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1 IntroductionIn a wide range of interesting cases saddlepoint approximations of probability distributionsturn out to be highly accurate not only in large deviations regions, but even at the veryextremes of the distributions. This is a surprising and useful, but poorly understood phe-nomenon (cf. for instance Barndor�-Nielsen and Cox (1989, 1994), or Whittle (1993): \Aconversation with Henry Daniels", see p. 350)). The asymptotic derivations of saddlepointapproximations which refer to increasing sample size give no clues to the question.The present paper considers the problem from a geometric or convex analysis viewpointand provides some simple su�cient conditions ensuring that the (unnormalised) saddle-point approximation is not only accurate but in fact becoming exact as one approachesthe boundary of the support of the associated probability distributions. Our discussionconcerns multivariate distributions, the much simpler univariate case having been treatedin Barndor�-Nielsen and Kl�uppelberg (1992).For one-dimensional distributions the tail accuracy of the saddlepoint approximationhas been studied in very considerable detail by Daniels (1954) and Jensen (1988, 1989).The above-mentioned paper by Barndor�-Nielsen and Kl�uppelberg (1992) complementstheir work, see our discussion given there. Already in the one-dimensional case non-normallimiting behaviour is not uncommon; for a characterisation of all possible limit laws seeBalkema, Kl�uppelberg and Resnick (1997). This phenomenon can be expected to be muchmore complex in the multivariate case, although we have no results to illustrate that.In fact, our paper is but a small �rst step towards unravelling the complexity of themultivariate situation.We consider densities in Rm of the formf(t) = e� (t) ;where the function  is a convex function in C2, and we show that, under some furtherregularity conditions, the (unnormalised) saddlepoint approximation f y(t) of f(t) becomesexact as t approaches the boundary of the domain of  . (For general discussions of sad-dlepoint approximations and their role in statistics, see Barndor�-Nielsen and Cox (1989,1994) and Jensen (1995).)The density f generates an exponential familyf�(t) = eh�;ti� (t)=C(�)2



for � 2 Rm such that C(�) = R eh�;tif(t)dt <1.The conditions which we impose on  imply that f� is asymptotically normal; i.e. thereexist norming constants a� > 0 and b� 2 Rm such that the normalised densities satisfyg�(t) = a�f�(b� + a�t)! '(t)uniformly on Rm for � tending to a boundary point of the domain of possible values of� and where ' is a non-degenerate normal density in Rm . Such results have been derivedfor a slightly more general class of densities in R in Balkema, Kl�uppelberg and Resnick(1993), the latter is henceforth abbreviated as BKR (1993).The results of BKR (1993) have been applied in Barndor�-Nielsen and Kl�uppelberg(1992) to show that for a rather wide class of log-concave densities in R the saddlepointapproximation becomes exact in the tail. In the present paper we generalise this result toa multivariate setting.The paper is organised as follows. In Section 2 we set the stage and present someanalytic concepts. The main result there states uniform asymptotic normality of the expo-nential family f� which yields the asymptotic behaviour of the moment generating functionC(�) as � tends to boundary points of the domain of C. This generalises Theorem 6.6of BKR (1993). In Section 3 we show, under regularity conditions, that the saddlepointapproximation f y(t) � f(t) as t tends to boundary points of the domain of f . Here �means that the quotient of lhs and rhs tends to 1. In Section 4 we introduce conditions,which are easy to check for many examples, where our results hold. Section 5 concludesthe paper with some examples.2 Stage settingWe consider an m-dimensional probability distribution having density with respect toLebesgue measure of the form f(t) = e� (t) ; t 2 Rm ; (2.1)where  is a closed convex function on Rm . The domain of  is denoted by dom , i.e.dom = ft 2 Rm :  (t) <1g ;and D = int(dom ) indicates the interior of the domain of  . We use de�nitions andproperties of convex analysis and exponential models in accordance with Rockafeller (1970)3
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t1 �1Figure 2.1 Interiors of domains of  (t) = � lnf(t) and K(�) = lnC(�) and their con-vex conjugates (two-dimensional indication), see conditions (iii)-(v). Notice that we canidentify D and �� by condition (iv) and D� and � by condition (v).and Barndor�-Nielsen (1978), the latter henceforth abbreviated BN (1978). The conjugate � of  is de�ned as the function on Rm with values �(�) = supt2Rmfh�; ti �  (t)g ; � 2 Rm : (2.2)This conjugate function is also closed and convex, and the conjugate of  � equals  , i.e. �� =  . Let D� = int(dom �):The exponential family F generated by the density f and the identity mapping on Rmconsists of all probability measures P� with density of the formf�(t) = eh�;ti� (t)=C(�) (2.3)for � 2 Rm such that C(�) = R eh�;tif(t)dt < 1. The cumulant function K(�) = lnC(�)4



