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Abstract

Two-dimensional simulations of the single-mode Richtmyer—Meshkov instability (RMI) are
conducted and compared to experimental results of Jacobs and Krivets (2005 Phys. Fluids

17 034105). The employed adaptive central-upwind sixth-order weighted essentially
non-oscillatory (WENO) scheme (Hu X Y et al 2010 J. Comput. Phys. 229 8§952-65)
introduces only very small numerical dissipation while preserving the good shock-capturing
properties of other standard WENO schemes. Hence, it is well suited for simulations with both
small-scale features and strong gradients. A generalized Roe average is proposed to make the
multicomponent model of Shyue (1998 J. Comput. Phys. 142 208-42) suitable for high-order
accurate reconstruction schemes. A first sequence of single-fluid simulations is conducted and
compared to the experiment. We find that the WENO-CU6 method better resolves small-scale
structures, leading to earlier symmetry breaking and increased mixing. The first simulation,
however, fails to correctly predict the global characteristic structures of the RMI. This is due
to a mismatch of the post-shock parameters in single-fluid simulations when the pre-shock
states are matched with the experiment. When the post-shock parameters are matched, much
better agreement with the experimental data is achieved. In a sequence of multifluid
simulations, the uncertainty in the density gradient associated with transition between the
fluids is assessed. Thereby the multifluid simulations show a considerable improvement over
the single-fluid simulations.

PACS number: xxx

(Some figures may appear in colour only in the online journal)

1. Introduction baroclinic generation of vorticity on the interface. Baroclinic
vorticity deposition is the initial driving force for the
1.1. Richtmyer—Meshkov instability (RMI) development of the primary instabilities. Following the shock

passage the disturbances initially present on the interface will
The RMI occurs when the perturbed interface of two fluids  grow linearly in time. Nonlinear growth follows when the
with different densities is accelerated impulsively, e.g. by a  amplitude of the perturbation becomes important compared
shock wave [4, 5]. Therefore it is considered as the impulsive  to its characteristic wavelength. The nonlinear growth of RMI
limit of the Rayleigh—Taylor instability [6]. The misalignment is characterized by the development of asymmetric ‘bubbles’
of the pressure gradient V p (associated with the shock wave) and ‘spikes’. Eventually, Kelvin—Helmholtz instability gives
and the density gradient Vp between the two fluids causes rise to the development of small scales. If the initial
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energy input is sufficient, a turbulent mixing zone establishes
between the fluids where the large-scale structures are
progressively broken down into smaller scales. The broadband
spectrum of motions present in RMI is one of the
main reasons why numerical treatment is challenging.
A fundamental understanding of the amplification of initial
interface perturbations along with the associated mixing
process is of crucial importance for both man-made and
natural phenomena. According to Arnett [7], RMI is the
reason for the lack of stratification of the supernova 1987a
and needs to be taken into account in stellar evolution
models. An engineering application of RMI is the strong
enhancement of mixing processes, such as the mixing of
fuel with an oxidizer in supersonic propulsion engines [8].
A comprehensive description of RMI is given by Brouillette
[9] and Zabusky [10] in their reviews.

In recent decades, RMI has been widely studied
analytically, numerically and experimentally. In the numerical
investigation by Latini et al [11, 12], the authors emphasized
the importance of high-order reconstruction methods for the
simulation of RMI. They found that lower-order methods
preserve large-scale structures and symmetry to late times,
while higher-order methods could time efficiently resolve
small-scale structures, leading to symmetry breaking and
increased mixing. This finding that higher-order methods
are more time efficient in resolving the broad range of
wavelengths present in RMI was one of the motivations
to apply the sixth-order adaptive central-upwind weighted
essentially non-oscillatory scheme (WENO-CU6) of Hu
et al [2] to RMI in the present study. Latini et al used
the experimental study of Collins and Jacobs [13] as
the reference. Collins and Jacobs made use of a new
technique that allows the development of a defined gas—gas
interface without the use of a membrane. This membrane-free
technique was first employed by Jones and Jacobs [14]. In
the shock-tube experiment of Collins and Jacobs a moderate
shock wave interacts with a sinusoidally perturbed material
interface of air—acetone. When the shock wave impacts on
the interface, baroclinic vorticity production on the interface
gives rise to a single-mode RMI. After the first impact the
shock wave travels downstream before it is reflected at the
end wall of the tube and hits the interface a second time.
Later, Jacobs and Krivets [1] used the same experimental
setup to redo the experiment at higher Mach numbers. As
higher Mach numbers led to faster growth, they were able to
obtain valuable information on the late-time development of
the single-mode instability, leading to a turbulent mixing zone
between the fluids. This experiment is used as the reference in
our numerical study.

