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AbstractMathematics and statistics have transformed day-to-day trading in the world's �nancialmarkets. This has lead to new ways to reduce (or "hedge") risks which provides an importantservice to society, but also a temptation to very big gambles, with a potential for extremelosses. This paper discusses some of the ways statistics and mathematics can be used tounderstand and protect against very large, "catastrophic" �nancial risks. We argue thatmeans don't mean anything for catastrophic risk, that separate large �nancial risks often arebetter handled by separate companies, and that the mathematical aspects of risk can't besummarized into one number. We also believe that there is a large potential for improvedrisk management in �nancial institutions, where extreme value theory, a speciality of thepresent authors, may be a useful tool. Improvements, however, will not come for free butrequire long and hard work, where mathematics is only one part of the total e�ort.
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1 IntroductionOn September 23, 1998, a consortium of banks and investment �rms decided to spend 3.65 billionUS dollars to rescue the Connecticut based hedgefund LTCM, Long Term Capital Management.The consortium included the Union Bank of Switzerland, which chipped in 300 million USdollars, and may have lost more than $650m through direct dealings with LTCM, and investmentgiants Merrill Lynch, J.P. Morgan and Goldman Sachs, and the decisions were presumably takenunder heavy pressure from the Federal Reserve Bank of New York.LTCM had started in 1994 and used extensive computer modelling and sophisticated \hedg-ing" strategies to trade in �nancial derivatives. It had produced spectacular pro�ts, 43% in 1995and 41% in 1996, and investors were lining up to be allowed to enter. The fund had almost com-pletely free hands to invest as it chose without even insight from investors (or the public) andmoney couldn't be withdrawn until after 3 years. Instead unfettered use of the most advanced�nancial technology in existence was promised. Parts of the fund's attractiveness undoubtedlywas that two winners of the Nobel Prize in economics, Merton and Scholes, were partners, andwere rumoured to have invested some of their own (Nobel Prize?) money. However, in a fewmonths in the beginning of the fall of 1998 the fund came from glory to the verge of bankruptcy,and the Federal Reserve stepped in to hinder a collapse which it believed could threaten thestability of the world �nancial system. For more of the story, see [6, 7, 9, 20]LTCM traded in a wide range of derivatives and other �nancial instruments. Derivativesperform a very important service by providing companies and individuals with protection againstfuture changes in prices and exchange rates. Often the risks in trading with individual derivativesare small, and the possible gains are correspondingly small. Hedgefunds nevertheless sometimesare able to make spectacular gains by investing not only their own capital, but also borrowedcapital | LTCM had borrowed more than 50 times its own capital. Such borrowing, to getincreased \leverage", is common, but the size of LTCM's leverage was not. However, borrowingdoesn't only increase the size of possible gains, risks also become much larger. LTCM, as otherhedgefunds, was betting on temporary disparities in the prices of related assets. This time amain factor simply was playing the 4% spread between the ruble-dominated Russian Treasurybills and the lower cost of borrowing rubles from banks. For LTCM disaster struck when theRussians halted trading in their domestic government debt market.In the aftermath, headlines like \Can you devise sure�re ways to beat the markets? Therocket scientists thought they could. Boy were they wrong" ([6], Bussiness Week) appeared.2



Figure 1.1 Long-term sickness? Reprinted from The Economist [9], with permisson of theartist, Dave Simmonds.(However, later on the article also says \In a sense, maybe the problem wasn't too much rocketscience but too little".) In the quotes, \rocket science" means mathematical modelling, but alsoalludes to the substantial number of university physicists employed by the �nancial industry inrecent years.Other papers in this supplement deal with risks which pose direct threats to health and life.Financial crises could be shrugged o� with \it's only money". However, in reality they make ourentire society poorer, and may in the �nal analysis pose more serious threats to health and lifethan technical or natural disasters.
