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Estimation for in�nite variance processes 11. IntroductionIn this paper two closely related, but distinct, subjects are studied: the strongconsistency of the sample autocorrelations and of the Whittle estimator fora stationary process. Throughout we consider the discrete moving averageprocess Xt = 1Xj=�1 j Zt�j ; t 2 Z ; (1.1)where (Zt)t2Z is a noise sequence of i.i.d. random variables (r.v.'s) havingnot necessarily a �nite variance. In three preceding papers (Kl�uppelberg andMikosch (1993, 1994) and Mikosch, Gadrich, Kl�uppelberg, Adler (1994)) westudied the asymptotic behaviour of periodogram-type estimators for theprocess (Xt)t2Z under the condition that Z = Z0 is in the domain of normalattraction of an �-stable law for some � 2 (0; 2).In Kl�uppelberg and Mikosch (1993,1994) it was shown that the self-normalisedperiodogram eIn;X(�) = ����� nXt=1Xt e�i�t�����2, nXt=1X2t ; �� < � � � ;converges in distribution to��� �e�i�����2 2 �2(�) + �2(�)Y0where  �e�i�� =P1j=�1  j e�i�j is the transfer function of the linear �lter( j)j2Z ,  2 = 1Pj=�1 2j , and the vector (�(�); �(�); Y0) has a mixed stabledistribution such that (�(�); �(�)) are jointly �-stable and Y0 is positive �=2-stable. Furthermore, the vector of periodogram ordinates �eIn;X (�i)�i=1;:::;mat distinct frequencies 0 < �1 < � � � < �m < � converges weakly, and thecomponents of the limit vector have exponentially fast decreasing tails andare uncorrelated. We also studied smoothed versions of the self-normalised



Estimation for in�nite variance processes 2periodogram and established their weak convergence to the self-normalisedpower transfer function ��� �e�i�����2 = 2.In the present paper we weaken the above assumptions on Z considerably:we only require that E jZjd <1 for some d > 0 and that � nPt=1Z2t �n2N satis-�es some mild tightness condition. The price we have to pay for this is thatwe can in general not derive a rate of convergence.The paper is organised as follows: Assumptions and notations are intro-duced in Section 2. In Section 3. we study the sample autocorrelations. Wereview results from Davis and Resnick (1986) and fromMikosch et al. (1994).We show that the sample autocorrelations do in general not converge a.s.,but they do so along a speci�ed subsequence of the integers. In Section 4. wedeal with parameter estimation for ARMA processes. We recall the notionof the Whittle estimate and some related results in the literature. Using thestrong consistency of the sample autocorrelations we show a.s. convergenceof the Whittle estimate along a subsequence under very general conditions.2. Notation and assumptionsWe consider the moving average process (Xt)t2Z de�ned by (1.1). To formu-late the conditions on the noise (Zt)t2Z we introduce the following functionsfor x > 0: G(x) = P �Z2 > x�K(x) = x�2E Z4 I �Z2 � x�Q(x) = G(x) +K(x) = E �1 ^ �x�1 Z2�2� :Since Q is strictly decreasing and continuous on (0;1) the identityQ �a2n� = 1n ; n 2 N ;



Estimation for in�nite variance processes 3de�nes a sequence of positive numbers an such that an " 1 as n ! 1.Furthermore, de�ne 
2n;Z = a�2n nXt=1Z2t ; n 2 N : (2.1)For the moving average process as in (1.1) we introduce the following as-sumptions: There exists some d > 0 such that(A1) E jZjd <1 ;(A2) P1j=�1 jjj ��� j���� <1 for � = 1 ^ d ;(A3) n=a2�n ! 0 ; n!1 ; for � = 1 ^ d ;(A4) limx!0 lim supn!1 P �
2n;Z � x� = 0 :(A5) There exists a sequence of positive numbers en such thatlim infn!1 e�2n nXt=1Z2t = 1 a.s.; (2.2)where the norming constants en satisfy the following conditions: Thereexists some � 2 N such that for nk = k� , k 2 N , 1Pk=1 �nk e�2�nk + e��nk � <1, for � = 1^d, and (en=enk ) is bounded away from 0 and1 uniformlyfor n 2 [nk; nk+1] for all k 2 N .Remarks. 1) (A1) and (A2) imply absolute a.s. convergence of the series(1.1) for every t 2 Z. This is a consequence of the three-series theorem.2) (A2) is obviously satis�ed for every ARMA(p; q)-process. In this case the j decrease exponentially.3) The conditions E Z2 <1, (A3) and (A4) cannot hold together, since (A3)and the SLLN imply that 
2n;Z a:s:! 0 contradicting (A4).4) (A4) is a stochastic compactness condition on 
2n;Z . A necessary andsu�cient condition for 
2n;Z to be stochastically compact islim infx!1 K(x)=G(x) > 0 :



