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Abstract

We consider a log-concave density f in R™ satisfying certain weak conditions,
particularly on the Hessian matrix of — log f. For such a density, we prove tail exactness
of the multivariate saddlepoint approximation. The proof is based on a local limit
theorem for the exponential family generated by f. However, the result refers not
to asymptotic behaviour under repeated sampling, but to a limiting property at the
boundary of the domain of f. Our approach does not apply any complex analysis, but

relies totally on convex analysis and exponential models arguments.

Running headline: Multivariate saddlepoint approximations.

AMS 1991 Subject Classifications: primary: 62E17, 62E20, 62F11, 62H10
secondary: 60E10, 60F05

Keywords: asymptotic normality, convex analysis, exponential models, local limit theorem,

moment generating function, Legendre transform, saddlepoint approximation.

*Department of Mathematical Sciences, Aarhus University, DK-8000 Aarhus C, Denmark, email:

atsoebn@mi.aau.dk
fCenter for Mathematical Sciences, Munich University of Technology, D-80290 Munich, Germany, email:

cklu@mathematik.tu-muenchen.de, http://www.mathematik.tu-muenchen.de



1 Introduction

In a wide range of interesting cases saddlepoint approximations of probability distributions
turn out to be highly accurate not only in large deviations regions, but even at the very
extremes of the distributions. This is a surprising and useful, but poorly understood phe-
nomenon (cf. for instance Barndorff-Nielsen and Cox (1989, 1994), or Whittle (1993): “A
conversation with Henry Daniels”, see p. 350)). The asymptotic derivations of saddlepoint
approximations which refer to increasing sample size give no clues to the question.

The present paper considers the problem from a geometric or convex analysis viewpoint
and provides some simple sufficient conditions ensuring that the (unnormalised) saddle-
point approximation is not only accurate but in fact becoming exact as one approaches
the boundary of the support of the associated probability distributions. Our discussion
concerns multivariate distributions, the much simpler univariate case having been treated
in Barndorff-Nielsen and Klippelberg (1992).

For one-dimensional distributions the tail accuracy of the saddlepoint approximation
has been studied in very considerable detail by Daniels (1954) and Jensen (1988, 1989).
The above-mentioned paper by Barndorff-Nielsen and Kliippelberg (1992) complements
their work, see our discussion given there. Already in the one-dimensional case non-normal
limiting behaviour is not uncommon; for a characterisation of all possible limit laws see
Balkema, Kliippelberg and Resnick (1997). This phenomenon can be expected to be much
more complex in the multivariate case, although we have no results to illustrate that.
In fact, our paper is but a small first step towards unravelling the complexity of the
multivariate situation.

We consider densities in R™ of the form
) =e",

where the function ¢ is a convex function in C?, and we show that, under some further
regularity conditions, the (unnormalised) saddlepoint approximation f1(¢) of f(t) becomes
exact as t approaches the boundary of the domain of 1. (For general discussions of sad-
dlepoint approximations and their role in statistics, see Barndorff-Nielsen and Cox (1989,
1994) and Jensen (1995).)

The density f generates an exponential family

fat) = M= /o)



for A € R™ such that C(\) = [ e f(1)dt < oo.
The conditions which we impose on v imply that f) is asymptotically normal; i.e. there

exist norming constants a) > 0 and by € R™ such that the normalised densities satisfy

gr(t) = axfa(bx + axt) = (1)

uniformly on R” for A tending to a boundary point of the domain of possible values of
A and where ¢ is a non-degenerate normal density in R™. Such results have been derived
for a slightly more general class of densities in R in Balkema, Kliippelberg and Resnick
(1993), the latter is henceforth abbreviated as BKR (1993).

The results of BKR (1993) have been applied in Barndorff-Nielsen and Kliippelberg
(1992) to show that for a rather wide class of log-concave densities in R the saddlepoint
approximation becomes exact in the tail. In the present paper we generalise this result to
a multivariate setting.

