
Assessing the Similarity of Distributions { FiniteSample Performance of the Empirical Mallows DistanceByClaudia Czado y and Axel Munk �AbstractThe problem of assessing similarity of two cumulative distribution functions (c.d.f.'s) has beenthe topic of a previous paper by the authors (Munk & Czado (1995)). Here, we developed anasymptotic test based on a trimmed version of the Mallows distance (Mallows 1972) between twoc.d.f.'s F and G. This allows to assess the similarity of two c.d.f.'s with respect to this distanceat controlled type I error rate. In particular, this applies to bioequivalence testing within a purelynonparametric setting. In this paper, we investigate the �nite sample behavior of this test. Thee�ect of trimming and non equal sample size on the observed power and level is studied. Samplesize driven recommendations for the choice of the trimming bounds are given in order to minimizethe bias. Finally, assuming normality and homogeneous variances, we simulate the relative e�ciencyof the Mallows test to the (asymptotically optimal) standard equivalence t test, which reveals theMallows test as a robust alternative to the standard equivalence t test.Keywords: Scienti�c relevant di�erence, Mallows Distance, Model validation, Population bioequiva-lence, Goodness of �t.1 IntroductionIn many applications we are interested in showing that two independent samples arise from similarunderlying populations F and G. As pointed out by Munk & Czado (1995) testing the hypothesisH0 : F = G versus K0 : F 6= G is not suitable for the assessment of similarity of populations, althoughthis is common practice. Even when the observed p-value of a test forH0 is large, this does not allow fora controlled error rate when assessing similarity. Therefore, Munk & Czado (1995) suggested intervalhypotheses tests of the formH : �(F;G) > �0 versus K : �(F;G) � �0; (1)where �(F;G) is an appropriate measure of discrepancy between F and G. In the above paper werecommended a trimmed version of the Mallows distance (Mallows, 1972) as such measure, since ityClaudia Czado is Associate Professor for Statistics at York University, Canada. Parts of this paper were writtenwhile C. Czado was visiting the Sonderforschungsbereich 386 at the Institute for Statistics at the Ludwig-Maximilians-Universit�at in Munich. Their hospitality is greatly acknowledged. C. Czado was supported by research grant OGP0089858of the Natural Sciences and Engineering Research Council of Canada.�A. Munk is Assistant Professor at the Ruhr Universit�at Bochum, Fakult�at und Institut f�ur Mathematik, Univer-sit�atsstr. 150, D-44780 Bochum, Germany.Address for correspondence: C. Czado, Department of Mathematics and Statistics, York University, 4700 Keele Street,North York, Ontario, Canada, M3J 1P3, email:czado@mathstat.yorku.ca.1



depends on the entire distribution and not only on a di�erence in speci�c distributional characteristicssuch as the mean and/or variance. Observe, that testing (1) allows for the assessment of similarityof F and G at controlled error rate �. In order to obtain tests for the hypotheses in (1), we derivedthe asymptotic normal law for the corresponding trimmed empirical Mallows distance using quantileprocess theory (Munk & Czado 1995). For this a consistent estimate of the asymptotic variance wasderived, which is not required when testing the classical hypothesis H0 (see De Wet & Venter (1972)for the corresponding test in the one-sample case with F being a normal c.d.f.). In fact, this varianceestimation turns out to be crucial for the performance of the test. Therefore, we report in Section 3.2the results of a simulation study for the bias and mean squared error (MSE) of the empirical variance.From this study sample size driven recommendations for the choice of the trimming bound, in orderto minimize bias and MSE, can be drawn.In particular, our approach applies to bioequivalence testing of two formulations of an active ingredientwithout any parametric assumptions. This is denoted as population bioequivalence (Hauck & Anderson,1992) and has been of particular interest in the recent literature (see also Schall (1995) for a test basedon another measure of discrepancy). As recommended by the FDA (1992) and other drug agencies, itis su�cient to choose the sample sizes in bioequivalence studies rather small, say n = m = 12 whennormally distributed errors can be assumed (see Chow & Liu (1992) for a description). In this situationthe use of the two one-sided t test procedure is recommended, which will be denoted in the sequel as thestandard test (FDA, 1992). Following these guidelines parametric analysis of bioequivalence should beperformed in an additive two period crossover design because this allows for the control of the withinsubject variability. However, in a nonparametric setting, crossover designs bear signi�cant di�cultiesfor the interpretation of similarity in e�ects of interest. Therefore, Munk & Czado (1995) argued thata proper nonparametric analysis of bioequivalence studies should be based solely on two independentsamples without repeated measurements for single individuals. When A. Munk was presenting theseresults at an invited talk in a session on nonparametric