1.2. Numerical schemes for accelerated compressible
multicomponent flows

The broad range of scales present in RMI makes numerical
simulations difficult. The numerical discretization method
needs to capture steep gradients such as shocks and contact
surfaces and should be non-dissipative in smooth flow regions.
The RMI is also a multicomponent flow and therefore needs
a numerical treatment that is somewhat more complex than
for single-component flows. The fluid dynamic properties

of multicomponent flows are conventionally modeled by
solving additional transport equations for ‘information
quantities’ that account for the presence of different species
in the flow. Attempts to attribute conservative properties
to these ‘information quantities’ often suffered from
strong unphysical oscillations across the material interface.
The occurrence of these numerical inaccuracies led to
several publications [15-19] employing non-conservative
or quasi-conservative models. In the literature there are
also other proposals to maintain pressure equilibrium
across material interfaces in a conservative form [20, 21].
Except for Marquina and Pulet’s [20] conservative
flux-splitting algorithm (they use a conventional WENO-5
reconstruction) all published simulations used low-order
reconstruction schemes and effectively fail when combined
with a low-dissipation scheme such as WENO-CU6. Some of
the proposed models could not properly suppress oscillations
when a high-order scheme was applied and some introduced
excessive dissipation around the material interface. However,
we found the quasi-conservative volume fraction-based model
of Abgrall [16], which was later extended from polytropic
gases to stiffened gases by Shyue [3], most suitable for use in
combination with WENO-CUG6. Allaire et al [19] generalized
the four-equation model of Shyue to a five-equation model
that allows the simulation with general equations of state,
including tabulated laws. The WENO-CU6 scheme [2] is an
attempt to overcome the dissipative nature of other upwind
biased WENO schemes; for a review see [22]. WENO-CU6 is
based on a new smoothness measure that adapts the numerical
stencil between a nonlinear convex combination of lower
third-order upwind stencils in regions with steep gradients
and a sixth-order central stencil in smooth flow regions. The
WENO-CU6 method exhibits enough dissipation close to
discontinuities to preserve stability, but allows the stencil
to transform to a sixth-order central stencil in smooth flow
regions. WENO-CUG is therefore much less dissipative than
other WENO methods. This makes the WENO-CU6 method
better suited for direct numerical simulation of RMI with its
characteristic broad wavenumber spectrum.

1.3. Scope of the present study

The Euler equations are solved on a two-dimensional (2D)
grid. In the computational domain a shock wave first
travels through air and then impacts a sinusoidally perturbed
interface to SFs. A single-fluid and a multifluid simulation
are conducted and compared to the experiments of Jacobs
and Krivets [1]. The aim of this paper is (i) to assess
the performance of the WENO-CU6 method for accelerated
compressible flows, (ii) to show the importance of using a
multicomponent model for the RMI simulation instead of a
single-component model, and (iii) to modify the multifluid
model such that it ensures pressure equilibrium across the
material interface also for high-order methods.

Section 2 presents the governing equations of the
problem. Viscous terms are neglected. In section 3, the
WENO-CU6 method used for space discretization is outlined
together with modifications done to the generalized Roe
average of Hu et al [23]. These modifications were necessary
in order to make the multicomponent model suitable for
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the sixth-order method. The initial conditions are discussed
in section 5 along with a description of the computational
domain in section 5.1 and the non-dimensionalization in
section 5.2. The results of both single-component and
multicomponent simulations are presented and compared to
experiments in section 6, pointing out the importance of
a multicomponent model and the use of a low dissipative
discretization method for flows where molecular transport
plays a weak role. The key findings of this study are then
discussed and summarized in section 7.