The paper is organised as follows. In Section 2 we set the stage and present some
analytic concepts. The main result there states uniform asymptotic normality of the expo-
nential family fy which yields the asymptotic behaviour of the moment generating function
C(A) as X tends to boundary points of the domain of C. This generalises Theorem 6.6
of BKR (1993). In Section 3 we show, under regularity conditions, that the saddlepoint
approximation ff(t) ~ f(t) as t tends to boundary points of the domain of f. Here ~
means that the quotient of lhs and rhs tends to 1. In Section 4 we introduce conditions,
which are easy to check for many examples, where our results hold. Section 5 concludes

the paper with some examples.

2 Stage setting

We consider an m-dimensional probability distribution having density with respect to

Lebesgue measure of the form
F)=e ¥ teRr™, (2.1)
where 1) is a closed convex function on R™. The domain of 1 is denoted by domsp, i.e.
domy = {t € R™ : 9(t) < oo},

and D = int(doms)) indicates the interior of the domain of 1. We use definitions and

properties of convex analysis and exponential models in accordance with Rockafeller (1970)
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Figure 2.1 Interiors of domains of 1(t) = —In f(¢t) and K(X) = InC(X) and their con-
vex conjugates (two-dimensional indication), see conditions (iii)-(v). Notice that we can

identify D and A* by condition (iv) and D* and A by condition (v).

and Barndorff-Nielsen (1978), the latter henceforth abbreviated BN (1978). The conjugate

1™ of 1 is defined as the function on R™ with values

P*(§) = sup {(&,t) — ()}, £eR™. (2.2)

teR™

This conjugate function is also closed and convex, and the conjugate of 1* equals 9, i.e.
P** =1). Let D* = int(domy)™*).
The exponential family F generated by the density f and the identity mapping on R™

consists of all probability measures PP, with density of the form

fat) = M0 o) (2.3)

for A € R™ such that C(\) = [ M f(t)dt < co. The cumulant function K(\) = InC/(\)



is a closed convex function on domK = {\ € R™ : K()\) < oo}, and the conjugate of K
is denoted by K*. Let

A = int(domK) and A" = int(domK™).

We use the following notation: Vi) and V21 denote the gradient and the Hessian of
1 respectively. Let ¥ be an arbitrary square root of (V2¢)~!. Even though we have not
assumed ¥ symmetric we use ¥ 2 as shorthand for (X%7)~1L.

Throughout the paper we will work under the following conditions (where (i) was

introduced above).
(i) % is convex and closed.
(ii) 3 € C? and V24 is positive definite on D.

(iii) V1 is a one—to—one mapping from D onto D*, with inverse Vi*, and if t € D and
¢ = Vi(t) then
{t,6) = ¢(t) + 47 (§).-

(iv) int(dom)) = int(domK™)
(v) int(domK) = int(domz)™)

(vi) Let ¥ be an arbitrary square root of (V2¢) ! and t, denote a fixed, but arbitrary

sequence of points in D. We assume that as n — oo
ST (t)272(t, + 22(t,))2(tn) — I locally uniformly in 2z € R™ . (2.4)

The matrix I denotes the identity matrix and by local uniform convergence we
mean that the limit relation in (2.4) holds uniformly in z on each compact subset
of R™. In particular, this requires that for all Ko C R™, Ky compact, we have that
tn, + Ko2(t,) C D for all n > n(Kp).

The conditions (iii)—(v) hold under a fairly simple condition (in addition to (i) and (ii)),
as shown in Theorem 4.1 below.
We draw attention in particular to the properties (iv) and (v) which are illustrated in

Figure 2.1.



In general we think of vectors as row vectors. In certain formulas we shall have to work
with column vectors; the appropriate interpretation will, however, be clear from the oper-
ation at hand. For notational ease we shall therefore refrain from indicating transposition

of vectors but rely on the common sense of the reader.

Definition 2.2 A matrix function ¥ which satisfies (2.4) is called self-neglecting with

respect to the sequence t,,.

Suppose Y is self-neglecting. For ¢t € D define a function ¢; with argument 2 € R™ by
pi(x) = P(t + 25(t)) — p(t) — 2B () Vip(t) . (2.5)

Then for any given M > 0 and € > 0

(@,2),  [le]| < M,

[NCR e

o0, (@) = 52,2} <

holds for all sufficiently large n. This follows simply via Taylor expansion invoking (2.4).

