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Abstract

This paper is a continuation of the authors” work on parameter estimation
for heavy-tailed models. Here we review the sample autocorrelation and the
Whittle estimator for linear processes in i.i.d infinite variance r.v.’s from the
point of view of a.s. convergence. We consider examples which show that the
sample autocorrelations do not converge a.s., but they do so along a specified
non-random subsequence. This fact can then be used to obtain a.s. conver-

gence of the Whittle estimator along a specified non-random subsequence.
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1. Introduction

In this paper two closely related, but distinct, subjects are studied: the strong
consistency of the sample autocorrelations and of the Whittle estimator for
a stationary process. Throughout we consider the discrete moving average

process

Xt: Z 77Z)‘7 Zt—j? t€Z7 (11)

j=—c0
where (Z;),. - is a noise sequence of i.i.d. random variables (r.v.’s) having
not necessarily a finite variance. In three preceding papers (Kliippelberg and
Mikosch (1993, 1994) and Mikosch, Gadrich, Kliippelberg, Adler (1994)) we
studied the asymptotic behaviour of periodogram-type estimators for the
process (X;),.- under the condition that Z = Z, is in the domain of normal
attraction of an a-stable law for some o € (0, 2).
In Klippelberg and Mikosch (1993,1994) it was shown that the self-normalised

periodogram

n

Z Xt e—i/\t

t=1

2 n
Lx(\) = YNoX?, —m<A<m,
t=1

converges in distribution to
v ()] a2+ 82y
P? Yo
where ¢ (e7) = 552 ;e is the transfer function of the linear filter
()jez> ¥2= > v2 and the vector (a()), B(A),Yo) has a mixed stable
distribution such that (a()), B(\)) ate jointly a-stable and ¥; is positive a/2-

stable. Furthermore, the vector of periodogram ordinates (an ()\Z)) -
at distinct frequencies 0 < A\; < -+ < A, < 7 converges weakly, and the
components of the limit vector have exponentially fast decreasing tails and

are uncorrelated. We also studied smoothed versions of the self-normalised
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periodogram and established their weak convergence to the self-normalised
power transfer function ‘@/} (G_M) ‘2 J?.

In the present paper we weaken the above assumptions on Z considerably:
we only require that £ |Z|d < oo for some d > 0 and that (Zn: Zf) satis-
fies some mild tightness condition. The price we have to p;}:/lfor tﬁiesNis that
we can in general not derive a rate of convergence.

The paper is organised as follows: Assumptions and notations are intro-
duced in Section 2. In Section 3. we study the sample autocorrelations. We
review results from Davis and Resnick (1986) and from Mikosch et al. (1994).
We show that the sample autocorrelations do in general not converge a.s.,
but they do so along a specified subsequence of the integers. In Section 4. we
deal with parameter estimation for ARMA processes. We recall the notion
of the Whittle estimate and some related results in the literature. Using the

strong consistency of the sample autocorrelations we show a.s. convergence

of the Whittle estimate along a subsequence under very general conditions.

2. Notation and assumptions

We consider the moving average process (X,),.> defined by (1.1). To formu-
late the conditions on the noise (Z,),.; we introduce the following functions

for x > 0:
G(x) = P (Z2 > :1;)
K(x) = B2 1(2* <)
Qz) = Gla)+ K(x)=E [1/\ (x—122)2] .

Since @ is strictly decreasing and continuous on (0, c0) the identity

Q) ==, new.
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defines a sequence of positive numbers a, such that a, T oo as n — oo.

Furthermore, define
727Z:a;22Z3, necN. (2.1)
=1

For the moving average process as in (1.1) we introduce the following as-

sumptions: There exists some d > 0 such that

(A1) E|Z|" < oo;

§
(A2) 3o L] |o] < o for §=1Ad;
(A3) n/al =0, n— oo, for §=1Ad;

(A4) lim,_o limsup,_. P (77%,2 < :1;) =0.

(A5) There exists a sequence of positive numbers e, such that
hgr_l};l)glf egngf =1 a.s., (2.2)

where the norming constants e, satisfy the following conditions: There

exists some v € N such that for n, = k", ke N, (nk e;k% + e;lf) <
k=1

o0, for § = 1Ad, and (e, /e, ) is bounded away from 0 and co uniformly

for n € [ng,npyq] for all k € V.

Remarks. 1) (Al) and (A2) imply absolute a.s. convergence of the series
(1.1) for every t € Z. This is a consequence of the three-series theorem.

2) (A2) is obviously satisfied for every ARMA(p, ¢)-process. In this case the
?; decrease exponentially.

3) The conditions F Z* < oo, (A3) and (A4) cannot hold together, since (A3)
and the SLLN imply that 77 ; 3 0 contradicting (A4).

