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Zusammenfassung

Diese Dissertation befasst sich mit der statistischen Modellierung von Extremwerten in Raum
und Zeit. Dabei werden Daten durch einen stochastischen Prozess beschrieben, der auf der
stetigen Raum-Zeit Menge Rd × [0,∞) definiert wird.

Für die Modellierung von räumliche Extrema haben sich max-stabile Zufallsfelder als
besonders geeignet erwiesen. In dieser Arbeit werden stationäre, max-stabile Prozesse
vorgestellt, die zur Modellierung von Raum-Zeit Extrema verwendet werden können. Zu-
nächst wird ein solcher Prozess als Grenzwert von reskalierten, punktweisen Maxima un-
abhängiger Gauss Prozesse konstruiert. Die so entstehenden Prozesse sind mit einer Klasse
von Kovarianzfunktionen der zugrundeliegenden Gauss-Felder assoziiert. Das Analogon
zur Kovarianzfunktion für extreme Abhängigkeiten ist gegeben durch das so genannte Ex-
tremogramm. Der Zusammenhang zwischen der Kovarianzfunktion, die dem Gauss Prozess
zugrunde liegt, und dem Extremogramm wird detailliert herausgearbeitet, und verschiedene
Konstruktionsprinzipien für Raum-Zeit Kovarianzfunktionen werden analysiert. Unter an-
derem wird Gneitings Klasse von Kovarianzfunktionen in diesen Kontext eingearbeitet. Des
Weiteren wird Smiths Sturmprofilmodell in den Raum-Zeit Kontext übertragen und eine ex-
plizite Darstellung der bivariaten Verteilungsfunktionen bereitgestellt.

Nach Einführung von Raum-Zeit Parametern wird die paarweise Likelihood Schätzung
vorgestellt, bei der die bivariate Dichte des max-stabilen Prozesses verwendet wird. Starke
Konsistenz und asymptotische Normalität der Schätzer wird gezeigt unter der Annahme, dass
die Beobachtungsorte auf einem regulären Grid liegen. Es werden außerdem Erweiterungen
auf irregulär verteilte Beobachtungsorte diskutiert.

Des Weiteren wird eine alternative, semiparametrische Schätzmethode vorgestellt. Basie-
rend auf dem empirischen Extremogramm in Raum und Zeit werden die Parameter mit Hilfe
von gewichteter Regressionsverfahren geschätzt. Wir zeigen asymptotische Normalität der
Schätzer und verwenden Bootstrap Methoden zur Konstruktion von punktweisen Konfidenz-
intervallen.

Eine Simulationsstudie untersucht das Verhalten auf kleinen Stichproben und vergleicht
die vorgeschlagenen Schätzmethoden.

Abschließend wird das Raum-Zeit Modell und die Schätzmethoden auf Radar Regendaten
angewandt, um die extremen Eigenschaften der Daten zu quantifizieren.





Abstract

This thesis deals with the statistical modelling of extreme and rare events in space and time.
Max-stable processes have proved to be useful for the statistical modelling of spatial ex-
tremes. We introduce families of max-stable processes on the continuous space-time domain
Rd × [0,∞).

In a first step, we construct max-stable random fields as limits of rescaled pointwise max-
ima of independent Gaussian processes. Specific space-time covariance models, which sat-
isfy weak regularity assumptions are employed for the underlying Gaussian process. The
analogon of the covariance function for extremal dependence is called the extremogram. We
show how the spatio-temporal covariance function underlying the Gaussian process can be
interpreted in terms of the extremogram. Within this context, we examine different concepts
for constructing covariance functions in space and time, and analyse several specific exam-
ples, including Gneiting’s class of nonseparable stationary covariance functions. In addition
to the above construction, Smith’s storm profile model is defined for space-time domains, and
explicit expressions for the bivariate distribution functions are provided.

After introducing parameters for the max-stable space-time process, we establish pair-
wise likelihood estimation, where the pairwise density of the process is used to estimate the
model parameters. For regular grid observations we prove strong consistency and asymptotic
normality of the estimates as the joint number of spatial locations and time points tends to
infinity. Furthermore, we discuss extensions to irregularly spaced locations.

As an alternative to pairwise likelihood estimation we propose a semiparametric estima-
tion procedure based on a closed form expression of the extremogram. In particular, the
extremogram is estimated nonparametrically and constrained weighted linear regression is
applied to obtain the parameters of interest. We show asymptotic normality of the result-
ing estimates and discuss bootstrap methods to obtain pointwise confidence intervals for the
parameter estimates.

A simulation study illustrates the small sample behaviour of the procedures, and compares
the two different approaches for estimating the space-time parameters.

Finally, the introduced model and methods are applied to radar rainfall measurements in
order to quantify the extremal properties of the space-time observations.
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CHAPTER 1

INTRODUCTION

1.1 General introduction and motivation

In statistics, extreme value theory concentrates on the analysis and quantification of rare and
extreme events characterized by exceptionally large (or small) magnitudes compared to the
majority of the population. By nature, natural disasters like hurricanes, earthquakes, and
droughts leave destruction and chaos behind while passing over certain areas. As an exam-
ple, consider a tropical storm passing over some region at high wind speeds and with unusual
amount of rainfall. Extreme wind or rainfall observations exhibit a spatial dependence struc-
ture, meaning that neighbouring locations within some distance show similar patterns, as well
as temporal dependence, which can be seen from similar high values for two consecutive time
points (e.g. within hours). This thesis aims to develop models and methods which allow for a
detailed analysis of extreme events and the extremal space-time dependence structure. Before
stating the main results of this thesis, we start with a motivating example concerning rainfall
measurements introducing the main problems solved in this thesis.

Motivating example: Rainfall measurements

Heavy rainfall is one of the most important weather risks: Rainfall of extreme magnitude
can result in flooding or landslides which in turn threatens human life, disrupt transport and
communication, and damage buildings and infrastructure. Flood protection structures like
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1 Introduction

damns and sea walls are built such that they can withstand extreme hydrological events,
which might occur on average only every 100 years.

Figure 1.1.1 shows spatial block maxima of radar rainfall measurements observed on a
12 × 12 grid of size 10 km in a region in Florida, where each square corresponds to the
hourly accumulated spatial maxima of rainfall in inches. In particular, the spatial maxima
is calculated for a squared region containing 25 locations and the corresponding time series
for each maxima is used for further analysis. The plots show spatial maximal rainfall fields
for four consecutive hours (clockwise from the top left to the bottom left). For illustration,
the fields in Figure 1.1.1 were chosen such that they represent values of high magnitude
with respect to the majority of the data, which can be seen from the time series in Figure
1.1.2, where the highest values are close to 2. From the figures particular patterns for rainfall
processes can be detected. We see that neighbouring locations show similar magnitudes,
indicating that there is extremal spatial dependence in the data. On the other hand, the rainfall
fields for consecutive time points show that temporal dependence is present. Figure 1.1.2
shows the corresponding time series for one fixed grid location (7,7). We see that it is likely
that a high value is followed by a value with similar magnitude. In the following, we denote
by {Z(s, t), s ∈ Rd, t ∈ [0,∞)} the rainfall process, where Z(s, t) denotes the hourly rainfall at
location s ∈ Rd (consisting for example of latitude and longitude) and time point t ∈ [0,∞).
Typical questions arising for the rainfall data are the following:

• What is the probability P that the rainfall process at location s1 and time point t1 ex-
ceeds a high threshold z1, given that the process exceeds a high level z2 at another
location s2 and time point t2? In particular, how can we predict

P(Z(s1, t1) > z1 | Z(s2, t2) > z2)?

• What is the conditional return level zc with return period 1/pc of the rainfall process at
location s1 and time point t1, given that the process exceeds some threshold z at another
space-time location (s2, t2), i.e. what is the predicted level zc for which

P(Z(s1, t1) > zc | Z(s2, t2) > z) = pc?

• How can we simulate from the extremal rainfall space-time process?

In this thesis, we develop a statistical model together with inference procedures which aim

2



1.1 General introduction and motivation

to answer these questions.
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Figure 1.1.1: Spatial maxima of rainfall measurements in inches for four consecutive hours in the wet
season 2002 (clockwise from the top left to the bottom left). In particular, the maximum
in space is taken over a squared 5 × 5 region with size 2 km.
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Figure 1.1.2: Hourly accumulated rainfall measurements in inches for one fixed location (grid loca-
tion (7,7)) in the wet season 2002 (June to September).

1.2 Outline and main objective of this thesis

The main goal of this thesis is the development of a statistical model, which is able to capture
extremal dependence in space and time. In addition, procedures for statistical inference are
developed, analysed theoretically, tested for simulated data and applied to rainfall observa-
tions.

In the following, we denote by η = {η(s, t), s ∈ Rd, t ∈ [0,∞)} the stochastic process,
which is introduced to model extremes on the continuous space-time domain Rd × [0,∞). For
a specific location s ∈ Rd and some time point t ∈ [0,∞), η(s, t) denotes the value of interest.
The technical basis for modelling extremes as continuous space-time processes is given by
max-stable processes as natural extension of the generalized extreme value distributions to
infinite dimensions. The general definition is as follows. A stationary continuous space-time
process process {η(s, t), s ∈ Rd, t ∈ [0,∞)} is called max-stable if there exist sequences of
constants an(s, t) > 0 and bn(s, t) ∈ R for n ∈N, such thatan(s, t)−1

( n∨
j=1

η j(s, t) − bn(s, t)
)
, s ∈ Rd, t ∈ [0,∞)

 ,

where
∨n

j=1 x j = max{x j, j = 1, . . . , n}, is identical in distribution to {η(s, t), s ∈ Rd, t ∈

[0,∞)}, and η1, . . . , ηn are n independent replications of η. From the general definition, we

4



1.2 Outline and main objective of this thesis

derive special families of max-stable processes, which allow for the introduction of parame-
ters and further properties concerning the extremal space-time dependence structure. In the
following, we summarize the main results of this thesis.

Max-stable processes for extremes observed in space and time

Chapter 3 is based on the publication Davis, Klüppelberg and Steinkohl [26] and introduces
the space-time process used later on for modelling extremes in space and time.

So far, max-stable processes have mostly been used for the statistical modelling of spatial
data. Several examples can be found in the literature, see for example Coles [16] and Coles
and Tawn [18], who model extremal rainfall fields using max-stable processes. Another
application to rainfall data can be found in Padoan, Ribatet and Sisson [66], who also describe
a practicable pairwise likelihood estimation procedure. An interesting application to wind
gusts is shown in Coles and Walshaw [19], who use max-stable processes to model the angular
dependence for wind speed directions.

In the literature first approaches concerning the analysis and quantification of the extremal
behaviour of processes observed both in space and time, where a temporal dependence struc-
ture is taken into account, can be found. One idea can be found in Davis and Mikosch [22],
who study the extremal properties of a moving average process, where the coefficients and the
white-noise process depend on the location and the time point. Sang and Gelfand [74] pro-
pose a hierarchical modelling procedure, where on a latent stage spatio-temporal dependence
is included via the parameters of the generalized extreme value distribution. Extremes of
space-time Gaussian processes have been studied in Kabluchko [49]. He analyses processes
of the form supt′∈[0,tn] Z(sns, t′) for some suitable chosen space-time Gaussian process and
shows that the finite dimensional distributions of a properly scaled version converge to those
of a max-stable process. An application of combined methods from univariate and bivariate
extreme value theory to high frequency wind speed data measured at three masts is shown in
Steinkohl, Davis and Klüppelberg [80].

The idea of constructing max-stable random fields as limits of normalized and rescaled
pointwise maxima of Gaussian random fields was introduced in Kabluchko, Schlather and
de Haan [50], who construct max-stable random fields associated with a class of covariance

5



1 Introduction

functions. In particular, we consider the space-time process, defined by

ηn(s, t) =
n∨

j=1

−
1

log(Φ(Z j(sns, tnt)))
, s ∈ Rd, t ∈ [0,∞), (1.1)

where the positive scaling sequences (sn)n∈N and (tn)n∈N tend to zero as n → ∞, and Φ(·)

is the standard normal distribution function. In (1.1) {Z j(s, t), s ∈ Rd, t ∈ [0,∞) denote
independent replications of a Gaussian space-time process {Z(s, t), s ∈ Rd, t ∈ [0,∞)} with
correlation function γ satisfying

(log n)(1 − γ(sns, tnt))→ δ(s, t) > 0, n→ ∞. (1.2)

This regularity condition of the correlation function at 0 is taken from a fundamental result
in Hüsler and Reiss [47]. Under Condition (1.2), the sequence ηn converges weakly to the
max-stable process, defined by

η(s, t) =
∞∨

j=1

ξ j exp{W j(s, t) − δ(s, t)}, s ∈ Rd, t ∈ [0,∞), (1.3)

where ξ j denote points of a Poisson random measure, W j are independent replications of a
Gaussian process W with stationary increments and correlation function δ(s1, t1)+ δ(s2, t2)−

δ(s1 − s2, t1 − t2), and the function δ arises from (1.2). The max-stable process in (1.3) is
called Brown-Resnick process (see Brown and Resnick [14] and Kabluchko et al. [50]). The
main advantage of this approach is the fact, that we can easily simulate from the model by
taking pointwise maxima of independent realizations from a Gaussian space-time process
and rescaling properly.

In an earlier paper Smith [79] introduced another family of max-stable processes, which
became known as the storm profile model. The process is based on points of a Poisson
random measure

{
(ξ j, z j, x j), j ∈N

}
together with a kernel function f , which in particular

can be a centred Gaussian density. The max-stable process is then given by

η(s, t) =
∞∨

j=1

ξ j f (z j, x j; s, t), s ∈ Rd, t ∈ [0,∞).

For the construction in (1.1) we establish an explicit connection between the limit func-
tion δ(h, u), which arises from the correlation function underlying the Gaussian space-time

6



1.2 Outline and main objective of this thesis

process {Z(s, t), s ∈ Rd, t ∈ [0,∞)}, and the tail dependence coefficient of the max-stable
space-time process. Recently, the development of covariance models in space and time has
received much attention and there is now a large literature available for the construction of a
wide-range of spatio-temporal covariance functions. Examples can be found in Cressie and
Huang [21], Gneiting [43], Ma [63, 61], and Schlather [76]. Within this context, we introduce
a condition on correlation functions, generalized from the analysis of extremes for stationary
Gaussian processes (see for instance Leadbetter et al. [57], Chapter 12). The condition is
sufficient for (1.2), introduces parameters to the model and allows for an explicit expression
of the δ function,

δ(s, t) = θ1‖s‖α1 + θ2|t|α2 , s ∈ Rd, t ∈ [0,∞), (1.4)

where θ1, θ2 > 0 and α1,α2 ∈ (0, 2] denotes the parameters of interest, and ‖ · ‖ is an arbitrary
norm on Rd. This limit function occurs as large class of covariance functions. We show
how Gneiting’s class of nonseparable and isotropic covariance functions [43] fits into this
framework.

In addition, we examine spatial anisotropic correlation functions, which allow for direc-
tional dependence in the spatial components. Perhaps the easiest way to introduce anisotropy
in a model is to use geometric anisotropy. For a detailed introduction, we refer to Wack-
ernagel [88], Chapter 9. Using this concept in the underlying correlation function, we can
model anisotropy in the corresponding max-stable random field. Furthermore, we revisit a
more elaborate way of constructing anisotropic correlation models based on Bernstein func-
tions introduced in Porcu, Gregori and Mateu [70], called the Bernstein class.

Pairwise likelihood estimation for max-stable space-time processes

The main difficulty in deriving parameter estimates in max-stable processes is the fact that
the finite-dimensional distribution functions and, thus, the densities are intractable, which
precludes the use of standard maximum likelihood procedures. On the other hand, pairwise
likelihood methods, where only the pairwise density is needed, can be implemented. These
methods go back to Besag [8] and Godambe [44], and there is an extensive literature available
dealing with applications and properties of the estimates, see for example Cox and Reid [20],
Lindsay [60], Varin[86], or Varin and Vidoni [87]. Recent work concerning the application of
pairwise likelihood methods to max-stable random fields can be found in Huser and Davison
[46] and Padoan, Ribatet and Sisson [66].

In Chapter 4 results are presented concerning statistical inference using pairwise likelihood

7



1 Introduction

methods, taken from Davis, Klüppelberg and Steinkohl [27]. In particular, we study pairwise
likelihood methods for the Brown-Resnick process defined in (1.3) with δ given in (1.4).
The pairwise likelihood function for a general setting with M locations and T time points is
defined as a function of the parameter vector ψ = (θ1,α1, θ2,α2) by

PL(M,T )(ψ) =
M−1∑
i=1

M∑
j=i+1

T−1∑
k=1

T∑
l=k+1

w(M)
i, j w(T )

k,l log fψ(η(si, tk), η(s j, tl)),

where w(M)
i, j ≥ 0 and w(T )

k,l ≥ 0 denote spatial and temporal weights, respectively, and fψ is
the bivariate density of the max-stable space-time process containing the parameter vector
ψ = (θ1,α1, θ2,α2). The estimates are obtained by maximizing PL(M,T )(ψ) with respect to
ψ:

ψ̂ = arg max
ψ

PL(M,T )(ψ).

We start by showing asymptotic properties of the estimates for an increasing number of
space-time observations if locations lie on a regular grid, i.e. the set of locations is given
by {(i1, . . . , id), i1, . . . , id ∈ {1, . . . , m}}, and for equidistant time points. In particular, we
show strong consistency

ψ̂
a.s.
→ ψ∗, M, T → ∞,

where
a.s.
→ denotes almost sure convergence and ψ∗ is the true parameter vector, and asymp-

totic normality of the estimates,

(MT )1/2(ψ̂ − ψ∗)
d
→ N(0, F−1ΣF−1ᵀ), M, T → ∞,

where
d
→ is convergence in distribution, and F−1ΣF−1ᵀ is some covariance matrix. In con-

trast to previous studies we assume a spatial and temporal dependence structure and show the
asymptotic properties for a jointly increasing number of spatial locations and time points. In
addition, theorems in the literature addressing asymptotic properties for pairwise likelihood
estimates often have restrictive assumptions, such as finite moment conditions of high order,
which might not be reasonable in practical applications. For the setting considered in this
thesis very weak assumptions are sufficient. In addition to the results described above, we
discuss extensions to settings, where locations are irregularly spaced. For example, we con-
sider a deterministic irregularly spaced grid, and randomly spaced locations generated by a
Poisson process.
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1.2 Outline and main objective of this thesis

A semiparametric estimation procedure for the estimation of the parameters in a

max-stable space-time process

As we will see in the simulation study, pairwise likelihood estimation is a reliable way of
estimating the parameters of a max-stable process. Some disadvantages should be mentioned
here. First, the computation time for evaluating the pairwise likelihood function is rather
high and the maximization of the pairwise likelihood function requires optimization routines
for which accurate starting values are needed. In addition, the asymptotic variance of the
parameter estimates is analytically intractable which leads to the use of resampling methods
like the bootstrap. These methods sample from the data, and parameters are estimated based
on the resampled data. The computation time for the usage of such methods is extensive.

The structure of the Brown-Resnick process in (1.3) allows us to introduce a new semi-
parametric estimation procedure for the parameters, which provides a fast method to estimate
the parameters. The semiparametric estimates could be used as starting values for the op-
timization algorithm used to maximize the pairwise log-likelihood function. The following
results are taken from Davis, Klüppelberg and Steinkohl [28]. The method is based on the
extremogram, which is the natural extreme analogue of the correlation function of a station-
ary process. It was introduced in Davis and Mikosch [23] and extended to a spatial setting
in Cho, Davis and Ghosh [15]. A special case was also considered in Fasen, Klüppelberg
and Schlather [37]. The extremogram for a stationary space-time process {X(s, t), (s, t) ∈

Rd × [0,∞)} is defined by

ρAB(r, u) = lim
z→∞

P
(
z−1X(s, t) ∈ A, z−1X(s + h, t + u) ∈ B

)
P (z−1X(s, t) ∈ A)

, min{r = ‖h‖, u} ≥ 0,

where A and B are Borel sets bounded away from 0. The special case A = B = (1,∞) is
known as the tail dependence coefficient and can be calculated for the Brown-Resnick process
in (1.3) as

ρ(1,∞)(1,∞)(r, u) = 2(1 −Φ(
√
θ1rα1 + θ2uα2)),

with parameters θ1,α1, θ2 and α2, where r = ‖h‖ is the spatial lag and u is the time lag.
Setting, for example, the temporal lag u equal to zero and transforming the equation leads to

2 log
(
Φ−1

(
1 −

1
2
χ(r, 0)

))
= log(θ1) + α1 log(r),

9



1 Introduction

which is a linear function in log(r). Given a nonparametric estimate for ρ(1,∞)(1,∞)(r, 0),
the parameters can be estimated by the method of least squares. The same approach works
for the temporal parameters θ2 and α2. As for the pairwise likelihood method we show that
the estimates are asymptotically normal. Since the resulting asymptotic covariance matrices
for the parameter estimates are intractable we apply bootstrap procedures as done for the
extremogram in Davis, Mikosch and Cribben [25] to obtain pointwise confidence intervals
for the parameters.

Outline of the thesis

After stating some preliminaries on univariate and multivariate extreme value theory together
with fundamentals for space-time processes in Chapter 2, we develop the max-stable space-
time process, which is used throughout this thesis in Chapter 3. Statistical inference proce-
dures are described and analysed in Chapters 4 and 5. In Chapter 4 we introduce pairwise
likelihood estimation and show strong consistency and asymptotic normality of the param-
eter estimates. Chapter 5 introduces a semiparametric estimation procedure based on the
extremogram. A simulation study in Chapter 6 illustrates the small sample behaviour of the
estimation methods developed in Chapters 4 and 5. In Chapter 7 we return to the radar rain-
fall measurements described in the motivating example and quantify the extremal behaviour
using the process and methods introduced in this thesis.

1.3 Open problems for future research

To conclude the introduction, we would like to mention some problems which are subject to
future research.

Nonseparability of parameters in the extremes

In this thesis, we assume that the correlation function of the Gaussian process in the con-
struction of the max-stable space-time process (cf. (1.1)) has an expansion around zero, such
that the δ function describing the extremal space-time dependence is given by δ(h, u) =

θ1‖h‖α1 + θ2|u|α2 . This assumption is satisfied by a large class of correlation functions. In
Chapter 3 we see that even for nonseparable correlation models like Gneiting’s class, the spa-
tial parameters θ1 and α1 separate from the temporal parameters θ2 and α2 in the described
way. This property allows us to estimate the spatial and temporal parameters separately by

10



1.3 Open problems for future research

setting either the spatial or the temporal lag equal to zero. A possible extension of our model
is to assume that some of the spatial parameters depend on the temporal lag u and that the
temporal parameters are modelled as a function of the spatial lag ‖h‖. For example, we could
model the δ function by

δ(h, u) = θ1(u)‖h‖α1 + θ2(‖h‖)|u|α2 ,

for suitable relationships for the parameters and the space-time lags.

Introducing anisoptropy

In Chapter 3 we show how spatial anisotropy can be introduced to the max-stable space-time
process in (1.3). In particular, using anisotropic correlation functions in the underlying Gaus-
sian process in the construction of the max-stable process (see (1.1)) relate to an anisotropic
structure in the extremogram of the limit process. For given data, it might be important to
check whether the extremes in space and time have directional dependence. One possibil-
ity is as follows. First, parameters have to be introduced to the model, which describe the
anisotropic behaviour. Pairwise likelihood estimation is a possible method to estimate these
parameters, but one has to be careful with the identifiability of the pairwise densities, which
might cast problems if more parameters are introduced. Once, the parameters are estimated,
one could test whether they have a significant influence for the given data.

Nonstationary max-stable space-time processes

Throughout the thesis we assume that the considered process is stationary in space and time.
This is needed as usual in all proofs concerning properties of the estimates from pairwise
likelihood and the semiparametric estimation procedure. The analysis of high frequency
wind speed (cf. Steinkohl et al. [80]) shows for example, that wind speed time series are
nonstationary, which is clearly the case for many environmental data. A topic for future
research is, therefore, the extension of the max-stable space-time process developed to the
nonstationary case. One possibility is to assume a nonstationary correlation function C, which
satisfies

(log n)(1 −C(sns1, tnt1; sns2, tnt2))→ δ(s1, t1; s2, t2), n→ ∞,

and δ does not only depend on the space-time lag (s1 − s2, t1 − t2). One has to check whether
the theoretical results still hold for this setting.

11





CHAPTER 2

PRELIMINARIES ON EXTREME VALUE
THEORY AND SPACE-TIME

MODELLING

This chapter introduces theoretical fundamentals, which will be used in the following Chap-
ters. After reviewing well-known results in univariate and multivariate extreme value theory,
max-stable processes are defined, which build the technical basis for models developed in
this thesis. In addition, we state some general definitions for space-time processes, which
will be frequently used. Furthermore, we describe how Gaussian space-time processes can
be simulated using circular embedding.

2.1 Extreme value theory

2.1.1 Univariate extreme value theory

Classical results in extreme value theory

Univariate extreme value theory is well established and detailed introductions can be found
in textbooks and lecture notes. Well-known representatives are for example Beirlant et al.
[7], Coles [17], Embrechts, Klüppelberg and Mikosch [36], de Haan and Ferreira [30] and

13



2 Preliminaries on extreme value theory and space-time modelling

Leadbetter, Lindgren and Rootzén [57]. We start with the fundamental theorem, which intro-
duces the generalized extreme value distribution (GEV) as appropriate limit distribution for
rescaled maxima of independent and identical distributed (iid) random variables.

Theorem 2.1 (Fisher Tippett [39], Gnedenko[42]). Let X1, . . . , Xn be iid random variables

with distribution function F. Assume there exist sequences of constants (an)n∈N > 0 and

(bn)n∈N ∈ R, and a non-degenerate distribution function G such that for all x ∈ R, for

which the limit is continuous,

P


n∨

i=1
Xi − bn

an
≤ x

→ G(x), as n→ ∞, (2.1)

where
∨n

i=1 xi = max{xi, i = 1, . . . , n}. Then, G has the representation:

G(x) =


exp

{
−

(
1 + ξ

x−µ
σ

)−1/ξ
}

, ξ , 0,

exp
{
−e−

x−µ
σ

}
, ξ = 0,

(2.2)

provided that 1 + ξ
x−µ
σ > 0, σ > 0 and µ, ξ ∈ R. We say that F is in the maximum domain of

attraction of G.

The variables σ > 0 and µ ∈ R denote scale and location parameters, respectively. The
shape parameter ξ ∈ R determines the tail behaviour of the distribution. Accordingly, it
divides the GEV in the following three standardized families of distributions.

Type I (Gumbel, ξ = 0) : G(x) = exp
{
−e−x

}
, x ∈ R,

Type II (Fréchet, ξ = α−1 > 0) : G(x) =

0, x < 0,

exp
{
−x−α

}
, x ≥ 0,

Type III (Weibull, ξ = −α−1 < 0) : G(x) =

exp
{
−(−x)α

}
, x ≤ 0,

1, x ≥ 0.

Figure 2.1.1 visualizes the densities of the three families.
An important characterization of extreme value distributions is max-stability.

Definition 2.1 (Max-stability). A distribution function G is called max-stable if for all inte-
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Figure 2.1.1: Densities of the GEV distributions

gers k ∈N there exist sequences of constants (αk)k∈N > 0 and (βk)k∈N ∈ R, such that

Gk(αkx + βk) = G(x), k ∈N.

Equivalently, if X1, . . . , Xk are iid random variables with distribution function G, then G is

max-stable if there exist (αk)k∈N > 0 and (βk)k∈N ∈ R such that (
∨k

i=1 Xi − βk)/αk is

identical in distribution to X1.

The following theorem is fundamental for the generalization of univariate extreme value
distributions to multivariate and infinite dimensions. A proof can be found for example in
Embrechts et al. [36].

Theorem 2.2. A distribution function G is max-stable if and only if it is a generalized extreme

value distribution.

Example 2.1. For later purposes we present results for the standard normal distribution. In
particular, defining the sequences (an)n∈N and (bn)n∈N by

bn = (2 log n − log log n − 4 log(4π))1/2,

an = 1/bn,

15



2 Preliminaries on extreme value theory and space-time modelling

for n ∈N, it follows that

lim
n→∞

n(1 −Φ(anx + bn)) = e−x, x ∈ R,

where Φ is the standard normal distribution function. This implies that the normal distribution
is in the Gumbel (Type I) domain of attraction. A proof of this result can be found in de Haan
and Ferreira [30].

For modelling purposes we state the following important result, which relates the asymp-
totic distribution of maxima to the distribution of threshold exceedances.

Theorem 2.3. The distribution function F is in the domain of attraction of the extreme value

distribution G with shape parameter ξ, if and only if there exists a positive function f such

that

lim
u→x∗

1 − F(u + x f (u))
1 − F(u)

=

(1 + ξx)−1/ξ, ξ , 0,

e−x, ξ = 0,

where x∗ = sup{x : F(x) < 1} is the upper right endpoint of F.

Remark 2.1. The excess distribution equals

P(X > x) = P(X > u)P(X > x − u | X > u) = P(X > u)
1 − F(u + x)

1 − F(u)

= P(X > u)
1 − F(u + x f (u)/ f (u))

1 − F(u)
.

By using Theorem 2.3 and interpreting 1/ f (u) as scale parameter σ̃ > 0, the conditional
distribution P(X ≤ x − u | X > u) can be approximated by

GPD(x) =

1 −
(
1 + ξx

σ̃

)−1/ξ
, ξ > 0, x ∈ (0,∞) or ξ < 0, x ∈ (0,−x/ξ),

1 − e−x/σ̃, ξ = 0, x ∈ (0,∞).

This distribution function is called generalized Pareto distribution (GPD). Note, that the pa-
rameters of the corresponding GEV distribution µ, ξ and σ are linked to the GPD parameter
σ̃ through σ̃ = σ+ ξ(u − µ). The shape parameter ξ is the same in both distributions.
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2.1 Extreme value theory

Statistical modelling of univariate extremes

We describe two methods for modelling univariate extreme values, which will be applied to
the rain data in Chapter 7. First, we describe the estimation based on block maxima. Let
Z1, . . . , Zk/n denote sample maxima with block length k based on observations X1, . . . , Xn,
i.e. Z j =

∨k j
l=k( j−1)+1

Xl for j = 1, . . . , k/n. The parameters of the GEV can be estimated
using maximum-likelihood estimation, where the log-likelihood function, given by

l(µ,σ, ξ) = −
k
n

log(σ) + (1/ξ+ 1)
k/n∑
j=1

log
(
1 + ξ

Z j − µ

σ

)
−

k/n∑
j=1

(
1 + ξ

Z j − µ

σ

)−1/ξ

,

provided that 1 + ξ(Z j − µ)/σ > 0 for j = 1, . . . , k/n, is maximized.

An important application of extreme value theory is the prediction of extreme return levels,
which are defined as the level zp for which the probability that the underlying random variable
exceeds zp is equal to a prespecified value p ∈ (0, 1), i.e. P(X > zp) = p. The value 1/p is
called return period. Return levels with long return period, i.e. for very low values of p can
be predicted by using the quantiles resulting from the fitted GEV. In particular, the predicted
1/p-return level is given by

ẑp = µ̂ −
σ̂

ξ̂
(1 − (− log(1 − p)))−ξ̂.

Note, that the description above holds for ξ , 0. For shape parameter estimates close to zero
one should check whether the GEV with ξ = 0 is more appropriate. We refer to Coles [17]
for more information.

Another way to quantify the extremal behavior of data is to model threshold exceedances
instead of block maxima. Let X1, . . . , Xn be independent random variables with distribution
function F ∈ MDA(G) and define

Nu = #{i ∈ {1, . . . , n} : Xi > u}

as the number of exceedances Y1, . . . , YNu , where Y j = X j − u, if X j > u, j = 1, . . . , Nu.
From Theorem 2.3 and Remark 2.1 the conditional excess distribution P(X − u > x | X > u)

can be approximated by a GPD. Using threshold exceedances, the parameters σ̃ and ξ are
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2 Preliminaries on extreme value theory and space-time modelling

estimated by maximizing the log-likelihood function

l(σ̃, ξ) = −Nu log(σ̃) − (1/ξ+ 1)
Nu∑
j=1

log
(
1 + ξ

Y j

σ̃

)
,

with respect to σ̃ > 0 and ξ ∈ R. An estimate for the excess distribution P(X > x) is then
given by

P̂(X > x) =
Nu

n

(
1 + ξ̂

x − u
ˆ̃σ

)−1/ξ̂
,

where Nu/n approximates the probability P(X > u). Return levels are predicted by

ẑp =
ˆ̃σ
ξ̂

(( n
Nu

(1 − p)
)−ξ̂
− 1

)
+ u.

2.1.2 Point processes and regular variation

For the definition of max-stable processes and further properties of extreme value distribu-
tions we introduce point processes and the relation to extreme value distributions. If not stated
differently, the following definitions and results are taken from Resnick [71, 72, 73]. Suppose
(Ω,F , P) is a probability space and S is a subspace of the Euclidean space with Borel σ-
algebra S. Let further Mp(S ) denote the set of all measures µ on (Ω,F , P) with µ(A) ∈ N

for all A ∈ F , and letMp(S ) be the Borel σ-algebra of subsets of Mp(S ) generated by open
sets. Formally, a point process N with state space S is a measurable mapping from (Ω,F )
to (Mp(S ),Mp(S )). A more intuitive representation of point processes is given as follows.
Let {Xn, n ≥ 0} denote random points in the space S . For Xn, n ≥ 0, we define the discrete
measure εXn : S → {0, 1} by

εXn(A) =

1, Xn ∈ A,

0, Xn < A,

called Dirac measure. A point process on (S ,S) is defined as the counting measure N with

N(·) =
∑
n≥0

εXn(·),

and N(A) < ∞ for A ∈ S compact, i.e. N is a Radon measure. For A ∈ F , N(A) is the
random number of points Xn falling into the set A.
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2.1 Extreme value theory

Definition 2.2 (Poisson Point process). A point process N on (S ,S) is called Poisson process
or Poisson random measure with mean measure µ, denoted by PRM(µ), if

1. For A ∈ S

P(N(A) = x) =


1
x!e
−µ(A)(µ(A))x, µ(A) < ∞,

0, µ(A) = ∞.

