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Abstract: Future vehicles will exchange much information through a wireless 
network in order to efficiently maintain their inner model of the environment. 
Before they can believe received pieces of information, they must evaluate their 
reliability. Trust is a mechanism to estimate this reliability based on the sender. 
It depends on friendship-like relations between vehicles, the social structure. 
Our traffic and network simulation shows that such relations indeed arise, 
because vehicles often drive the same route. Within this simulation, all vehicles 
are equipped with the proposed trust model, which continuously monitors the 
experiences made with others. The model focuses on these direct experiences 
of the individual and does not depend on a central reputation unit. It 
continuously evaluates the performance and reputation of other vehicles and 
includes a feedback loop to faster adapt to changes in the other’s behaviour. 
Since the performance of a vehicle depends on the abilities of its sensors, like 
different abilities in velocity measurement or in traffic sign detection, the 
proposed model develops trust depending on the sender and on the type of the 
information. 
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1 Introduction 

Consider a scenario in which cars continuously communicate with each other while 
driving around. These future cars can perceive, reason, learn, plan, and act in a way that 
they understand the surrounding traffic scene while still controlled by a driver (as in the 
CoTeSys satellite project MuCAR-3 in Munich). In the literature, these cars are 
sometimes called cooperative cognitive automobiles (Stiller et al., 2007). They are 
expected to improve the traffic efficiency and safety. These cars need a vehicular network 
to efficiently maintain the inner model of their environment. With this network, they 
exchange all kinds of model information as shown with the following examples (CAR 2 
CAR Communication Consortium, 2007; Kranz, 2008; Matheus et al., 2004): 

• Long-term information: structural alterations, permanent changes in the traffic 
regulations (e.g., traffic signs), new or removed points of interest (like petrol 
stations, hotels or museums). 

• Medium-term information: temporary changes in the traffic regulation (e.g., traffic 
signs because of special events), hazardous locations (e.g., dirt or oil on the road), 
and content changes of a point of interest (e.g., prices). 

• Short-term information: hazardous locations (e.g., fog, aquaplaning), obstacles along 
the road, free parking space, level of service, and traffic congestions. 

• Situational information: green light optimal speed advisers, collision warning, 
collision preparation, merging assistance (to join flowing traffic), and emergency 
vehicles. 

1.1 The problem statement 

Despite the cryptographic measures already proposed for the information security in 
vehicular networks, the received data may still be wrong [Raya and Hubaux, (2007), 
especially p.65]. Reasons for this might be bad recognition capabilities or defect sensors 
at the sender, but also software virus infections or manipulations of the sending car. So, a 
car must try to handle the uncertainty associated with received data. It does so in two 
steps: it evaluates the sender over several interactions and it evaluates the received data 
with regard to the current situation. This is where the trust model proposed in this article 
comes in. It is a mechanism to evaluate the sender over several interactions. Models for 
the second step (that is, evaluate the data with regard to the current situation) are 
introduced, e.g., in Golle et al. (2004) and Raya et al. (2008). 
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So, this paper addresses the following problem: how can a car estimate an 
expectation, whether another car will send correct information about a certain subject? 
The authors of this paper call a mechanism that can do this inter-agent trust. Thus, the 
proposed model is a trust model. More specifically, it focuses only on the processing 
within the car; it is only the individual-level side of a trust-enabled network according to 
Ramchurn et al. (2004). 

With the help of this expectation, the car should be able to distinguish good from bad 
information sources. In the end, it should have a more accurate inner model of the 
environment and should better decide what information should when be exchanged with 
whom (i.e., what information is really necessary and who would give it). The following 
scenarios make clearer in what situations trust is necessary and how a trust model must 
be designed. 

1.2 Trust scenario 

Cars have differently restricted sensory capabilities. Therefore, they sometimes miss to 
report an event (like a new sign) or spread out wrong information (e.g., a wrong degree 
of free parking space). The error rate depends on the car and on the involved sensors. 

The trusting car must know how correct the values that the other car sends about a 
certain information type usually are. The authors call this property the competence of the 
other car regarding the given type of information (see Section 4.1). Received values must 
be processed with an uncertainty that is related to the sender’s competence. 

A car randomly generates fake messages about non-existent events. This may be, 
because it has been infected by a software virus or because the manipulator does this just 
for fun. 

In this scenario, the trusting car must estimate how good it can predict the other’s 
behaviour. If this is not possible (because the other’s behaviour is sometimes very good 
and sometimes very bad), it should increase the disbelief in the other’s trustworthiness as 
shown in Section 4.2. 

Every Wednesday, a car reports wrong parking space values to ensure it can park on 
the desired car park. While it drives to the car park, it claims it has been there 30 minutes 
ago and there was no free parking space. It reports bad recommendations about other 
cars of the opposite direction that have reported free parking space. Besides of these 
Wednesdays, the car always acts trustworthy. 

As in the previous scenario, a quasi-random misbehaviour should be considered as 
untrustworthy. In addition, this scenario shows that reputation can be manipulated 
(increased and decreased). Because of this, the proposed trust model takes 
recommendations with care as explained in Sections 4.3 and 4.4. 

1.3 Overview and terms 

So far, we clarified the problem this paper tackles and its surrounding scenarios. Next, we 
give an overview of the paper and the specifics of the proposed trust model. 

First, we relate our model to selected other trust models from different fields. Then, 
we briefly introduce subjective logic, the framework we use for artificial reasoning. 

