solving an
integral equation either by means of the Wiener—Hopf technique, which goes back to
Cramér [17], or using renewal arguments as in [39]. An upper bound can be obtained
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by martingale methods [40], [41]. These results are exponential type estimates and
require the existence of exponential moments. If no exponential moments exist —
a case that corresponds to the occurrence of large claims — a special theory can be
developed as in [34] and we review these results in §2.5.

We first derive the famous result of Cramér using the renewal arguments from [39)].
Our approach follows closely Grandell’s [45].

Denote by

p(u) =1 —1p(u)

the nonruin probability and note that ¢(u) = 0 for u < 0. Furthermore,
(u)=P(U{t) >0, Vt>0)=P(St)—ct<u, Vi>0)

and hence ¢ is increasing in u. Since EQ(t) = t(c — ku) > 0, Q(t)/t=>c — ku > 0,

t — oo, by the strong law of large numbers (SLLN). This implies that Q(t) > 0

Vt > T, where T is some random variable that is a function of N and (Yj)ren. Since

only finitely many claims occur before time T, it follows that inf;~q Q(t) is finite with

probability one and thus ¢(c0) = 1.
Moreover, by a renewal argument, ¢ satisfies the renewal equation

I —
(2.1) olu) = (0) + = /0 o(u— 2)F(2) dz,
where F = 1 — F, and if we denote

Fiw) =t | P2 dz,

the integrated tail distribution (2.1) is equivalent to

(22) o) = 9(0) + 12— o * Fr(u)

+p

where * denotes the convolution. By monotone convergence it follows from (2.1) that

(2:3) P(00) = 9(0) + T3 9(o0),
which gives

_ P
(2.4) ©(0) = T+,

Using Laplace transforms and (2.4), an analytical solution of (2.2) can be obtained in

the form
P (L \" e
o =753 (155) e

It is easy to check that this is the unique solution of (2.2). Only for special choices of
the claim size distribution F' is it possible to get an explicit expression.
Ezample. For exponentially distributed claims, differentiation of (2.1) leads to

blu) =1 plu) = ri—pexp{ - ﬁu}

where we also have used (2.3) and (2.4).
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The asymptotic behavior of the ruin probability 1 (u) for an initial reserve u — oo
can be obtained by renewal limit theorems. To this end we rewrite (2.1) as follows:

K

(2.5) P(u) = = /oo F(z)dz + iz— /Ou P(u — 2)F(2) dz.

Since

k = K
—/ F(2)dz = PR 1,
Cc Jo [
(2.5) is a defective renewal equation. The defect can be removed by an Esscher trans-
formation (if the appropriate exponential moment exists). If there exists a constant
R such that

K

2.6) d / " RT(2) dz = 1,
0

c

then (k/c)eR*F(z) is the density of a proper distribution function and multiplication
of (2.5) by e® yields

u —_— K U *
efuip(u) = EeR /

u

F(2)dz+ g / eRu=2y(y — 2)e*F(2) dz.
0

This is a proper renewal equation and from Smith’s key renewal theorem (see [39])
the following famous result follows.
THEOREM 2.1.1 (Cramér-Lundberg theorem). Suppose there exists a constant

R such that -~
Rz _ _c_
./0 e F(z)dz = o
If
Kk [ —
pr= —/ 2eP*F(2) dz < oo,
¢ Jo
then
P —Ru
2.7 Y(u) ~ ———=s—e ) U — 00,
27) (v (1+ p)Ry*
and if u* = oo, then
(2.8) P(u) =o(e” ™),  u— oo

For the above example of exponentially distributed claims R can easily be calcu-
lated, and in this case the Cramér-Lundberg approximation is exact.

The number R in (2.6) is called Lundberg coefficient or adjustment coefficient.
An upper bound for the ruin probability is given by the Lundberg inequality, which
states that

(2.9) Y(u) < e B Yu € [0, 00),

where R is again the Lundberg coefficient given as solution of (2.6). This can be proved
in different ways. If we define 1, (u) as the probability of ruin up to the (n+1)st claim,
then 9(u) = lim,_, ¥, (u) and it suffices to show that 1, (u) < e % for all n € N.
This can be done by induction. The most elegant way to prove (2.9) is, however,
via a martingale approach that goes back to Gerber [40]. Martingale methods also
allow one to consider various generalizations concerning the underlying claim number
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process as well as to take inflation and interest into account. An interesting recent
summary is to be found in [46].

Definitions and results on martingale theory can be found in any standard text-
book (see, e.g., [24], [78]). We consider martingales (respectively, super- or submartin-
gales) M = (M(t));>0 with respect to a given filtration F = (F(t))¢>0. In most cases,
F will be the natural filtration (FY(t));>0 of the underlying risk process. Moreover,
all processes M we consider will be cadlag.

The basic tool to prove Lundberg type inequalities is the optional stopping theo-
rem which states that, for any right-continuous F-martingale M (F-supermartingale,
F-submartingale) and any bounded stopping time T',

E[Mp|F)=M, VI:T>s as.
(‘E [Mrp | Fs] < M, E[Mp|Fs]> Ms).

Denote by
fo)= [ e ar@)
0

the Laplace-Stieltjes transform of the distribution function F', then
(2.10) E [e——sQ(t)] — ¢St R [esS(t)] = ¢t9(s)

where g(s) = k(f(—s) — 1) — sc.
Now let F@ be the natural filtration for (Q(t)):>o0, i-e., F2 = 0{Q(s); s <t} and
set
T, = inf {t > 0; v+ Q(t) < 0},

then T, is a stopping time for (Q(t)):>0 and ¥(u) = P (T, < 00). Set, for given r in

~

the domain of convergence of f,

e_T(u'l"Q(t))

(2.11) M.(t) = S5

Then, for all t > s,

—r(ut+Q(s)) o—r(Q()-Q(s))
Qg e Q
E[M“(t) I}-S ] =E [ es9(r) e(t—s)g(r) ]:3 ]
—r@O-QW) |
=Mu($) B\ —a=aem— | T = My(s)

by (2.10) and the fact that @ has independent increments; hence (My(t));>o is an
F®-martingale.

For any tg < 00, T,, Aty is a bounded stopping time and by the optional stopping
theorem we obtain

e = M,(0) = E [Mu(to ATy |f32] = E [M,(to A T,)]
= E [My(to AT) | Tu < to] P (T < to)

+ E [My(to ATy) | Tu > to] P (T > to)
(2.12) > E [My(T.) | Ty < to] P (T < to).
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Since Ty, < tp implies that U(T,) = u + Q(Ty) < 0, it follows that

e—'r‘u e—T’u
P (T, <to) < < <e ™ sup et
(Tu <10) S G T [To<to] S Ble o0 | Tasia] = ¢ o2,

and for tg — oo we obtain
Y(u) < e " sup e,
t>0

To obtain this inequality as sharp as possible we would like to take r large, but such
that sup,> et9(") < co. If R denotes this optimal value for r, then

R =sup{r; g(r) <0}

and hence R is the Lundberg coefficient defined in (2.6) and we obtain (2.9).

It is clear that the above calculation can be made for more general (so-called
additive) models for Q (see [46]).

For a more refined treatment we again consider (2.12). With r = R we have

e Ry g [e-R(u+Q<Tu>> |T, < to] P (T, < to)
(2.13) +E [e"R(""‘Q(tO)) | T, > to] P (T, > to).
From this we obtain
0< E [e—R("W(to)) 1T, > to] P (T, > t;) = E [e'R("+Q(t°))I(Tu > to)]
<E [e-R(u+Q(to))I(u +Q(to) > 0)]

Since
0< exp{ ~R(u+ Q(to))}I(u+ Qto) >0) <1

and (Q(t))¢>0 almost surely drifts to +o0, it follows by dominated convergence that

lim E[e"RHQUE) | T, > 4] P (T, > tg) = 0,

to—VOO
and thus by (2.13)

e—R(u)

(2.14) Y(u) = E [e~Ru+Q(TW) | T, < oo]

Unfortunately, the denominator is only tractable in very few cases as, e.g., for ex-
ponentially distributed claims because of the lack of memory property. The above
presented general consideration presents only one aspect of applications of martingale
techniques to insurance. The method is very powerful in obtaining inequalities but
less so for approximations of the Cramér-Lundberg type (2.7). Moreover, this whole
theory rests on the ability to spot the relevant martingale (as M, above). In §3 we
shall present a general method for solving the latter problem.