bioequivalence at the conference on 'CurrentBiometrical Issues on Longitudinal Observations in Medicine' in D�usseldorf (1995), the question ofrequired sample sizes, when designing such an experiment turned out to be central in the subsequentdiscussion. Therefore, before the use of the Mallows equivalence test can be recommended to theworking statistician, the behavior in small samples under various conditions on F and G has to bestudied. In particular, we address through simulation the following questions:Q1 How large have the sample sizes n and m to be chosen for the test to maintain its nominal leveland to achieve reasonable power?Q2 How does the test perform under normal distributions for F and G compared to the parametricstandard test?Four separate simulation studies have been designed to investigate the above questions. The �rst threestudies assume symmetric (normal) samples and di�erent trimming constants. In the �rst two studies,equal sample sizes (n = m) have been assumed, while unequal sample (n 6= m) sizes are investigated inthe third study for large sample sizes (m;n � 50). The second study (n;m � 25) focuses on the smallsample behavior. Here (nearly) equal sample sizes are strictly recommended. To answer Q2, the relativee�ciency of the Mallows test and the (asymptotic optimal) standard bioequivalence test is simulated.Surprisingly, we �nd that the Mallows equivalence test is (�nite) more e�cient in most cases than theequivalence t test although being asymptotically less e�cient. This �nding can be explained by thefact that the power of the latter test tends uniformly to zero as the variance increases as criticized bymany authors (cf. M�uller-Cohrs (1990), Brown, Hwang & Munk (1995) among others).2



Chow & Tse (1990) pointed out that especially in bioequivalence studies outliers may a�ect the dataanalysis drastically when using the standard test. In contrast, the Mallows equivalence test representsa robust tool to protect against outliers by the exible choice of the trimming bound. In Section 3.4.2it becomes apparent that the observed relative e�ciency compared to the standard bioequivalence testis even slightly increased when trimming is increased. We found however, that this is caused by theincreasing liberalness of the test as trimming is increased. We are therefore interested in answering thefollowingQ3 What is a reasonable choice of the trimming bound �?Munk & Czado (1995) obtained precise requirements regarding the shape of the underlying c.d.f.'sF and G in order to guarantee the quality of asymptotic law for the empirical Mallows distance. Inparticular, strong peaked densities and heavy tailed distributions are to be expected to a�ect on this.Therefore, the following �nal question is addressed by a subsequent simulation study.Q4 How does the test perform under nonsymmetric nonnormal distributions for F and G?To evaluate the behavior of the equivalence test for nonsymmetric nonnormal populations, generalizedlogistic distributions (Czado, 1992) have been utilized because they exhibit a wide range of skewnessand tail patterns.The following recommendations summarize the observed �nite sample behavior presented in Section3. When both samples arise from a symmetric distribution, such as the normal distribution, a samplesize of m = 20 and a sample size ratio of 1=2 � mn � 2 is su�cient to maintain its nominal level quiteaccurately, while guaranteeing reasonable power. In addition, a trimming of maximal 10% is preferableover a larger trimming when small samples are used, otherwise the test becomes too liberal.Further, we �nd that the Mallows equivalence test turns out to be always liberal rather than conser-vative, especially when small sample sizes are present. In addition, the estimated asymptotic varianceof the empirical Mallows distance was found to be positively biased in small samples (cf. Section 3.2).The bias of the actual level was always found to be maximal when the tolerance bound �0 � 1. Thisvalue may serve as a change point of accuracy. A larger tolerance bound implies a highly accurateapproximation of the nominal level whereas a smaller tolerance bound leads to a liberal test.If one of the samples comes from a distribution, which is highly skewed compared to the other one,sample sizes of n;m � 50 may become necessary as well as a larger trimming (� � 10%).Following the above recommendations, the trimmed Mallows equivalence test can be used to assessequivalence of two populations within a purely nonparametric setting even when the underlying dis-tributions are highly skewed. Although larger trimming will increase the e�ciency in many cases, westill recommend only slight trimming which may be increased when sample size increases. Otherwisethe actual level may become too liberal.The paper is organized as follows. Section 2 introduces the trimmed Mallows distance and summarizesbriey its asymptotic properties necessary for the construction of the critical region of the equivalencetest. Section 3 describes the simulation design and presents the �nite sample results under the variousdesigns described above. The paper closes with a discussion section.3



