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Abstract

We study the tail asymptotics of the r.v. X (T') where {X ()} is a stochastic process with
a linear drift and satisfying some regularity conditions like a central limit theorem and a
large deviations principle, and 7' is an independent r.v. with a subexponential distribution.
We find that the tail of X (T') is sensitive to whether or not T has a heavier or lighter tail
than a Weibull distribution with tail e~ V*. This leads to two distinct cases, heavy-tailed
and moderately heavy-tailed, but also some results for the classical light-tailed case are
given. The results are applied via distributional Little’s law to establish tail asymptotics for
steady—state queue length in GI/GI/1 queues with subexponential service times. Further
applications are given for queues with vacations, and M/G/1 busy periods.
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1 Introduction

Let {X()},5, be a stochastic process satisfying a LLN X (¢)/t — m > 0, and T" an independent
random time. The question we address in this paper is to derive the tail asymptotics of the
r.v. X(T), with particular emphasis on the case where T has a heavy—tailed (subexponential)
distribution.

A main special case where {X(¢)} is a Poisson process at rate A and T has a regularly
varying tail, P(T > z) = L(z)/z* with @ > 0 and L(z) slowly varying, has been considered in
[26] Ch. 8. The results there basically show that in this setting, the variability of 7" dominates
that of {X (¢)} so that one can replace X (¢) by its expected value At to get

P(X(T) >z) ~ P(AT >zx). (1.1)

Here and in the rest of the paper, ~ means that the ratio is one in the limit z — oco. For
the regularly varying case, (1.1) is also shown to hold in [39] when {X(¢)} is special Markov
additive process (this is a key step in the study of a certain fluid queue). In [40], the question
of subexponentiality of X (7') is addressed in some special settings, but no tail estimates are
given.

The results that we give are in part generalizations of (1.1), allowing a more general structure
of {X(t)} and/or more general distributions of 7. However, we also find that even for the
Poisson case, (1.1) does not extend to the whole class of subexponential distributions: when
T has a lighter tail than the Weibull tail e~*” with 3 = 1/2, the deviation of X (¢) from At
described by the CLT makes a small but non—negligible contribution to the tail of X (7). To
see this, assume that P(T > z) = exp{—="}, 8> 1/2, and let {N(#)} be a Poisson process at

rate A = 1. By the CLT, (N(t) —t)/y/t = N(0,1) in distribution so that
liminf inf P(N(y)>z)>1—&(—1)= (1) >0,
iminf inf _P(N(y)>z)= (=1) = @(1)
(®(x) is the standard normal d.f.). This yields
lim infw > i
T—00 P(T > q;) T—00 P(T > :E)
= @(1)11Lrgoexp{xﬁ —(z—Vz)Pt = <I>(1)Ili%rroloexp{ﬂazﬂfl/2} = o00.

This behaviour can be seen as intermediate between (1.1) and the classical light—tailed case

where X (T') becomes large only when both { X (#)} attains atypically large values and T is large



at the same time; see for example [29] for a discrete time version where {X(¢)} is a random
walk and T has a Poisson distribution, and Section 5 of the present paper. For this reason, we
refer to a distribution with a tail like e~ with 1/2 < B < 1 as moderately heavy—tailed.

Our study was motivated by a queueing problem: determining tail asymptotics of steady-
state queue length L (total number in system) in a stable FIFO M/G/1 queue with Poisson
arrivals { N (¢)} at rate A and generic service time S. Most general asymptotic results known for
L involve establishing geometric tails in the light—tailed case (S has finite moment generating

function in a neighborhood of the origin):
P(L>k)~po %, k—oco. (1.2)

See for example [23], [32], [6], [12], [34] and [1]. The connection to the general problem outlined
above is provided by distributional Little’s law (DLL), cf. [27], which asserts that L has the
same distribution as N (W) where W (the steady-state sojourn time) is chosen independent of
{N(t)}. Here the tail behaviour of W has been known for a long time: W has an asymptotic
exponential tail in the light-tailed case (see e.g. [2], [3], [24]), whereas in the heavy-tailed case

(service times S have mean 1/u and are subexponential, p = \/u),
P(W > z) ~ %P(Se >1), - 00, (1.3)
—p

where S, has the equilibrium density pP(S > xz), cf. [13], [35], [21], [8], [9], [28], [10]. In

particular, when (1.1) applies with T'= W, we get
P(L>k) ~ POW > k) ~ %P(ASB >k), k— oo (1.4)

That is, asymptotically the tail of L is exactly like the tail of AW, a kind of “generalized Little’s
law”. We obtain results also for more general cases, like S Weibull with 1/2 < 8 < 1 and more
general queueing models, in particular GI/G/1, tandem, and vacation queues for which DLL
holds.

