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NORM RESTRICTED MAXIbfUM LIKELIHOOD 
ESTIMATORS FOR BINARY REGRESSION 
MODELS WITH PARAMETRIC LINK 

Claudia Czado 
Department of Mathematics and Statistics 

York University, North York, Canada, M3J 1P3 

Keywords and phrases: Binary response models, link Iransformaiions, logistic regression, 
EM algorithm, empirical Bayes methods, posterior modes, restricted mat imum likelihood 

A b s t r a c t  

Parametric link transformation families have shown to be useful in the analysis of 
binary regression da t a  since they avoid th; problem of link misspecifaction. Inference 
for these models are commonly based on likelihood methods. Duffy and Santner (1988, 
1989) however showed that  ordinary logistic maximum likelihood estimators (XILE) 
have poor mean square error (MSE) behavior in small samples compared to  alternative 
norm restricted estimators. This paper extends these alternative norm restricted esti- 
mators t o  binary regression models with any specified parametric link family. These 
extended norm restricted MLE's are strongly consistent and efficient under regularity 
conditions. Finally a simulation study shows that  an empiric version of norm restricted 
MLE's exhibit superior MSE behavior in small samples compared to MLE's with fixed 
known link. 

1 INTRODUCTION 

Common b ina ry  regression models such as logistic or probit regression have been extended 
t o  allow for a n  es t imated link by using pa rame t r i c  link transformation families. Th i s  avoids 
the  problem o f  misspecification (see for example  Czado and  Santner  (1992a) a n d  has  yielded 
substantially improved fits i n  some d a t a  sets.  Inference for these binary regression models  
with parametr ic  link is commonly based on  likelihood methods .  In particular,  regression a n d  
link parameters  a r e  jointly es t imated by max imum likelihood. Logistic regression es t imates  
however have shown t o  have higher M S E  in  small samples compared t o  some alternative 
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2260 CZADO 

estimators developed by Duffy and Santner (1988,1989). This paper shows that  these alter- 
native estimators can be extended to cover binary regression models with parametric link 
while maintaining their better MSE behavior. 

In binary regression, the observed da ta  is {(Y'i,Xi), 1 < i < n} with Y, a 0/1 response 
and Xi = (XS1, ..., Xi,)' a vector of p (possibly stochastic) explanatory variables. Binary 
regression models with parametric link transformations have the form 

where {F(.l+) : Ijr E q )  is a family of cumulative "link" distribution functions and P E R P  

is an unknown regression parameter. If {F(.Iq!J) : q!~ E Q )  contains only the logistic distribu- 
tion, then (1.1) reduces to logistic regression. In general, Jt is called the link parameter and 
is jointly estimated with the regression parameter ,B. In this paper attention is restricted to  
link distributions F(t l$)  which are continuously differentiable with respect to z and +. 

Many link distribution families {F(.($) : q!J E q )  have been proposed in the literature 
(see for example Prentice (1975, 1976), Copenhaver and Mielke (1977), Pregibon (1980), 
Guerrero and Johnson (1982), Aranda-Ordaz (1981), Stukel (1988), Czado and Santner 
(1992b) and Czado (1992a, 1992b)). Under the assumption tha t  the true link is a member 
of the specified link family given in (1.1) and regularity conditions, Czado (1989) has shown 
that 0, = ($,,fin), the joint maximum likelihood estimator (MLE) of 0 = ( $ , P ) ,  is  
st,rongly consistent and efficient for fixed and stochastic covariates. 

While large sample properties of 6, are therefore known, much less is known about 
its small sample behavior. This leads to the consideration of alternative estimates of 0. 
This paper introduces a norm restricted MLE of 9 and its empirical version. They can 
be formally derived by using modifications of Bayes and empirical Bayes methods and are 
extensions of Duffy and Santner's (1988, 1989) alternative logistic estimators to the case of 
binary regression with parametric link. 

For the large sample theory of the norm restricted hlLE's and for the derivation of the  
empirical version of the norm restricted MLE, it will be necessary to consider stochastic 
covariates X yielding an extended version of Model (1.1) as follows: 

p(x) = P ( Y  = 1IX = z) = F(x'P,$) 

X has density h(z)  

Thus ((x, X,), 1 5 i < n} is a multivariate i.i.d sample. Random covariates occur in 
cohort sampling where the response and explanatory variables are jointly observed but not 
in experimental settings where covariates are fixed in advance. 