Estimation for in�nite variance processes 4(e.g. Maller (1981)). Furthermore, if 
2n;Z is stochastically compact, thenthere exists some constant c > 0 such that for all n 2 NP �
2n;Z � x� � c x ; x � 0 ;(Gri�n (1983)) which implies (A4).5) A survey of results of type (2.2) can be found in Pruitt (1990, p. 1149).Fristedt and Pruitt (1971) proved under the restriction E jZjd <1 for somed > 0 that (2.2) holds withe2n = ln lnn�(� ln lnn=n)for some constant � > 1 where �(�) = �� lnE e�:Z2� denotes the generalisedinverse of � lnE e�:Z2.A natural class of noise variables to satisfy conditions (A1) and (A3){(A5)is the domain of attraction of an �-stable random variable, which we denoteby DA(�). We also use the abbreviation DNA(�) for domain of normalattraction of an �-stable law. For the de�nition and properties of �-stabler.v.'s, their domain of attraction and regularly and slowly varying functionssee e.g. Feller (1971), Bingham, Goldie and Teugels (1987) or Petrov (1975).Now if Z 2 DA(�) for some � 2 (0; 2), then Z2 2 DA(�=2) andlimx!1 G(x)=K(x) = (4� �)=� :Then G is a regularly varying function with index ��=2, and an alternativechoice for the norming constants in (2.1) is given bya2n = G �n�1� = inf nx : G(x) < n�1o ;whereG is the generalized inverse ofG. This implies that a2n = n2=�L(n)whereL is a slowly varying function and 
2n;Z d! Y0 for some positive �=2-stabler.v. Y0. Furthermore, E jZjd <1 for d < �.



Estimation for in�nite variance processes 5In the following lemma we summarise these relations.Lemma 2.1. Suppose Z 2 DA(�) for some � 2 (0; 2), then (A1), (A3) and(A4) hold for some 0 < d < � and a2n = n2=�L(n) where L is a slowly varyingfunction. Moreover, (A5) is satis�ed for d < � and e2n = n2=� eL(n) for someslowly varying function eL. The number � in (A5) can be chosen to satisfy� > �=(2� � �) _ (�=�) provided � > �=2. 2The following notation will be used throughout the paper: Let (At)t2Z beany of the sequences (Zt)t2Z or (Xt)t2Z and choose (an) as in (2.1). Thende�ne 
2n;A = a�2n Pnt=1A2t ;In;A(�) = a�2n ���Pnt=1At e�i�t���2 ; � 2 (��; �] ;eIn;A(�) = In;A(�). 
2n;A = ���Pnt=1 eAt e�i�t���2 ; � 2 (��; �] :3. Consistency of the sample autocorrelationfunctionFor h 2 Z; h 6= 0 de�ne e
n;X (h) = 
n;X(h)=
2n;Xe
(h) = 
(h)= 2where 
n;X(h) = a�2n n�jhjXt=1 XtXt+jhj
(h) = 1Xj=�1  j  j+jhj :