In the subsequent Section 4, the model itself is presented in detail. In contrast to 
reputation systems, which are already in discussion for intervehicular communication 
(e.g., Raya and Hubaux, 2007), the proposed model focuses on the individual car and its 
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experiences. The opinion of others (that is, the reputation) is still considered, with lower 
priority though. In addition, the proposed trust model distinguishes the different abilities 
of the other car regarding its different sensors and their error rates (see Section 4.4). This 
paper further features the capacity of the binary error and erasure channel as a better 
indicator for trust (see Section 4.5). While trust is often related to something like a mean 
error in the performance of the other agent, the model proposed here additionally 
incorporates how good the trusting car can decide based on the information received from 
the other car. The authors call this property the other’s predictability (detailed in  
Section 4.2). It helps to faster adapt to changes in the other’s behaviour. 

As pointed out so far, we understand trust as a mechanism that relies on a social 
structure. The ‘social structure’ of cars follows from their periodical trips. So, these trips 
must be part of an evaluation environment for trust. Section 5 introduces such an 
environment and proposes it as the right environment to investigate a trust model for 
vehicular ad hoc networks (VANETs). The results section then shows that a car indeed 
meets some other cars regularly. So, a car can create an image of other cars on its own – 
during ‘social interaction’. 

The following terminology is used throughout this paper: Reputation is considered as 
the opinion about someone by people in general – it represents the common opinion. It 
can be used as an indication when judging about the trustworthiness of another party, but 
it is different from trust. The proposed trust model tries to build-up a local view on the 
reputation by combining several received recommendations of others about a third car. 

When a car drives around, it observes properties of its environment (observation). It 
may pass these properties to other cars. Such received information is called a report. 
Information that helps to judge about the trustworthiness of another car is evidence. So, a 
report that has been verified by the car becomes evidence. 

This article extends our previous publication (Bamberger et al., 2010) at the 
SocialCom 2010 in the following ways. The model has been extended to distinguish not 
only cars but also types of information (which are related to sensors). Furthermore, the 
discounting operation is now base rate sensitive; with this modification, the system seems 
to settle down faster. (Both changes significantly enhance Section 4). For the evaluation, 
the simulation has been extended significantly. Now, cars maintain a complex knowledge 
base, and different algorithms for information integration, dissemination and trust 
development work on it (Section 5). As a consequence, Section 6 has been completely 
rewritten. 

2 Related work 

When people from vehicular network security talk about trust, they usually refer to trust 
relations in a public key infrastructure. This mechanism from information security mainly 
provides identification of entities but not trust in the sense of this paper. Raya and 
Hubaux (2007) give a good overview about security aspects and mechanisms in vehicular 
networks. For data verification, they first considered reputation [Raya and Hubaux, 
(2007), p.65], but then developed their own data-centric trust model (Raya et al., 2008). 
While their model focuses only on the data (disregarding the sender), the proposed model 
focuses only on the sender. So, both models complete each other. Golle et al. (2004) also 
verify the data, this time based on a model of the network. 
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VANETs are similar to wireless sensor networks. In both networks, mainly sensory 
data is exchanged. The framework of Zhang et al. (2006) served as a starting point for our 
work. In contrast to their scenarios, a car receives less reports about the same subject, but 
it can get to specific places (if the driver does so) to verify the received information. 
Furthermore, a car has several kinds of sensors, while Zhang et al. consider only one kind 
of sensor per sensor node. As a consequence, the proposed model develops trust 
separately for the different types of information a sender provides. 

In the area of electronic marketplaces, reputation systems are well-known (e.g., 
eBay’s feedback system (eBay Inc., 2010), the beta reputation system (Jøsang and Ismail, 
2002), or even Google’s PageRank (Brin and Page, 1998). Here, the trust comes from 
human beings. The reputation system then combines these statements to build a global 
view on an entity – the reputation. To get this global view, reputation systems work on 
the network level. This is in contrast to purely virtual market places of multi-agent 
systems. There, trust comes directly from the artificial agents. Ramchurn et al. (2004), 
and Sabater and Sierra (2005) give a good overview of the trust and reputation models in 
this area. 

3 Subjective logic 

Subjective logic (Jøsang, 2001, 2007) is a framework for artificial reasoning under 
uncertainty. It has a foundation in Bayesian statistics and set theory. This chapter shortly 
introduces the main concepts used in this paper. The reader finds more details in the 
given references. 

3.1 Opinions 

An agent can have some evidence that supports a statement and some that opposes it. 
This statement can regard a possible situation or state of the world, like ‘There will be a 
solar eclipse in 2121’ or ‘Bill had an affair with Sarah’. More generally, the agent could 
argue about more disjoint situations or states of the world (that is, more than just pro and 
contra). Let X = {x1, …, xN} be the set of considered situations. In the evidence 
representation of an opinion, the strength of evidence for each situation is expressed in 
the variables rs ∈ [0, ∞[ with s = 1, …, N. These variables are collected in the evidence 
vector r = (r1, …, rN)T. In addition, an agent may have a subjective opinion about the 
situations without any direct evidence. The base rate vector a expresses this opinion. Its 
influence decreases with increasing evidence. With all this together, the tuple 

