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1 IntroductionLet fX(t)gt�0 be a stochastic process satisfying a LLN X(t)=t! m > 0, and T an independentrandom time. The question we address in this paper is to derive the tail asymptotics of ther.v. X(T ), with particular emphasis on the case where T has a heavy{tailed (subexponential)distribution.A main special case where fX(t)g is a Poisson process at rate � and T has a regularlyvarying tail, P (T > x) = L(x)=x� with � > 0 and L(x) slowly varying, has been considered in[26] Ch. 8. The results there basically show that in this setting, the variability of T dominatesthat of fX(t)g so that one can replace X(t) by its expected value �t to getP (X(T ) > x) � P (�T > x) : (1.1)Here and in the rest of the paper, � means that the ratio is one in the limit x ! 1. Forthe regularly varying case, (1.1) is also shown to hold in [39] when fX(t)g is special Markovadditive process (this is a key step in the study of a certain 
uid queue). In [40], the questionof subexponentiality of X(T ) is addressed in some special settings, but no tail estimates aregiven.The results that we give are in part generalizations of (1.1), allowing a more general structureof fX(t)g and/or more general distributions of T . However, we also �nd that even for thePoisson case, (1.1) does not extend to the whole class of subexponential distributions: whenT has a lighter tail than the Weibull tail e�x� with � = 1=2, the deviation of X(t) from �tdescribed by the CLT makes a small but non{negligible contribution to the tail of X(T ). Tosee this, assume that P (T > x) = expf�x�g; � > 1=2, and let fN(t)g be a Poisson process atrate � = 1. By the CLT, (N(t)� t)=pt! N(0; 1) in distribution so thatlim infx!1 infy�x�pxP (N(y) > x) � 1� �(�1) = �(1) > 0 ;(�(x) is the standard normal d.f.). This yieldslim infx!1 P (N(T ) > x)P (T > x) � �(1) lim infx!1 P (T > x�px)P (T > x)= �(1) limx!1 expfx� � (x�px)�g = �(1) limx!1 expf�x��1=2g = 1 :This behaviour can be seen as intermediate between (1.1) and the classical light{tailed casewhere X(T ) becomes large only when both fX(t)g attains atypically large values and T is large1



at the same time; see for example [29] for a discrete time version where fX(t)g is a randomwalk and T has a Poisson distribution, and Section 5 of the present paper. For this reason, werefer to a distribution with a tail like e�x� with 1=2 � � < 1 as moderately heavy{tailed.Our study was motivated by a queueing problem: determining tail asymptotics of steady-state queue length L (total number in system) in a stable FIFO M/G/1 queue with Poissonarrivals fN(t)g at rate � and generic service time S. Most general asymptotic results known forL involve establishing geometric tails in the light{tailed case (S has �nite moment generatingfunction in a neighborhood of the origin):P (L > k) � ���k ; k !1 : (1.2)See for example [23], [32], [6], [12], [34] and [1]. The connection to the general problem outlinedabove is provided by distributional Little's law (DLL), cf. [27], which asserts that L has thesame distribution as N(W ) where W (the steady-state sojourn time) is chosen independent offN(t)g. Here the tail behaviour of W has been known for a long time: W has an asymptoticexponential tail in the light{tailed case (see e.g. [2], [3], [24]), whereas in the heavy{tailed case(service times S have mean 1=� and are subexponential, � = �=�),P (W > x) � �1� �P (Se > x); x!1; (1.3)where Se has the equilibrium density �P (S > x), cf. [13], [35], [21], [8], [9], [28], [10]. Inparticular, when (1.1) applies with T =W , we getP (L > k) � P (�W > k) � �1� �P (�Se > k); k !1: (1.4)That is, asymptotically the tail of L is exactly like the tail of �W , a kind of \generalized Little'slaw". We obtain results also for more general cases, like S Weibull with 1=2 � � < 1 and moregeneral queueing models, in particular GI/G/1, tandem, and vacation queues for which DLLholds.The paper is organized as follows. Section 2 contains some preliminaries. In Section 3, westudy X(T ) when T has a distribution somewhat more general than subexponential, with tailsheavier than a Weibull F (x) � expf�pxg. We start with the case where fX(t)g is a Poissonprocess and give a �rst application to M/G/1 queues. Subsection 3.2 generalizes (1.1) away2