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Time Related to Preceding speculation in Countries1618-1623 Thirty Years War subsidiary coin Holy Roman Empire1636-1637 boom in war against Spain tulip bulbs Dutch Republic1720 Treaty of Utrecht South Sea Company stock Englanddeath of Louis XIV Mississippi Company France1793 reign of terror in France canal mania England1825 success of Baring loan, Latin American bonds, Englanddecline of interest rates mines, cotton1848 potato blight, wheat failure railways, wheat European Continent1890 Sherman Silver Act silver, gold USTable 1.2 Examples of �nancial crises 1618-1900. For a complete list until 1990 and moredetails see [14].LTCM is not the �rst �nancial disaster, but one in a very long row (cf. Table 1.2), and notthe last one either. In this article we discuss relations between mathematics and statistics andthe practical problems of risk management in �nancial institutions, with a hope to indicate someways that mathematics can be useful, and when it can't, and to give examples of the interestinginterplay between mathematics and the real world.Our main assertions are that risk is complex and cannot be summarized into one number,and that society isn't always better served by having very large enterprises handling big risks.The �rst assertion is accepted practice in many areas of risk analysis, and also often under-stood by people in the �nancial industry. Still in our belief it is poorly reected in currentpractise and regulation. The second one, we think is much less understood, both practically andmathematically.Better handling of �nancial risk will require long, determined and costly work on manyfronts, mathematics being only one of those. In particular, better training and better systemsfor handling and disseminating information, both within �rms and between �rms and the public,are in our opinion of vital importance. There are no quick �xes!2 Catastrophes do happenEven very unlikely events will occur, given enough time. Of course we all know this. Time aftertime the catastrophes happen which were thought could never be. This in fact also is a theorem4



of mathematics (see e.g. [5], p. 344).Paul L�evy's zero one law: If the risk of a \catastrophe" tomorrow is greater than p percent(where p may be as small as 0.1% or even smaller) every day, then the catastrophe will happen(sooner or later).A much discussed measure of �nancial risk is VaR, Value-at-Risk, de�ned as the p-th per-centile of the distribution of the possible loss. The so-called Basle accord from 1988 and amend-ments ([2, 3]) proposed that capital requirement for individual trading desks should be set asfollows. VaR for the pro�t/loss for the next 10 days and p=1%, based on a historical observationperiod of at least 1 year (220 days) of data, should be computed and then multiplied by 3. Herethe \safety factor" 3 is because it was realized that the commonly used normal distribution isunrealistic, and that 220 days history is altogether too little. This is well documented by riskmanagers and regulators through backtesting procedures, which are regularly performed; seee.g. [17].The philosophy is that it is OK to take small enough risks even though they in the end (buthopefully only after a long while) by Paul Levy's zero-one law will end in a catastrophe. Indeedthis is both right and inevitable. It is still useful to try to understand the consequences. Ratherrecent mathematics (see e.g. [15] or [10]) give a quite precise guide.Compound Poisson Limit Theorem: Let the probability that a large loss happens tomorrowbe p% each day, and assume large losses occur in small clusters of mean length `. Then theprobability that at least one large loss occurs in a period of T days is 1� exp(�Tp=`).Suppose one each day computes a VaR correctly and sets aside enough money to cover VaR.E. g. using the Basle \VaR" might in a (hypothetical) situation correspond to a real one-dayVaR at p = 0:1%, and a typical cluster length, say a period corresponding to large uctuationsin exchange rate, might be 3 days. Then the formula gives that the risk that the capital set asideis exceeded by the loss at least once in one year is 7.6% (= 1� exp(�220 � 0:001=3)).3 Means don't mean anythingThe omnipresence of means is based on the law of large numbers | observed averages will beclose to means if an experiment is repeated very many times. However, this is precisely not thecase for catastrophic losses. Once incurred then the experiment which lead to the loss will notbe repeated. 5



Consider a choice between two investments. Bet 1 is that you win 2 with probability 0.5 (ofcourse here 2 might mean 2 million dollars), and lose 1 with probability 0.5, for each of 365 days.In Bet 2 you instead gain 2 with probability 0.9985 and loose 1000 with probability 0.0015 eachday. The gains have (up to rounding errors) the same mean, 365 � 0:5 in both situations, and forBet 1 the distribution is nicely concentrated around the mean 182.5 (see Fig. 3.1). However, thesecond strategy will lead to a very di�erent conclusion, either one looses 272 or (much) more,which happens with probability 42% or wins 730 with probability 58%. Clearly, for Bet 2 themean provides very little information. It is this situation which is the typical one for large scale�nancial risk!
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models may have very di�erent means. This is illustrated in Fig. 3.2, which shows two Paretodistributions which are very similar indeed, but where the means di�er by about a factor 10.