( , )M
X r aω =  describes the opinion of the agent M about the set of situations X. The more 

evidence the agent has in total ( ) ,ss
r∑  the more certain it is about its opinion and the 

lower is its ignorance. 
The same opinion could also be expressed with probabilities p = (p1, …, pN)T for 

every possible situation and a degree of ignorance u about these probabilities. The tuple 
( , , )M

X p u aω =  is a probabilistic representation of the opinion. 
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Finally, the opinion could also be expressed with the beliefs b = (b1, …, bN)T. Beliefs 
(Shafer, 1976) are subjective ratings of the situations with the constraint 1.ss

b u+ =∑  

So, the belief representation of an opinion consists of the tuple ( , , ).M
X b u aω =  

Mappings exist between these three representations of an opinion, based on the 
Dirichlet distribution. Only the mapping from the evidence to the belief representation 

1

1

s
s N

ss

N
ss

r
b

W r

Wu
W r

=

=

=
+

=
+

∑

∑

 (1) 

is explicitly used in this paper. W denotes the weight of the base rate vector a. 

3.2 Operations on opinions 

When opinions from two or more different sources exist about a set of possible situations 
X, they can be fused into one (Jøsang, 2007). If the pieces of evidence are independent 
(like two rolls of the same dice), then the cumulative fusion A B

X Xω ω⊕  is the right fusion. 
This can be used, e.g., to combine the opinions about the outcomes of several interactions 
for trust development. If the pieces of evidence are dependent (like two concurrent, 
maybe conflicting observations of one dice roll), then the average fusion A B

X Xω ω⊕  must 
be applied. This operation is appropriate to combine the opinions about several properties 
of a single interaction. 

When a car B has the opinion B
Xω  about the proposition that there is a new traffic 

sign at a certain location, then A only beliefs this as far as it considers B as trustworthy in 
providing such information. So, if A has the opinion A

Bω  about B’s trustworthiness, then 
both opinions can be combined with the base rate sensitive discounting into the opinion 

:A B A B
X B Xω ω ω= ⊗  (Jøsang et al., 2006). The discounted opinion states how much A beliefs 

the proposition based on B’s opinion. 
This article proposes two more operations not yet found in the literature: evidence 

scaling and priority fusion. When one opinion should have a lower weight in the 
cumulative fusion operation (i.e., is less important) than the other opinions, its ignorance 
must be increased. This could be necessary, e.g., because its evidence is older than that of 
the other opinions. Scaling the evidence vector r with the desired factor w realises exactly 
this functionality: (  , ).M

Xw w r aω =  The authors call this operation evidence scaling. 
When someone knows from many experiences that a car performs well with one 

sensor, she would probably assume that it performs well with another sensor too – even if 
she does not have any experiences regarding this other sensor of the car. But when the 
person has much evidence for both sensors, she would only take the available evidence of 
each sensor to judge about its reliability. To realise this logic, the authors propose the 
priority fusion operation. It is defined as1 
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with 1,  ..., ,

PD P P D
s s s

P D
s sP

jj

r r u r
Wr r s N
r W

= +

= + =
+∑

 

where the superscript P denotes the prioritised opinion and D the discriminated one. W is 
the base rate weight as described in the previous subsection. The definition of the priority 
fusion shows that the influence of the discriminated opinion decreases with a decreasing 
ignorance uP – which corresponds to increasing evidence in the prioritised opinion. 

4 The trust model 

As described in the introduction, cars exchange their knowledge about the environment in 
form of reports. Such a report contains the opinion A

vω  of the sender A about the possible 
values vs of a model attribute v. As a simple example, this could be the belief (v+ = yes) 
and disbelief (v– = no) whether there is a new traffic sign at a certain location. The 
receiver M uses this opinion (and all the opinions received from other cars) to build its 
own opinion M

vω  about v. But M takes A’s opinion also to develop trust in A. For this, it 
must judge how good A’s opinion is. However, M can do this only if it knows the correct 
value of v. So, it must wait until it is very certain about this value. Then, it can evaluate 
all reports regarding v. The reports then become pieces of evidence for the trust 
development. This section describes how a car evaluates those reports to update its 
opinion ,

M
A iω  about the trustworthiness of A concerning the information type i. The  

Figures 1 to 4 guide through this process. 
The proposed trust model incorporates three components: M’s opinion ,i

M
C Aω  about 

A’s competence regarding the type of information i reflects the mean error of the 
available evidence. This is the main criteria whether reports of type i from A are good. 
The opinion ,i

M
P Aω  about A’s predictability indicates, whether M is able to make a right 

decision based on A’s opinion and its trust in A to provide information of type i. It is 
sensitive to outliers. As its name indicates, its computation includes a predictor. Based on 
the predicted value, feedback control adjusts the predictability opinion. Finally, the cars 
exchange their opinions about other cars in addition to the reports about their 
environment. These opinions are called recommendations and build-up M’s opinion 

,i

M
R Aω  about A’s reputation in providing information of type i. In fact, this is not the 

opinion of all cars that know A but only M’s view on the reputation of A. So, the authors 
call it the local reputation of A regarding the information type i. In the end, all three 
components of one sender regarding one type of information are fused in an intermediate 
opinion. Then, the intermediate opinions regarding all types of information are combined 
in one final trust opinion regarding the desired type of information and the desired 
sender. 
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Figure 1 Signal flow for the competence evaluation 

 

Notes: The difference between what the car M thinks is right and what the car A has sent 
to M determines the competence of A regarding the information type i from M’s 
point of view. 