from the Poisson case. The main result is Theorem 3.7. Again distributions of T with a heaviertail than e�px satisfy the required conditions. Here the link to extreme value theory becomesobvious. We present several examples for processes fX(t)g, which satisfy the conditions ofTheorem 3.7. In Section 4, we give the precise asymptotics for certain moderately heavy{tailedr.v.s T , when fX(t)g is Poisson. For the sake of completeness, in Section 5 we include someresults on the light{tailed case which are in part expected but not in the literature. Finally,Section 6 gives some further queueing applications, in particular to vacation models and M/G/1busy periods.2 Preliminaries2.1 Subexponential distributionsGiven a non-negative random variable (r.v.) X, its distribution function (df) is denoted byF (x) = P (X � x) and its tail by F (x) = 1 � F (x) = P (X > x). We are interested in d.f.'sthat are heavy-tailed: F (x) > 0; x � 0, andlimx!1P (X > x+ y j X > x) = limx!1 F (x+ y)F (x) = 1 ; y � 0: (2.1)For our purposes we focus on a special class S of such distributions called subexponentialdistributions F . The reader is referred to [25] or [20] for details and further references. If F �ndenotes the n-fold convolution of F , F �2(x) = R x0 F (x� y)dF (y) and so on, with correspondingtail F �n(x) = 1 � F �n(x), then the d.f. F (or the r.v. X) is called subexponential if F (x) >0; x � 0, and for all n � 2, limx!1 F �n(x)F (x) = n: (2.2)(It can be shown that if the condition holds for n = 2 then it holds for all n � 2.)In terms of r.v.'s, (2.2) can then be re-stated asP (X1 + � � � +Xn > x) � P (maxfX1; : : : ;Xng > x); x!1;for all n � 2 where X1; : : : ;Xn are i.i.d. distributed as F . In words this means that the sumis likely to get large because one of the r.v.'s gets large. If X is subexponential then in factlimx!1 e�xP (X > x) =1 = E(e�X) for all � > 0, which explains why the term subexponentialis used in the de�nition. 3



For technical reasons we sometimes restrict this class even further to the class S� � S,introduced in [31] and de�ned byDe�nition 2.1 (The class S�) Let F be a distribution on [0;1) such that F (x) > 0; x � 0.We say that F 2 S� if F has �nite �rst moment 1=� andlimx!1 Z x0 F (x� y)F (x) F (y)dy = 2�: (2.3)S� includes (when the mean is �nite) the following distributions: Pareto, Burr, log-gamma,lognormal, heavy-tailed Weibull, and many others.Of special importance to us is the Weibull distribution with parameter �:F (x) = e�x� ; x � 0 ; 0 < � < 1:2.2 Equilibrium distributionsFor any non-negative random variable X with distribution F and �nite mean 1=�, the equilib-rium distribution Fe is de�ned byFe(x) = � Z x0 F (y)dy ; x > 0 : (2.4)We let Xe denote a r.v. distributed as Fe.One of the important features of S� for applications is the following:Proposition 2.2 If F 2 S�, then both F and Fe are subexponential.Note that for any df F satisfying (2.1) (i.e. in particular for any F 2 S�) the tail of Fe dominatesthat of F : F e(x)=F (x) !1.2.3 Basics of the FIFO GI/GI/1 queueCustomer interarrival times fTng are i.i.d. with �nite mean 1=�, and service times fSng arei.i.d. distributed as G(x) = P (S � x) with �nite mean 1=�. The two sequences are assumedindependent. fN(t)g denotes the counting process of arrivals. We assume throughout � =�=� < 1 (stability). Customers join the queue in the order they arrive (First In queue First4



Out of queue, FIFO). The delay of the nth customer (in queue) is denoted by Dn and satis�esthe recursion Dn+1 = (Dn + Sn � Tn)+; n � 0:D denotes steady-state delay: P (D � x) = limn!1 P (Dn � x). The following is a preciserendering of result (1.3) (see Embrechts and Veraverbeke [21] (ruin probability setting) andPakes [35] (queueing setting)):Theorem 2.3 D is subexponential if Se is subexponential, and in this caseP (D > x) � �1� �P (Se > x) ; x!1: (2.5)Note in particular (recall Proposition 2.2) that if G 2 S�, then (2.5) holds.Steady-state sojourn timeW = D+S (independent sum) denotes total time spent in systemand it is easily seen (from Theorem 2.3 and basic principles) that if Se is subexponential thenP (W > x) � P (D > x) ; x!1 ; (2.6)because the tail of Se (and hence that of D) dominates that of S (see e.g. [20], Lemma A3.28).That's how one gets (1.3).Remark 2.4 The M/G/1 queue is the special case when the interarrival time distributionis exponential; i.e. the arrival process is a homogenous Poisson process. In this case theimplications of Theorem 2.3 become equivalences; i.e. D is subexponential if and only if Se issubexponential if and only if (2.5) holds. The \if and only if" aspect shows how fundamentalthe subexponential property is in the context of applications to queues. For it implies that ifSe is heavy-tailed but not subexponential, then the asymptotic (2.5) will not hold. 22.4 Distributional Little's LawConsider a queueing model with renewal arrivals (i.i.d. interarrival times fTng). Let Wn denotenth customer's sojourn time (total time spent in the system from arrival to departure). LetL denote steady-state number in system, and W denote steady-state sojourn time. Finally,independent of W , let fN(t)g denote a time stationary version of the renewal counting process(the initial arrival time is distributed as Te (equilibrium distribution)).The following result is from [27], and known as distributional Little's law (DLL):5