2 The Equivalence Test Based on the Trimmed Mallows DistanceIn this section, we �rst introduce the trimmed Mallows distance and briey review its propertiesincluding asymptotic results. Finally, we give the critical region of the equivalence test to be studied.For additional details and the derivation of the asymptotic distribution the reader is referred to Munk& Czado (1995).Throughout this paper, we have an i.i.d. sample fX1; � � � ; Xmg and fY1; � � � ; Yng from F and G, re-spectively, available. Further, F and G are assumed to be continuous c.d.f.'s, with �nite second mo-ments. Fm(x) = m�1Pmi=1 1(�1;x](Xi) denotes the empirical distribution function of the i.i.d. sampleX1; � � � ; Xm � F . The trimmed Mallows distance between F and G is now de�ned as��(F;G) := (1� 2�)�1�Z 1��� jF�1(u)�G�1(u)j2du�1=2 : (2)Here � 2 [0; 1=2) denotes a trimming bound. If � = 0, we write � for ��. Note, that in this case,�2(F;G), measures the square area of di�erence between the quantile functions F�1 and G�1.In particular, Munk & Czado (1995) showed that a small Mallows distance between F and G im-plies similarity of the (trimmed) �rst two moments which reveals �� as an appropriate measure ofbioequivalence (see also Holder & Hsuan (1994)).In the special case of symmetric location-scale families F = H((x� �)=�) and G = H((x��)=�) with�; � > 0, we �nd that��(F;G) = 1(1� 2�)1=2 �(� � �)2 + (� � �)2(1� 2u1��h(u1��)1� 2� )�1=2 : (3)Here, h denotes the density ofH and u� the �-quantile of H , i.e. H(u�) = �. This shows that trimmingputs slightly more weight on the mean di�erence than on the di�erence in scales. This is to be expectedsince extreme tails are discarded when trimming is used. Figure 1 gives the corresponding Mallowsdistance contours in the case of H being the standard normal distribution when 0%, 10% and 20%trimming is used. The e�ect of trimming is to increase the Mallows distance by a factor of (1�2�)�1=2in location scale models if F and G have equal variances, i.e. (3) reduces to��(F;G) = 1(1� 2�)1=2 j�� �j: (4)One problem commonly encountered in bioequivalence studies is the presence of outliers when a normalmodel, which is a special symmetric location scale family, is used. We mention, that outliers change theresults drastically obtained by standard tests (Chow & Tse, 1990). Therefore, the choice of the trimmingbound is of particular interest. Based on the simulation results presented in Section 3 recommendationswill be given. This provides an excellent tool to robustify against outliers. Observe, that trimmingchanges (under the normal assumption with homogeneous variances) the bioequivalence criterion by afactor (1� 2�)�1=2 which can simply be adjusted by rescaling the hypotheses (cf. Section 3.4.1).Following Munk & Czado (1995) a consistent estimate for the trimmed Mallows distance is obtained,when F and G in (2) are replaced by their empirical counter parts Fm and Gn, respectively. In partic-ular, we have for n = m and � = 0�̂2 := �(Fn; Gn)2 = 1n nXi=1(X(i) � Y(i))2; 4



where X(i) and Y(i) denote the i-th order statistic of the i.i.d. sample arising from F and G, respectively.In the case of unequal sample sizes (n 6= m) and the presence of trimming (� > 0) the expressions for�̂� := ��(Fm; Gn) in terms of the order statistics X(i) and Y(i) are more complex, but remain tractable.The exact expressions are given in the Appendix of Munk & Czado (1995).In the above paper, we constructed an asymptotic test for the equivalence testing problemH : ��(F;G) > �o versus K : ��(F;G) � �o (5)by utilizing thatL(� nmn+m� 12 ��2�(Fm; Gn)� �2�(F;G)�) �! N (0; �2�) as n;m!1 (6)is normal with mean 0 and variance�2� = 4(1� 2�)4 (� "Z 1��0 �Z 1���_s h(F;G)(t)dt�2 ds� �Z 1��0 �Z 1���_s h(F;G)(t)dt� ds�2#+(1� �) "Z 1��0 �Z 1���_s h(G;F )(t)dt�2 ds � �Z 1��0 �Z 1���_s h(G;F )(t)dt�ds�2#) ;where � 2 (0; 1) is the limiting value of nn+m andh(F;G)(t) := F�1(t)�G�1(t)f � F�1(t) :Here, regularity conditions A1-A4 of Munk & Czado (1995, p. 5) for the densities f of F and g of Ghave to be satis�ed. Explicit expressions for a consistent estimate �̂2� := �2�(Fm; Gn) of the asymptoticvariance (see Appendix A of Munk & Czado (1995)) are available. The estimate we have used isobtained again by 'plugging in' the empirical c.d.f's in �2� and evaluating the resulting expression asa Riemannian sum. More general results for trimming bounds depending on sample size have beenobtained as well. We found that the limit law remains true, when trimming is neglected asymptoticallyat a rate of at most �n � n�1 log log n. Hence, it is one aim of the paper to provide a sample sizedriven guide for a good choice of the trimming bounds (see Section 3.4).The critical region of the equivalence test for H against K in (5) can now be expressed as� nmn+m� 12 �̂2� ��20�̂� � z� (7)where z� denotes the �-quantile of the standard normal distribution. Splus functions to compute �̂�and �̂2� have been written to perform this test and can be obtained from the authors on request.3 Simulation3.1 Simulation DesignTo investigate the questions raised in the introduction, �ve di�erent simulation studies were designed.To study the e�ect of trimming, several trimming sizes have been used. The aim of the �rst studyis the investigation of bias and MSE of the variance estimate �̂2� under various conditions on F andG. Primary goal of the next three simulations is to evaluate the performance of the test (7) whennormal c.d.f.'s are used for F and G, respectively. We investigated the case of homogeneous variances5