2.2. Generalizations of the claim number process. The Poisson process as-
sumption imposes certain constraints on the model. For example, stationarity implies
that the size of the portfolio cannot increase (or decrease). Note that few managers
would believe in a model that does not allow for a growth of their business. We refer
to this situation as size fluctuations. Furthermore, there may be fluctuations in the
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underlying risk. Typical examples are automobile and fire insurance (see, e.g., [9,
Fig. 2.7.2]). We shall refer to this phenomenon as risk fluctuation ([45, Chap. 2]). In
this subsection we generalize the claim number process (N(t)):>o and consider more
general point processes.

Traditionally, the mixed Poisson model is considered if short-time risk fluctuations
are taken into account. For each point ¢ the claim numbers N(t) up to time ¢ are
Poisson with parameter At for some positive random variable A. A is called a structure
variable and its distribution function H(A) = P (A < \) a structure distribution. Then

o] B ( )\t)k
P (N(t) = k) = /0 M am(),
and (N (t))¢>0 is called a mized Poisson process.

The most important case from a practical point of view is the mixed Poisson
process where H is I'(g, kq) for some ¢ > 0, k > 0. Then N (¢) is negative binomial with
parameters g and q/(g+t) and (N (t)):>o is called a Pdlya process. The corresponding
risk model is also known as the Pélya-Eggenberger model and has first been mentioned
in 1923 as contagion model ([38, §V. 2]). If one compares the total claim amount up
to time ¢t for the Poisson model, then for equal means the variance of the Pélya model
is of course bigger than in the Poisson model.

We have taken the following considerations from [16]. They clearly show that
fluctuations in risk have to be compensated for by stochastic premiums. Suppose
(N(t))t>0 is mixed Poisson with structure variable A with unbounded support such
that EA < oo and structure distribution H. Then the distribution function of the
total claims up to time ¢ is given by

Gi(z) = pe(t)F™ (),
k=0

where
00 k
pi(t) = /0 O gy,

The ruin probability can be calculated by conditioning and we obtain

(u) = /0 g | A= N dH).

Now suppose the premium rate c is constant, then for A > ¢/u we have ¥(u | A =
A) =1, and hence
P(u) > P(A>c/p)>0  forall u.

This implies that any insurer who does not constantly adjust his premium rate c
according to the risk fluctuations deserves to be ruined.
As a consequence we consider the premium process

c(t) = (L+ p)At)p,
where we estimate the process (A(t)):>0 by
00 e_’\t()\t)N(t)
/0 )\——N(t)! dH (M)

% oA NN D :
/0 -———]\(I (t))! dH())

(2.15) At)= E[A|N(s); s<t] =
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Then the surplus process is
Uit)=u+c(t)—SE) =u+ 1+ p)uA(t)— S().
In the important Pélya model we obtain
X(t) _ g+ N(t) __Kkqg 1 + t N(@)

Kq+1 kKg+tk kg+t t

= (1-R(t))EA +R(t)£v—t(t—).

The last formula can be interpreted as the weighted mean of expectation and of the
observed mean; it gives one instance of the celebrated credibility formula [14].

The simplest way to take size fluctuations of the portfolio into account-is to let
(N(t))t>0 be an inhomogeneous Poisson process. So suppose A(t) is a continuous
nondecreasing function with A(0) = 0 and A(t) < oo for each ¢ < co and N(2) is
Poisson distributed with mean A(t), then (N(t))¢>o is called inhomogeneous Poisson
process with intensity measure A.

By a fundamental theorem on random time change (see, e.g., [13, p. 41]), the
Poisson process N=No A~ where A~! is the inverse function of A, is a standard
Poisson process, i.e., a Poisson process with intensity x = 1. The function A1 is
called operational time scale. On the other hand, starting with a standard Poisson
process N, we can construct an inhomogeneous Poisson process N with given intensity
measure A by defining N = N o A. If the function A is absolutely continuous with
Lebesgue density «, then « is called an intensity function.

To model size fluctuations, one takes, e.g., a(t) proportional to the number of
policies at time ¢. By considerations similar to those for the mixed Poisson process,
we choose for a fixed safety loading p also the premium rate proportional to a, i.e.,
de(t) = (1 + p)ua(t) dt. ' The surplus process is then of the form

(2.16) Ut)=u+(1+ ,c)),u/0 a(s)ds — S(t) =u+ (1 + p)pA(t) — S(t).

A further generalization of the inhomogeneous Poisson process is given by the so-called
Cox models. They also include mixed Poisson processes and we shall calculate ruin
probabilities for this more general class of risk processes in the next subsection.

2.3. Cox processes. The time scale A~! of the inhomogeneous Poisson process
can be defined for a very wide class of point processes. We shall apply it for Cox
processes, which seem to form a natural class to model risk and size fluctuations. As
became obvious in §2.2 it is mathematically irrelevant for the intensity function « to
fluctuate as long as these fluctuations are compensated by the premiums. We first
start with the definition of Cox processes.

Suppose A = (A(t));>0 is a random measure; that is a.s. A(0) = 0, A(t) < oo,
for t < oo, and A has nondecreasing trajectories. Furthermore, let N be a standard
Poisson process, independent of A. Then the point process N = N o A is called a Coz
process. _

In a rigorous mathematical sense it is only required that N and N o A are equal
in distribution. These questions and related measurability problems are, for instance,
discussed in [44, pp. 9-16].

If A has continuous trajectories a.s. then A is called diffuse. In that case, for
any realization A of A the Cox process N is an inhomogeneous Poisson process with
intensity measure A.
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Now let A be a diffuse random measure with A(oco) = oo a.s. and N be the
corresponding Cox process. As a generalization of (2.16) we obtain the surplus process

N(t)
(2.17) Ut) =u+ (1+p)pA(t) — Y Yi.
k=1
Define F2 := 0{A(s); s < oo} and
B N
Ut)=UoA™ () =u+(1+put— Y _ Y,
k=1

where N = N o A~! for each realization of A is a standard Poisson process. This
allows us to calculate the ruin probability, where we denote by 9 the ruin probability
corresponding to a standard Poisson process. We obtain

Y(u) = P (ggU(t) <0)=E [P(zggU(t) <0|72)]
(2.18) -E[P (ggﬁ(t) <0 F4)] = Edw) = F(w).

This is not surprising since it basically means that something that works for every
realization also works for a randomly chosen one.

If A has the representation A(t) = fo (s)ds, then X = (A(t))s>0 is called the
intensity process. If A has right-continuous and Riemann integrable trajectories, then
the corresponding Cox process is well defined ([44, p. 14]). The premium rate is then
c(t) = (1 + p)uA(t), i.e., it is a stochastic process.

If A(t) = X for some positive random variable ), then for every realization x of A
the process N is a Poisson process with intensity k, i.e., N is a mixed Poisson process,
and if X is I'(g, kg), then N is a Pélya process.

To calculate the ruin probability it must be possible to observe A. Gerber
([41, pp. 25-31 and 142-143]) suggests taking an estimator based on N(s) for s <
t, e.g.,

() = E [A(t) | f{V]

(compare with (2.15)), or, if some additional information is used,
At) = E\¢) | 7],

where FN C F, for all t. Then to use (2.18) we must ensure that N oA~ is a standard
Poisson process.

To this end we link point processes and martingales as follows. Let N be a simple
point process and F = (F;):>¢ a filtration such that N is adapted to F. Furthermore,
let A be a diffuse random measure. A is called the F- compensator of N if Ais adapted
to F and N — A is an F-martingale. Now we go back to Cox processes. A point
process N with F-compensator A is called an F-Coz process if A is Fp-measurable
and, conditioned on Fy, N(t) — N(s) is Poisson distributed with mean A(t) — A(s) for
s < t. Proposition 18 of [45] states that a Cox process corresponding to A, where A
is a diffuse random measure with E A(t) < oo for all ¢ < oo, and an F-Cox process
are equivalent for F = (F3);>0 and F; = FA v FN. This means that whether the
underlying measure is denoted by A or by A is indeed only a matter of notation.



Downloaded 12/17/12 to 129.187.254.46. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

272 P. EMBRECHTS AND C. KLUPPELBERG

Hence for an F-Cox process NV with observed compensator A for the corresponding
surplus process U defined in (2.17), the above arguments imply that ¥(u) = ¥ (u),
where J is the ruin probability corresponding to a standard Poisson process.

In a certain sense Cox processes seem to be natural point processes for modeling
claim arrivals since they appear as limiting processes of certain thinning procedures. A
rigorous mathematical treatment of this idea is given in [58]; in insurance mathematics
the idea goes back to [4]. Consider claims which are caused by “risk situations” or
incidents. Each incident becomes a claim with probability p independent of all the
other incidents. Under these assumptions the claim number process is the result
of a thinning procedure of the incident number process. Below this idea is made
mathematically precise.