2. The random variables N(A1), . . . , N(Am) are independent for disjoint A1, . . . , Am ∈ S,

m ∈N.

A Poisson random measure is called homogeneous if the mean measure is a multiple of the
Lebesgue measure.

In order to connect point processes to extreme value theory, we define point process con-
vergence. The definition is taken from Embrechts et al. [36], Chapter 5.

Definition 2.3 (Weak convergence of point processes). Let N, N1, N2, . . . denote point pro-

cesses on (S ,S). The sequence of point processes (Nn) converges weakly to N in Mp(S ),

denoted by Nn ⇒ N, if

P(Nn(A1) = x1, . . . , Nn(Am) = xm)→ P(N(A1) = x1, . . . , N(Am) = xm), n→ ∞,

for all possible choices of sets A j ∈ S for which P(N(∂A j) = 0) = 1, j = 1, . . . , m,

m ∈ N and ∂A j denotes the boundary of A j, i.e. for weak convergence of point processes it

is sufficient to show convergence of the finite-dimensional distributions.

We connect weak convergence of Poisson random measures with the convergence of their
mean measure. To do so, we introduce vague convergence for random measures.

Definition 2.4 (Vague convergence). Let µn, µ be non-negative Radon measures on (S ,S),
i.e. µn(K) < ∞, µ(K) < ∞ for bounded Borel sets K ∈ S. µn converges vaguely to µ,

µn
ν
→ µ, if ∫

S

f (x)µn(dx)→
∫
S

f (x)dµ(dx), n→ ∞,

for all continuous non-negative functions f : S → R+ with compact support, i.e. there exists

K ⊂ S such that f (x) = 0 for all x ∈ S \K.

Useful characterizations of vague convergence can be found in Resnick [71], Chapter 3.4.
For Poisson random measures the following theorem summarizes some basic convergence
facts.
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2 Preliminaries on extreme value theory and space-time modelling

Theorem 2.4. The following statements hold

1. Let N, N1, N2, . . . denote a sequence of Poisson random measures with mean measures

µ, µ1, µ2, ..., i.e. N j = PRM(µ j). Then,

Nn ⇒ N if and only if µn
ν
→ µ, n→ ∞.

2. Let Xn, j be iid random variables on (S ,S) and N = PRM(µ) on (S ,S). Define

Nn =
n∑

j=1
εXn, j . Then,

Nn ⇒ N if and only if nP(Xn,1 ∈ ·)
ν
→ µ(·), n→ ∞.

3. Let Xn, j be iid random variables on (S ,S) and let ξ be a PRM on [0,∞)× S with mean

measure dt × dµ, i.e. for t > s and µ(A) < ∞

P(ξ((s, t] × A) = x) = (t − s)e−µ(A)µ(A)x/x!.

Define further ξn =
∞∑

j=1
ε( j/n,Xn, j). Then,

ξn ⇒ ξ if and only if nP(Xn,1 ∈ ·)
ν
→ µ(·), n→ ∞.

As a last step we define regularly varying functions and explain the relationship between
point processes, regular variation and extreme values.

Definition 2.5 (Regular variation). A function f : R+ → R+ is called regularly varying with

index α > 0 if
f (tx)
f (x)

→ x−α, t → ∞.

The following theorem shows the connection of the Fréchet domain of attraction, regular
variation and point process convergence.

Theorem 2.5. Let X1, X2, . . . denote non-negative iid random variables with distribution

function F. Then, the following statements are equivalent:
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2.1 Extreme value theory

1. F is in the maximum domain of attraction of a Type II (Fréchet) extreme value distri-

bution, i.e. there exists an > 0 such that

Fn(anx)→ exp(−x−α), n→ ∞.

2. The tail distribution 1 − F is regularly varying with index −α.

3. There exists a sequence an > 0 such that

ξn =
∞∑

j=1

ε( j/n,X j/an) ⇒ ξ = PRM(dt × dνα), n→ ∞,

where να(x,∞) = x−α, x > 0.

2.1.3 Multivariate extreme value distributions

So far, we introduced the generalized extreme value distribution as the limit distribution of
maxima of univariate random variables. To extend the theory to multivariate random vectors
we introduce the following notation. Let Xi = (Xi,1, . . . , Xi,d), i = 1, . . . , n denote iid d-
variate random vectors with common distribution function F. The vector of componentwise
maxima is defined as

Mn =
n∨

i=1

Xi =

( n∨
i=1

Xi,1, . . . ,
n∨

i=1

Xi,d

)
,

where X ≤ x, if Xi ≤ xi, i = 1, . . . , n, componentwise. The main objective is to characterize
the limit distribution G, for which

Fn(anx + bn)→ G(x), n→ ∞, (2.3)

where an > 0 and bn ∈ Rd are sequences of normalizing constants. The distribution function
G in (2.3) is called multivariate extreme value distribution. A first observation from (2.3) is
the fact that the marginal distributions of G have to be univariate extreme value distributions,
i.e.

Fn
j (a j,nx j + b j,n)→ G(∞, . . . ,∞, x j,∞, . . . ,∞) = G j(x j), n→ ∞.

Using the probability integral transform one can always achieve standardized marginal dis-
tributions. Assume that G is a multivariate distribution function with continuous marginal

21



2 Preliminaries on extreme value theory and space-time modelling

distributions G j, j = 1, . . . , d. Then, the transformations

T (I)
j (y) = − log(− log(G j(y))),

T (II)
j (y) = −

1
log G j(y)

,

T (III)
j (y) = log(G j(y)),

induce multivariate distributions

G(I)(y1, . . . , yd) = G(T (I)
1 (y1), T (I)

2 (y2), . . . , T (I)
d (yd))

G(II)(y1, . . . , yd) = G(T (II)
1 (y1), T (II)

2 (y2), . . . , T (II)
d (yd))

G(III)(y1, . . . , yd) = G(T (III)
1 (y1), T (III)

2 (y2), . . . , T (III)
d (yd))

with standard Gumbel, Fréchet and Weibull marginal distributions, respectively. In addition,
G(I), G(II) and G(III) are multivariate extreme value distributions if and only if G is one.

As in the univariate case, max-stable distributions are defined as distributions for which
there exist sequences of constants αk > 0 and βk ∈ Rd such that

Gk(αkx + βk) = G(x)

for all k ∈N.

Theorem 2.6. The class of multivariate extreme value distributions satisfying (2.3) coincides

with the class of max-stable distribution functions.

A proof of this result can be found in Resnick [71], Chapter 5. We give one characterization
of multivariate extreme value distributions with standardized marginal distributions, which is
due to Pickands [67] and de Haan and Resnick [32].

Theorem 2.7. The distribution function G is a multivariate extreme value distribution with

standard Fréchet marginals, i.e. G j(x j) = e−1/x, x > 0, if and only if there exists a finite

measure H on the unit sphere BH = {x ∈ [0,∞)\{0} : ‖x‖ = 1} for an arbitrary norm

‖ · ‖ ∈ Rd such that

G(x) = exp{−V(x)} = exp
{
−

∫
BH

d∨
j=1

ω j

x j
H(dω)

}
, (2.4)
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2.1 Extreme value theory

where the measure H satisfies ∫
BH

ω jH(dω) = 1.

The measure resulting from the representation in (2.4), given by

ν((0, x]c) = V(x) =
∫
BH

d∨
j=1

ω j

x j
H(dω), (2.5)

is called exponent measure. We introduce two well-known extremal dependence measures
resulting from the representation in (2.4). For more information we refer to Beirlant et al.
[7]. The stable tail dependence function is defined by

L(x1, . . . , xd) = V(1/x1, . . . , 1/xd).

We list some properties of the stable tail dependence function.

• L is continuous and convex.

•
d∨

j=1
x j ≤ L(x1, . . . , xd) ≤

d∑
j=1

x j. The boundaries correspond to complete dependence

on the left and independence on the right.

• L(0, . . . , 0, 1, 0, . . . , 0) = 1.

• L(sx) = sL(x), s > 0.

• L determines the copula of an extreme value distribution, i.e. the distribution of
(G1(x1), . . . , Gd(xd)),

C(u) = exp{−L(− log(u1), . . . ,− log(ud))}

Another measure of dependence is Pickands dependence function, which is defined on the

unit simplex {(u1, . . . , ud−1) ∈ [0, 1]d−1 :
d−1∑
j=1

u j ≤ 1} by

A(u1, . . . , ud−1) =

∫
BH

max
{
ω1u1, . . . ,ωd−1ud−1,ωd

(
1 −

d−1∑
j=1

u j

)}
H(dω).
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2 Preliminaries on extreme value theory and space-time modelling

Using the representation of G in (2.4) Pickands dependence function determines G by the
following relation.

G(x) = exp
{
−

( d∑
j=1

1
x j

)
A

(
1/x1∑d

k=1 1/xk
, . . . ,

1/xd∑d
k=1 1/xk

)}

Pickands dependence function satisfies some important properties listed below.

• A is continuous and convex.

• 1/d ≤ max{u1, . . . , ud−1, 1 −
∑d−1

j=1 u j} ≤ A(u1, . . . , ud−1) ≤ 1. The lower bound again
corresponds to complete dependence and the upper bound to independence.

• A(0, . . . , 0, 1, 0, . . . , 0) = 1 and A(0) = 1.

For the estimation of extremal dependence functions several nonparametric and parametric
procedures have been developed, see Beirlant et al. [7], Chapter 8, for an overview of existing
models and methods. We just mention two parametric models in the example below.

Example 2.2. The first example is the multivariate symmetric logistic model, defined through
the stable tail dependence function by

L(x1, . . . , xd) = (x1/α
1 + · · ·+ x1/α

d )α

with parameter 0 < α ≤ 1. Originally, the logistic model was defined in Gumbel [45].
An extension of the logistic model, which is able to allow for the exchangeability of the
parameters in two dimensions is given in Tawn [84]. The so-called asymmetric logistic model

is defined by

L(x1, x2) = (1 − θ1)x1 + (1 − θ2)x2 + ((θ1x1)
1/α + (θ2x2)

1/α)α

with parameters 0 < θ1, θ2,α ≤ 1. A multivariate extension of the asymmetric logistic model
can be found in Tawn [85]. Figure 2.1.2 shows Pickands dependence function for the logistic
(left) and the asymmetric logistic (right) model in the two dimensional case.

To complete the theory of multivariate extreme values we introduce the notion of multi-
variate regular variation and make the connection to point processes. In Resnick [73] mul-
tivariate regular variation is defined for distributions on cones. We restrict ourselves to the
cone [0,∞)\{0}, since this is the corresponding domain for extreme value distributions.
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Figure 2.1.2: Pickands dependence function for the logistic (left) and the asymmetric logistic model
(right) and different sets of parameters.

Definition 2.6 (Multivariate regular variation). The random vector X = (X1, . . . , Xd) is

called multivariate regularly varying if there exists a sequence an → ∞, an > 0 and a nonzero

Radon measure ν on B([0,∞)\{0}), called the limit measure, such that

nP(a−1
n X ∈ ·)

ν
→ ν(·), n→ ∞

onB([0,∞)\{0}). Equivalently, X is regularly varying if there exists a(t)→ ∞ and a nonzero

Radon measure ν such that

tP(a(t)−1X ∈ ·)
ν
→ ν(·), t → ∞.

The sequence (an)n∈N can be defined by

an = inf{z ≥ 0 : P(‖X‖ > an) ∼ n−1},

where ∼ denotes asymptotic equivalence. Assume, the marginal distributions are standard
Fréchet, that the maximum norm is used, and that c > 0 is some constant. Then,

nP(‖X‖ > an) = nP( max
j=1,...,d

X j > an) = nP(∃ j : X j > an)
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2 Preliminaries on extreme value theory and space-time modelling

≤ n
d∑

j=1

P(X1 > an) = nd(1 − e−1/an) ∼
nd
an
→ c, n→ ∞,

if and only if an ∼ n.
In order to make statements about the domain of attraction of some distribution function

F, we need to standardize the marginal distributions of F as well. For the Fréchet domain of
attraction consider the transformation U j = 1/(1 − F j), j = 1, . . . , d. Then,

F∗(x) = F(U←1 (x1), . . . , U←d (xd)) (2.6)

is in the domain of attraction of some extreme value distribution G with Fréchet marginals, if
and only if F∗ is in the domain of attraction of G. The following proposition describes the re-
lations between multivariate regular variation and the multivariate extreme value distribution.
It is taken from Resnick [71], Proposition 5.17.

Proposition 2.1. Assume that G is a multivariate extreme value distribution with standard

Fréchet marginal distributions. Further let X∗ denote a random vector with distribution

function F∗ as defined in (2.6). The following statements are equivalent.

1. F∗ is in the maximum domain of attraction of G.

2. X∗ is multivariate regularly varying on [0,∞)\{0} with limit distribution ν, i.e.

nP(n−1X∗ ∈ ·)
ν
→ ν(·), where ν is the exponent measure in (2.5).

3. nP((n−1‖X∗‖, ‖X∗‖−1X∗) ∈ ·)
ν
→ r−2dr × H on (0,∞] × BH , where H is the measure

in (2.4).

2.1.4 Definition and families of max-stable processes

Max-stable processes form the natural extension of the multivariate extreme value distribution
to infinite dimensions. Detailed introductions and different families of stationary max-stable
processes have been developed for example in Brown and Resnick [14], Deheuvels [33], de
Haan [29], de Haan and Pickands [31], Kabluchko, Schlather and de Haan [50] and Schlather
[75]. We start with the definition of max-stable processes.

Definition 2.7 (Max-stable process). In the following, let {Xt, t ∈ T } denote a continuous

stationary stochastic process, where T is an arbitrary index set. The process is called max-
stable if there exist sequences of constants an,t > 0 and bn,t ∈ R for n ≥ 1 and t ∈ T, such
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2.1 Extreme value theory

that 
∨n

j=1 X j,t − bn,t

an,t
, t ∈ T

 ,

is identical in distribution to {Xt, t ∈ T }, where X1,t, . . . , Xn,t are n independent replications

of the process {Xt, t ∈ T }.

Remark 2.2. From the definition it immediately follows, that all finite-dimensional distribu-
tions must be multivariate extreme value distributions. In particular, the marginal distribu-
tions are GEVs. In the following we will assume that the marginal distributions are standard
Fréchet, i.e.

P(Xt ≤ x) = exp{−1/x}, x > 0, t ∈ T .

The definition of max-stable processes simplifies to the following condition:
The process {Xt, t ∈ T } with standard Fréchet marginals is max-stable if {

∨n
j=1 X j,t/n, t ∈

T } is identical in distribution to {Xt, t ∈ T }. To show that a process with standard Fréchet
marginals is max-stable, it suffices to verify that

(P(Xt1 ≤ kx1, . . . , Xtn ≤ kxn))
k = P(Xt1 ≤ x1, . . . , Xtn ≤ xn). (2.7)

for all 0 ≤ t1 < · · · < tn, k, n ∈N and x1, . . . , xn > 0.

We describe three families of max-stable processes which have been suggested in the liter-
ature.

Smith’s storm profile model

The first model was originally introduced in de Haan [29] and further analysed in Smith [79].
Let

{
(ξ j, x j), j ≥ 1

}
denote points of a Poisson random measure on (0,∞) × X with intensity

measure ξ−2dξ × λ(dx), where X is a measurable set and λ denotes Lebesgue measure on X.
Further assume that ft, t ∈ T is a non-negative function on X for which∫

X

ft(x)dx = 1, t ∈ T .

Then, the process defined by

ηt =
∞∨

j=1

ξ j ft(x j), t ∈ T , (2.8)
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2 Preliminaries on extreme value theory and space-time modelling

is max-stable. To see this, one shows (2.7) by using properties of the Poisson process (see
Section 2.1.2). For t1, . . . , tn ∈ T and y1, . . . , yn > 0 it holds

(P(ηt1 ≤ ky1, . . . , ηtn ≤ kyn))
k

=

P
(
ξ j ≤

n∧
l=1

kyl

ftl(x j)
, j = 1, 2, . . .

)k

=

P
(
no points of the Poisson process above the function g(x) =

n∧
l=1

kyl/ ftl(x)
)k

=

exp

−
∫
X

∞∫
0

1{ξ>
∧n

l=1 ky j/ ft(x)}ξ
−2dξdx


 = exp

−
∫
X

n∨
l=1

ftl(x)
yl

dx


= P(ηt1 ≤ y1, . . . , ηtn ≤ yn).

The above derivation also shows how the finite-dimensional distribution function can be
calculated. The most popular choice for the function ft is the density of a normal distribution,
i.e.

ft(x) = f0(x − t) =
1
√

2πσ
exp

{
−
(x − t)2

2σ2

}
,

leading to a Gaussian extreme value process. Other choices are possible, for examples we
refer to Smith [79]. The model is often called Smith’s storm profile model resulting from the
interpretation of the components in terms of rainfall storms. In particular, the points x j can
be seen as center of storm j, ξ j is the corresponding intensity, the function ft describes the
shape of the storm, and the product ξ j ft(x j) is the rainfall or wind speed at time t from storm
j. Smith’s storm profile model will be put into the space-time context in Section 3.1.2.

Brown-Resnick process

Another family of max-stable process was introduced in Brown and Resnick [14] and later
generalized in Kabluchko et al. [50]. Let

{
ξ j, j ≥ 1

}
denote points of a Poisson random

measure on [0,∞) with intensity measure ξ−2dξ. Further let W j be independent replicates
of a Gaussian process with stationary increments and covariance function γ. The process
defined by

ηt =
∞∨

j=1

ξ j exp{W j(t) − δ(t)}, t ∈ T , (2.9)
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where δ(t) = γ(0)−γ(t) is the variogram of the Gaussian process W, is a max-stable process
with Fréchet marginals known as the Brown-Resnick process. In contrast to Smith’s storm
profile model, there is no storm center (in Smith’s model denoted by x j). But since the
deterministic function ft is replaced by a stochastic process, it allows for random shapes in
the storm.

Schlather model

A generalization of the Brown-Resnick process is described in Schlather [75], where the
process exp{W j(t) − δ(t)} in (2.9) is replaced by some stationary process. Let {ξ j, j ≥ 1}
be an enumeration of points of a Poisson process on (0,∞) with intensity measure ξ−2dξ.
Further assume that {Yt, t ∈ T } is a stationary process such that E [max{0, Yt}] = 1, t ∈ T .
Let Y j,t, j ≥ 1 be independent replications of {Yt, t ∈ T } and independent of {ξ j, j ≥ 1}. The
process, defined by

ηt =
∞∨

j=1

ξ j max{0, Y j,t}, t ∈ T ,

is max-stable with unit Fréchet marginal distributions.
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2 Preliminaries on extreme value theory and space-time modelling

2.2 Space-time models

In this section, we introduce some basic concepts for Gaussian space-time processes, which
will be used throughout this thesis. In addition, we explain how Gaussian space-time pro-
cesses can be simulated.

2.2.1 Fundamentals for space-time processes

We denote by {Z(s, t), s ∈ Rd, t ∈ [0,∞)} a space-time process, where s ∈ Rd denote d-
dimensional locations and t ∈ [0,∞) is the time. The correlation function of a space-time
process is defined by

C(s1, t1; s2, t2) =
Cov(Z(s1, t1), Z(s2, t2))√

Var(Z(s1, t1))Var(Z(s2, t2))
.

For simplicity, we assume that the variance equals one, i.e. Var(Z(s, t)) = 1 for all s ∈ Rd

and t ∈ [0,∞). In subsequent chapters we will make use of the following basic concepts for
space-time processes.

Definition 2.8 (Basic concepts for space-time correlation functions). We call the correlation

function C

• stationary, if C only depends on the spatial and the temporal lag. In particular, for all

h ∈ Rd and u ∈ [0,∞),

C(s1, t1) = C(s1 + h, t1 + u) C γ(h, u).

• isotropic, if the stationary correlation function only depends on the absolute spatial

and temporal lag, i.e. there exists a correlation function γ̃ such that

γ(h, u) C γ̃(‖h‖, |u|).

• separable, if C can be separated into a spatial correlation function C1 and a temporal

correlation function C2,

C(s1, t1; s2, t2) = C1(s1, s2)C2(t1, t2) or
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2.2 Space-time models

C(s1, t1; s2, t2) = C1(s1, s2) +C2(t1, t2).

A space-time process {Z(s, t), s ∈ Rd, t ∈ [0,∞)} is Gaussian, if all finite-dimensional
distributions are multivariate Gaussian, i.e. for all k ∈ N, s1, . . . , sk ∈ Rd and t1, . . . , tk ∈

[0,∞), the vector
(Z(s1, t1), . . . , Z(sk, tk))

is multivariate normally distributed.

2.2.2 Simulation of Gaussian space-time processes

Assume, we want to obtain realizations from a stationary Gaussian space-time process
{Z(s, t), s ∈ Rd, t ∈ [0,∞)} with mean µ and stationary correlation function γ (assume that
the variance equals 1). To simulate from Gaussian processes with M locations s1, . . . , sM and
T time points t1, . . . , tT we need to draw values from a multivariate normal distribution with
mean vector µ ∈ RMT and positive-definite covariance matrix Σ ∈ RMT ×RMT , given by

Σ[(i − 1)T + (1 + k), ( j − 1)T + (1 + l)] = γ(si − s j, tk − tl)

for i, j = 1, . . . , M, k, l = 1, . . . , T . In general, one starts by simulating a vector of standard
normal distributed random variables Z(0) = (Z(0)

1 , . . . , Z(0)
MT ) with independent components.

This can be done by using the Box-Muller transform (see Box and Muller [12]). In a second
step the covariance matrix is decomposed such that Σ = LL

ᵀ
, where L is a lower triangular

matrix, by using for instance the Cholesky decomposition. By transforming Z(0) to Z =

µ+ LZ(0) we obtain the desired simulated random vector.

Even for a relatively small number of locations and time points, the correlation matrix
can be huge and the Cholseky decomposition invisible. Therefore, approximation methods
incorporating the structure of correlation matrices are used to simulate such processes. If
space-time locations lie on a regular grid, one can use circulant embedding, introduced in
Wood and Chan [92]. We shorty describe the procedure in the simplest case for the simulation
of a stationary Gaussian random field Z(s) with one-dimensional locations s = 1, . . . , m. The
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correlation matrix in this case is given by
γ(0) γ(1) · · · γ(m − 1)

...
... · · ·

...
γ(m − 1) γ(m − 2) · · · γ(0)

 .

The idea is to embed the correlation matrix into a larger circulant matrix, i.e. there exists a
function g such that the entries in the circulant matrix G satisfy G[i, j] = g( j − i). The new
matrix is of size m̃ × m̃, where m̃ = 2 f > 2(m − 1) for some integer f , and is defined by

G =


g(0) g(1) · · · g(m̃ − 1)

g(m̃ − 1) g(0) · · · g(m̃ − 2)
...

... · · ·
...

g(1) g(2) · · · g(0)


,

where

g( j) =

γ(k) 0 ≤ k ≤ m̃/2,

γ(m̃ − k) m̃/2 < k ≤ m̃ − 1.

As pointed out in Brockwell and Davis [13], Section 4.5, the circulant matrix G can be diag-
onalized using the relation

QGQ
ᵀ
= diag{λ0, . . . , λm̃−1},

where Q is the matrix of eigenvectors and λ0, . . . , λm̃−1 are the eigenvalues of M. Using this
result, it follows that

Z = Q(diag{λ1/2
0 , . . . , λ1/2

m̃−1})Q
ᵀ
Z(0) ∼ Nm̃(0, G), (2.10)

where Z(0) is a standard normally distributed random vector. The first m entries of the re-
sulting vector have the desired distribution. Special properties of circulant matrices, see
Brockwell and Davis [13], allow for the use of the discrete Fourier transform in the algorithm
to calculate the eigenvalues of G and to evaluate the first equation in (2.10). The procedure
can be extended to random fields and space-time processes. For details see Kozintsev [52].
Figure 2.2.1 shows realizations of Gaussian space-time processes for four consecutive time
points (clockwise from the top left to the bottom left). The fields were simulated using the
R-package RandomFields, where the circulant embedding method is implemented.
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2.2 Space-time models

Figure 2.2.1: Simulated Gaussian space-time processes for four consecutive time points (clockwise
from the top left to the bottom left) using the circulant embedding method.
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CHAPTER 3

MAX-STABLE PROCESSES FOR
EXTREMES OBSERVED IN SPACE AND

TIME

This chapter is based on Davis, Klüppelberg and Steinkohl [26]. In Section 2.1.4, max-stable
processes were introduced as natural extension of the generalized extreme value distribution
to infinite dimensions. This chapter deals with the construction of max-stable processes de-
fined on the continuous space-time domain Rd × [0,∞). We follow the approach introduced
in Kabluchko et al. [50], who construct max-stable processes as infinite maximum of rescaled
and transformed replications of Gaussian processes. We extend this concept to a space-time
domain and relate the process to an extended version of Smith’s storm profile model (see
Section 2.1.4). Basic properties regarding extremal dependence and possible choices for the
underlying correlation function of the Gaussian process are discussed.

The chapter is organized as follows. Max-stable space-time processes are developed in
Section 3.1. In Section 3.2, we show how Pickands dependence function and the tail de-
pendence coefficient relate to the correlation model used in the underlying Gaussian process.
Further correlation models are discussed in Section 3.3 and simulations based on a set of
different parameters are visualized. Section 3.3.2 analyses anisotropic correlation functions,
where one can see directional movements in the storm profile model, which are not possible
in the isotropic case.
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3 Max-stable processes for extremes observed in space and time

3.1 Extension of extreme spatial fields to the space-time

setting

Max-stable processes form the natural extension of multivariate extreme value distributions
to infinite dimensions. In the literature, different families of max-stable processes have been
considered. In Section 3.1.1 we describe the construction introduced in Kabluchko, Schlather
and de Haan [50], which is based on the limit of pointwise maxima from an array of inde-
pendent Gaussian random fields. Furthermore, we extend the approach introduced in de
Haan [29] and interpreted by Smith [79] as the storm profile model to a space-time setting in
Section 3.1.2.

3.1.1 Max-stable random fields based on spatio-temporal

correlation functions

Before presenting the construction of a max-stable Gaussian random field in space and time,
we recall the definition of the Brown-Resnick space-time process with Fréchet marginals
(see Section 2.1.4). Let {ξ j, j ≥ 1} denote points of a Poisson random measure on [0,∞) with
intensity measure ξ−2dξ and let Y j(s, t), j = 1, 2, . . ., be independent replications of some
space-time process {Y(s, t), (s, t) ∈ Rd × [0,∞)} with E(Y(s, t)) < ∞, and Y(s, t) ≥ 0 a.s.,
which are also independent of ξ j. The space-time process, defined by

η(s, t) =
∞∨

j=1

ξ jY j(s, t), (s, t) ∈ Rd × [0,∞), (3.1)

is a max-stable process with Fréchet marginals and often referred to as the Brown-Resnick
process (see Kabluchko et al. [50]). The finite-dimensional distributions can be calculated
using a point process argument as done in de Haan [29]. For example, if (s1, t1), . . . , (sK , tK)

are distinct space-time locations (duplicates in the space or the time components are allowed),
then

P(η(s1, t1) ≤ y1, . . . , η(sK , tK) ≤ yK) = P

ξ j

K∨
k=1

Y j(sk, tk)
yk

≤ 1,∀ j = 1, 2, . . .


= P (N(A) = 0) = exp

−E

 K∨
k=1

Y(sk, tk)
yk


 , (3.2)
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where A =
{
(u, v); uv > 1

}
and N is the Poisson random measure with points at

ξ j,
K∨

k=1

Y j(sk, tk)
yk


 .

As we will see below, the Brown-Resnick process appears as limit of a sequence of pointwise
maxima of independent Gaussian space-time processes. In the following, let {Z(s, t), s ∈
Rd, t ∈ [0,∞)} denote a space-time Gaussian process with covariance function given by

C̃(s1, t1; s2, t2) = Cov (Z(s1, t1), Z(s2, t2)) ,

for two locations s1, s2 ∈ Rd and time points t1, t2 ∈ [0,∞). We assume stationarity in space
and time, so that we can write

C̃(s1, t1; s2, t2) = C(s1 − s2, t1 − t2) = C(h, u),

where h = s1 − s2 and u = t1 − t2. Furthermore, let γ(h, u) = C(h, u)/C(0, 0) denote
the corresponding correlation function. We will assume smoothness conditions on γ(·, ·)
near (0, 0). This assumption is natural in the context of spatio-temporal processes, since it
basically relates to the smoothness of the underlying process.

Assumption 3.1. There exist two nonnegative sequences of constants sn → 0, tn → 0 as

n→ ∞ and a nonnegative function δ such that

(log n)(1 − γ(sn(s1 − s2), tn(t1 − t2)))→ δ(s1 − s2, t1 − t2) ∈ (0,∞), n→ ∞,

for all (s1, t1) , (s2, t2), s1, s2 ∈ Rd, t1, t2 ∈ [0,∞).

Examples of such correlation functions are given in Section 3.3. If (s1, t1) = (s2, t2), it
follows that the correlation function equals one, γ(0, 0) = 1, which implies δ(0, 0) = 0. The
following theorem regarding limits of finite-dimensional distributions stems from Theorem
1 in Hüsler and Reiss [47] and Theorem 17 in Kabluchko et al. [50]. In the following let
C(Rd × [0,∞)) denote the space of continuous functions on Rd × [0,∞), where convergence
is defined as uniform convergence on compact subsets K of Rd × [0,∞).

Theorem 3.1. Let Z j(s, t), j = 1, 2, . . . be independent replications from a stationary Gaus-

sian space-time process with mean 0, variance 1 and correlation model γ satisfying Assump-
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3 Max-stable processes for extremes observed in space and time

tion 3.1 with limit function δ. Assume there exists a metric D on Rd × [0,∞) such that

δ(s1 − s2, t1 − t2) ≤ (D((s1, t1), (s2, t2)))2, s1, s2 ∈ Rd, t1, t2 ∈ [0,∞), (3.3)

and set

ηn(s, t) =
1
n

n∨
j=1

−
1

log (Φ(Z j(sns, tnt)))
, s ∈ Rd, t ∈ [0,∞). (3.4)

Then,

ηn(s, t)⇒ η(s, t), n→ ∞, (3.5)

where ⇒ denotes weak convergence in C(Rd × [0,∞)) and
{
η(s, t), (s, t) ∈ Rd × [0,∞)

}
is

a max-stable space-time process. The bivariate distribution functions for η(s, t) have an

explicit form given by

F(y1, y2) = exp

− 1
y1

Φ

 log y2
y1

2
√
δ(h, u)

+
√
δ(h, u)

 − 1
y2

Φ

 log y1
y2

2
√
δ(h, u)

+
√
δ(h, u)


 .

(3.6)

Remark 3.1. Condition (3.1) is sufficient to prove tightness of the sequence (ηn)n∈N in
C(Rd × [0,∞)). As shown in the proof of Theorem 17 in Kabluchko et al. [50] the limit
process η turns out to be a Brown-Resnick process with Y in (3.1) given by

exp
{
W(s, t) − δ(s, t)

}
, s ∈ Rd, t ∈ [0,∞),

where {W(s, t), s ∈ Rd, t ∈ [0,∞)} is a Gaussian process with mean 0 and covariance
function

Cov(W(s1, t1), W(s2, t2)) = δ(s1, t1) + δ(s2, t2) − δ(s1 − s2, t1 − t2). (3.7)

In particular, δ is a variogram leading to a valid covariance function in (3.7).

Proof. Although this proof is similar to the one given in Kabluchko et al. [50], we provide
a sketch of the arguments for completeness. We start with the bivariate distributions. From
classical extreme value theory (see Example 2.1 in Chapter 2), we have for

bn =
√

2 log n −
log log n + log(4π)

2
√

2 log n
, n ∈N, (3.8)
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3.1 Extension of extreme spatial fields to the space-time setting

that

lim
n→∞

Φn
(
bn +

log(y)
bn

)
= e−1/y, y > 0.

By using the standard arguments as in Embrechts et al. [36], it follows that

Φ−1
(
e−1/ny

)
∼

log y
bn

+ bn,

where ∼ denotes asymptotic equivalence. By applying this relation and Theorem 1 in Hüsler
and Reiss [47] to the random variables ηn(s1, t1) and ηn(s2, t2) for fixed s1, s2 ∈ Rd, t1, t2 ∈

[0,∞), we obtain for y1, y2 > 0

P(ηn(s1, t1) ≤ y1, ηn(s2, t2) ≤ y2)

= P

 n∨
j=1

−
1

log(Φ(Z j(sns1, tnt1)))
≤ ny1,

n∨
j=1

−
1

log(Φ(Z j(sns2, tnt2)))
≤ ny2


= P

 n∨
j=1

Z j(sns1, tnt1) ≤ Φ−1
(
e−1/(ny1)

)
,

n∨
j=1

Z j(sns2, tnt2) ≤ Φ−1
(
e−1/(ny2)

)
∼ Pn

(
Z1(sns1, tnt1) ≤

log(y1)

bn
+ bn, Z1(sns2, tnt2) ≤

log(y2)

bn
+ bn

)
∼ exp

{
−

1
y1
−

1
y2

+ nP
(
Z1(sns1, tnt1) >

log(y1)

bn
+ bn, Z1(sns2, tnt2) >

log(y2)

bn
+ bn

)}

for n → ∞. The vector (Z1(sns1, tnt1), Z2(sns2, tnt2)) is bivariate normally distributed with
mean 0 and covariance matrix given by γ(sn(s1 − s2), tn(t1 − t2)). Using the properties of the
conditional normal distribution and Assumption 3.1, it can be shown that the last expression
converges to (3.6). Similarly to the procedure above, the finite-dimensional limit distributions
of beyond second order can be calculated by using Theorem 2 in Hüsler and Reiss [47].