The paper is organized as follows. Section 2 contains some preliminaries. In Section 3, we
study X (T') when T has a distribution somewhat more general than subexponential, with tails
heavier than a Weibull F(z) ~ exp{—+/z}. We start with the case where {X(¢)} is a Poisson

process and give a first application to M/G/1 queues. Subsection 3.2 generalizes (1.1) away



from the Poisson case. The main result is Theorem 3.7. Again distributions of T' with a heavier
tail than e V= satisfy the required conditions. Here the link to extreme value theory becomes
obvious. We present several examples for processes {X(¢)}, which satisfy the conditions of
Theorem 3.7. In Section 4, we give the precise asymptotics for certain moderately heavy—-tailed
r.v.s T, when {X(¢)} is Poisson. For the sake of completeness, in Section 5 we include some
results on the light-tailed case which are in part expected but not in the literature. Finally,
Section 6 gives some further queueing applications, in particular to vacation models and M/G/1

busy periods.

2 Preliminaries

2.1 Subexponential distributions

Given a non-negative random variable (r.v.) X, its distribution function (df) is denoted by
F(z) = P(X < z) and its tail by F(z) = 1 — F(z) = P(X > z). We are interested in d.f.’s
that are heavy-tailed: F(x) >0, >0, and

F
lim P(X >z+y| X >z) = lim FE+Y) _ 1, y>0. (2.1)

5 % F(a)

For our purposes we focus on a special class & of such distributions called subezponential
distributions F. The reader is referred to [25] or [20] for details and further references. If F*"
denotes the n-fold convolution of F, F**(z) = [ F(z —y)dF (y) and so on, with corresponding
tail F*"(x) = 1 — F**(z), then the d.f. F (or the r.v. X) is called subexponential if F(z) >

0, £ >0, and for all n > 2, o
lim F_ (z)
T—00 F(m)

(It can be shown that if the condition holds for n = 2 then it holds for all n > 2.)

=n. (2.2)

In terms of r.v.’s, (2.2) can then be re-stated as
P(Xi+ -+ X, >x) ~ Pmax{Xy,...,Xpn} > 1), z — o0,

for all n > 2 where X1,...,X,, are i.i.d. distributed as F'. In words this means that the sum
is likely to get large because one of the r.v.’s gets large. If X is subexponential then in fact
limg, 00 € P(X > 2) = 0o = E(eX) for all € > 0, which explains why the term subezponential

is used in the definition.



For technical reasons we sometimes restrict this class even further to the class $* C S,

introduced in [31] and defined by

Definition 2.1 (The class S*) Let F be a distribution on [0,00) such that F(z) >0, = > 0.
We say that F' € 8* if F has finite first moment 1/p and

lim [ M?(y)dy -

2
0
S* includes (when the mean is finite) the following distributions: Pareto, Burr, log-gamma,

lognormal, heavy-tailed Weibull, and many others.

Of special importance to us is the Weibull distribution with parameter 3:

F(x):e_xﬁ, x>0, 0<pB<1.

2.2 Equilibrium distributions

For any non-negative random variable X with distribution F' and finite mean 1/u, the equilib-

rium distribution F, is defined by

Fo(z) = u/oxf(y)dy, £>0. (2.4)

We let X, denote a r.v. distributed as F,.

One of the important features of $* for applications is the following:
Proposition 2.2 If F € §*, then both F and F, are subexponential.

Note that for any df F' satisfying (2.1) (i.e. in particular for any F' € §*) the tail of F, dominates
that of F: F,(z)/F(z) — oo.

2.3 Basics of the FIFO GI/GI/1 queue

Customer interarrival times {7}, } are i.i.d. with finite mean 1/, and service times {S,} are
i.i.d. distributed as G(z) = P(S < z) with finite mean 1/u. The two sequences are assumed
independent. {N ()} denotes the counting process of arrivals. We assume throughout p =

A/ < 1 (stability). Customers join the queue in the order they arrive (First In queue First



Out of queue, FIFO). The delay of the n'* customer (in queue) is denoted by D,, and satisfies
the recursion

D denotes steady-state delay: P(D < z) = lim,_, o P(D, < z). The following is a precise
rendering of result (1.3) (see Embrechts and Veraverbeke [21] (ruin probability setting) and
Pakes [35] (queueing setting)):

Theorem 2.3 D is subexponential if Se is subexponential, and in this case
P(D>z)~ %P(Se >x), T — o0. (2.5)
-p

Note in particular (recall Proposition 2.2) that if G € §*, then (2.5) holds.
Steady-state sojourn time W = D+ S (independent sum) denotes total time spent in system

and it is easily seen (from Theorem 2.3 and basic principles) that if S, is subexponential then
PW>z)~P(D>z), x— 00, (2.6)

because the tail of S, (and hence that of D) dominates that of S (see e.g. [20], Lemma A3.28).
That’s how one gets (1.3).

Remark 2.4 The M/G/1 queue is the special case when the interarrival time distribution
is exponential; i.e. the arrival process is a homogenous Poisson process. In this case the
implications of Theorem 2.3 become equivalences; i.e. D is subexponential if and only if S, is
subexponential if and only if (2.5) holds. The “if and only if” aspect shows how fundamental
the subexponential property is in the context of applications to queues. For it implies that if

Se is heavy-tailed but not subexponential, then the asymptotic (2.5) will not hold. O

2.4 Distributional Little’s Law

Consider a queueing model with renewal arrivals (i.i.d. interarrival times {7}, }). Let W, denote
n' customer’s sojourn time (total time spent in the system from arrival to departure). Let
L denote steady-state number in system, and W denote steady-state sojourn time. Finally,
independent of W, let {N(¢)} denote a time stationary version of the renewal counting process

(the initial arrival time is distributed as T, (equilibrium distribution)).