4) (A4) is a stochastic compactness condition on 77 ;. A necessary and

sufficient condition for 77%,2 to be stochastically compact is

lim inf K(z)/G(x) > 0.
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(e.g. Maller (1981)). Furthermore, if 47 , is stochastically compact, then

there exists some constant ¢ > 0 such that for all n € A/
P(yi;<2) <cx, ©20,

(Griffin (1983)) which implies (A4).
5) A survey of results of type (2.2) can be found in Pruitt (1990, p. 1149).
Fristedt and Pruitt (1971) proved under the restriction F |Z|d < oo for some
d > 0 that (2.2) holds with

5 Inlnn

"= n(éInlnn/n)

for some constant £ > 1 where n(-) = (— InE e_'ZZ))F denotes the generalised
-.7?

€

inverse of —In Fe

A natural class of noise variables to satisfy conditions (A1) and (A3)—(Ab5)
is the domain of attraction of an a-stable random variable, which we denote
by DA(a). We also use the abbreviation DN A(«a) for domain of normal
attraction of an a-stable law. For the definition and properties of a-stable
r.v.’s, their domain of attraction and regularly and slowly varying functions
see e.g. Feller (1971), Bingham, Goldie and Teugels (1987) or Petrov (1975).

Now if Z € DA(a) for some a € (0,2), then Z? € DA(a/2) and

lim G(z)/K(z)=(4—a)/a.

T—r 00
Then G is a regularly varying function with index —«a/2, and an alternative

choice for the norming constants in (2.1) is given by
al = GT (n_l) = inf{:z; cG(x) < n_l} )

where (¢ is the generalized inverse of (. This implies that a2 = n** L(n)where
L is a slowly varying function and ~7 , 4 Yy for some positive a/2-stable

r.v. Y. Furthermore, I/ |Z|d < oo for d < a.
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In the following lemma we summarise these relations.

Lemma 2.1. Suppose 7 € DA(«) for some o € (0,2), then (A1), (A3) and
(A4) hold for some 0 < d < a and a = n**L(n) where L is a slowly varying
function. Moreover, (A5) is satisfied for d < a and €2 = n¥° Z(n) for some

slowly varying function L. The number v in (A5) can be chosen to satisfy
v>af(20 —a)V(afd) provided § > /2. O

The following notation will be used throughout the paper: Let (A;);cz be
any of the sequences (Z;);ez or (X;)iez and choose (a,) as in (2.1). Then
define

2 . —2%wm 2
TnA = Qg > At

I,a(N) = ay? |y A e

‘ 2

, AE(—m,m7],
‘2

LA = LaW/2a=[Sim Ae™|, Ae(-ma].

3. Consistency of the sample autocorrelation

function

For h € Z,h # 0 define

N

3

b

=
|

Vn,X(h)/ﬁyz,X
F(h) = A(h)[¢*

where

n—|h]

’Yn,X(h) = G;Q Z XtXt-|—|h|

t=1

yh) = D i

j=—o0
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If £7? < oo it is well known that Ynx (h) is a consistent estimator of the

autocorrelation function (k) of (X;) In extension of this result, Davis

teZ”
and Resnick (1986) proved the following: For Z € DA(a), o € (0,2), Z sym-

metric

(L) G () = 5(1)), L,
=1,..., (31)
o ~y . ~ . ~ e\ o~ ij
(S50 GG+ ) =30 = 1) =25 AN ),
where L is a slowly varying function, Yy, ¥7,Y5, ... are independent r.v.’s, Yj is

positive «/2-stable and (Yj)jeN are i.i.d. symmetric a-stable. (3.1) implies
that 4,, x(h) is weakly consistent with limit 5(h) and the rate of convergence
in (3.1) compares favourably with /n in the finite variance case. Under
our more general conditions (Al)-(A4) a precise result as (3.1) cannot be
expected. In Mikosch et al. (1994) we proved the following weak consistency

result:
Proposition 3.1. Suppose (X;),. - satisfies (Al)-(A4), then
Tox(h) B F(h), heN, nooo. O

Convergence in probability for 7, y(h) can be strengthened to a.s. conver-
gence provided the second moment of Z exists. This is not true in the infinite
variance case as the following simple example shows. Similar examples can
be constructed for any finite moving average process and any sample auto-

correlation at lags greater than 1.

Example. Consider the M A(1) process
Xt:Zt+0Zt—17 t€Z7 |0|<17

for a symmetric a-stable Z, a € (0,2). Then, as mentioned in Section 2,

(A1)-(Ab) are satisfied for some 0 < d < a and (e,,) can be chosen as

1/ (lﬂ In n)—(Q_O‘)/(QO‘) .