It remains to show that the sequence (ηn) is tight in C(Rd × [0,∞)). Following Kabluchko
et al. [50], the main step of the proof is to show that the conditional family of processes{
Yωn (s, t), (s, t) ∈ Rd × [0,∞)

}
, defined by

Yωn (s, t) = (bn(Z(sns, tnt) − bn) −ω) | (bn(Z(0, 0) − bn) = ω), ω ∈ [−c, c], n ∈N,

is tight in C(K), where K is any compact subset of Rd × [0,∞) and bn is defined in (3.8).
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3 Max-stable processes for extremes observed in space and time

This is achieved by calculating an upper bound for the variance of the distance between the
process at two spatio-temporal locations, which in our case is given by Assumption (3.3).
That is, for large n,

Var(Yωn (s1, t1) − Yωn (s2, t2)) ≤ 2b2
n(1 − γ(sn(s1 − s2), tn(t1 − t2)))

≤ 2Bδ(s1 − s2, t1 − t2) ≤ 2B(D((s1, t1), (s1, t2)))2,

where B > 0 is some constant. The rest of the proof follows analogously to the proof in [50]
and is shown in full detail in Section 3.4.1. �

Remark 3.2. Kabluchko [49] studies the limit behaviour of rescaled space-time processes of
the form

sup
t′∈[0,tn]

Z(sns, t′),

and shows that a rescaled version converges in the sense of finite-dimensional distributions
to a space-time Brown-Resnick process. The assumptions on the covariance function in the
underlying Gaussian space-time random field are similar to those we use in Section 3.3. The
approach differs from ours in the sense that we analyse the pointwise maxima of independent
replications of space-time random fields, rather than the supremum over time of a single
random field.

Remark 3.3. In applications, the marginal distributions are often fitted by a generalized ex-
treme value distribution and are then transformed to standard Fréchet. Sometimes it may be
useful to think about other marginal distributions, such as the Gumbel or Weibull. In order to
use Gumbel marginals, we need

ηn(s, t) =
n∨

j=1

− log (− log (Φ (Z j(sns, tnt)))) − log(n), (3.9)

and obtain the bivariate distribution function in (3.6) with 1/y1 and 1/y2 replaced by e−y1

and e−y2 . If Weibull marginals should be used, we define

ηn(s, t) = n
n∨

j=1

log (Φ (Z j(sns, tnt))) , (3.10)

leading to the same bivariate distribution function as in (3.6), but with 1/y1 and 1/y2 replaced
by y1 and y2, respectively.

40



3.1 Extension of extreme spatial fields to the space-time setting

3.1.2 Extension of the storm profile model

In this section, we extend the max-stable process introduced in Section 2.1.4, see Equation
(2.8), to the space-time setting. The process was interpreted by Smith [79] as a model for
storms, where each component can be interpreted as elements of a storm, like intensity or
centre. In later papers, including for instance Schlather and Tawn [77] this process is called
the storm profile model. We extend the concept to a space-time setting, where extremes are
observed at certain locations through time. For simplicity of presentation we assume without
loss of generality that R2 is the space domain. Assume, that we have a domain for point
processes of storm centres Z ⊂ R2 and a time domain X ⊂ [0,∞), for which the storm
is strongest at its centres. Further, let

{
(ξ j, z j, x j), j ≥ 1

}
denote points of a Poisson random

measure on (0,∞)×Z ×X with intensity measure ξ−2dξ×λ2(dz)×λ1(dx), where λd denotes
Lebesgue measure on Rd for d = 1, 2. Each ξ j represents the intensity of storm j. Moreover,
let f (z, x; s, t) for (z, x) ∈ Z × X and (s, t) ∈ Rd × [0,∞) be a non-negative function with∫

Z×X

f (z, x; s, t)λ2(dz)λ1(dx) = 1, (s, t) ∈ R2 × [0,∞).

The function f represents the shape of the storm. Define

η(s, t) =
∞∨

j=1

{
ξ j f (z j, x j; s, t)

}
, (s, t) ∈ R2 × [0,∞). (3.11)

The product ξ j f (z j, x j; s, t) can be interpreted as the wind speed at location s and time
point t from storm j with intensity ξ j, spatial location of the center z j and maximum wind
speed at time x j at the centre. The distribution function of (η(s1, t1), . . . , η(sK , tK)) for fixed
s1 . . . , sK ∈ Rd, t1, . . . , tK ∈ [0,∞) and y1, . . . , yK > 0, is given through the spectral represen-
tation calculated in de Haan [29] by

F(y1, . . . , yK) = exp

−
∫

Z×X

K∨
k=1

f (z, x; sk, tk)
yk

λ2(dz)λ1(dx)

 . (3.12)

To connect the storm model with the Brown-Resnick process that arises in Theorem 3.1,
we assume a trivariate Gaussian density for the function f with mean (z, x) and covariance
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3 Max-stable processes for extremes observed in space and time

matrix Σ̃, i.e.
f (z, x; s, t) = f0(z − s, x − t),

where f0 is a Gaussian density with mean 0 and covariance matrix Σ̃. We assume that the
spatial dependence is modelled through the matrix Σ and the temporal dependence is given
through σ2

3, leading to the covariance matrix

Σ̃ =

Σ 0
0 σ2

3

 =

σ2

1 σ12 0
σ12 σ2

2 0
0 0 σ2

3

 . (3.13)

In the following theorem, we calculate a closed form of the bivariate distribution function
resulting from the setting defined above. The derivation of the bivariate distribution function
in a purely spatial setting can be found in Padoan, Ribatet and Sisson [66] and we stick
closely to their notation. The idea of the proof is widely known and for completeness, details
are given in Section 3.4.

Theorem 3.2. With the setting defined above, the max-stable space-time process

η(s, t) =
∞∨

j=1

{
ξ j f0(z j − s; x j − t)

}
, s ∈ R2, t ∈ [0,∞), (3.14)

has the bivariate distribution function given by

F(y1, y2) = P(η(s1, t1) ≤ y1, η(s2, t2) ≤ y2)

= exp

−
1
y1

Φ


2σ2

3 log
(

y2
y1

)
+ σ2

3a(h)2 + u2

2σ3

√
σ2

3a(h)2 + u2

 − 1
y2

Φ


2σ2

3 log
(

y1
y2

)
+ σ2

3a(h)2 + u2

2σ3

√
σ2

3a(h)2 + u2


 ,

(3.15)

where h = s1 − s2 is the space lag, u = t1 − t2 is the time lag and a(h) = (hT Σ−1h)1/2.

Note, that if the time lag u equals zero, the formula reduces to

F(y1, y2) = exp

−
1
y1

Φ

a(h)
2

+
log

(
y2
y1

)
a(h)

 − 1
y2

Φ

a(h)
2

+
log

(
y1
y2

)
a(h)


 ,
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3.2 Pickands dependence function and tail dependence coefficient

which is the bivariate distribution of a Gaussian max-stable random field as calculated in
Padoan, Ribatet and Sisson [66]. If the space lag h is zero, the bivariate distribution function
is given by

F(y1, y2) = exp

− 1
y1

Φ

1
u

log
(y2

y1

)
+

u2

2σ2
3

 − 1
y2

Φ

1
u

log
(y1

y2

)
+

u2

2σ2
3


 .

By comparing the bivariate distributions from the Smith model with those of the approach
discussed in (3.6) in Section 3.1.1, we recognize that the functions are the same, if

δ(h, u) =
1
4

a(h)2 +
1
σ2

3

u2. (3.16)

In Section 3.3, where we study a more detailed representation of the function δ, we return to
this point.

3.2 Pickands dependence function and tail dependence

coefficient

The Pickands dependence function (Pickands [67]) was introduced in Section 2.1.3 as a mea-
sure of extremal dependence and is related to the exponent measure. In particular, the joint
distribution of the max-stable space-time process can be expressed by the exponent measure
V ,

P(η(s1, t1) ≤ y1, η(s2, t2) ≤ y2) = exp
{
−V(y1, y2; δ(s1 − s2, t1 − t2))

}
,

where V is given through the bivariate distribution function (3.5) by

V(y1, y2; δ(h, u)) =
1
y1

Φ

 log y2
y1

2
√
δ(h, u)

+
√
δ(h, u)

+ 1
y2

Φ

 log y1
y2

2
√
δ(h, u)

+
√
δ(h, u)


and depends on the space and time lags h and u. In the bivariate case, the Pickands depen-
dence function is defined through

exp
{
−V(y1, y2, δ(h, u))

}
= exp

{
−

(
1
y1

+
1
y2

)
A

(
y1

y1 + y2

)}
.
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Setting λ = y1/(y1 + y2), hence 1 − λ = y2/(y1 + y2), we obtain

A(λ; δ(h, u)) = λ(1 − λ)V(λ, 1 − λ; δ(h, u))

= λΦ

 log λ
1−λ

2
√
δ(h, u)

+
√
δ(h, u)

+ (1 − λ)Φ

 log 1−λ
λ

2
√
δ(h, u)

+
√
δ(h, u)

 .

A useful summary measure for extremal dependence is the tail-dependence coefficient, which
goes back to Geffroy [40, 41] and Sibuya [78]. It is defined by

χ = lim
x→∞

P
(
η(s1, t1) > F←

η(s1,t1)
(x) | η(s2, t2) > F←

η(s2,t2)
(x)

)
,

where F←
η(s,t) is the generalized inverse of the marginal distribution for fixed location s ∈ Rd

and time point t ∈ [0,∞). For the stationary isotropic limit process in Theorem 3.1 χ is given
as a function of the spatial lag r = ‖h‖ and the (positive) time lag u by

χ(r, u) = 2
(
1 −Φ

(√
δ(h, u)

))
. (3.17)

The tail dependence coefficient is a special case of the extremogram introduced in Davis and
Mikosch [23] (Section 1.4), with A and B defined by (1,∞). The two cases χ(r, u) = 0
and χ(r, u) = 1 correspond to the boundary cases of asymptotic independence and complete
dependence. Thus, if δ(h, u) → 0, the marginal components in the bivariate case are com-
pletely dependent and if δ(h, u)→ ∞, the components become independent. In the following
section, we examine the relationship between the underlying correlation function and the tail
dependence coefficient.

3.3 Possible correlation functions for the underlying

Gaussian space-time process

Provided the correlation function of the underlying Gaussian process is sufficiently smooth
near (0, 0), then Assumption 3.1 holds for some sequences sn and tn. One such condition is
given below. Throughout this section let h = s1 − s2 denote the space lag and u = t1 − t2 the
time lag.
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Assumption 3.2. Assume that the correlation function allows for the following expansion

γ(h, u) = 1 − θ1‖h‖α1 − θ2|u|α2 + O(‖h‖α1 + |u|α2)

around (0, 0), where α1,α2 ∈ (0, 2] and θ1, θ2 ≥ 0 are constants independent of h and u.

Remark 3.4. The parameters α1 and α2 relate to the smoothness of the sample paths in the
underlying Gaussian space-time process. The special case α1 = α2 = 2 corresponds to a
mean-square differentiable process. (For further reference see for example Adler [1], Chapter
2). The characterizing condition is given in terms of the correlation function, i.e. a process is
mean-square differentiable if and only if all second-order partial derivatives of the correlation
function exist in 0, i.e. for a spatial dimension d = 2,

∂2γ(h1, h2, u)
∂hm1

1 ∂hm2
2 ∂um3

∣∣∣∣∣∣
(0,0,0)

,

where m = (m1, m2, m3) ∈N3
0 and m1 +m2 +m3 = 2, exist and are finite. It is obvious, that

the special case α1 = α2 = 2 in Assumption 3.2 corresponds to a mean-square differentiable
process. For α1 < 2 or α2 < 2, one of the partial derivatives of the correlation function does
not exist in 0, and thus the process is not mean-square differentiable. The condition for a.s.
differentiability in the Gaussian case is given through the second derivative of the correlation
function. In the univariate case, a Gaussian process is a.s. differentiable, if for some constants
K1, K2 > 0

−γ′′(u) = K1 − K2|u|β + o(|u|β), β ∈ (0, 2].

With the expansion in Assumption 3.2 this is not possible, since β = α2 − 2 ∈ (−2, 0]
(set the spatial lag equal to zero). Furthermore, a Gaussian process is a.s. continuous, if
α1,α2 ∈ (0, 2], which is the case in Assumption 3.2.

Under Assumption 3.2, the scaling sequences in Assumption 3.1 can be chosen as sn =

(log n)−1/α1 and tn = (log n)−1/α2 . It follows that

(log n)(1 − γ(snh, tnu))→ θ1‖h‖α1 + θ2|u|α2 = δ(h, u), as n→ ∞. (3.18)

The condition for the tightness in (3.3) can be obtained by setting

D((s1, t1), (s2, t2)) = max
{
‖s1 − s2‖

α1/2, |t1 − t2|α2/2
}

,
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which is a metric in Rd × [0,∞), since α1,α2 ∈ (0, 2].

Smith’s storm profile model can recover a subset of the class of correlation functions spec-
ified in Assumption 3.2. Choosing α1 = α2 = 2 and

σ12 = 0, σ2
1 = σ2

2 =
1

4θ1
, and σ2

3 =
1

4θ2

in the Smith model, we find that δ(h, u) is of the form given in Assumption 3.2,

δ(h, u) =
1

4(σ2
1σ

2
2 −σ

2
12)

(σ2
2h2

1 − 2σ12h1h2 + σ2
1h2

2) +
1

4σ2
3

u2,

and, hence, has the same finite-dimensional distributions as the limit process in Theorem 3.1.

In the following, we analyse several correlation models used in the literature for modelling
Gaussian space-time processes. In recent years, the interest in spatio-temporal correlation
models has been growing significantly; especially in the construction of valid covariance
functions in space and time. A simple way to construct such a model is to take the product of
a spatial correlation function γ1(h) and a temporal correlation function γ2(u), i.e. γ(h, u) =

γ1(h)γ2(u) (see for example Cressie and Huang [21]). Such a model is called separable
and Assumption 3.2 is satisfied if the spatial and the temporal correlation functions have
expansions around zero of the form

γ1(h) = 1 − θ1‖h‖α1 + O(‖h‖α1), γ2(u) = 1 − θ2|u|α2 + O(|u|α2),

respectively.

Example 3.1. A more sophisticated method to obtain covariance models is given on a process-
based level. An interesting example in this context is presented in Baxevani, Podgórski and
Rychlik [6] and Baxevani, Caires and Rychlik [5], who construct Gaussian space-time pro-
cesses in a continuous setup using moving averages of spatial random fields over time, given
by

X(s, t) =

∞∫
−∞

f (t − u)Φ(s, du),

where Φ(·, du) is a Gaussian random field valued measure (see Appendix 5.1 in [5] for a
definition) which is uniquely determined by the stationary correlation function γ1(h) and f

is a deterministic kernel function. Note, that the process stated here is the special case of the
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3.3 Possible correlation functions for the underlying Gaussian space-time process

process introduced in [6].

Consider the kernel function f (t) = e−λt1{t≥0} and the stationary spatial covariance model
γ1(h) = exp

{
−‖h‖2/C

}
. Using equation (5) in [6], the covariance function for the spatial

lag h and the temporal lag u > 0 can be calculated as

γ̃(h, u) = γ1(h)
∞∫
−∞

e−λ(u−y)1{u−y≥0}eλy1{y≤0}dy = γ1(h)
0∫

−∞

e−λu+2λydy

= γ1(h)
1

2λ
e−λu =

1
2λ

exp
{
−
‖h‖2

C
− λu

}
,

where the temporal dependence is of Ornstein-Uhlenbeck type (see Example 2 in [6]). The
corresponding correlation function satisfies

γ(h, u) = 1 −
1
C
‖h‖2 − λ|u|+ O(‖h‖2 + |u|).

Separable space-time models do not allow for any interaction between space and time.
Disadvantages of this assumption are pointed out for example in Cressie and Huang [21].
Therefore, nonseparable model constructions have been developed. One approach for com-
bining purely spatial and temporal covariance functions leading to nonseparable covariance
models is introduced in Ma [61, 62], given in terms of correlation functions by

γ(h, u) =

∞∫
0

∞∫
0

γ1(hv1)γ2(uv2)dG(v1, v2),

where G is a bivariate distribution function on [0,∞) × [0,∞). Using the expansions above,
it follows that

γ(h, u) = 1 − θ1

∞∫
0

vα1
1 dG1(v1)‖h‖α1 − θ2

∞∫
0

vα2
2 dG2(v2)|u|α2 + O(‖h‖α1 + |u|α2),

where G1 and G2 denote the marginal distributions of G, respectively. From this representa-
tion, the components in Assumption 3.2 can be defined.
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3 Max-stable processes for extremes observed in space and time

3.3.1 Gneiting’s class of correlation functions

A more elaborate class of nonseparable, stationary correlation functions is given by Gneit-
ing’s class [43]. This family of covariance functions is based on completely monotone
functions, which are defined as functions ϕ on (0,∞) with existing derivatives of all orders
ϕ(n), n = 0, 1, . . . and

(−1)nϕ(n)(t) ≥ 0, t > 0, n = 0, 1, . . . .

For our purpose we use a slightly different definition of Gneiting’s class.

Definition 3.1 (Gneiting’s class of correlation functions [43]). Let ϕ : R+ → R be com-

pletely monotone and let ψ : R+ → R be a positive function with completely monotone

derivative. Further assume that ψ(0)−d/2ϕ(0) = 1, where d is the spatial dimension, and

β1, β2 ∈ (0, 1]. The function

γ(h, u) =
1

ψ
(
|u|2β2

)d/2
ϕ

 ‖h‖2β1

ψ
(
|u|2β2

) , (h, u) ∈ Rd ×R+,

defines a non-separable, isotropic space-time correlation function with γ(0, 0) = 1.

Compared to the original definition in [43], we included the parameters β1 and β2, which
is not a restriction since we can simply change the norms by defining ‖ · ‖∗ and | · |∗ in terms
of the old ones through

‖h‖∗ = ‖h‖β1 , and |u|∗ = |u|β2 .

These new quantities are still norms since β1, β2 ∈ (0, 1]. In the next step, we provide an
expansion of the correlation function around zero to obtain Assumption 3.2. The following
proposition generalizes a result by Xue and Xiao [93] (Proposition 6.1).

Proposition 3.1. Assume that ψ′(0) , 0. The correlation function taken from the Gneiting

class satisfies Assumption 3.2 with α1 = 2β1, α2 = 2β2 and

θ1 = ψ(0)−1


∞∫

0

zdFϕ(z)
/ ∞∫

0

dFϕ(z)

 , θ2 =
d
2
ψ(0)−1ψ′(0), (3.19)

where Fϕ is a non-decreasing bounded function with Fϕ(0) , 0 and
∫ ∞

0 zdFϕ(z) < ∞.
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3.3 Possible correlation functions for the underlying Gaussian space-time process

Proof. Since the function ϕ is completely monotone, Bernstein’s theorem (see for example
Feller [38], Chapter 13) gives

ϕ(x) =

∞∫
0

e−xzdFϕ(z), x ≥ 0.

From the properties of the correlation function ψ(0)−d/2ϕ(0) = 1, it follows that ψ(0) , 0
and ϕ(0) , 0. We apply a Taylor expansion to the functions ψ(·)−d/2 and the exponential in
the representation of ϕ:

ψ(u)−d/2 = ψ(0)−d/2 −
d
2
ψ(0)−d/2−1ψ′(0)u + o(u), u→ 0,

ϕ(x) =

∞∫
0

(1 − xz + o(x))dFϕ(z) =

∞∫
0

dFϕ(z) − x

∞∫
0

zdFϕ(z) + o(x), x→ 0.

Using the expansions in the correlation function and replacing u by |u|2β2 and x by
‖h‖2β1/ψ(|u|2β2), we obtain

γ(h, u) =
(
ψ(0)−d/2 −

d
2
ψ(0)−d/2−1ψ′(0)|u|2β2 + o(|u|2β2)

)

×

( ∞∫
0

dFϕ(z) −

∞∫
0

zdFϕ(z)‖h‖2β1
[
ψ(0)−1 − ψ(0)−2ψ′(0)|u|2β2

+o(|u|2β2)
]
+ o(‖h‖2β1)

)

= ψ(0)−d/2ϕ(0) −
d
2
ψ(0)−d/2−1ϕ(0)ψ′(0)|u|2β2 − ψ(0)−d/2−1

∞∫
0

zdFϕ(z)‖h‖2β1

+ O(‖h‖2β1 + |u|2β2)

= 1 −
d
2
ψ(0)−1ψ′(0)|u|2β2 − ψ(0)−1


∞∫

0

zdFϕ(z)
/ ∞∫

0

dFϕ(z)

 ‖h‖2β1

+ O(‖h‖2β1 + |u|2β2)

= 1 − θ1‖h‖2β1 − θ2|u|2β2 + O(‖h‖2β1 + |u|2β2),

where θ1 and θ2 are defined as in (3.19). Note that we used O(‖h‖2β1 |u|2β2) + o(‖h‖2β1) +
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3 Max-stable processes for extremes observed in space and time

o(|u|2β2) = O(‖h‖2β1 + |u|2β2), which follows immediately from

‖h‖2β1 |u|2β2 + ‖h‖2β1 + |u|2β2

‖h‖2β1 + |u|2β2
=

1
1

‖h‖2β1
+ 1
|u|2β2

+ 1 < C, ‖h‖, |u| → 0.

�

Remark 3.5. For various choices of β1, β2 ∈ (0, 1], the correlation functions in the Gneiting
class have the flexibility to model different levels of smoothness of the underlying Gaussian
process.

Example 3.2. We illustrate with a specific example, where the functions φ and ψ are taken
from [43]; namely

ϕ(x) = (1 + bx)−ν1 , ψ(x) = (1 + ax)ν2 ,

where a, b, ν1 > 0 and 0 < ν2 ≤ 1. The function ϕ is the Laplace transform of a gamma
probability density function with shape ν1 > 0 and scale b > 0, which has mean bν. The
first-order derivative of ψ at zero is given by ψ′(0) = aν2. We choose β1 = β2 = 1 leading
to α1 = α2 = 2 and, thus, a mean-square differentiable Gaussian random field. The constants
θ1 and θ2 are given by

θ1 = bν1, and θ2 =
d
2

aν2.

Figure 3.3.1 shows contour plots of the correlation function and the resulting tail dependence
coefficient as in (3.17) based on different values for a and b with ν1 = 3/2 and ν2 = 1
fixed as a function of the space-lag ‖h‖ and time lag |u|. We see that the tail dependence
function exhibits virtually the identical pattern of the underlying correlation function under
a compression of the space-time scale. In particular, the extremal dependence dies out more
quickly for large space and time lags than for the correlation function.

In a second step, we simulate processes in space and time using the above defined corre-
lation model with a = b = 0.03, ν1 = 3/2 and ν2 = 1. We start the simulation procedure
with n = 100 replications of a Gaussian random field with correlation function γ(sns, tnu)

using the simulation routine in the R-package RandomFields by Schlather [75], where the
circulant embedding method introduced in Section 2.2.2 is implemented. The fields are then
transformed to standard Fréchet and the pointwise maximum is taken over the 100 repli-
cations. Figure 3.3.3 shows image and perspective plots (using the R-package fields for
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3.3 Possible correlation functions for the underlying Gaussian space-time process

visualization) of the simulated random fields for four consecutive time points. Figures 3.3.4
and 3.3.5 show the resulting random fields, if the margins are transformed to standard Gum-
bel and Weibull instead of Fréchet distributions. Clearly, in both cases the peaks are not as
high as in the Fréchet case, leading to a smoother appearance of the resulting random field.
One still sees the isolation of the peaks in the Fréchet case, which are well-known from the
storm model of Smith using a centered Gaussian density for the function f . However, in the
other two cases, they are not as pronounced.
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Figure 3.3.1: Contour plots for the underlying correlation function (left) and the resulting tail depen-
dence coefficient (right) depending on the absolute space lag ‖h‖ and time lag |u| for
different values of the scaling parameters a (time) and b (space), ν1 = 3/2 and ν2 = 1.
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Figure 3.3.2: Simulated max-stable random fields (for fixed time point) with Fréchet (top), Gumbel
(middle) and Weibull (bottom) marginal distributions.
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Figure 3.3.3: Simulated max-stable random fields with Type II (Fréchet) marginals for four consecu-
tive time points (from the top to the bottom).
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Figure 3.3.4: Simulated max-stable random fields with Type I (Gumbel) marginals for four consecu-
tive time points (from the top to the bottom).
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Figure 3.3.5: Simulated max-stable random fields with Type III (Weibull) marginals for four consec-
utive time points (from the top to the bottom).
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3.3 Possible correlation functions for the underlying Gaussian space-time process

3.3.2 Modelling spatial anisotropy

The correlation functions of the underlying Gaussian random fields in the previous sections
were assumed to be spatially isotropic, meaning that the correlation function only depends
on the absolute space and time lags ‖h‖ and |u|. An easy way to introduce spatial anisotropy
to a model is given by geometric anisotropy, i.e.,

γ̃(h, u) = γ(‖Ah‖ , |u|),

where A is a transformation matrix.
In the two dimensional case geometric anisotropy in space can be modelled by the transfor-
mation matrix A = TR, with rotation and distance matrix where

R =

 cosα sinα
− sinα cosα

 , T =

1/amax 0
0 1/amin

 .

Geometric anisotropy directly relates to the tail dependence coefficient

χ(h, u) = 2(1 −Φ(
√
δ(Ah, u))).

Figure 3.3.6 compares isotropic and anisotropic correlation functions and the corresponding
tail dependence coefficients as function of the space lag components h = (h1, h2)

ᵀ
, where the

isotropic correlation is the same as in Example 3.2 with ν1 = 3/2, ν2 = 1 and a = b = 0.03.
For the anisotropic parameters we choose amin = 1, amax = 3 and α = 45◦. It can be
seen, that the structure in the correlation function translates to the tail dependence coefficient.
Corresponding max-stable random fields with Fréchet margins are shown for four consecutive
time points in Figure 3.3.7. From the image plots, one clearly sees that the dependence is
stronger in one direction. The perspective plots show that the isolated peaks are now stretched
in one direction. In reality, this could correspond to wind speed peaks coming for example
from a storm shaped particular in this wind direction.

A more complex way of introducing anisotropy in space is given by the Bernstein class,
which is introduced in Porcu et al. [70] and revisited in Mateu et al. [64]. The covariance
model is defined by
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3 Max-stable processes for extremes observed in space and time

C(h, u) =

∞∫
0

∞∫
0

exp

− d∑
i=1

ψi(|hi|)v1 − ψt(|u|)v2

 dF(v1, v2),

where F is a bivariate distribution function and ψi, i = 1, . . . , d and ψt are positive functions
on [0,∞) with completely monotone derivatives, also called Bernstein functions. We assume
that ψi, i = 1, . . . , d and ψt are standardized, such that ψi(0) = ψt(0) = 1, i = 1, . . . , d.
Assumption 3.1 can directly be derived for the corresponding correlation function.

γ(h, u) = C(h, u)/C(0, 0)

=

(
1 −

d∑
i=1

ψi(|hi|)

∞∫
0

∞∫
0

v1dF(v1, v2) − ψt(|u|)

∞∫
0

∞∫
0

v2dF(v1, v2)

)/
(
1 − d

∞∫
0

∞∫
0

v1dF(v1, v2) −

∞∫
0

∞∫
0

v2dF(v1, v2)

)

=

(
1 −

d∑
i=1

(1 − θ1|hi|
α1 + o(|hi|

α1))

∞∫
0

v1dFv1(v1) − (1 − θ2|u|α2 + O(|u|α2))

×

∞∫
0

v2dFv2(v2)

)/(
1 − d

∞∫
0

v1dFv1(v1) −

∞∫
0

v2dFv2(v2)

)

= 1 − θ1

∞∫
0

v1dFv1(v1)
d∑

i=1

|hi|
α1 − θ2

∞∫
0

v2dFv2(v2)|u|α2 + O(
d∑

i=1

|hi|
α1) + O(|u|α2).
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Figure 3.3.6: Contour plots for covariance functions and tail dependence coefficients depending on the
spatial lag components h1 and h2 in the isotropic case (top) and for included geometric
anisotropy (bottom) for a = b = 0.03, amin = 1, amax = 3 and α = 45◦.
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Figure 3.3.7: Simulated anisotropic max-stable random fields with Fréchet margins from Example
3.2 (a = 0.03, b = 0.03, ν1 = 3/2, ν2 = 1) with anisotropic parameters amin = 1,
amax = 3 and α = 45◦.
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3.4 Proofs

3.4.1 Proof of tightness in Theorem 3.1 (see Kabluchko et al. [50])

The objective is to show that the sequence ηn, n ∈N, defined by

ηn(s, t) =
n∨

j=1

−
1

log Φ(Z j(sns, tnt))
, s ∈ Rd, t ∈ [0,∞),

is tight in C(K), where K ⊂ Rd × [0,∞) is a compact set and C(K) is the space of continuous
functions on K. The proof is taken from Kabluchko et al. [50] and extended to the space-time
setting here. First, note that

P(ηn(s, t) ≤ x) = Pn
(
Z(sns, tnt) ≤ Φ−1

(
e−1/nx

))
∼ Pn

(
Z(sns, tnt) ≤

log(x)
bn

+ bn

)
= P

 n∨
j=1

bn(Z j(sns, tnt) − bn) ≤ log(x)

 ,

where

bn =
√

2 log n −
log log n + log(4π)

2
√

log n
.

Define for n ∈N

Yn(s, t) = bn(Z(sns, tnt) − bn), s ∈ Rd, t ∈ [0,∞).

The key point in the proof is the following lemma:

Lemma 3.1. For ω ∈ R, let Yωn denote the conditional process Yn − ω given Yn(0, 0) = ω.

Then,

1. The family of processes Yωn − µ
ω
n , ω ∈ R, n ∈N, is tight in C(K), where

µωn (s, t) = E [Yωn (s, t)] = E [Yn(s, t) −ω | Yn(0, 0) = ω] .

2. For every c > 0, the family of processes Yωn , ω ∈ [−c, c], n ∈N, is tight in C(K).
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3 Max-stable processes for extremes observed in space and time

Proof of Lemma 3.1. Since

Yn(s, t) −ω = bnZ(sns, tnt) − b2
n −ω

d
∼ N(−b2

n −ω, b2
n),

Yn(0, 0) = bnZ(0, 0) − b2
n

d
∼ N(−b2

n, b2
n),

where d
∼ denotes asymptotic equivalence in distribution, it follows for all (s, t) ∈ K that

µωn (s, t)

= E [Yn(s, t) −ω] + Cor(Yn(s, t) −ω, Yn(0, 0))
√

Var(Yn(s, t) −ω)
ω −E [Yn(0, 0)]√

Var(Yn(0, 0))

= −b2
n −ω+ b2

nγ(sns, tnt)
ω+ b2

n

b2
n

= −(b2
n +ω)(1 − γ(sns, tnt))

∼ − log n
δ(s, t)
log n

−
ωδ(s, t)

log n
→ −δ(s, t), n→ ∞,

where we used (log n)(1− γ(sns, tnt))→ δ(s, t), n→ ∞. Furthermore, for (s1, t1), (s2, t2) ∈

K,

Cov(Yωn (s1, t1), Yωn (s2, t2)) = b2
n(γ(sn(s1 − s2), tn(t1 − t2)) − γ(sns1, tnt1)γ(sns2, tnt2))

∼ (log n)(−(1 − γ(sn(s1 − s2))) + 1 − γ(sns1, tnt1)γ(sns2, tnt2))

∼ −δ(s1 − s2, t1 − t2) + log n
(
δ(s1, t1)

log n
+
δ(s2, t2)

log n
−
δ(s1, t1)δ(s2, t2)

(log n)2

)
→ −δ(s1 − s2, t1 − t2) + δ(s1, t1) + δ(s2, t2), n→ ∞.

We derive an upper bound for the variance of the difference of Yωn (s1, t1) and Yωn (s2, t2) for
(s1, t1), (s2, t2) ∈ K,

Var(Yωn (s1, t1) − Yωn (s2, t2)) = b2
n(1 − γ(sns1, tnt1)2) + b2

n(1 − γ(sns2, tnt2)2)

− 2b2
n(γ(sn(s1 − s2), tn(t1 − t2)) − γ(sns1, tnt1)γ(sns2, tnt2))

= b2
n(2 − 2γ(sn(s1 − s2), tn(t1 − t2)) − (γ(sns1, tnt1) − γ(sns2, tnt2))2)

≤ 2b2
n(1 − γ(sn(s1 − s2), tn(t1 − t2))) ≤ K1δ(s1 − s2, t1 − t2)

≤ K1(D((s1, t1), (s2, t2)))2, (3.20)
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where K1 > 0 is some constant and the last inequality follows from (3.3). The following
corollary is taken from Ledoux and Talagrand [58], Corollary 11.7, and will be used to show
Lemma 3.1.

Corollary 3.1 (Ledoux and Talagrand [58]). Let (T , d) be compact and let ψ be a Young

function (convex, increasing, limt→∞ ψ(t) = ∞, ψ(0) = 0). Assume, that d is a pseudo-

metric (d(x, y) ≥ 0, d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z) and d(x, x) = 0, not

necessarily: d(x, y) = 0⇒ x = y). Furthermore,

D∫
0

ψ−1(N(T , d, ε))dε < ∞,

where D = sup
{
d(x, y), x, y ∈ T

}
and N(T , d; ε) denotes the smallest number of open balls

of radius ε in the metric d which form a covering of T . LetX be a family of separable random

processes X = (X(t))t∈T in L1(Ω,A, P), such that for all t1, t2 ∈ T and A ∈ A measurable∫
A

∣∣∣X(t1) − X(t2)
∣∣∣ dP ≤ d(t1, t2)P(A)ψ−1(1/P(A)).

Then, each element of X defines a tight probability distribution on C(T ) and X is weakly

relatively compact if and only if, for some t ∈ T,
{
X(t); X ∈ X

}
is weakly relatively compact.

Now it follows with (3.20) that

E
[∣∣∣Yωn (s1, t1) − µωn (s1, t1) − Yωn (s2, t2) + µωn (s2, t2)

∣∣∣]2

≤ E

[∣∣∣Yωn (s1, t1) − µωn (s1, t1) − Yωn (s2, t2) + µωn (s2, t2)
∣∣∣2]

= Var(Yωn (s1, t1) − Yn(s2, t2)) ≤ K1(D((s1, t1), (s2, t2)))2.