The following result is from [27], and known as distributional Little’s law (DLL):



Proposition 2.5 If (1) and (2) below hold then L = N (W) in distribution.
(1) Customers depart the system in the same order that they arrived (first-in-first-out).
(2) Wy, is independent of the future interarrival times {T,,Tp+1,...}, n > 0.

Some models for which DLL holds are FIFO GI/GI/1 queue, FIFO GI/GI/1 queue with
server vacations, FIFO tandem queues of the form GI/GI/1 — /GI/1 — --- /GI/1. DLL
does not hold for FIFO multi-server queues (such as GI/GI/c) because Condition (1) above
then fails (unless service times are deterministic); but it does hold for the number of customers
waiting in the queue (not in service) for such models (for then Condition (1) does hold); note,
however, that the tail asymptotics of D or W is not at present available for GI/GI/c queues with
subexponential S. Nor does DLL hold for queues with non-renewal arrivals because otherwise
Condition (2) will fail (except for extremely trivial cases). It is not crucial that service times
be i.i.d. , so, for example, DLL holds for GI/G/1 queues (and tandem and vacation) in which
the service time sequence is stationary and independent of the renewal arrival process. (More
recent references on DLL (since the classic paper of Haji and Newell [27]) are [30] and [17] for
example.)

In what follows, DLL is our route to studying P(L > k) due to well known asymptotics for
W (such as (2.5) and (2.6)); this differs from much classical work where the approach is via
transforms, cf. [23], [32], [34], [1].

2.5 Some basic lemmas

Lemma 2.6 If {N(t)} is Poisson with rate A\ and T an independent random time with d.f. F,
then
Ak oo
PIN(T) > k—1) = 7/ HFg(u)du, keN, (2.7)

Proof By partial integration, for & € IN,
00 00 At ()\t)kfl o
PINT) > k—1) = / P(N(t) > k — 1)dF(t) = A/ Gy Y
0 0 !

set u =Int



)\k 0o N . )\k 0o _ w
= 7/ e " kDU (M) ey, = / U (eh)e " du

(k—1)!J (k—1)!J o
k oo
- ﬁ /_oo g (u)du . (2.8)

Hence (2.7) is up to a multiplicative factor the moment generating function g of a distribution
with density g. The following result is Theorem 6.6 of [14] and was proved there using Laplace’s
method.

Lemma 2.7 Let g have the representation g(u) = y(u)e™%® | where v and 1 have the proper-
ties that Y" exists, " >0 and o = (") 1/? is self-neglecting, i.e.

o(u+ zo(u))

UILIgO o) =1 wuniformly on compact x—sets, (2.9)
and
lim Y+ o) =1 wuniformly on compact T—sets. (2.10)
u—00 ’y(u)
Then
o0
7 Fgtudu ~ A R0 BV O, ks oo, .11
—0o0

where ' denotes the inverse of ' and ¢* is the convex conjugate of 1.

3 The heavy-tailed case

3.1 Poisson arrivals

Proposition 3.1 Assume that {N(t)} is Poisson with parameter X > 0 and T > 0 an inde-

pendent r.v. with d.f. F satisfying

(s )V _
lim @ = lim M =1, locally uniformly in z >0, (3.1)
t—00 F(t) t—00 F(t)
(e.g. F is flat for \/t, see [14]). Then
P(N(T) > k) ~F(k/)\), k— oo. (3.2)

Before proving this Proposition, we first point out the consequences for any F' satisfying Con-

dition (3.1), and give a quick application to the M/G/1 queue.



Lemma 3.2 (a) If F satisfies (3.1), then F satisfies (2.1), that is, F is heavy-tailed.
(b) If F satisfies (3.1) then F, does.

Proof (a) For any y > 0 and z > 0,

F(t F(t F(t
1 = lim_#z lim_¢2 lim_i_ (3.3)
t—o0 F(ter/V1) t=00 F(t + z/t) t—oo F(t +y)
(b) is an immediate consequence of "'Hospital’s rule. O

Weibull-like distributions have tails like exp{—z%},0 < 8 < 1, and (as the reader can
check) if 5 < 1/2, then Condition (3.1) holds. If 5 > 1/2, then Condition (3.1) does not hold.
Consequently any distribution with a tail that is heavier than exp{—z?} for some § < 1/2 will
satisfy Condition (3.1), whereas any distribution with a tail that is lighter than e~V® will not
satisfy Condition (3.1). In fact, we shall see in Section 4 that if the tail of F is like eV or
lighter, then the asymptotic (3.2) does not hold.

Proposition 3.3 For a stable M/G/1 queue, with service time distribution G(z) = P(S < z),
if Ge € S and satisfies Condition (3.1), then the steady-state queue length L satisfies (1.4).