For any point process N, let N® be the point process resulting from a p-thinning
of N; i.e., each point of N is kept with probability p and deleted with probability 1—p
(independently for every point of N). Let P be the set of point processes and C the
set of Cox processes. Furthermore, let D,: P — P denote the thinning operator
and D, = {D,N; N € P}; i.e., the set of all point processes which can be obtained
by p-thinning. Note that the operator D, is one-to-one; i.e., the inverse operator
Dg': Dp — P is unique.

For all Poisson processes N with intensity x, N®) = DN is of course a Poisson
process with intensity ps for all p € (0,1]; furthermore, N € D, and Dy IN is a
Poisson process with intensity x/p for all p € (0,1]. Also Cox processes are closed
with respect to p-thinning, i.e., D,N € C for N € C and C C D, and D, IN € C for
N € C for all p € (0,1].

The following theorem due to [58] explains the importance of Cox processes in
connection with p-thinning, and consequently explains their importance as claim ar-
rival models in insurance.

THEOREM 2.3.1. Let (Ni)ken be a sequence of point processes and let (px)reN C
(0,1) with limg—,o pr = 0. Then there exists a point process N such that

D, Ny=>N, k — oo,
if and only if there exists a random measure A such that
peNe=A,  k— o0,

(“==" means convergence in distribution). In that case N is a Cox process with
random measure A.

The following corollary due to Mecke [65] gives a characterization of Cox pro-
cesses.

COROLLARY 2.3.2. A point process N can be obtained by p-thinning for every
p € (0,1) if and only if it is a Cox process; i.e.,.C = ﬂo<p<1 Dp.

Finally, a further natural way in which thinning occurs in insurance can be found
in reinsurance policies where exceedance of claims over an increasing sequence of levels
(retentions) is considered.

2.4. Renewal processes. Animportant point in the generalizations of the Pois-
son model in §§2.2 and 2.3 was the possibility to compensate risk and size fluctuations
by the premiums. Thus the premium rate has to be constantly adapted to the de-
velopment of the total claims. We shall show in this subsection that for renewal
claim number processes a constant premium rate allows for a constant safety load-
ing. Furthermore, since Cox models seem to be a natural class of risk models we are
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particularly interested in point processes that are Cox processes as well as renewal
processes.

We first introduce some notation. Let N be a point process with independent
interarrival times (T});en. If the random variables T;, for ¢ > 2, have the same
distribution function H, then N is a renewal process. N is an ordinary renewal process
if also T3 has distribution function H; and N is called a stationary renewal process if
T has the distribution H; given by

Hy(t) = n/ot_ﬁ(s) ds.

The only renewal process that is ordinary and stationary is the Poisson process. Also
note that a stationary renewal process is simple if and only if H(0) =

For a fixed safety loading p it is required that for any time interval the exll)cected
income is proportional to the expected expenses. Define Qo = 0 and for Vi = >/ T;,
Qr = —(Q(Vi) ~ Q(Vk—1)) = Yi — ¢TIk, k € N, then (Qk)xen is a sequence of inde-
pendent and identically distributed random variables and the expected loss between
two claims is

EQi=EQi=pn—-c/k Vk € N.

This expected loss can be compensated by a constant premium rate ¢ as in the Poisson
model and we choose
c= (14 p)ku.

Now suppose N is a Cox process. We want to derive conditions such that N is also
a renewal process. Suppose N has associated random measure A (A not necessarily
diffuse, A(0) = 0 and A(00) = o0). Then N = N o A~!, where A~! is path-wise
the generalized inverse of A, i.e., A7}(t) = sup{s; A(s) < 't} This means that
N(t) = sup{k € N; A(Vix) < t}. Hence N is defined by (Vi)ren = (A(Vi))en
and N is a Cox process if and only if V1, (Vk+1 Vk)kGN are independent and have
the same standard exponential distribution. The following characterization is due to
Kingman [60].

THEOREM 2.4.1. Suppose N is a Cox process with random measure A. Then N
is a renewal process if and only if A= has stationary and independent increments.

Using the theory of infinitely divisible distributions, one can obtain characteriza-
tions for ordinary and stationary renewal processes. We refer to [44], [45] for a more
refined treatment. R

THEOREM 2.4.2. Let N be a renewal process with h(s) = f0°° e 5* dH (z).

(i) If N is ordinary,then N is a Coz process if and only if

1

W)= T Togoy

where §(s) = [, > e75% dG(x) for some infinitely divisible distribution function G such
that G(0) < 1. Furthermore,g(s) E exp{sA~1(1)} and A=1(0) = O,where A is the
random measure corresponding to N.

(ii) If N is stationary,then N is a Cox process if and only if

(2.19) h(s) = (1 +bs+ /000(1 - e*‘”’)dB(:c))—l, s3>0,

where b > 0 and B is a measure on (0,00), such that fooo zdB(z) < 0.
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We discuss the stationary case in more detail. Consider (2.19) and set d =
f;o dB(z) and D(z) = B(z)/d if d < co. We know that N is simple if and only if
H(0) = 0. Since lim;_, ﬁ(s) = H(0), N is simple except for b= 0 and d < oo.

(a) b=10, d < co. Then lims_, Tz(s) # 0 and H(0) # 0, i.e., N is not simple or
A is not diffuse, but has the representation

N(t)

At) = Z E,
k=1

where N is a stationary renewal process with inter renewal time distribution D and
(Bk)keN are independent identically distributed exponential with parameter d, inde-
pendent of N.

(b) b =10, d = co. In that case, A is diffuse but the right derivatives are with
probability one equal to zero for almost all ¢ > 0. We shall come back to this case
later. If b > 0, then A(t) = f(f A(s) ds, where (A(t))s>o0 is a stochastic process, not
identically zero.

(¢) 5> 0,d=0. Then N is a Poisson process with intensity 1/b.

(d) 5> 0,0 < d < 0. Then A(t) = fot A(s) ds, where (A(t)):>0 has trajectories
that alternate between the values 0 and 1/b. For d < oo the intervals where A(t) is 0
or 1/b, respectively, are independent random variables and the lengths of the intervals
where A(t) = 1/b are exponential with mean b/d and the lengths of the intervals where
A(t) = 0 have distribution function D.

Note that the case (d) where D is also exponential is the most interesting one
from the point of view of Cox processes. In this case the intensity process (A(t)):>0
is a two-state Markov process. For solvency simulations of the latter process see [36).
Markovian intensities have been investigated in general and again we refer to [45]. A
detailed analysis of the general two-state case has been carried out in full detail by
Reinhard [69]. In the above two-state Markov situation with one state zero the inter-
renewal times distribution H is a mixture of two exponentials (see [45, Ex. 2.37]). This
example can be generalized to the following result of Thorin (for a proof see [45]).

THEOREM 2.4.3. Suppose N is a stationary renewal process with

H(t) = /0 ” (1-e7®)dv(9),

where V is a distribution function with [;°(1/6)dV () < oo, then N is a Cox process.

On the other hand, suppose that N is a stationary renewal process with T'(%)
inter renewal times. Then it can be shown for 0 < v < 1 that H is a mixture of
exponentials as in the theorem above; i.e., N is a Cox process. For v = 1, of course,
N is a Poisson process and, for v > 1, it can be shown that N is not a Cox process.
For v < 1, we use Theorem 2.4.2.(b) and the adjoining discussion. We obtain b = 0
and since N is simple we must have d = oo; i.e., A is a.s. singular with respect to the
Lebesgue measure.

Renewal processes as claim arrival processes allow for a constant premium rate.
This simplifies the calculation of the ruin probability considerably. The first treatment
of the ruin problem for renewal models is due to Sparre Anderson [5]; this is the reason
why the ordinary renewal model is sometimes called the Sparre Anderson model. A
systematic study based on Wiener-Hopf methods has been carried out in a series of
papers by Thorin (see, e.g., [73], [74]).
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2.4.1. The ruin probability for ordinary renewal models. Let the claim
number process N be an ordinary renewal process with interclaim distribution H
with finite mean 1/k. Define Zg = 0, Z, = 3 p_; Qx, n € N, then note that Z, =
—Q(Vy) is the loss immediately after the nth claim. We always denote by 9° the ruin
probability for the ordinary renewal case. Since ruin can only occur at renewal points
we have

¥°(u) = P (u+Q(V,) <0 for somen € N) = P (rggicZn >u).