The  remainder of the paper is orgainized as follows. Section 2 defines norm restricted 
hlLE's for 0 for any specified link family and  studies their latge sample properties. Section 
3 considers an empirical version of the norm restricted MLE's introduced in Section 2. T h e  
paper concludes with the results of a simulation study aimed a t  investigating small sample 
properties of the alternatives considered. T h e  simulation uses the following parametric link 
family 

F ( z J + +  = (c,, k+))  = 1 - (1 + c+ exp(r))-'+ for c+ > 0, k+ > 0 (1.3) 

This link family was motivated by Burr (1942) and Prentice(l975, 1976), and used for binary 
regression with parametric link by Czado and Santner (1992b). F(zlq!J+ = (c+,k+)) is 
positively (negatively) skewed if k+ < 1(> 1). The family includes the logistic (k+ = 1) and 
the extreme minimum value distribution (k+ - a). Moments and other properties offamily 
(1.3) as well as other generalizations of the logistic distribution are given in Balakrishnan 
and Leung (1988) and Balakrishnan (1992, Chapter 9). 

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ek
 d

er
 T

U
 M

ue
nc

he
n]

 a
t 0

4:
58

 1
7 

D
ec

em
be

r 
20

12
 



NORM RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS 2261 

2 NORM RESTRICTED MLE'S I N  BINARY 
REGRESSION MODELS WITH PARAMETRIC 
LINK 

To extend the Duffy and Santner's alternative logistic regression estimators to binary regres- 
sion models with parametric link, let p ( 8 )  = ( P I ( @ ) ,  . . . ,p , (B)) '  with p i (6 )  = F ( x : P , $ )  the 
vector of success probabilities, I (y ,  8 )  the likelihood and f ( y , B )  the joint density for Model 
( l . l ) ,  i.e. 

n 

I ( y , B )  = f ( y , Q )  =  UP,(@)^.(^ -P,(B)) ' -~* 
r = l  

(2.1) 

where Y = ( Y I , .  . . ,yn) '  E [O, 11" and 6  = ( d l , @ ) .  T h e  mean square error (MSE) of j ~ " ( ~ ) ,  
the MLE of p ( B ) ,  is therefore given by 

I t  can be argued similarly as in Duffy and Santner (1988)  that for the Model (1.1) and for 
every + E the MSE of i t M ( y )  is small when the norm of P is large, in particular the 
following holds V fixed + 

M S E ~ , ( P ~ ' ( Y ) )  = C I I F " ( Y )  - P ( B ~ ) I I ~ ~ ( Y , B ~ )  -+ o a s  k - m, (2.3) 
ve[o,1ln 

where B t  = (+, kp). It is straight forward to see that  (2 .3)  also holds in the case ofstochastic 
covariates (Model (1 .3 ) ) .  

For logistic regression, Duffy and Santner (1988) were able to show that  M S E ~ ( ~ I " ( ~ ) )  
has astationary point a t  P=O. Their argument relies heavily on the linearity in p  of the score 
equations and the synmetry of the logistic distribution. Since these properties do not carry 
over for the general case considered in (1.1) or (1 .3) ,  the above result cannot be established 
in general. However the simulation results presented later indicate that  ~ S ~ p ( f i * ' ( ~ ) )  is 
larger for ,!3 small in norm for the cases considered. 

Further, experience in analyzing real and simulated da ta  shows that  flat likelihood sur- 
faces can occur indicating near nonidentifiability of the parameter 8 .  In these situations, 
components of the joint MLE 8 ,  are driven to &co thus making model interpretation diffi- 
cult. This also makes the introduction of norm restricted MLE's of 8  desirable. 