2. Governing equations

The compressible Euler equations for an ideal binary gas
mixture can be written as

ap
—+V- =0, 2.1
ar T (pu) 2.1
9
(gtu) +V - (puu+ pd) =0, (2.2
IE
SLAV(E+ pul =0, 23)
0ZsF,
—— + V- (uzs) = ZsF V " U, (2.4)

at
where p is the mixture density, w is the velocity, p is the
pressure, E is the total energy, zsr, is the volume fraction of
SF¢ gas and 4 is the unit tensor. The volume fraction of air
is easily obtained by z, = 1 — zsp,. The equations are closed
with the equation of state (EOS) for an ideal gas
p(pe,z) = (Y(2) — Dpe, (2.5)

where y is the ratio of specific heats of the gas mixture

with [3]
1 _Z Zi
y—1 - yi—1

The internal energy of the system is denoted as e and is
defined as

(2.6)

2.7

3. Numerical scheme

In the 1D case, system (2.1)—(2.3) can be written in the
conservative form as

U+FU),=0 3.1
withU = (p, pu, E)T and F(U) = (pu, p +pu’, u(E +p))T.

We solve (3.1) in characteristic form. The eigensystem of
fluxes in (3.1) is obtained from the Roe-averaged Jacobian,
which yields the left and right eigenvectors. The left
eigenvectors project the fluxes onto the characteristic field,
and the eigenvalues of the Jacobian are used to ensure
upwinding.

To obtain high-order accurate numerical fluxes at the
cell boundaries f i+1/2, the WENO-CU6 method is employed
to reconstruct these values from cell averages. Finally, the

reconstructed numerical fluxes at the cell face are projected
back onto the physical field using the right eigenvectors.
An entropy fix is implemented by the Lax—Friedrichs flux
splitting. For more details of Riemann solvers, see [24]. The
left-hand side of (3.1) is evolved in time using a third-order
total variation diminishing Runge—Kutta scheme.

3.1. The adaptive central-upwind sixth-order WENO scheme

The motivation for Hu et al [2] to develop the WENO-CU6
discretization scheme was that standard WENO schemes
exhibit excessive dissipation and accordingly overwhelm
large amounts of the small-scale structure in a flow.
The principle of the WENO-CU6 method is to use a
non-dissipative sixth-order central method in smooth flow
regions and a nonlinear convex combination of third-order
approximation polynomials in regions with steep gradients.
This new weighting strategy preserves the good shock
capturing properties of other WENO methods, while it
can achieve very low numerical dissipation in smooth flow
regions.

The reconstructed numerical fluxes at the cell boundaries
are computed from

3
fi+1/2 = Z wy fk,i+l/2» (3.2)

k=0

where w; is the weight assigned to stencil k with

the second-degree reconstruction polynomial approximation

fk,i+12. In the WENO-CUG6 framework the weights w; are
o

given by
_ d (C+ %o )
= 5 (Xk = dy .
Zi:O Oy ,3k+6

The optimal weights d; are chosen such that the method
recovers the sixth-order central method. C is a constant with
C > 1. A new smoothness measure 74 can be found from a
linear combination of the other smoothness measures 8; with

(3.3)

Wi

76 = Po — %(,30+,32 +4p1) 3.4
and
2 , xp Qi 2
B = JZ_(; Ax%—! /“/2 (Efk(x)> dx. (3.5)

Be is also calculated from (3.5) but with the six-point
stencil for the sixth-order interpolation. The full method
is given in [2] and with modifications for scale separation
in [25].

3.2. The modified general Roe average for an ideal
gas mixture

The general Roe average used in the present study is an
extension of the Roe average for generalized EOS, but unlike
those of Liou er al [26] and Shyue [27], the method is
simple and satisfies the U-property exactly. Moreover, it
does not introduce artificial states like that of Glaister [28]
and predicts the averages directly from the adjacent states.
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Figure 1. Results of Sod’s two-material shock-tube problem for the WENO-CUG6 scheme (L) on a 200-point grid compared to the
reference solution (—) obtained with the WENO-5 scheme on a high-resolution 6000-point grid.

Here we apply this method with the Riemann solver of
Roe. Additional challenges arise from the fact that the linear
approximation between the average state and the adjacent
state for a single-phase interaction, which has been assumed
by Hu er al [23], does not hold in the present study.

According to Glaister [28], the averages of p, & and H
can be obtained from

~ x P+ /P
= - = =y v =u,H
p=ypipe,  f=plf) NG f=u
(3.6)
and ) 3 5
P P 1Y Ur — U
S=plc)rc | ———) . 3.7
(0)=()5(Gm) - o

_ The average pressure can be evaluated from (3.7) as p =
,5(%). For a general EOS p = p(p, e), the speed of sound c is
given by

2ol p o
ap|, p* de

—w+r?,
0

o

(3.8)

where W is the Griineisen coefficient and I' defines the
material properties. Following Roe [29] and Glaister’s [28]
approach, one obtains the condition for the pressure difference
between two adjacent states as

Ap =W Ap+T[A(pe) —eAp] (3.9)
with appropriately defined average states for the Griineisen
coefficient W and the parameter defining the material
properties I'.