Let K denote the distribution function of @; and v = EQ; = —up < 0. Then the
Laplace—-Stieltjes transform of K is

E(r) =Ee ™1 = E [e_’(yl“CTl)] = f(r)?z(—rc).

We assume that K(0) < 1, the case K(0) = 1 is formally possible (for example, see
(45, §3.1, Rem. 2]) but implies that P (Q; < 0) = P (Y; —c¢T1 < 0) = 1 and hence
¥O(u) = 0.

Furthermore, we assume that f (r) < oo for r < 0 and, to make matters not
too complicated, we assume that f(r) — 0o as 7 — roo, Where 7o, > —00 is the left
abscissa of convergence of f . If roo > —00, we have

~ o0
h(—roc) = / e"*dH (z) > 0.
0

This implies that also E(r) — 00 88T — Too. If Too = —00, then K (zp) < 1 for some
zo € (0,00) and hence, for r < 0,

75(7") > / e "dK (z) > e "™ K (x0) — 00 as r— —o0.
€T

0

Thus f(r) — oo implies E(r) — 00 a8 T — To. Furthermore, E(O) =1and k' (0) =
E Q1 = —pp < 0. From this it follows that there exists some R such that E(R) =1; Ris
again called Lundberg coefficient or adjustment coefficient. Indeed if T} is exponential,
then R is the Lundberg coefficient from the classical model.

The process (Z)ken, is a random walk and hence has stationary and indepen-
dent increments. This is exactly the property we needed in the classical case for the
martingale approach that proved the Lundberg inequality. Hence the same argument
can be used in this more general setting.

Consider the filtration FZ = (FZ)xen,, where

FE =0{Zi; i=0,...,k}.

Denote by N, = min{k, Z; > u} the number of the claim causing ruin, then N, is a
stopping time and
Y°(u) = P (N, < 00).
Set
e~’r(u—Zn)

BT
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Then up to a change of sign, which is made for future convenience, (M, (n))penN is
equivalent to (2.11). The same argument now shows that (M,(n))nen is an FZ-
martingale. Again N, A ng is a bounded FZ-stopping time for ny < oo and by the
optional stopping theorem we obtain as before that

$0(u) < e"™ sup k" ().
n>0

The best choice of 7 is the Lundberg coefficient R. Thus we have Lundberg’s inequality
(2.20) YOo(u) < e B Vu € [0,00).
As in the derivation of (2.14) we obtain

e——Ru

Eexp{ - R(u—Zy,) | Ny < oo}’

PO (u) =
For exponential claims this can be calculated in view of the lack of memory and gives
¥0(u) = (1 — uR)e™

To derive an asymptotic result as in the Cramér-Lundberg theorem we use a renewal
argument as before. To this end we define a random variable A; = Zy, on {Np < oo},
where Ny = min{k; Z; > 0}, A(y) = P (4; <y, Ny < 00), and note that A(co) =
¥0(0). Thus A is a defective distribution function where the defect 1 — A(0o) is the
probability that A; is undefined. By separating the cases A; > u and A; < u, we
obtain

(2.21) () = A(oo) — A(u) + / WOu—y)dA@y), u>0,

which is as (2.5) a defective renewal equation. Again the defect can be removed by
an Esscher transformation (if the appropriate exponential moment exists). So assume
that there exists a constant 3 such that

o0
/ MV aA(y) = 1,
0

then we multiply (2.21) by e* which gives a proper renewal equation and Smith’s key
renewal theorem again yields, for nonarithmetic A,

where

Dy = / " e (A(oo) ~ A(y)) dy = (1~ A(c0)) /5,

o0
Dy = / ye dA(y).
0

Using random walk theory one can show that 8 = R, where R is the Lundberg
coefficient, i.e., the solution of k(R) = 1. Unfortunately, the constant D;/Dy can-
not be exp1101tly calculated since A is unknown; it is only known to satisfy 0 <
Dl/ Dy < o0.
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2.4.2. The ruin probability for stationary renewal models. Let 1S be the
ruin probability for the stationary renewal model and +° for the associated ordinary
renewal model. Then exactly as one derives (2.5) one obtains

(2.22) ¥ (u) = / F(z)dz+ = / PO(u — 2)F(2) dz.

A Lundberg inequality can be derived using the result for the ordinary case. By (2.20),

3 (u) < g/o e =2 (2) dz = %(A(R) —1)e B,

and hence Lundberg’s inequality holds, but the constant may be greater than one.
To establish a Cramér-Lundberg approximation we use dominated convergence
and obtain

uhm ey (u) = hm —e / F(z)d

+ lim —/ eRU=2y0(y — 2)ePVF(2) dz
0

u—oo C

D,

=0+ — -1 = D.

+ 2 (R - ) !

It follows immediately that 0 < D < oo. This result is due to Thorin {73, p. 97].

The value of the Lundberg coefficient is a measure of the dangerousness of the
risk business. We denote by Rp the Lundberg coefficient for the Poisson model and
by R for the renewal model, where k, ¢, and F' are equal. It can be shown that for
Cox processes R < Rp; i.e., Cox processes with ET} = 1/ are more dangerous than
the Poisson process with intensity « ([45, §3.3]).

2.5. Large claims problems. It has been well known for a long time that,
for models where large claims may occur with high probability, the Cramér-Lundberg
theory is not applicable since the Lundberg coefficient does not exist. Typical examples
are Pareto or lognormal claim sizes. The ruin probability for these two examples have
been derived by von Bahr [76] and Thorin and Wilkstad [75], respectively. A general
theory has been developed by Embrechts and Veraverbeke [34] (see also [28]). They
derived an asymptotic expression for the ordinary renewal process setup whenever the
Lundberg coefficient does not exist.

In this paper we restrict ourselves to the classical Poisson model, and for ease of
presentation we only consider claim size distributions whose Laplace—Stieltjes trans-
form has zero as an essential singularity. For the so-called intermediate case where the
left abscissa of convergence is negative, say —v, but f0°° e"F(y)dy < c/k, we refer
to [34] (see also {61, Thm. 7] and [25]).

The unique solution of (2.2) together with (2.4) can be represented as

o) = 2 mo (ri—p)"F}‘*(u).

The main result on asymptotic ruin estimates when the Lundberg coefficient does not
exist is based on subexponentiality of F.
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In general, a distribution function (G € §), i.e., G is a subezponential distribution,
if and only if

G (x)
lim — =n

(2.23) Vn e N.

This equation holds for all n if and only if it holds for n = 2. Furthermore, every
G € 8 has the property

Gz —y)
2.24 lim ——2- =1 Vy € R,
which implies that g(s) = oo for all s > 0. To explain why S can be used to model
large claims we reformulate (2.23) as follows: If Z, Zs,..., Z, are independent and
identically distributed random variables with distribution function G € S, then

(2.25) P(iZi>m)~P(max Zi>x) as T — oo.
i=1

1<i<n

Asymptotic ruin estimates involving the class S were proved in [34, Thm. 4.6].
THEOREM 2.5.1. If FT € S, then

1
c/k—p

{o o)
(226) $(@) ~ [ Fow  a-w
T
The question arises whether the condition F; € S can be replaced by a simple
requirement on the right tail F'. To this end a new class of distribution functions was
introduced in [61]. We say F' € 8* if and only if

_:n@
. F (‘T) _ n—1
zlLrgo Fa) nu"T" < oo Vn € N,

where

T / T4 —y)F(y)dy VneN.
0

Tails of distribution function in S* are subexponential densities; i.e., F € §* implies
Fr € 8 and hence Theorem 2.5.1 applies. Furthermore, F' € S* implies that (2.25)
holds for the claim sizes (Y;);en; so, asymptotically, the accumulation of n successive
claims is governed by one very big claim.

Before giving the main examples for which (2.26) holds, we formulate some sim-
ple sufficient conditions to conclude that F' € S* (see [61, Thm. 3 and its corollary]).
Denote by Q = —log F the hazard function of F. Since S* contains essentially abso-
lutely continuous distribution functions, we can assume that @ has a density ¢ that
is called hazard rate of F. Furthermore, g(z) — v as x — oo implies that f has its
singular point in . Hence S* contains essentially distribution functions whose hazard
rate g tends to 0. It can be shown that the rate of convergence of ¢ decides whether
Fes

PROPOSITION 2.5.2. Each of the following conditions imply Fy € S:

a) limsup zq(z) < oo,

Tr—00
b) lim ¢q(z) =0, lim zq(z) = oo and one of the following conditions is satisfied:
r—0o0 r—00
(i) limsup zq(z)/Q(x) < 1,
T—00
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(i) g s regularly varying with index 6§ € [—1,0),

(i) @ s regularly varying with indezx 6 € (0,1), and q is eventually decreasing,

(iv) g is eventually decreasing,slowly varying,and Q(z)—zq(x) is regularly varying
with index 1.