General restricted MLE's for 8  can now be defined using a Baysian setup. Assume that 
8  has a prior density given by g ( B )  = g p ( P ) .  g+,($t)  . . . g $ , ( $ q )  This assumes the prior 
independence of P with each of the link components + j ,  j = 1,. . . , q .  I t  is further assumed 
that  go(.) and g+,(-), j = 1 , .  . . , q are continuous differentiable densities . Therefore the log 
posterior likelihood of the d a t a  based on Model (1.1) or (1.3), denoted by l p ( y , 8 ) ,  is given 
apart  from constants independent of 8  by 

l F ( y ,  8 )  = In ( ( Y ,  8) + In d B )  
9 

= I ~ ~ ( Y , Q )  + Ingp(P)  + C l n g @ , ( $ j )  (2.4) 
j = 1  

Since 8  E RF+q, it is computationaUy difficult to calculate the posterior expected loss, even 
with respect to square error loss, we have foccused attention on determining the mode of - R 
the posterior distribution, denoted by 8  , which is defined by 
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2262 CZADO 

Assuming stochastic covariates (Model (1.3)) and the same regularity conditions needed for 
strong consistency and efficiency of en, the MLE of 8, plus the log concavity and smooth- 

ness of g(O), Czado (1989, Theorems 5.2.1-5.2.3) showed that  eR defined in (2.7) exists 
asymptotically, is strongly consistent and efficient. As in Duffy and Santner, the estimator - R 
0 can equivalently by motivated as a restricted MLE by the following proposition 

- R 
P r o p o s i t i o n  2.1 Assuming that g(.) and l(y,O) are log concave and differentiable at  8 , - R R 
the estimator O = (@, . , . , @,,h ) solves fhe following restricted likelihood problem: 

R : maximize In l(y, 8) subject to 

I n 9 d P )  L KO 
Ing+,(+j) 2 K + , j = 1 , . . . , 4  

where 

This proposition is similarly proved a s  Theorem 3.1 in Duffy and Santner(l988) using a 
multivariate extension. The  smoothness conditions in the proposition insure the existence - R 
of the norm restricted estimator 13 . Since densities defined on RP converge to zero a t  
the boundaries, (2.6) restricts 0 from becoming too large. Proposition 2.1 allows for the 
construction of a wide class of restricted MLE's. It is now shown that with the appropiate 
choice of g(8), norm restricted hlLE's can be constructed as well. One possible class of prior 
densities g(.la2) for 8 can be given by 

where 

u2 = (u:, . . . , u 2 , u 2 )  are assumed to be known positive constants and 4' = (Qr,. . . , $g )  is 
9 .P 

a specified vector in W. This class of priors assumes the apriori independence of the link 
and regression parameters. The  parameter P is assumed to be p-variate normal with zero 
mean vector and covariance matrix uzlp,  where Ip denotes the identity matrix of size p, 
while the prior distributions for $, , j = 1,. . . , q  are independently normal with mean $J: and 
variance uj . A reasonable choice for 4" would be the value of the link parameter .IC, which 
corresponds to  logistic regression or some other commonly used fmed link binary regression 
model. 

Therefore g(.la2) is a prior distribution which pulls the regression parameter P towards 
zero and the link parameter T,!J towards qh". The amount of shrinkage towards these values 
depends on u2. It is easy to  see that this class of prior densities gives norm restricted 
MLE's, since 
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NORM RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS 2263 

- R R 
where 8 = (@, . . . , @ , b  ) maximizes the log posterior likelihood (2.6) which in this case 
is given, apart  from constants independent of 8, by 

IJY, 0) = l,(Y, W )  = 

The choice of u q s  crucial since it govern the degree of shrinkage. This holds since ,hR (or - R 4;) -+ 0 a a$ (or 6;) -+ 0 and 110 / I 2  (or (@ - 11,")') increases as a$ (or uj?) increases 
while all other prior variances remain fixed. This results can be shown similarly as in Duffy 
and Santner(l988) . However, in general there is little information available to  guide the 
selection of a ? .  Section 3 proposes an empiric restricted MLE with a da ta  dependent choice 
of u 2 .  

3 EMPIRIC RESTRICTED MLE'S FOR BINARY 
REGRESSION MODELS WITH PARAMETRIC 
LINK 

To derive the empiric restricted MLE for binary regression with parametric link an i.i.d. 
sample is needed and therefore Model (1.3) is assumed to hold from  no^ on. 