By this property we can derive convergence of the properly standardised exponential
family to a parabola on compact sets. For our purpose, however, this does not suffice, we
need to control the tails as well. As in the one-dimensional case, we use a concept, called
ANET, which has been introduced in BKR (1993, Section 6). We summarise the definition

and some properties of ANET from that paper.

Definition 2.3 (a) A sequence of random vectors (X,,) in R™ is asymptotically normal if
there exist positive affine transformations A, on R™ such that A, (X,) % Nasn — 00,
where N is a standard normal vector.

(b) The sequence (X)) is asymptotically normal with exponential tails (ANET) if the
vectors A, (X,) have densities g, which satisfy the condition: For any € > 0 there exists

an index ng such that for n > ng
190 (8) = (t)] < ee”llVe e R™, (2.6)
where ¢ is the m-dimensional standard normal density. O

The reason for the name “with exponential tails” comes from the fact that the tails
of g, (t) (for ¢ — oo) decrease exponentially fast eventually (see Proposition 6.1 of BKR
(1993)).



We want to apply this concept in the following situation:
Let X = (Xi,...,X,,) be a random vector with density f = e~¥ such that conditions (i)
— (vi) are satisfied. Denote further by X = (X1 ,...,X;;,\) a random vector distributed
according to the exponential family density f) in (2.3). Now we consider ¢ € D as a

function of A by
=1\ = V(). (2.7)

or, analogously, we consider A € A as a function of ¢ by
A= A(t) = Vip(t) . (2.8)
The following result generalises Theorem 6.6 of BKR, (1993).

Theorem 2.4 Let X = (X1,...,X,,) have density f = e~ such that conditions (i) (vi)
hold. Define the exponential family fx as in (2.3). Let t, be a sequence of points in D such
that X is self-neglecting with respect to t,, let \, = V(t,) and suppose that A\, € A.

Then the normalised densities

9x, (@) = [E(tn) [, (b + 22(t0))

of (Xx, —tn)X (ty) are ANET asn — oo. Furthermore, the moment generating function

C(X) of f and the conjugate transform * of ¢ are related by the asymptotic equality
C(An) ~ 2m)™28(tp)]e?" Pn) | n = 0. (2.9)

PRrROOF. For t € D, let

o) = 50 exp (e + 05(0),3) — vt + 22(0)

By Taylor expansion we have (for some [0| < 1):
Yt +xX(t)) = P(t) + 28 (1) Vep(t) + %xZ(t)TVsz(t + 02X () S (t) .

Inserting this in the expression for g)(z) and taking A = V1 (¢) and using condition (iii)

we obtain

gr(z) = exp {zp*(,\) — %xZ}T(t)Vng(t + GacE(t))E(t)x} .



Now, inserting ¢, for ¢ and )\, for X\ we find, by the self-neglecting property (2.4), that

1 (0) = G sl () — 3a.a) + 7, (0))

where ry, (z) = 0 as n — oo locally uniformly in z. Hence for n — oo,
ga, () ~ (A )e 2
locally uniformly in x, where

) = e o

Now since ¢ = —log f is convex, also —log gy is convex and by Proposition 6.5 of BKR

(1993) gy, is ANET for n — oo. In particular, d()\,) — (27) ™/? which gives (2.9). O
From the Corollary to Proposition 6.3 of BKR (1993) we obtain immediately
Corollary 2.5 In the setting of Theorem 2.4 we have
(X, — ) (1) % N(0,1).
Moreover,
(B(X),) —ta)S H(tn) = 0 and S (t,)Va, 2 '(ta) — I,

where V) is the covariance matriz of the vector Xj. a

3 Tail exactness of the saddlepoint approximation

We now use the results of Section 2 to prove tail exactness of the multivariate saddlepoint

approximation:

Theorem 3.1 Let f = eV be a density satisfying properties (i) — (vi) for a sequence t,
and define A, = V(t,). Then the saddlepoint approzimation of f(t,) given by

FH(tn) = (2m) "1V () [V exp{ K (An) = (Ans )}
becomes asymptotically exact; i.e.

nlggo fT(tn)/f(tn) = L.