Set ψ(x) = x2 in Corollary 3.1. It follows that the family of processes Yωn − µ
ω
n , ω ∈ R,

n ∈ N is tight in C(K). Since µωn (s, t) → −δ(s, t), n → ∞ uniformly in (s, t) ∈ K and
ω ∈ [−c, c] it follows, that the family µωn is tight in C(K). Together with part (a), the second
statement of the lemma follows. �

Together with Lemma 3.1 the tightness of the sequence ηn is shown by using Theorem 8.3
in Billingsley [10]. In particular, the following two statements are verified.
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3 Max-stable processes for extremes observed in space and time

(I) The sequence ηn(0, 0), n ∈N is tight in R.

(II) For all ε > 0, a > 0, there exist δ > 0 and N ∈N, such that

P
(

sup
(s1,t1),(s2,t2)∈K
‖(s1,t1),(s2,t2)‖≤δ

‖ηn(s1, t1) − ηn(s2, t1)‖ > a
)
< ε, for all n > N.

The first assertion (I) is obvious, since ηn(0, 0) converges weakly to a Fréchet distribution for
n→ ∞, and is therefore tight in R. Now, define for n ∈N

ωδ(ηn) = sup
(s1,t1),(s2,t2)∈K
‖(s1,t1),(s2,t2)‖≤δ

‖ηn(s1, t1) − ηn(s2, t1)‖ and Kn =
{
ωδ(ηn) > a

}
.

To prove (II) the following statements are shown.

1. a) Kn ⊂ Gn ∪ Hn, where

Gn B

{
∃(s, t) ∈ K :

n∨
j=1

Y j,n(s, t) , sup
j=1,...,n

|Y j,n(0,0)|<c2

Y j,n(s, t)
}

,

Hn B
n⋃

j=1

C j,n

B
n⋃

j=1

{
Y j,n(0, 0) ∈ [−c2, c2], sup

(s1,t1),(s2,t2)∈K
‖(s1,t1),(s2,t2)‖≤δ

|Y j,n(s1, t1) − Y j,n(s2, t2)| > a
}

.

b) Gn ⊂ En ∪ Fn ∪
n⋃

j=1
B j,n with

En B

{
inf

(s,t)∈K

n∨
j=1

Y j,n(s, t) < −c1

}
,

Fn B
n⋃

j=1

{
Y j,n(0, 0) > c2

}
⇒ P(Fn) = P(ηn(0, 0) > c2) < ε, n > N,

B j,n B

Y j,n(0, 0) < −c2, sup
(s,t)∈K

Y j,n(s, t) > −c1.


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c) En ⊂
n⋂

j=1
Ac

j,n, where

Ac
j,n B

n⋂
j=1

{
Y j,n(0, 0) ∈ [−c0, c0], inf

(s,t)∈K
Y j,n(s, t) − Y j,n(0, 0) ≥ c0 − c1

}
.

2. In a second step the positive constants c0, c1 and c2 are chosen such that the probabili-
ties P(A j,n), P(Fn), P(B j,n) and P(C j,n) are bounded by ε.

We show 1.a) (i.e. Kn ⊂ Gn ∪ Hn). Assume there exists ω ∈ Ω such that ω < Gn ∪ Hn. Then,

n∨
j=1

Y j,n(s, t)(ω) = sup
j=1,...,n

|Y j,n(0,0)(ω)|<c2

Y j,n(s, t)(ω), for all (s, t) ∈ K,

and for all j = 1, . . . , n

Y j,n(0, 0)(ω) < [−c2, c2]

sup
(s1,t1),(s2,t2)∈K
‖(s1,t1),(s2,t2)‖≤δ

|Y j,n(s1, t1)(ω) − Y j,n(s2, t2)(ω)| ≤ a.

It follows that

sup
(s1,t1),(s2,t2)∈K
‖(s1,t1),(s2,t2)‖≤δ

‖ηn(s1, t1)(ω) − ηn(s2, t2)(ω)‖

= sup
(s1,t1),(s2,t2)∈K
‖(s1,t1),(s2,t2)‖≤δ

∣∣∣∣∣∣ sup
j=1,...,n

|Y j,n(0,0)(ω)|<c2

Y j,n(s1, t1)(ω) − sup
j=1,...,n

|Y j,n(0,0)(ω)|<c2

Y j,n(s2, t2)(ω)

∣∣∣∣∣∣
≤ sup

(s1,t1),(s2,t2)∈K
‖(s1,t1),(s2,t2)‖≤δ

sup
j=1,...,n

|Y j,n(0,0)(ω)|<c2

∣∣∣Y j,n(s1, t1)(ω) − Y j,n(s2, t2)(ω)
∣∣∣ ≤ a,

which implies ω < Kn.

We show 1.b) (i.e. Gn ⊂ En ∪ Fn ∪
n⋃

j=1
B j,n). Since Gn ⊂ En ∪ Fn ∪Gn\(En ∪ Fn), it is

sufficient to verify that

Gn\(En ∪ Fn) ⊂
n⋃

j=1

B j,n.
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Let ω ∈ Gn\(En ∪ Fn). Then, it follows that there exists (s, t) ∈ K such that

n∨
j=1

Y j,n(s, t)(ω) , sup
j=1,...,n

|Y j,n(0,0)(ω)|<c2

Y j,n(s, t)(ω).

In addition,

(a) ∀ j = 1, . . . , n : Y j,n(0, 0)(ω) ≤ c2 and

(b) inf
(s,t)∈K

n∨
j=1

Y j,n(s, t)(ω) ≥ −c1.

From (a) it follows that Y j,n(0, 0)(ω) < −c2, since otherwise
n∨

j=1
Y j,n(s, t)(ω) = sup

j=1,...,n
|Y j,n(0,0)(ω)|<c2

Y j,n(s, t)(ω) for all (s, t) ∈ K. From (b) there exists j =

1, . . . , n such that
sup

(s,t)∈K
Y j,n(s, t)(ω) > −c1.

Therefore, ω ∈
n⋃

j=1
B j,n.

To show 1.c) assume that ω <
n⋂

j=1
Ac

j,n. Then, there exists j̃ ∈ {1, . . . , n} such that

Y j̃,n(0, 0)(ω) ∈ [−c0, c0] and inf
(s,t)∈K

Y j̃,n(s, t)(ω) − Y j̃,n(0, 0)(ω) ≥ c0 − c1.

Therefore,
inf

(s,t)∈K
Y j̃,n(s, t)(ω) ≥ −c1,

which implies

inf
(s,t)∈K

n∨
j=1

Y j,n(s, t)(ω) ≥ −c1,

and, thus, ω < En.
By using the tightness of the conditional family of processes Yωn ,ω ∈ [−c0, c0], n ∈N, the

constants c0, c1 and c2 can be chosen, such that the probabilities P(A j,n), P(Fn), P(B j,n) and
P(C j,n) are bounded by ε. First,

P(A j,n) = P(Y j,n(0, 0) ∈ [−c0, c0], inf
(s,t)∈K

Y j,n(s, t) − Y j,n(0, 0) ≥ c0 − c1)
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=

c0∫
−c0

P
(

inf
(s,t)∈K

Y j,n(s, t) −ω ≥ c0 − c1 | Y j,n(0, 0) = ω

)
fY j,n(0,0)(ω)dω

=

c0∫
−c0

1
√

2πbn
e
−
(ω−bn)2

(2bn)2 P
(

inf
(s,t)∈K

Yωj,n(s, t) ≥ c0 − c1

)
dω

=
1

√
2πbn

e−b2
n/2

c0∫
−c0

e−ω−ω
2/(2b2

n)P
(

inf
(s,t)∈K

Yωj,n(s, t) ≥ c0 − c1

)
dω

The constant c0 is chosen large enough such that 2e−c0 < ε. Since Yωn ,ω ∈ [−c0, c0], n ∈ N,
is tight, it follows that c1 > 0 can be chosen, such that

P ( inf
(s,t)∈K

Yωn (s, t) < c0 − c1) < 1/2.

Therefore,

P(A j,n) ≥
1

4n

c0∫
−c0

e−ω−ω
2/(2b2

n)dω ≥
c0

n
, n > N,

which implies

P(En) ≤ P

 n⋂
j=1

Ac
j,n

 ≤ (
1 −

c0

n

)n
≤ 2e−c0 < ε.

We analyse the probability P(B j,n). Note that for large n there exist constants c4, κ > 0 such
that

µn(s, t) ≤ c4 −
ω

2
, and Var(Yωn (s, t)) ≤ κ2, (s, t) ∈ K.

Further, there exists c3 > 0 such that

P

 sup
(s,t)∈K

(Yωn (s, t) − µωn (s, t)) > c3

 < 1
2

, ω ∈ R, n ∈N.

Using Borell’s inequality (Theorem D.1 in [58]), it follows

P

 sup
(s,t)∈K

Yωn (s, t) > −c1 −ω

 < 2Φ
(
−
−c1 −ω/2 − c3 − c4

κ

)
.

Now, with ω < −4(c1 + c3 + c4) and ψ(x) ≤ e−t2/2,
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P ( sup
(s,t)∈K

Yωn (s, t) > −c1 −ω) < 2e−ω
2/(32κ2), n > N, and, thus,

P(B j,n) = P(Y j,n(0, 0) < −c2, sup
(s,t)∈K

Y j,n(s, t) > −c1)

=
1

√
2πbn

e−b2
n/2

−c2∫
−∞

e−ω−ω
2/(2b2

n)P( sup
(s,t)∈K

Yωn (s, t) > −c1 −ω)dω

≤
4
n

−c2∫
−∞

e−ωe−ω
2/(32κ2)dω.

The constant c2 is chosen large enough, such that nP(B j,n) < ε, n > N. For the probability
P(C j,n) it finally follows

P(C j,n) = P(Yn(0, 0) ∈ [−c2, c2],ωδ(Y j,n) > a)

=
1

√
2πbn

e−b2
n/2

−c2∫
−c2

e−ω−ω
2/(2b2

n)P(ωδ(Yωn ) > a)dω,

and δ can be chosen sufficiently small such that

P(C j,n) <
ε

n
.

�

3.4.2 Derivation of the bivariate distribution function for the

space-time Smith model

Proof of Theorem 3.2. Since space and time are independent, we can write

f0(z, x) = f1(z) f2(x), z ∈ R2, x ∈ R

where f1 is the density of a bivariate normal distribution with mean 0 and covariance matrix
Σ, and f2 is the density of a normal distribution with mean 0 and variance σ2

3. Starting from
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equation (3.12) with K = 2, we obtain

F(y1, y2) = exp

−
∞∫
−∞

∞∫
−∞

∞∫
−∞

(
f0(z, x)

y1

)
∨

(
f0(z − h, x − u)

y2

)
dzdx


= exp

−
∞∫
−∞

∞∫
−∞

∞∫
−∞

f0(z, x)
y1

1

{
f0(z, x)

y1
≥

f0(z − h, x − u)
y2

}
dzdx

−

∞∫
−∞

∞∫
−∞

∞∫
−∞

f0(z − h, x − u)
y2

1

{
f0(z − h, x − u)

y2
≥

f0(z, x)
y1

}
dzdx


= exp {−(I) − (II)}

(I) =

∞∫
−∞

f2(x)

∞∫
−∞

∞∫
−∞

f1(z)
y1

1

{
f1(z) f2(x)

y1
≥

f1(z − h) f2(x − u)
y2

}
dzdx

=

∞∫
−∞

f2(x)
1
y1

E

[
1

{
f1(Z) f2(x)

y1
≥

f1(Z − h) f2(x − u)
y2

}]
dx,

where Z has a normal density with mean 0 and variance Σ. Now note that

f1(Z) f2(x)
y1

≥
f1(Z − h) f2(x − u)

y2
⇔ f1(Z) ≥ f1(Z − h)

y1

y2

f2(x − u)
f2(x)

⇔ (2π)−d/2 |Σ|−1 exp
{
−

1
2

ZT Σ−1Z
}

≥ (2π)−d/2 |Σ|−1 exp
{
−

1
2
(Z − h)T Σ−1(Z − h)

}
y1

y2

f2(x − u)
f2(x)

⇔ ZT Σ−1Z

< ZT Σ−1Z − 2ZT Σ−1h + hT Σ−1h − 2 log
(
y1

y2

)
− 2 log

(
f2(x − u)

f2(x)

)
⇔ ZT Σ−1h ≤

1
2

hT Σ−1h − log
(
y1

y2

)
− log

(
f2(x − u)

f2(x)

)
.

The random variable ZT Σ−1h =: ZT B is normally distributed with mean 0 and variance

BT ΣB = hT Σ−1ΣΣ−1h = hT Σ−1h.
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Since f2 is the density of a zero mean normal distribution with variance σ2
3, we obtain

log
(

f2(x − u)
f2(x)

)
= −

1
2σ2

3

(u2 − 2ux).

With a(h) = (hT Σ−1h)1/2 and ZT Σ−1h/a(h) ∼ N(0, 1) it follows

P
(
ZT Σ−1h ≤

1
2

hT Σ−1hT − log
(
y1

y2

)
− log

(
f2(x − u)

f2(x)

))
= P

ZT Σ−1h
a(h)

≤
a(h)

2
−

log(y1/y2)

a(h)
+

1
2σ2

3a(h)
(u2 − 2ux)


= Φ

a(h)
2

+
log(y2/y1)

a(h)
+

u2 − 2ux
2σ2

3a(h)

 .

Altogether, for independent random variables N and X with N standard normally distributed
and X normally distributed with mean 0 and variance σ2

3, it holds

(I) =
1
y1

∞∫
−∞

f2(x)Φ

a(h)
2

+
log(y2/y1)

a(h)
+

u2

2σ2
3a(h)

−
u

σ2
3a(h)

x

 dx

=
1
y1

P

N +
u

σ3a(h)
X
σ3
≤

a(h)
2

+
log(y2/y1)

a(h)
+

u2

2σ2
3a(h)


=

1
y1

Φ


a(h)

2 +
log(y2/y1)

a(h) + u2

2σ2
3a(h)√

1 + u2

σ2
3a(h)2

 =
1
y1

Φ

2σ2
3 log(y2/y1) + σ2

3a(h)2 + u2

2σ3

√
σ2

3a(h)2 + u2

 ,

since N + u/(σ3a(h))(X/σ3) is normally distributed with mean 0 and variance
1 + u2/(σ2

3a(h)2).
Analogously to (I), using the substitution Z → Z + h, we obtain the second term (II) in
(3.15). �
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CHAPTER 4

COMPOSITE LIKELIHOOD METHODS
FOR MAX-STABLE SPACE-TIME

PROCESSES

The results in this chapter are based on the findings in Davis, Klüppelberg and Steinkohl [27].
We follow the approach described in Chapter 3, where the max-stable process introduced in
Kabluchko et al. [50] is extended to a space-time setting.

As it is well-known for max-stable processes, the full likelihood function is computation-
ally intractable and other methods have to be used to derive parameter estimates. Standard
procedures for such cases are composite likelihood including pairwise likelihood estimation.

Since the observations in a space-time setting are correlated, we use special properties of
max-stable processes to show strong consistency and asymptotic normality of the estimates.
First, it is assumed that the locations lie on a regular lattice and that the time points are
equidistant. The spatial and the temporal dimension, i.e., the number of spatial locations and
time points, increases to infinity. The main step in the proof of strong consistency is the
derivation of a strong law of large numbers for the pairwise likelihood function. Stoev [81]
analysed ergodic properties for max-stable processes in time resulting from extremal integral
representations for max-stable processes that were introduced in Stoev and Taqqu [82]. The
extension to a spatial setting and the resulting strong law of large numbers was shown by
Wang, Roy and Stoev [91]. By combining these two results we obtain a strong law of large
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4 Composite likelihood methods for max-stable space-time processes

numbers for a jointly increasing space-time domain.
In addition to strong consistency, we prove asymptotic normality for the pairwise likeli-

hood estimates. A first result concerning asymptotic normality of pairwise likelihood esti-
mates for max-stable space-time processes can be found Huser and Davison [46], who fix
the number of locations and let the number of time points tend to infinity. We formulate
asymptotic normality for the space-time setting and use Bolthausen’s theorem [11] together
with strong mixing properties, shown by Dombry and Eyi-Minko [34], to prove asymptotic
normality for a jointly increasing number of space-time locations.

The chapter is organized as follows. In Section 4.1 we recall the definition of the max-
stable space-time process for which inference properties will be considered in subsequent
sections. Section 4.2 describes pairwise likelihood estimation and the particular setting for
our model. In Sections 4.3 and 4.4 we prove strong consistency and asymptotic normality,
when locations lie on a regular grid and for equidistant time points. In Section 4.5 we discuss
two possible ways of redefining the set of spatial locations, which can be irregularly spaced,
for which consistency and asymptotic normality of the pairwise likelihood estimates still
hold.

4.1 Reminder: Description of model parameters

We shortly recall the definition of the model which was fully devolped in Section 3.1. We
calculate the bivariate density needed for the definition of the pairwise likelihood function.
Let

{
Z j(s, t), s ∈ Rd, t ∈ [0,∞)

}
, j = 1, . . . , n, be independent replications of a space-time

Gaussian process with correlation function γ satisfying the following condition.

Condition 4.1. The correlation function γ satisfies

(log n)(1 − γ(snh, tnu))→ δ(h, u) = θ1‖h‖α1 + θ2|u|α2 > 0, as n→ ∞,

where sn = (log n)−1/α1 , tn = (log n)−1/α2 , α1,α2 ∈ (0, 2] and θ1, θ2 > 0.

Let further
{
ξ j, j ∈N

}
denote points of a Poisson random measure on [0,∞) with intensity

measure ξ−2dξ. By Theorem 3.1 the random fields
{
ηn(s, t)), s ∈ Rd, t ∈ [0,∞)

}
, defined for

n ∈N by

ηn(s, t) =
n∨

j=1

−
1

log(Φ(Z j(sns, tnt)))
, s ∈ Rd, t ∈ [0,∞), (4.1)
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4.1 Reminder: Description of model parameters

converge weakly on the space of continuous functions on Rd × [0,∞) to the stationary Brown-
Resnick process

η(s, t) =
∞∨

j=1

ξ j exp
{
W j(s, t) − δ(s, t)

}
, (4.2)

where the deterministic function δ is defined in Condition 4.1 and
{
W j(s, t), s ∈ Rd, t ∈ [0,∞)

}
,

j ∈N are independent replications of a Gaussian process with stationary increments,
W(0, 0) = 0, E(W(s, t)) = 0 and covariance function for s1, s2 ∈ Rd, t1, t2 ∈ [0,∞)

Cov (W(s1, t1), W(s2, t2)) = δ(s1, t1) + δ(s2, t2) − δ(s1 − s2, t1 − t2).

The bivariate distribution function of η can be expressed in closed form and is based on a
fundamental result by Hüsler and Reiss [47];

F(x1, x2) = exp

− 1
x1

Φ

 log x2
x1

2
√
δ(h, u)

+
√
δ(h, u)

 − 1
x2

Φ

 log x1
x2

2
√
δ(h, u)

+
√
δ(h, u)


 ,

where Φ denotes the standard normal distribution function.
From the bivariate distribution function we calculate the bivariate density. For later pur-

poses we state the closed form expression in the following lemma. For simplicity we suppress
the argument (x1, x2).

Lemma 4.1. Set δ B δ(h, u) and define for x1, x2 > 0

q1 B
log(x2/x1)

2
√
δ

+
√
δ q2 B

log(x1/x2)

2
√
δ

+
√
δ, (4.3)

V B
1
x1

Φ(q(1)ψ ) +
1
x2

Φ(q(2)ψ ). (4.4)

The partial derivatives of q1 and q2 are given by

∂q1

∂x1
= −

1

2
√
δx1

,
∂q1

∂x2
=

1

2
√
δx2

,
∂q2

∂x2
= −

1

2
√
δx2

,
∂q2

∂x1
=

1

2
√
δx1

.
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The first and second order partial derivatives of V are given by

V1 =
∂V
∂x1

= −
1
x2

1

Φ(q1) −
1

2
√
δx2

1

ϕ(q1) +
1

2
√
δx1x2

ϕ(q2),

V2 =
∂V
∂x2

= −
1
x2

2

Φ(q2) −
1

2
√
δx2

2

ϕ(q2) +
1

2
√
δx1x2

ϕ(q(1)ψ ),

V12 =
∂2V
∂x1∂x2

= −
2
√
δ − q1

4δx2
1x2

ϕ(q1) −
2
√
δ − q2

4δx1x2
2

ϕ(q2).

Finally, the bivariate log-density is

log f (x1, x2) = −V + log(V1V2 − V12). (4.5)

4.2 Pairwise likelihood estimation

In this section, we describe the pairwise likelihood procedure for estimating the parameters
of the Brown-Resnick process (4.2), when the underlying correlation function satisfies Con-
dition 4.1. Composite likelihood methods have been used, whenever the full likelihood is not
available or intractable. We present the general definition of composite and pairwise likeli-
hood functions for a space-time setting in Section 4.2.1. Afterwards, we rewrite the pairwise
likelihood for regular grid observations.

4.2.1 Composite likelihood estimation for the space-time setting

Composite likelihood methods go back to Besag [8] and Lindsay [60] and there is vast litera-
ture available, from a theoretical and an applied point of view. For more information we refer
to Varin [86], who presents an overview of existing models and inference including an exten-
sive number of references. In the most general setting the composite log-likelihood function
is given by

lc(ψ, x) =
q∑

i=1

wi log fψ(x ∈ Ai),

where for i = 1, . . . , p the sets Ai describe measurable events and the wi are non-negative
weights associated to the events. From this general form special composite likelihood func-
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4.2 Pairwise likelihood estimation

tions can be derived. We define the (weighted) pairwise log-likelihood function by

PL(ψ; x) =
n∑

i=1

n∑
j=1

wi, j log fψ(xi, x j), (4.6)

where x = (x1, . . . , xn) is the data vector, fψ(xi, x j) is the density of the bivariate observa-
tions (xi, x j), and the wi, j are weights which can be used for example to reduce the number of
pairs included in the estimation. The parameter estimates are obtained by maximizing (4.6).

As noted in Cox and Reid [20], for dependent observations, estimates based on the compos-
ite likelihood need not be consistent or asymptotically normal. This is important for space-
time applications, since all components may be highly dependent across space and time. We
describe the pairwise likelihood estimation for observations from the Brown-Resnick process
(4.2), where the underlying correlation function satisfies Condition 4.1. The resulting param-
eter vector is given by ψ = (θ1,α1, θ2,α2). The pairwise likelihood for a general setting with
M locations s1, . . . , sM and T time points 0 ≤ t1 < · · · < tT < ∞ is given by

PL(M,T )(ψ) =
M−1∑
i=1

M∑
j=i+1

T−1∑
k=1

T∑
l=k+1

w(M)
i, j w(T )

k,l log fψ(η(si, tk), η(s j, tl)), (4.7)

where w(M)
i, j ≥ 0 and w(T )

k,l ≥ 0 denote spatial and temporal weights, respectively, and fψ is
the bivariate density in (4.5). Since it is expected that space-time pairs, which are far apart
in space or in time, have only little influence on the dependence parameters to be estimated,
we define the weights, such that in the estimation only pairs with a maximal spatio-temporal
distance of (r, p) are included, i.e.,

w(M)
i, j = 1{‖si−s j‖≤r}, w(T )

k,l = 1{|tk−tl|≤p}, (4.8)

where ‖ · ‖ denotes any arbitrary norm on Rd. The pairwise likelihood estimates are given by

(θ̂1, α̂1, θ̂2, α̂2) = arg max
(θ1,α1,θ2,α2)

PL(M,T )(θ1,α1, θ2,α2). (4.9)

Using the definition of the weights in (4.8), the log-likelihood function in (4.7) can be rewrit-

75



4 Composite likelihood methods for max-stable space-time processes

ten as

PL(M,T )(ψ) =
M−1∑
i=1

M∑
j=i+1

‖si−s j‖≤r

T−p∑
k=1

min{k+p,T }∑
l=k+1

log fψ(η(si, tk), η(s j, tl)). (4.10)

4.2.2 Pairwise likelihood estimation for regular grid observations

The proof of strong consistency and asymptotic normality in Sections 4.3 and 4.4 is based on
the assumption that locations lie on a regular grid and that time points are equidistant. The
following condition summarizes the sampling scheme.

Condition 4.2. We assume that the locations lie on a regular d-dimensional lattice,

S m =
{
(i1, . . . , id), i1, . . . , id ∈ {1, . . . , m}

}
.

Further assume that the time points are equidistant and given by the set {1, . . . , T }.

For later purposes, we rewrite the pairwise log-likelihood function under Condition 4.2
in the following way. Define Hr as the set of all vectors with non-negative integer-valued
components h without the 0-vector, which point to other sites in the set of locations within
distance r, i.e.,

Hr = Nd ∩ B(0, r)\{0},

where B(0, r) = {s : ‖s‖ < r}. Nott and Rydén [65] call this the design mask. We denote by
|Hr| the cardinality of the set Hr. In our application, we will use design masks according to
the Euclidean distance; for example with d = 2 (cf. Figure 4.2.1),

H3 =
{
(1, 0), (0, 1), (1, 1), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2), (0, 3), (3, 0)

}
.

Using Condition 4.2 and the design mask, the pairwise log-likelihood function in (4.9) can
be rewritten as

PL(m,T )(ψ) =
∑
s∈S m

T∑
t=1

∑
h∈Hr

s+h∈S m

p∑
u=1

t+u≤T

log fψ(η(s, t), η(s + h, t + u))

=
∑
s∈S m

T∑
t=1

gψ (s, t; r, p) −R(m,T )(ψ), (4.11)
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4.2 Pairwise likelihood estimation

where

gψ(s, t; r, p) =
∑

h∈Hr

p∑
u=1

log fψ(η(s, t), η(s + h, t + u)), (4.12)

and R(m,T )(ψ) is a boundary term, given by

R(m,T )(ψ) =
∑
s∈S m

T∑
t=1

∑
h∈Hr

s+h<S m

p∑
u=1

t+u>T

log fψ(η(s, t), η(s + h, t + u)). (4.13)
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Figure 4.2.1: Visualization of the boundary term R(m,T ) for d = 2, m = 6, r = 2, and any fixed time
point; the set S m of locations is the inner square and the outer polygon represents the
endpoints of pairs in the boundary.

Figure 4.2.1 depicts a spatial grid with side length m = 6, where the inner square is the set
of observed locations S m and the points in the outer polygon are endpoints of pairs which are
in the boundary term R(m,T ). The figure visualizes the case H2, which is represented by the
quarter circles.
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4 Composite likelihood methods for max-stable space-time processes

4.3 Strong consistency of the pairwise likelihood

estimates for regular grid observations

In this section we establish strong consistency for the pairwise likelihood estimates based on
regular grid observations introduced in Section 4.2.2. For univariate time series models Davis
and Yau [24] proved strong consistency of the composite likelihood estimates in full detail.
For max-stable random fields with replicates, which are independent in time, Padoan et al.
[66] showed consistency and asymptotic normality of the pairwise likelihood estimates. In
contrast to previous studies, where either the spatial or the time domain increases, we show
strong consistency as the space-time domain increases jointly.

4.3.1 Ergodic properties for max-stable processes

Stoev and Taqqu [82] introduced extremal integrals as an analogy to sum-stable integrals. We
briefly explain the notion of an extremal integral. The basis for the definition are α-Fréchet
sup-measures. Given a measure space (E,E, µ) with σ−finite, positive measure µ, the set-
indexed random process

{
Mα(A), A ∈ E

}
is called an independently scattered α−Fréchet sup-

measure with control measure µ, if

1. for disjoint A1, . . . , An ∈ E, the random variables Mα(A1), . . . , Mα(An) are indepen-
dent,

2. for A ∈ E

P(Mα(A) ≤ x) = exp
{
−µ(A)x−α

}
1{x>0},

i.e. Mα(A) is α−Fréchet distributed with scale parameter µ(A)1/α,

3. for disjoint A j ∈ E, j ∈N, with
⋃

j∈N A j ∈ E,

Mα

( ⋃
j∈N

A j

)
=

∨
j∈N

Mα(A j).
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4.3 Strong consistency of the pairwise likelihood estimates for regular grid observations

For a non-negative simple function f : E → R, f (x) =
∑n

j=1 a j1A j(x), where A1, . . . , An ∈

E are disjoint, the extremal integral
e∫

is defined by

e∫
E

f (x)Mα(dx) B
n∨

j=1

a jMα(A j),

and the integral is independent of the representation of f . This definition can be extended
stepwise from simple functions to nondecreasing sequences of simple functions and finally
to any non-negative function f : E → R satisfying

∫
E( f (x))αµ(dx) < ∞. Based on the

extremal integral representation of max-stable processes Stoev [81] establishes conditions
under which a max-stable process is ergodic. Wang et al. [91] extend these results to a
spatial setting. In the following, let τ(h1,...,hd ,u) denote the multiparameter shift-operator. In
accordance with the definitions and results in Wang et al. [91], we define ergodic and mixing
space-time processes.

Definition 4.1. Let
{
η(s, t), s ∈ Rd, t ∈ [0,∞)

}
be a strictly stationary space-time process.

The process is called

1. ergodic, if for all A, B ∈ σ
{
η(s, t), s ∈ Rd, t ∈ [0,∞)

}
lim

m1,...,md ,T→∞

1
m1 · · ·mdT

m1∑
h1=1

· · ·

md∑
hd=1

T∑
u=1

P
(
A∩ τ(h1,...,hd ,u)(B)

)
= P(A)P(B), (4.14)

where m1, . . . , md, T → ∞ means that each individual component of (m1, . . . , mk, T )

tends to infinity.

2. mixing, if

lim
n→∞

P
(
A∩ τ(s1,n,...,sd,n,tn)(B)

)
= P(A)P(B), (4.15)

for all sequences
{
(s1,n, . . . , sd,n, tn), n ∈N

}
with max

{
|s1,n|, . . . , |sd,n|, |tn|

}
→ ∞.

Note in (4.14) that in contrast to the ergodic theorem in Wang et al. [91], the number of
terms in each sum is not equal, since we have an additional sum for the time component. Us-
ing Theorem 6.1.2 in Krengel [53], we can relate the conventional definition of ergodicity to
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4 Composite likelihood methods for max-stable space-time processes

the one given above. We focus on max-stable processes with extremal integral representation

η(s1, . . . , sd, t) =

e∫
E

U(s1,...,sd ,t)( f )dM1, (4.16)

where U(s1,...,sd ,t) : L1(µ) → L1(µ) given by U(s1,...,sd ,t)( f ) = f ◦ τ(s1,...,sd ,t) is a group
of max-linear automorphisms with U(0,...,0,0)( f ) = f , M1 is an independently scattered 1−
Fréchet random sup-measure with control measure µ, where (E, µ) can be chosen as the stan-
dard Lebesgue space (R, λ). The following result is a direct extension of the uniparameter
theorem established in Stoev [81], Theorem 3.4, and its multiparameter counterpart:

Proposition 4.1 (Wang et al. [91], Theorem 5.3). The max-stable process defined in (4.16) is

mixing, if and only if∫
E

U(s1,n,...,sd,n,tn)( f ) ∧U(0,...,0,0)( f )dµ =

∫
E

U(s1,n,...,sd,n,tn)( f ) ∧ f dµ→ 0, (4.17)

for all sequences
{
(s1,n, . . . , sd,n, tn)

}
with max

{
|s1,n|, . . . , |sd,n|, |tn|

}
→ ∞ as n→ ∞.

Wang et al. [91] showed that the ergodic theorem stated above holds for mixing max-stable
processes with extremal integral representation (4.16) in the case of T = m. The extension
to the multiparameter case where T , m is a simple generalization using Theorem 6.1.2 in
Krengel [53], which is a multiparameter extension of the Ackoglu’s ergodic theorem. Ergodic
properties of Brown-Resnick processes have been studied for the uniparameter case in Stoev
and Taqqu [82] and Wang and Stoev [90]. The Brown-Resnick process (4.2) has a stochastic
representation

{ e∫
E

exp
{
W(s, t) − δ(s, t)

}
dM1, s ∈ Rd, t ∈ [0,∞)

}
, (4.18)

where M1 is a random 1-Fréchet sup-measure on the probability space (Ω,E, P) on which
the Gaussian process W is defined. The intensity is P, the probability measure which defines
the Gaussian process W. We summarize the results in the following proposition.

Proposition 4.2. If δ satisfies Condition 4.1, the Brown-Resnick process given above in (4.18)
is mixing in space and time. The strong law of large numbers holds: for every measurable
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function g : R→ R such that E [|g(η(s1, 1))|] < ∞;

1
mdT

m∑
i1=1

· · ·

m∑
id=1

T∑
t=1

g(η((i1, . . . , id), t)) =
∑
s∈S m

T∑
t=1

g(η(s, t))

a.s.
→ E [g(η((1, . . . , 1), 1))] = E [η(s1, 1)] m, T → ∞.

4.3.2 Consistency for large m and T

In the following we show that the pairwise likelihood estimate resulting from maximizing
(4.11) for the Brown-Resnick process (4.2) is strongly consistent.

Theorem 4.1. Assume that the correlation function γ satisfies Condition 4.1 with param-

eter vector ψ = (θ1,α1, θ2,α2). Suppose further that the true parameter vector ψ∗ =

(θ∗1,α∗1, θ∗2,α∗2) lies in a compact set Ψ, which does not contain 0 and which satisfies for

some c > 0
Ψ ⊆

{
min {θ1, θ2} > c,α1,α2 ∈ (0, 2]

}
. (4.19)

Assume also that the identifiability condition

ψ = ψ̃ ⇔ fψ(η(s1, t1), η(s2, t2)) = fψ̃(η(s1, t1), η(s2, t2)), (4.20)

is satisfied for all (s1, t1), (s2, t2). It then follows that the pairwise likelihood estimate

ψ̂ = arg max
ψ∈Ψ

PL(m,T )(ψ) (4.21)

for observations from the Brown-Resnick process (4.2) is strongly consistent, i.e. ψ̂
a.s.
→ ψ∗ as

m, T → ∞.