Note that for regularly varying ¢ such that lim,_,, g(z) = 0 the index of regular
variation é satisfies § € [—1,0]. The case § < —1 is impossible since f0°° q(z) dz = oo,
on the other hand, for positive §, ¢ would be asymptotically equivalent to an increasing
function.

These conditions can be applied to check the following examples (for more details
and more examples see [61]).

(1) Pareto model:

F(z) = (a/2) ]j00)(x)  with a>0, b>1,

N——(i———axb“l T — 00.
V@)~ e @

(2) Lognormal model:

— a (log z — log b)2}
F(x) ~ €. - T [ )
(=) V2r(logz — logb) P { 2a? T
with a>0,b>1,
ad z (log z — log b)? }
xTr) ~ e -
V(@) V2r(c/k — bexp{a?/2}) (logz —logb)? Xp { 222
z — 0.

(3) Weibull model:

F(z) = exp{—2°} with 0<a<1,
z!~% exp{—2z°}

Y@ ~ e T a)

T — 0OQ.

Further results can also be found in [35]. For asymptotic ruin estimates in a more
general model see [7).

3. Martingales and insurance risk. As already indicated in §2.1, martin-
gales play a fundamental role in insurance mathematics. For a review of some of the
recent results, together with a list of further references, see [26] and the already men-
tioned [46]. The key idea for the fact that martingales are inherent in general risk
models was already hinted at in §2.1. The general structure of a risk process consists
of:

“Initial capital” + “premium income” — “claims.”
If for the moment we forget about the initial capital and assume that our liabilities
(claims) follow a general stochastic process, still denoted by S(t); then to find the fair

premium for S(t) it seems natural to construct a predictable random process P(t),
the premium process, which is defined to make the difference

M(@) = P(t) - St), t>0,

a fair game (i.e., a martingale) between insured and insurer. The construction of
generalizations of the classical Cramér-Lundberg model using this approach is worked



Downloaded 12/17/12 to 129.187.254.46. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

280 P. EMBRECHTS AND C. KLUPPELBERG

out in [23]. In this section, we shall present an alternative approach based on the
theory of piecewise deterministic Markov processes as introduced by Davis [21]. In
§3.1 we recall the basic definition of a piecewise-deterministic Markov process. As
an application in § 3.2 we discuss a risk model taking borrowing and investment into
account. The use of diffusion approximations will be highlighted in §3.3.

3.1. Piecewise-deterministic Markov processes. Once notions like borrow-
ing, investment, and inflation are introduced in the classical Cramér-Lundberg model,
it is clear that the interclaim evolution of the risk process will not be linear anymore.
However, in many cases we still encounter a more general deterministic behavior. In a
general Markov process set-up, Davis [21] let the deterministic paths between jumps
follow the integral curves (¢, z) of a vector field y, i.e., the curve ¢(0,2) = 2z and
(d/dt) f(p(t, 2)) = (xf)(p(t, 2)) for all differentiable functions f. For the classical risk
process this amounts to (t, z) = 2z + ct, i.e., x = c¢(d/dz). For the definition given
below, we follow [70]. Let I be a countable set endowed with the discrete topology
and let (M;: i € I) be given open subsets from R%, for some d; € N. Set

E={(¢:i€l, £ M}

and denote by £ the Borel sets of E. For every i € I, let x; be a vector field on
M; such that, for every point z € M; there exists exactly one integral curve ;(t, )
through z = ¢;(0, 2). Denote by M, the boundary of M; and let

O*M; = {z € OM;: 3(t,€) e RT x M;, z=i(t,€)},
I'={(i,z) €0E: i €I, z€0*M,},
t*(4,2) = inf {t > 0: @;(t, ) & M;}.

We shall assume that ¢;(t* (i, 2),2) € T if t*(¢,2) < co. Hence, I' denotes the set of
boundary points of E that can be reached from E via integral curves within finite
time and t*(z, 2) is the time needed to reach the boundary from the point (¢, z) (oo if
wi(t,z) € M; for all t > 0). The condition ¢;(t*(i, 2),2) € I assures that the integral
curves cannot ramify.

To define the relevant Markov process on (E,£) one further needs the jump
intensity \: £ — R* and the Markov transition measure

Q: £x (EUT) — [0, 1].

The piecewise deterministic Markov process (PDMP) (X})¢>0 with starting point zo =
(n, z) is now constructed as follows. Let

¢
1—F1(t)= eXp(—/O /\(n,(Pn(S,Z)) ds), 0<t <t*(.’170),
0. t > t*(xo)
and define the random variable T3 on Rt with distribution function P (T} < t) =

F(t). Moreover, define the random vector (N7, Z1) on E with distribution function
P ((vazl) S I Tl) = Q('s‘pn(Tlaz))' Set

X, = (’l’l, ‘Pn(t, Z)), 0 <t< T11
P (N, Z4), t=T.



Downloaded 12/17/12 to 129.187.254.46. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SOME ASPECTS OF INSURANCE MATHEMATICS 281

Assume now that the process (X;);>o is constructed up to time Ty_1, kK > 1. Let

t
1-— Fk(t) — exp (_ A /\(Nk—l"ka_l(s’Zk—l)) dS), 0 S t< t*(Xk—1)7
0, t > t*(Xp_1)

and define the random variables T} > Tk_; on R with distribution function
P(Tp <Tiho1+t]o(Xs: s <Ti-1)) = Fi(2)
and (N, Zy) on E with distribution function
P (N, Zk) € - | 0(Xs: 8 < Th1), Tk) = Q- oy (Tk — The1, Zi—1))-

Set
X, = (Nk=1, 0N,y (t = Th—1, Zk-1)), T-1 <t < Tk,
‘ (Nk, Zy), t = Tj.

The number of jumps of the process in (0,t] is given by J; = ), n [t>7;) and we
assume that E [J;] < oo for all t € R*. Davis [21] showed that the above constructed
process is strong Markov. The key steps to be taken in practice now are

(i) show that the considered generalized risk process is in fact a PDMP;

(ii) calculate the generator A of the process together with its domain D(A), and

(iii) solve Af = 0 for f € D(A) in order to construct the relevant martingale
f(X;) via Dynkin’s theorem.

For more details on this see [20] and [70]. For most applications in insurance, the
following result of [20, p. 185] turns out to be useful.

PROPOSITION 3.1.1. Let (X;);>0 be a PDMP and let f: (EUT) — R be a
measurable function satisfying

(i) the function (0,t*(i,2)) — R, t — f(i,0i(t,2)) is absolutely continuous
V(i,z) € E,

(ii) f(z) = [; f(y) Q(dy,z) Vx € T (boundary condition), and

(iii) E [T2<t| f(Xr) - f(XTi_)|] < 0.
Then f EB(A) and the generator of (X;)t>0 s given by

Af(x) = xf(z) + Nz) [ [ ) - 1@ @(ay, x)].

As indicated above, once the risk process is formulated as a PDMP, one solves
Af = 0 to obtain that (f(X:): t > 0) is a martingale with respect to the natural
filtration of (X;);>0. In most cases, there are various ways in which the risk process
can be made into a PMDP. Considering the Cramér-Lundberg model from § 2.1, where

N(t)
UW)=utct—St), SH=) %
i=1

Dassios and Embrechts [20] used the following constructions.

MODEL 1. Consider (U(t))¢>o directly as a PDMP.

MOoDEL 2. Consider the process (U(t)):>o until the ruin time 7, = inf{t > 0:
U(t) < 0}, at which time the process jumps to an absorbing state.
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Using MODEL 1, one recovers Gerber’s martingale from §2.1. MODEL 2 yields expres-
sions for the Laplace transform

(o 0]
/ P (T, < o0)e™*" du.
0

From the latter expression, using standard Tauberian arguments, ruin estimates for
u — 00 or u — 0 can be obtained.