Estimation for in�nite variance processes 6If E Z2 <1 it is well known that e
n;X (h) is a consistent estimator of theautocorrelation function e
(h) of (Xt)t2Z. In extension of this result, Davisand Resnick (1986) proved the following: For Z 2 DA(�), � 2 (0; 2), Z sym-metric�(nL(n))1=� �e
n;X(h)� e
(h)��h=1;:::;m d!�P1j=1 (e
(j + h)� e
(j � h)� 2e
(j) e
(h)) YjY0 �h=1;:::;m ; (3.1)where L is a slowly varying function, Y0; Y1; Y2; : : : are independent r.v.'s, Y0 ispositive �=2-stable and �Yj�j2N are i.i.d. symmetric �-stable. (3.1) impliesthat e
n;X(h) is weakly consistent with limit e
(h) and the rate of convergencein (3.1) compares favourably with pn in the �nite variance case. Underour more general conditions (A1)-(A4) a precise result as (3.1) cannot beexpected. In Mikosch et al. (1994) we proved the following weak consistencyresult:Proposition 3.1. Suppose (Xt)t2Z satis�es (A1)-(A4), thene
n;X(h) P! e
(h) ; h 2 N ; n!1 : 2Convergence in probability for e
n;X (h) can be strengthened to a.s. conver-gence provided the second moment of Z exists. This is not true in the in�nitevariance case as the following simple example shows. Similar examples canbe constructed for any �nite moving average process and any sample auto-correlation at lags greater than 1.Example. Consider the MA(1) processXt = Zt + � Zt�1 ; t 2 Z ; j�j < 1 ;for a symmetric �-stable Z, � 2 (0; 2). Then, as mentioned in Section 2,(A1)-(A5) are satis�ed for some 0 < d < � and (en) can be chosen asen = n1=� (ln lnn)�(2��)=(2�) :



Estimation for in�nite variance processes 7Now considere
n;X(1) = Pn�1t=1 (Zt + � Zt�1) (Zt+1 + � Zt)Pnt=1 (Zt + � Zt�1)2= Pn�1t=1 Zt Zt+1 + �Pn�1t=1 Zt�1 Zt+1 + �Pn�1t=1 Z2t + �2Pn�1t=1 Zt�1 ZtPnt=1 Z2t + �2Pnt=1 Z2t�1 + 2�Pnt=1 Zt�1 Zt :It follows from Rosinski and Woyczynski (1987) that for some c > 0P (Z1 Z2 > x) � c x�� �1 + ln+ x�1� ;where ln+ y = max(0; lny); y > 0. Similar arguments as in the proof ofHeyde's SLLN (see Stout (1974)) and the fact that1Xh=1P �Z1 Z2 > e2n� <1imply thatlimn!1 e�2n Pn�1t=1 �Zt Zt+1 + �2 Zt Zt�1 + � Zt�1 Zt+1�e�2n Pn�1t=1 Z2t = 0 a.s.Thus e
n;X(1) = � + o(1)�2 + 1 + �Z2n .Pn�1t=1 Z2t �+ o(1) a.s.We shall show that every real number between 0 and 1 is a.s. limit point ofthe sequence �Z2n .Pn�1t=1 Z2t � thus implying that the set of a.s. limit pointsof �e
n;X (1)� is the interval [0; �=(1 + �2)] if � > 0 or [�=(1 + �2); 0] if � < 0:(Note that e
(1) = �=(1 + �2).)De�ne for positive "1 < "2 and "3 < "4An := n"2 > Z2nn�2=� > "1o ; Bn := ("4 > n2=�. n�1Xt=1 Z2t > "3) ;



Estimation for in�nite variance processes 8then P  "2"4 > Z2n,n�1Xt=1 Z2t > "1"3 i.o.! � P (An \Bn i.o.) :Note that 1Pn=1P (An) =1 and lim infn!1 P (Bn) > 0. SinceAn and fB1; B2; : : : ; Bngare independent for each n � 1, an application of a standard Borel-Cantellilemma (e.g. Petrov (1975), Lemma5, Section IX.2) yields P (An \Bn i.o.) > 0,henceP (An \Bn i.o.) = 1 which implies that Z2n .Pn�1t=1 Z2t visits in�nitely oftenwith probability one any �nite interval ("1"3; "2"4). This shows that anypositive real number is an a.s. limit point. A modi�cation of the abovearguments yields that 0 and 1 must be a.s. limit points as well. 2We shall show in the following, by replacing conditions (A3) and (A4) bythe slightly more restrictive condition (A5), that it is possible to obtain a.s.convergence of e
n;X(h) to e
(h) along some given subsequence (nk) which isde�ned in (A5). In particular, this condition is satis�ed for Z 2 DA(�),� 2 (0; 2).The following result complements Proposition 3.1.Proposition 3.2. Suppose (Xt)t2Z satis�es (A1), (A2) and (A5). Thene
nk ;X(h) a:s:! e
(h) ; h 2 N ; n!1 :Proof. We have the decompositionPnt=1Xt Xt+h � e
(h)Pnt=1X2t = Pnt=1Pi 6=j  i � j+h � e
(h) j�Zt�i Zt�j+Pnt=1Pi  i ( i+h � e
(h) i) �Z2t�i � Z2t � =: V1 + V2 ; (3.2)where we used the fact that Pi  i ( i+h � e
(h) i) = 0. Thus we obtain thatmaxn2[nk;nk+1] jV1j � nk+1Xt=1 Xi 6=j ��� i � j+h � e
(h) j�� j ���Zt�i Zt�j ��� :