(remember, that this is the standard assumption in bioequivalence trials) as well as the inhomogeneouscase. In the second study, larger sample sizes (� 50) have been used, while small sample sizes (� 25) areinvestigated in the third study. The fourth simulation is performed with unequal sample sizes (n 6= m),while still using normal distributions for F and G. The aim of the last simulation is to investigate theperformance under nonnormal nonsymmetric populations. We were particularly interested in the e�ectof skewness and heavy tails of the distributions. because these situations are expected to decrease theaccuracy of the approximation of the �nite sample distribution for �̂2� given by the limit law in (6) (cf.Munk & Czado (1995)).In the �rst four studies, F is assumed to be standard normal N(0; 1), while G is a normal with mean� and variance �2. For second and and fourth study, mean values of � = :1; :3; :5; :9; 1; 1:1; 1:2 and 1:3and standard errors of � = :5; 1: and 1:5 have been chosen. For the third study, larger mean values� = 1; 1:2; 1:4; 1:6; 2:0; 2:2; 2:4; 2:6 have been selected to allow for adequate power.Sample sizes n = m = 50; 100; 200 are used in the second study, n = m = 10; 15; 20; 25 for the thirdstudy and n = 100 and mn = :9; :75; :5; :3 are assumed for the fourth one. In addition, the e�ect of 0%,10% and 20% trimming has been studied in the second simulation, while 0% and 10% trimming havebeen used in the fourth study because the results of the �rst study show that trimming of 20% was toolarge. For the third study, sample sizes were too small to allow for a 10% trimming, therefore only 0%and 20% trimming were investigated. For each combination of sample size, mean and standard errorvalues, two samples, one of size m from a standard normal population and one of size n from a normalpopulation with mean � and variance �2, have been generated and the corresponding equivalence testof H versus K using equivalence bound �o and trimming constant � at signi�cance level �s = :05 hasbeen performed. Results from the �rst three studies have been based on 500 replications, while thefourth study was based on 250 replications. Here, �o = :3; :5; :7; :9; 1 and 1:2 was used in the secondand fourth study, and �o = 1:2; 1:4; 1:6; 1:8; 2:0 and 2:2 in the third study.As already mentioned in the case of normal samples with equal variances, the equivalence t test isa valid alternative to the Mallows equivalence test. If we de�ne �� = (1 � 2�)�1=2�0, the rejectionregion of the equivalence t test forH� : j�� �j > �� versus K� : j�� �j � �� (8)is given by (Schuirmann, 1987)��� � jX � Y j+ tn+m�2;1�� Spn +m� 2� ;where tf;� denotes the �-quantile of the central t distribution with f degrees of freedom. Further,S2 = ( 1n + 1m) hPni=1(Xi �X)2 +Pni=1(Yi � Y )2i denotes the pooled sample variance and X(Y ) theaverage of the sample X1; � � � ; Xm; (Y1; � � � ; Yn). Note from (4), that the testing problem (5) for thetrimmed Mallows distance under normal populations with equal variances �2 and mean di�erences�� � turns into (8), when we parametrize the problem in j� � �j.In a �nal simulation study, the properties of the Mallows equivalence test H versus K are investigatedwhen the underlying distributions are skewed. For this study, we considered a family of generalizedlogistic distributions fF ;  2 IRg (Czado (1992)) with heavier right tail ( < 1) and lighter right tail( < 1) than the logistic distribution ( = 1). In particular, the distribution functions F are given byF (x) = exp(h (x))1 + exp(h (x)) ; 6



whereh (x) = ( (x+1) �1 if x > 0x otherwise :Figure 2 presents the corresponding c.d.f.'s and densities for several  values of the generalized logisticdistribution family. This shows, that this family includes a wide range of skewed distributions. Inparticular, it includes highly peaked ( � 1) and heavy tailed ( � 1) distributions. A similarmodi�cation of the left tail or both tail modi�cation is possible as well. The Mallows distance to thelogistic c.d.f. increases rapidly as  < 1 becomes smaller and slower as  > 1 (see Figure 3). The e�ectof a larger trimming is to decrease the Mallows distance.For our simulation, F is assumed to be the logistic c.d.f. and G a generalized logistic c.d.f. with oneof the following values for  = :1; :15; :25; :5; :75:9; 1; 1:25; 1:5; 2; 5; 10. Sample sizes of n = 100; 50; 25for F and m for G, such that mn = :96; :48, were considered. In addition, 8% and 16% trimming wereused and 250 equivalence tests with �0 = :5; :75 for  > 1 and �0 = :75; 1; 1:25; 1:5 for  < 1 wereperformed. It should be noted that for n = 25(50)(100), a trimming of 8% (4%) (2%)is the smallestpositive trimming possible corresponding to discarding the largest and smallest value in the sample.Table 1 summarizes the di�erent simulation designs used.Study 1: Simulated Bias and MSE of Mallows Sample Variance under NormalitySample sizes and trimming bounds as in Study 2 and 4.Study 2: Large Normal Samples with Equal Sample SizesF G n mn � �oN(0; 1) N(�; �2) 50 1 0 �o = :3; :5; :7; :9; 1; 1:2� = :1; :3; :5; :9; 1 100 .05= 1:1; 1:2; 1:3 200 .1� = :5; 1; 1:5Study 3: Small Normal Samples with Equal Sample SizesF G n mn � �oN(0; 1) N(�; �2) 10 1 0 �o = 1:2; 1:4; 1:6; 1:8; 2:0; 2:2� = 1; 1:2; 1:4; 1:6; 1:8 15 .1= 2:; 2:2; 2:4; 2:6 20� = :5; 1; 1:5 25Study 4: Normal Samples with Unequal Sample SizesF G n mn � �oN(0; 1) N(�; �2) 50 .9 0 .7� = :1; :3; :5; :9; 1 100 .75 .05 .9= 1:1; 1:2; 1:3 200 .5 1� = :5; 1; 1:5 .3 1.2Study 5: Nonnormal SamplesF G n mn � �ologistic generalized logistic 25 .96 0.04 �o = :5; :75( > 1) = 1  = :1; :15; :25; :5; :75; :9 50 .48 .08 �o = :75; 1; 1:25; 1:5( < 1)= 1; 1:25; 1:5; 2; 5; 10 100Table 1: Summary of Simulation Designs7