3.2. A general insurance risk model. For this section, we follow Schmidli
[70], see also [33]. As a generalization of the classical Cramér-Lundberg model, we
assume that a company can borrow money if needed (i.e., for negative of “low” surplus)
and gets interest for capital above a certain (deterministic) level A, the amount of
capital the company retains as a liquid reserve. The assumed constant forces of interest
are denoted by (; for invested money and (33 for borrowed money, i.e., after time ¢
a capital z becomes zet, B € {81,052} Using the PDMP-language of the previous
subsection, the associated vector field becomes

(ﬁl(w—A)-}‘C), ASQ?,
0
5;, ) 0<z <A,
-, <0.
(1321'. + C) o T

We denote the corresponding risk process by (Ug(t)):>0, g standing for “general.”
The integral curve corresponding to the vector field x is decreasing for z < —c/fs.
Whenever the risk process hits the boundary —c/32, the company will a.s. not be able
to repay its debts. So

Tyu = inf {t > 0: Uy(t) < —c/B2}

will be called the ruin time. The model where A = 0o was studied in [20]. Using the
theory from §3.1, one can show that for A € [0, o0]:

f(u)
f(o0)’

where f is to be obtained as a solution of some complicated integral-differential (gen-
erator) equation. Moreover, P (T, < 00) = 1 if and only if A = cc and ¢ < kp. In
the case of exponential claims, the function f above can be calculated explicitly as
follows:

P(Tgu<o0)=1-—

f(@) = fi(@)[a,00) () + fo(x)Ij0,0) (%) + f3(2) IR~ (),

where

z+c/ B2
fo(@) = K / s(/B2)=1 =5/ gg.
0

$a@) = 0) + O (1 e Csnroe),

/n—Klc
B (k/B1)—1 z+c/Br—A
A0 =h@)+(2) T o ) S(e/=k =l ds,
¢/
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for some constant K which can be calculated. As a consequence of this result one
obtains the following adjustment coefficient estimate:

0, r<1/p or(r=1/pand k< fB),
Jim P (Tygu <00)e™=(¢, r=1/u and k=P,
00, otherwise,

where ¢ = e2#(8,/¢) /P uf(A)/ f1(c0).

Further analytic results can be obtained in the case of Erlang claim sizes; it is
clear, however, that, for more general models, no explicit analytic results like those
above can be obtained. Hence, the need arises for approximate solutions like those
based on the theory of phase-type distributions [6] or Monte-Carlo simulation (see,
for instance, [9]). For more details and further references, see [70].

3.3. Diffusion approximations. Rather than using the nondiffusion type
PDMP-theory, one might want to use the usual time-space rescaling and hope for
a reasonable diffusion limit on which the ruin times (hitting times) can be calculated
more easily. Although this approach is common throughout applied probability, it was
first introduced into the insurance framework through a paper by Iglehart [55] (see
also [6]). Recently, Schmidli [70] obtained a rather general result that allows imme-
diate calculations for the diffusion limits of risk processes like the one encountered in
the previous subsection.

THEOREM 3.3.1. Let 6: R — R be a Lipschitz-continuous function,(M™: n €
N) a sequence of semimartingales,and M a semimartingale such that M(0) =
M®™(0) = 0. If X™ is a sequence of stochastic processes satisfying the SDE

dX™(t) = §(X™M () dt +dM™(t), XM (0) = u,
and Z is a diffusion satisfying the SDE
dZ(t) = 6(Z(t)) dt + dM(t), Z(0) = u,

then M(™ = M for n — oo is equivalent to X = Z.
This result can be applied to the general risk process of § 3.2, where

Bi(z—A4A), z2>A,
6(x)=40, 0<z <A,
Box, z <0.

In this case, the semimartingales (M (™, M) are just Cramér-Lundberg (U™, U) risk
processes with n-dependent parameters (K, fin, Cp)-
Under the set of conditions,
(i) for all n € N: PrFnfin = pLR1JI, KnO2 = K107%,

(ii) for all e > 0: Ky, | x2dFy(z) — 0 as n — oo, and

€

(iii) Q™ (0) = Q(0),
it follows that Q™ = Q where Q(t) = nB(t) + dt with (B(t)):>0 2 standard Wiener
process and d = pyKk1p1, N? = limy— oo Kn (62 + 02) (see [70]). The notation above
follows that in §2.1.

Combining these results, one is able to calculate the limiting diffusion (Z(t))¢>0
of the general risk processes from § 3.2; indeed one obtains the following result.

THEOREM 3.3.2.
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(i) The process f(Z(t))t>0 is a martingale for f: R — R, with

(7 2d I d? 2d
G- (-Za)) v oo (5 - 522
><<<I>('21(a:—A+i)>—<I>(fl- —2—)), A<z,

n 2d
C—l(l—exp(——n—ix)), 0<z <A,

oo (i) (o (52) () = (35)
2,/—ex P 4+ — | —-P{ /=), <0,
B, =P <7I2ﬂ2 n B2 nV B2
where ® stands for the standard normal distribution function.
y f(o0) = £(2(0))
i) P(Z(t) » —00) = — >~ 2
() P (2() = ~00) = Foy = F(=o0)
where f is given in (i).
For a proof of this result, various generalizations and numerical comparisons be-
tween the exact ruin estimates given in the previous subsection and the diffusion
approximation value of Theorem 3.3.2 (ii) see [70].

4. Statistical estimation for risk processes. It is clear that the various
parameters in the above discussed risk processes will have to be estimated statistically.
The whole branch of empirical studies in insurance is quickly gaining momentum. A
prime example on how the transition from data toward model (and backward) is made
is the work by Ramlau-Hansen (see [67] and [68]) on solvency. We shall for the present
paper content ourselves with the discussion of some statistical problems related to
insurance risk. Using the various references given in the text, the reader can get a
better view of the totality of statistical problems involved. In §4.1, the important
problem of adjustment coefficient estimation will be discussed. We also take the
opportunity to highlight the use of bootstrap techniques in insurance. In §4.2 a review
will be given of claim size fitting in the context of the numerical estimation of the total
claim size distribution. In §4.3, a brief discussion of tail estimation for individual claim
size distributions will be given. Finally, in §4.4, a probabilistic definition of a large
claim index together with its statistical estimation will be discussed.

4.1. Estimating the adjustment coefficient. In §2 (i.e., (2.6)) we have de-
fined the adjustment (or Lundberg) coefficient R for the classical model via the equa-
tion:

K [* 5 —
(4.1) —/ e F(2)dz =1,
¢ Jo

where F' is the claim size distribution. Its main property was that

lim P (T, < o0)e® € (0, 00).
u—00
Thus, e~ R gives the asymptotic order of magnitude of ultimate ruin; for a discussion
of the existence of R for more general risk models see also [29]. If we suppose that x and
c are known, then there are various ways in which R can be estimated via (4.1). Most of
the methods used are based on the link between risk theory and queueing theory or use
some empirical version of (4.1). The latter approach was mainly advocated by Csorgo
and Teugels [19], Hall, Teugels, and Vanmarcke [47]. See also [50] and [51]. If one
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replaces F' in (4.1) by the empirical distribution function (e.d.f.) F,(z) = n=1#{i <
n: Y; < z}, one obtains, by solving (4.1), an estimator R, of R. The problem with
the estimator is that its asymptotic behavior strongly depends on conditions relating
to the left abscissa of convergence of the Laplace transform of F' (see [19]). In [18] and
[22] the following link to queueing theory is exploited. Let Q; =Y; — T}, i =1,2,...,
for the classical Cramér-Lundberg model, and g(s) = E (e°@1).

Define My = 0 and M,, = max{M,-1 + Q,,0}, forn=1,2,..., and v = 0 and
vy = min{n > v_1 +1: M, =0}, for k = 1,2,.... Deheuvels and Steinebach [22]
interpret the stopping times vy as follows. They first observe that U(t) —U(t,,_,) > 0
for t,,_, <t <t,,, while U(t,,) = U(ty,_,) < 0 for i =1,2,..., so that U(-) has a
positive excursion in each interval (t,,_,,t,;). Once n > 1, such positive excursions
have been observed, the sequence of random variables {Z;: 1 < ¢ < n} is defined by

Z;= max M;j, i=1,2,....
vi—1<j<vi

It was shown in [8], that the random variables Z;, Zs, ... are independent and identi-
cally distributed and

(4.2) lim z7'log{Z; > 2} = —R.
T—00

(The latter conclusion of course presupposes the existence of R under the net-profit
condition p — ¢/k < 0.) Using this result, estimators of 1/R based on the order
statistics {Zp—it1,n, 1 <3<k} of Zy,...,Z,, where 0 < Z; , < -+ < Zp, , can be
constructed. Some examples are

To(k) = Zle Zp—it1,n (tail sum estimator),
Qn(k) =kZp_kt1n (quantile estimator),
Hy(k) = To(k) — Qn(k) (Hill estimator),

or some convex combination of Q, and H,, for some sequence k¥ = k(n) for which
k(n) — oo, n"tk(n) — 0.