Figure 2 Signal flow for the predictability evaluation 

 

Notes: First, only based on the opinion of A, a decision is made as described in  
Section 5.3. Then, this decision is compared with the car’s own opinion about v.  
If both are different, an error measure is passed to the controller, which, in turn, 
adjusts , .

i

M
P Aω  

Figure 3 Signal flow for the reputation computation 

 

Note: To aggregate the reputation of A regarding the information type i, M discounts all 
recommendations and accumulates them (weighted by their age). 

Figure 4 Signal flow for the combination of all components in one trust opinion 

 

Notes: For every information type ι, the three components competence, predictability, 
and reputation are combined in an intermediate opinion , .M

D Aι
ω  The intermediate 

opinions of all types are fused then in a way that the type of interest i has priority. 
The resulting overall opinion 

i

M
Aω  represents the trust in the car A regarding the 

type i. For deciding, it is transformed in the one-dimensional trust value .
i

M
At  
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4.1 Evaluation of the competence 

Trust and reputation are often derived from the number of good and bad experiences in 
the past or from the degree how good or bad these experiences were (e.g., eBay Inc., 
2010; Jøsang and Ismail, 2002; Zhang et al., 2006). The authors of this paper call this 
notion of trust the competence of the other car. 

A car is more competent, if the information it provides is more precise. Thus, 
competence is inverse to the mean error of all pieces of evidence. Figure 1 shows the 
steps, how a car M can obtain an opinion about the competence of another car A 
regarding the type of information i. 

The car M has a set of evidence JA,i from the car A and of the type i. For each piece of 
evidence, M first computes a distance between the value vA proposed by A and the value 
vM which M thinks is right. This operation can use any metric that maps to the closed 
range [0, 1]. In many cases, the relative error 

max

e
rel ee =  might be appropriate. 

This relative error indicates A’s incompetence. With it, the opinion about A’s 
competence regarding that single piece of evidence can be calculated in evidence 
representation as 

1 .
rel

rel

r e
r e
−

+

=

= −
 

r– reflects A’s incompetence and r+ A’s competence. 
M cannot be completely sure, whether its reference value vM is correct. So, it can also 

not be sure about the relative error. The belief M
M
vb  in its assumed correct value vM 

reflects the belief in the correctness of the relative error. As a consequence, M must scale 
the above described opinion with .M

M
vb  

Finally, the opinions about A’s competence of all pieces of evidence j ∈ JA,i are 
combined to an overall opinion about A’s competence. For this operation, the cumulative 
fusion operation of subjective logic is appropriate. To have an opinion about A’s present 
competence, old evidence must be weighted lower in this operation. Therefore, all 
opinions are scaled with a time-dependent factor wt,j. (It is further discussed in  
Section 4.6). In the end, the opinion about A’s competence is 

( ),,

, ,

1

.

M
j

M
j

M
rel jt j v

j J

M
t j rel jv

j J

er w b

r w b e

+
∈

−
∈

−=

=

∑

∑
 (2) 

So far, we have shown how several pieces of evidence with the car A regarding the 
information type i are transformed in one opinion about A’s competence regarding i. The 
remaining paragraph shows that this transformation has a reasonable interpretation even 
in belief representation: the disbelief in A’s competence results from (1) and (2) as 

, ,

,

.
M
j

M
j

M
t j rel jvj J

N M
t j vj J

w b e
b

w b W

∈
−

∈

=
+

∑
∑
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W is the weighting factor for the base rate vector (the a priori probability) in subjective 
logic. When only the observed evidence is taken into account without a priori 
considerations (W = 0), then b– is a weighted mean of the relative error. So, , ( , )

iC A b uω =  

reflects the competence as proposed in the beginning of this section: competence is 
inverse proportional to the mean error. The weighting factors are due to the age of the 
evidence and M’s own certainty about each computed error. Both are reasonable. 

4.2 Evaluation of the predictability 

The competence measure given above describes the mean behaviour of the other car. It 
does not account for outliers or quick changes in the other’s behaviour. As a 
consequence, this paper proposes to include a feedback control that is sensitive to 
outliers. The idea is that the car M behaves as if it received three times the same message 
from three other cars that have about the same trust value. Would it decide right, then? 
So, it predicts its decision based on the message of the other car A and finally verifies 
whether the predicted decision was right. 

Figure 2 shows the computation schema with the predictor and the controller. There 

,
M
A iω  is the total trust opinion about A regarding the information type i. It is taken from 

the output of the trust system and fed back here to control the prediction. So, the 
predictability component of the trust model implements a feedback loop together with a 
controller to benefit from the methods of control theory. 

The prediction goes in the same way as the decision-making (e.g., as described in 
Section 5.3). In general, the decision-making is represented by an operator D from a set 
of opinions 1{ ,..., }N

v vω ω  about a certain statement v to a tuple, which contains the 

decision which value to believe (may also be none) and the associated opinion M
vω  of the 

car M. More specifically, if the car M applies the operator D on three pieces of A’s 
opinion ( ),A

vω  the result can be to accept A’s opinion or not. This can then be compared 
with M’s real opinion about v. 