Unlike Hu et al [23], we cannot assume a linear
approximation between the average and the adjacent
states, which would reduce the equation for the pressure
difference (3.9) to

Ap =TUAp+TpAe, (3.10)
but we need to find the averages \f-f~and I" based on (3.9).

One way to calculate W and T" is to assume that one of
them obeys the same averaging as f in (3.6) and calculate the
other one from (3.9). This would lead to

= Ap—pu()Ap
Cae= NGO —ihn (3.11)
and _
by, = Ap — n(I)[A(pe) —eAp]’ (3.12)

Ap

respectively. The averaged internal energy for an ideal gas can
be found as
u(¥)

n()’

However, (3.11) and (3.12) are undefined if A(pe) —

eAp =0 or Ap=0. The singularities can be removed if

it is assumed that I' = w(I') when A(pe) —eAp =0 and

U = u(¥) when Ap =0. Thus the modified generalized
definitions of " and W can be expressed as

(3.13)

e=

=

P we+ )+ Uapwy o pD) (W, +€) + Tacwe

We+w,+e€
(3.14)

We+ W, +€
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Figure 2. Results of the 1D shock-bubble interaction test case of Quirk and Karni. The WENO-CUG6 solution ([J) is obtained on a
400-point grid and compared to the reference solution (—) produced with the standard WENO-5 method on a high-resolution grid with

6000 grid points.

with w, = (%)2 and w, = )2, where € is a small

number. Then the speed of sound is given by

A(pe)—eAp
(e ioe

A=U+2T. (3.15)

s

4. Validation of the numerical scheme

As a first validation test case, Sod’s two-material shock-tube
problem is used to show the correct and consistent
implementation of the WENO-CU6 scheme and the
multicomponent model with its modified generalized Roe
average. The initial condition is

(o, u,p,y)=
(1.0,0.75, 1.0, 1.4)
(0.125,0.0, 0.1, 1.2)

if 0.0<x <0.3,

4.1)
if 03<x<1.0.

Results are shown for the final time r = 0.2.

The solution in figure 1 obtained with the WENO-CU6
scheme on a 200-point grid agrees very well with the reference
solution. The reference solution is produced with a standard
WENO-5 scheme on a high-resolution grid with 6000 points.
The results of the WENO-CU6 method slightly oscillate
because of the non-dissipative properties of the method.
A more dissipative scheme would damp such disturbances
at each time step and hence smooth out the solution. In
a non-dissipative scheme (as the WENO-CU6 scheme is
in smooth flow regions) the oscillations show a dispersive
character as they travel both up- and downstream.

The second test case is the 1D shock—bubble interaction
case of Quirk and Karni (cited by Abgrall [16]). It consists of a
shock wave that is traveling in air to the right. In the pre-shock
state a bubble of helium is located between 0.4 < x < 0.6. The
shock wave is initially at x = 0.25 and the initial conditions
are

(o,u, p,y)=
(1.3765,0.3948, 1.57, 1.4) if 0.0 <x <0.25,
(1.0,0.0, 1.0, 1.4) if 025<x<04 4.2)
or 0.6 <x < 1.0,
(0.138,0.0, 1.0, 1.67) if 04<x<0.6.

The results of the WENO-CU6 method are given in
figure 2 and compared to the reference solution that was
obtained by using a conventional WENO-5 approach. The
solution of the WENO-CU6 method was sampled on a
400-point grid. The reference solution was sampled on a
high-resolution 6000-point grid. Although the WENO-CU6
results were obtained on a grid that is 15 coarser than the
grid of the reference solution, they are both in very good
agreement. A quantitative comparison of the present results
with those of Wang [21] showed a clear improvement. Also
a qualitative comparison with the results of Marquina and
Pulet [20] corroborated this conclusion.