Remark 4.1. For the identifiability condition (4.20) we consider different cases according
to the maximal space-time lag (r, p) included in the composite likelihood. The pairwise
density depends on the spatial distance h and the time lag u only through the function
δ(h, u) = θ1‖h‖α1 + θ2|u|α2 . For specific combinations of (r, p) not all parameters are identi-
fiable. Strong consistency still holds for the remaining parameters. Table 4.1 lists the various
scenarios.

Proof of Theorem 4.1. To show strong consistency of the estimates (4.21) we follow the
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Maximal spatial lag r Maximal temporal lag p Identifiable parameters
0 1 θ2
0 > 1 θ2, α2
1 0 θ1
> 1 0 θ1, α1
1 1 θ1, θ2
1 > 1 θ1, θ2, α2
> 1 1 θ1, α1, θ2
> 1 > 1 θ1, α1, θ2, α2

Table 4.1: Identifiable parameters corresponding to different maximal space-time lags (r, p) included
in the pairwise likelihood function.

method of Wald [89]. From (4.11) we show

1
mdT

PL(m,T )(ψ) =
1

mdT

( ∑
s∈S m

T∑
t=1

gψ (s, t; r, p) −R(m,T )(ψ)
)

a.s.
→ PL(ψ),

as m, T → ∞, where PL(ψ) B E [gψ(s1, 1; r, p)] and gψ and R(m,T )(ψ) are defined in (4.12)
and (4.13), respectively.

We use the following three steps.

(C1) Strong law of large numbers: Uniformly on the compact parameter space Ψ,

1
mdT

∑
s∈S m

T∑
t=1

gψ (s, t; r, p)
a.s.
−→ PL(ψ) = E [gψ(s1, 1; r, p)] , m, T → ∞,

(C2) 1
mdTR

(m,T )(ψ)
a.s.
→ 0, m, T → ∞.

(C3) and the limit function PL(ψ) in (C1) is uniquely maximized at the true parameter vector
ψ∗ ∈ Ψ.

We first prove (C1). For fixed ψ ∈ Ψ the convergence in (C1) follows immediately from
Proposition 4.2 together with the fact that gψ in (4.12) is a measurable function of lagged
versions of η(s, t). To prove uniform convergence we have from (3.6) for x1, x2 > 0

log fψ(x1, x2) = −V(x1, x2) + log(V1(x1, x2)V2(x1, x2) − V12(x1, x2)),

V(x1, x2) = Φ(q1)/x1 + Φ(q2)/x2,
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V1(x1, x2) =
∂V(x1, x2)

∂x1
, V2(x1, x2) =

∂V(x1, x2)

∂x2
, V12(x1, x2) =

∂2V(x1, x2)

∂x1∂x2
,

and

q1 = q1(x1, x2) =
log(x2/x1)

2
√
δ(h, u)

+
√
δ(h, u) and

q2 = q2(x1, x2) =
log(x1/x2)

2
√
δ(h, u)

+
√
δ(h, u).

For x1, x2 > 0 the log-density log fψ(x1, x2) can be bounded as follows.∣∣∣log fψ(x1, x2)
∣∣∣ = ∣∣∣−V(x1, x2) + log(V1(x1, x2)V2(x1, x2) − V12(x1, x2)

∣∣∣
≤

∣∣∣Φ(q1)/x1
∣∣∣+ ∣∣∣Φ(q2)/x2

∣∣∣+ ∣∣∣V1(x1, x2)V2(x1, x2) − V12(x1, x2)
∣∣∣

≤
1
x1

+
1
x2

+
1

x2
1x2

2

+
1

2
√
δ(h, u)

 1
x2

1x2
2

+
1

x3
1x2

+
1

x2
1x2

2

+
1

x1x3
2

+
1

x2
1x2

+
1

x1x2
2


+

1
4δ(h, u)

 1
x2

1x2
2

+
1

x3
1x2

+
1

x1x3
2

+
1

x2
1x2

2

+

∣∣∣∣∣∣∣ q1

x2
1x2

+
q2

x1x2
2

∣∣∣∣∣∣∣
 ,

where Φ(·) ≤ 1 was used. Finally note that

q1

4δ(h, u)x2
1x2

=
log(x2/x1) + 2δ(h, u)

8(δ(h, u))3/2x2
1x2

≤
1

8(δ(h, u))3/2x3
1

+
1

4
√
δ(h, u)x1x2

2

.

Since the marginal distributions of the Brown-Resnick process (4.2) are assumed to be stan-
dard Fréchet, it follows that for every fixed location s ∈ S m and fixed time point t ∈ {1, . . . , T }

the random variable 1/η(s, t) is standard exponentially distributed with all moments finite.
Using Hölder’s inequality, it follows that

E
[∣∣∣log fψ(η(s1, t1), η(s2, t2))

∣∣∣] ≤ K1 +
K2

2
√
δ(h, u)

+
K3

4δ(h, u)
+

K4

8(δ(h, u))3/2
,

where K1, K2, K3, K4 > 0 are finite constants. Since the parameter space Ψ is assumed to be
compact and together with assumption (4.19), δ can be bounded away from zero, i.e.

δ(h, u) ≥ min {θ1, θ2} (‖h‖α1 + |u|α2) > c(‖h‖α1 + |u|α2) > c̃ > 0, (4.22)
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where c̃ > 0 is independent of the parameters. Therefore,

E
[∣∣∣log fψ(η(s1, t1), η(s2, t2))

∣∣∣] < K1 +
K2

2
√

c̃
+

K3

4c̃
+

K4

8c̃3/2
C K5 < ∞, (4.23)

where K5 > 0. From (4.22) and (4.23) it follows that

E

sup
ψ∈Ψ

∣∣∣log fψ(η(s1, 1), η(s1 + h, 1 + u))
∣∣∣ < ∞,

which implies E
[
supψ∈Ψ

∣∣∣gψ(s1, 1, r, p)
∣∣∣] < ∞. By Theorem 2.7 in Straumann [83] uniform

convergence in (C1) follows.

Turning to (C2), note from (4.13) that by similar arguments as above

E

[∣∣∣∣∣ 1
mdT

R(m,T )(ψ)

∣∣∣∣∣]
≤

1
mdT

∑
s∈S m

∑
h∈Hr

s+h<S m

T∑
t=1

p∑
u=1

t+u>T

E
[∣∣∣log fψ(η(s, t), η(s + h, t + u))

∣∣∣]

≤
1

mdT

∑
s∈S m

∑
h∈Hr

s+h<S m

T∑
t=1

p∑
u=1

t+u>T

K5 ≤
K5K6

mT
→ 0, m, T → ∞,

where we used the bound derived in (4.23) and the fact that the number of space-time points in
the boundary is of order md−1 (independent of T ) and, therefore, can be bounded by K6md−1

with K6 > 0 a constant independent of m and T .

We denote by Bm,T the set of “boundary” points, i.e.

Bm,T = {s ∈ S m : s + h < Hr} × {t ∈ {1, . . . , T } : t + u > T }.

Then,

R(m,T )(ψ) =
∑

h∈Hr

p∑
u=1

∑
(s,t)∈Bm,T

log fψ(η(s, t), η(s + h, t + u)).

By Proposition 4.2 and (4.23) it follows uniformly on Ψ, that

∑
h∈Hr

p∑
u=1

1
|Bm,T |

∑
(s,t)∈Bm,T

log fψ(η(s, t), η(s + h, t + u))
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→ E

 ∑
h∈Hr

p∑
u=1

log fψ(η(s1, 1), η(s1 + h, 1 + u)

 , m, T → ∞.

Therefore,

1
mdT

R(m,T )(ψ) ≤
K6

mT

∑
h∈Hr

p∑
u=1

1
|Bm,T |

∑
(s,t)∈Bm,T

log fψ(η(s, t), η(s + h, t + u))
a.s.
−→ 0,

since E [| log fψ(η(s, t), η(s + h, t + u))|] < ∞. This proves (C2).

To prove (C3), note that by Jensen’s inequality

E

[
log

(
fψ(x1, x2)

fψ∗(x1, x2)

)]
≤ log

(
E

[
fψ(x1, x2)

fψ∗(x1, x2)

])
= 0

and, hence,
PL(ψ) ≤ PL(ψ∗)

for all ψ ∈ Ψ. So, ψ∗ maximizes PL(ψ) and is the unique optimum if and only if there is
equality in Jensen’s inequality. However, this is precluded by (4.20). �

4.4 Asymptotic normality of the pairwise likelihood

estimates for regular grid observations

In order to prove asymptotic normality of the pairwise likelihood estimates resulting from
maximizing (4.11) we need the following results for the pairwise log-density. The proofs can
be found in Section 4.6.

Lemma 4.2. Consider the Brown-Resnick process in (4.2), where the underlying correlation

function satisfies Condition 4.1. Further assume that all conditions from Theorem 4.1 hold.

(1) The gradient of the bivariate log-density satisfies

E

[∣∣∣∇ψ log fψ(η(s1, t1), η(s2, t2))
∣∣∣3] < ∞
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(2) The Hessian of the pairwise log-density satisfies

E

sup
ψ∈Ψ

∣∣∣∣∇2
ψ log fψ(η(s1, t1), η(s2, t2))

∣∣∣∣ < ∞.

The absolute values of the vector in (1) and the matrix in (2) are perceived componentwise.

Assuming asymptotic normality of the pairwise score function ∇ψPL(m,T )(ψ) it is rela-
tively routine to show that the pairwise likelihood estimates are asymptotically normal. We
formulate the first result.

Theorem 4.2. Assume that the conditions of Theorem 4.1 hold. In addition, assume that a

central limit theorem holds for the gradient of gψ defined in (4.12) in the following sense

1

md/2
√

T

∑
s∈S m

T∑
t=1

∇ψgψ∗(s, t; r, p)
d
−→ N(0, Σ), m, T → ∞, (4.24)

where ψ∗ is the true parameter vector and Σ is some covariance matrix. Then it follows that

the pairwise likelihood estimate in (4.21) satisfies

md/2
√

T (ψ̂ − ψ∗)
d
−→ N(0, F−1Σ(F−1)T ), m, T → ∞,

where

F = E
[
−∇2

ψgψ∗(s1, 1; r, p)
]

.

Proof. We use a standard Taylor expansion of the pairwise score function around the true
parameter vector and obtain

md/2
√

T (ψ̂ − ψ∗) = −
(

1
mdT

∇2
ψPL(m,T )(ψ̃)

)−1 (
1

md/2
√

T
∇ψPL(m,T )(ψ∗)

)

= −

 1
mdT

∑
s∈S m

T∑
t=1

∇2
ψgψ̃(s, t; r, p) −

1
mdT

∇2
ψR

(m,T )(ψ̃)


−1

×

 1

md/2
√

T

∑
s∈S m

T∑
t=1

∇ψgψ∗(s, t; r, p) −
1

md/2
√

T
∇ψR

(m,T )(ψ∗)


= −(I1 − I2)

−1(J1 − J2),
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where ψ̃ ∈ [ψ̂,ψ∗]. By (4.24) J1 converges weakly to a normal distribution with mean 0 and
covariance matrix Σ. By using the same arguments as in the proof of Theorem 4.1 together
with (4.24) we have that J2

P
→ 0. Since the underlying space-time process in the likelihood

function is mixing, it follows that the process
{
∇2
ψgψ(s, t; r, p), s ∈ Zd, t ∈N

}
is mixing as a

measurable function of mixing and lagged processes. To prove the uniform convergence we
verify that

E

sup
ψ∈Ψ

∣∣∣∣∇2
ψgψ(s1, 1; r, p)

∣∣∣∣ < ∞.

This follows immediately from Lemma 4.2. Putting this together with the fact that ψ̃ ∈
[ψ̂,ψ∗], and because of the strong consistency of ψ̂, it follows that

I1
a.s.
−→ E

[
∇2
ψgψ∗(s1, 1; r, p)

]
C −F.

Using the strong law of large numbers for
{
∇2
ψ log fψ(η(s, t), η(s + h, t + u)

}
it follows in the

same way as in the proof of Theorem 4.1 that I2
a.s.
→ 0 as m, T → ∞. Combining these results,

we obtain by Slutzky’s lemma

md/2
√

T (ψ̂ − ψ∗)
d
−→ N(0, F−1Σ(F−1)T ), m, T → ∞.

�

In the next section we provide a sufficient condition for (4.24).

4.4.1 Asymptotic normality and α-mixing

In this section we consider asymptotic normality of the parameters estimates for the Brown-
Resnick process in (4.2). Under the assumption of α-mixing of the random field the key is
to show asymptotic normality for the pairwise score function. For an increasing time domain
and fixed number of locations asymptotic normality of the pairwise likelihood estimates was
shown in Huser and Davison [46]. The main difference between a temporal setting and a
space-time setting is the definition of the α-mixing coefficients and the resulting assumptions
to obtain a central limit theorem for the score function.

We apply the central limit theorem for random fields established in Bolthausen [11] to the
pairwise score function of the pairwise likelihood in our model. In a second step we verify the
α-mixing conditions for the Brown-Resnick process (4.2), where the underlying correlation
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function satisfies Condition 4.1. First, we define the α-mixing coefficients in a space-time
setting as follows. Define the distances

d((s1, t1), (s2, t2)) = max
{

max
1≤i≤d

|s1(i) − s2(i)|, |t1 − t2|
}

, s1, s2 ∈ Zd, t1, t2 ∈N,

d(Λ1, Λ2) = inf
{
d((s1, t1), (s2, t2)), (s1, t1) ∈ Λ1, (s2, t2) ∈ Λ2

}
,

where Λ1, Λ2 ⊂ Zd ×N, and sk = (sk(1), . . . , sk(d)), k = 1, 2. Let further FΛi =

σ
{
η(s, t), (s, t) ∈ Λi

}
for i = 1, 2. The mixing coefficients are defined for k, l ∈ N and

n ∈N∪ {∞} by

αk,l(n) = sup
{∣∣∣P(A1 ∩ A2) − P(A1)P(A2)

∣∣∣ : Ai ∈ FΛi , |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1, Λ2) ≥ n
}

(4.25)
and depend on the sizes and the distance of the sets Λ1 and Λ2.

A space-time process is called α-mixing, if αk,l(n) → 0 as n → ∞ for all k, l > 0. We
assume that the process

{
η(s, t), s ∈ Zd, t ∈N

}
is α-mixing with mixing coefficients defined

in (4.25), from which it follows that the space-time process{
∇ψgψ(s, t; r, p), s ∈ Zd, t ∈N

}
(4.26)

is α-mixing for all ψ ∈ Ψ. We apply Bolthausen’s central limit theorem this process. By
adjusting the assumptions on the α-mixing coefficients we obtain the following proposition.

Proposition 4.3. We consider the Brown-Resnick process (4.2) with δ(h, u) = θ1‖h‖α1 +

θ2|u|α2 . Assume, that the following conditions hold:

(1) The process
{
(η(s, t), s ∈ Zd, t ∈N

}
is α-mixing.

(2) The α-mixing coefficients in (4.25) satisfy
∞∑

n=1
ndαk,l(n) < ∞ for k+ l ≤ 4(|Hr|+ 1)(p+ 1) and α(|Hr |+1)(p+1),∞(n) = o(n−(d+1)).

(3) There exists some β > 0 such that

E

[∣∣∣∇ψgψ∗(s, t; r, p)
∣∣∣2+β] < ∞ and

∞∑
n=1

ndα(|Hr |+1)(p+1),(|Hr |+1)(p+1)(n)
β/(2+β) < ∞.

88



4.4 Asymptotic normality of the pairwise likelihood estimates for regular grid observations

Then,
1

md/2
√

T

∑
s∈S m

T∑
t=1

∇ψgψ∗(s, t; r, p)
d
→ N(0, Σ), m, T → ∞,

where Σ =
∑

s∈Zd

∑
t∈N

Cov
(
∇ψgψ∗(s1, 1; r, p),∇ψgψ∗(s, t; r, p)

)
.

Recent work by Dombry and Eyi-Minko [34] deals with strong mixing properties for max-
stable random fields. By using a point process representation of max-stable processes to-
gether with coupling techniques, they show that the α-mixing coefficients can be bounded
by a function of the tail dependence coefficient. A direct extension to the space-time setting
gives the following lemma.

Lemma 4.3 (Dombry and Eyi-Minko [34], Corollary 2.2). Consider a stationary max-stable

space-time process{
η(s, t), s ∈ Zd, t ∈N

}
with arbitrary tail dependence coefficient χ(h, u). The α-mixing co-

efficients (4.25) satisfy

αk,l(n) ≤ kl sup
max{‖h‖,|u|}≥n

χ(h, u) and αk,∞(n) ≤ k
∑

max{‖h‖,|u|}≥n

χ(h, u).

In the following we show that Proposition 4.3 applies for the Brown-Resnick process (4.2)
with tail dependence coefficient χ given by

χ(h, u) = 2(1 −Φ(
√
θ1‖h‖α1 + θ2|u|α2)).

By using the inequality for the normal tail probability 1 −Φ(x) = Φ(x) ≤ e−x2/2 for x > 0
it follows that

αk,l(n) ≤ 4kl sup
max{‖h‖,|u|}≥n

(1 −Φ(
√
δ(h, u))) ≤ 4kl sup

max{‖h‖,|u|}≥n
exp

{
−
δ(h, u)

2

}
= 4kl sup

max{‖h‖,|u|}≥n
exp

{
−

1
2
(θ1‖h‖α1 + θ2|u|α2)

}
≤ 4kl sup

max{‖h‖,|u|}≥n
exp

{
−

1
2

min {θ1, θ2} (max {‖h‖, |u|})min{α1,α2}

}
.

For n → ∞, the right hand side tends to zero for all k, l ≥ 0. Thus,
{
η(s, t), s ∈ Zd, t ∈N

}
is
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α-mixing. Furthermore, for k + l ≤ 4(|Hr|+ 1)(p + 1) the coefficients satisfy

∞∑
n=1

ndαk,l(n) ≤ 4kl
∞∑

n=1

nd sup
max{‖h‖,|u|}≥n

exp
{
−

1
2
(θ1‖h‖α1 + θ2|u|α2)

}

≤ 4kl
∞∑

n=1

nd exp
{
−

1
2

min {θ1, θ2} nmin{α1,α2}

}
< ∞.

In addition,

nd+1α(|Hr |+1)(p+1),∞(n) ≤ nd+1(|Hr|+ 1)(p + 1)
∑
x≥n

exp
{
−

1
2

min {θ1, θ2} xmin{α1,α2}

}
,

where the right hand side converges to zero as n → ∞, which finally proves (2). As for (3),
from Lemma 4.2 and using β = 1 we know that

E

[∣∣∣∇ψgψ∗(s, t; r, p)
∣∣∣(2+β)] < ∞.

By the same arguments as in the proof of (2) above the second condition in (3) holds.

By combining the above results with Theorem 4.2 we obtain asymptotic normality for the
parameter estimates ψ̂ for an increasing number of space-time locations. We summarize this
result as follows.

Theorem 4.3. Assume that the conditions of Theorem 4.1 hold. Then,

(mdT )1/2(ψ̂ − ψ∗)
d
→ N(0, F−1Σ(F−1)

ᵀ
), m, T → ∞,

where

F = E
[
−∇2

ψgψ∗(s1, 1; r, p)
]

,

and

Σ =
∑
s∈Zd

∑
t∈N

Cov
(
∇ψgψ∗(s1, 1; r, p),∇ψgψ∗(s, t; r, p)

)
.

Remark 4.2. Unfortunately, we cannot provide a closed form expression for the asymptotic
covariance matrix. The matrix F is the expected Hessian matrix of the pairwise log-likelihood
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function and an estimate is given by its empirical version

F̂ = −
∑
s∈S m

T∑
t=1

∑
h∈Hr

s+h∈S m

p∑
u=1

t+u≤T

∇2
ψ log fψ̂(η(s, t), η(s + h, t + u)),

which can be obtained numerically from the optimization routine used to maximize the pair-
wise likelihood function. The calculation of Σ or estimates for Σ seems to be a difficult task.
We therefore rely on resampling methods like bootstrap or jackknife for obtaining estimates
of the variance and confidence regions. For example a block bootstrap procedure could be
applied which approximates the distribution of ψ̂ − ψ. The situation here is similar to the
estimation of the extremogram, where bootstrap methods have been suggested to construct
asymptotically correct confidence bands (see Davis and Mikosch [23] and Davis et al. [25]).
The justification of resampling methods is the subject of another study.

4.5 Extension to irregularly spaced locations

So far we have assumed that the spatial sampling is a regular grid. In the following we discuss
two settings, where the locations are irregularly spaced.

4.5.1 Deterministic irregularly spaced lattice

One way to extend our results to irregularly spaced locations is to invoke the ideas in Bai et
al. [4] as adapted from Jenish and Prucha [48]. Let

D ⊂ Rd × [0,∞) ×Rd × [0,∞)

denote an infinitely countable lattice such that all elements of D have distances of at least
d0 > 0:

‖(s1, t1, s2, t2) − (s3, t3, s4, t4)‖ > d0

for any (s1, t1, s2, t2), (s3, t3, s4, t4) ∈ D, where ‖ · ‖ is an arbitrary norm. Note that D de-
scribes pairs of space-time locations. Further let {Dn : n ∈ N} be a sequence of arbitrary
finite subsets of D satisfying |Dn| → ∞ as n → ∞, where | · | denotes the cardinality. In
addition the sets Dn contain only pairs of space-time locations for which ‖s1 − s2‖ ≤ r,
|t1 − t2| ≤ p and at least one of the lags ‖s1 − s2‖ and |t1 − t2| is larger than zero. The pairwise
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log-likelihood function (see general definition in (4.10)) is now given by

PL(n)(ψ) =
∑

(s1,t1,s2,t2)∈Dn

log fψ(η(s1, t1), η(s2, t2)).

Denote by S × T the sampling region with cardinality |S × T | = n. To prove consistency
of the pairwise likelihood estimates Theorems 2 and 3 in Jenish and Prucha [48] are used
to show that the pairwise log-likelihood function satisfies a law of large numbers. Using
the same arguments as in Theorem 4.1 in Section 4.3.2 we can show that the estimates are
consistent, i.e.

ψ̂
P
→ ψ∗, n→ ∞.

Compared to the conditions needed to prove Theorem 4.1 the stronger assumption that the
pairwise log-density is uniformly L1+δ integrable (for a definition see Section 3.1 in Bai et al.
[4]) has to be shown. For the Brown-Resnick process (4.2) and the assumptions in Theorem
4.1 this can be verified in a similar fashion as in the derivation of the upper bound for the log-
density in the proof of Theorem 4.1, (C1). To show asymptotic normality of the estimates,
Bai et al. [4] use Theorem 1 in Jenish and Prucha [48] assuming eight conditions, where the
first two define the setting for the space-time locations. For the Brown-Resnick process with
δ(h, u) = θ1‖h‖α1 + θ2|u|α2 and together with the assumptions in Theorem 4.1 all conditions
except their Assumptions (7) and (8) can be shown. For our setting, Assumptions (7) and (8)
in [4] are equivalent to

nVar(∇ψPLn(ψ))→ Σ and E
[
∇2
ψPLn(ψ)

]
→ F, n→ ∞, (4.27)

where F and Σ are positive definite matrices. Note that by using Theorem 2 and 3 in Jenish
and Prucha [48] together with the arguments in the proof of Theorem 4.2 we can show the
first part of Assumption 8 in Bai et al. [4]:

sup
ψ∈Ψ

∣∣∣∣∇2
ψPL(n)(ψ) −E

[
∇2
ψPL(n)(ψ)

]∣∣∣∣→ 0, n→ ∞.

Altogether, in contrast to the regular grid case we have two additional assumptions (4.27),
which seem difficult to show.
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4.5 Extension to irregularly spaced locations

4.5.2 Random locations generated by a Poisson process

In the following we assume that observations are taken at random locations. For simplicity
we consider a spatial random field and no time component. We use the ideas and results in
Karr [51] and Li et al. [59] to redefine the pairwise likelihood function and to show that the
resulting estimates are asymptotically normal. Let {η(s), s ∈ Rd} be the max-stable random
field defined analogously to (4.2), where δ is now given by δ(h) = θ1‖h‖α1 , and let N denote
a Poisson random measure with mean measure νλ(·), where λ is Lebesgue measure, i.e. N is
a stationary homogeneous Poisson process with intensity parameter ν which is assumed to be
known. As before, we denote by S m the set of possible spatial locations where the process is
observed. Suppose that the set S m is convex and compact. Following Karr [51] we define

N(2)(ds1, ds2) = N(ds1)N(ds2)1{s1,s2}, s1, s2 ∈ S m.

The pairwise log-likelihood function is now given by

PL(m)(ψ) =

∫
S m

∫
S m

w(s1 − s2) log fψ(η(s1), η(s2))N(2)(ds1, ds2), (4.28)

where w is some positive weight function. We adapt Lemma A.2 from Li et al. [59] to show
that the pairwise score function satisfies a central limit theorem. The variance calculation is
different from Li et al. [59] in the sense that we investigate the pairwise score function instead
of a kernel smoothed estimator of a covariance function, which requires different arguments.

Lemma 4.4. Assume that locations are generated by a stationary homogeneous Poisson pro-

cess N with intensity ν. Suppose further that the following conditions hold.

1. The sets S m satisfy

λ(S m) = O(md), and λ(∂S m) = O(md−1),

where λ denotes the Lebesgue measure and ∂S m is the boundary of S m.

2. The random field {η(s), s ∈ Rd} is α-mixing with mixing coefficients as in (4.25) for

which hold

sup
k∈N

1
k2αk,k(r) = O(r−ε), for some ε > 0.
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4 Composite likelihood methods for max-stable space-time processes

3. Let w be a positive weight function satisfying∫
Rd

w(u)du < ∞ and
∫
Rd

w(u)2du < ∞.

4. The gradient of the bivariate log-density satisfies

E
[
|∇ψ log fψ∗(η(s1), η(s2))|

]
< ∞ and E

[
|∇ψ log fψ∗(η(s1), η(s2))|

2
]
< ∞.

5. Define S m − S m as the the set of all pairwise differences in S m. Denote further

Aψ∗(s1, s2) = ∇ψ log fψ∗(η(s1), η(s2)).

$
(S m−S m)3

w(v1)w(v3 − v2)E
[
Aψ∗(v1, 0)Aψ∗(v2, v3)

]

×
λ(S m ∩ (S m + v1) ∩ (S m + v2) ∩ (S m + v3))

λ(S m)
dv1dv2dv3

→

$
Rd×Rd×Rd

w(v1)w(v3 − v2)E
[
Aψ∗(v1, 0)Aψ∗(v2, v3)

]
dv1dv2dv3, m→ ∞.

6. There exists β > 0, such that

sup
m>0

E

[
|

√
λ(S m)∇ψPL(m)(ψ∗)|2+β

]
< Cβ

for some constant Cβ > 0.

Then,
1√
λ(S m)

∇ψPL(m)(ψ∗)
d
→ N(0, Σ), m→ ∞,

where

Σ =
2
ν2

∫
Rd

w2(v)E
[
A2
ψ∗(v, 0)

]
dv +

4
ν

Var


∫
Rd

w(u)Aψ∗(u, 0)du


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4.5 Extension to irregularly spaced locations

+

$
Rd×Rd×Rd

w(v1)w(v3 − v2)Cov
[
Aψ∗(v1, 0), Aψ∗(v2, v3)

]
dv1dv2dv3. (4.29)

Proof. We calculate the expectation and the variance of the pairwise score function
∇ψPL(m)(ψ∗). By using standard properties of the Poisson process it follows that

E
[
∇ψPL(m)(ψ∗)

]
= E


"

S m×S m

w(s1 − s2)Aψ∗(s1, s2)N(2)(ds1, ds2)


= ν2

"
S m×S m

w(s1 − s2)E
[
Aψ∗(s1, s2)

]
ds1ds2 = 0,

To calculate the variance note that

λ(S m)
−1Var(ν−2∇ψPL(m)(ψ∗))

= λ(S m)
−1ν−4

&
S 4

m

w(s1 − s2)w(s3 − s4)E
[
Aψ∗(s1, s2)Aψ∗(s3, s4)

]
×E

[
N(2)(ds1, ds2)N(2)(ds3, ds4)

]
.

The expectation E
[
N(2)(ds1, ds2)N(2)(ds3, ds4)

]
can be calculated by using standard prop-

erties of the Poisson process leading to seven terms as stated in Karr [51] or Li et al. [59]. In
the limit, some of these terms are equal. We calculate the three representative different parts.
We denote by εs(·) the Dirac measure.

λ(S m)
−1ν−4

&
S 4

m

w(s1 − s2)w(s3 − s4)E
[
Aψ∗(s1, s2)Aψ∗(s3, s4)

]
× ν2ds1ds2εs1(ds3)εs2(ds4)

= λ(S m)
−1ν−2

"
S 2

m

w2(s1 − s2)E
[
A2
ψ∗(s1 − s2, 0)

]
ds1ds2

= ν−2
∫

S m−S m

w2(u)E
[
A2
ψ∗(u, 0)

] λ(S m ∩ (S m + u))
λ(S m)

du = (1)

Since λ(S m ∩ (S m + u))/λ(S m) → 1 as m → ∞ for every fixed u ∈ Rd (see Lemma 3.2 in

95



4 Composite likelihood methods for max-stable space-time processes

Karr [51]), and due to the fact that∫
S m−S m

w2(u)E
[
A2
ψ∗(u, 0)

] λ(S m ∩ (S m + u))
λ(S m)

du ≤
∫

S m−S m

w2(u)E
[
A2
ψ∗(u, 0)

]
du

→

∫
Rd

w2(u)E
[
A2
ψ∗(u, 0)

]
du < ∞

it follows by dominated convergence that (1) converges to

ν−2
∫
Rd

Var
(
w(u)Aψ∗(u, 0)

)
du.

Using similar arguments,

λ(S m)
−1ν−4

&
S 4

m

w(s1 − s2)w(s3 − s4)E
[
Aψ∗(s1, s2)Aψ∗(s3, s4)

]
ν3ds1ds2εs1(ds3)ds4

= λ(S m)
−1ν−1

$
S 3

m

w(s1 − s2)w(s1 − s4)E
[
Aψ∗(0, s2 − s1)Aψ∗(0, s4 − s1)

]
ds1ds2ds4

= ν−1
"

(S m−S m)2

w(v1)w(v2)E
[
Aψ∗(v1, 0)Aψ∗(v2, 0)

] λ(S m ∩ (S m + v1) ∩ (S m + v2))

λ(S m)
dv1dv2

→ ν−1Var


∫
Rd

w(u)Aψ∗(u, 0)du

 .

For the last term we obtain

λ(S m)
−1ν−4

&
S 4

m

w(s1 − s2)w(s3 − s4)E
[
Aψ∗(s1, s2)Aψ∗(s3, s4)

]
ν4ds1ds2ds3ds4

=

$
(S m−S m)3

w(v1)w(v3 − v2)E
[
Aψ∗(v1, 0)Aψ∗(v2, v3)

]

×
λ(S m ∩ (S m + v1) ∩ (S m + v2) ∩ (S m + v3))

λ(S m)
dv1dv2dv3.
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4.5 Extension to irregularly spaced locations

Altogether, as m→ ∞,

Var((λ(S m))
−1/2∇ψPL(m)(ψ∗))→ Σ

= 2ν−2
∫
Rd

Var(w(v)Aψ∗(v, 0))dv + 4ν−1Var


∫
Rd

w(u)Aψ∗(u, 0)du


+

$
Rd×Rd×Rd

Cov
[
w(v1)Aψ∗(v1, 0), w(v3 − v2)Aψ∗(v2, v3)

]
dv1dv2dv3.

The central limit theorem for ∇ψPL(m)(ψ∗) follows in exactly the same way as in Lemma
A.2. together with Lemma A.4. in Li et al. [59]. �

In a second step we show that the estimates resulting by maximizing the pairwise log-
likelihood function in (4.28) are asymptotically normal.

Theorem 4.4. In addition to the conditions in Lemma 4.4 assume that

8. E
[
|∇2
ψ log fψ∗(η(s1), η(s2))|

]
< ∞ and E

[
|∇2
ψ log fψ∗(η(s1), η(s2))|2

]
< ∞, and

9. sup
ψ∈Ψ

∫
Rd

w(u)E
[
∇2
ψ log fψ(η(u), η(0))

]
du < ∞, and

10. further, as m→ ∞ and for fixed ψ ∈ Ψ,$
(S m−S m)3

w(v1)w(v3 − v2)E [∇ψAψ(v1, 0)∇ψAψ(v2, v3)]

×
λ(S m ∩ (S m + v1) ∩ (S m + v2) ∩ (S m + v3))

λ(S m)
dv1dv2dv3

→

$
Rd×Rd×Rd

w(v1)w(v3 − v2)E [∇ψAψ(v1, 0)∇ψAψ(v2, v3)] dv1dv2dv3.

Then, the pairwise likelihood estimate ψ̂ is asymptotically normal:√
λ(S m)(ψ̂ − ψ

∗)
d
→ N(0, F−1Σ(F−1)

ᵀ
), m→ ∞,
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4 Composite likelihood methods for max-stable space-time processes

where Σ is defined in (4.29) and

F =

∫
Rd

w(u)E
[
∇2
ψ log fψ∗(η(u), η(0))

]
du.

Proof. For the second derivative of the pairwise log-likelihood function (4.28) we obtain for
fixed ψ ∈ Ψ

E
[
λ(S m)

−1ν−2∇2PL(m)(ψ)
]
= λ(S m)

−1
"

S m×S m

w(s1 − s2)E [∇ψAψ(s1, s2)] ds1ds2

=

∫
(S m−S m)

w(u)E [∇ψAψ(s1 − s2, 0)]
λ(S m ∩ (S m + u))

λ(S m)
du

→

∫
Rd

w(u)E [∇ψAψ(u, 0)] du, m→ ∞.

Using the same argument as for the pairwise score function it follows that
Var(λ(S m)−1ν−2∇2

ψPL(m)(ψ))→ 0. This shows pointwise convergence of ∇2
ψPL(m)(ψ̃) to∫

Rd

w(u)E
[
∇2
ψ log fψ(η(u), η(0))

]
du. The uniform convergence is implied by Assumption (i).