is a closed convex function on domK = f� 2 Rm : K(�) < 1g, and the conjugate of Kis denoted by K�: Let � = int(domK) and �� = int(domK�) :We use the following notation: r and r2 denote the gradient and the Hessian of respectively. Let � be an arbitrary square root of (r2 )�1. Even though we have notassumed � symmetric we use ��2 as shorthand for (��T )�1.Throughout the paper we will work under the following conditions (where (i) wasintroduced above).(i)  is convex and closed.(ii)  2 C2 and r2 is positive de�nite on D.(iii) r is a one{to{one mapping from D onto D�, with inverse r �, and if t 2 D and� = r (t) then ht; �i =  (t) +  �(�) :(iv) int(dom ) = int(domK�)(v) int(domK) = int(dom �)(vi) Let � be an arbitrary square root of (r2 )�1 and tn denote a �xed, but arbitrarysequence of points in D. We assume that as n!1�T (tn)��2(tn + x�(tn))�(tn)! I locally uniformly in x 2 Rm : (2.4)The matrix I denotes the identity matrix and by local uniform convergence wemean that the limit relation in (2.4) holds uniformly in x on each compact subsetof Rm . In particular, this requires that for all K0 � Rm , K0 compact, we have thattn +K0�(tn) � D for all n � n(K0).The conditions (iii){(v) hold under a fairly simple condition (in addition to (i) and (ii)),as shown in Theorem 4.1 below.We draw attention in particular to the properties (iv) and (v) which are illustrated inFigure 2.1. 5



In general we think of vectors as row vectors. In certain formulas we shall have to workwith column vectors; the appropriate interpretation will, however, be clear from the oper-ation at hand. For notational ease we shall therefore refrain from indicating transpositionof vectors but rely on the common sense of the reader.De�nition 2.2 A matrix function � which satis�es (2.4) is called self-neglecting withrespect to the sequence tn.Suppose � is self-neglecting. For t 2 D de�ne a function 't with argument x 2 Rm by't(x) =  (t+ x�(t))�  (t)� x�(t)r (t) : (2.5)Then for any given M > 0 and � > 0j'tn(x)� 12hx; xij � �2hx; xi ; kxk �M;holds for all su�ciently large n. This follows simply via Taylor expansion invoking (2.4).By this property we can derive convergence of the properly standardised exponentialfamily to a parabola on compact sets. For our purpose, however, this does not su�ce, weneed to control the tails as well. As in the one-dimensional case, we use a concept, calledANET, which has been introduced in BKR (1993, Section 6). We summarise the de�nitionand some properties of ANET from that paper.De�nition 2.3 (a) A sequence of random vectors (Xn) in Rm is asymptotically normal ifthere exist positive a�ne transformations An on Rm such that An(Xn) d! N as n ! 1,where N is a standard normal vector.(b) The sequence (Xn) is asymptotically normal with exponential tails (ANET) if thevectors An(Xn) have densities gn which satisfy the condition: For any � > 0 there existsan index n0 such that for n � n0jgn(t)� '(t)j < �e�ktk=� ; t 2 Rm ; (2.6)where ' is the m-dimensional standard normal density. 2The reason for the name \with exponential tails" comes from the fact that the tailsof gn(t) (for t ! 1) decrease exponentially fast eventually (see Proposition 6.1 of BKR(1993)). 6