The empirical Bayes estimate of u2 = (u:, . . . , a:,a$) is given as the maximizer of the 
marginal likelihood 

where f (y, z]B) is the joint density of ( Y , X )  = (YL,. . . ,Yn ,X1 , .  . . ,X,), i.e. 

and g(81u2) the prior density given by (2.7). Once the empirical estimate of u 2  is deter- 
- R 

mined, the norm restricted MLE 8 is calculated based on the estimated r r2 .  However, 
maximization of m(y ,z lu2)  over u2 E (0,m) is computationally infeasible since it would 
involve a (p-tq) dimensional numerical integration. 

As one possible alternative the EhI algorithm of Dempster, Laird and Rubin (1977) can 
be applied, Consider the incomplete da ta  to  be ( Y , X )  and the complete da ta  to be ( Y , X , 8 )  
with joint log density 

d ( y , z , 8 l u 2 )  = lnf(y,x10) -c Ing(01u2) (3.2) 

where f(y,z19) is given by (3.1) and g(61a2) by (2.7). Ignoring constants independent of 
u 2 ,  (3.2) can be written as 

it follows tha t  t ( y , z ,  0)  = (($1 - Qf)', . . . , ($q  - $ ~ ~ ) ~ , ] ] ~ ] 1 ' )  is a sufficient statistics for u 2 .  
Therefore the EM algorithm applied to (3.2) has s t h  iteration with current guess US as: 
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- I - m(v,r,t)la;) JRPtP t ( ~ i = l @ )  . exp(d(y,=,  W ) ) d @  

where integration is understood componentwise. 

M - S t e p  : Choose a!+, to  maximize 

~ ( I J , z , ~ ~ u ~ )  with f (y ,x ,$)  = t 5  over u2 

CZADO 

(3.3) 

Since the GStep (Equation (3.3)) requires a (p+q) dimensional integration, which is 
computationally impractical, the following multivariate normal approximation of the distri- 

- R  - R  
bution of 6 given (Y, X, a:) is made. It is multivariate normal with mean 6, = 6 (a:) and 
covariance matrix 

2' = [-v2d(y, t, 81a:)]-' 

With this choice the approximating distribution and the  actual distribution have identical - R 
curvature at  6, . Leonard (1972, 1975), Laird (1978) and Duffy and Santner(l989) also use 
normal approximations in the CStep .  The approach of Laird (1978) was followed here, 
while Duffy and Santner (1989) use a different estimate for the  covariance matrix. 

Using this approximation the E S t e p  becomes 

1' = ( t i ,  ..., t i , t ; )  where 

where (C;, . . . , C:, C;) is the diagonal of P a n d  tr(A) denotes the trace of the matrix A .  
The hi-Step can easily be computed, since 

Elementary calculus shows that  the solution to (3.5) is given by 

t 5  iJp ti; c2 = (2,. . . , - -). 
2 2 ' p  

Using this approximation the sib EM iteration becomes 

E - Step  : Estimate l ( y , z ,  0) by t J  defined by (3.4) 

M - Step  : Set = &'where a2 is given in (3.6) ) 

4 SIMULATION RESULTS 

4.1 INTRODUCTION AND STUDY DESIGN 

The main objective of the simulation was to asses the  small sample behavior of the empir- 
ic restricted MLE's for binary regression models with parametric link using the approximate 
EM algorithm developed in the previous section. To facilitate this, a particular link family 
had to be chosen. The link family (1.3) was chosen a s  example for a simple fexible family. 
Since for this link family JI+ = (c+, k+) > 0, it is numerically more convenient to specify 
prior densities for i,b = (c, k) = ( h e + ,  ln k+) instead. Further, a somewhat different class of 
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NORM RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS 2265 

prior distributions than given by (2.8) and (2.9) has been selected and is given as class of 
prior densities g ( . (uZ)  for 9 = (+ = (c, k ) , p )  with c E R and k E W: 

where 

and a2 = (u; ' ,ui ,u$) are assumed to be known positive constants. The prior distributions 
for c and k are chosen in such a way that c+ = exp(c) and k+ = exp(k) have lognormal 
distributions with mean 1 ,  the link value corresponding to  logistic regression, and variance 
exp(u;?) - 1 and exp(u:) - 1, respectively. 