5. Initial conditions for RMI

The experiments of Jacobs and Krivets [1] provide the initial
conditions for our 2D investigation of the RMI in an inviscid
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regime. The vertical shock tube used in the experiment has
a driver section that is filled with air at ambient pressure
and temperature. In the test section an interface of air—SFg is
formed as the heavier SF¢ flows upwards and collides with air
flowing from top to down. Both gases exit through horizontal
slots in the test section. A sinusoidal interface between the
two gases is formed by oscillating the entire shock tube in the
horizontal direction. This membrane-less technique was first
proposed by Jones and Jacobs [14].

The initial conditions of the experimental setup
considered in the present numerical study are as follows:
The shock wave has a strength of M;=1.3 in air. The
sinusoidal interface of air—SFg has a pre-shock amplitude of
a; =2.9mm and a wavelength of A =59 mm. The location
of the material interface is then calculated from 5 =x; +
ag cos(2my). The diffusion layer between the fluids is given
by [30]

f@)=h—=93)+ fid,
B (1 +tanh(¥))
= f’
€ = D\/ A)CiAyi

and f =p,zsr,- AR is the distance from the material
interface. The densities of air and SF¢ in ambient conditions
led to a pre-shock Atwood number of A~ =0.605. The
interface is initialized at x; = 30 mm and the shock at x, =
10 mm. The time is initialized to zero (t = 0) when the shock
first impacts the SFg gas.

5.1

5.1. Computational domain

The 2D computational domain is discretized by a Cartesian
grid. We use for all simulations a mesh size of 256 cells
per initial wavelength A. The ‘numerical test section’ is
surrounded by layers of coarser grids in order to avoid shock
reflections at the inlet and outlet.

5.2. Non-dimensionalization

The reference scales to non-dimensionalize the governing
equations are defined here. The reference density is set
to the pre-shock density of air prf= p.r = 1.351kg m3.
Accordingly, the reference pressure is chosen to be the pre-
shock pressure p.; = 0.956 bar. The reference length scale is
the initial wavelength of the sinusoidal interface L= A =

Pref

59 mm and the reference time scale is f,of = oy et

6. Numerical results

6.1. Single-fluid algorithm

In this subsection, the ratio of specific heats ¥ in (2.5) is
assumed to be constant with the same value of ¥ = 1.276
for both air and SF¢ and hence is referred to as single-fluid
algorithm. Figure 3 shows the experimental results of Jacobs
and Krivets [1] along with our numerical results obtained with
the standard WENO-5 and the WENO-CU6 method at three
different times r =3.06ms, t =4.16 ms and ¢ = 6.06 ms.

(b)

Figure 3. Experimental results of Jacobs and Krivets [1]

(a) compared to the single-fluid results obtained with the standard
WENO-5 method (b) and the WENO-CU6 method (c) at three
different times t = 3.06 ms, t =4.16ms and t = 6.06 ms.

Figure 4. In (b) the post-shock conditions of the experiment are
matched, whereas in (c) the pre-shock conditions are matched and
compared to the experiment (a) at times = 4.16 ms and

t = 6.06 ms.

The comparison shows that the lower-order WENO-5 method
preserves large-scale structures and symmetry to later times,
while WENO-CUG6 better resolves small-scale structures,
leading to symmetry breaking and increased mixing. This
better behavior is in agreement with the findings of
Latini et al [11].

WENO-5 cannot reproduce the secondary instabilities
on the mushroom stem, whereas WENO-CU®6 clearly shows
the same typical stem disturbances as the experiment at t =
6.06 ms. On the other hand, it also shows instabilities on top of
the mushroom which are not observed in the experiment. We
believe that the origin of these numerical instabilities could
be because of neglecting viscous effects, which makes the
WENO-CUG6 scheme less dissipative than the real physical
mechanisms. On the other hand, other numerical schemes
apparently are too dissipative. Both discretization schemes
are unable to predict correctly the large-scale structure such
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(a)

(d)

Figure 5. Investigation of the impact of the diffusion layer on the late-time Richtmyer—Meshkov development with increasing the diffusion
layer thickness from (b) D =4 to (c) D =8to (d) D =16 at times t =4.16 ms and t = 6.06 ms.

as the mushroom head diameter and stem diameter of the
RMI experiment.

Richtmyer described the early linear growth rate of the
instability as a function of the post-shock parameters, aj
the post-shock amplitude, A* the post-shock Atwood number,
the velocity jump AU associated with the shock passage and
k the initial perturbation wavelength

ka(t) = kag +k*al A* AUqt. (6.1)

From (6.1) it immediately follows that in order to match
the correct initial growth rate and accordingly the later
development, one needs to reproduce the correct post-shock
parameters. As the single-fluid method assumes constant y, it
is not possible to have matching pre- and post-shock states.
Thus, it is preferable to match the post-shock state in order to
improve the agreement in the large-scale structures between
experiments and numerics at late times.