We want to apply this concept in the following situation:Let X = (X1; : : : ;Xm) be a random vector with density f = e� such that conditions (i){ (vi) are satis�ed. Denote further by X� = (X1;�; : : : ;Xm;�) a random vector distributedaccording to the exponential family density f� in (2.3). Now we consider t 2 D as afunction of � by t = t(�) = r �(�); (2.7)or, analogously, we consider � 2 � as a function of t by� = �(t) = r (t) : (2.8)The following result generalises Theorem 6.6 of BKR (1993).Theorem 2.4 Let X = (X1; : : : ;Xm) have density f = e� such that conditions (i){(vi)hold. De�ne the exponential family f� as in (2.3). Let tn be a sequence of points in D suchthat � is self{neglecting with respect to tn, let �n = r (tn) and suppose that �n 2 �.Then the normalised densitiesg�n(x) = j�(tn)jf�n(tn + x�(tn))of (X�n� tn)��1(tn) are ANET as n!1. Furthermore, the moment generating functionC(�) of f and the conjugate transform  � of  are related by the asymptotic equalityC(�n) � (2�)m=2j�(tn)je �(�n) ; n!1 : (2.9)Proof. For t 2 D, letg�(x) = j�(t)jC(�) expfht+ x�(t); �i �  (t+ x�(t))g:By Taylor expansion we have (for some j�j � 1): (t+ x�(t)) =  (t) + x�(t)r (t) + 12x�(t)Tr2 (t+ �x�(t))�(t)x:Inserting this in the expression for g�(x) and taking � = r (t) and using condition (iii)we obtain g�(x) = j�(t)jC(�) exp� �(�)� 12x�T (t)r2 (t+ �x�(t))�(t)x� :7



Now, inserting tn for t and �n for � we �nd, by the self{neglecting property (2.4), thatg�n(x) = j�(tn)jC(�n) expf �(�n)� 12hx; xi+ r�n(x)gwhere r�n(x)! 0 as n!1 locally uniformly in x. Hence for n!1,g�n(x) � d(�n)e� 12 hx;xilocally uniformly in x, where d(�n) = j�(tn)jC(�n) e �(�n):Now since  = � log f is convex, also � log g� is convex and by Proposition 6.5 of BKR(1993) g�n is ANET for n!1. In particular, d(�n)! (2�)�m=2 which gives (2.9). 2From the Corollary to Proposition 6.3 of BKR (1993) we obtain immediatelyCorollary 2.5 In the setting of Theorem 2.4 we have(X�n � tn)��1(tn) d! N(0; I):Moreover, (E(X�n)� tn)��1(tn)! 0 and ��1(tn)V�n��1(tn)! I ;where V� is the covariance matrix of the vector X�. 23 Tail exactness of the saddlepoint approximationWe now use the results of Section 2 to prove tail exactness of the multivariate saddlepointapproximation:Theorem 3.1 Let f = e� be a density satisfying properties (i) { (vi) for a sequence tnand de�ne �n = r (tn). Then the saddlepoint approximation of f(tn) given byf y(tn) = (2�)�m=2jr2 (tn)j1=2 expfK(�n)� h�n; tnigbecomes asymptotically exact; i.e. limn!1 f y(tn)=f(tn) = 1:8



Remark The usual form of the saddlepoint approximation would have jr2K(�n)j�1=2instead of jr2 (tn)j1=2 in the expression for f y. However, as will be shown later, the twoexpressions are asymptotically equivalent under the conditions given in Section 4.Proof. The density f satis�es the conditions of Theorem 2.4 with scale matrix �; i.e.(2.9) holds and hence for n!1K(�n) = logC(�n) =  �(�n) + logf(2�)m=2j�(tn)jg+ o(1) ;where tn = r �(�n). As before we write j�(t)j for j�(t)�T (t)j1=2. This impliesK(�n)� h�n; tni =  �(�n) + logf(2�)m=2j�(tn)j)g � h�n; tni+ o(1)= � (tn) + logf(2�)m=2j�(tn)jg + o(1)= logff(tn)(2�)m=2j�(tn)jg + o(1):Hence expfK(�n)� h�n; tnig � (2�)m=2j�(tn)jf(tn) ; n!1 ;and, since �(tn)�2 = r2 (tn), the result follows. 24 A simple su�cient conditionThe following theorem shows, in particular, that under conditions (i) and (ii) the properties(iii){(v) assumed in Section 2 hold in a simple setting.Theorem 4.1 Suppose that  is C2 with positive de�nite Hessian r2 on D, and that  is steep, i.e. dd� (t0 + �(t� t0)) # �1 ; � # 0 ;for any t 2 D and any point t0 of the boundary of D. Then(a) The gradient r is a one-to-one function from D = int(dom ) onto D� = int(dom �),with inverse r �.(b) For � 2 D� we have  �(�) = h�; ti �  (t) ; (4.1)where t is the unique solution of r (t) = � : (4.2)9