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and regulators. To this end, they introduce certain axioms which a \good" risk measure R shouldsatisfy.In a way this approach is \typical" for a mathematician. We believe it is an importantcontribution which serves the good purpose of thinking carefully about the problem and formal-izing it in a clear way. However, as will be seen below, we also don't agree with the conclusionsdrawn from these axioms, and thus not with the axioms either. Our arguments are illustratedby examples, some of them taken from [1].Consider a risk X (the investor's future net loss) and a risk measure R. If R(X) > 0 it isinterpreted as minimum extra capital invested in a \reference position" (a prudent investmentinstrument), which makes the risky position acceptable. If R(X) < 0, the amount �R(X) canbe withdrawn from the position. Among the axioms considered as the most important ones in [1]are, for given risks X and YAxiom (1) Monotonicity: If X � Y , then R(X) � R(Y ).This is de�nitely, what you expect from a risk measure, that it assignes a higher extra capitalto protect against a bigger risk.Axiom (2) Translation invariance: R(X + a) = R(X)� aIf you add some real money, then the risk should decrease by the same amount.Axiom (3) Positive homogeneity: R(tX) = tR(X) for any positive real number t.If you buy the same risk twice, this should simply double your risk.Axiom (4) Subadditivity: R(X + Y ) � R(X) +R(Y )A big portfolio of di�erent risks diversi�es risk: although one asset may have a negative return,there may be assets to compensate for this.If a risk measure R satis�es these four axioms, then it is called a coherent risk measure. Theconclusion of [1] is the following result, which in its present version requires some additionalconditions.The Artzner, Delbaen, Eber, Heath theorem: All coherent risk measures may be obtainedas means of "generalized scenarios".A generalised scenario is a set of posssible outcomes with attached probabilities. The mathe-matical formulation is given by a set of probability measures P. Then, in formulas, for a riskX, R(X) = supfEP (X)jP 2 Pg8



is a coherent risk measure.E.g. for P which only contains one probability measure P the mean satis�es Axioms (1)-(4)and is hence a coherent risk measure. On the other hand, the more scenarios are considered, themore conservative (i.e. larger) is the risk measure obtained.Will the supremum over all possible probability measures P 2 P, i.e. over all possible sce-narios provide the correct measure of risk? Even if it does, it may be very di�cult to think upall relevant scenarios for our speci�c risk. To give an example, sources say that LTCM worstcase scenario was only about 60% as bad as the one that actually occurred [6].One conclusion in [1] (which we don't agreee with) is that VaR is not a good risk measure,since it sometimes can violate the subadditivity required by Axiom 4. An example of a riskmeasure which comes from a generalized scenario and at the same time is one of Fishburn's highquantile risk measures is the expected shortfall with target VaR:R(X) = E(XjX � VaR(X)) :It �ts into the above framework of the theorem by choosing the set P = fPA(�) = P (�jA) : A �
; P (A) � �g, and hence is a coherent risk measure.5 Big isn't always beautifulA standard useful way to reduce (ordinary) risks is to diversify. In the axiomatic theory of [1]this is translated into Axiom (4) which says "big is beautiful". In this section we argue that forreally catastrophic risks the opposite may often be the truth.Again we �rst consider an example where a �rm has a choice between two propositions, or"bets", both with zero mean gain. In Bet 1 the �rm gains 1 with probability 0.99 and looses 99with probability 0.01 (and then is ruined). Bet 2 simply consists of two independent bets of thesame kind, which means that the gain is 2 with probability 0:992 � .98 and that 99 or more islost if at least one of the bets fails, which happens with probability approximately equal to 0.02.The probability of ruin is doubled in the second situation.Next, let us again consider the Pareto model: the probability that the risk X exceeds a highlevel x is modelled by P (X > x) = cx�a so that the mean is �nite for a > 1, but in�nite fora � 1. Assume we have two independent Pareto risks, e.g. two hedge fonds, oil platforms ortankers. The subadditivity axiom suggests that a portfolio of two risks in one company alwaysis preferable to having these risks in two di�erent companies.9



A mathematical property of two such Pareto risks X and Y is that, if independent andadded, then, for large values x,P (X + Y > x) � P (X > x) + P (Y > x) ;i.e. the probability that the two risks together exceed some value x is approximately equal to thesum of the probabilities that the �rst risk is bigger than x and the probability that the secondrisk is bigger than x. If we take the p%-quantile as a risk measure, then R(X) = VaR(X; p) isgiven by that value xp such that 1� p = P (X > xp) = cx�ap . This is just the simplest de�nitionof VaR. Easy calculation gives VaR(X; p) = (c=(1 � p))1=a :Checking Axioms (1)-(4) we see that Axioms (1)-(3) are satis�ed { in fact,they are satis�ed forVaR in general, independent of the model for X. Axiom (4) is more problematic:VaR(X + Y; p) � (2c=(1 � p))1=a = 21=a(c=(1 � p))1=aand VaR(X; p) + VaR(Y; p) = 2(c=(1 � p))1=aIf a < 1 then 21=a > 2 and hence VaR then doesn't satisfy Axiom 4. For instance for c = 1 anda = 1=2 we obtain VaR(X + Y; p) = 2(VaR(X; p) + VaR(Y; p)) and for c = 1 and a = 1=4 wehave that VaR(X + Y; p) = 8(VaR(X; p) +VaR(Y; p)). Further numerical illustration is given inTable 5.1. The same picture would emerge if other values of p where considered, or indeed forthe entire loss distribution function.a VaR(X,95%)=VaR(Y,95%) VaR(X+Y,95%)1/2 400 16001/3 8 000 64 0001/4 160 000 2 560 000Table 5.1 Comparison of VaR for the sum of two Pareto risks with c = 1 and p = 95%.In practical terms, this means that for Pareto risks with a < 1 overall risk is increased morethan proportionally by taking on two independent risks. E.g. this might happen if an insurancecompany admits two oil platforms from completely di�erent parts of the world into its portfolio.10