In figure 4(b), the post-shock parameters are matched
and compared to the results where the pre-shock states
are matched (figure 4(c)). Comparing figures 4(a)-(c), we
observe a clear improvement of the large-scale structures, as
figure 4(b) shows a wider mushroom head and a thinner stem,
which captures better the global characteristics of the RMI
experiments.

6.2. Multifluid algorithm

In this subsection, ¥ is not assumed to be constant but
computed from (2.6) with y,; =1.276 and ysg, = 1.093.
A transport equation is solved for the volume fraction (2.4)
to account for the variable ratio of specific heats. By means
of (2.4) and the modified general Roe average of section 3.2
we are able to simulate the material interface without the
appearance of spurious pressure oscillations.

As the initial driving force of RMI is the vorticity
deposition on the material interface caused by the misaligned
pressure and density gradient, it is of crucial importance to
properly match the pressure gradient and the density gradient.
The pressure gradient is associated with the Mach number
of the incident shock wave and therefore is much better
quantifiable than the density gradient.

(b)

Figure 6. Comparison of the multifluid (b) and single-fluid
(c) algorithms to the experiments (a) at times ¢ = 4.16 ms and
t =6.06 ms.

In order to quantify the uncertainty of the density
distribution across the interface, three different diffusion layer
thicknesses are considered. Figure 5 shows a sequence of
simulations with increasing diffusion layer thicknesses D = 4,
D=8 and D =16, see (5.1). The vorticity deposited on
the interface decreases as the density gradient is reduced
from the left, figure 5(b), to the right, figure 5(d). Although
the mushroom stem in figure 5(d) shows a non-sinusoidal
perturbation the overall shape agrees best with the experiment.
D =16 is therefore used for making a comparison to the
results obtained using WENO-CUG6 and a constant ratio of
specific heats in figure 6.

Figure 6 reveals a clear improvement of the multifluid
algorithm over the single-fluid algorithm. The global
characteristics are captured much better in figure 6(b) than
in figure 6(c). When the late-time development of the RMI
is of interest the correct compressibility of the fluids involved
needs to be captured, which requires a multifluid simulation
with variable material properties.

7. Concluding remarks

The 2D simulations of the single-mode RMI using the recently
developed WENO-CUG6 reconstruction method of Hu et al [2]
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were conducted and compared with the experiments of Jacobs
and Krivets [1]. The multicomponent model for stiffened
gases by Shyue [3] was used to account for multiple species.
However, the high-order method employed made it necessary
to modify the general Roe average of Hu et al [23] in order to
capture material interfaces without the occurrence of spurious
pressure oscillations. In two 1D test cases it was shown
that the WENO-CU6 method together with the modified
general Roe average was capable of capturing accurately
material interfaces without introducing undesirable amounts
of numerical dissipation.

In a first sequence of simulations the ratio of specific
heats 7 was assumed to be constant for both fluids. The fluxes
were reconstructed with the WENO-CUG6 and the standard
WENO-5 method and compared to the experiments. It was
concluded that the lower-order WENO-5 method preserves
large-scale structures and symmetry to later times, while the
WENO-CUG6 better resolves small-scale structures, leading
to earlier symmetry breaking and increased mixing. This
better behavior is in agreement with the findings of Latini
et al [11]. However, the global characteristic structures of RMI
were matched neither by the WENO-CU6 method nor by the
WENO-5 method. This is due to the fact that the linear growth
rate of RMI essentially depends on the post-shock state of
the instability. A mismatch of the post-shock state essentially
leads to wrong prediction of the late-time development. Thus,
in terms of accuracy, it is much more preferable to match
the post-shock state than the pre-shock state in single-fluid
simulations.

The initial driving force of RMI is the vorticity deposition
on the material interface caused by the non-parallel pressure
and density gradient. However, unlike the pressure gradient,
the density gradient associated with the material interface is
not easy to quantify in experiments. Therefore, a sequence
of multifluid simulations with different diffusion layer
thicknesses were conducted to assess the uncertainty in
the density gradient. The multifluid simulations showed a
considerable improvement over the single-fluid simulations
where the pre-shock state is matched.
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