(c) The domain of the cumulant function K is open and satis�es� = domK = int(dom �) = D�(In particular, then, the exponential family F is regular.)(d) The conjugate K� has open domain�� = domK� = int(dom ) = D ; (4.3)and for any t 2 D we have K�(t) = h�; ti �K(�) ; (4.4)where � is the unique solution of the equationrK(�) = t : (4.5)Proof. The assumptions of the theorem imply that  is essentially smooth (i.e. D 6= ;, is di�erentiable on D and steep) and essentially strictly convex (BN (1978), Theorems5.28 and 5.29). This, in turn, has the consequence (Theorem 5.30, loc. sit.) that theconjugate  � of  is also essentially smooth and essentially strictly convex. Conclusions(a) and (b) now follow from Theorem 5.33 in BN (1978).Next we consider the cumulant function K. Writing  �(x) =  (x)� h�; xi, we �nd onaccount of Theorem 6.1 in BN (1978) thatK(�) <1, 0 2 int(dom ��), � 2 int(dom �) (4.6)verifying (c).The regularity of the exponential family F implies (BN (1978), Theorem 9.2) that(4.3) holds, and Theorems 9.1 and 9.13 (loc. cit.) then show the validity of (4.4) and (4.5).2Remark (i) A convex function  which is di�erentiable on D is steep if kr (tn)k ! 1for all sequences (tn)n2N in D converging to t0 for all boundary points t0 of D.(ii) If  is a closed convex and di�erentiable function such that D = dom , i.e. the domainof  is open, then  is steep (cf. Rockafellar (1970)).10



Corollary 4.2 Under the conditions of Theorem 4.1 we haveh�n; tni = K(�n) +K�(tn) ;r2K(�n) � r2K�(tn) = I ;r2K(�) = V�for � 2 D�, V� denoting the variance of X�. In this case f y may (in view of Corollary2.5) be rewritten asf y(tn) = (2�)�m=2jr2K(�n)j�1=2 expfK(�n)� h�n; tnigwhich is the classical saddlepoint approximation of f(tn). Alternatively, f y(tn) may beexpressed as f y(tn) = (2�)�m=2jr2K�(tn)j1=2 expf�K�(tn)g : 25 ExamplesOne{dimensional densities f(t) = e� (t) where  is C2 with  00 > 0 satisfying (2.4) havebeen considered in BKR (1993) and Barndor�{Nielsen and Kl�uppelberg (1992). Examplesof possible functions  are t� ; � > 1ett� t� ; 0 < � < 1t log t(�t)� ; � > 0In the �rst four examples we consider t " t0 = 1, in the last one t " t0 = 0. Theself{neglecting property (2.4) reduces tolimt"t0 �(t+ x�(t))�(t) = 1 locally uniformly in x 2 R ; (5.1)where � = 1=p 00. If t0 = 1, then su�cient for � to be self{neglecting is that � has aderivative �0 satisfying �0(t) = 0 as t ! 1. If t0 < 1 and both � and �0 vanish at t0,then � is self{neglecting (Resnick (1987), Lemmas 1.2 and 1.3).11