These examples argue against the general usefulness of the subadditivity axiom (4). In [1]the authors claim that it is a natural requirement that \a merger does not create extra risk".They support their statement by some examples:(1) if a �rm were forced to meet a requirement of extra capital which did not satisfy this prop-erty, the �rm might be motivated to break up into two separately incorporated a�liates.(2) bankruptcy risk inclines society to require less capital from a group without \�rewalls"between various business units than it does require when one \unit" is protected fromliability attached to failure of another \unit".(3) suppose that two desks in a �rm compute in a decentralized way, the measures R(X) andR(Y ) of the risks they have taken. If the function R is subadditive, the supervisor of thetwo desks can count on the fact that R(X) + R(Y ) is a feasible guarantee relative to theglobal risk X + Y .We believe that these arguments are wrong for catastrophic business risk. The arguments for (1)and (3) seem to be that it would be convenient for �rms and supervisors if risk actually behavesaccording to Axiom (4) | however, what is convenient and what is true isn't neccessarily thesame.In the past we have experienced dangers of bankruptcy with Baring's bank, Metallge-sellschaft, LTCM, and many others. If each such big risk is taken on by a di�erent company,then if the catastrophe actually occurs only one of the companies is in the risk zone. Thinkingof the economic and social consequences of the bankruptcy of a very large �rm this may oftenbe preferable. Moreover, whereas the bankruptcy of a very large �rm is politically intolerable,so that the taxpayer has to come to the rescue, a smaller �rm may well disappear from themarket, in particular, if it becomes obvious that the management has failed to set up a properrisk management.The claim (2) goes against long experience in the insurance industry of the desirability of�rewalls between di�erent parts of the businesses of handling risk.On a more technical level we have learned above that the VaR violates the subadditivityaxiom of Section 4 above. This has also been indicated in [1]. Does this mean that one shouldabandon VaR completely? We instead believe that several quantiles for di�erent levels and timehorizons give a realistic and very useful picture of the risk.11



6 One number doesn't su�ceIn the previous sections we have argued that for catastrophic business risks, means don't meananything, and that big isn't necessarily beautiful. However, our main disagreement with [1] isthe basic underlying assumption that all (mathematical) aspects of risk can be measured by asingle number. We simply don't believe that this can be done in a useful way.As an illustration of calculations we consider a Pareto model for a real example. (A similaranalysis in an insurance context may be found in [18].) The use of Pareto models is not anad hoc idea, but based on a mathematical theory for the extreme values and on considerablepractical testing; see [15] or [10] for mathematical and statistical background. Mathematicalthinking compensates the unavoidable drawback of little empirical experience from extremes(only the largest losses of the sample are responsible for the extreme risk) by a plausible model.In particular it provides ways to extrapolate beyond the data at hand, which is required of anyrealistic way of treating rare and extreme events. It is a completely constant experience { andin accordance with the Paul L�evy zero one law { that sooner or later risks exceeding any pastrisk do occur.The example is built on the DAX (German share index) data of Figure 6.1. The investorhas to worry about losses, which are here the negative daily price changes. The estimated VaRis based on the so-called peaks over threshold method; see [10], Chapter 6. The data are notcatastrophic in our sense, but might have been at higher aggregation levels and longer timehorizons. Table 6.2 presents the calculation of VaR for di�erent percentages p and 2 di�erenttime horizons. The 10-day VaR corresponds to the regulator requirement, which is based onthe idea that reserves should be built to cover losses for a time horizon needed to restructure aportfolio. This example has been treated in detail in [11].Obvious problems are that the time period covered by the data might be too short toinclude any real extreme event, and that the possibility of future structural changes may limitthe usefulness of historical data. However, as for other risk measures, these di�culties may, atleast to some extent, be dealt with by using "scenarios". VaR-s like those of Table 6.2 in ouropinion give a clear and useful measure of risk, and, if needed, a good basis for regulation.