If the decision to accept or not accept A’s value was right, then A was predictable. So, 

,i

M
P Aω  is right; there is no prediction error (e = 0). Otherwise, if the decision to accept or 

not accept was wrong, M must compute a prediction error e and readjust the relation 
b
bc +

−
=  between the belief and disbelief of ,i

M
P Aω  to obtain a new , .

i

M
P Aω  

The prediction error is not simply 0 or 1 if the decision was right or wrong. Instead, 
the degree of the error depends on the predicted belief ˆ( )A

M
vb  and M’s own belief ( )A

M
vb  

about the value vA that is proposed by A:2 

ˆ .A A
M M
v ve b b= −  

The belief in the value of A is taken instead of that in the value of M, because the high 
belief of A in the value vA let to the wrong decision. If it would have been a bit lower, the 
prediction could have been not to believe at all. 

From the above equation, a more precise condition for the correctness of the 
prediction can be derived. Since the strength of the own belief has an influence on the 
sign of the error, it must be considered as well. First, if A’s value has been accepted and 
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vA is different from vM and e < 0, then the decision to accept A’s value was wrong. 
Second, if A’s value has been rejected and vA is equal to vM and e > 0, then the decision to 
reject A’s value was wrong. In these two cases, M’s opinion about A’s predictability must 
be readjusted. 

For the readjustment, this paper proposes a PI controller (proportional and integral 
controller) with the output 

1

,
k

k P k I i
i

y K e K e
=

= + ∑  

where k is the step counter. k is increased with every piece of evidence. (Thus, it 
represents the number of evaluated reports). With the controller output, a new c for the 
next piece of evidence can be computed by 

( )
1

1 for 0
1 for 0.

1

k k k

k
k k

k

y c y
c

c y
y

+

⎧ + ≥
⎪= ⎨

<⎪ −⎩

 

To derive ,i

M
P Ab  from c, the ignorance ,i

M
P Au  is necessary. It reflects the amount of 

evidence; so it is known and always equal to , .
i

M
C Au  With both together, the new 

predictability opinion can be obtained with 

( ), ,, ,
1 1 .,,
1 1

i i
i i

T
M MM MP A P AP A P A

c u u u
c c

ω
⎛ ⎞⎛ ⎞− −⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

The predictability opinion should make the model more sensitive to outliers in the other 
car’s behaviour. So, the control must be more sensitive to wrongly accepted than to 
wrongly rejected reports. Therefore, the simulation for this paper has been performed 
with KP = 0.2 and KI = 0.1 if the report has been wrongly accepted and KP = 0.1 and  
KI = 0.1 in the other case. This is the only place, where the model distinguishes between 
the trust constitution and the trust reduction. (In the competence component, positive and 
negative experiences have the same influence on the trust development). 

When choosing these controller variables, the following considerations must be taken 
into account: high values, especially for Kp, make the system very responsive to single 
observations. This counteracts the competence component. Small values, in contrast, lead 
to slow system dynamics similar to that of the competence component. All in all, a 
balance must be found that meets the expected dynamics of the interaction partners. 

4.3 Evaluation of the local reputation 

Reputation reflects what people say about another person or object. It condenses the 
general opinion of a group or society – not only of one or two individuals. So in technical 
systems, it is mostly realised as a feature of the network, which collects all 
recommendations to compute a reputation from them. For example, eBay’s feedback 
system (eBay Inc., 2010) and the beta reputation system (Jøsang and Ismail, 2002) do so. 
This paper focuses on individual-level trust, though. Here, the individual collects 
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recommendations from others to build an opinion about another car’s reputation. This 
individual reputation opinion may be different from the ‘real’ global reputation. So, the 
authors call it local reputation, when it is helpful to distinguish both. 

Reputation systems have to face the problem of statistically dependent 
recommendations (Jøsang et al., 2006; Ramchurn et al., 2004). This is especially 
necessary in decentralised systems. The proposed reputation mechanism takes three 
measures to handle this: first, only the most recent recommendation of one source about a 
third car is saved. Second, a car should only spread a recommendation about cars, with 
which it had at least one direct interaction. And third – which is the most important 
measure – reputation plays only a subordinate role in the opinion formation as detailed in 
the next section. 

With these measures, the reputation can be computed as in other reputation systems 
(see Figure 3): every recommendation is discounted with the opinion about its source. So, 
the more the car M trusts the car B regarding the given information type, the more weight 
B’s opinion gains in the fusion process. This is done by the base rate sensitive 
discounting as discussed in Jøsang et al. (2006). This operation weights the opinion of 
trustworthy cars higher in the subsequent opinion fusion. Further, the reputation opinions 
are weighted according to their age as described in Section 4.6. This whole process 
finally ends in a single estimate ,iR Aω  about A’s reputation regarding the information 

type i. 

4.4 Combining everything together in a trust value 

With the previous three sections, the car M has opinions about three properties of A: its 
competence, its predictability and its reputation. It can compute these opinions for every 
information type. This section describes how these opinions are transformed into a trust 
value which quantifies the sender-related uncertainty of values received from A. 

When looking at these three properties, competence and predictability are obtained by 
the car itself from direct interactions. As both are based on the same evidence, they must 
be combined with the averaging fusion. This is shown in the upper left branch of  
Figure 4. 

However, only little evidence exists to evaluate competence and predictability. In 
contrast, recommendations of many cars are usually available resulting in an opinion 
about another car’s reputation with small ignorance. But reputation has the disadvantage 
that it is prone to attacks of others (see the requirements in Section 1.2). This is why a 
fusion method is needed that takes advantage of the dense network offered by the 
reputation mechanism and of the reliability that comes along with the competence and 
predictability opinions. The priority fusion as introduced in Section 3.2 fits very well 
here. As long as a car has no own experiences, it should take the reputation. The more 
experiences it has, the less reputation should influence the own trust. So, the own 
experience – gained by the car itself as a combination of competence and predictability – 
is the prioritised opinion and the local reputation – given as recommendations from other 
cars – is the discriminated opinion. 