Remark The usual form of the saddlepoint approximation would have |[V2K(\,)| /2

instead of |V24¢(t,)|*/? in the expression for f. However, as will be shown later, the two

expressions are asymptotically equivalent under the conditions given in Section 4.

PROOF. The density f satisfies the conditions of Theorem 2.4 with scale matrix 33; i.e.

(2.9) holds and hence for n — co
K(An) = log C(An) = 9" (An) + log{(2m)™/2[S(tn) |} + o(1) ,
where t, = V4)*(\,). As before we write |X(t)| for [S(¢)X7 (£)]'/2. This implies
K\ = nstn) = 9" () + log{(2m)™*|Z(ta) )} = s tu) + 0(1)

= —h(ta) + log{(2m)™2[S(tn)]} + o(1)

= log{f(t)2m)™2[S(t)]} + o(L).

Hence

exp{K (An) = (A ta)} ~ (2m)™2|Z(ta) | f (1), 1 — o0,

and, since X(t,) "2 = V21(t,), the result follows. O

4 A simple sufficient condition

The following theorem shows, in particular, that under conditions (i) and (ii) the properties

(iii)—(v) assumed in Section 2 hold in a simple setting.

Theorem 4.1 Suppose that v is C? with positive definite Hessian V21 on D, and that 1)

1§ steep, 1i.e.
d

for any t € D and any point ty of the boundary of D. Then

(a) The gradient V1 is a one-to-one function from D = int(domp) onto D* = int(doms)™),

with inverse Vi*.

(b) For & € D* we have
(&) = (& 1) —(t) (4.1)

where t is the unique solution of

Vip(t)

Il
A

(4.2)



(¢c) The domain of the cumulant function K is open and satisfies
A = domK = int(dome)*) = D*
(In particular, then, the exponential family F is regular.)

(d) The conjugate K* has open domain
A" = domK"* = int(domy) = D , (4.3)
and for any t € D we have
K*(t) = (\t) — K(A\), (4.4)
where X\ is the unique solution of the equation

VE(\) =t. (4.5)

PROOF. The assumptions of the theorem imply that 1) is essentially smooth (i.e. D # (),
1 is differentiable on D and steep) and essentially strictly convex (BN (1978), Theorems
5.28 and 5.29). This, in turn, has the consequence (Theorem 5.30, loc. sit.) that the
conjugate ¥* of 1 is also essentially smooth and essentially strictly convex. Conclusions
(a) and (b) now follow from Theorem 5.33 in BN (1978).

Next we consider the cumulant function K. Writing 1) (z) = ¢(z) — (A, z), we find on
account of Theorem 6.1 in BN (1978) that

K()\) < 00 < 0 € int(domy)y) < A € int(domep™) (4.6)

verifying (c).
The regularity of the exponential family F implies (BN (1978), Theorem 9.2) that
(4.3) holds, and Theorems 9.1 and 9.13 (loc. cit.) then show the validity of (4.4) and (4.5).

|

Remark (i) A convex function ¢ which is differentiable on D is steep if ||V (t,)| = oo

for all sequences (t,)nen in D converging to ty for all boundary points ¢y of D.

(ii) If 4 is a closed convex and differentiable function such that D = dom1p, i.e. the domain

of 1 is open, then v is steep (cf. Rockafellar (1970)).

10



Corollary 4.2 Under the conditions of Theorem 4.1 we have
st = K(h) + K" (k).
V2K(\,) - V2K*(t,) = I,
VZK(\) = W

for X € D*, Vi denoting the variance of Xyx. In this case fT may (in view of Corollary