All simulations were performed in S+ Version 3.2 on medium sized IBM RS6000 Unix workstations,where up to 500 replications for each setting were conducted, respectively. Observe, that the requiredCPU time is considerable, for example 5.2 hours (34 min) of CPU time was required for a singleparameter setting with sample sizes n = m = 200(n = m = 20) and 500 replications.3.2 Performance of the Mallows sample varianceTo investigate the performance of the estimated asymptotic variance of the empirical Mallows distance,�̂2�, its estimated standardized biasSBIAS h�̂2�i = E " �̂2��2�#and its mean squared error (MSE)MSE h�̂2�i = E h�̂2� � �2�i2have been displayed in Tables 2 and 3.� = 0 � = 0:05 � = 0:1� � �� n=m .1 .3 .5 .1 .3 .5 .1 .3 .5.5 20 SBIAS 1.54 1.22 1.09 2.73 2.09 1.42 3.44 1.77 1.43MSE .30 .35 .70 .46 1.24 1.80 .72 1.25 3.4150 SBIAS 1.21 1.14 1.02 1.96 1.54 1.29 1.87 1.26 1.11MSE .08 .13 .31 .13 .30 .61 .10 .27 .69100 SBIAS 1.15 1.08 1.04 1.37 1.15 1.01 1.49 1.12 1.02MSE .04 .06 .15 .03 .08 .18 .04 .13 .32200 SBIAS 1.09 1.01 1.03 1.21 1.09 .99 1.24 1.05 .94MSE .02 .03 .07 .01 .04 .09 .01 .06 .141 20 SBIAS 16.17 2.62 1.50 12.94 2.55 1.42 13.43 2.26 1.46MSE .94 1.36 2.33 1.19 2.89 4.22 2.42 4.20 8.8050 SBIAS 6.92 1.63 1.21 5.51 1.37 1.09 5.25 1.39 1.12MSE .15 .32 .96 .21 .49 1.25 .31 .98 2.06100 SBIAS 4.23 1.44 1.13 3.42 1.14 .98 3.17 1.13 1.01MSE .05 .18 .36 .08 .21 .57 .11 .40 1.10200 SBIAS 2.46 1.12 1.08 2.00 1.02 .94 1.40 1.10 .96MSE .01 .07 .18 .02 .11 .29 .03 .21 .521.5 20 SBIAS 2.68 2.16 1.61 4.36 2.58 1.59 5.63 2.57 1.62MSE 8.74 12.25 16.91 11.43 17.56 22.59 16.72 26.16 38.3150 SBIAS 1.74 1.42 1.25 2.19 1.31 1.04 2.68 1.52 1.19MSE 2.07 2.55 5.45 1.69 2.26 4.80 2.27 5.47 9.00100 SBIAS 1.40 1.30 1.15 1.67 1.19 1.04 1.83 1.19 1.06MSE .65 1.37 2.28 .65 1.16 2.71 .73 1.80 5.04200 SBIAS 1.19 1.10 1.10 1.26 1.05 .97 1.40 1.10 .96MSE .23 .52 1.02 .16 .54 1.35 .20 .98 2.35Table 2: Standardized bias and MSE of the estimated asymptotic variance of the empirical Mallowsdistance �̂2� for equal sample sizes.8



We are particularly interested in the behavior of �̂2� when the underlying true Mallows distance issmall. Table 2 reports the standardized bias and the MSE of �̂2�, when ��(F;G) ranges between .1 and.71. With regard to the standardized bias, we observe that in small samples (n = m = 20) with smallunderlying true ��(F;G) (� = :1; :3; � = 1), �̂2� is extremely positively biased (SBIAS � 1). This hasto be expected, since the limit law (6) fails to be valid when ��(F;G) approaches zero. However, adoubling of the sampling size reduces the bias by roughly 50%. For the homogeneous variance case(� = 1), ��(F;G) increases with trimming thus explaining the reduction in bias when trimming isincreased. For the nonhomogeneous variance case (� 6= 1), the e�ect of trimming is more complicated,a larger trimming decreases (increases) ��(F;G) for small (large) � (cf. Figure 1). This is the reasonwhy the standardized bias increases with trimming for small �. The opposite e�ect was seen for large� and � 6= 1 (not presented). Finally, note that for unequal variances (� 6= 1) the standardized bias issmaller when � < 1 compared to � > 1 despite the same underlying true Mallows distance. With regardto the MSE of �̂2�, the MSE decreases rapidly as sample size increases. Further, the MSE increaseswith increasing ��(F;G), i.e. as � increases for �xed �.The standardized bias of the asymptotic variance �̂2� has been reported in Table 3 for unequal sam-ple sizes where n = 100 and m = 30; 50; 75; 90. First, the absolute standardized bias reduces as mincreases. Again, we see that the standardized bias is substantially overestimated when the true un-derlying Mallows distance ��(F;G) � :1 (� = 1; � = :1). The e�ect of trimming is similar to the oneobserved in the equal sample size case. With regard to the MSE of �̂2�, it also decreases as m increases.Further, the MSE and SBIAS increases with increasing trimming bound � when the variances arevery inhomogeneous.In summary, the asymptotic variance estimator performs well when the true Mallows distance is nottoo small (��(F;G) > 1). In this case, a 10% trimming is preferable over 0% trimming in order tominimize bias. For small ��(F;G)(� 1), trimming is only preferable in the homogeneous variance case(� = 1). In addition, higher sample sizes for n = m are required. In the case of nonequal sample sizesthe same conclusions can be drawn, in addition to require 1=2 � mn � 2 to reduce bias.