Now, the car M has a trust opinion originating only from the evidence regarding the 
given information type i. This opinion is useful, if enough evidence is available. But if 
there is not enough evidence available, it would be reasonable to see if the car M has 
evidence about the car A regarding other information types. Considering this evidence 
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seems useful. (It assumes, though, that all sensors of a car have a similar quality). As a 
consequence, the computations that have been introduced up to here are performed for 
every type of information ι. This results in an intermediate opinion ,

M
D Aι

ω  for all these 

types of information. The intermediate opinions of all types ι ≠ i are fused cumulatively. 
Weighting factors in this fusion determine how strong the evidence of other information 
types should influence the trust for the information type i. (For example, the similarity 
between the type i and the type ι may determine what factor is chosen). The result is then 
taken as the discriminative opinion in a priority fusion with the intermediate opinion 

,i

M
D Aω  of type i. This finally results in M’s opinion 

i

M
Aω  about the trustworthiness of A 

regarding the type of information i. As long as evidence of type i is available, this 
evidence dominates the trust. Otherwise, the mean evidence from all other information 
types is taken. 

At this point, the car M has computed its opinion about the trustworthiness of the 
other car A. An opinion is a two-dimensional magnitude, though. Sometimes – e.g., to 
make a decision – a one-dimensional trust value is preferable. So, the final computation 
step in Figure 4 transforms the trust opinion 

i

M
Aω  in a trust value .

i

M
At  Such a 

transformation already exists: e.g., the expectation value of subjective logic. Another one 
with roots in information theory is proposed in the following section. 

4.5 Opinions and the binary error and erasure channel 

The opinion of the car M about the trustworthiness of another car A describes whether M 
expects that A sends reliable information or not. The belief b+ expresses the degree of 
evidence whether M expects to receive correct information, the disbelief b– whether M 
expects to receive wrong information. The ignorance u expresses the absence of an 
expectation (due to a lack of evidence). This setting is similar to the setting in the model 
of the binary error and erasure channel as shown in Figure 5 (Cover and Thomas, 2006). 
Its channel capacity 

(1 ) 1
1b
bC u H

u
+⎛ ⎞⎛ ⎞= − −⎜ ⎜ ⎟⎟−⎝ ⎠⎝ ⎠

 

with 

2 2( ) log ( ) (1 ) log (1 )bH x x x x x= − − − −  

expresses how much information can be correctly transmitted through such a channel. 
The trust opinion can be interpreted as the description of such a channel. Then, the 
equation above maps the trust opinion (( , ) , )

i

M T
A b b uω + −=  to a trust value .

i

M
At  Only one 

modification must be included: The channel capacity is symmetric with respect to b+ and 
b–; both could be exchanged without changing C. For trust development, b+ and b– cannot 
be exchanged. As a consequence, a negative sign must be placed in front of the above 
equation, if the disbelief is higher than the belief. With it, the trust value has a range from 
–1 to 1. It can be linearly mapped to the range [0, 1] in the end. 

What is the advantage of using the channel capacity C over the (commonly used) 
expectation value E? The ratio between both 
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1
1b

b bC bH
E b b u

+ − +

+ −

+ ⎛ ⎞⎛ ⎞= −⎜ ⎜ ⎟⎟− −⎝ ⎠⎝ ⎠
 

has the following properties: It remains constant if the ration b
b
+

−
 remains constant with 

an arbitrary ignorance. Otherwise, the channel capacity punishes high disbelief and 
rewards low disbelief stronger than the expectation value. As Section 6 shows, this 
property makes it easier to separate agents with different error rates. So, it helps in the 
decision process. 

Figure 5 The binary error and erasure channel 

 

Note: The disbelief b_ in the trustworthiness of another car A can be interpreted as an 
error rate of a transmission channel, the ignorance u as an erasure rate. 

4.6 Temporal weighting of opinions 

Recent pieces of evidence should influence a present decision more than old ones. This 
lets a system better adapt to changes in the environment: trustworthy cars can become 
untrustworthy, and untrustworthy cars must have a chance to become trustworthy. So, a 
car must weight new opinions higher than older ones, when it fuses them. This weight 
must depend on the age of the opinion. For the weighting operation, the evidence scaling 
(Section 3.2) fits well when the opinions are fused with the cumulative fusion. 

The mapping from the age of an opinion to its weight should have the following 
properties: 

1 at age t = 0, the mapping should be 1 

2 for t → ∞, it should tend to zero 

3 in between, it should be monotonic. 

Three mappings with these properties are common: from the set of exponential functions, 

only 1
t

year
tw b=  (and its equivalent formulations) have the required properties. The 

rational polynomials a
t t aw +=  and the piecewise functions 

11 for 

0 else
t

mt t
w m

⎧ + < −⎪= ⎨
⎪⎩

 

with m < 0 fit here well, too. 
Figure 6 compares these weighting functions. It shows that the rational polynomial 

decreases faster than the exponential functions in the beginning, but becomes flatter, 
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then, and tends more slowly to zero in the end. The linear function with m = –1/3 is a 
good approximation for the exponential functions. The described properties are already 
significant within the lifetime of a car. 