Proposition 2.5 If (1) and (2) below hold then L = N(W ) in distribution.(1) Customers depart the system in the same order that they arrived (�rst-in-�rst-out).(2) Wn is independent of the future interarrival times fTn; Tn+1; : : :g; n � 0:Some models for which DLL holds are FIFO GI/GI/1 queue, FIFO GI/GI/1 queue withserver vacations, FIFO tandem queues of the form GI/GI/1 �! /GI/1 �! � � � /GI/1. DLLdoes not hold for FIFO multi-server queues (such as GI/GI/c) because Condition (1) abovethen fails (unless service times are deterministic); but it does hold for the number of customerswaiting in the queue (not in service) for such models (for then Condition (1) does hold); note,however, that the tail asymptotics of D orW is not at present available for GI/GI/c queues withsubexponential S. Nor does DLL hold for queues with non-renewal arrivals because otherwiseCondition (2) will fail (except for extremely trivial cases). It is not crucial that service timesbe i.i.d. , so, for example, DLL holds for GI/G/1 queues (and tandem and vacation) in whichthe service time sequence is stationary and independent of the renewal arrival process. (Morerecent references on DLL (since the classic paper of Haji and Newell [27]) are [30] and [17] forexample.)In what follows, DLL is our route to studying P (L > k) due to well known asymptotics forW (such as (2.5) and (2.6)); this di�ers from much classical work where the approach is viatransforms, cf. [23], [32], [34], [1].2.5 Some basic lemmasLemma 2.6 If fN(t)g is Poisson with rate � and T an independent random time with d.f. F ,then P (N(T ) � k � 1) = �k(k � 1)! Z 1�1 ekug(u)du ; k 2 IN ; (2.7)where g(u) = F (eu)e��eu .Proof By partial integration, for k 2 IN,P (N(T ) � k � 1) = Z 10 P (N(t) � k � 1)dF (t) = � Z 10 e��t (�t)k�1(k � 1)!F (t)dtset u = ln t 6



= �k(k � 1)! Z 1�1 e��eue(k�1)uF (eu)eudu = �k(k � 1)! Z 1�1 ekuF (eu)e��eudu= �k(k � 1)! Z 1�1 ekug(u)du : (2.8)Hence (2.7) is up to a multiplicative factor the moment generating function bg of a distributionwith density g. The following result is Theorem 6.6 of [14] and was proved there using Laplace'smethod.Lemma 2.7 Let g have the representation g(u) = 
(u)e� (u), where 
 and  have the proper-ties that  00 exists,  00 > 0 and � = ( 00)�1=2 is self-neglecting, i.e.limu!1 �(u+ x�(u))�(u) = 1 uniformly on compact x{sets ; (2.9)and limu!1 
(u+ x�(u))
(u) = 1 uniformly on compact x{sets : (2.10)Then Z 1�1 ekug(u)du � 
( 0 (k))�( 0 (k))p2�e �(k) ; k !1 ; (2.11)where  0 denotes the inverse of  0 and  � is the convex conjugate of  .3 The heavy-tailed case3.1 Poisson arrivalsProposition 3.1 Assume that fN(t)g is Poisson with parameter � > 0 and T > 0 an inde-pendent r.v. with d.f. F satisfyinglimt!1 F (tex=pt)F (t) = limt!1 F (t+ xpt)F (t) = 1 ; locally uniformly in x � 0 ; (3.1)(e.g. F is 
at for pt, see [14]). ThenP (N(T ) > k) � F (k=�) ; k !1 : (3.2)Before proving this Proposition, we �rst point out the consequences for any F satisfying Con-dition (3.1), and give a quick application to the M/G/1 queue.7



Lemma 3.2 (a) If F satis�es (3.1), then F satis�es (2.1), that is, F is heavy-tailed.(b) If F satis�es (3.1) then Fe does.Proof (a) For any y > 0 and x � 0,1 = limt!1 F (t)F (tex=pt) � limt!1 F (t)F (t+ xpt) � limt!1 F (t)F (t+ y) � 1 : (3.3)(b) is an immediate consequence of l'Hospital's rule. 2Weibull-like distributions have tails like expf�x�g ; 0 < � < 1, and (as the reader cancheck) if � < 1=2, then Condition (3.1) holds. If � � 1=2, then Condition (3.1) does not hold.Consequently any distribution with a tail that is heavier than expf�x�g for some � < 1=2 willsatisfy Condition (3.1), whereas any distribution with a tail that is lighter than e�px will notsatisfy Condition (3.1). In fact, we shall see in Section 4 that if the tail of F is like e�px orlighter, then the asymptotic (3.2) does not hold.Proposition 3.3 For a stable M/G/1 queue, with service time distribution G(x) = P (S � x),if Ge 2 S and satis�es Condition (3.1), then the steady-state queue length L satis�es (1.4).Proof From Theorem 2.3 the tail of W is like that of Se which is assumed to satisfy (3.1); thusso does W and the result follows from DLL (Section 2.4) and Proposition 3.1 with T =W . 2Remark 3.4 By Proposition 2.2, and Lemma 3.2, for any d.f. G 2 S� which satis�es (3.1),theresult (1.4) holds. 2Proof of Proposition 3.1. Set in (2.11) 
(u) = F (eu);  (u) = �eu. We check conditons (2.9)and (2.10): since  (�)(u) = �eu for all � � 0, the function �(u) = 1=p 00(u) = 1=p�e�u=2 hasderivative �0(u) = �1=(2p�) e�u=2 ! 0, u!1, which is su�cient for (2.9), cf. [18], Theorem2.11.1. Furthermore, by condition (3.1),limu!1 
(u+ x�(u))
(u) = limu!1 F (eu+(x=p�)e�u=2)F (eu) = 1 ; locally uniformly in x :Now let u =  0 (k) = ln(k=�) and notice that u!1 if and only if k !1. Furthermore, �(k) = ku�  (u) = k ln(k=�) � k8