Proof From Theorem 2.3 the tail of W is like that of S, which is assumed to satisfy (3.1); thus
so does W and the result follows from DLL (Section 2.4) and Proposition 3.1 with 7'=W. O

Remark 3.4 By Proposition 2.2, and Lemma 3.2, for any d.f. G € §* which satisfies (3.1),the
result (1.4) holds. O

Proof of Proposition 3.1. Set in (2.11) y(u) = F(e*), 1(u) = Ae®. We check conditons (2.9)
and (2.10): since ) (u) = Xe* for all v > 0, the function o (u) = 1//9"(u) = 1/v/Xe~*/? has
derivative o' (u) = —1/(2v/X) e=%/2 = 0, u — oo, which is sufficient for (2.9), cf. [18], Theorem
2.11.1. Furthermore, by condition (3.1),

bl u+t(z/VX)e /2
ull)ngo M = ull)ngo (e (e ) =1, locally uniformly in z.
v(u e

Now let u = "< (k) = In(k/\) and notice that u — oo if and only if k¥ — oo. Furthermore,

P* (k) = ku — (u) = kIn(k/)) — k



is the convex conjugate of 1.

Then, using Stirling’s formula (k —1)! ~ e~ ¢~ D (k — 1)]“_%\/ 27, yields in (2.7)

PIN(T) > k—1) ~ Aebl(h—1)-t-HF (g) %\/% (g)k ok

RICONCORIC

~ F(g), k— 0.

Noting that (2.1) can be rewritten as F(x +y) ~ F(z) as 2 — oo for y > 0, the result follows
by Lemma 3.2. O

Remark 3.5 If G, satisfies Condition (3.1) (hence is heavy-tailed) but is not subexponen-
tial, then “generalized Little’s law”, P(L > k) ~ P(AW > k), remains valid. But the
(p/(1 = p))P(AS, > k) asymptotic is no longer valid (recall Theorem 2.3, and Remark 2.4). O

Remark 3.6 Richard Perline drew our attention to a classic asymptotic approximation for
a mixed Poisson distribution due to Berg [16], p. 112. Notice that the integral (2.8) can be
interpreted as the mixture of a Poisson distribution with mixing density F(¢)/ [5° F(y)dy,
t > 0. Perline [36] uses Berg’s result to investigate conditions on a function x which satisfies
[ e tt5=1eXWdt ~ T(s)eX(®) as s — oco. The conditions are formulated in terms of extreme

value conditions which are related to (3.1). O

3.2 Generalizing away from the Poisson process

Our objective here is to obtain an analogue to Proposition 3.1 for processes more general than
a Poisson process. Our methods differ, however. As for applications to queues, we present at

the end of this section (as Proposition 3.13) the GI/GI/1 analogue of Proposition 3.3.

Theorem 3.7 Let {X(t)} be a stochastic process such that (X (t) — mt)//t A N(0,0?%) for
some m > 0 and 0> > 0. Let T > 0 be a r.v. independent of {X(t)} with d.f. F and assume
that for some function a(t) it holds that



(a) (T —t)/a(t) conditional on {T >t} has a limit V € (0,00) in distribution as t — oo;
(b) a(t)/Vt — 0o ast — oo;
(¢) for all ¢ > 0 it holds that P(X(t) > mt + ca(t)) = o(P(V > t/m));

(d) the sample paths of {X(t)} are increasing or, more generally, there exist 6,y > 0 such
that yP(X (s) > z) < P(X(t) > z) for all x > 0 and all s,t with 0 < s <t —4.

Then
P(X(T)>z) ~ F(z/m), z— .

If {X(t)} is Poisson and F satisfies Condition (3.1), then the conditions in the above The-

orem are met.

Remark 3.8 Condition (a) of the above theorem can be rewritten as

T _
lim P < ¢ <z
t—o0 a(t)

This is equivalent to T being in the maximum domain of attraction of some extreme value

T>t>:P(V§fE), z>0. (3.4)

distribution, see e.g. [20], Section 3.4. The function a can be chosen to be absolutely continuous
with Lebesgue density a’. Since T has support unbounded to the right, it must be the Fréchet
or Gumbel distribution. The limit variable V' has generalised Pareto distribution.

If T is in the maximum domain of attraction of the Fréchet distribution with parameter
a > 0, then a can be chosen asymptotically linear with a/(z) — 1/a. As a Cesaro limit,
a(xz)/r — 1/a, moreover,

L ale + ya(e)

Jim. a(2) =1+ % , locally uniformly in y.

Furthermore, V has Pareto distribution.
If T is in the maximum domain of attraction of the Gumbel distribution, then a’(z) — 0 as

x — 00. As a Cesaro limit a(z)/z — 0, moreover,

MNCRITIE))

Jim. a(z) = 1, locally uniformly in y.

Furthermore, V has exponential distribution. O

10



Proof We first note that (a) and (3.4) easily yield

P(T > z)

P(T >z —ea(z)) ~ PVso

Assume w.l.o.g. that m = 1. Write P(X(T) > z) = fi(z) + f2(z) + f3(z) where
filz) = P(X(T) >z, T <z —ea(z)),
folw) = P(X(T) >z, o—ea(z) <T <+ eaz)),
fa(z) = P(X(T) >z, T >z +ca(z))
We start with f3: For any e > 0 we have
fa(z) < P(T >z +ea(z)) ~ P(T>z)P(V >¢).