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� = 0 � = 0:05n=100 � �� m .1 .3 .5 .1 .3 .5.5 30 SBIAS .68 .61 .60 1.00 .72 .56MSE .06 .17 .43 .05 .16 .6050 SBIAS .86 .78 .80 1.11 .83 .71MSE .05 .09 .28 .04 .10 .3575 SBIAS .98 1.01 .96 1.30 .99 .86MSE .03 .10 .21 .03 .09 .2090 SBIAS 1.17 1.10 1.06 1.32 1.01 .96MSE .05 .08 .17 .03 .07 .171 30 SBIAS 7.24 1.79 1.39 5.70 1.29 1.00MSE .16 .56 1.06 .27 .53 1.2250 SBIAS 5.48 1.61 1.28 4.91 1.26 1.00MSE .09 .27 .75 .19 .35 .8875 SBIAS 4.65 1.30 1.21 3.84 1.21 .98MSE .07 .18 .47 .09 .29 .6990 SBIAS 4.51 1.52 1.25 3.14 1.20 1.02MSE .06 .23 .53 .06 .28 .791.5 30 SBIAS 2.34 2.08 2.12 3.06 2.02 1.62MSE 1.99 3.96 12.05 2.38 5.10 8.2450 SBIAS 1.77 1.79 1.58 2.11 1.56 1.32MSE .97 2.81 6.08 1.07 2.55 4.9075 SBIAS 1.44 1.36 1.20 1.82 1.42 1.14MSE .68 1.33 3.10 .64 2.12 3.6090 SBIAS 1.30 1.32 1.11 1.59 1.19 1.11MSE .58 1.52 1.95 .53 1.00 3.26Table 3: Standardized bias and MSE of the estimated asymptotic variance of the Mallows distance�̂2� for unequal sample sizes where n = 100.3.3 Performance Measures and their Graphical Display of the Power StudyAfter conducting the equivalence test for each parameter combination and replication, the observedpower and signi�cance level was calculated. In simulation studies 2-4, the observed power is a functionof the mean � and the standard error �, of the sample sizes n and m, the trimming bounds � and�nally of the equivalence bound �o. For �xed �, � and �o the observed signi�cance level and thepower at the alternative k = :75�o are displayed in Figures 4-5 and 7-10.Finally, in the case of normal samples with equal sample size and equal variances (� = 1), the Mallowsequivalence test has been compared to the equivalence t test by simulating the observed relativee�ciency, i.e. the ratio of required sample sizes to obtain the same power � at a �xed alternative k.For the testing problem (5), a trimming size � and an equivalence bound �o have to be chosen, thusthe observed relative e�ciency will depend on � and �o as well and may be expressed asRE(Mallows:t test)�;�o (�; k) = nMallows�;�o (�; k)nttest�;�o(�; k) ; 10



where nMallows�;�o is the sample size required by the Mallows test for (5) to achieve an observed powerof � at alternative k, and nt test�;�o is the sample size required by the equivalence t test for the testingproblem (8) to achieve by (8) an observed power of � at alternative k = j� � �j(1� 2�)�1=2. A valueof REMallows:t test�;�o < 1 indicates that the Mallows test is more e�cient than the equivalence t test. Forexample, a value of REMallows:t test�;�o = :5 can be interpreted as the equivalence t test requiring doublethe sample size as the Mallows test to achieve the same power.For the last simulation study, the considered underlying populations are distinguished by the singletail parameter  . Hence the power functions depend only on this parameter in addition to � and �o.3.4 Simulation Results3.4.1 Results for Large Normal Samples of Equal Sample SizeAs discussed in the previous section, results are summarized by observed signi�cance level (Figure 4)and the power at the alternative k = :75�0 for the Mallows test (Figure 5) and at k = (1�2�)�1=2:75�0for the t test (Figure 6).From Figure 4, we see that the actual level of the Mallows test approximates the nominal level ofsigni�cance �s = 0:05 better as the sample size increases. Further the accuracy of approximationincreases as the tolerance bound �0 increases. Deviation of the variances between F and G will decreasethe approximation, in particular for smaller sample sizes as 50.Large trimming should only be used when a tolerance bound �0 � 1 is to be tested or when thevariances are nearly homogeneous, otherwise the test may become too liberal. In this case, even a largersample size does not improve the situation su�ciently. Recall, however, that usually in bioequivalencestudies homogeneity of the variances is justi�ed, and therefore trimming is an excellent tool to protectagainst outliers. It is interesting, that the bound �0 = 1 serves as a 'change point' indicating thequality of the performance. For values larger than 1 the �nite sample approximation is signi�cantlysuperior compared to small values. This may be explained by the quadratic structure of the statistic�̂2�. In particular, when �0 tends to zero, rather large sample sizes are required to keep the nominallevel exactly. Otherwise, the actual level tends to be larger than the nominal level. This is supportedby the fact that the asymptotic normal law of the empirical Mallows distance degenerates to a Diracmeasure with mass at 0 (for more details see Munk & Czado (1995)). However, the test remainsconsistent although being liberal. Note, that the performance of the asymptotic variance estimate �̂2�is consistent with these observations. From Figure 4 precise required sample sizes for decreasing bounds�0 can be drawn in order to adjust the actual level.With regard to the observed power in the alternative j�� �j = :75�0 (see Figure 5), the power alwaysincreases as sample size increases. Further, as expected, a larger tolerance constant �0 increases thepower as well. In addition, the power is higher for smaller nonhomogeneous variances (� < 1) than forlarger nonhomogeneous variances (� > 1).From the above results for the observed signi�cance level and the attained power, we recommend touse a slight trimming � � 0:05. Only when the variances in both groups may be assumed as nearlyhomogeneous, a larger trimming may be suitable because otherwise the liberalness of the test maybecome too drastic.In Figure 6 the observed power at corresponding alternatives under variance homogeneity (� = 1) ofthe equivalence t test is shown. We �nd the surprising fact, that the power is lower in most cases for11