is the convex conjugate of  .Then, using Stirling's formula (k � 1)! � e�(k�1)(k � 1)k� 12p2�, yields in (2.7)P (N(T ) � k � 1) � �kek�1(k � 1)�(k� 12 ) F �k�� 1p�s�k �k��k e�k= e�1 �k � 1k ��k �k � 1k �1=2 F �k��� F �k�� ; k !1 :Noting that (2.1) can be rewritten as F (x+ y) � F (x) as x!1 for y � 0, the result followsby Lemma 3.2. 2Remark 3.5 If Ge satis�es Condition (3.1) (hence is heavy-tailed) but is not subexponen-tial, then \generalized Little's law", P (L > k) � P (�W > k), remains valid. But the(�=(1 � �))P (�Se > k) asymptotic is no longer valid (recall Theorem 2.3, and Remark 2.4). 2Remark 3.6 Richard Perline drew our attention to a classic asymptotic approximation fora mixed Poisson distribution due to Berg [16], p. 112. Notice that the integral (2.8) can beinterpreted as the mixture of a Poisson distribution with mixing density F (t)= R10 F (y)dy,t � 0. Perline [36] uses Berg's result to investigate conditions on a function � which satis�esR10 e�tts�1e�(t)dt � �(s)e�(s) as s ! 1. The conditions are formulated in terms of extremevalue conditions which are related to (3.1). 23.2 Generalizing away from the Poisson processOur objective here is to obtain an analogue to Proposition 3.1 for processes more general thana Poisson process. Our methods di�er, however. As for applications to queues, we present atthe end of this section (as Proposition 3.13) the GI/GI/1 analogue of Proposition 3.3.Theorem 3.7 Let fX(t)g be a stochastic process such that (X(t) � mt)=pt D! N(0; �2) forsome m > 0 and �2 > 0. Let T > 0 be a r.v. independent of fX(t)g with d.f. F and assumethat for some function a(t) it holds that 9



(a) (T � t)=a(t) conditional on fT > tg has a limit V 2 (0;1) in distribution as t!1;(b) a(t)=pt!1 as t!1;(c) for all c > 0 it holds that P (X(t) > mt+ ca(t)) = o(P (V > t=m));(d) the sample paths of fX(t)g are increasing or, more generally, there exist �; 
 > 0 suchthat 
P (X(s) > x) � P (X(t) > x) for all x > 0 and all s; t with 0 � s � t� �.Then P (X(T ) > x) � F (x=m) ; x!1 :If fX(t)g is Poisson and F satis�es Condition (3.1), then the conditions in the above The-orem are met.Remark 3.8 Condition (a) of the above theorem can be rewritten aslimt!1 P �T � ta(t) � x����T > t� = P (V � x) ; x � 0 : (3.4)This is equivalent to T being in the maximum domain of attraction of some extreme valuedistribution, see e.g. [20], Section 3.4. The function a can be chosen to be absolutely continuouswith Lebesgue density a0. Since T has support unbounded to the right, it must be the Fr�echetor Gumbel distribution. The limit variable V has generalised Pareto distribution.If T is in the maximum domain of attraction of the Fr�echet distribution with parameter� > 0, then a can be chosen asymptotically linear with a0(x) ! 1=�. As a Ces�aro limit,a(x)=x! 1=�, moreover,limx!1 a(x+ ya(x))a(x) = 1 + y� ; locally uniformly in y :Furthermore, V has Pareto distribution.If T is in the maximum domain of attraction of the Gumbel distribution, then a0(x)! 0 asx!1. As a Ces�aro limit a(x)=x! 0, moreover,limx!1 a(x+ ya(x))a(x) = 1 ; locally uniformly in y :Furthermore, V has exponential distribution. 210