Therefore,
λ(S m)

−1ν−2∇2
ψPL(m)(ψ)→ F.

Using a Taylor expansion

0 = ∇ψPL(m)(ψ̂) =
1

λ(S m)ν2∇ψPL(m)(ψ∗) +

(
1

λ(S m)ν2∇
2
ψPL(m)(ψ̃)

)
(ψ̂ − ψ∗),

we obtain√
λ(S m)(ψ̂ − ψ

∗) = −

(
1

λ(S m)ν2∇
2
ψPL(m)(ψ̃)

)−1  1√
λ(S m)ν2

∇ψPL(m)(ψ∗)

 .

Together with the central limit theorem for the pairwise score function (Lemma 4.4) it follows
that √

λ(S m)(ψ̂ − ψ
∗)

d
→ N(0, Σ), m→ ∞.

�
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4.6 Proof of Lemma 4.2

Remark 4.3. First note that the rate of convergence here is
√
λ(S m) = O(md/2) (see As-

sumption (a)) which is the same as for regular grids. For the max-stable random field in (4.2)
satisfying Condition 4.1, Assumption (d) was shown in Lemma 4.2. Assumptions (f) and (h)
can be shown in the same way as Lemma 4.2. The condition (b) on the α-mixing coefficients
is easily verified using Lemma 4.3, from which follows that

1
k2αk,k(r) ≤ exp{−θ1rα1 /2} ≤ Cr−α1 ,

where C > 0 is some constant.

4.6 Proof of Lemma 4.2

In the following, we use the same abbreviations as in the proof of Theorem 4.1. The gradient
of the bivariate log-density with respect to the parameter vector ψ is given by

∇ψ log f (x1, x2) =
∂ log f (x1, x2)

∂δ
∇ψδ.

Assume in the following that all parameters θ1,α1, θ2 and α2 are identifiable. Since all partial
derivatives

∂δ

∂θ1
= ‖h‖α1 ,

∂δ

∂θ2
= |u|α2 ,

∂δ

∂α1
θ1α1‖h‖α1−1,

∂δ

∂α2
= θ2α2|u|α2−1,

as well as all second order partial derivatives can be bounded from below and above for
0 < min {‖h‖, |u|} , max {‖h‖, |u|} < ∞ using assumption (4.19) and, independently of the
parameters θ1, θ2, α1 and α2, it suffices to show that

Eψ∗

∣∣∣∣∣∣∂ log fψ(η(s1, t1), η(s2, t2))
∂δ

∣∣∣∣∣∣3
 < ∞

and

Eψ∗

sup
ψ∈Ψ

∣∣∣∣∣∣∂2 log fψ(η(s1, t1), η(s2, t2))
∂δ

∣∣∣∣∣∣
 < ∞.
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4 Composite likelihood methods for max-stable space-time processes

Since δ can be bounded away from zero using assumption (4.19), we can treat δ as a constant.
For simplification we drop the argument in the following equalities. Define

V1 =
∂V
∂x1

, V2 =
∂V
∂x2

, and V12 =
∂2V
∂x1x2

.

The partial derivative of the bivariate log-density with respect to δ has the following form

∂ log fψ
∂δ

= −
∂V
∂δ

+ (V1V2 − V12)
−1

(
∂V1

∂δ
V2 + V1

∂V2

∂δ
−
∂V12

∂δ

)
.

We identify stepwise the “critical” terms, where “critical” means higher order terms of func-
tions of x1 and x2. To give an idea on how to handle the components in the derivatives, we
describe one such step. Note that (V1V2 − V12)−1 can be written as

(V1V2 − V12)
−1 =

x1x2

g1

(
1
x1

, 1
x2

, 1
x1x2

, 1
x2

1
, 1

x2
2

) ,

where g1 describes the sum of the components together with additional multiplicative factors.
By using

∂Φ(q(1)ψ )

∂δ
=

q(1)ψ

2δ
ϕ(q(1)ψ ) and

∂ϕ(q(1)ψ )

∂δ
= −

(q(1)ψ )2

2δ
ϕ(q(1)ψ ),

where q(1)ψ = log(x2/x1)/(2
√
δ) +

√
δ, we have

∂V1

∂δ
V2 = g2

 1
x2

1, x2
2

,
q1

x2
1x2

2

,
q2

1

x2
1x2

2

,
1

x3
1x2

,
q1

x3
1x2

,
q2

1

x3
1x2

,
1

x1x3
2

,
q1)2

x1x3
2

 ,

where g2 is a linear function of the components. By combining the two representations above,
we obtain that all terms in
(V1V2 − V12)−1(∂V1/∂δ)V2 are of the form

| log x1|
k1 | log x2|

k2

xk3
1 xk4

2

, k1, k2, k3, k4 ≥ 0. (4.30)
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The second derivative of the bivariate log-density with respect to δ is given by

∂2 log fψ
(∂δ)2 = −

∂2V
(∂δ)2 − (V1V2 − V12)

−2
(
∂V1

∂δ
V2 + V1

∂V2

∂δ
−
∂V12

∂δ

)2

+ (V1V2 − V12)
−1

(
∂2V1

(∂δ)2 V2 + 2
∂V1

∂δ

∂V2

∂δ
+ V1

∂2V2

(∂δ)2 −
∂2V12

(∂δ)2

)
Stepwise calculation of the single components shows that all terms are also of form (4.30).
This implies that for both statements it suffices to show that for all k1, k2, k3, k4 ≥ 0

E

[
(log η(s, t))k1(log η(s, t))k2

|η(s, t)|k3 |η(s, t)|k4

]
< ∞.

Since η(s, t) is standard Fréchet log(η(s, t)) is standard Gumbel and 1/η(s, t) is standard
exponential. Using Hölder’s inequality, we obtain

E

[
| log(η(s, t))|k1 | log(η(s, t))|k2

|η(s, t)|k3 |η(s, t)|k4

]

<
(
E

[
| log(η(s, t))|4k1

]
E

[
| log(η(s, t))|4k2

])1/2
E ∣∣∣∣∣∣ 1

η(s, t)

∣∣∣∣∣∣4k3
 E

∣∣∣∣∣∣ 1
η(s, t)

∣∣∣∣∣∣4k4
1/2

< ∞,

since all moments of the exponential and the Gumbel distributions are finite.
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CHAPTER 5

A SEMIPARAMETRIC ESTIMATION
PROCEDURE FOR THE PARAMETERS

IN A MAX-STABLE SPACE-TIME
PROCESS

In this chapter, we introduce a new semiparametric estimation procedure as an alternative to
the proposed pairwise likelihood estimation in Chapter 4. The results are based on Davis,
Klüppelberg and Steinkohl [28]. The extremogram is the natural extreme analogue of the
correlation function for stationary processes. It was introduced in Davis and Mikosch [23]
and extended to a spatial setting in Cho, Davis and Ghosh [15]. A special case of the ex-
tremogram was also considered in Fasen et al. [37]. Based on a closed form expression of the
extremogram containing the parameters of interest, we estimate the extremogram empirically
and apply constrained weighted linear regression to estimate the parameters.

The chapter is organized as follows. Section 5.1 describes the semiparametric estimation
procedure in full detail. Asymptotic normality of the parameter estimates is established in
Section 5.2. In Section 5.3 bootstrap methods for the construction of pointwise confidence
intervals are introduced and analysed theoretically.
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5 A semiparametric estimation procedure

5.1 Derivation of the semiparametric estimation

procedure

As before, we consider the Brown-Resnick process in (4.2) with δ given by

δ(h, u) = θ1‖h‖α1 + θ2|u|α2 ,

where ψ = (θ1,α1, θ2,α2) denotes the parameter vector. As described in Chapter 4 com-
posite likelihood methods can be used to estimate the parameters. Unfortunately, parameter
estimation using composite likelihood methods can be laborious since the computation and
subsequent optimization of the objective function is time-consuming. The choice of good
initial values for the optimization of the composite likelihood is essential.

In the following, we introduce an alternative estimation approach, which is based on the
closed form expression for the tail dependence coefficient given by

χ = lim
x→∞

P (η(s1, t1) > x | η(s2, t2) > x) .

This can be viewed as a special case of the space-time extremogram, which is an adaption of
the temporal extremogram introduced in Davis and Mikosch [23].

Definition 5.1 (The extremogram). For strictly stationary space-time processes {X(s, t), (s, t) ∈

Rd × [0,∞)} the space-time extremogram is defined for two Borel-sets A and B bounded away

from 0 by

ρAB(r, u) = lim
z→∞

P
(
z−1X(s, t) ∈ A, z−1X(s + h, t + u) ∈ B

)
P (z−1X(s, t) ∈ A)

, min{r = ‖h‖, u} ≥ 0, (5.1)

provided the limit exists.

In the following, we denote by χ(r, u) the tail dependence coefficient as special case of
the extremogram with A = B = (1,∞), i.e. χ(r, u) = ρ(1,∞)(1,∞)(r, u). For the Brown-
Resnick process in (4.2) we obtain a closed form expression for χ which builds the basis for
our estimation procedure.

Proposition 5.1. The extremogram for A = B = (1,∞) (tail dependence coefficient) of the
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space-time Brown-Resnick process in (4.2), and δ(h, u) = θ1‖h‖α1 + θ2|u|α2 , is given by

χ(r, u) = 2
(
1−Φ(

√
δ(h, u))

)
= 2

(
1−Φ(

√
θ1rα1 + θ2uα2)

)
, min{r = ‖h‖, u} ≥ 0. (5.2)

We describe the idea behind the new estimation procedure. Solving equation (5.2) for
δ(h, u) leads to

δ(h, u) =
(
Φ−1

(
1 −

1
2
χ(r, u)

))2

. (5.3)

Using a temporal lag equal to zero and taking the logarithm on both sides gives

2 log
(
Φ−1

(
1 −

1
2
χ(r, 0)

))
= log(θ1) + α1 log(r).

In the same way, we obtain

2 log
(
Φ−1

(
1 −

1
2
χ(0, u)

))
= log(θ2) + α2 log(u).

These equations are the basis for estimating the parameters. We replace the extremogram on
the left hand side in both of these equations with a nonparametric estimate at several lags.
Then we use constrained weighted least squares in a regression framework to yiels estimates
of the parameters. The parameter estimation is based on the following observation scheme
for the space-time data.

Condition 5.1. We assume that the locations lie on a regular d-dimensional lattice,

S m =
{
s j, j = 1, . . . , M = md

}
=

{
(i1, . . . , id), i1, . . . , id ∈ {1, . . . , m}

}
.

Further assume that the time points are equidistant, given by the set {t1, . . . , tT } = {1, . . . , T }.

In the following scheme we illustrate the two step procedure to estimate the parameters.
LetH andU denote sets of spatial and temporal lags, respectively, which are included in the
estimation.

(1) Nonparametric estimates for the extremogram:
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5 A semiparametric estimation procedure

(1a) For all t ∈ {t1, . . . , tT } calculate

χ̂(t)(r, 0) =

M∑
i=1

M∑
j=1

‖si−s j‖=r

1{η(si,t)>q,η(s j,t)>q}

M∑
i=1

1{η(si,t)>q}

, r ∈ H , (5.4)

where q is a high empirical quantile of {η(si, t), i = 1, . . . , M}.

(1b) For all s ∈ S m estimate the extremogram by

χ̂(s)(0, u) =

T−u∑
k=1

1{η(s,tk)>q,η(s,tk+u)>q}

T∑
k=1

1{η(s,tk)>q}

, u ∈ U, (5.5)

where q is a high empirical quantile of {η(s, tk), k = 1, . . . , T }.

(2) The respective “spatial” and “temporal” extremograms are defined by computing aver-
ages over the temporal and spatial locations, i.e.,

(2a) χ̂(r, 0) = 1
T

T∑
k=1

χ̂(tk)(r, 0), r ∈ H .

(2b) χ̂(0, u) = 1
M

M∑
i=1

χ̂(si)(0, u), u ∈ U.

(3) Solve the following optimization problems to obtain estimates for θ1,α1, θ2 and α2.

(3a)

min
θ1,α1

α1∈(0,2]

∑
r∈H

wr

(
2 log

(
Φ−1(1 −

1
2
χ̂(r, 0))

)
− (log(θ1) + α1 log(r))

)2

, (5.6)

(3b)

min
θ2,α2

α2∈(0,2]

∑
u∈U

wu

(
2 log

(
Φ−1(1 −

1
2
χ̂(0, u))

)
− (log(θ2) + α2 log(u))

)2

, (5.7)

where wu > 0 and wr > 0 are certain weights which control the emphasis of spatial or tempo-
ral lags included in the estimation. In the following sections we show asymptotic properties
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5.2 Estimation for the space-time Brown-Resnick process

of the estimates.

5.2 Estimation for the space-time Brown-Resnick

process

In this section we analyse asymptotic properties for estimation in the context of the Brown-
Resnick process in (4.2) and d = 2. The proof is done in three steps. We first show α-mixing
for the model, which is needed to show asymptotic normality of the spatial extremogram. Us-
ing the results we show asymptotic normality of the semiparametric estimates. Some general
theory for the spatial extremogram is discussed in Section 5.4.

5.2.1 Asymptotics of the spatial extremogram

For a strictly stationary max-stable random field recent work in Dombry and Eyi-Minko [34]
shows that the α-mixing coefficient can be related to the tail dependence coefficient of the
max-stable process. The following proposition is a direct application of Corollary 2.2 in
Dombry and Eyi-Minko [34].

Proposition 5.2. For all fixed time points t ∈ N the random field
{
η(s, t), s ∈ Zd

}
defined in

(4.2) is α-mixing with mixing coefficients satisfying

αk,l( j) ≤ 2kl sup
r≥ j

χ(r, 0) ≤ 4kl exp
{
−
θ1 jα1

2

}
, k, l, j ≥ 0. (5.8)

For all fixed locations s ∈ Zd the time series
{
η(s, t), t ∈N

}
in (4.2) is α-mixing with mixing

coefficients

α( j) ≤ 4
∞∑

u= j

χ(0, u) ≤ 8
∞∑

u= j

exp
{
−
θ2uα2

2

}
, j ≥ 0. (5.9)

In the following sections we will make use of the following simple result.

Lemma 5.1. Let z denote an arbitrary integer and x > 0. For (θ,α) = (θ1,α1), (θ2,α2) the

function

gz(x) =
∞∑

u=x
uz exp

{
−θuα/2

}
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5 A semiparametric estimation procedure

satisfies

gz(x) ≤ ce−θxα/2xz+1,

for some constant c > 0.

Proof. It holds

gz(x) =
∞∑

u=x
uz exp

{
−θuα/2

}
≤

∞∫
x

uze−θu
α/2du

=

(
2
θ

)z/α+1/α−1 2
θα

∞∫
θxα/2

tα
−1(z+1)−1e−tdt ≤ c1Γ

(⌈
α−1(z + 1)

⌉
, θxα/2

)

= c1
(⌈
α−1(z + 1)

⌉
− 1

)
! e−θxα/2

dα−1(z+1)e−1∑
k=0

θkxαk

2kk!
≤ ce−θxα/2xα(dα

−1(z+1)e−1)

≤ ce−θxα/2xz+1,

where Γ(s, x) =
∫ ∞

x ts−1e−tdt is the incomplete Gamma function and c1, c > 0 are some
constants. �

In Section 5.4 we explain and extend fundamental theory for the spatial extremogram. By
showing Conditions (1) - (4) in Proposition 5.4 we prove a central limit theorem for the em-
pirical spatial extremogram of the Brown-Resnick process (4.2) centred by the preasymptotic
extremogram, which is defined for A = B = (1,∞) and u = 0 by

χm(r, 0) =
P(η(0, 0) > anm , η(h, 0) > anm)

P(η(0, 0) > anm)
, r ∈ H[1, p], (5.10)

where the sequence (anm) is chosen such that P(‖ vec{η(h), h ∈ B(0, p)}‖ > anm) ∼ n−1
m ,

which implies that anm = nm since the marginal distributions are standard Fréchet. The
sequence (nm) will be specified in Theorem 5.1. For the estimation of the parameters we use
all spatial lags smaller or equals to p > 1, i.e.

H = H[1, p] = {r = ‖s1 − s2‖ ∈ [1, p] : s1, s2 ∈ S m}.

The preasymptotic extremogram in the central limit theorem can be replaced by the theo-
retical one, if it converges to the theoretical extremogram with the same convergence rate as
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5.2 Estimation for the space-time Brown-Resnick process

the empirical extremogram to the preasymptotic extremogram (see Remark 5.2). We show
that for the spatial setting the preasymptotic extremogram cannot be directly replaced by the
theoretical one. Instead we propose a bias correction, which gives us the desired central limit
theorem. The maximum norm is used throughout.

Theorem 5.1. Consider the random field
{
η(s, t), s ∈ Rd

}
defined in (4.2) for fixed time point

t ∈ {t1, . . . , tT }. Let further nm = mβ with 0 < β < 2/3. The empirical spatial extremogram

χ̂(t)(r, 0) defined in (5.4) satisfies

(
m2

nm

)1/2 (
χ̂(t)(r, 0) − χm(r, 0)

)
r∈H[1,p]

d
→ N(0, Π(space)

1 ), m→ ∞,

where Π(space)
1 is the covariance matrix given explicitely in (5.29), and χm is the preasymp-

totic extremogram in (5.10).

Proof. We use the following notation in the proof.

H[a, b) = {r = ‖s1 − s2‖ ∈ [a, b) : s1, s2 ∈ S m}

p(r) = #
{
(s, s j) : ‖s − s j‖ = r, j = 1, . . . , m2

}
c(p) =

∑
r∈H[1,p]

p(r) = |H[1, p]|

B(h, p) = {s ∈ S m : ‖s − h‖ ≤ p}

For fixed time point t ∈ {t1, . . . , tT } the random field
{
η(s, t), s ∈ Rd

}
is stationary and all

finite-dimensional distributions are multivariate extreme value distributions with Fréchet marginals
and, thus, are multivariate regularly varying. In addition, these distribution functions only de-
pend on the absolute spatial lag between two locations, which implies that the random field
is isotropic. We apply Proposition 5.4, and show that the assumptions are satisfied for the
Brown-Resnick process (4.2). By Proposition 5.2 it directly follows that the random field is
α-mixing. In addition to the sequence (nm) we define

rm =
(
2 log(m5)/θ1

)1/α1
→ ∞, m→ ∞.

The sequences satisfy the basic assumptions nm/m → 0, rm/nm → 0 and r3
m/n2

m → 0 as
m → ∞. We verify Assumption (3a) by using (5.8), Lemma 5.1 and the fact that the number
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of pairs p(r) with distance r can be bounded by 8r.

nm

∑
r∈H(rm,∞)

p(r)αc(p),c(p)(r) ≤ nm

∑
r∈H(rm,∞)

8r4c(p)2e−θ1rα1 /2

≤ 32c(p)2nm

∞∫
rm

re−θ1rα1 /2dr = 32c(p)2nmg1(rm)

≤ 32c(p)2c2e−θ1r
α1
m /2r2

m ≤ 32c(p)2c2
nm

m5

(
2
θ1

log(m5)

)2/α1

→ 0, m→ ∞.

Furthermore,

nm

∑
r∈H(k,rm)

p(r)P
(

max
s1∈B(0,p)

η(s1, t) >
εanm

c(p)
, max

s2∈B(h,p)
η(s2, t) >

εanm

c(p)

)

≤ nm

∑
r∈H(k,∞)

∑
s1∈B(0,p)

∑
s2∈B(h,p)

8rP
(
η(s1, t) >

εanm

c(p)
, η(s2, t) >

εanm

c(p)

)

≤
2nmc(p)
εanm

∑
r∈H(k,∞)

∑
s1∈B(0,p)

∑
s2∈B(h,p)

exp
{
−
θ1‖s1 − s2‖

α1

2

}

=
2nmc(p)
εanm

∑
r∈H(k,∞)

∑
s1∈B(0,p)

∑
s2∈B(0,p)

exp
{
−
θ1‖h + s1 − s2‖

α1

2

}
< ∞.

Since the marginal distributions are standard Fréchet, we have anm ∼ nm (see Section 2.1.3
for a proof) and, thus, Condition (3b) holds. In addition, it holds that

(m/nm)2∑
l=1

4α(nm−rm)2,ln2
m
(rm) ≤ 4

(m/nm)2∑
l=1

(nm − rm)
2ln2

m
1

m5

= 2(nm − rm)
2 n2

m

m5
m2

n2
m

(
m2

n2
m
+ 1

)
=

2(nm − rm)2
(

m2

n2
m
+ 1

)
m3 → 0, m→ ∞,

which implies (3c). We consider Condition (4b). As before, we obtain

n7
m

m2

∑
r∈H[rm,∞)

p(r)α1,1(r) ≤ 8c2
n7

m

m7

(
2
θ1

log(m5)

)2/α1

→ 0 m→ ∞,
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since β < 1. In addition, n3
mr2

m/m2 → 0 if β < 2/3. By Proposition 5.4 it follows that the
empirical extremogram centred by the preasymptotic extremogram is asymptotically normal.
As a last step we analyse Assumption (5) in Remark 5.2.

(
m2

nm

)1/2 P(a−1
nm
η(s, t) ∈ A, a−1

nm
η(s + h, t) ∈ B)

P(a−1
nmη(s, t) ∈ A)

− χ(‖h‖, 0)


=

(
m2

nm

)1/2 (
P(η(s, t) > anm , η(s + h, t) > anm)

P(η(s, t) > anm)
− 2(1 −Φ(

√
θ1‖h‖α1))

)
∼

(
m2

nm

)1/2 1
anm

(Φ(
√
θ1‖h‖α1)2 − 1) ∼

(
m2

m3β

)1/2

(Φ(
√
θ1‖h‖α1)2 − 1)

→ 0 m→ ∞, if β > 2/3.

The last condition is in contrary to (4b) and prevents us from directly replacing the preasymp-
totic extremogram by the theoretical one. �

Bias correction for the spatial empirical extremogram

Since it is not possible to find a sequence (nm) such that Condition (5) in Remark 5.2 is
satisfied, we apply a bias correction to obtain a central limit theorem for the empirical
extremogram centred by the theoretical extremogram. We calculate the preasymptotic ex-
tremogram in the case A = B = (1,∞).

χnm(r, 0) =
P(η(s, t) > anm , η(s + h, t) > anm)

P(η(s, t) > anm)

∼ anm

(
1 − 2

(
1 −

1
anm

+
1

2a2
nm

)
+

(
1 −

2
anm

Φ(
√
θ1rα1) +

1
a2

nm

Φ(
√
θ1rα1)2

))
∼ 2 −

1
nm
− 2Φ(

√
θ1rα1) +

1
nm

Φ(
√
θ1rα1)2

= χ(r, 0) −
1

nm
(1 −Φ(

√
θ1rα1)(1 + Φ(

√
θ1rα1)

= χ(r, 0) +
1

nm

1
2
χ(r, 0)(1 −Φ(

√
θ1rα1) − 2)

= χ(r, 0) +
1

4nm
(χ(r, 0)2 − χ(r, 0)) = χ(r, 0) +

1
4nm

ν(r, 0),
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where ν(r, 0) B χ(r, 0)2 − χ(r, 0). We propose to use the bias corrected estimate

ˆ̂χ(r, 0) = χ̂(r, 0) −
1

4nm
(χ̂(r, 0)2 − χ̂(r, 0)). (5.11)

Theorem 5.2. For fixed time point t ∈ {t1, . . . , tT } consider the random field
{
η(s, t), s ∈ R2

}
defined in (4.2). Then, the bias corrected empirical spatial extremogram in (5.11) satisfies

(
m2

nm

)1/2 (
ˆ̂χ(t)(r, 0) − χ(r, 0)

)
r∈H[1,p]

d
→ N(0, Π(space)

1 ), m→ ∞,

where Π(space)
1 is the covariance matrix in (5.29) and nm = mβ with 2

5 < β <
2
3 . Furthermore,

(
m2

nm

)1/2 ( 1
T

T∑
k=1

ˆ̂χ(tk)(r, 0) − χ(r, 0)
)
r∈H[1,p]

d
→ N(0, Π(space)

2 ), m→ ∞,

with covariance matrix Π(space)
2 in (5.32), Corollary 5.4.

Proof. For simplicity we leave out the time point t in the notation. Since

m
√

nm
( ˆ̂χ(r, 0) − χ(r, 0)) =

m
√

nm
(χ̂(r, 0) − χm(r, 0)) +

m
4nm
√

nm
(ν̂(r, 0) − ν(r, 0))

it suffices to show that (m/4nm
√

nm)(ν̂(r, 0) − ν(r, 0))
P
→ 0, m→ ∞.

m
4nm
√

nm
(ν̂(r, 0) − ν(r, 0))

=
m

4nm
√

nm
(ν̂(r) − νm(r, 0)) +

m
4nm
√

nm
(νm(r, 0) − ν(r, 0))

C A1 + A2.

Using the continuous mapping theorem (delta method) together with the fact that χm(r, 0)
P
→

χ(r, 0) it holds for fixed r ∈ H[1, p] that

m
√

nm(2χ(r, 0) − 1)

(
ν̂(r, 0) − νm(r, 0)

)
=

m
√

nm(2χ(r, 0) − 1)

(
χ̂(r, 0)2 − χ̂(r, 0) − (χm(r, 0)2 − χm(r, 0))

)
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converges weakly to a normal distribution. Since

2χ(r, 0) − 1
4nm

→ 0, m→ ∞,

it follows that A1
P
→ 0. Further note that

νm(r, 0) = χm(r, 0)2 − χm(r, 0)

∼

(
χ(r, 0) +

1
4nm

(χ(r, 0)2 − χ(r, 0))
)2
− χ(r, 0) −

1
4nm

(χ(r, 0)2 − χ(r, 0))

= χ(r, 0)2 +
1

2nm
χ(r, 0)(χ(r, 0)2 − χ(r, 0)) +

1
16n2

m
(χ(r, 0)2 − χ(r, 0))2

− χ(r, 0) −
1

4nm
(χ(r, 0)2 − χ(r, 0))

= ν(r, 0) +
ν(r, 0)

nm

(1
4
−

1
2
χ(r, 0) +

1
16nm

ν(r, 0)
)
.
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Figure 5.2.1: Empirical extremgogram (left) and bias corrected version (right) for one hundred sim-
ulated max-stable random fields. The middle black line represents the theoretical ex-
tremogram and the middle blue or red line is the mean over all estimates.

This implies

A2 =
m

4nm
√

nm

ν(r, 0)
nm

(1
4
−
χ(r, 0)

2
−
ν(r, 0)
16nm

)
P
→ 0,
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if
m

n2
m
√

nm
→ 0, m→ ∞.

With nm = mβ, it follows that β > 2
5 . Finally, with 2

5 < β < 2
3 the statement follows together

with Theorem 5.1. �

To get an intuition on how the bias corrected empirical extremogram behaves, we simulate
one hundred max-stable random fields, estimate the extremogram and compare the estimates
χ̂ and ˆ̂χ. Figure 5.2.1 shows the empirical extremogram on the left hand side compared to the
bias corrected one on the right hand side. We clearly see, that the bias corrected extremogram
is closer to the true value. In the following, we replace the nonparametric estimate for the
extremogram in (5.4) by the bias corrected extremogram.

5.2.2 Spatial parameter estimates and their properties

In this section we prove asymptotic normality for the semiparametric estimates introduced in
Section 5.1. We use the following notation. Set

yr = 2 log
(
Φ−1

(
1 −

1
2

ˆ̂χ(r, 0)
))

, xr = log(r), r ∈ H[1, p],

where ˆ̂χ(r, 0) = 1
T

T∑
k=1

ˆ̂χ(tk)(r, 0). To show asymptotic normality of the constrained weighted

least-squares (WLS) estimates, the design matrix X and weight matrix W are defined by

X = [1, vec(xr, r ∈ H[1, p])
ᵀ
] and W = diag{wr, r ∈ H[1, p]},

respectively. Let ψ1 = (log(θ1),α1) be the parameter vector with parameter space Ψ =

R × (0, 2]. Denote the WLS estimator

ψ̂1 = (X
ᵀ
WX)−1X

ᵀ
W vec(yr, r ∈ H[1, p]).

Without any constraints ψ̂1 may produce estimates of α1 outside the parameter space. In
such cases the parameter estimate is set equal to 2 and we denote the resulting estimate by
ψ̂

c
1 = ( ̂log(θ1)c, α̂c

1)
ᵀ
.
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Theorem 5.3. Let ψ̂c
1 = ( ̂log(θ1)c, α̂c

1) denote the constrained WLS estimate resulting from

the minimization problem in (5.6) and let ψ∗1 ∈ Ψ denote the true parameter vector. Fur-

ther, let ϕµ,Σ(β1, β2) denote the density of a bivariate normal distribution with mean µ and

covariance matrix Σ. The following asymptotic properties hold.

(
m2

nm

)1/2 (
ψ̂

c
1 − ψ

∗
1

)
d
→

Z1, α∗1 < 2,

Z2, α∗1 = 2,
m→ ∞, (5.12)

where Z1 ∼ N(0, Π(space)
3 ) and

P (Z2 ∈ B) =
∫

B∩{(b1,b2)∈R2,b2<0}

ϕ
0,Π(space)

3
(β1, β2)dβ1dβ2

+

∞∫
0

∫
{b1∈R:(b1,0)∈B}

ϕ
0,Π(space)

3
(β1 −

( ∑
r∈H[1,p]

wrxr

)/( ∑
r∈H[1,p]

wr

)
β2, β2)dβ1dβ2

(5.13)

with

Π(space)
3 = Q(w)

x GΠ(space)
2 G

ᵀ
Q(w)

x
ᵀ
, (5.14)

where Π(space)
2 is the covariance matrix in (5.31), nm = mβ, 2/5 < β < 2/3,

Q(w)
x = (X

ᵀ
WX)−1X

ᵀ
W and (5.15)

G = diag
{(
−
√

2π exp
{
θ∗1rα

∗
1/2

}
√
θ∗1uα

∗
1

)
, r ∈ H[1, p]

}
. (5.16)

Proof. For r ∈ H[1, p] it holds

yr = g( ˆ̂χ(r, 0)), with g(x) = 2 log(Φ−1(1 − x/2)).

The derivative of g is given by

g′(x) = −(Φ−1(1 −
1
2

x)ϕ(Φ−1(1 −
1
2

x)))−1
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and, thus,

g′(χ(r, 0)) = −
(√

θ∗1rα
∗
1ϕ(

√
θ∗1rα

∗
1)

)−1
=
−
√

2π exp
{
θ∗1rα

∗
1/2

}
√
θ∗1rα

∗
1

.

Using the multivariate delta method together with Theorem 5.2 it follows that

(
m2

nm

)1/2 (
yr − g(χ(r, 0))

)
r∈H[1,p]

d
→ N(0, GΠ(space)

2 G
ᵀ
), m→ ∞,

where G is defined in (5.16). Since

Q(w)
x (g(χ(r, 0)))r∈H[1,p] = (log(θ∗1),α

∗
1) = ψ∗1

ᵀ
,

it follows by Cramér Wold’s device that

(
m2

nm

)1/2 (
ψ̂1 − ψ

∗
1

)
d
→ N

(
0, Q(w)

x GΠ(space)
2 G

ᵀ
Q(w)

x
ᵀ
)

, m→ ∞.

We now turn to the constraints on α1. Since the objective function is quadratic, it follows
by standard arguments from optimization theory, that if the unconstrained estimate exceeds
two, the constraints α2 ∈ (0, 2] result in an estimate equal to two. We consider the two cases
α∗1 < 2 and α∗1 = 2, i.e. the parameter lies either in the interior of the parameter space or
on the boundary of the parameter space. The constrained estimator, denoted by ψ̂c

1, can be
written in the following way.

ψ̂
c
1 = ψ̂11{α̂1≤2} + (θ̂1, 2)

ᵀ
1{α̂1>2}.

We calculate the asymptotic probabilities for α̂1 ≤ 2 and α̂1 > 2,

P(α̂1 ≤ 2) = P

(m2

nm

)1/2

(α̂1 − α
∗
1) ≤

(
m2

nm

)1/2

(2 − α∗1)

 .

Since (m2/nm)1/2(α̂1 − α
∗
1)

d
→ N(0, Π(space)

3 [2, 2]), m → ∞ and (m2/nm)1/2(2 − α∗1) →
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5.2 Estimation for the space-time Brown-Resnick process

∞, m→ ∞ (α∗1 < 2), it follows that

P(α̂1 ≤ 2)→ 1, and P(α̂1 > 2)→ 0, m→ ∞.

Therefore, for α∗1 < 2

(
m2

nm

)1/2 (
ψ̂

c
1 − ψ

∗
1

) d
→ N(0, Π(space)

3 ), m→ ∞.

We now consider the case α∗1 = 2 and α̂1 > 2 (the unconstrained estimate exceeds 2). In
this case the optimization problem

min
ψ1

(W1/2(y − Xψ1))
ᵀ
(W1/2(y − Xψ1)), s.t. (0, 1)ψ1 = 2,

has to be solved. To obtain asymptotic results for the optimal solution, the vector ψ̂1 − ψ
∗
1 is

projected onto the line Λ = {ψ ∈ R2, (0, 1)ψ = 0}, i.e. the projection matrix is given by
PΛ = I2 − (X

ᵀ
WX)−1(0, 1)

ᵀ
((0, 1)(X

ᵀ
WX)−1(0, 1)

ᵀ
)−1(0, 1). For simplicity we use the

abbreviation pwx =
∑

r∈H[1,p] wrxr/
∑

r∈H[1,p] wr. It follows,

(ψ̂
c
1 − ψ

∗
1)1{α̂1>2} = PΛ(ψ̂1 − ψ

∗
1)1{α̂1>2}

= (ψ̂1 − ψ
∗
1)1{α̂1>2} − (X

ᵀ
WX)−1(0, 1)

ᵀ (
(0, 1)(X

ᵀ
WX)−1(0, 1)

ᵀ)−1
(α̂1 − 2)1{α̂1>2}

= ψ̂11{α̂1>2} +

−pwx

1

 (α̂1 − 2)1{α̂1>2}.