2.5) be rewritten as
FH(tn) = 2m) "IV K ()2 exp{ K (An) = (A tn)}

which is the classical saddlepoint approzimation of f(t,). Alternatively, fi(t,) may be

expressed as

fI(tn) = (2m) "2V (1) Y2 exp{ —K* (tn)} O

5 Examples

One-dimensional densities f(t) = e~¥(®) where 9 is C? with ¢ > 0 satisfying (2.4) have
been considered in BKR (1993) and Barndorff-Nielsen and Kliippelberg (1992). Examples

of possible functions v are

t*, a>1
ot
t—t*, 0<a<l
tlogt

(=), a>0

In the first four examples we consider ¢ T ty3 = oo, in the last one ¢t T ty3 = 0. The
self-neglecting property (2.4) reduces to

lim o(t+ zo(t))

lim o) =1 locally uniformly in z € R, (5.1)

where 0 = 1/y/9". If ty = oo, then sufficient for o to be self-neglecting is that o has a
derivative o’ satisfying o'(t) = 0 as t — oo. If g < oo and both ¢ and ¢ vanish at ¢,

then o is self-neglecting (Resnick (1987), Lemmas 1.2 and 1.3).

11



The major problem for explicit examples in the multivariate case will be to check the
self-neglecting condition (2.4). In some cases asymptotic estimates are possible; in some
cases X can be calculated explicitly.

In particular, for a 2 x 2 non-singular symmetric matrix

the eigenvalues p1, po are

1
pre=glateEVie—c)?+40?)

and the eigenvectors are

b .
€; = y 221,2.

a—pi

Then the symmetric square root of ¥?, which we now write as

satisfies the equation

r s b 1 b

s v a — p; Vpi a — p;

Hence, for p; # p2 we obtain

v = 1 (a—m_a—pz)
p1—p2 \ P1 VP2
b ( 1 1 >
s = —
P11 — P2 \V/P1 VP2

1 pL—a ( 1 1 >
ro o= - -
VPL P11 = P2 \V/P1L P2
In the following situation the problem can be reduced to an essentially one—dimensional

equivalent. Assume that 1) is rotationally invariant, i.e.
B(t) = g(r), where = |t].
Write ¢ = (t',t?) = (r cos #, r sin ) in polar coordinates. Then by straightforward analysis,
for (', %) = g(r,0),
cos? 0g" (r) + sin? 9%9'(7") sinf cos 0(g" (r) — %g’(r))

sinfcos 0(g"(r) — 1g'(r)) sin0g"(r) + cos® O1g'(r)

12



Since 1) is rotationally invariant, it suffices to consider § = 0, hence for (¢t!,#%) = (r,0) in

polar coordinates the matrix X ~2(¢!,#?) reduces to

which is positive definite provided ¢”(r) > 0 and ¢'(r)/r > 0, and then 1) is convex. The

self-neglecting condition (2.4) reduces then to
S(r)22((r,0) + 22(r)) 2T (r) = 1 (5.2)
as r tends to oco.

Proposition 5.1 Let f = e™¥ be a density on R% such that 1 is rotationally invariant.
Write 4(t) = g(r) for r = ||t||. Assume that g is C? and satisfies the following conditions

as r — OQ:

(a) ¢'(r)/r — oo and ¢"(r) — oo,

g'(r) . g'(r)
rgi(r) = P

(c) the function 1//g" is self-neglecting in the sense of (5.1),
o+ 2/ VT
g'(r)

Then Theorems 2.4 and 3.1 hold and the saddlepoint approzimation f1 of f becomes ezact

(b) 0 < liminf

< 00,

— 1 locally uniformly in x.

(d)

as r — oQ.

PROOF. By condition (a) above and Remark (i) after Theorem 4.1 we work in the frame-
work of Theorem 4.1. Hence we only have to check the self-neglecting condition (5.2).

Write # = (2!, 22), then

z! z? ~
r,0)+zX(r)=|r , =(r,0
(r,0) () <+ 7 g"(r)> "0

giving

cos? 59"(?) + sin? 591(77) /T sin 6 cos Hm
S ()52 DS = o 7 g
’ OGO 0 0o O

g"(r)g'(r)/r dr g'(r)/r

sin @ cos 6

13



First notice that § = x2/y/¢"(r) — 0 by (a). Conditions (c) and (d) guarantee that locally
uniformly
g"(F) ~g"(r) and ¢'(F)/7~g'(r)/r.
g' ()T
g"(r)
SO -dOF PO -dOF \/ G PG
g"(r)g'(r)/r V' (r)g' (F)/7 g/ g'(r)

where the rhs is also bounded away from 0 and co. Hence

Hence the quotient remains bounded away from 0 and oo. Furthermore,

(227 0T (r) = 1.
This concludes the proof. a

Example 5.2 Let
1
Y(Eh,t7) = Z((#)7 + (#9)%)".
Hence in polar coordinates

P2 = g(r) = 3.