Estimation for in�nite variance processes 9By (A1), (A2) and (A5) we obtain for all " > 01Xk=1 P  maxn2[nk ;nk+1 ] jV1j > "e2nk! � c1 1Xk=1 e�2�nk E maxn2[nk ;nk+1] jV1j�� c2 1Xk=1 e�2�nk nk+1 <1for some c1, c2 > 0 depending on ". A Borel-Cantelli argument yieldslimk!1 maxn2[nk ;nk+1] jV1j e�2n = 0 a.s.Now to estimate V2 set fi =  i ( i+h � e
(h) i) :Then V2 = Xi>0 fi nXt=1 �Z2t�i � Z2t �+Xi<0 fi nXt=1 �Z2t�i � Z2t �= V3 + V4 :We restrict ourselves to show that limk!1 e�2nk V3 = 0 a.s., the proof for e�2nk V4 issimilar. We haveV3 = Xi>n fi n�iXt=1�iZ2t�i �Xi>n fi nXt=1Z2t + X1�i�n fi 0Xt=1�iZ2t � X1�i�n fi nXt=n�i+1 Z2t= V5 � V6 + V7 � V8 :We restrict ourselves to show that limk!1 e�2nk V7 = 0 a.s., the proof for V5, V6and V8 is analogous. Again by (A1), (A2) and (A5) we have1Xk=1E ���e�2nk V7����=2 � c 1Xk=1 e��nk Xi>0 jfij�=2 jij <1



Estimation for in�nite variance processes 10and a Borel-Cantelli argument yields the desired result. Similar argumentsshow that e�2nk nkXt=1X2t = e�2nk  2 nkXt=1Z2t + o(1) a.s.This, (3.2)and (A5) imply thate
n;X(h)� e
(h) = Pnt=1XtXt+h � e
(h)Pnt=1X2tPnt=1X2t � Pnt=n�h+1 XtXt+hPnt=1X2t= V1 + V2Pnt=1X2t � Pnt=n�h+1 XtXt+hPnt=1X2t = o(1) a:s: (3.3)In relation (3.3) we applied (A1){(A5) and similar arguments as above toshow that a�2n Pnt=n�h+1 XtXt+h ! 0 a.s. for every h > 0. 24. Parameter estimation for ARMA(p; q) processesWe consider a causal invertible ARMA(p; q) process (Xt)t2Z satisfying forevery t the ARMA equationsXt � '1Xt�1 � : : :� 'pXt�p = Zt + �1 Zt�1 + : : :+ �q Zt�qfor i.i.d. (Zt)t2Z . Denote� = �'1; : : : ; 'p ; �1; : : : ; �q�Tand '(z; �) = 1� '1 z � : : :� 'p zp ;�(z; �) = 1 + �1 z + : : :+ �q zq :Then the transfer function of the ARMAprocess has representation  �e�i�; �� �'(e�i�; �)=�(e�i�; �).