Now we use the CLT and local uniformity of the convergence, then for any b € R, n > 0 and =

sufficiently large,

folz) = / ia(x) P(X(t) > 2)P(T € dt)

: Xy -y _z—y
> inf P > Plx+ea(x) <T < z(1+
yE(z+by/z,z(1+n)) ( VY VY ( () ( )
: X)) -y —b/z )
> inf P > Plr+ea(lr) <T < z(l+
ye(z+byz,z(1+n)) ( VY z(1+n) ( (=) (L+m)

~ ®b/(cy/1+n))Px+ea(r) <T <z(l+n))

> (1-0)P(x+ea(z) <T <z(l+n))

for arbitrary small 0 taking b sufficiently large. Using a(t) = O(t), letting n — oo and combining
with the lower bound above now yields f3(z) ~ P(T > z)P(V > ¢).
Next consider fo. It follows from (d) that

fi(z) < Pz —ea(z) -0 <T <z—eal(z))+~v 'P(X(x — ea(z)) > z)
< o(P(T > x —ea(z)) + vy 'P(X(x — ea(x)) > = — ea(z) + ea(x — ea(z)))

= o(P(T >z —ea(z)) = o(P(T > x),

11



where we used also (c) and (a).

Finally
fo(z) < Pz —ea(z) <T <z + ea(z))
= P(T >z —ea(z)) — P(T > x + ea(x))
1+o0(1)
= |———=—-P 1 1)) ) P(T .
(prrasg — PV > A1 +o(1)) P(T >
Combining the above estimates for fi, fo and f3 and letting e | 0 yields the result. O

Theorem 3.9 The conditions of Theorem 3.7 are satisfied if {X(t)} is a Lévy process with
EesX() defined in a neighbourhood of 0, and T is a random variable with a distribution in the
mazximum domain of attraction of some extreme value distribution with auxiliary function a(-)

which is eventually monotone increasing and a(t)/\/t — .

Proof Condition (a) holds by Remark 3.8 and (d) follows easily from the increments being
independent and P(X(t) — X(s) > 0) — 1, |t — s| — oo (by the CLT). Thus, it only remains
to verify (c). In the regularly varying case, (c) follows from the exponential decay of P(X (t) >
(m + €)t) (the Chernoff bound, cf. [7], p. 260), and for the maximum domain of attraction of

the Gumbel distribution, we proceed by similar methods as in loc.cit.. Define

1
k(a) = i log Ee®X®)
(note that x(«) is independent of ¢ by the stationary increments of Lévy processes) and let
6 = 6(t) > 0 be the root of x'(6) = m + ca(t)/t. Then a(t)/t — 0 implies that # — 0 as t — oo.

More precisely,

a(t)

mte—— = k'(0) ~ m+0k"(0)
so that
a(t) > a(t)?
0 ctn”(O)’ Kk(0) ~mb + ¢ 220

Let now Ey refer to the exponential change of measure defined by 6, cf. [7] Ch. XII. Then

P(X(t) >mt+calt) = FE [e’eX(t)”’“w);X(t) >mt+ca(t)]

< exp{—0(mt + ca(t)) + tx(0)}

= exp {—t (m@ + c@ - 5(9)> } ;

12



which can be bounded by exp {—cja(t)}. It remains to show that
exp{—cia(t)} = o( P(T > t/m)). (3.5)

By the representation theorem for a d.f. in the maximum domain of attraction of the Gumbel

distribution (see e.g. [20], Section 3.3),

exp {—cra(t)} t/m 1
DT> tjm) ~ cexp{—cla(t)—l—/z mdu}.

Now
1 t/m 1 " t—z Vit/m ?
a(t)/z o™ 20 ( a(h) ) -0
This implies (3.5). O

Remark 3.10 The conditions of the above Theorem are in particular satisfied for d.f.’s which
are regularly varying, lognormal, or Weibull (P(T > z) = exp{—2%} with 3 < 1/2). This is

immediate by the respective auxiliary functions a(z) = az, a(z) = z/logz and a(z) = z'P.
a

Theorem 3.11 The conditions of Theorem 3.7 are satisfied if {X (t)} is an additive process

on a finite Markov process {J;},

and T satisfies the same conditions as in Theorem 3.9.

Proof The argument closely parallels the proof of Theorem 3.9. The analogue of the Chernoff
bound can be found, e.g., in [19], as well as the relevant facts on exponential change of measure

which are as follows. Let M;(s) be the matrix with ijth element E;[e*X("); () = j]. Then the

Perron—Frobenius root can be written as et<(5)

, and the corresponding positive right eigenvector
h = (h;) does not depend on . The relevant likelihood identity yields

1

Pi(X(t) > mt+ ca(t)) = 07"

[e‘gx(t)"'t“(a)hJ(t); X(t) > mt + ca(t)] .