To derive an empiric restricted MLE for this class of prior distributions, the steps of 
Section 3 are followed. It is easy to see that for (4.1)-(4.4), the complete data (Y, X, 9)  has 
joint log density given by 

Therefore t ( y ,  z, 9) = (c', k2, ((0117 is a sufficient statistics for a?. So the approximate 
EM algorithm takes on the form 

E - Step : Estimate t ( y ,  z, 9) = (cZ, k2, JJpIJZ)  

by t' = ((EP)' + C z ,  ( i P ) 2  + C;, 1ldP11' + t r (C;I) )  

M - Step  : Set a:+, = c2where I (4.5) 

e2 = (2 [(I + t:)lt2 - 11 , 2  [(I + t;p2 - 11 , ?) 

The approximate EM algorithm (Equation (4.5)) used below was implemented by ini- 
tializing a2 = (1,1,1) and 6' at the true underlying parameter value of the simulation. T h e  
following inequality was used as stopping criteria for the iterative procedure: 

As performance measure for the simulation, estimates of bias and mean square error 
(MSE) of the parameter and success probability estimates were calculated. The empiric 
restricted MLE's, denoted by EMLE, calculated using the approximate EM algorithm (4.5) 
was further compared to two other estimation procedures. One method was maximum 
likelihood estimation of (c+ ,P)  where k+ is ftxed at  the true underlying value to assess the 
cost of having to estimate k+ and the other method was maximum likelihood estimation of 
(c+,p) when k+ is set to 1; this corresponds the logistic regression with intercept c = In c+ .  
The first method will be denoted by hfLE(k+) while the second one by LRE. LRE was 
included since it corresponds to the standard method for binary regression data. Joint MLE 
of 6 = ( c , k , P )  was not included since near nonidentifiability occurred when attempted 
causing numerical problems in the simulation. This is a more general problem for binary 
regression models with estimated link since the additional link parameter allows more easily 
for flat likelihood surfaces, thus nonidentifiabilty, compared t o  a fixed link model. Simulation 
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CZADO 

results concerning restricted hiLE's as defined in Section 2 are also not presented since they 
require a sensible choice of a? apriori which in general is impossible. 

It should also be noted that  comparing performance of regression parameters ( c+ ,P)  
derived from LRE to the corresponding one from EhlLE or MLE(k+) is less appropiate than 
comparing the performance of the success probability estimates, The regression parameters 
depend heavily on the link function used for estimation whereas models with different links 
can only be unambiguously compared in their estimation of true probabilities. This is 
in sharp contrast to the use of transformations in the linear mode1 where there has been 
much controversy in the determination of a common basis to evaluate the performance of 
estimation procedures (see Hinkley and Runger (1984) and Bickel and Doksum (1981)). I t  
should be noted that the dependence of the regression parameters on the link parameter 
remains even if an orthogonahed ( see Czado and Santner (1992b)) or more general a 
standardized l i d  famiiy (see Czado (1992a, 1992b)) which include Stukel's (1988) link 
family is used, since only local parameter orthogonality can be achieved in this problem. 

For the simulation the foUowing binary regression model with parametric link, random 
covariates and normal prior 9(.1u2) was chosen 

(i) Binary Response  

(ii) R a n d o m  Covariate 

X = ( X I , .  . . ,Xp)' i i d  with Xi uniformly distribited over [-1,1]. 

(iii) P r i o r  Dis t r ibut ion  

Prior density for6 = (c, k , P )  = (Inc+,lnk+,P) is specified by (4.1)-(4.4). 

EMLE will give estimates of 8 = (c, k , /3 ) ,  therefore (c+, kc) are estimated by 
(exp(E), exp(i)) where (5, I) are estimates of (c, k). 