For the joint constrained estimator we obtain

ψ̂
c
1 − ψ

∗
1 = (ψ̂

c
1 − ψ

∗
1)1{α̂1≤2} + (ψ̂

c
1 − ψ

∗
1)1{α̂1>2}

= (ψ̂1 − ψ
∗
1)1{α̂1≤2} + (ψ̂1 − ψ

∗
1)1{α̂1>2} +

pwx

−1

 (α̂1 − 2)1{α̂1>2}

This implies

(
m2

nm

)1/2

(ψ̂
c
1 − ψ

∗
1) =

(
m2

nm

)1/2 ( ̂log(θ1) − log(θ∗1)) + pwx(α̂1 − 2)1{α̂1>2}

(α̂1 − α
∗
1) − (α̂1 − 2)1{α̂1>2}

 .

For the joint asymptotic distribution of the constrained estimator it follows with
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5 A semiparametric estimation procedure

f (x1, x2) = (x1 + pwxx21{x2>0}, x2 − x21{x2>0})
ᵀ
, that

P

(m2

nm

)1/2

(ψ̂
c
1 − ψ

∗
1) ∈ B

 = P( f (ψ̂1 − ψ
∗
1) ∈ B)

= P(ψ̂1 − ψ
∗
1 ∈ f −1(B∩ {(b1, b2) ∈ R2 : b2 < 0}) ∪ f −1(B∩ {(b1, 0), b1 ∈ R}))

= P(ψ̂1 − ψ
∗
1 ∈ (B∩ {(b1, b2) ∈ R2 : b2 < 0}) ∪ ({(b1 − cb2, b2), b2 ≥ 0, b1 ∈ B))

→

∫
B∩{(b1,b2)∈R2,b2<0}

ϕ
0,Π(space)

3
(β1, β2)dβ1dβ2

+

∞∫
0

∫
{b1∈R:(b1,0)∈B}

ϕ
0,Π(space)

3
(β1 − pwxβ2, β2)dβ1dβ2, m→ ∞.

�

Remark 5.1. The derivation of the asymptotic properties for the constrained estimate is in
fact a special case of Corollary 1 in Andrews [2], who shows asymptotic properties of pa-
rameter estimates in a very general setting when the true parameter is on the boundary of the
parameter space. The asymptotic distribution of the estimates in the case α∗1 = 2 is driven
by the fact that approximately half of the estimates lie above the true value and are there-
fore equal to two, which is reflected by the second term in the asymptotic distribution of the
estimates.

5.2.3 Temporal parameter estimates and their properties

The estimation of the temporal parameters θ2 and α2 is analogous to the estimation of the
spatial parameters as described in Sections 5.2.1 an 5.2.2 with one exception. Since the
empirical temporal extremogram centered by the theoretical one is asymptotically normal, a
bias correction is not needed. The set of temporal lags used in the estimation is given by

U = {1, . . . , p}.

Theorem 5.4. For fixed location s ∈ S m consider the Brown-Resnick process
{
η(s, t), t ∈ [0,∞)

}
defined in (4.2). The empirical extremogram in (5.5) for A = B = (1,∞) satisfies

(
T
nT

)1/2 (
χ̂(s)(0, u) − χ(0, u)

)
u∈{1,...,p}

d
→ N(0, Π(time)

1 ), T → ∞,
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5.2 Estimation for the space-time Brown-Resnick process

where nT = T β with 1/3 < β < 1/2, and Π(time)
1 is the covariance matrix defined in a similar

fashion to Π(space)
1 in Proposition (5.4). For the exact definition see Davis and Mikosch [23].

Furthermore,(
T
nT

)1/2 ( 1
M

M∑
i=1

χ̂(si)(0, u) − χ(0, u)
)
u∈{1,...,p}

d
→ N(0, Π(time)

2 ), T → ∞, (5.17)

with covariance matrix Π(time)
2 in (5.18).

Proof. We verify the assumptions for the central limit theorem of the temporal extremogram
in Davis and Mikosch [23], Corollary 3.4. Define the sequences nT = T β → ∞, β < 1
and rT = (2 log T /θ2)1/α2 → ∞ as T → ∞. The sequences satisfy the basic assumptions
nT /T → 0 and rT /nT → 0. As for the spatial setting, all finite-dimensional distributions are
multivariate extreme value distributions and, thus, are regularly varying. Since the marginal
distributions are standard Fréchet, we choose aT ∼ T . From Lemma 5.2 the time series
{η(s, t), t ∈ [0,∞)} is α-mixing. By Lemma 5.1 it holds that

nT

∞∑
u=rT

α(u) ≤ 8c1nT g1(rT ) ≤ 8cT β−1(2 log T /θ2)
2/α2 → 0, T → ∞.

In addition,

nT

rT∑
u=k

P (‖(η(s, t1+u), . . . , η(s, t1+u+p))‖ > εanT , ‖(η(s, t1), . . . , η(s, t1+p))‖ > εanT )

≤ nT

∞∑
u=k

u+p∑
i=u

p∑
j=0

P (η(s, ti+1) > εanT , η(s, t j+1) > εanT )

= nT

∞∑
u=k

u+p∑
i=u

p∑
j=0

(
2

εanT

−

2Φ
(√

δ(0, ti+1 − t j+1)
)

εanT

+ O
( 1
ε2a2

nT

)

+ O
(4Φ(

√
δ(0, ti+1 − t j+1))2

ε2a2
nT

))

∼ nT

∞∑
u=k

u+p∑
i=u

p∑
j=0

2
εanT

Φ
(√

δ(0, ti+1 − t j+1)
)
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≤ nT

∞∑
u=k

u+p∑
i=u

p∑
j=0

2
εanT

exp
{
−δ(0, ti+1 − t j+1)

2

}

≤
2nT

anT

∞∑
u=k

p∑
i=0

p∑
j=0

exp
{
−
θ2|u + ti+1 − t j+1|

α2

2

}
< ∞.

Since anT ∼ nT this shows Condition (M) in Davis and Mikosch [23]. As before, we have

n4
T

T

nT∑
u=rT

α(u) ≤ 8c
1

T 4β−2

(
2
θ2

log T
)2/α2

→ 0, T → ∞,

which is satisfied for β < 1/2. Furthermore, nT r3
T /T → 0, T → ∞. As a last step we verify

the convergence rate of the preasymptotic to the theoretical extremogram.(
T
nT

)1/2 P(a−1
nT
η(s, t1) ∈ A, a−1

nT
η(s, t1+u) ∈ B)

P(a−1
nT η(s, t1) ∈ A)

− χ(0, u)


=

(
T
nT

)1/2

1 − 2 exp

{
−1/anT

}
+ exp

{
− 2

anT
Φ

(√
θ2|u|α2

)}
1 − exp

{
−1/anT

} − 2
(
1 −Φ

( √
θ2|u|α2

))
∼

(
T
nT

)1/2 (
−

1
anT

+
1

anT

Φ
( √

θ2|u|α2
)2

)
=

(
T
nT

)1/2 1
anT

(
Φ

( √
θ2|u|α2

)2
− 1

)
∼

T 1/2

T 3β/2

(
Φ

( √
θ2|u|α2

)2
− 1

)
=

1
T 3β/2−1/2

(
Φ

( √
θ2|u|α2

)2
− 1

)
→ 0, T → ∞,

if β > 1/3. Altogether, we require nT = T β with 1/3 < β < 1/2. By Corollary 3.4 in Davis
and Mikosch [23] it follows that(

T
nT

)1/2(
χ̂(s)(0, u) − χ(0, u)

)
u∈{1,...,p}

d
→ N(0, Π(time)

1 ), T → ∞,

for each fixed location s ∈ S m. The extension of the statement to spatial means of ex-
tremograms follows in the same way as in Corollary 5.4 by using the vectorized process

(Yt) = vec{(η(s, t), . . . , η(s, t + p)), s ∈ S m}

and defining the sets Du,k and Ck for u = 1, . . . , p and k = 1, . . . , M = m2 properly to extend
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5.2 Estimation for the space-time Brown-Resnick process

the covariance matrix. This leads to the statement in (5.17), where

Π(time)
2 =

1
M2


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

. . .

0 · · · 0 · · · · · · 1 · · · 1


FΣF

ᵀ


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

. . .

0 · · · 0 · · · · · · 1 · · · 1



ᵀ

(5.18)

and F and Σ are defined in a similar fashion as the matrices in Corollary 5.4. �

The asymptotic properties of the semiparametric estimates θ̂2 and α̂2 can be derived in
exactly the same way as for the spatial parameters θ1 and α1. Accordingly, we define for
u ∈ {1, . . . , p},

yu = 2 log
(
Φ−1

(
1 −

1
2
χ̂(0, u)

))
, xu = log(u),

and
X = [1, vec(xu, u ∈ {1, . . . , p})], W = diag{wu, u ∈ {1, . . . , p}}.

We state the theorem for asymptotic normality.

Theorem 5.5. Let ψ̂c
2 = ( ̂log(θ2)c, α̂c

2) be the constrained weighted estimate resulting from

the minimization problem in (5.7) and let ψ∗2 ∈ Ψ be the true parameter vector. The following

asymptotic properties hold.

(
T
nT

)1/2 (
ψ̂

c
2 − ψ

∗
2

)
d
→

Z1, α∗2 < 2,

Z2, α∗2 = 2,
T → ∞, (5.19)

where Z1 ∼ N(0, Π(time)
3 ) and

P (Z2 ∈ B) =
∫

B∩{(b1,b2)∈R2,b2<0}

ϕ
0,Π(time)

3
(β1, β2)dβ1dβ2

+

∞∫
0

∫
{b1∈R:(b1,0)∈B}

ϕ
0,Π(time)

3
(β1 −

( p∑
u=1

wuxu

)/( p∑
u=1

wu

)
β2, β2)dβ1dβ2 (5.20)

with

Π(time)
3 = Q(w)

x GΠ(time)
2 G

ᵀ
Q(w)

x
ᵀ
, (5.21)
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where Π(time)
2 is the covariance matrix in (5.18), nT = T β, 1/3 < β < 1/2,

Q(w)
x = (X

ᵀ
WX)−1X

ᵀ
W and (5.22)

G = diag
{(
−
√

2π exp
{
θ∗2uα

∗
2/2

}
√
θ∗2uα

∗
2

)
, u ∈ {1, . . . , p}

}
. (5.23)

5.3 Bootstrapping parameter estimates for the

Brown-Resnick process

Since the variance of the estimates is computationally intractable, we use bootstrap methods
to construct pointwise confidence intervals for the estimates. The circular bootstrap, intro-
duced in Politis and Romano [68], for the spatial empirical extremogram and observations on
a 2-dimensional regular grid is described in Cho et al. [15]. As before, the set of locations is
given by

{
(i1, i2), i1, i2 ∈ {1, . . . , m}

}
. The data is first wrapped to obtain observations outside

the actual set of locations. In particular, for some l > 0 large enough, such that all blocks fall
within the new set of observations,

X̃((i, j)) =


X((i, j −m)), i = 1, . . . , m, j = m + 1, . . . , m + l − 1,

X((i −m, j)), i = m + 1, . . . , m + l − 1, j = 1, . . . , m,

X((i −m, j −m)), i = m + 1, . . . , m + l − 1, j = m + 1, . . . , m + l − 1.

The blocks with side length L = Lm and random starting point (I1, I2) are defined by

B(I1,I2),L =
{
X̃((I1, I2)), . . . , X̃((I1 + L, I2 + L))

}
.

Now, let (I(1)1 , I(1)2 ), (I(2)1 , I(2)2 ), . . . be an iid sequence of uniform random variables on
{1, . . . , m}2. The bootstrap sample X∗((1, 1)), . . . X∗((m, m)) is then constructed from the
blocks

B
(I(1)1 ,I(1)2 ),L

, B
(I(2)1 ,I(2)2 ),L

, . . .

Figure 5.3.1 visualizes the procedure. On the left hand side the coloured squares show the
blocks for two random starting points with block length L = 2, which build the first two
blocks in the bootstrap sample on the right hand side.
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Figure 5.3.1: Visualization of the circular bootstrap with block length L = 2 for a two-dimensional
grid. The red squared grid on the left hand side builds the first block for the bootstrap
sample on the right hand side.

5.3.1 Spatial parameters: the unconstrained case

For the unconstrained estimates, theoretical results can be obtained using the same tech-
niques and calculations as in previous sections. The following proposition is an extension
of the results in Davis, Mikosch and Cribben [25] and states a central limit theorem for the
bootstrapped spatial extremogram.

Proposition 5.3 (Cho et al. [15]). Assume that the conditions of Proposition 5.4 are satisfied

for the random field
{
X(s), s ∈ R2

}
. In addition, suppose that

(1) n2
m

∑
r∈H[Lm,∞)

p(r)α2p(r),2p(r)(r)→ 0, m→ ∞ and

(2) L2
m/nm → 0, m→ ∞.

Then, conditionally on (X(s)) the bootstrapped spatial empirical extremogram ρ̂
(BS)
AB satisfies

(
m2

nm

)1/2

(ρ̂
(BS)
AB (r) − ρ̂AB(r))r∈H[1,p]

d
→ N(0, Π(space)

1 ), m→ ∞, (5.24)
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where Π(space)
1 is the covariance matrix defined in Proposition 5.4. The same result holds for

the bias corrected extremogram defined in (5.11) for the case A = B = (1,∞).

For the space-time Brown-Resnick process in (4.2), we extend the procedure as follows.
For each fixed time point t ∈ {t1, . . . , tT } we construct a sample η∗(s1, t), . . . , η∗(sM, t) by
using the steps described above and estimate the parameters as described in Section 4.1.
Note, that we use the same sequence (Ii) for all time points t1, . . . , tT to keep the dependence
structure in time. The result in Proposition 5.3 can also be extended to the temporal mean of
spatial extremograms as done in the Corollary 5.4. In particular,

(
m2

nm

)1/2 ( 1
T

T∑
k=1

ρ̂
(BS ),(tk)
AB (r, 0) −

1
T

T∑
k=1

ρ̂
(tk)
AB (r, 0)

)
d
→ N(0, Π(space)

2 ), m→ ∞,

conditional on {η(s, t)}, where ρ̂(BS ),(t)
AB (r, 0) denotes the bootstrapped spatial extremogram

for fixed time point t ∈ {t1, . . . , tT }. We obtain bootstrap estimates θ̂(BS)
1 and α̂(BS)

1 . Showing
asymptotic normality of the unconstrained estimates is straight forward using Proposition 5.3
together with the steps in the proofs of Theorem 5.1, 5.2 and 5.3.

Theorem 5.6. Assume that the block size Lm is given by Lm =
(

2
θ1

log(Cm2)
)1/α1 for some

constant C > 0. Then, conditionally on (η(s, t)) the bootstrapped unconstrained semipara-

metric estimates satisfy

(
m2

nm

)1/2 (
ψ̂
(BS)
1 − ψ̂1

)
d
→ N

(
0, Π(space)

3

)
, m→ ∞, (5.25)

where Π(space)
3 is the covariance matrix in (5.14).

Proof. Using equation (5.8) it holds

n2
m

∑
r∈H[Lm,∞)

p(r)α2p(r),2p(r)(r) ≤ 32n2
m

∞∫
Lm

r3e−θ1rα1 /2dr

= 32n2
mg3(Lm) ≤ 32c2n2

me−θ1L
α1
m /2L4

m = 32c2
n2

m

m2 L4
m → 0, m→ ∞.

Obviously, L2
m/nm → 0 as m → ∞. This shows Assumptions (1) and (2) in Proposition

5.3. �
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5.3 Bootstrapping parameter estimates for the Brown-Resnick process

5.3.2 Spatial parameters: the constrained case

In the literature many examples can be found in which the bootstrap fails to be consistent, see
Bickel, Götze and Zwet [9]. In particular, Andrews [3] shows that bootstrap estimates can be
inconsistent when parameters are on the boundary of the parameter space which is the case
in our procedure. Since P(α̂1 ≥ 2) 9 0, m → ∞, if the true value α∗1 < 2 (take for example
α∗1 = 2 − (nm/m2)1/2) we cannot apply the same arguments as in the proof of Theorem 5.3
to show that the asymptotic distribution of (m2/nm)1/2(ψ̂1 − ψ

∗
1) can be approximated by

the conditional asymptotic distribution of (m2/nm)1/2(ψ̂
(BS)
1 − ψ̂1). As suggested by several

authors, including for example Andrews [3], a possible solution to this problem is to use a
smaller sample size Um < m for the bootstrap such that Umnm/m2nUm → 0. Let ˆ̂χ(BS)

Um
denote

the temporal mean of the bootstrapped bias corrected empirical extremograms based on a
spatial subsample with side length Um, and let ˆ̂χ denote the empirical extremogram based on
the whole set of locations S m. In particular,

ˆ̂χ(BS )
Um

(r, 0) =
1
T

T∑
k=1

ˆ̂χ(BS ),(tk)
Um

(r, 0), ˆ̂χ(r, 0) =
1
T

T∑
k=1

ˆ̂χ(tk)(r, 0),

where ˆ̂χ(tk)(r, 0) is defined in (5.11). Then,

(
U2

m

nUm

)1/2

( ˆ̂χ(BS)
Um

(r, 0) − ˆ̂χ(r, 0))r∈H[1,p]

=

(
U2

m

nUm

)1/2

( ˆ̂χ(BS)
Um

(r, 0) − χ(r, 0))r∈H[1,p] −

(
U2

mnm

m2nUm

)1/2 (
m2

nm

)1/2

( ˆ̂χ(r, 0) − χ(r, 0))r∈H[1,p]

= A1 − A2.

Since the bias corrected empirical extremogram is asymptotically normal it holds that A2
P
→ 0

as m→ ∞. Using the same arguments as in the proof of Theorem 2.1 in Davis et al. [25] one
can show that conditionally on (η(s, t)),

A1 =

(
m2

nm

)1/2

( ˆ̂χ(BS)
Um

(r, 0) − χ(r, 0))r∈H[1,p]
d
→ N(0, Π(space)

2 ), m→ ∞.

Since ˆ̂χ does not appear in the first sum, we can now use the same steps as in the proof of
Theorem 5.3 to prove the asymptotic properties of the bootstrap estimates.
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5 A semiparametric estimation procedure

Corollary 5.1. Assume the bootstrap sample is based on a subsample grid with side length

Um < m satisfying U2
mnm/m2nUm → 0, m→ ∞. Let ψ̂(BS),c

1,Um
denote the constrained weighted

least-squares estimate resulting from a bootstrap sample based on a grid of side length Um

and let ψ̂c
1 be the parameter estimate based on the whole sample grid with side length m.

Then, conditional on (η(s, t)),

(
U2

m

nUm

)1/2 (
ψ̂
(BS),c
1,Um

− ψ̂
c
1

)
d
→

Z1 α∗1 < 2,

Z2 α∗1 = 2,
m→ ∞,

where Z1 ∼ N(0, Π(space)
3 ) with Π(space)

3 defined in (5.14) and the distribution function of Z2

is given in (5.13).

5.3.3 Temporal parameters

As described in Davis, Mikosch and Cribben [25] for the extremogram, we use the station-
ary bootstrap method proposed by Politis and Romano [69] and reviewed by Lahiri [54] for
the temporal parameters. The procedure is as follows. In a first step the observations are
periodically extended.

X̃i = X̃ j, i = lT + j, 1 ≤ j ≤ T ,

for some l > 0. Let (L j) denote a sequence of block sizes used to construct the bootstrap
sample. It is assumed that (L j) is geometrically distributed with mean 1/q. The blocks of
length L j are defined as

BI,L j =
{
X̃I , . . . , X̃I+L j−1

}
, j = 1, 2 . . .

for some start index I. In addition, let I1, I2, . . . be a sequence of iid random variables with
uniform distribution on {1, . . . , T }. The bootstrap sample X∗1, . . . , X∗T is given by the first T

observations from the blocks BI1,L1 , BI2,L2 , . . . ,

X̃I1 , . . . , X̃I1+L1−1, X̃I2 , . . . , X̃I2+L2−1, . . .

For the resulting bootstrap sample X∗1, . . . , X∗T , the empirical extremogram is calculated for
u = 1, . . . , p, leading to bootstrap estimates ρ̂(BS )

AB (u), u ∈ {1, . . . , p}. As for the spatial
parameters we use the following procedure for the space-time model. For each fixed location
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5.3 Bootstrapping parameter estimates for the Brown-Resnick process

s ∈ {s1, . . . , sM} construct a sample η∗(s, t1), . . . , η∗(s, tT ) by using the stationary bootstrap
and estimate the parameters as described in Section 4.1, i.e. we estimate the extremogram for
all u ∈ {1, . . . , p} and solve the minimization problem in (5.7). Note, that we use the same
sequences (Ii) and (L j) for all locations s1, . . . , sM to keep the dependence structure in space.
This results in bootstrap estimates θ̂(BS)

2 and α̂(BS)
2 .

The asymptotic properties can be obtained in the same way as for the spatial parameters.
We only state the result when the constraints on α2 are ignored. It follows directly from
Corollary 3.3 in Davis et al. [25].

Corollary 5.2. Assume that the sequence (qT ) for the generation of the block sizes (Li)

satisfies q = qT → 0 and Tq2
T /nT → 0, as T → ∞. Then, the bootstrapped unconstrained

semiparametric estimates (ignoring the constraints) satisfy conditionally on (η(s, t))

(
T
nT

)1/2 (
ψ̂
(BS)
2 − ψ̂2

)
d
→ N

(
0, Π(time)

3

)
, T → ∞, (5.26)

where Π(time)
3 is the covariance matrix in (5.21).

The theoretical result including the constraints in the estimation can be obtained in exactly
the same way as for the spatial parameters. For completeness we state the result for the
boostrapped temporal parameter estimates when subsamples of size UT < T are used for the
boostrap samples.

Corollary 5.3. Assume the bootstrap sample is based on a subsample of size UT < T satis-

fying UT nT /TnT → 0, T → ∞. Let ψ̂(BS),c
2,UT

denote the constrained weighted least-squares

estimate resulting from a bootstrap sample based on a time series of length UT and let ψ̂c
2 be

the parameter estimate based on the whole sample of size T . Then, conditional on the data

{η(s, t), s ∈ {1, . . . , m}2, t ∈ {t1, . . . , tT }},

 U2
T

nUT

1/2 (
ψ̂
(BS),c
2,Um

− ψ̂
c
2

)
d
→

Z1 α∗2 < 2,

Z2 α∗2 = 2,
m→ ∞,

where Z1 ∼ N(0, Π(time)
3 ) with Π(time)

3 defined in (5.21) and the distribution function of Z2 is

given in (5.20).
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5 A semiparametric estimation procedure

5.4 Some general theory for the spatial extremogram

In this section we state results for the spatial extremogram, which are used to show asymptotic
properties of the semiparametric estimates introduced in Section 5.1. First, we introduce α-
mixing coefficients for random fields which can be found for instance in Doukhan [35] or
Bolthausen [11].

Definition 5.2. Consider a strictly stationary random field
{
X(s), s ∈ Rd

}
and define the

distances

d(s1, s2) = max
1≤i≤d

|s1(i) − s2(i)|, s1, s2 ∈ Rd,

d(Λ1, Λ2) = inf
{
d(s1, s2), s1 ∈ Λ1, s2 ∈ Λ2

}
, Λ1, Λ2 ⊂ Rd.

Let further FΛi = σ
{
X(s), s ∈ Λi

}
, i = 1, 2 denote the σ-algebra generated by X(s), s ∈ Λi

for i = 1, 2. The α-mixing coefficients are defined by

αk,l( j) = sup
{∣∣∣P(A1 ∩ A2) − P(A1)P(A2)

∣∣∣ : Ai ∈ FΛi , |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1, Λ2) ≥ j
}

,
(5.27)

where |Λi| is the cardinality of the set Λi, i = 1, 2. The random field is called α-mixing, if

αk,l( j)→ 0 as j→ ∞ for all k, l ≥ 0.

Asymptotic normality of the spatial empirical extremogram is proved in Cho et al. [15],
where also extensions to the d-dimensional case can be found. We only summarize the case
d = 2. In accordance we use the following notations.

S m = {1, . . . , m}2

Dm = {r = ‖s1 − s2‖ : s1, s2 ∈ S m}

H[a, b) = {r ∈ Dm, a ≤ r < b} , D∞ = H[0,∞)

p(r) = #
{
(s, s j) : ‖s − s j‖ = r, j = 1, . . . , M

}
c(p) =

∑
r∈H[1,p]

p(r)

B(h, p) = {s ∈ S m : ‖s − h‖ ≤ p}

X(sr) = one of the p(r) neighbours from a fixed point with distance r.

For simplified notation, we enumerate the distances r ∈ H[1, p] by r1, . . . , rh(p), where
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5.4 Some general theory for the spatial extremogram

h(p) = |H[1, p]| denotes the cardinality of H[1, p]. Accordingly, we define the sets
D1, . . . , Dh(p) by the property,

{vec{X(s + h), h ∈ B(0, p)} ∈ Di} = {X(s) ∈ A, X(s′) ∈ B; ‖s − s′‖ = ri},

for i = 1, . . . , h(p) We further define the preasymptotic extremogram ρAB,m for m ∈N by

ρAB,m(r) =
P

(
a−1

nm
X(s) ∈ A, a−1

nm
X(s + h) ∈ B

)
P(a−1

nm X(s) ∈ A)
. (5.28)

Proposition 5.4 (Cho et al. [15]). Suppose the following conditions are satisfied.

(1) The vectorized random field {Y(s), s ∈ R2} = {vec(X(s + h), h ∈ B(0, p)), s ∈ R2} is

strictly stationary, isotropic and all finite dimensional distributions are regularly varying.

(2) {Y(s), s ∈ R2} is spatially α-mixing with mixing coefficients αk,l( j) defined in (5.27).

(3) There exist sequences nm → ∞ and rm → ∞ with nm/m→ 0, rm/nm → 0 and r3
m/n2

m →

0 as m→ ∞, such that

(3a)

nm

∑
r∈H(rm,∞)

p(r)αc(p),c(p)(r)→ 0, m→ ∞.

(3b) For all ε > 0 and k → ∞,

lim sup
m→∞

nm

∑
r∈H(k,rm)

p(r)P
(

max
s∈B(0,p)

|X(s)| >
εanm

c(p)
, max

s′∈B(h,p)
|X(s′)| >

εanm

c(p)

)
→ 0.

(3c) and
(m/nm)2∑

l=1
4α(nm−rm)2,ln2

m
(rm)→ 0, m→ ∞.

(4) In addition,

(4a) n5
m/m2 → 0, m→ ∞ or

(4b) n7
m

m2

∑
r∈H[rm,∞)

p(r)α1,1(r)→ 0 and n3
mr2

m/m2 → 0, m→ ∞.
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5 A semiparametric estimation procedure

Then, the spatial empirical extremogram centred by the preasymptotic extremogram is asymp-

totically normal, i.e.

(
m2

nm

)1/2 (
ρ̂AB(r) − ρAB,m(r)

)
r∈H[1,p]

d
→ N(0, Π(space)

1 ), m→ ∞, (5.29)

where ρAB,m is defined in (5.28), Π(space)
1 = µ(A)−4FΣF

ᵀ
with

Σ[i, i] = σ(Di) = µB(0,p)(Di) + 2
∑

r∈D∞\{0}

p(r)τ{B(0,p)×B(sr,p)}(Di × Di),

Σ[i, j] = rDi,D j = µB(0,p)(Di ∩ D j) +
∑

r∈D∞\{0}

p(r)τ{B(0,p)×B(sr,p)}(Di × D j),

F1 = µ(A)I|H[1,p]|, F2 = vec(−µB(0,p)(D1), . . . ,−µB(0,p)(Dh(p))),

F = [F1, F2],

and

• µ(A) is the limit distribution resulting from the relation

µ(A) = lim
z→∞

P(z−1X(s) ∈ A)
P(‖Y(s)‖ > z)

.

• µB(0,p) is defined as limit distribution of the vectorized process Y, i.e.

µB(0,p)(Di) = lim
z→∞

P(z−1Y(s) ∈ Di)

P(‖Y(s)‖ > z)
.

• τ{B(0,p)×B(sr,p)} is given by

τ{B(0,p)×B(sr,p)}(Di × D j) = lim
z→∞

P(Y(s) ∈ Di, Y(sr) ∈ D j)

P(‖ vec{Y(s), s ∈ B(0, r)}‖ > z)
.

Remark 5.2. Consider the following condition.

(5) lim
m→∞

(
m2

nm

)1/2
(

P(a−1
nm X(s)∈A,a−1

nm X(s+h)∈B)
P(a−1

nm X(s)∈A)
− ρAB(‖h‖)

)
= 0,

for all spatial distances ‖h‖ = r ∈ H[1, p].
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5.4 Some general theory for the spatial extremogram

If (5) is satisfied in addition to conditions (1)-(4), then the empirical extremogram centred by
the theoretical extremogram is asymptotically normal, i.e.

(
m2

nm

)1/2 (
ρ̂AB(r) − ρAB(r)

)
r∈H[1,p]

d
→ N(0, µ(A)−4FΣF

ᵀ
), m→ ∞.

We now turn to space-time processes. In the following corollary we show that the tem-
poral mean of empirical spatial extremograms satisfies a central limit theorem under certain
conditions. The proof is a simple extension of Corollary 3.3 and Corollary 3.4 in Davis and
Mikosch [23].

Corollary 5.4. Consider the space-time process
{
X(s, t), s ∈ Rd, t ∈ [0,∞)

}
. Assume we ob-

serve the process at time points t ∈ {t1, . . . , tT }. If the vectorized process

(Y(s)) = vec
{
(X(s + h, t1), . . . , X(s + h, tT )) , h ∈ B(0, p)

}
, s ∈ R2 (5.30)

satisfies the assumptions as in Proposition 5.4, then

(
m2

nm

)1/2 ( 1
T

T∑
k=1

ρ̂
(tk)
AB (r, 0) − ρAB,m(r, 0)

)
r∈H[1,p]

d
→ N(0, Π(space)

2 ), m→ ∞, (5.31)

where ρ̂(tk)AB (r, 0) is the empirical spatial extremogram based on
{
η(si, tk), i = 1, . . . , M

}
for

fixed time point tk, k = 1, . . . , T and Π(space)
2 is the covariance matrix specified in (5.32).

Proof. We redefine the sets Dr for each spatial distance r ∈ H[1, p] by including the time
component. In particular, define Dr,k for r = 1, . . . , h(p) and k = 1, . . . , T by

{Y(s) ∈ Dr,k} = vec{X(s, tk) ∈ A, X(s1, tk) ∈ B; ‖s − s1‖ = r},

and Ck = Dh(p)+1,k by

{Y(s) ∈ Dh(p)+1,k} = {X(s, tk) ∈ A}, k = 1, . . . , T .
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5 A semiparametric estimation procedure

Define the matrices Σ ∈ RT (h(p)+1)×T (h(p)+1) by

Σ =


σ2(D1,1) · · · rD1,1,D1,T · · · rD1,1,Dh(p)+1,1 · · · rD1,1,Dh(p)+1,T

... . . . ... . . . ... . . . ...
rD1,1,Dh(p)+1,T · · · rD1,T ,Dh(p)+1,T · · · rDh(p)+1,1,Dh(p)+1,T · · · σ2(Dh(p)+1,T )

 ,

and F ∈ RT (h(p)+1)×T (h(p)+1) by

F =


F1 0 · · · 0 F(1)

2

0 F1 · · · 0 F(2)
2

...
... . . . ...

...

0 0 · · · F1 F(h(p))
2


,

where

F1 =



1
µ(C1)

0 · · · 0

0 1
µ(C2)

· · · 0
...

... . . . ...
0 0 · · · 1

µ(CT )


, F(i)

2 =



−
µ(Di,1)

µ(C1)2 0 · · · 0

0 −
µ(Di,2)

µ(C2)2 · · · 0
...

... . . . ...

0 0 · · · −
µ(Di,T )
µ(CT )2


,

for i = 1, . . . , h(p). The covariance terms rDi, j,Dk,l and the limit distributions µ are defined as
in Proposition 5.4 but using the extended vector process {Y(s)} in (5.30). Using the proof of
Corollary 3.3 in Davis and Mikosch [23], it follows that

(
m2

nm

)1/2


ρ̂
(t1)
AB (r, 0) − ρAB,m(r, 0)

...

ρ̂
(tT )
AB (r, 0) − ρAB,m(r, 0)


r∈H[1,p]

d
→ N(0, FΣF

ᵀ
) m→ ∞,

and by using the Cramér Wold device the statement in (5.31) follows with

Π(space)
2 =

1
T 2


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

. . .

0 · · · 0 · · · · · · 1 · · · 1


FΣF

ᵀ


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

. . .

0 · · · 0 · · · · · · 1 · · · 1



ᵀ

. (5.32)

�
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CHAPTER 6

SIMULATION STUDY

In this chapter we evaluate pairwise likelihood estimation and the semiparametric estimation
procedure for the Brown-Resnick process introduced in Chapter 3. The construction of the
max-stable process was introduced in Theorem 3.1, and is based on taking pointwise max-
ima of independent replications of Gaussian space-time processes. This allows for an easy
simulation setup, provided that we can simulate from the Gaussian processes.

6.1 Setup for simulation study

We illustrate the small sample behaviour of the two proposed estimation methods for spatial
dimension d = 2 in a simulation experiment. The setup for this study is:

1. The spatial locations consisted of a 10 × 10 grid

S 10 =
{
s(i1,i2) = (i1, i2), i1, i2 ∈ {1, . . . , 10}

}
.

The time points are chosen equidistantly, {1, . . . , T = 200}.

2. One thousand independent Gaussian space-time processes Z j(sns, tnt), j = 1, . . . , n =

1000 were generated using the R-package RandomFields with covariance function
γ(snh, tnu), where the circulant embedding procedure introduced in Section 2.2.2 is
implemented. We use the following correlation function for the underlying Gaussian
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6 Simulation study

random field.
γ(h, u) = (1 + θ1‖h‖α1 + θ2|u|α2)−3/2.

Assumption 4.1 is fulfilled and the limit function δ is given by

lim
n→∞

(log n)(1 − γ(snh, tnu)) = δ(h, u) =
3
2
θ1‖h‖α1 +

3
2
θ2|u|α2 ,

where sn = (log n)−1/α1 and tn = (log n)−1/α2 .