Noting that the components of i are bounded below and above, the rest of the proof is just as

for Theorem 3.9. O
For the special case of regularly varying T, see [26] Ch. 8 and [39].
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Theorem 3.12 Assume that {X(t)} is a renewal process with arbitrary delay distribution and

1

interarrival d.f. G having mean m™. Then the conditions of Theorem 3.7 are satisfied provided

T is as in Theorem 3.9.

Proof The CLT for X (¢) is standard, so again we only have to verify (c). It suffices to consider
the zero-delayed case since P(X (t) > n) is maximized in this case.

Let S,, be a random walk with increment d.f. G and x(6) = log [;° e?*G(dx). A standard
identity from renewal theory states that {X(¢) > n} = {S, <t} (see e.g. [37], [38] for an

application in a similar context), hence we get
P(X(t) > mt +ca(t) = By [e 0Snea 60 5, <]

Taking 6 = 0(t) < 0 as the root of x'(8) = (m + ca(t)/t)~", the remaining details are just as for

Theorem 3.9. O

As an analogue to, and generalization of, Proposition 3.3, we present the following

Proposition 3.13 For a stable GI/GI/1 queue, with interarrival times having finite mean 1/
and service time d.f. G(z) = P(S < z), if Ge € S and G. is in the mazimum domain of
attraction of some extreme value distribution with auziliary function a(-) which is eventually

monotone increasing and a(t)/\/t — oo, then the steady-state queue length L satisfies (1.4).

Proof Immediate from Theorem 2.3 and Theorem 3.12. O

4 The moderately heavy—tailed case

We now consider d.f.’s F' that are still heavy-tailed, but with a tail at least as light as something
proportional to the Weibull with 5 = 1/2. Note that the Weibull itself with 5 = 1/2 is included
here which shows that this critical distribution falls into this moderately heavy—tailed case, and

yields asymptotics for N(T') that are different from (3.2).

Theorem 4.1 Assume that {N(t)} is a homogeneous Poisson process with parameter X\ > 0

and T > 0 is a r.v. (independent of {X(t)}) with d.f. F such that F(t) = 3(t)exp{—t°} for

14



1/2 < B <1 and 7 is a continuous function. Assume that y =5 o exp satisfies

—u/2
lm v(u + ze )

Jim ) =1 locally uniformly in x . (4.1)

Then
P(N(T) > k) ~7 <§> exp {—ﬁ (é)ﬂ G- 5)#} koo,

where t = t(k) is the solution to the equation
Bt° + Xt = k. (4.2)

Remark 4.2 Condition (4.1) is a technical one. The important factor for the tail of F is
exp{—t}, the factor 7 allows for flexibility of the model. O

For 8 = 1/2 equation (4.2) is a quadratic equation for v/# and can be solved explicitly.

Corollary 4.3 (CRITICALITY OF WEIBULL FOR (3 = 1/2)

In the situation of Theorem 4.1 we obtain for 3 =1/2 and ¥ =1,

P(N(T) > k) ~ exp{%}@m{%\/@(“@)}
~ exp{é}exp{— %}’ k —oo.

Remark 4.4 If g € [1/2,2/3), it follows by Taylor expansions in (4.2) that

exp{—ﬂ (;)g _a —ﬁ)tﬁ} N exp{_ <§>5+% <§>261} |

If B € [2/3,3/4), we get an added term of order (k/))?’~2 and so on. O

Corollary 4.5 For a stable M/GI/1 queue with Weibull service time d.f. G(z) = P(S < z)
=1—e with 1/2 < B < 1, the steady-state queue length L satisfies

P(L>k) ~ %(;)1_ﬂexp{—ﬁ(;)B—(l—ﬁ)tﬁ}, k — oo,

where t = t(k) is the solution to the equation (4.2).

Proof Note that P(W > ) ~ G.(z) ~ B lzlBe" and take A(z) = g Lot P, O
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Proof of Theorem 4.1
We start from (2.7), where g(u) = v(u)e~%™®) with
P(u) = P 4 e (4.3)
and y(u) = y(e*). The second derivative is positive, hence v is convex and
o(u) = (9"(u)"1? = (B2 + Aet)~V/2 ~ W2V, (4.4)

and, since ¢’(u) — 0, the function o is self-neglecting, i.e. it satisfies (2.9). Furthermore, (4.1)
implies (2.10). Hence (2.11) holds and we calculate the rhs. We start with ¢ (k). If we set

t = e", then we need a solution to (4.2). Since § < 1 we get
t= ;(1 +r(k)) and r(k)—0.
Inserting this into (4.2) and collecting terms of smaller order yields
kr(k) + B(k/N)P (14 Br(k)(1 4+ 0(1)) = 0.
This implies
A8

—1
r(k) = — <ﬁ + gklfﬂ(l + 0(1))> , k—o00.

-1
el =t = ; (1 - <ﬁ+ %;kl_ﬂ(l +o(1))> ) .