The construction underlying (4.2) was taken up further by Embrechts and
Mikosch [32] as a basis for a bootstrap estimation procedure for estimating R. Further
use of the bootstrap procedure in insurance mathematics is highlighted in [1], where
a problem related to stochastic discounting is solved using such a resampling scheme.
One final, interesting method which we would like to mention is due to Herkenrath [49].
In the latter paper it is observed that the Lundberg equation (4.1) is equivalent to
finding a nontrivial root R of

(4.3) K+ Rec= n/ ef® dF (z).
0

Defining

o <]
Mm=/emﬂw—&—L
0 K

one has that R
um=E@m—f—Q;

therefore, the problem of estimating R amounts to the estimation of a root of an
unknown regression function by observing corresponding random variables. This is
a classical problem of stochastic approximation. See the above mentioned papers for
details, numerical comparisons, and further references.
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4.2. Numerical approximation of the accumulated claims distribution.
Traditionally, the distribution of the total claims in a fixed time period (e.g., in one
year) has been a central topic in risk theory. First there are two independent estimation
problems to solve: the choice of the claim number process and the choice of the
claim size distribution. We restrict ourselves here to the Poisson model so that the
estimation problem for the claim number process reduces to the estimation of .
Second, for known (or estimated) x and claim size distribution F' one has to calculate
the accumulated (or aggregate) claims distribution

- —K nn n*
G(z) = Z e -TJF (z), z>0.

n=0

Notice that F™* is can be explicitly calculated only for degenerate (deterministic) or
exponential claim sizes. In all other cases numerical approximations for G are required,
where the convolutions and the infinite sum cause problems.

Since computers have entered the field the interest in many traditional approxi-
mation methods has faded whereas more computer intensive methods like recursions,
Fast Fourier transform, and Monte-Carlo methods have gained importance. On the
other hand, many of the traditional methods require only a few moments of the claim
size distribution and show acceptable accuracy around the mean. Unfortunately, few
of them are particularly good in the tail.

All standard textbooks on risk theory contain sections on approximation methods
(see, e.g., [9], [41], [48], and [52]). Numerical examples can be found on a diskette
included in [52]. It runs on DOS 2.0 or later DOS versions and is written in BASIC or
TURBO PASCAL or in [63]. Here we only introduce some basic ideas and refer for a
more detailed description and discussion of the approximation methods to the above
mentioned textbooks. B

For ease of notation we shall always approximate the distribution function G of
the standardized random variable

S — Kk

S=—A————
k(02 + p?)

, S =S5(1),
if not stated otherwise. The approximation of G is then obtained in the obvious way.
Furthermore, we shall denote uy = EY®, k > 2.

4.2.1. The normal approximation and related methods. The central limit
theorem applied to S gives, for large x,

In practical applications, however, & is often not large enough and the accuracy of
this approximation is not satisfactory if the skewness of the claim size distribution is
large.

An approximation which takes also higher moments into account is the Edgeworth
expansion

1

G(a) ~ B(a) - 3 28 () + o

6 k3

where ®*) is the kth derivative of ®. The first line of the approximation contains
terms up to the order k~'/2, the second line up to x~1, and R(z) up to k=3/2.

2
M 5 1._ H3 5(6)
o (x) + P + R
nu% (2) 72 nug (@) (@)
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This expansion is obtained by means of the moment generating function of G
expanding the exponential in a Mac Laurin series and inverting the terms back to the
distribution function. Although the Edgeworth expansion is a divergent series, taking
a suitable number of terms, it usually gives acceptable results in the neighbourhood
of the mean.

An approximation more reliable also in the tails is given by the so-called normal
power approximation

G(a) ~ <I>(\/9fw%/u§ o+ 1~ 3 s ).

The idea is to represent S as a transformation of a standard normal random variable
N;ie.,
SZu(N),

for some function v. Then we approximate
G(z) = @(v‘”(x)),

where v~ is the inverse of the function v. A suitable transformation in polynomial form
can be obtained by inverting the Edgeworth expansion. Using Newton’s approximation
one obtains

1 1 u2
V= 1)+ o L (y® — 3y) — = L3 (2 — By).
2 2

1 p3
v(Y) =Y+ = —— =
W~y+g ‘/‘“,wg( 24 rp 36 Ky

The above formula for G(z) is obtained by taking only the first line of v(y) into
account.

4.2.2. Approximations using orthogonal polynomials. This method is
based on L? approximation theory. Suppose I C R is an interval and w a positive con-
tinuous (weight) function. Then certain orthogonal polynomials (7;);en, constitute a
basis of the Hilbert space L2, which denotes the space of all L2-integrable functions
with respect to the measure w(z) dz. Then all functions f € L2, can be expanded into

f(2) =3 Aimi(z)u(a),

1=0
where

A; = /I7r,~(m)f(:v) dx//jwf(m)w(m) dz, i € Np.

Approximations of order n are obtained by
n
fl@) =) Aimi(z)w(z).
i=0

Different intervals I and weight functions w yield different approximations.

(i) The Gamma approxzimation of Bowers.

For I = R* and w(z) = z® 'e~®/T'(b) the Laguerre polynomials constitute a
basis of L2 . In this case the standardized random variable is

ES 7
VarSS_ ES

S =
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and we assume that S has density g.
For n = 0, 1,2 this results in a simple Gamma approximation; i.e.,

9(z) = w(x) = I‘(lb) zble®, z>0.

For n = 3 one obtains

- A b1 LB 5
9(x)~r(b)m e +6<,u3/2 b(b+1)(b+2)

z3 3z2 3z 1 e bl
- — - b= > 0.
><(r(b+3) Th+2) T T+ I‘(b))e @ w20

Here b is chosen in the form b= E S = kp?/ps.

(ii) The Gram—Charlier approzimation.

For I = R and w(z) = p(z) = e~2"/2 /V/2m, the Hermite polynomials constitute
a basis of L2,. For S = (S — kp)//kp2 with density g we obtain, for n =0, 1,2,

g(z) ~ w(z) = (),

for n = 3 one obtains
©®(z),

9(z) =~ p(z) — \/—

and forn =4

30~ plo) = § e Ve) + 5 L),

where ©(*) is the kth derivative of the standard normal density ¢. Note that for n < 4
the Gram-Charlier approximation is exactly the Edgeworth expansion of the corre-
sponding order. Only if one takes terms of higher order into account both expansions
differ.

4.2.3. The Esscher approximation. Most of the preceding approximations
are sufficiently precise around the mean but perform poorly for large = values. Ex-
ponential tilting of the distribution shifts the mean to an arbitrary large z-value and
hence improves the approximation in the tail considerably. For the random variable
S with distribution function G we define for h € R, whenever g(—h) < o0, a new
random variable S}, with distribution function G} by

= 1 mehy
Gh(o) = =25 | evacw)

G}, is called the Esscher transform of G. Then for a given value of z we define h so
that E S, = z and apply the Edgeworth expansion to G. For h > 0, the tail G(z)
can be approximated for x > E .S by

f(3)(_h)
6k1/2 (f(z) (-h))3/2 E3(u)) ,

G(z) ~ exp {/\(f(—h) -1) - ha:} <Eo(u) -

where u = hy/kf(®(—h) and Ey and Ej are the so-called Esscher functions
Eo(u) = (1 - 2())/ (V2 (w))

and
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E3(u) = (1 —u?+ud(1- Q(u))/cp(u)) /\/2_71'

The Esscher approximation is similar to the saddle point approximation. For a detailed
discussion in the Poisson and the Pélya case see [31]; for more general models see [56].

4.2.4. Discrete methods. Note that for all approximation methods introduced
in §§4.2.1 and 4.2.2 only x and the first few moments of the claim size distribution
have to be known (or estimated); for the Esscher approximation the Laplace transform
is needed. For the discrete approximations in this subsection the whole claim size
distribution has to be known. A good additional reference for this subsection is [37].
See also [30] for the fast Fourier method. Both approximations introduced in this
section work on a finite support and the number of calculations increases with a
finer discretization (for absolutely continuous distributions) as well as with a greater
support (for heavy tailed distributions).