All in all, the rational polynomial does not suppress old evidence sufficiently. The 
exponential functions show a suitable form. In addition, they can be used in a recursively 
updating algorithm, because w(t) = w(Δt1) ⋅ w(Δt2) for t = Δt1 + Δt2. (A recursive update 
algorithm can help to save memory). On the downside, they are computationally 
expensive. In contrast, the linear functions can be computed quickly and can be adjusted 
to have a sufficiently good form. They cannot be updated recursively, though. 

Figure 6 Examples of temporal weighting functions 

 

Notes: The exponential functions (dashed lines) decrease slower in the beginning, but 
show lower weighting values in the end compared to the rational polynomial 
(solid line). The linear functions approximate the exponential functions from a 
global view. 

5 Method of the model evaluation 

In order to test the performance of the trust model the authors have created an 
environment that simulates the cars’ driving and communication behaviour. The 
simulation code is publicly available on our project web page (Bamberger, 2010) for 
extension or verification by the research community. 

5.1 The social structure in the simulation 

As pointed out in the introduction, a simulation environment for trust models must reflect 
the underlying social structure. In the case of a vehicular network, this structure is 
constituted by the movements of the cars and their communication. Because these 
movements are not random, they lead to regular meetings of cars. For example, some cars 
could use the same parking site and have similar trip times. The regular meetings are 
important so that trust can develop. 
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We created a suitable traffic scenario, which simulates an urban population of a town 
with about 15,000 inhabitants. It only contains trips to work and back home; however, 
these incorporate the majority of the regular ones and also allow random meetings. The 
duration of 23 weeks is pretty long compared to other simulations but it is necessary 
because developing trust takes some time. The simulation is performed with the 
microscopic traffic simulator SUMO (Krajzewicz et al., 2002). 

The cars’ communication is then simulated with the network simulator Shawn 
(Kröller et al., 2005). It is very efficient and suitable for our case, because it simulates the 
effects caused by a phenomenon, not the phenomenon itself. When cars meet, they only 
exchange own observations about the environment or recommendations that origin from 
own experiences. Information of a third party is not yet relayed. 

Both together, the cars’ movements and their communication, represent the social 
structure. 

5.2 The information model in the simulation 

As described in Section 1, there is much information vehicles can exchange. In the 
simulation, every car is equipped with a sensor that asks its environment for such events. 
An event is of one of three different information types (for long-, medium- and  
short-term information). The value of every event is an integer in the range of 0 to 4. The 
events are randomly generated on the map and exist only for a limited time. Because of 
memory restrictions, the amount of events has been limited. In reality, if all the possible 
kinds of information mentioned in the introduction are considered, more events can be 
expected; this would then increase the trust model’s performance. 

5.3 The cars’ behaviour in the simulation 

Cars have sensors and every sensor continuously checks for events in the environment. If 
it finds one, it reports it to the car, but adds a Gaussian random error first. The underlying 
Gaussian distribution is mean free with a configurable variance (see the table in  
Figure 9). There is a separate random variable for every type of information. 

Every observation is saved in the knowledge base and spread out to other cars then. A 
car only sends own observations, not reports of other cars. This makes the information 
integration and decision simpler. (This paper focuses on the trust model only). 

Reports from other cars are also saved in the knowledge base. The process to 
determine knowledge from received information must incorporate the sender’s 
trustworthiness. A car does this in a way that is illustrated in Figure 7. It is similar to the 
method in Zhang et al. (2006). First, the car takes all messages regarding a specific event 
and discards the third of them that comes from the senders with the lowest trust values. 
Afterwards, every remaining opinion is discounted with the trust value of its sender 
regarding the given information type. This has the effect that well-known and well 
behaving vehicles get a higher weight. The discounting is similar to the base rate 
sensitive discounting as given in Section 3.2, but depends on the mapping from the 
opinion to the trust value (see Section 4.5). Finally, the opinions about the event 
(discounted reports and own observations) are combined into one using cumulative 
fusion. 

All reports and observations are kept in the knowledge base; they are never forgotten 
in the simulation. This makes it possible for a car to change its opinion about an event. 
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The trust value is computed every time it is needed from scratch. This way, a previous 
trust judgement can be revised when more evidence is available. This is in alignment 
with the observation that artificial reasoning is non-monotonic (Pearl, 1988). This means, 
when new evidence comes in, it can lead to a completely different judgement of the 
situation. 

Figure 7 Signal flow of the decision process 

 

Notes: First, only the most trustworthy cars are extracted. Then, their opinions are 
discounted and combined. This also includes M’s own observations. The  
result is M’s opinion about v. It can be transformed in the trust value M

vt  for 
decision-making. 

6 Evaluation results and discussion 

The simulation gives insights of the social structure and the trust model. Figure 8 
illustrates how often cars meet each other. The values are mean values over all cars; they 
represent a prototypical car. For example, after 23 weeks this prototypical car has met 
about five other cars at least 20 times. These are something like ‘good friends’, which it 
meets once a week. The figure also shows how the system settles down over time. 