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Figure 6.3 Comparison of di�erent 5%-quantile estimates, with �tted normal density and gen-eralised Pareto density in the left tail region.7 Markets can be made saferThe Black-Scholes theory of option pricing and its descendants have transformed trading in�nancial risk. The importance is hard to overestimate. However, its main concern is with indi-vidual risks from a micro-perspective and it has little to say about risk on a macro scale, wherebankruptcy of major �rms may be at stake. The present paper is aimed at the latter kind ofrisks. Our main assertions are that� means don't mean anything for catastrophic risks� catastrophic �nancial risks don't become smaller if collected in one big companyand, the most important one,� a single number can't capture all the di�erent aspects of catastrophic �nancial riskTo elaborate on the last part, the �nal comprehensive picture of �nancial risk would be tohave the joint distributions of the possible losses at many di�erent levels of aggregation and timehorizons. This is never completely possible. However, condensed versions, like Table 6.2 above,and much more sophisticated future versions, based on data analysis, theoretical reasoning andanalysis of alternative scenarios are quite feasible, and in our belief will be very useful.14



We also believe that quantitative methodology for �nancial risk management is capableof substantial improvement in the near future. Part of the improvement may be provided byactuarial science and by a speciality of the authors of this article { statistical extreme valuetheory. A comprehensive account of the present state of the art may be found in [10]. Thistheory is speci�cally aimed at modelling and analysing rare and extreme events, such as thoseinvolved in catastrophic �nancial risk. However, much research remains to be done, e.g. indevelopment of better methods for multivariate and dependent situations, in understanding thee�ect of di�erent levels of aggregation and in adapting the methods to the speci�cs of �nancialrisk.In the previous sections we tried to illustrate how mathematics and statistics is put to workin a practical situation. One face is general theory founded on theorems and axioms as a meansto bring understanding to a complex and bewildering reality. The other face, and often the mostimportant one, is statistical analysis of data and computer modelling to understand the detailedaspects of the problem.Both general mathematics and detailed statistical modelling involve dangers: Improperlyunderstood or inappropriate theory may become a straightjacket rather than liberator for clearthought, and statistics instead of giving understanding and detailed knowledge can drown in aood of formulas and numbers and may put you at the mercy of complex and dubious computerprograms. There are no automatic bene�ts from using mathematics and statistics in �nancial riskmanagement. However, careful, thoughtful and persistent work on improvement of proceduresand methods will make risks less risky.It is important to understand that catastrophic risk always involve an element of gambling.What mathematics can do is to help �nding the odds of the gamble. Whether to gamble or notis outside the realm of mathematics.Quantitative measures are of course only part of management of �nancial risk. Good proce-dures and systematic ways of containing and reducing risk are of central importance. Similar riskhandling problems permeate manufacturing and energy producing industries. Reliability tech-nology has been spectacularly successful in ensuring high safety in extremely complex systems,such as the world telephone network. The systematic approaches developed in reliability theoryto manage risks have a large potential for reducing �nancial risk. Examples of such methodsare FMEA (Failure Mode and E�ects Analysis), a systematic approach to detecting risks beforethey have occurred and FTA (Fault Tree Analysis) which also attempts at providing numerical15
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