€, =1
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Now consider

S (Ze+ 02, ) (Ziyy + 0 7y)
St (440 Zt—1)2

S 2 L O 2 2 + O 2P+ 0 7, 7,
S LE A2 LR 420300 2 7 '

?n,X(l) =

It follows from Rosinski and Woyczynski (1987) that for some ¢ > 0
P(Z,Zy>x)<ca™® (1 + Int :1;_1) \

where InTy = max(0,Iny),y > 0. Similar arguments as in the proof of

Heyde’s SLLN (see Stout (1974)) and the fact that

fjp(zlz2 > el) < oo
h=1

imply that
ety (Zt Zipn+0PZ, 2 +02,_, Zt+1)
lim T 53 = a.s.
noheo €% > i 4
Thus
- 0+ ol
Fnx (1) (1) a.s.

021+ (22 [0S Z2) + (1)
We shall show that every real number between 0 and oo is a.s. limit point of
the sequence (ZZ /Z?:_f Zf) thus implying that the set of a.s. limit points
of (3,.x(1)) is the interval [0,0/(1 + 6%)] if 6 > 0 or [9/(1 + 6%),0] if 6 < 0.
(Note that (1) = /(1 + (92).)

Define for positive e; < ¢, and &5 < &4

n—1
A, = {52 > 727 s 51} , B,:= {54 > nz/a/z 7> 53} )
t=1
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then

n—1
P (5254 > ZZ/Z 72> ee5 i.o.) > P(A,NB,io.).

t=1
Note that Z P(A,) = oo0and hmmfP (B,) > 0. Since A,, and {By, By, ..., B,}
are mdependent for each n > 1, an application of a standard Borel-Cantelli
lemma (e.g. Petrov (1975), Lemma 5, Section IX.2) yields P (A, N B, i.0.) > 0,
hence
P (A, N B, i.0.) =1 which implies that Z? /Z?:_f Z?% visits infinitely often
with probability one any finite interval (e,e3,2,64). This shows that any
positive real number is an a.s. limit point. A modification of the above
arguments yields that 0 and co must be a.s. limit points as well. O
We shall show in the following, by replacing conditions (A3) and (A4) by
the slightly more restrictive condition (A5), that it is possible to obtain a.s.
convergence of 3, x(h) to (h) along some given subsequence (n;) which is
defined in (A5). In particular, this condition is satisfied for Z € DA(«),
€ (0,2).

The following result complements Proposition 3.1.
Proposition 3.2. Suppose (X;),.; satisfies (A1), (A2) and (A5). Then
Fx(h) % F(h), heEN, n—oo.
Proof. We have the decomposition

S Xy Xewn = A(h) Sy X2 = S0y Sy i (jan — F(W)Y;) Zoei 20

+ i S (i — () ) (2 — 22) = Vi + Vs
(3.2)
where we used the fact that 3, ¢; (¥4 — F(h) ¢;) = 0. Thus we obtain that
ng41

max _ |[Vj| <
ne[nk7nk+l =1 Z;ﬁ]

i (Vgan = A )| |Zmi Zey]
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By (A1), (A2) and (A5) we obtain for all ¢ > 0

o0
Z ( max |V1|>€e721k) < 0126 SR mnax vl

n€lng,npq1] n€lng,npy1]

o]
—26
< szenk Ny < X0
k=1

for some ¢, ¢; > 0 depending on ¢. A Borel-Cantelli argument yields

lim  max [Vi|e;? =0 aus.
k— 00 nE[nk,nk_H]

Now to estimate V5 set

fi= i (Wign —(h) ) -

Then

Vi = SR (- 2+ 5 S (2 - 22)

1>0 t=1 1<0 t=1

= Vi+ Vi

We restrict ourselves to show that klim e, ?Va = 0 a.s., the proof for eV} is
—+00

similar. We have

Vi = SE S 2 Y2 Y Y - Y 7

1>n t=1—1 1>n t=1 1<i<n t=1—1 1<i<n t=n—1i+1

= Vi-Vet Vi -V

We restrict ourselves to show that klim e;}f V: =0 a.s., the proof for V;, Vg
—+00

and Vg is analogous. Again by (Al), (A2) and (A5) we have

o0

5/2
2y <X el DI fil< oo

: ’L>0
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and a Borel-Cantelli argument yields the desired result. Similar arguments

show that
Nk Nk
e 2y XP=e 2> ZF+o(l) as.
t=1 t=1
This, (3.2)and (A5) imply that

Z?:l Xt Xt-l—h - ?(h) Z?:l Xt2 i Z?:n—h-l—l Xt Xt-l—h

Fox(h) =) = T X T X

i+ V, A X, X
_ Z—I_ 22 B Zt_n—hn-l—l t2 tHh _ o(l) as. (3.3)
Zt:l Xt Zt:l Xt

In relation (3.3) we applied (A1)-(A5) and similar arguments as above to

show that a; 237,11 X; Xiyn — 0 as. for every h > 0. O

4. Parameter estimation for ARMA(p, ¢) processes

We consider a causal invertible ARMA(p,q) process (X;),.- satisfying for
every t the ARMA equations

Xt—golXt_l—...—gopXt_p:Zt—I—QIZt_l—I—...—I—@th_q

for i.i.d. (Z;)

ez Denote

ﬁ: (991,...,9%, 017--'70q)T

and

S‘Q(Zvﬁ) = 1_9912_"'_99]922)7
0(z,8) = 1+6b24+...+6,2".