We check the conditions of Proposition 5.1. Conditions (a) and (b) are immediate. The
derivative of the function 1/1/¢”(r) = 1/(v/3r) tends to 0 as r — oo, hence 1/1/¢"(r) is

self-neglecting. Furthermore,

ool _ <r+x£(x/§r>>3 L -

The following describes a more general set-up, which covers for instance the m-dimensional

version of Example 5.2 for m > 2. Let f = e~¥ be a density on R™, where 1) is of the form
p(t) = hig(t") + - +g(t™)),
where g, h € C?. Denote
W= Hg(t!) +o 4 g(t™) and K= W' (g(t)) + -+ +glt™).

Let furthermore

o = (9., d (™)
_ g'(t") g'(t™)
L g”(tl)’ ’ g"(tm)> ’



v = VN

B o B (ti)2 -1
a = (1+(v,0) ' = (14_?2 (tz)> )
b = a/(1++Va).

Proposition 5.3 Assume that in the above setting the following conditions hold.
(a) B'(t) > 0,h"(t) >0 fort = g(t') +--- + g(t™) and ¢"(t*) >0 fori=1,...,m
(b) h'(tn + xzX(tn))/h (tn) — 1 locally uniformly as n — oo .

(¢c) Denote by 6(t) the diagonal matriz with elements ¢"(t'), i = 1,...,m, then for
v =0(ty), b="b(tn), § = 8(tn) and § = 8(t, + 25 (tn)),

(1 — bl v]66 I —bw o] =T,
locally uniformly as n — oo.
(d) For v =wv(t,), b=">0(t,) and v = v(t, + zX(t,)), we have
[ — 6070 I —bwlo] > 1,
locally uniformly as n — oo.

Then Theorems 2.4 and 3.1 hold and the saddlepoint approzimation f1 of f becomes ezact

as n — oo.
PROOF. Notice first that with the above notation V) (t) = h'¢ and
V2ip(t) = bl o + 16 (5.3)
Hence for any vectors £, € R™ with & # 0 we have

EVAP(H)E = h" (€, ) + 1 252 "(t') > 0.
=1
Hence 1) is convex on R™. Notice further that by (5.3)

=2 _ 2y — p/1/261/2 [I+’;L ] sY/2pn/2 — h/1/251/2[l+UTU]51/2hr1/2_

Now since

[IT+o o] =T— (14 () v =T-av"v,

15



we have

22 — (v2¢)—1 — h,_1/2(5_1/2[_[ _ aUTU]6_1/2h,_1/2 .
From this representation we obtain immediately the (non-symmetric) square root
S =p V262 — o)V = V22 — b

where b = a/(1+ /a). It remains to check the self-neglecting condition (2.4). As before we
drop arguments and write X for $(t) and ¥ for X(t + zX(t)) with obvious generalisations

of this notation to other functions.
»I'y-2y,

B2 5712 (1 Z ]| B2 V2 [+ R T2 R (W2 572 [T — T

!

- % [ —boT0] 672 6Y2 1 — o' 5]~ 612 672 [1 — bu™ ]

= (L+o(W)[I =t )62 2 [1 =60 %) [I — b0 ) 62 672 [T — ")
The result now follows from the self-neglecting conditions (b)-(d). a

The simplest example falling into the realm of Proposition 5.3 is the standard normal
distribution, where h(t) =t, g(t) = t2/2, o =% = (t!,...,t™),v=0,a =1 and b = 1/2.
In that case, of course, the conclusion of Proposition 5.1 is trivial. Example 5.2 for m > 2

is, as already indicated, another special case.
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