Proof We �rst note that (a) and (3.4) easily yieldP (T > x� �a(x)) � P (T > x)P (V > �) :Assume w.l.o.g. that m = 1. Write P (X(T ) > x) = f1(x) + f2(x) + f3(x) wheref1(x) = P (X(T ) > x; T < x� �a(x));f2(x) = P (X(T ) > x; x� �a(x) < T < x+ �a(x));f3(x) = P (X(T ) > x; T > x+ �a(x))We start with f3: For any � > 0 we havef3(x) � P (T > x+ �a(x)) � P (T > x)P (V > �) :Now we use the CLT and local uniformity of the convergence, then for any b 2 IR, � > 0 and xsu�ciently large,f3(x) = Z 1x+�a(x) P (X(t) > x)P (T 2 dt)� infy2(x+bpx;x(1+�))P  X(y)� ypy > x� ypy !P (x+ �a(x) < T < x(1 + �))� infy2(x+bpx;x(1+�))P  X(y)� ypy > �bpxpx(1 + �)!P (x+ �a(x) < T < x(1 + �))� �(b=(�p1 + �))P (x + �a(x) < T < x(1 + �))� (1� �)P (x + �a(x) < T < x(1 + �))for arbitrary small � taking b su�ciently large. Using a(t) = O(t), letting � !1 and combiningwith the lower bound above now yields f3(x) � P (T > x)P (V > �).Next consider f2. It follows from (d) thatf1(x) � P (x� �a(x)� � < T < x� �a(x)) + 
�1P (X(x� �a(x)) > x)� o(P (T > x� �a(x)) + 
�1P (X(x � �a(x)) > x� �a(x) + �a(x� �a(x)))= o(P (T > x� �a(x)) = o(P (T > x) ;11



where we used also (c) and (a).Finally f2(x) � P (x� �a(x) < T < x+ �a(x))= P (T > x� �a(x))� P (T > x+ �a(x))= � 1 + o(1)P (V > �) � P (V > �)(1 + o(1))�P (T > x) :Combining the above estimates for f1, f2 and f3 and letting � # 0 yields the result. 2Theorem 3.9 The conditions of Theorem 3.7 are satis�ed if fX(t)g is a L�evy process withEesX(1) de�ned in a neighbourhood of 0, and T is a random variable with a distribution in themaximum domain of attraction of some extreme value distribution with auxiliary function a(�)which is eventually monotone increasing and a(t)=pt!1.Proof Condition (a) holds by Remark 3.8 and (d) follows easily from the increments beingindependent and P (X(t) �X(s) > 0) ! 1, jt � sj ! 1 (by the CLT). Thus, it only remainsto verify (c). In the regularly varying case, (c) follows from the exponential decay of P (X(t) >(m + �)t) (the Cherno� bound, cf. [7], p. 260), and for the maximum domain of attraction ofthe Gumbel distribution, we proceed by similar methods as in loc.cit.. De�ne�(�) = 1t logEe�X(t)(note that �(�) is independent of t by the stationary increments of L�evy processes) and let� = �(t) > 0 be the root of �0(�) =m+ ca(t)=t. Then a(t)=t! 0 implies that �! 0 as t!1.More precisely, m+ ca(t)t = �0(�) � m+ ��00(0)so that � � c a(t)t�00(0) ; �(�) � m� + c2 a(t)22t2�00(0) :Let now E� refer to the exponential change of measure de�ned by �, cf. [7] Ch. XII. ThenP (X(t) > mt+ ca(t)) = E� he��X(t)+t�(�);X(t) > mt+ ca(t)i� exp f��(mt+ ca(t)) + t�(�)g= exp��t�m� + ca(t)t � �(�)�� ;12



which can be bounded by exp f�c1a(t)g. It remains to show thatexpf�c1a(t)g = o(P (T > t=m)) : (3.5)By the representation theorem for a d.f. in the maximum domain of attraction of the Gumbeldistribution (see e.g. [20], Section 3.3),exp f�c1a(t)gP (T > t=m) � c exp(�c1a(t) + Z t=mz 1a(u)du) :Now 1a(t) Z t=mz 1a(u)du � t� za2(t) �  pt=ma(t) !2 ! 0 :This implies (3.5). 2Remark 3.10 The conditions of the above Theorem are in particular satis�ed for d.f.'s whichare regularly varying, lognormal, or Weibull (P (T > x) = expf�x�g with � < 1=2). This isimmediate by the respective auxiliary functions a(x) = �x, a(x) = x= log x and a(x) = x1�� .2Theorem 3.11 The conditions of Theorem 3.7 are satis�ed if fX(t)g is an additive processon a �nite Markov process fJtg, X(t) = Z t0 r(Jv) dv ;and T satis�es the same conditions as in Theorem 3.9.Proof The argument closely parallels the proof of Theorem 3.9. The analogue of the Cherno�bound can be found, e.g., in [19], as well as the relevant facts on exponential change of measurewhich are as follows. Let Mt(s) be the matrix with ijth element Ei[esX(t);J(t) = j]. Then thePerron{Frobenius root can be written as et�(s), and the corresponding positive right eigenvectorh = (hi) does not depend on t. The relevant likelihood identity yieldsPi(X(t) > mt+ ca(t)) = Ei;� 1hi he��X(t)+t�(�)hJ(t);X(t) > mt+ ca(t)i :Noting that the components of h are bounded below and above, the rest of the proof is just asfor Theorem 3.9. 2For the special case of regularly varying T , see [26] Ch. 8 and [39].13