The number p of random covariates was set to 5. Two type4 of departure from logistic 
link, kurtosis and skewness, were studied and therefore the following three different choices 
of the true underlying link parameters (c+, k+) were made 

case c+ k+ 
logistic 1.0 1.0 
heavier tail 1.7 .8 
skewed to the left .9 1.7 

Figures 4.1 and 4.2 show the corresponding distribution and density functions, respectively. 
For each of the three true link combinations (c+,k+), four different choices of ,O E R5 

were made. For one choice of P, all components are equal (equal beta case) while for the 
second choice components were set in an increasing order on a straight line with P5 = 2.5P1 
(increasing beta case). For each of the two cases two different P values were selected to 
correspond to  a central case (95 %of all success probabilities are in [.25,.75]) and a noncentral 
case (50 % of all success probabilities are in [.25,.75]). The central case is denoted by 
CEN=95% and the noncentral case by CEN=50%. The particular value of,O was determined 
empirically based on a sample of size 500, since no easy closed form distribution of sums 
of uniform random variables exist. Since the results from the increasing beta case do not 
differ qualitatively from the equal beta case, results of the former will be omitted. Table 4.1 
gives the particular choice of E RS and the observed proportion of success probabilities 
in [.25,.75] for the equal beta case. 
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NORM RESTRICTED MAXIMUM LlWLlHOOD ESTIMATORS 

Z 

FIG. 4.1: True Link Distributions 

Z 

FIG. 4.2: Tru; Link Densities 

Two sample sizes were investigated. R=50 using 1000 replications and N=200 using 250 
replications. 

TO evaluate performance of the success probability estimates for some specified covariate 
values. 243 points in design space t i ,  l j h e r e  fixed corresponding to all pouible corn- 
binations of {-l.O,l)for each of the five components. The  mean, median, m i n k u m  and 
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CZADO 

TABLE 4.2: Estimated Mean Prior Variances 

TABLE 4.1: Choice of f l  E R q o r  the Equal Beta Case 

The prior variances a;, a: and a: were set to 1. 

maximum values of bias and hlSE of the success probabilities were calculated. For the bias 
the absolute mean value was also recorded. 

Computations were done on an IBM 3090 at  Cornell University using the NAG FOR- 
TRAN routine E04GFC for all maximizations. 

Pi 

0.450 
1.180 
0.465 
1.290 
0.160 
0.880 

Case (q, k+) 

logistic (1,l) 

heavier fail (1.7 ,.8) 

skewed t o  the left (.9,1.7) 

4.2 PERFORMANCE RESULTS FOR PARAMETER 
ESTIMATES 

Table 4.2 gives the mean prior variance estimates of o2 = ( 0 2 ,  O : , O ; )  including estimated 
standard errors in parentheses for EMLE. It can be seen that ~ ( b g )  is large when the true 

CEN 

.95 

.50 

.95 

.SO 

.95 

.50 

p is large. E(6;) decreases for N=200 since the prior effect becomes smaller. 
For the logistic case one can see that E(@,") - ~ ( u : )  reflecting c+ = k+ = 1 .  Further, 

the values of E(52) and E(6:) are small, which means that the EMLE's shrink towards the 

Observed CEN 

.9443 
3202 
.9436 
,5134 
.9475 
.5294 
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TABLE 4.3: Estimated Bias of ( E + ,  k + , )  and bi for EhfLE, hiLE(k+)  and LRE 

( c + ,  k + )  CEN N 

( 1 , l )  .95 50 

.95 200 

.5 50 

.5 200 

(1.7,.8) .95 50 

.95 200 

.5 50 

.5 200 

(.9, 1.7) .95 50 

.95 200 

.5 50 

.5 200 

E s t i m a t o r  

E M L E  
M L E ( 1 )  = LRE 

E M L E  
M L E ( 1 )  = LRE 

E M L E  
M L E ( 1 )  = LRE 

E M L E  
M L E ( 1 )  = LRE 

E M L E  
MLE( .8)  

LRE  
E M L E  

MLE( .8)  
LRE 

E M L E  
M LE(.8) 

LRE 
E M L E  

MLE( .8 )  
LRE  

E M L E  
MLE(l . i ' )  

LRE 
E M L E  

MLE(I.7) 
LRE 

E M L E  
MLE( I .7 )  

LRE  
E M L E  

MLE(1.7)  
LRE 

true parameter values ( c + ,  k+) = ( 1 , l ) .  Since the true ,f3 is not zero, E(5;)  is larger than 
E(5:) and E(2:). 