3. The simulated processes were transformed to standard Fréchet margins using the trans-
formation −1/ log(Φ(Z j(s, t))) for s ∈ S 10 and t ∈ {1, . . . , T }.

4. The pointwise maximum of the transformed Gaussian random fields was computed and
rescaled by 1/n to obtain an approximation of a max-stable random field, i.e.

η(s, t) =
1

1000

1000∨
j=1

−
1

log (Φ(Z j(sns, tnt)))
, s ∈ S 10, t ∈ {1, . . . , T } .

5. The parameters θ1,α1, θ2 and α2 were estimated by using pairwise likelihood estima-
tion and the semiparametric procedure.

6. Steps (a)-(e) were repeated 100 times.

Note first, that we only get an approximation of a Brown-Resnick process since we cannot
choose n = ∞. The true parameter vector for the simulation study equals

ψ∗ = (θ∗1,α∗1, θ∗2,α∗2) = (0.06, 1, 0.04, 1).

6.2 Results for pairwise likelihood estimation

We start by presenting the results for the pairwise likelihood estimation. The computation of
the pairwise likelihood function is implemented in C and used as function in R. The code is
adapted such that it takes care of identifiability issues, when some of the parameters are not
identifiable, cf. Remark 4.1. Figures 6.2.1 and 6.2.2 show the resulting estimates as a function
of (r, p). Figure 6.2.1 shows boxplots of the resulting estimates for the spatial parameters
θ1 and α1. The horizontal axis shows the different maximal space-time lags included in the
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6.2 Results for pairwise likelihood estimation

pairwise likelihood function from (4.11). We also show qq-plots against a normal distribution
for all parameters and different combinations of r and p in Figure 6.2.3. In addition to the
graphical output we calculate the root mean square error (RMSE) and the mean absolute error
(MAE) to see how the choice of (r, p) influences the estimation.

We make the following observations. As already pointed out by Davis and Yau [24] and
Huser and Davison [46], there might be a loss in efficiency if too many pairs are included in
the estimation. This can be explained by the fact that pairs get more and more independent
as the space-time lag increases. Adding more pairs to the pairwise log-likelihood function
can introduce some noise which decreases the efficiency. This is evident in Figure 6.2.2 for
the temporal parameter α2, where the estimates vary more around the mean as more pairs are
included in the estimation.

An interesting observation for our model is that using a maximal spatial lag of 0 or a
maximal temporal lag 0, respectively, leads to very good results. For the spatial parameters,
the space-time lags which lead to the lowest RMSE and MAE are (2, 0) for θ1 and (2, 0)
(RMSE) or (3, 0) (MAE) for α2 (see Table 6.1), i.e. we use all pairs within a spatial distance
of 2 or 3 at the same time point. Basically, this suggests that we could also estimate the
spatial parameters based on each individual random field for fixed time points and then take
the mean over all estimates in time. The same holds for the time parameters θ2 and α2, where
the best results in the sense of the lowest RMSE and MAE are obtained for the space-time
lags (0, 3), i.e. if we use all pairwise densities corresponding to the space-time pairs (s, t1)

and (s, t2), where |t2 − t1| ≤ 3 (see Table 6.2). The reason for this observation is that the
parameters of the underlying space-time correlation function get “separated” in the extremal
setting in the sense that for example a spatial lag equal to zero does not affect the temporal
parameters θ1 and α1 and vice versa.
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θ1 (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (2,0) (2,1) (2,2)

RMSE 0.010 0.012 0.012 0.012 0.012 0.012 0.010 0.010 0.011
MAE 0.007 0.009 0.009 0.009 0.009 0.010 0.008 0.008 0.008

(2,3) (2,4) (2,5) (3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

RMSE 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011
MAE 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

α1 (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (3,0) (3,1) (3,2)

RMSE 0.134 0.140 0.153 0.149 0.154 0.157 0.135 0.141 0.158
MAE 0.108 0.112 0.115 0.114 0.123 0.125 0.105 0.111 0.113

(3,3) (3,4) (3,5) (4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

RMSE 0.160 0.164 0.165 0.142 0.148 0.161 0.167 0.174 0.175
MAE 0.123 0.129 0.130 0.112 0.118 0.111 0.128 0.137 0.139

Table 6.1: RMSE and MAE based on 100 simulations for the spatial estimates θ1 and α1 for different
combinations of maximal space-time lags (r, p).

θ̂2 (0,1) (0,2) (0,3) (0,4) (0,5) (1,1) (1,2) (1,3) (1,4)

RMSE 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
MAE 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

(1,5) (2,1) (2,2) (2,3) (2,4) (2,5) (3,1) (3,2) (3,3)

RMSE 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
MAE 0.017 0.018 0.017 0.017 0.017 0.017 0.018 0.018 0.017

α̂2 (0,2) (0,3) (0,4) (0,5) (1,2) (1,3) (1,4) (1,5) (2,2)

RMSE 0.132 0.127 0.128 0.129 0.144 0.140 0.143 0.144 0.147
MAE 0.110 0.099 0.102 0.104 0.109 0.108 0.114 0.115 0.118

(2,3) (2,4) (2,5) (3,2) (3,3) (3,4) (3,5) (4,2) (4,3)

RMSE 0.153 0.158 0.162 0.147 0.153 0.159 0.164 0.155 0.161
MAE 0.122 0.128 0.129 0.117 0.122 0.127 0.132 0.123 0.128

Table 6.2: RMSE and MAE based on 100 simulations for the spatial estimates θ2 and α2 for different
combinations of maximal space-time lags (r, p).
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Figure 6.2.1: Pairwise likelihood estimates for θ1 and α1 (spatial parameters) as a function of maximal
space-time lags (r, p). Each boxplot represents the estimates for 100 simulations. The
dashed line is the true value.
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Figure 6.2.2: Pairwise likelihood estimates for θ2 and α2 (spatial parameters) as a function of maximal
space-time lags (r, p). Each boxplot represents the estimates for 100 simulations. The
dashed line is the true value.
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Figure 6.2.3: QQ-plots of the pairwise likelihood estimates against the normal distribution, where for
each parameter we chose a random combination of r and p.
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6 Simulation study

6.3 Results for the semiparametric estimation procedure

using the extremogram

We present results for the semiparametric estimation procedure introduced and analysed in
Chapter 5. For the empirical extremogram we choose the 70%-quantile, which allows for
enough observations included in the estimation. Since we assume that data arises from a
max-stable process, i.e. that we have extreme data, we choose a threshold which is lower
than in the usual case. The weights in the constrained weighted linear regression problem
(see (5.6) and (5.7)) are chosen as wi = exp{−i2} for i = u ∈ U or i = r ∈ H . For the spatial
and temporal parameters 500 bootstrap samples are constructed separately. In Section 5.3.2
we showed theoretical results for a bootstrap procedure which takes care of the constraints on
α1 or α2. Here, we ignore the constraints since it is not possible to simulate the max-stable
space-time processes with a reasonable number of observations to use subsamples for the
bootstrap samples. Figure 6.3.1 shows the estimates for the spatial parameters θ1 and α1 and
Figure 6.3.2 visualizes the temporal estimates for θ2 and α2. Each dot represents one estimate
based on one simulated max-stable space-time process. The dotted lines above and below are
pointwise confidence intervals based on the bootstrap sample. They were calculated by using
quantiles, i.e. for ψ = θ1,α1, θ2,α2,

CI =
[
ψ̂ − q̂(1 −

β

2
), ψ̂ − q̂(

β

2
)
]

,

where q̂ is the empirical quantile of the bootstrap sample and β is the level of significance.
Table 6.3 shows the mean, RMSE and MAE of the simulations. Altogether, we observe
that the estimates are close to the true values, and that the bootstrap method gives accurate
pointwise confidence intervals.

MEAN RMSE MAE

θ1 0.0584 0.0106 0.0088
α1 1.1016 0.2375 0.1897
θ2 0.0423 0.0166 0.0139
α2 0.9509 0.1154 0.0876

Table 6.3: Mean, root mean squared error and mean absolute squared error for the semiparametric
estimates
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6.3 Results for the semiparametric estimation procedure using the extremogram
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Figure 6.3.1: Semiparametric estimates for θ1 (top) and α1(bottom) based on 100 simulated max-
stable processes together with pointwise 95%- bootstrap confidence intervals (blue).
The middle red line is the true value and the middle black line represents the mean over
all estimates.
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Figure 6.3.2: Semiparametric estimates for θ2 (top) and α2(bottom) based on 100 simulated max-
stable processes together with pointwise 95%- bootstrap confidence intervals (blue).
The middle red line is the true value and the middle black line represents the mean over
all estimates.
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6.3 Results for the semiparametric estimation procedure using the extremogram
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Figure 6.3.3: QQ-plots of the semiparametric estimates against the normal distribution.
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6 Simulation study

6.4 Comparison of pairwise likelihood and

semiparametric estimation

As a last step in the simulation study, we compare the estimates resulting from the two dif-
ferent methods. Figures 6.4.1 and 6.4.2 contrast the pairwise likelihood estimates with the
semiparametric estimates. On the left hand side, the estimates (blue: pairwise likelihood,
red: semiparametric) are plotted for each of the 100 simulations together with the true value
as solid line in the middle. On the right hand side, boxplots resulting from the simulations
are shown. We see that the semiparametric estimates differ more from the true value than
the pairwise likelihood estimates, which can be explained from the bias in the spatial and
temporal empirical extremogram, which cannot be cancelled completely, since the threshold
used in the estimation cannot be set equal to infinity. The variability around the true value
differs for the different parameters, and no particular pattern can be detected.

The semiparametric estimates rely on the choice of the threshold for the empirical ex-
tremogram, where a tradeoff between a high threshold and enough observations has to be
made. We measured the time needed to estimate one set of parameters in the simplest case,
i.e. for the pairwise likelihood estimation we use (r, p) = (0, 2) to estimate θ2 and α2 and
(r, p) = (2, 0) for θ1 and α1. Table 6.4 compares the computation time in seconds measured
for the calculation on a Laptop (Windows 7, 64 bit, Intel(R) Core(TM) i5 CPU, 2.53 GHz)
using the statistic software R. We see that the semiparametric estimation is much faster than
the pairwise likelihood estimation.

Pairwise likelihood Semiparametric
(r, p) = (2, 0) and (r, p) = (0, 2)

Computation time 34.3 2.2

Table 6.4: Computation time in seconds for the estimation of the parameters θ1, α1, θ2 and α2.

To conclude this section, we make some summarizing comments.
Pairwise likelihood estimation:

• The pairwise likelihood estimation serves as reliable method to estimate parameters in
max-stable process.
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6.4 Comparison of pairwise likelihood and semiparametric estimation

• Accurate starting values are needed for the optimization routine, which maximizes the
log-likelihood function.

• The computation time is rather high compared to the semiparametric estimation.

Semiparametric estimation:

• The semiparametric estimates show a larger bias than the pairwise likelihood estimates
and are sensible to the choice of the threshold used for the extremogram.

• The computation time is around 15 times lower than for the pairwise likelihood esti-
mation.

• The implementation of bootstrap confidence intervals is feasible and gives regions of
confidence in a reasonable amount of time.

• The semiparametric estimates could serve as starting values for the optimization routine
used to maximize the pairwise log-likelihood function.
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Figure 6.4.1: Comparison of estimates for θ1 (top) and α1 (bottom), where in the left plots each dot
(blue: pairwise likelihood, red: semiparametric) corresponds to one of the 100 simula-
tions. The plots on the right hand side show the corresponding boxplots resulting from
the simulations.
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6.4 Comparison of pairwise likelihood and semiparametric estimation
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Figure 6.4.2: Comparison of estimates for θ2 (top) and α2 (bottom), where in the left plots each dot
(blue: pairwise likelihood, red: semiparametric) corresponds to one of the 100 simula-
tions. The plots on the right hand side show the corresponding boxplots resulting from
the simulations.
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CHAPTER 7

ANALYSIS OF RADAR RAINFALL
MEASUREMENTS IN FLORIDA

The final step in this thesis is the application of our introduced model and methods to real
data. In particular, we quantify the extremal behaviour of radar rainfall data in a region in
Florida by using spatial block maxima and two different time domains, namely daily maxima
and hourly measurements.

7.1 Description of data set

The rainfall data we use in this study was collected by the Southwest Florida Water Man-
agement District (SWFWMD) 1. The data base consists of radar values measured on a grid
with size 2 km covering a region in Florida. A map of the area in Florida is shown in Figure
7.1.1. Radar rainfall observations are given in inches as 15-minutes increments from 1999 to
2004. To present our methods we choose 60 × 60 locations in the middle of the considered
region (see red square in Figure 7.1.1) resulting in a 120 km × 120 km squared region. We
calculate the accumulated hourly rainfall measurements and take the maximum over 25 loca-
tions lying on a square with side length of 10 km. In that way we obtain 12 × 12 locations
with spatial maxima of rainfall observations. The corresponding time series for each spatial

1http://www.swfwmd.state.fl.us/
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7 Analysis of radar rainfall measurements in Florida

maxima is used for further analysis. In the following two sections we consider two different
settings for the time domain taken into account. In both settings we only consider the wet
season in Florida (June to September). For simplified notation we denote the set of locations
by S = {(i1, i2), i1, i2 ∈ {1, . . . , 12}}.

© OpenStreetMap 
 www.openstreetmap.org/copyright 

Figure 7.1.1: Map of Florida with region of observations.

7.2 Daily maxima of rainfall measurements

We start by analysing daily maxima of rainfall measurements. Since we take maxima in space
and time, the assumption of a max-stable space-time process becomes reasonable. As a first
step we remove a seasonal component by using a simple moving average with a period of
122 days, which is the number of days in the wet season considered in one particular year.
By inspecting autocorrelation plots for the daily maxima with fixed location, we conclude
that there is no temporal dependence in the time series. As described in Section 2.1.1 we fit
the generalized extreme value distribution to the block maxima for each fixed location. Since
the estimates for the shape parameter are close to zero with confidence intervals containing
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7.2 Daily maxima of rainfall measurements

zero, we directly fit a Gumbel distribution (GEV with ξ = 0) to the data. The observations
are then transformed to standard Fréchet margins by using the probability integral transform.
Afterwards, we estimate the parameters of the max-stable Brown-Resnick process to obtain
the extremal dependence structure. We explain the procedure in more detail.

1. Marginal modelling: For each fixed location s ∈ S we follow the steps below.

a) The time series {η(s, t), t ∈ {t1, . . . , t732}} is deseasonalized by calculating

η̃(s, tk+122( j−1)) = η(s, tk+122( j−1)) −
1
6

6∑
j=1

η(s, tk+122( j−1)) (7.1)

for k = 1, . . . , 122.

b) The deseasonalized observations are fitted to a Gumbel distribution with distribu-
tion function

GEVµ(s),σ(s),0(x) = exp
{
− exp

{
−

x − µ(s)
σ(s)

}}
. (7.2)

c) The data are transformed according to

˜̃η(s, t) = −
1

log(GEVµ̂(s),σ̂(s),0(η̃(s, t)))
, t ∈ {t1, . . . , t732},

where µ̂(s) and σ̂(s) are the parameter estimates resulting from fitting the Gum-
bel distribution.

2. Estimating the extremal dependence structure: We assume that ˜̃η(s, t), s ∈ S , t ∈

{t1, . . . , t732} are realizations from the Brown-Resnick process (cf. (4.2))

˜̃η(s, t) =
∞∨

j=1

ξ j exp{W j(s, t) − δ(s, t)},

where W j are independent replications of a Gaussian process with stationary incre-
ments and correlation function δ(s1, t1) + δ(s2, t2) − δ(s1 − s2, t1 − t2). The δ function
is assumed to equal δ(s, t) = θ1‖s‖α1 + θ2|t|α2 and contains the extremal dependence
parameters θ1, α1, θ2 and α2, which are estimated using the following two procedures.
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7 Analysis of radar rainfall measurements in Florida

a) We use the semiparametric estimation procedure introduced in Section 5.1 to es-
timate the parameters and construct 500 bootstrap samples to obtain pointwise
confidence intervals for the estimated parameters.

b) In addition, we estimate the parameters using the pairwise likelihood estimation
procedure developed in Section 4.2.

The results are summarized in Figures 7.2.2, 7.2.3, 7.2.4, 7.2.5, 7.2.6, Tables 7.1 and 7.2.
Figure 7.2.2 shows time series for the daily maxima of four representative locations, indicated
in Figure 7.2.1. Three of the locations are safely inside the study region and one is on the
boundary. The fit of the Gumbel distribution is supported by qq-plots in Figure 7.2.3, which
show a straight line pattern. In Figure 7.2.4 plots of the original rainfall fields (left) and
the standard Fréchet transformations are shown for two arbitrary fixed time points t166 (July
14th 2000) and t434 (August 7th 2002). The parameter estimates are given in Tables 7.1 and
7.2. The temporal estimates θ̂2 and α̂2 indicate that there is little or no temporal extremal
dependence. In particular, recall from (5.2) that the extremogram for a spatial lag equal to
zero is given by

χ(0, u) = 2(1 −Φ(
√
θ2|u|α2))

for temporal lags u > 0. If α2 is near zero then χ(0, u) is approximately constant indicating
that the extremal dependence is the same for all temporal lags u > 0. If, in addition, θ2 is
large χ(0, u) is close to zero indicating asymptotic independence. So, the combination of α2

small and θ2 large implies asymptotic independence. Figure 7.2.5 shows the empirical spatial
(left) and temporal (right) extremogram, which are used to estimate the parameters. Note,
that the plots show the temporal mean of spatial extremograms (left) and the spatial mean
of temporal extremograms (right) as described in (2a) and (2b) in Section 5.1. In addition,
we include pointwise 95%-bootstrap confidence intervals (red lines) calculated based on 500
bootstrap samples. Recall from (5.32) that the asymptotic variance for the temporal mean of
spatial extremograms includes the factor 1/T 2 which reduces the standard error. Since we
have 732 time points, the confidence intervals for the spatial extremogram are narrow. To
check whether the extremal dependence is significant, we permutate the space-time data and
calculate empirical extremograms as before. For the temporal extremogram, we fix the one
location s and sample from the corresponding time series without replacement. Using the
same indices as for s we sample the other time series accordingly to keep the spatial depen-
dence structure, i.e. for all locations s ∈ S the permutated space-time observations are given
by {(s, κ(t1)), . . . , (s, κ(t732)}, where κ describes one permutation. We calculate the empiri-
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7.2 Daily maxima of rainfall measurements

cal temporal extremogram as before and repeat the procedure 1000 times. 97.5% and 2.5%
empirical quantiles are calculated from the resulting temporal extremogram sample which
gives a 95% confidence region for temporal extremal independence. To see how the extremal
dependence lasts in space, we do the same for the spatial extremogram. In particular, for
each fixed time point we permutate the spatial locations and estimate the empirical spatial
extremogram for the permutated space-time data. Figure 7.2.6 shows the estimates together
with the independence confidence intervals. Since the estimate for the temporal extremogram
lies within the obtained confidence region, we conclude that there is no temporal extremal de-
pendence for the daily maxima of rainfall. We also conclude that there is no spatial extremal
dependence for spatial lags larger than 4.

Estimate θ̂1 0.3496 α̂1 0.9040
Bootstrap-CI [0.3254,0.3640] [0.8183,0.9897]

Estimate θ̂2 2.2803 α̂2 0.0951
Bootstrap-CI [1.8810,2.6796] [0.000,0.2161]

Table 7.1: Semiparametric estimates for the spatial parameters θ1 and α1 and the temporal parameters
θ2 and α2 for the Brown-Resnick process in (4.2) together with 95% bootstrap confidence
intervals.

PL estimates θ̂1 α̂1 θ̂2 α̂2

0.3485 0.8858 2.419 0.1973

Table 7.2: Pairwise likelihood estimates for the parameters in the Brown-Resnick process in (4.2).
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Figure 7.2.1: Reference locations for time series plots in Figure 7.2.2.
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Figure 7.2.2: Plot of daily maximal rainfall (calculated based on the 15 minutes measurements) in
inches for four different grid locations with simplified coordinates (1,1), (5,6), (8,10)
and (10,7).
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Figure 7.2.3: QQ-Plot of deseasonalized rain series against the fitted Gumbel distribution (GEV with
µ̂(s), σ̂(s) and 0) based on the time series corresponding to the grid locations shown in
7.2.1.
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Figure 7.2.4: Plots of spatial maxima of rainfall measurements (left) and to standard Fréchet margins
transformed rain fields for fixed time points t166 (July 14th 2000) and t434 (August 7th
2002).
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Conditional probabilities and return level maps

We now return to the fundamental questions raised in the Introduction. Based on the fitted
model we are interested in the prediction of conditional probabilities as well as conditional
return level maps. Given a particular reference space-time location (s∗, t∗) we consider the
conditional probability

P(η̃(s, t) > zc | η̃(s∗, t∗) > z∗),

where P(η̃(s∗, t∗) > z∗) = p∗, and η̃ is the deseaonalized process in (7.1). In other words,
we predict the conditional probability that the rainfall process exceeds the level zc at any
location (s, t), given that the process exceeds z∗ at the reference location (s∗, t∗). Assuming
that {η̃(s, t), s ∈ S , t ∈ {t1, . . . , t732}} are realizations from a Brown-Resnick process (see
(4.2)) with generalized extreme value marginal distributions GEVµ(s),σ(s),0 fitted in (7.2), we
obtain

P(η̃(s, t) > zc | η̃(s∗, t∗) > z∗) =

=
1
p∗

(
1 −GEVµ(s),σ(s),0(zc) − (1 − p∗) + P(η̃(s, t) ≤ zc, η̃(s∗, t∗) ≤ z∗)

)
= 1 −

1
p∗

GEVµ(s),σ(s),0(zc)

+
1
p∗

P

 −1
log(GEVµ(s),σ(s),0(η̃(s, t)))

≤
−1

log(GEVµ(s),σ(s),0(zc))
,

−1
log(GEVµ(s∗),σ(s∗),0(η̃(s∗, t∗)))

≤
−1

log(1 − p∗)


= 1 −

1
p∗

GEVµ(s),σ(s),0(zc) +
1
p∗

F

 −1
log(GEVµ(s),σ(s),0(zc))

,
−1

log(1 − p∗)

 ,

where F is the bivariate extreme value distribution of the Brown-Resnick process (see (3.6)).
As a first step, we plot the predicted conditional probabilities with z∗ = zc = 2.5 for all
locations s and reference locations in Figure 7.2.1, where the marginal estimates µ̂(s) and
σ̂(s) are used in GEVµ(s),σ(s),0(zc) and the extremal dependence estimates for the Brown-
Resnick process θ̂1, α̂1, θ̂2 and α̂2 are plugged into F. Since there is no temporal extremal
dependence (see Figure 7.2.6), we only consider fixed time points. Figure 7.3.1 shows the
predicted conditional probability fields.
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7.3 Hourly rainfall measurements June 2002-September 2002

The conditional return level is defined as the value zc for which

P(η̃(s, t) > zc | η̃(s∗, t∗) > z∗) = pc,

where z∗ is chosen as the (1 − p∗)-quantile, P(η̃(s∗, t∗) > z∗) = p∗. In particular, the
conditional return level with return period 1/pc is the value for which the probability that the
process exceeds that level given that the process at a reference location exceeds z∗ equals p∗.
To estimate zc we plug in the parameter estimates µ̂(s) and σ̂(s) for the marginal distribution
and θ̂1, α̂1, θ̂2 and α̂2 for the extremal dependence. First note, that if z∗ equals the minimum
of the data, i.e. p∗ = 1, we obtain a field of unconditional quantiles which is the same as if
the return levels at each location are estimated using the marginal fitted distributions. Figure
7.3.2 shows the predicted conditional return levels for p∗ = 0.01 and pc = 0.01 with the
same reference locations. The conditional probability, as well as the conditional return level
fields confirm the findings from estimating the extremogram, where we concluded that spatial
extremal dependence is present for lags smaller than

√
17.

7.3 Hourly rainfall measurements June 2002-September

2002

Since there is no temporal extremal dependence for the daily maxima we turn to hourly
rainfall measurements. In particular, we analyse the hourly rainfall observations in the rainfall
season 2002 from June to September, leading to 2928 time points and 144 locations, denoted
by

{Z(s, t), s ∈ S , t ∈ {t1, . . . , t2928},

where S = {(i1, i2), i1, i2 ∈ {1, . . . , 12}}. As for the daily maxima, we first remove daily
seasonality by using a simple moving average with block length of one day (24 time points).
By inspecting autocorrelation plots we assume that the marginal time series are stationary
with short-range dependence. Leadbetter [55, 56] shows that stationary time series satisfying
additional mixing conditions have the same extreme value properties than the corresponding
iid sequence. Therefore, we fit the generalized Pareto distribution to threshold exceedances
as described in Section 2.1.1 and use the fitted distributions to transform the data to standard
Fréchet marginal distributions. Afterwards, we estimate the extremal dependence parameters
as before. The procedure is explained in full detail below.
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Figure 7.3.1: Predicted conditional probability fields P(Z(s, t) > zc | Z(s∗, t) > z∗) for fixed time
point t with reference locations (s∗, t∗) = ((1, 1), 1) (upper left) (s∗, t∗) = ((5, 6), 1)
(upper right), (s∗, t∗) = ((8, 10), 1) (lower left) and (s∗, t∗) = ((10, 7), 1) (lower right)
together with contour lines. The values zc and z∗ equal 2.5.
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Figure 7.3.2: Conditional 100-day return levels resulting from solving P(Z(s, t) > zc | Z(s∗, t∗) >
z∗) − pc = 0 for zc with four different reference locations (s∗, t∗) = ((1, 1), 1) (upper
left) (s∗, t∗) = ((5, 6), 1) (upper right), (s∗, t∗) = ((8, 10), 1) (lower left) and (s∗, t∗) =
((10, 7), 1) (lower right), which are shown as white square.
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7 Analysis of radar rainfall measurements in Florida

1. Marginal modelling: For each fixed location s ∈ S = {(i1, i2), i1, i2 ∈ {1, . . . , 12}} we
follow the steps below.

a) The time series {Z(s, t), t ∈ {t1, . . . , t2928}} is deseasonalized by calculating

Z̃(s, tk+24( j−1)) = Z(s, tk+24( j−1)) −
1

122

122∑
j=1

Z(s, tk+24( j−1))

for k = 1, . . . , 24.

b) Threshold exceedances with a threshold thres = 0.2 are fitted to a Generalized
Pareto distribution with distribution function

GPDσ(s),ξ(s)(x) = 1 −
(
1 +

ξ(s)x
σ(s)

)−1/ξ(s)
. (7.3)

c) The data are transformed according to

˜̃Z(s, t) = −
1

log(F̂s(Z̃(s, t)))
, t ∈ {t1, . . . , t2928},

where

F̂s(x) =


1 − Nthres,s

2928

(
1 + ξ̂(s) x−thres

σ̂(s)

)−1/ξ̂(s)
, x > thres,

1
2928

2928∑
k=1

1{Z̃(s,tk)≤x}, x ≤ thres,
(7.4)

and Nthres,s denotes the number of threshold exceedances for fixed location s.

2. Estimating the extremal dependence structure: We estimate the parameters θ1, α1, θ2

and α2 of the Brown-Resnick process (cf. (4.2)) by using the semiparametric estimation
procedure in Chapter 5 and the pairwise likelihood estimation in Chapter 4.

The results are shown in Figures 7.3.4, 7.3.5, 7.3.6, 7.3.7, 7.3.8 and Tables 7.3 and 7.4.
Figure 7.3.4 visualizes the hourly accumulated rainfall series for the locations shown in 7.3.3.
QQ-plots in Figure 7.3.5 of the exceedances against the fitted GPD support the marginal
goodness of fit. Figure 7.3.6 shows rainfall fields for four consecutive hours on the left
hand side together with the marginally transformed fields on the right hand side. Using
the transformed space-time observations we estimate the parameters of the Brown-Resnick
process, which are shown in Tables 7.3 and 7.4. We notice that the spatial parameter estimates
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7.3 Hourly rainfall measurements June 2002-September 2002

θ̂1 and α̂1 are close to the estimates for the daily maxima (compare to Tables 7.1 and 7.2).
This is not unexpected since the spatial extremal dependence structure remains the same if the
time domain is scaled. To see this, consider the extremogram of the Brown-Resnick process
with scaled time lag u/m where m ∈ N (To get from the daily maxima to the hourly values
use m = 24),

χ(h, u/m) = 2
(
1 −Φ(

√
θ1‖h‖α1 + θ2|u/m|α2)

)
.

For a temporal lag equal to zero, this is the same as for the original time domain.

Figure 7.3.7 shows the spatial and temporal mean of temporal (left) and spatial (right)
extremograms as described in (2a) and (2b) of Section 5.1 together with 95% bootstrap con-
fidence intervals. When we compare Figure 7.3.7 to Figure 7.2.5 we see that the spatial
extremogram on the right hand side is similar to the one for the daily maxima. The tempo-
ral extremogram now shows more extremal dependence compared to the daily maxima. We
repeat the permutation test for independence. The results are shown in Figure 7.3.8 and indi-
cate that there is no temporal extremal dependence for time lags larger than 6 and no spatial
extremal dependence for spatial lags larger than 4.

As for the daily maxima, we return to the fundamental questions raised in the introduction.
In particular, we predict the conditional probabilities

P(Z̃(s, t) > zc | Z̃(s∗, t∗) > z∗),

where P(Z̃(s∗, t∗) > z∗) = p∗, by

1 −
1
p∗

F̂s(zc) +
1
p∗

F̂
(

−1
log(F̂s(zc))

,
−1

log(1 − p∗)

)
,

where F̂s is defined in (7.4) and F̂ is the fitted bivariate distribution function of the Brown-
Resnick process (see (3.6)). In addition, we estimate the conditional return levels zc for which

P(Z̃(s, t) > zc | Z̃(s∗, t∗) > z∗) = pc.

Figure 7.3.9 shows the predicted conditional probability fields for zc = z∗ = 1 for two
reference locations s∗ = (5, 6) (left) and s∗ = (10, 7) (right) and t∗ = t1. The plots visualize
the prediction for all locations and for t ∈ {t1, t2, t3, t4} (from the top to the bottom). Since we
assume stationarity only the time lag t − t∗, and not the starting reference time point t∗, is of
interest. Figures 7.3.10 and 7.3.11 show the predicted conditional return level maps for time
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7 Analysis of radar rainfall measurements in Florida

lags u = 0, 1, . . . , 7 based on the reference locations s∗ = (1, 1) (left), s∗ = (5, 6) (middle)
and s∗ = (10, 7) (right). Both, the conditional probability fields as well as the conditional
return level fields show how the dependence in space and time develops. The plots confirm
the findings from the extremogram estimates, where we concluded spatial independence for
lags larger than 4 and temporal independence for time lags larger than 6.

As a final step in this chapter we simulate from the fitted space-time process for extremes to
obtain realizations for the space-time rainfall process. We start by simulating from the max-
stable space-time process as described in Chapter 6 with the parameter estimates obtained for
the rainfall measurements. Afterwards, we transform the marginal distributions according to
the fitted GPD distributions for each location. Figure 7.3.12 shows the resulting realizations
for four consecutive time points. By comparing the figures with the plots in the introduction
(see Figure 1.1.1), we see that the simulations are similar to the rainfall measurements.

Estimate θ̂1 0.2987 α̂1 0.9664
Bootstrap-CI [0.2469,0.3505] [0.8407,1.0921]

Estimate θ̂2 0.4763 α̂2 1.0686
Bootstrap-CI [0.2889,0.6637] [0.8514,1.2859]

Table 7.3: Semiparametric estimates for the spatial parameters θ1 and α1 and the temporal parameters
θ2 and α2 for the Brown-Resnick process in (4.2) together with 95% bootstrap confidence
intervals.

PL estimates θ̂1 α̂1 θ̂2 α̂2

0.3353 0.9302 0.4845 1.0648

Table 7.4: Pairwise likelihood estimates for the parameters in the Brown-Resnick process in (4.2).
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Figure 7.3.3: Reference locations for time series plots in Figure 7.2.2.
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Figure 7.3.4: Accumulated hourly rainfall measurements calculated from the 15-minutes measure-
ments (June 2002 - September 2002) in inches for the grid locations in 7.3.3.
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Figure 7.3.5: QQplot of threshold exceedances against fitted GPD distribution for the grid locations
in 7.3.3 with a threshold equal to 0.2.
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Figure 7.3.6: Plots of original and transformed (to standard Fréchet) rain fields for three subsequent
time points t1016, t1017 and t1018 (July 13th, 2002, 10pm - 12pm).
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Figure 7.3.7: Temporal (left) and spatial (right) empirical extremogram based on spatial and tempo-
ral means for the space-time observations as described in (2a) and (2b) in Section 5.1
together with 95% bootstrap confidence intervals.
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Figure 7.3.8: Permutation test for extremal independence based on 1000 space-time permutations of
the observations, which destroy the extremal dependence in time (left) and space (right).
The black lines show the 97.5% and 2.5% quantiles of the extremogram estimates for
the 1000 permutations.
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Figure 7.3.9: Predicted conditional probability fields P(Z(s, t) > zc | Z(s∗, t∗) > z∗) for zc = z∗ = 1,
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Figure 7.3.10: Conditional 100-hour return level maps for time lags u = 0, . . . , 3 and reference loca-
tions s∗ = (1, 1) (left), s∗ = (5, 6) (middle) and s∗ = (10, 7) (right).
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Figure 7.3.11: Conditional 100-hour return level maps for time lags u = 4, . . . , 7 and reference loca-
tions s∗ = (1, 1) (left), s∗ = (5, 6) (middle) and s∗ = (10, 7) (right).
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Figure 7.3.12: Extremal rainfall fields for four consecutive hours (clockwise from the top left to
the bottom left) simulated from the fitted max-stable space-time process, where the
marginal distributions follow the GPD with parameter estimates resulting from the
marginal fit for each fixed location.
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[40] J. Geffroy. Contributions à la théorie des valeurs extrème. Publ. Inst. Stat. Univ. Paris,
7:36–123, 1958.
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