The major problem for explicit examples in the multivariate case will be to check theself-neglecting condition (2.4). In some cases asymptotic estimates are possible; in somecases � can be calculated explicitly.In particular, for a 2� 2 non-singular symmetric matrix��2 = 0@ a bb c 1Athe eigenvalues �1; �2 are �1;2 = 12(a+ c�p(a� c)2 + 4b2)and the eigenvectors are ei = 0@ ba� �i 1A ; i = 1; 2 :Then the symmetric square root of �2, which we now write as� = 0@ r ss v 1Asatis�es the equation 0@ r ss v 1A0@ ba� �i 1A = 1p�i 0@ ba� �i 1A :Hence, for �1 6= �2 we obtainv = 1�1 � �2 �a� �1p�1 � a� �2p�2 �s = b�1 � �2 � 1p�1 � 1p�2�r = 1p�1 � �1 � a�1 � �2 � 1p�1 � 1p�2�In the following situation the problem can be reduced to an essentially one{dimensionalequivalent. Assume that  is rotationally invariant, i.e. (t) = g(r) ; where r = ktk :Write t = (t1; t2) = (r cos �; r sin �) in polar coordinates. Then by straightforward analysis,for  (t1; t2) = g(r; �),��2(t1; t2) = r2 (t1; t2) = 0@ cos2 �g00(r) + sin2 � 1rg0(r) sin � cos �(g00(r)� 1rg0(r))sin � cos �(g00(r)� 1rg0(r)) sin2 �g00(r) + cos2 � 1r g0(r) 1A :12



Since  is rotationally invariant, it su�ces to consider � = 0, hence for (t1; t2) = (r; 0) inpolar coordinates the matrix ��2(t1; t2) reduces to��2(r) = 0@ g00(r) 00 g0(r)=r 1Awhich is positive de�nite provided g00(r) > 0 and g0(r)=r > 0, and then  is convex. Theself-neglecting condition (2.4) reduces then to�(r)��2((r; 0) + x�(r))�T (r)! 1 (5.2)as r tends to 1.Proposition 5.1 Let f = e� be a density on R2 such that  is rotationally invariant.Write  (t) = g(r) for r = ktk. Assume that g is C2 and satis�es the following conditionsas r !1:(a) g0(r)=r !1 and g00(r)!1,(b) 0 < lim inf g0(r)rg00(r) � lim sup g0(r)rg00(r) <1,(c) the function 1=pg00 is self-neglecting in the sense of (5.1),(d) g0(r + x=pg00(r))g0(r) ! 1 locally uniformly in x.Then Theorems 2.4 and 3.1 hold and the saddlepoint approximation f y of f becomes exactas r !1.Proof. By condition (a) above and Remark (i) after Theorem 4.1 we work in the frame-work of Theorem 4.1. Hence we only have to check the self-neglecting condition (5.2).Write x = (x1; x2), then(r; 0) + x�(r) =  r + x1pg00(r) ; x2pg00(r)! = (er; e�)giving�T (r)��2(er; e�)�(r) = 0BB@ cos2 e�g00(er)g00(r) + sin2 e�g0(er)=erg00(r) sin e� cos e�g00(er)� g0(er)=erpg00(r)g0(r)=rsin e� cos e�g00(er)� g0(er)=erpg00(r)g0(r)=r sin2 e� g00(er)g0(r)=r + cos2 e�g0(er)=erg0(r)=r 1CCA :
13



First notice that e� = x2=pg00(r)! 0 by (a). Conditions (c) and (d) guarantee that locallyuniformly g00(er) � g00(r) and g0(er)=er � g0(r)=r :Hence the quotient g0(er)=erg00(r) remains bounded away from 0 and 1. Furthermore,g00(er)� g0(er)=erpg00(r)g0(r)=r � g00(er)� g0(er)=erpg00(er)g0(er)=er = s g00(er)g0(er)=er �sg0(er)=erg00(er) ;where the rhs is also bounded away from 0 and 1. Hence�(r)��2(er; e�)�T (r)! I :This concludes the proof. 2Example 5.2 Let  (t1; t2) = 14((t1)2 + (t2)2)2 :Hence in polar coordinates  (t1; t2) = g(r) = 14r4 :We check the conditions of Proposition 5.1. Conditions (a) and (b) are immediate. Thederivative of the function 1=pg00(r) = 1=(p3r) tends to 0 as r ! 1, hence 1=pg00(r) isself-neglecting. Furthermore,g0(r + x=(p3r))g0(r) =  r + x=(p3r)r !3 ! 1 : 2The following describes a more general set-up, which covers for instance them-dimensionalversion of Example 5.2 for m � 2. Let f = e� be a density on Rm , where  is of the form (t) = h(g(t1) + � � �+ g(tm)) ;where g; h 2 C2. Denoteh0 = h0(g(t1) + � � �+ g(tm)) and h00 = h00(g(t1) + � � � + g(tm)) :Let furthermore ' = (g0(t1); : : : ; g0(tm))' =  g0(t1)pg00(t1) ; : : : ; g0(tm)pg00(tm)! ;14