Figure 9 visualises the competence component of the trust model. In the simulation, 
cars have three different sensors for three types of information (see Section 5.2). The left 
plot is for one, the right plot for another sensor. The sensors have different error 
variances. To show the effect of the sensor error on the trust development, four types of 
cars have been configured. Every car of the same type has the same error variance for 
each of the sensors. The table in Figure 9 gives the error variances for both sensors. The 
plots show that the trust model in the receiver can well distinguish cars with good sensors 
from cars with bad sensors. And it can develop trust in each sensor separately, although 
the evidence of both sensors is always combined in the last priority fusion as described in 
Section 4.4. To show this, only trust values are taken that are based on at least six pieces 
of evidence. In contrast, if only little evidence is available for one sensor and much 
evidence for the other, then the simulation logs show that indeed the evidence for the 
other sensor dominates also the trust value for the first one. This is as intended. 

Both plots also show that cars of the different types can equally well judge about the 
trustworthiness of the sender. This is in contrast to the previous simulation results in 
(Bamberger et al., 2010). The reason for the change is an improved decision module in 
the car. This new decision module finds a better balance between own observations and 
received reports. It can better cope with bad sensors in the own car. 
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Figure 8 This graph shows how often a prototypical car meets other cars 

 

Note: For example, on average a car meets about two cars at least once a week. 

Figure 9 The trust value of the competence depending on the error variance for two types of 
information 

  

Car type Variance left Variance right 
Type 0 0.0 0.0 
Type 1 0.5 1.0 
Type 2 1.0 0.5 
Type 3 1.5 1.5 

Notes: Four types of cars have two types of sensors each. The different line styles 
indicate the type of the receiving car. The x-axis shows the type of the sending 
car. A receiving car can well distinguish the different error variances of the 
sender’s sensors based only on the competence component. The table gives the 
error variances of both sensors for all car types. 
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Figure 10 illustrates what happens if the channel capacity is taken for the trust value 
computation instead of the expectation value (see Section 4.5). For these plots, the same 
simulation configuration is taken as for those in Figure 9. Only the algorithm for the trust 
value computation has been exchanged. Two main differences can be read from the 
figures. First, the channel capacity assigns a wider range of trust values to the different 
types of cars; while the range is only about 0.12 with the expectation value, it is about 
0.25 when the channel capacity is used. This makes it easier for a decision algorithm to 
separate trustworthy from untrustworthy information and to apply a threshold. Second, 
expectation values seem to be quite high, even for high error variances. As a 
consequence, the trust value can hardly reflect high trust in good cars with a long 
interaction history. All in all, the channel capacity exploits the range from 0 to 1 of the 
trust value better for the given application than the expectation value. On the downside, 
the value of the channel capacity has a fixed base rate of 0.5. (This is the default trust in 
absence of any evidence). This is quite low compared to the trust values shown in  
Figure 10. For the expectation value, the base rate can be chosen freely; it should be 
around the trust values for medium quality cars. 

Figure 10 Trust values of the competence computed with the channel capacity equation 

  

Notes: This computation schema leads to a much wider range of values which makes a 
decision easier. Especially near the highest value, 1, a more detailed classification 
of the most trusted cars becomes possible. 

To visualise the predictability component, single sender-receiver combinations must be 
considered. Mean values cannot well describe its behaviour; that was its purpose.  
Figure 11 shows for one receiving car how it develops trust in one specific sending car. 
This sending car has been configured to mimic a manipulation. During the simulation, it 
suddenly sends manipulated messages only. The plot on the left hand side shows the trust 
development with the competence component only. In contrast, both, the competence and 
the predictability component, have been used for the plot on the right hand side. The plots 
show that the trust decreases faster if the predictability component is active. This effect 
would be even stronger, if more positive evidence would have been available before the 
sender got manipulated. The reason for this is that the competence component reflects a 
mean value and means change the more slowly the more values were included before. 
Furthermore, the competence component treats positive and negative evidence equally; in 
contrast, the predictability component is more sensitive to negative than to positive 
evidence. 
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Figure 11 The trust development in a manipulated car without and with predictability 

  

Notes: The plots show how one car develops trust in a specific other car over time. This 
other car suddenly begins to send only wrong information. The adaptation to this 
new behaviour happens faster when the predictability component is active as the 
right plot shows. 

7 Conclusions and future work 

In this article, we systematically modelled trust as a social mechanism to handle the 
uncertainty in the information exchange. It integrates different components to make it 
suitable for different situations. The model assigns one trust value to every combination 
of sender and information type. This is necessary since different types of information 
may come from sensors with different error variances. The trust model also features the 
capacity formula of the binary error and erasure channel as an appropriate transformation 
of a two-dimensional trust opinion in a one-dimensional trust value. Furthermore, we 
proposed a traffic simulation that partly represents the ‘social structure’ between the cars. 
Thus, it is suited to investigate a social phenomenon like trust. The simulation results 
show that the competence component reflects the mean performance of a car, while the 
predictability component helps to faster react on sudden changes in the other’s behaviour. 

Currently, we are about to apply learning algorithms to the trust development. We 
want to handle even more complex trust situations and we are interested in the dynamical 
behaviour of those algorithms. In addition, we want to generalise the trust model to 
various kinds of cognitive systems with different tasks. 
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Notes 
1 The definition of the priority fusion differs from that in Bamberger et al. (2010); it scales the 

evidence of the discriminated opinion. This new definition has better theoretical properties, 
while the results are similar to our previous proposition. 

2 In the equation for the prediction error, the order of operands was wrong in Bamberger et al. 
(2010). (It was only wrong in the paper, not in the simulation). 