Theorem 3.12 Assume that fX(t)g is a renewal process with arbitrary delay distribution andinterarrival d.f. G having mean m�1. Then the conditions of Theorem 3.7 are satis�ed providedT is as in Theorem 3.9.Proof The CLT for X(t) is standard, so again we only have to verify (c). It su�ces to considerthe zero{delayed case since P (X(t) > n) is maximized in this case.Let Sn be a random walk with increment d.f. G and �(�) = log R10 e�xG(dx). A standardidentity from renewal theory states that fX(t) > ng = fSn � tg (see e.g. [37], [38] for anapplication in a similar context), hence we getP (X(t) > mt+ ca(t)) = E� he��Smt+ca(t)+t�(�); Smt+ca(t) � ti :Taking � = �(t) < 0 as the root of �0(�) = (m+ ca(t)=t)�1, the remaining details are just as forTheorem 3.9. 2As an analogue to, and generalization of, Proposition 3.3, we present the followingProposition 3.13 For a stable GI/GI/1 queue, with interarrival times having �nite mean 1=�and service time d.f. G(x) = P (S � x), if Ge 2 S and Ge is in the maximum domain ofattraction of some extreme value distribution with auxiliary function a(�) which is eventuallymonotone increasing and a(t)=pt!1, then the steady-state queue length L satis�es (1.4).Proof Immediate from Theorem 2.3 and Theorem 3.12. 24 The moderately heavy{tailed caseWe now consider d.f.'s F that are still heavy-tailed, but with a tail at least as light as somethingproportional to the Weibull with � = 1=2. Note that the Weibull itself with � = 1=2 is includedhere which shows that this critical distribution falls into this moderately heavy{tailed case, andyields asymptotics for N(T ) that are di�erent from (3.2).Theorem 4.1 Assume that fN(t)g is a homogeneous Poisson process with parameter � > 0and T > 0 is a r.v. (independent of fX(t)g) with d.f. F such that F (t) = e
(t) expf�t�g for14



1=2 � � < 1 and e
 is a continuous function. Assume that 
 = e
 � exp satis�eslimu!1 
(u+ xe�u=2)
(u) = 1 locally uniformly in x : (4.1)Then P (N(T ) > k) � e
 �k�� exp(�� �k��� � (1� �)t�) ; k !1 ;where t = t(k) is the solution to the equation�t� + �t = k : (4.2)Remark 4.2 Condition (4.1) is a technical one. The important factor for the tail of F isexpf�t�g, the factor e
 allows for 
exibility of the model. 2For � = 1=2 equation (4.2) is a quadratic equation for pt and can be solved explicitly.Corollary 4.3 (Criticality of Weibull for � = 1=2)In the situation of Theorem 4.1 we obtain for � = 1=2 and e
 = 1,P (N(T ) > k) � exp� 18�� exp8<:�12sk�  1 +r1 + 116�k!9=;� exp� 18�� exp8<:�sk�9=; ; k !1 :Remark 4.4 If � 2 [1=2; 2=3), it follows by Taylor expansions in (4.2) thatexp(�� �k��� � (1� �)t�) � exp(��k��� + (1� �)�2� �k��2��1) :If � 2 [2=3; 3=4), we get an added term of order (k=�)3��2 and so on. 2Corollary 4.5 For a stable M/GI/1 queue with Weibull service time d.f. G(x) = P (S � x)= 1� e�x� with 1=2 � � < 1, the steady-state queue length L satis�esP (L > k) � 1� �k��1�� exp(�� �k��� � (1� �)t�) ; k !1 ;where t = t(k) is the solution to the equation (4.2).Proof Note that P (W > x) � Ge(x) � ��1x1��e�x� and take ~
(x) = ��1x1��. 215



Proof of Theorem 4.1We start from (2.7), where g(u) = 
(u)e� (u) with (u) = e�u + �eu (4.3)and 
(u) = e
(eu). The second derivative is positive, hence  is convex and�(u) = ( 00(u)�1=2 = (�2e�u + �eu)�1=2 � e�u=2=p� ; (4.4)and, since �0(u)! 0, the function � is self-neglecting, i.e. it satis�es (2.9). Furthermore, (4.1)implies (2.10). Hence (2.11) holds and we calculate the rhs. We start with  0 (k). If we sett = eu, then we need a solution to (4.2). Since � < 1 we gett = k�(1 + r(k)) and r(k)! 0 :Inserting this into (4.2) and collecting terms of smaller order yieldskr(k) + �(k=�)�(1 + �r(k)(1 + o(1)) = 0 :This implies r(k) = � � + ��� k1��(1 + o(1))!�1 ; k !1 :We obtain eu = t = k� 0@1�  � + ��� k1��(1 + o(1))!�11A :Now we can calculate the terms of (2.11). By continuity,
( 0 (k)) = 
(ln t) = e
(t) � e
 �k�� ; �( 0 (k)) = �(ln t) � 1p�t � 1pk ;and  �(k) = ku�  (u) = ku� e�u � �eu ;where eu = t =  0 (k), hence by (4.2),e �(k) = tke�t���t = tke�k�(1��)t� :tk = �k��k  1� �=��k1�� (1 + o(1))!k1��k� � �k��k exp(�� �k���) :Combining these results and using Stirling's formula yields the assertion of the theorem. In thelast step we have used (2.1) giving P (N(T ) > k) � P (N(T ) > k � 1). 216