For the heavier tail case, one has E(6:) z E(e:) ,  which does not  reflect the true (c+, k t ) .  
It should be noted tha t  since this distribution does not only has heavier tails but  is also 
more concentrated around zero, where this link is not so different than the  logistic link, it 
is difficult for EMLE to identify the correct (c+,  k+) .  

For the skewed t o  the left case, one has E(32) < E(5:) reflecting that  c+ = .9 is closer 
t o  1 than k+ = 1.7 is to  1. In all cases the approximate EhI algorithm (Equation (4.5)) 
takes about three iterations on the average to converge from its s tar t ing point. 

Table 4.3  lists the estimated bias of the parameter estimates of (c+,  k+)  and PI for 
EMLE, MLE(k+) and LRE. Results for 02,. . . , P 5  have been omitted since they are similar 
to the one for 01. Estimated standard errors are given in parentheses. Further note tha t  in 
the case (c+,k+) = ( 1 , l )  one has MLE(I)=LRE. 
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TABLE 4.4: Estimated hlSE of ( E + ,  k + , )  and pl for EMLE, hILE(k+) and LRE 

c+, k+) CEN N 

( 1 , l )  .95 50 

.95 200 

.5 50 

.5 200 

E s t i m a t o r  

Ehf  LE 
t f L E ( 1 )  = L R E  

E M L E  
l f L E ( 1 )  = L R E  

E M L E  
V L E ( 1 )  = L R E  

E M L E  
hlLE(1)  = L R E  

E M L E  
M L E ( . 8 )  

L R E  
E M L E  

M L E ( . 8 )  
L R E  

EM LE 
M L  E ( 3 )  

L R E  
E M  LE 

M L E ( . 8 )  
L R E  

E M L E  
MLE(1.7)  

L R E  
E M L E  

MLE(1.7)  
L R E  

E M L E  
MLE(1.7) 

LRE 
E M L E  

MLE(1.7)  
L R E  

In general, the bias is reduced as sample size or as centrality (CEN) is increased. All 
estimation methods recognize the equality of the P components reasonably well. For the 
alternative estimator EMLE the estimated bias of P is negative indicating an overshrinking 
towards zero. MLE(k+) estimates have lower or equal estimated absolute bias values than 
for EMLE indicating the cost in having to  estimate k+. However, MLE(k+) overestimates 
( c+ ,p )  and this overestimation increases as CEN or sample size decreases. This is analog t o  
similar findings for logistic regression (see Duffy and Santner (1989)). In small noncentral 
cases, the magnitudehf the absolute bias of is the same for EMLE and hlLE(k+). Further 
note that  EMLE overestimates k+ and underestimate ( c + ,  P )  in the logistic and heavier tail 
case, while ( k + , P )  is underestimated and c+ overestimated in the skewed to  the left case, 
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TABLE 4.5: Estimated Bias of Success Probabilities for E M L E ,  h ILE(k+)  and LRE 

- - -  

( c + , k + )  C E N  N E s t i m a t o r  

EMLL 
M L E ( 1 )  = L R i  

E iLIL i  
M L E ( 1 )  = LRI: 

E M  LE 
M L E ( 1 )  = LRE 

E M L E  
ICfLE(1)  = L R E  

E M L E  
M L E ( . 8 ,  

L R E  
EiCfLE 

h i L E ( . 8 ;  
L R E  

E M L E  
A f L E ( . 8 ;  

L R E  
E M L E  

M L E ( . 8 )  
L R E  

E M L E  
M L E ( 1 . 7 )  

L R E  
E M L E  

M L E ( 1 . 7 )  
L R E  

E M L E  
M L E ( 1 . 7 )  

L R E  
E M L E  

M L E ( 1 . 7 )  
L R E  

Min 

-.0047 
- ,0334 
- ,0037 
-.0134 

.oooo 
-.0547 
-.0041 
- ,0204 
-.0248 
-.0361 
- .0326 
- ,0236 
-.0145 
-.0141 
-.0285 
-.0546 
- ,0556 
-.0310 
-.0236 
-.0284 - 
-.0199 
-.0459 
- ,0502 
-.0106 
-.0185 
- .0204 
-.0199 
-.Of303 
-.0615 
-.0072 
-.0255 
- ,0270 

allowing for compensation a t  the success probability scale. This is in sharp contrast to  the 
h f L E ( k + )  estimates which overestimates all parameters. 