v = ph00=h0 ' ;a = (1 + hv; vi)�1 =  1 + h00h0 mXi=1 g0(ti)2g00(ti)!�1 ;b = a=(1 +pa) :Proposition 5.3 Assume that in the above setting the following conditions hold.(a) h0(t) > 0; h00(t) � 0 for t = g(t1) + � � �+ g(tm) and g00(ti) > 0 for i = 1; : : : ;m .(b) h0(tn + x�(tn))=h0(tn)! 1 locally uniformly as n!1 .(c) Denote by �(t) the diagonal matrix with elements g00(ti), i = 1; : : : ;m, then forv = v(tn), b = b(tn), � = �(tn) and e� = �(tn + x�(tn)),[I � bvT v]e���1[I � bvT v]�1 ! I ;locally uniformly as n!1.(d) For v = v(tn), b = b(tn) and ev = v(tn + x�(tn)), we have[I � bevTev]�1[I � bvT v]! I ;locally uniformly as n!1.Then Theorems 2.4 and 3.1 hold and the saddlepoint approximation f y of f becomes exactas n!1.Proof. Notice �rst that with the above notation r (t) = h0' andr2 (t) = h00'T'+ h0� : (5.3)Hence for any vectors �; t 2 Rm with � 6= 0 we have�r2 (t)� = h00h�; 'i2 + h0 mXi=1 �2i g00(ti) > 0 :Hence  is convex on Rm . Notice further that by (5.3)��2 = r2 = h01=2�1=2 �I + h00h0 'T'� �1=2h01=2 = h01=2�1=2[I + vT v]�1=2h01=2 :Now since [I + vT v]�1 = I � (1 + hv; vi)�1vT v = I � avT v ;15



we have �2 = (r2 )�1 = h0�1=2��1=2[I � avT v]��1=2h0�1=2 :From this representation we obtain immediately the (non-symmetric) square root� = h0�1=2��1=2[I � avT v]1=2 = h0�1=2��1=2[I � bvT v] ;where b = a=(1+pa). It remains to check the self-neglecting condition (2.4). As before wedrop arguments and write � for �(t) and e� for �(t+ x�(t)) with obvious generalisationsof this notation to other functions.�T e��2�= hh0�1=2 ��1=2 [I � bvT v]iT eh01=2 e�1=2 [I + evT ev] e�1=2 eh01=2 hh0�1=2 ��1=2 [I � bvT v]i= eh0h0 [I � bvT v] ��1=2 e�1=2 [I � eaevTev]�1 e�1=2 ��1=2 [I � bvT v]= (1 + o(1)) [I � bvT v] ��1=2 e�1=2 [I �ebevTev]�1 [I �ebevTev]�1 e�1=2 ��1=2 [I � bvT v] :The result now follows from the self-neglecting conditions (b)-(d). 2The simplest example falling into the realm of Proposition 5.3 is the standard normaldistribution, where h(t) = t, g(t) = t2=2, ' = ' = (t1; : : : ; tm), v = 0, a = 1 and b = 1=2.In that case, of course, the conclusion of Proposition 5.1 is trivial. Example 5.2 for m � 2is, as already indicated, another special case.6 AcknowledgementWe thank the referee and the editors for helpful remarks that lead to a clari�cation of theexposition.References[1] Balkema, A.A., Kl�uppelberg, C. and Resnick, S.I. (1993)Densities with Gaussian tails.Proc. London Math. Soc. 66, 568-588.[2] Balkema, A.A., Kl�uppelberg, C. and Resnick, S.I. (1997)Limit distributions for exponential families.Submitted to Bernoulli. 16
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