5 The light{tailed caseThe (known) classical light-tailed asymptotics of queue length probabilities is covered byProposition 5.1 Assume that fN(t)g is a Poisson process with parameter � > 0 and T > 0is independent of fN(t)g withP (T > t) � ct��1e��t ; t > 0 ; c; �; � > 0 :Then P (N(T ) > k) � c(�+ �)� � ��+ ��k k� ; k !1 :ProofP (N(T ) > k) � c Z 10 P (N(t) = k)t��1e��t dt= c�kk! Z 10 tk+��1e�(�+�)t dt= c(�+ �)� � ��+ ��k �(k + �)�(k + 1) ; whichgivestheasymptoticasabove: 2Here is a result on the tail of N(T ) covering some more light{tailed T 's:Theorem 5.2 Assume that the conditions of Theorem 4.1 are satis�ed for � > 1 and 
 = e
�expsatis�es limu!1 
(u+ xe��u=2)
(u) = 1 locally uniformly in x : (5.1)ThenP (N(T ) � k � 1) � e
  �k��1=�! �k�(k=�)�(k + 1) exp(��� �k��1=� � �t�1� 1��) ; k !1 ;where t = t(k) is the solution to equation (4.2).Proof The proof is exactly the same as the proof of Theorem 4.1 up to equation (4.4). For� > 1 we obtain �(u) � e��u=2=� ; (5.2)17



and since �0(u) ! 0, the function � is self-neglecting. Furthermore, 
 = e
 � exp satis�escondition (2.10) and hence (2.11) holds. For � > 1 the solution to (2.11) satis�est = �k��1=� (1 + r(k)) and r(k)! 0 :Inserting this into (4.2) and collecting terms of smaller order yields�kr(k) (1 + o(1)) = ���k��1=� :This implies r(k) = ��=(k1�1=��1+1=�)(1 + o(1)) :We obtain eu = t = �k��1=� �1� �k1�1=��1+1=� (1 + o(1))� :Now we can calculate the terms of (2.11). By continuity,
( 0 (k)) = 
(ln t) = e
(t) � e
 �(k=�)1=�� ;�( 0 (k)) � 1� �k���1=2 = 1p�k ;and e �(k) = tke�t�+�t = tke�k+(��1)t� ;with t as above. For the �rst term we obtain:tk = �k��k=�  1� �=�1+1=�k1�1=� (1 + o(1))!k1�1=�k1=�� �k��k=� exp(��� �k��1=�) :Combining these results yieldsP (N(T ) � k � 1) � e
  �k��1=�! �k(k � 1)!s2��k �k��k=� exp(��� �k��1=� � k + (� � 1)t�) :By Stirling's formula, we may set��k�� � p2� �k��k=�+1=2 e�k=� :This gives the asymptotic form as in the assertion. 2
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Remark 5.3 Somewhat related results in this Poisson=gamma-like regime have been derivedby Adell and de la Cal [5]. Starting from the fact that by the SLLN NsT=s! T a.s. as s!1,they investigate the distance (in sup-norm) of the distribution functions of NsT=s and T . 2Remark 5.4 There are of course many ligh{tailed distributions not covered by Proposition 5.1and Theorem 5.2, for example the Raleigh case P (T > x) = e�x2=2. However, by now it shouldbe clear how to use the analytic method of Lemma 2.7. After the usual lengthy calculations weobtain P (N(T ) � k � 1) � e�2=4 � �2k�1=4 �kp(k � 1)! exp���2pk� ; k !1 : 26 Further queueing applications6.1 Vacation modelConsider a stable FIFO M/G/1 queue but with vacations: Every time the system becomes idle,the server goes away for an amount of time V (having �nite �rst moment). Customers whoarrive while the server is away wait in the queue. If the server returns to an empty queue,he goes away yet again and so on. Vacation times fVng are assumed i.i.d. and independent ofall else. Letting Dv denote steady-state delay in this model and D steady-state delay in theregular (non-vacation) model, the following decomposition was established in [22]:Dv = D + Ve; (6.1)where Ve is independent of D and has the equilibrium distribution of V . Adding an independentcopy of S yields sojourn time representationWv =W + Ve; (6.2)where W is regular M/G/1 sojourn time and is independent of Ve.Conditions (1) and (2) of DLL remain valid for this model yielding (in distribution)Lv = N(W + Ve):19