Finally, the LRE estimates are more biased in the skewed to the left case than the heavier 
tail case confirming earlier results of Czado and Santner (1992a) that  skewness has  larger 
effects than tail behavior when the link is misspecified. 

Turning now to the MSE of the parameter estimates; results are presented in Table 4.4. 
In general, MSE decreases as either sample size or centrality increases. For small samples, 
the estimated MSE for the alternative estimates EMLE are roughly 1 / 3  compared to  those 
derived from M L E ( k + )  and LRE giving strong evidence towards the variance stabilizing 
effect of the alternative estimation procedure. For the larger sample size this effect is 
washed out ,  estimated MSE's are of equal magnitude, and asymptotics takes over. 
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TABLE 4.6: Estimated hlSE of Success Probabilities for EMLE, MLE(k+) and LRE 

c+,  k+) C E N  N 

( 1 , l )  .95 50 

.95 200 

.5 50 

.5 200 

(1.7,.8) .95 50 

.95 200 

.5 50 

-5 200 

(.9, 1.7) .95 50 

.95 200 

.5 50 

.5 200 

E s t i m a t o r  

EM LE 
J L E ( 1 )  = LRE 

E M L E  
/ I L E ( I )  = L R E  

E M L E  
V L E ( 1 )  = LRE 

E M L E  
LilLE(1) = L R E  

E M L E  
hl LE( .8)  

L R E  
E M L E  

hJLE(.8) 
LRE  

E M L E  
MLE( .8)  

LRE 
E M L E  

MLE( .8)  
L R E  

E M L E  
MLE(1.7)  

LRE 
E M L E  

MLE(1.7)  
LRE  

E M L E  
MLE(1.7) 

LRE 
E M L E  

MLE(1.7: 
LRE 

Min Mean Median Max 

4.3 PERFORMANCE RESULTS FOR EVENT PROBABILITY 
ESTIMATES 

Table 4.5 gives estimated minimum, mean, median, absolute mean and maximum bias values 
for the probabilities a t  243 x points identified in Section 4.1. The minimum and maximum 
values based on EMLE ate lowest except for the large sample heavier tail cases compared 
to all the other estimation procedures. They are significantly lower for the small sample 
sizes ranging from 117 to 1/24 in the logistic case compared to MLE( l ) ,  from 314 to 112 in 
the heavier tail case compared to hlLE(.8) and from 112 to 1/80 in the skewed to the left 
case compared to  MLE(1.7). For the large sample size the reduction is around 112 in the 
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logistic case and in the skewed t o  the left case. The heavier tail case is special since the Ehl 
algorithm had difficulties identifying the true underlying link, resulting in at  most doubling 
the absolute minimum and maximum bias value compared to  hlLE(1.7) 

The corresponding estimated MSE results for the success probability estimates are given 
in Table 4.6. Knowing that EhlLE is significantly less biased on the probability scale and 
that the alternative estimation procedures are more stable with regard to variances, one 
expects a very significant reduction of the estimated maximum MSE values compared to 
those of the MLE(k+)  ones, which is confirmed in Table 4.6. 

In detail, the reduction for EhlLE in all cases considered is about 1/16 compared to 
MLE(k+) .  The USE values for LRE are about the same magnitude than the ones for 
MLE(k+) .  

4.4 SUMMARY AND CONCLUSIONS 

As in logistic regression, MLE based on a fixed true link possibly different than the logistic 
link overestimates on the average the regression parameters. This overestimation increases 
as centrality increases or sample size decreases. Further, MSE are high both on the pa- 
rameter as well as on  the probability scale in small samples. In contrast, the empiric norm 
restricted estimators exhibit superior MSE behavior compared to the MLE based on a fixed 
true link. This shows that as in logistic regression norm restricted estimators are valuable 
alternatives to MLE's in small samples for binary regression models with parametric link. 
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