Estimation for in�nite variance processes 11We introduce the parameter setC = n� 2 Rp+q ;'p 6= 0 ; �q 6= 0 ; '(z) and �(z) have no common zeros ;'(z) �(z) 6= 0 for jzj � 1o :Denote by g(�; �) the power transfer function corresponding to � 2 C; i.e.g(�; �) = ������' �e�i�; ��� (e�i�; �) ������2 = ��� �e�i�; �����2 ;and de�ne �2n(�) = Z ��� eIn;X(�)g(�; �) d�; ��2n(�) = 2�n Xj eIn;X(�j)g(�j ;�) ;where the sum is taken over all Fourier frequencies�j = 2�jn 2 (��; �]:Suppose �0 2 C is the true, but unknown parameter vector. Then twonatural estimators of �0 are given by�n = argmin�2C �2n(�); ��n = argmin�2C ��2n(�) :Given the assumption that �2n(�) � ��2n(�), it seems reasonable to assume,as is in fact the case, that �n � ��n, and that therefore the two estimatorsare asymptotically equivalent. It is clear that, in practice, ��n is the onlyapplicable estimator, since the integral de�ning �2n(�) will always have to beevaluated by an approximating sum.The choice of these estimators is motivated by the fact that the functionZ ��� g (�; �0)g(�; �) d�



Estimation for in�nite variance processes 12has its absolute minimum at � = �0 in C. (cf. Brockwell and Davis (1991),Proposition 10.8.1.) and that eIn;X(�) can be considered as an estimator ofg(�; �0).For Gaussian (Xt)t2Z the estimator �n is closely related to least squaresand maximum likelihood estimators and it is a standard estimator for ARMAprocesses with �nite variance. The idea goes back to Whittle (1953), see alsoDzhaparidze (1986), Fox and Taqqu (1986) and Dahlhaus (1989). It is well-known that in the classical case �n is consistent and asymptotically normal(cf. Brockwell and Davis (1991)). We showed in Mikosch et al. (1994) that�n is also for ARMA processes with in�nite variance a weakly consistentestimator for the true parameter vector �0 (see also Gadrich (1993) for thecase ��n):Proposition 4.1. Suppose (Xt)t2Z is a causal invertible ARMA(p; q) processand conditions (A1)-(A4) hold. Then�n P! �0 and �2n (�n) P! 2� �2 (�0) ; n!1 :Furthermore, the same limit relationships hold also for ��n and ��2n: 2For ARMA(p; q) processes with �nite variance �n is asymptotically normalwith rate of convergence of order n1=2. An analogous result gives in the caseZ 2 DNA(�); � < 2; a rate of convergence of order (n= lnn)1=�: i.e. theconvergence is considerably faster. This is the main result in Mikosch et al.(1994):Proposition 4.2. Suppose (Xt)t2Z is an ARMA(p; q) process and (Zt)t2Zare i.i.d. symmetric such that Z 2 DNA(�) holds for some � < 2. Then� nlnn�1=� (�n � �0) d! 4� W�1 (�0) 1Y0 1Xk=1Yk bk ; (4.1)



Estimation for in�nite variance processes 13where Y0; Y1; Y2; : : : are independent r.v.'s, Y0 is positive �=2-stable, (Yt)t2N ,are i.i.d. symmetric �-stable, W�1 (�0) is the inverse of the matrixW (�0) = Z ��� "@ ln g (�; �0)@� # "@ ln g (�; �0)@� #T d� ;and, for k 2 N , bk is the vectorbk = 12� Z ��� e�ik� g (�; �0) @ �1.g (�; �0)�@� d� :Furthermore, (4.1) holds also with �n replaced by ��n 2The limit vector in (4.1) is the ratio of an �-stable (p+ q)-dimensional vectorover a positive �=2-stable r.v. It is not di�cult to see that forAR(p) processes�n is just the formal analogue of the Yule-Walker estimates. Their weaklimit behaviour was derived by Davis and Resnick (1986) using time domainmethods.Reconsidering the proof of the strong consistency of the Whittle estimate inthe classical case (see Brockwell and Davis (1991), Chapter 10.8) we see thatthis result only depends on the strong consistency of the sample autocovari-ances (equivalently, sample autocorrelations). Thus the same proof appliesin case that the assumptions of Proposition 3.2. are satis�ed, but know wehave to restrict ourselves to convergence along the subsequence (nk) de�nedin (A5):Proposition 4.3. Suppose (Xt)t2Z satis�es (A1), (A2) and (A5). Then�nk a:s:! �0 and �2nk (�nk) a:s:! 2� �2 (�0) ; k !1 :Furthermore, the same limit relationships hold also for ��nk and ��2nk . 2
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