(i) The Panger approzimation

Suppose Y is concentrated on a lattice, and without loss of generality suppose
f(@) = P(Y =1), i € Ng is given. Set g(i) = P (S = i), ¢ € Ng, then g(i) can be
calculated recursively by

g0)=P(N=0=e",
9() = =3 if()gli — 3).
Jj=1

Similar versions of this recursion hold for more general claim arrival processes; for
a characterization theorem see [48]. For an absolutely continuous distribution a dis-
cretization is necessary to apply the above recursion; in this case the algorithm is no
longer exact.
(ii) The fast Fourier transform

Suppose again that Y is concentrated on a lattice, say Ny, i.e., f(k) = P (Y = k),
k € Ny. Then Y has the characteristic function

py(t;) = 3 f(k)eH2mim,
k=0

for t; = 2mj/mn €[0,27),j=0,...,n— 1.
If we set

fey="Y" flk+n),

l=—o00

where f(—k) =0 Vk € N, then by periodicity,
n—1
pr(t) =) Flk)e™*mrm.
k=0
Now the characteristic function of S is given by

ps(t;) = exp {keoy (t;) — 1}
On the other hand, if g(k) = P (S = k), k € No, then

o0
ps(ty) =Y g(k)e>mi/m.
k=0
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We denote

o0

g(k)= Y glk+In)

l=—00

where g(—k) =0 Vk € N. Then

n—1
‘PS(tj) — Z g(k)eikmrj/n’
k=0

and the problem reduces to determining g(k), k € No, from ¢g(t;).
Both problems, namely the determination of the characteristic function and its

inverse can be considered as follows. Transform a vector a = (ay,...,a,-1)T into a
vector b = (by,...,bn—1)T according to the rule
b=Wa, W= (), .
Note that W = (e‘ka"i/")k,j=o,,,,,n_1 and
W -W =nl,
where I is the unit matrix. Thus, one obtains
b=WaFFT"(a),
1 def 1

= —Wb— —-FFT (b).
Summarizing the above arguments we obtain
1 .
§=~FFT (exp{ﬁFFT - 1}).

Notice that the error is (k) — g(k) = Y_;2; gk+in > 0. By a special factorization
of the matrix W for n = 2!, | € N, the properties of the unit roots allow a consid-
erable reduction of the number of calculations needed; hence, the name Fast Fourier
Transform (FFT).

4.3. Tail estimation. Tail estimation of the claim size distribution is, particu-
larly in the heavy tailed case, one of the most interesting problems in risk theory. We
give some examples: (i) As seen in §4.2 most of the numerical approximation for the
accumulated claims distribution G do not perform very well in the far end tails. On
the other hand, a theoretical result in [28] states that, e.g., for the Poisson model with
subexponential claim size distribution F, G(z) ~ xF(z). This provides an estimate
for G(x) for large x and the remaining problem is an accurate estimation of the tail of
the claim size distribution F. (ii) Asymptotic estimation of the ruin probability for
subexponential claim size distribution is given in (2.26). Here also F(z) is needed for
large z. (iii) By the structure of reinsurance, statistical data are often available only
from the upper extreme part of the sample and mainly the fit of the tail is required.

Here we briefly review a semiparametric method which has been introduced in
[62], tested by a Monte-Carlo simulation study in [59], and has also been applied to
a sample of automobile liability data from an excess of loss reinsurance treaty with
limit 100 000 SF [62]. In the same paper some alternative methods are reviewed, in
particular, the so-called threshold method and we refer to this article for more details
and further references.
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To apply this semiparametric tail estimation method one needs at least some
information to which class of models the distribution tail belongs. This can very
effectively be done using the mean residual life functions. The mean residual life
function of a distribution function F is defined as

o0
ar(@)=E[Y -2 |Y > 2] = / F(u)du/F(z), @>0.
T
For exponential distributions ap is obviously constant, for distributions with tails
decreasing faster than exponential it decreases to 0, and for heavy-tailed distributions,
like subexponentials, it increases to oo; for a graphical summary of the most important
claim size distribution, see, e.g., [54, p. 109].

Moreover, different heavy-tailed distributions show different curves for the mean
residual life functions, e.g., for the Pareto it is a straight line with positive slope and
for the Weibull (with parameter a < 1) it is a concave function. This becomes quite
obvious in the tails. Furthermore, to use these functions for the purpose of modeling
is relatively easy since their empirical version a Fn is simply

1
a‘F,n(x) % Z Y-z,
Yi>x

where k is the number of observations greater than x.
The function ap,(z) allows, for instance, to distinguish between an extended
Pareto model
Fi(z) = l(z)z™°, a>0,

and an extended Weibull model
Fa(x) = r(z)e™™", a€(0,1),

where [ is a slowly varying function and r is a regularly varying function (see, e.g.,
[11]). The advantage of introducing ! or r is that the model makes a certain departure
from the exact Pareto or Weibull model, possible, in particular for the lower and
intermediate range of the sample. The parameter a has to be estimated and this can
be done by so-called asymptotic maximum likelihood estimation (AMLE). For the
extended Pareto case one obtains Hill’s estimator, i.e.,

~—1

k
Q= ZlOgYn—j+1,n —log Yn_k+1,n, k>2;
j=1

Col B

for the extended Weibull case the resulting AMLE is the solution of
1 n
(@' —1)loglogn — log a = log {; > logYn—jt1,n —log Yn-kﬂ,n}, k> 2.
j=1

For a derivation of the parameters and their asymptotic properties see [62].

4.4. Closing the gap: Theory and practice. An important evolution in
recent discussions in insurance mathematical concerns the growing need for high-
quality empirical work. Much less as in biostatistics or reliability theory, for instance,
does the insurance world discuss research problems on the basis of empirical data. As
always there are of course happy exceptions, as already indicated in the introduction to
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this paper, in such fields as credibility theory, loss distribution modeling, and solvency
studies. The main reason, however, for the existing gap between theory and practice
is the separation between academic societies and professional ones in many countries.
See, for instance, [27]. Recent conferences in the realm of stochastics do include the
occasional section (or invited paper) on insurance; if, however, research is really to
take off, academic researchers will have to spend more time in participating in the
many professional meetings related to insurance to get a better feeling for “what
really interests the practitioner.” We would like to close this paper with an example
of what sort of research problems may come out of such an encounter. The results
to be discussed can be found in [2]. In the latter paper, the problem of large claims
is discussed. A practitioner’s view of Pareto claims is described as “those claims
for which 20% of the individual claims are responsible for more than 80% of the
total claim amount in a particular portfolio.” A way to find a mathematical way in
understanding the above rule of thumb goes as follows. Let (Y1,...,Y,) be a sample of
positive, independent and identically distributed random variables denoting the first n
claims in a portfolio Y = (Y3, Y3, ...), with distribution function F' and finite mean u.
Denote the associated order statistics by Y1, < -+ < Yy, »n. The total claim amount
for the first n claims is S, = ZZ:l Y, If ﬁn stands for the empirical distribution
function and F7! its generalized inverse, then F-1(i/n) = Y; ». 71 is known as the
quantile function. With this notation, the above rule of thumb can be reformulated in
terms of T (o) = (Yjnaj,n + -+ + Ya,n)/Sn, 0 < a < 1. Hence Ty, () is the proportion
of the sum of the (n — [na] + 1)st largest claims to the aggregate claim amount .S, in
our portfolio. Using results from the theory of Mallows’ metrics in [2] the following
result is proved.
THEOREM 4.4.1. Under the above conditions,

asl [
Tn(a)—'—f;/ F~Y(z)dz.

Consequently one could use the functional Dp(a) = % f; F~1(z) dr as a measure
of dangerousness of a claim size distribution function F'. Its value indicates to what
extend the 100(1 — &)% largest claims in a portfolio contribute to the overall portfolio
claim amount. Of course, D = 1 — Lp, where Lr is the Lorentz curve associated
with F'. There is a lot of relevant literature that can be brought in at this point. A
numerical study now yields the following value for Dp:

F ~ Pareto (p): p =14, 1-a=0.2, Dp(a) = 0.804,

indicating that the above rule of thumb may be based on a Pareto distribution behavior
for the claims with parameter around 1.5. This observation is substantiated in many
recent empirical studies. See [2] for further references, and for numerical results on Dp
across a wide range of claim size distributions. For a recent survey on the stochastic
modeling of large claims in nonlife insurance, see, for instance, [10].

5. Conclusion. It is clear that the above summary of “some aspects of insurance
mathematics” offers only a sketchy view of what the whole field is about. It is, however,
to be hoped that enough material and references have been presented so that those
interested in getting “more involved” will find the text a useful entrance into the rich
world of insurance modeling. In essence, insurance is all about randomness. There
is no doubt whatsoever that advanced techniques in probability and mathematical
statistics will play an ever increasing role in the further development of the field. It
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is therefore our sincerest hope that our paper may contribute to stimulating future
students to have a closer look at some of the demanding problems in the area.
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