Now we can calculate the terms of (2.11). By continuity,

YW 09) = (nt) =30 ~7 () + o (1) = ollat) ~

We obtain

1 1
TV

and
where e" =t = ¢' (k), hence by (4.2),
V" (k) — gho—t7 Xt _ ko —k-(1-p)7
1-5 1,6
k" B/N : N N
’ - 2\ B ~ - — —
C T <A> (1 preg L+ el <>\> o B<>\> '

Combining these results and using Stirling’s formula yields the assertion of the theorem. In the

last step we have used (2.1) giving P(N(T) > k) ~ P(N(T) > k —1). O
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5 The light—tailed case
The (known) classical light-tailed asymptotics of queue length probabilities is covered by

Proposition 5.1 Assume that {N(t)} is a Poisson process with parameter A > 0 and T > 0
is independent of {N(t)} with

P(T>t) ~ c* e, t>0, ¢,06>0.

Then

c k
PIN(T) > 1) ~ i <>\j—5> Kk oo,

Proof
P(N(T)> k) ~ ¢ / T PIN() = k) e 0 dy
0

_ %’C/wtkm%(xw)tdt
' Jo

, whichgivestheasymptoticasabove.

c A N\ T(k+ )
(A40)e <A+6> L'(k+1)

Here is a result on the tail of N(T') covering some more light—tailed 7"s:

Theorem 5.2 Assume that the conditions of Theorem 4.1 are satisfied for § > 1 and v = Yoexp

satisfies

—Bu/2
lim y(u + ze )

=1 locally uniformly in x . 5.1
U—00 ’Y(U) ( )

Then
A (E\YP\ AT (K A (E\YP 1
rova k-~ 5((5)7) TR e 5 (5) (1 5) ko
where t = t(k) is the solution to equation (4.2).

Proof The proof is exactly the same as the proof of Theorem 4.1 up to equation (4.4). For

B > 1 we obtain
o(u) ~e M2/, (5.2)
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and since o'(u) — 0, the function o is self-neglecting. Furthermore, v = ¥ o exp satisfies

condition (2.10) and hence (2.11) holds. For § > 1 the solution to (2.11) satisfies

E\ /8
L= <5> (1+7(k) and r(k) = 0.
Inserting this into (4.2) and collecting terms of smaller order yields
kN 1/8
Bhr(k) (14 o(1)) = —A <E> .

This implies
r(k) = =X/ (K'"VPBP) (1 4 o(1)) .

We obtain
k A

=t = (B>l/ﬁ (1 - g +0(1))> .

Now we can calculate the terms of (2.11). By continuity,
V(W' (k) = y(nt) =5(t) ~ 5 ((k/8)"/?) ,

o (9 (k) ~ = (5)1/2 =

and
oV (k) — gk =P 4Nk —k+(B-1)¢°

)

with ¢ as above. For the first term we obtain:

k/p 1+1/8
- )

- w07}

Combining these results yields

(IO R EC R

By Stirling’s formula, we may set

JOREO e

This gives the asymptotic form as in the assertion. O

kl-1/Bp1/8
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Remark 5.3 Somewhat related results in this Poisson/gamma-like regime have been derived
by Adell and de la Cal [5]. Starting from the fact that by the SLLN Ngr/s — T a.s. as s — 00,

they investigate the distance (in sup-norm) of the distribution functions of Nyr/s and T. O

Remark 5.4 There are of course many ligh—tailed distributions not covered by Proposition 5.1
and Theorem 5.2, for example the Raleigh case P(T > z) = e /2, However, by now it should
be clear how to use the analytic method of Lemma 2.7. After the usual lengthy calculations we

obtain

_HNauZk—DAWVM<%JU{7$gﬁﬁq{—%¢ﬂw k= oo

6 Further queueing applications

6.1 Vacation model

Consider a stable FIFO M/G/1 queue but with vacations: Every time the system becomes idle,
the server goes away for an amount of time V' (having finite first moment). Customers who
arrive while the server is away wait in the queue. If the server returns to an empty queue,
he goes away yet again and so on. Vacation times {V},} are assumed i.i.d. and independent of
all else. Letting D, denote steady-state delay in this model and D steady-state delay in the

regular (non-vacation) model, the following decomposition was established in [22]:
D,=D+V,, (6.1)

where V, is independent of D and has the equilibrium distribution of V. Adding an independent

copy of S yields sojourn time representation
W, =W +V,, (6.2)

where W is regular M/G/1 sojourn time and is independent of V.
Conditions (1) and (2) of DLL remain valid for this model yielding (in distribution)

Ly, = N(W + V,).
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A variety of results follows from the general theory of the paper; we present three next as

examples, leaving out the moderately heavy—tailed case.