the equivalence t test compared to the Mallows test, particularly for moderate �0 values. The speci�cchoice of the trimming bound � does not inuence this observation. These �ndings are somewhatcurious because we have a proof that the t test is an asymptotic uniformly most powerful invarianttest (invariance with respect to the group of translations). This paradox may be explained as follows:Although asymptotically optimal, the t test may become arbitrarily ine�cient for �nite sample size asthe variance increases (Munk, 1993). Only, when the variance is rather small compared to the bound�0, say �2=�0 << 1 the asymptotic optimality result allows an interpretation in realistic sample sizes,say n;m � 200. This behavior is reected precisely in the observed relative e�ciency results presentedin Table 3. The numbers in parentheses represent the sample size required by the Mallows test toachieve power � at the alternative k = :75�o. The signi�cance level of the tests was always �s = :05.Observe, that the e�ciency may be increased by increasing the trimming bound, however, this is dueto the rather large liberalness in this case (cf. Figure 4)Equal Variances: � = 1 �0� � .5 .7 .9 1 1.2.0 .6 *** *** .85 (134) .77 (96) .98 (82).4 .96 (176) .95 (114) .84 (70) .80 (50) .81 (38).05 .6 *** ** .89 (144) .88 (116) .90 (74).4 .82 (151) .73 (87) .78 (67) .83 (55) .65 (30).1 .6 *** * .99 (160) .91 (110) .91 (74).4 .76 (150) .75 (90) .91 (70) .90 (51) .71 (31)Table 3: Observed relative e�ciency of the Mallows equivalence test and the equivalence t test withk = :75�o (* equivalence t test requires n > 200 to achieve power �, * Mallows test requires n > 200to achieve power �, *** both tests require n > 200 to achieve power �)3.4.2 Results for Small Normal Samples of Equal Sample SizeIn bioequivalence testing assuming normal samples, extremely small sample sizes of usually 12 obser-vations in each period and sequence of a crossover trial are commonly used. Recall, that a crossoverdesign is not suitable for the analysis based on Mallows distance within a purely nonparametric setting.Therefore, it is of particular interest to investigate the behavior of the Mallows test for rather smallsample sizes in a design with two independent groups. To achieve similar power as in the two-periodcrossover design (cf. Chow & Liu, 1992) sample sizes of n = m = 24 in each group are required.This corresponds to the total sample size in both periods of one sequence in a standard cross overexperiment. The tolerance bounds are chosen accordingly to achieve reasonable power.�0� k � 1.6 1.8 2.0 2.2.0 :75�o .4 .70 (18) .70 (14) .67 (11) **:6�o .7 .88 (21) .85 (17) .88 (13) **.1 :75�o .4 * .87 (18) .95 (15) **:6�o .7 .88 (22) .84 (17) 1.02 (16) .90 (12)Table 4: Observed relative e�ciency of the Mallows equivalence test and the equivalence t test (*equivalence t test requires n > 25 to achieve power �, ** Mallows test requires n < 10 to achievepower �)12



Comparing again the observed relative e�ciency (Table 4), we see that the Mallows test is againslightly more e�cient than the equivalence t test in the normal case, even for very small sample sizesas n;m = 10. Nevertheless, we have to take into account that Mallows test is always liberal (Figure 7),in particular when trimming is increased. In contrast, it can be shown that the equivalence t test neverexceeds the nominal level (Munk, 1994). However, we �nd that the power of Mallows equivalence test(Figure 8) is surprisingly large for small samples compared to the asymptotically optimal equivalencet test. Therefore this test may serve as a powerful and robust nonparametric alternative as long as thesample size is not too small.3.4.3 Results for Normal Samples of Unequal Sample SizeSince the results for the normal samples with equal sample size indicate that a trimming of less than10% should be used, only two trimming constants � = 0 and � = :05 have been investigated.Figures 9 and 10 give the observed signi�cance level and the observed power for the Mallows test,respectively. Again the Mallows test is slightly liberal, especially when � = :5 and m = 30. Surprisingly,the signi�cance level is better maintained when the ratio of the sample sizes is reciprocal to that ofthe variances as in the converse case. As the sample sizes approach each other, observed power andaccuarcy of the observed signi�cance level is maximized. Therefore, we recommend to perform Mallowstest only when 1=2 � mn � 2, which should be satis�ed in most applications. In particular for verysmall samples, nearly equal sample sizes seem to be necessary.3.4.4 Results for Nonnormal SamplesWe will see that the trimmed Mallows distance behaves di�erently for the heavier right tail cases( < 1) than for the lighter right tail cases ( > 1). Therefore results will be presented separately.Since the shape of the c.d.f. G depends only on the single tail parameter  , the Mallows distance ��is fully parametrized by  . Figure 11 gives the observed power curves for the lighter right tail cases( > 1) when 8% trimming is used. Observe that now in each �gure the bound �0 is �xed whereas thetrue underlying Mallows distance is represented in the ordinate. The dotted vertical line separates thehypothesis from the alternative. The level of signi�cance is �s = 0:05. The equivalence test maintainsthe level with high accuracy for all cases considered. Power, however, is decreased by about 50% assample size is reduced from n = 100 to 50. Sample sizes of n = 25 are insu�ciently large. The loss inpower when changing from mn = :96 to mn = :48 is about 10-20%. It was also observed that there wasno signi�cant change in power when the higher trimming of 16% was used (not presented). For theheavier right tail cases ( < 1), the size �s = :05 is better maintained , when a trimming of 16% is usedcompared to 8% trimming (see Figure 12 and 13). A possible explanation might be the exponentialgrowth of the Mallows distance as  < 1 decreases (see Figure 3). This growth is considerably reducedwhen trimming is increased. The loss in power for smaller sample sizes n is less dramatic in the heavierright tail cases ( < 1) compared to the lighter right tail cases ( > 1) resulting in strongly peakeddistributions. Here, a sample size of n = 25 might be su�cient, especially if a larger equivalence bound�0 can be tolerated. There is again a 10-20% loss in power when mn = :96 is changed to mn = :48.In summary, this study indicates that the equivalence test performs adequately for broad classes of nonnormal distributions. Sampling sizes of m;n � 25 are recommended in order to guarantee su�cientaccuracy of the �nite sample approximation to the asymptotic normal law. A larger trimming might13



be necessary if one of the samples comes from a highly skewed distribution compared to the secondone, in which case sample sizes n;m � 50 may become necessary.4 DiscussionOur aim in this paper was the investigation of the �nite sample behaviour of the Mallows equivalencetest. The assessment of the precise hypothesis H : ��(F;G) > �0 instead of the simple hypothesisH0 : F = G bears the additional di�culty of estimating the variance of the empirical Mallows distance.Roughly speaking this is the price we have to pay for the additional gain in information providedby interval hypotheses of the type H . This is reected by the rather liberal approximation of thenominal level when sample sizes are very small or the tolerance bound �0 << 1. Therefore, samplesizes of n;m � 25 should be available even under distributional assumptions close to a normal law.However, testing the classical hypothesis H0 : F = G leaves the experimenter always in the somewhatembarrassing situation how to specify the amount of similarity or di�erence between populations. Inother words, since estimation of the variance of the empirical Mallows distance is not necessary underH0 the outcomes of the corresponding tests are questionable.When the densities are highly skewed or strongly peaked our simulations indicate that larger samplesizes may become necessary. Therefore, an initial nonparametric estimation of the densities may serveas a guard. Slight trimming has been found to be a very useful tool to protect against outliers. In par-ticular, in bioequivalence assessment of the means the exible choice of trimming weights is extremelyhelpful because the bioequivalence criterion remains invariant (after rescaling the hypotheses). Mostsurprisingly, our results show that Mallows equivalence test is (�nite) more e�cient than its parametricstandard competitor which is asymptotically optimal under normality. Note that the Mallows test is apurely nonparametric test and therefore robust against distributional misspeci�cations. These results,however, should not be interpreted too optimistically because the liberality of Mallows test may beresponsible for this superiority.ReferencesBrown, L.D., Hwang, J.T.G. and Munk, A. (1995). An unbiased test for the bioequivalence problem. DresdnerSchriften zur Mathematischen Stochastik, ISSN 0946-4735 to appear in The Annals of Statistics.Chow, S.C., J.P. Liu (1992). Design and Analysis of Bioavailability and Bioequivalence Studies. Marcel Dekker,Inc..Chow, S.C, Tse, S.K. (1990) Outlier detection in bioavailability/bioequivalence studies. Statistics in Medicine9, 549-58.Czado, C. (1992), "On Link Selection in Generalized Linear Models" in L. Fahrmeir et al: Advances in GLIM andStatistical Modelling, Proceedings of the GLIM 92 conference and the 7th International Workshop on StatisticalModelling, Munich, 13-17 July 1992, Lecture Notes in Statistics, Vol. 78, Springer Verlag, 60-65.Hauck, W.W. and Anderson, S. (1992), \Types of Bioequivalence and related statistical considerations," Bio-statistics Technical Reports #19, Department of Epidemiology and Biostatistics, University of California, SanFrancisco.Holder, D.J. and Hsuan, F. (1994), \Moment-based criteria for determining bioequivalence" Biometrika, 80,835-46.Mallows, C.L. (1972). A note on asymptotic joint normality. Annals Math. Stat.43, 508-15.14
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Figure 1: Mallow distance contours (F � N(0; 1); G � N(�; �)) for no trimming (|), 10% trimming(� � �) and 20% trimming (� �)
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Figure 4: Observed signi�cance level of the Mallow test for large n = m
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Figure 5: Observed power of the Mallow test at :75�o large n = m18
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Figure 6: Observed power of the equivalence t test at :75(1 � 2�)�1=2�o when n = m and equalvariances
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Figure 7: Observed signi�cance level of the Mallow test for small n = m19
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Figure 8: Observed power level of the Mallow test for small n = m
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Figure 9: Observed signi�cance level of the Mallow test when n = 100 and m 6= n20
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Figure 10: Observed power of the Mallow test at :75�o when n = 100 and n 6= m
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Figure 11: Observed power curves for  > 1 when m=n = 0:96 and :48 and 8% trimming is used21
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Figure 12: Observed power curves for  < 1 when m=n = 0:96 and 8% trimming is used
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Figure 13: Observed power curves for  < 1 when m=n = 0:96 and 16% trimming is used22