A variety of results follows from the general theory of the paper; we present three next asexamples, leaving out the moderately heavy{tailed case.Proposition 6.1 For the M/G/1 vacation model, if the equilibrium service time Se 2 S and ifP (Ve > x) = o(P (Se > x)) as x!1, then steady-state queue length Lv satis�es P (Lv > x) �P (L > x) (vacations are negligible asymptotically). If in addition Se satis�es either Condition(3.1) or the conditions on T in Theorem 3.9, thenP (Lv > k) � P (�Wv > k) � �1� �P (�Se > k); k !1: (6.3)Proof Since W is subexponential with tail asymptotically proportional to that of Se (Theo-rem 2.3 and (2.6)), general subexponential theory yields P (W + Ve > x) � P (W > x). It thenfollows easily from Proposition 3.1 and Theorem 3.9 that P (N(W +Ve) > x) � P (N(W ) > x),yielding P (Lv > x) � P (L > x). Equation (6.3) is then clear from (1.4). 2Proposition 6.2 For the M/G/1 vacation model, if the equilibrium vacation time Ve 2 Sand if P (Se > x) = o(P (Ve > x)) as x ! 1, then steady-state queue length Lv satis�esP (Lv > x) � P (N(Ve) > x) (vacations dominate asymptotically). If in addition Ve satis�eseither Condition (3.1) or the conditions on T in Theorem 3.9, thenP (Lv > k) � P (�Ve > k); k !1 : (6.4)Proof It su�ces to show that P (W + Ve > x) � P (Ve > x); x ! 1; the rest of the proofis then as for Proposition 6.1. For � > 0, choose x0 such that P (Ve > x) � �P (Se > x) forx � x0 and let the r.v. U have distribution given by P (U > x) = 1 for x < x0, P (U > x) =�P (Se > x) for x � x0. Then U is subexponential and stochastically larger than Se. Hence bythe Pollaczek-Khintchine formula, W is stochastically smaller than PN1 Ui where U1; U2; : : : arei.i.d. and distributed as U and N is an independent r.v. with P (N = k) = (1� �)�k. ThereforeP (W > x) � (�=(1 � �)P (U > x) which yields lim supP (W > x)=P (Ve > 0) � �. Letting� # 0 we get P (W > x)=P (Ve > 0)! 0, which together with the subexponentiality of Ve yieldsP (W + Ve > x) � P (Ve > x). 2
20



Remark 6.3 (a) If E(esV ) < 1 for some s > 0 then the second condition of Proposition 6.1holds.(b) If E(esS) <1 for some s > 0 then the second condition of Proposition 6.2 holds. 2Proposition 6.4 For the M/G/1 vacation model, if the equilibrium service time Se 2 S satis-�es either Condition (3.1) or the conditions on T in Theorem 3.9 and if P (Ve > x) � cP (Se >x) for some c � 0, then steady-state queue length Lv satis�esP (Lv > k) � P (�Wv > k) � �c+ �1� ��P (�Se > k); k !1: (6.5)Proof By an easy variant of the proof of Proposition 6.1. 26.2 M/G/1 busy periods: heavy-tailed caseConsider the busy period B of a stable M/G/1 queue with service time S. There are tworepresentations for B that typically are used in its analysisB d= S + N(S)Xi=1 Bi ; (6.6)where B1; B2; : : : are i.i.d. with the same distribution as B, andB = KXi=1 Si ; (6.7)where K denotes the number of customers served during the busy period. K can be identi�edas the �rst strictly descending ladder epoch in the negative-drift random walk (starting at 0)with increments distributed as S � T (service time minus interarrival time).It is known (for k � 1) that E(Bk) <1 if and only if E(Sk) <1, and E(e�B) <1 in an� neighborhood of 0 if and only if E(e�S) <1 in an � neighborhood of 0 (cf. [41] and Theorem4.1 in [4]). In particular, B is light-tailed if and only if S is, and the asymptotics in this caseare dealt with using transform methods in Sections 7 and 8 in [4]. The asymptotics in theheavy-tailed case are not fully understood, but we present some partial results in what follows.21



It was conjectured in [11] that, if the service time S is subexponential, thenP (B > x) � 11� �P (S > (1� �)x) ; x!1 : (6.8)This conjecture seems plausible because of the result of [33], where (6.8) was proved for regularlyvarying S, and of the following heuristics for the general subexponential case. Considering therepresentation in (6.6), one expects B to be large if either S is large, in which case one expectsB � S(1 + �EB) = S1� � ;or if one of the Bi is large, which occurs with probability EN(S)P (B > x) = �P (B > x). Thisleads to P (B > x) � P � S1� � > x�+ �P (B > x) ;yielding (6.8). However, if S has a lighter tail than expf�pxg (but is still heavy-tailed), itfollows from our previous results that the tail of B is heavier than the rhs of (6.8). Indeed, letX(t) = t+PN(t)i=1 Bi, (compound Poisson process plus linear drift at rate 1) so that B d= X(S).Then EX(t) = t=(1� �), varX(t) = tw2 for some w2, and we getlim infx!1 P (B > x)P (S > (1� �)x) � lim infx!1 P (S > (1� �)(x�px))P (S > (1� �)x) infy�(1��)(x�px)P (X(y) > x)� �(c) lim infx!1 P (S > (1� �)(x�px))P (S > (1� �)x) =1 :Note, however, that we do not get the tail of B equally precise as in previous sections: In thespeci�ed compound Poisson process we need to know apriori what the tail of the Bi is!The analysis does not exclude that (6.8) could be true if S is subexponential with a heaviertail than expf�pxg, say lognormal or Weibull with � < 1=2 (the regularly varying case iscovered by [33]).AcknowledgementWe take pleasure in thanking Hanspeter Schmidli, Vincent Dumas and two anonymous refereesfor their careful reading and valuable remarks on this paper.
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