Proposition 6.1 For the M/G/1 vacation model, if the equilibrium service time Se € S and if
P(Ve > x) = o(P(Se > x)) as © — oo, then steady-state queue length L, satisfies P(L, > x) ~
P(L > x) (vacations are negligible asymptotically). If in addition S, satisfies either Condition
(3.1) or the conditions on T in Theorem 3.9, then

P(Ly > k) ~ POW, > k) ~ ﬁp(xse > k), k— oo. (6.3)

Proof Since W is subexponential with tail asymptotically proportional to that of S. (Theo-
rem 2.3 and (2.6)), general subexponential theory yields P(W 4+ V, > z) ~ P(W > z). It then
follows easily from Proposition 3.1 and Theorem 3.9 that P(N (W +V,) > z) ~ P(N(W) > z),
yielding P(L, > z) ~ P(L > z). Equation (6.3) is then clear from (1.4). O

Proposition 6.2 For the M/G/1 wvacation model, if the equilibrium vacation time Ve, € S
and if P(Se > z) = o(P(Ve > x)) as © — oo, then steady-state queue length L, satisfies
P(L, > z) ~ P(N(V,) > z) (vacations dominate asymptotically). If in addition V, satisfies
either Condition (3.1) or the conditions on T in Theorem 3.9, then

P(Ly,>k) ~ PA\V,>k), k— . (6.4)

Proof It suffices to show that P(W +V, > z) ~ P(V, > z), * — o0; the rest of the proof
is then as for Proposition 6.1. For € > 0, choose zy such that P(V. > z) < eP(S. > z) for
x > xo and let the r.v. U have distribution given by P(U > z) = 1 for x < zy, P(U > z) =
eP(Se > z) for £ > zy. Then U is subexponential and stochastically larger than S.. Hence by
the Pollaczek-Khintchine formula, W is stochastically smaller than Z{v U; where Uy,Us,, ... are
i.i.d. and distributed as U and N is an independent r.v. with P(N = k) = (1 — p)p*. Therefore
PW > z) < (p/(1 — p)P(U > x) which yields limsup P(W > z)/P(V. > 0) < e. Letting
€l 0 we get P(W > z)/P(V. > 0) — 0, which together with the subexponentiality of V. yields
PW +V,>z)~ P(V, > zx). O
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Remark 6.3 (a) If E(e?V') < oo for some s > 0 then the second condition of Proposition 6.1
holds.

(b) If E(e*®) < oo for some s > 0 then the second condition of Proposition 6.2 holds. O

Proposition 6.4 For the M/G/1 vacation model, if the equilibrium service time S, € S satis-
fies either Condition (3.1) or the conditions on T in Theorem 3.9 and if P(V, > ) ~ cP (S, >

x) for some ¢ > 0, then steady-state queue length L, satisfies

P@@>mﬁJmmm>k)~<mgﬁi>PQ&>k% k — oo. (6.5)

Proof By an easy variant of the proof of Proposition 6.1. O

6.2 M/G/1 busy periods: heavy-tailed case

Consider the busy period B of a stable M/G/1 queue with service time S. There are two

representations for B that typically are used in its analysis

N(S)

Bis+2&, (6.6)
i=1
where Bj, Bo, ... are i.i.d. with the same distribution as B, and
K
B = S, (6.7)
i=1

where K denotes the number of customers served during the busy period. K can be identified
as the first strictly descending ladder epoch in the negative-drift random walk (starting at 0)
with increments distributed as S — T' (service time minus interarrival time).

It is known (for k£ > 1) that E(B*) < oo if and only if E(S*) < oo, and E(ef?) < oo in an
¢ neighborhood of 0 if and only if E(e“”) < oo in an € neighborhood of 0 (cf. [41] and Theorem
4.1 in [4]). In particular, B is light-tailed if and only if S is, and the asymptotics in this case
are dealt with using transform methods in Sections 7 and 8 in [4]. The asymptotics in the

heavy-tailed case are not fully understood, but we present some partial results in what follows.

21



It was conjectured in [11] that, if the service time S is subexponential, then
1
P(B>z)~ 1—P(S> (1—-p)z), z—o00. (6.8)
—p

This conjecture seems plausible because of the result of [33], where (6.8) was proved for regularly
varying S, and of the following heuristics for the general subexponential case. Considering the

representation in (6.6), one expects B to be large if either S is large, in which case one expects

S
B~ S(1+MB)=—
(L4 ABB) = 12—,
or if one of the B; is large, which occurs with probability EN (S) P(B > z) = pP(B > x). This
leads to

5
P(B>x)~P<1Tp>x>+pP(B>x),

yielding (6.8). However, if S has a lighter tail than exp{—y/z} (but is still heavy-tailed), it
follows from our previous results that the tail of B is heavier than the rhs of (6.8). Indeed, let
X(t)=t+ Zi]\;(f) B;, (compound Poisson process plus linear drift at rate 1) so that B Lx (S).
Then EX(t) = t/(1 — p), varX (t) = tw? for some w?, and we get
lminf— 2 B> o e PE>A=D@ V) e by s )
z=o0 P(§ > (1 = p)x) w200 P(S>(1=p)z)  y>01-p)a—va)

. P(S>(1—p)(z— 7))
z e mint —— e )

Note, however, that we do not get the tail of B equally precise as in previous sections: In the
specified compound Poisson process we need to know apriori what the tail of the B; is!

The analysis does not exclude that (6.8) could be true if S is subexponential with a heavier
tail than exp{—y/z}, say lognormal or Weibull with 3 < 1/2 (the regularly varying case is
covered by [33]).
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