Then the transfer function of the ARMA process has representation (e‘”, ﬁ) =
p(e™,8)/0(e™, B).
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We introduce the parameter set

{[3 e R0, #£0,0,#0,0(2) and 6(z) have no common zeros,
w(z)0(z) #0 for |z] < 1}.

Denote by g(A, 3) the power transfer function corresponding to 8 € C; i.e.

A e

g()‘vﬁ) ( _2/\76

and define

2 4 Tn,X()‘)
0= g™ - Z w>

where the sum is taken over all Fourier frequencies

2mq
)\]‘ = T] S (—7'[',7'['].

Suppose [y € C is the true, but unknown parameter vector. Then two

natural estimators of 3y are given by

B, = argmin op(B8), B, =argmin 7.(8).
BeC Bec

Given the assumption that o2(3) ~ a2(3), it seems reasonable to assume,
as is in fact the case, that 3, ~ 3,, and that therefore the two estimators
are asymptotically equivalent. It is clear that, in practice, 3, is the only
applicable estimator, since the integral defining o2(3) will always have to be
evaluated by an approximating sum.

The choice of these estimators is motivated by the fact that the function

T g ()‘7 60)

g(X, B) o
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has its absolute minimum at § = 3 in C. (cf. Brockwell and Davis (1991),

Proposition 10.8.1.) and that [~n7X()\) can be considered as an estimator of

g()‘v 60)
For Gaussian (X})

and maximum likelihood estimators and it is a standard estimator for ARMA

ez the estimator 3, is closely related to least squares
processes with finite variance. The idea goes back to Whittle (1953), see also
Dzhaparidze (1986), Fox and Taqqu (1986) and Dahlhaus (1989). It is well-
known that in the classical case (3, is consistent and asymptotically normal
(cf. Brockwell and Davis (1991)). We showed in Mikosch et al. (1994) that
0, 1s also for ARMA processes with infinite variance a weakly consistent

estimator for the true parameter vector 3y (see also Gadrich (1993) for the

case [3,):

Proposition 4.1. Suppose (X,),. 5 is a causal invertible ARMA p, q) process
and conditions (A1)-(A4) hold. Then

B, 5 By and o2 (8,) 5 2mp2(By), n— 0.

Furthermore, the same limit relationships hold also for 3, and ¢2. O

For ARMA(p, q) processes with finite variance (3, is asymptotically normal

/2 An analogous result gives in the case

with rate of convergence of order n
7Z € DNA(a),a < 2, a rate of convergence of order (n/ lnn)l/a: i.e. the
convergence is considerably faster. This is the main result in Mikosch et al.

(1994):

Proposition 4.2. Suppose (Xy),c- is an ARMA(p,q) process and (Z;)
are i.i.d. symmetric such that 7 € DN A(«) holds for some oo < 2. Then

tezZ

n \ 1/ 1 &
() Bapo) S W) o Vb (1)
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where Yo,Y1,Ys, ... are independent r.v.’s, Yy is positive a/2-stable, (Y3),cpr»

are i.i.d. symmetric a-stable, W' (3,) is the inverse of the matriz

/w [611&98(;\,50)] [alnga(;,ﬁ&r dX,

W (50) =

—T

and, for k € N, b, is the vector

2(1/g() %))
ap

Furthermore, ({.1) holds also with 3, replaced by 3, O

dA.

1o
by, /_e_zmg()‘aﬁo)

T2

The limit vector in (4.1) is the ratio of an a-stable (p + ¢)-dimensional vector
over a positive a/2-stable r.v. It is not difficult to see that for AR(p) processes
0, is just the formal analogue of the Yule-Walker estimates. Their weak
limit behaviour was derived by Davis and Resnick (1986) using time domain
methods.

Reconsidering the proof of the strong consistency of the Whittle estimate in
the classical case (see Brockwell and Davis (1991), Chapter 10.8) we see that
this result only depends on the strong consistency of the sample autocovari-
ances (equivalently, sample autocorrelations). Thus the same proof applies
in case that the assumptions of Proposition 3.2. are satisfied, but know we

have to restrict ourselves to convergence along the subsequence (n;) defined

in (A5):
Proposition 4.3. Suppose (X;),.; satisfies (A1), (A2) and (A5). Then

B, 253, and 072% (Bn,) % 2%;/)_2 (Bo), k— 0.

Furthermore, the same limit relationships hold also for Bnk and 672%. a
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