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Abstract
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1 Introduction

This paper is a continuation of the paper by Klippelberg and Korn [5]. In that paper the
classical mean-variance portfolio optimization introduced by Markowitz [8] and Sharpe [10] was
compared with an alternative procedure based on the Captial-at-Risk replacing the variance as
risk measure.

In this paper we make a systematic comparism of risk measures related to so-called lower

partial moments as introduced by Fishburn [1]

LPMy(z) = /w (x —r)kdF(r), z€R, (1.1)

—0oQ
for £ € N, where F' is the distribution function of the portfolio return, and the corresponding
optimal portfolios. Examples are the shortfall probability (k = 0), the expected shortfall (k = 1),

the target semi-variance (k = 2) and the target semi-skewness (k = 3).

2 The Black-Scholes market

In this section, we consider a standard Black-Scholes type market consisting of one riskless bond
and several risky stocks. Their respective prices (Py(t));>0 and (P;(t))s>o for i = 1,...,d evolve

according to the equations

dP()(t) = P(](t)’l‘dt, PO(O) = 1, (2.2)
d
dPy(t) = Pi(t) | bidt + Y 0idWj(t) | , Pi0)=pi, i=1,....d. (2.3)
j=1

Here W(t) = (W1y(t),...,Wy(t))' is a standard d-dimensional Brownian motion, 7 € R is the
riskless interest rate, b = (by,...,bq)" the vector of stock-appreciation rates and o = (045)1<i j<d
is the matrix of stock-volatilities. For simplicity, we assume that ¢ is regular.

Let 7(t) = (w1 (t),...,mq(t))" € R? be an admissible portfolio process, i.e. m;(t) is the fraction
of the wealth X™(¢), which is invested in asset ¢ (see Korn [5], Section 2.1 for relevant definitions).

Denote by (X™(t))i>0 the wealth process, then it follows the dynamic
dX7(t) = X" (t) {((1 = 7(®)'Dr + n(t)'b)dt + w(t)'cdW (t)} , X7(0) =z, (2.4)

where z € R denotes the initial wealth of the investor and 1 = (1,...,1)" denotes the vector (of
appropriate dimension) with unit components. The fraction of the investment into the bond is

mo(t) =1 —7(t)'L



Let T be a fixed time horizon. Throughout the paper, we restrict ourselves to constant
portfolios m(t) = m = (m1,...,mq) for all £ € [0,7]. This means that the fractions into different
stocks and the bond remain constant in [0,7] and the positions in the portfolio have to be
constantly adapted to the different dynamics of the price processes. This restriction allows us

to derive explicit formulae for the wealth process and its moments.

X™(t) = zexp{(n'(b—rl)+r—|7'c||?/2)t + 7' W (1)}, (2.5)
EX™(t) = zexp{(«'(b—rl)+7r)t}, (2.6)
varX™(t) = z?exp{2(n'(b—rl) + r)t}(exp{||7'a ||t} — 1). (2.7)
The norm || - || denotes the Euclidean norm in R?.

Lower partial moments as in (1.1) describe the downside risk of a portfolio, where the concept
has to be adapted to our situation and the benchmark has to be chosen appropriately. In [5] we
considered the lower partial moment of order 0, more precisely, a low quantile of the terminal
wealth X7(T') to define the risk of a portfolio by its Capital-at-Risk (CaR). In this paper we
shall also consider lower partial moments of higher order. We start with the risk measures to be

investigated in this paper ((a) has been derived in [5]).

Definition 2.1 (Risk measures)
For a portfolio 7, initial capital £ and time horizon T' we define the following risk measures.

(a) The a-quantile of X™(T'):
po(z,m, T) = zexp{(x'(b—711) +r — |7’ 0||?/2)T + zo||7'0||VT},

ie. P(X™(T) < po(z,m,T)) = a, where z, is the a-quantile of the standard normal distribution,
ie. ®(z,) =

(b) The ezpected shortfall of X™(T):
p1(z,m,T) = E(X™(T)|X™(T) < po(z,m,T)) .

(c) The semi-standard deviation of X™(T):

po(z,m,T) = \/E((X”(T))2|X7T(T) < polz,m,T)). |

Next we define the Capital-at-Risk (CaR) with respect to the different risk measures py,

p1, p2 as their difference to the pure bond strategy. This is different to some authors who take



the difference to the mean terminal wealth EX™(T') of exactly this portfolio, a quantity which
is called Farnings at Risk. Our definition has the advantage that different portfolios can be

compared with respect to their market risks.

Definition 2.2 (Capital-at-Risk)
For k = 0,1,2 we define the difference between the terminal wealth of the pure bond strategy
and the risk measure p, of X™(T) as the Capital-at-Risk (CaR) of the portfolio m with respect

to pr (with initial capital  and time horizon T'). It is given by
ﬁk(xaﬂ-aT) :xeTT—pk(Qj’ﬂ',T). O
Next we calculate the risk measures and their corresponding CaR explicitly.

Proposition 2.3 Let (X™(t)) be the wealth process of a portfolio w in the Black-Scholes market
and py = po(z,m,t) be defined as in Definition 2.1. Denote by ¢ the density and by @ the

distribution function of a standard normal random variable N(0,1). Let T be a fized time horizon.

Set

o = B(zq — ||T'0||[VT) and o = &(zq — 2|7 o||VT). (2.8)

and

a(z,m,T) = zexp{(x'(b—rl) +r — ||7'0||?/2)T} .
Then

<o <a (2.9)

and

o 7o ]]?

m(z,m,T) = a(x,ﬂ,T)E exp 5 T;, (2.10)

a**
pa(z,m,T) = a(@,mT)y/——exp{||r'|*T}. (2.11)

Proof Recall the following identity in law
o W(t) 4

7 4 N,1), t>0, (2.12)
7ol Vi
which implies
X™(T) = a(z,mT)exp {n'oW(T)}
L a(z,m, T)exp{N(0,1)|| 7' o|[VT}. (2.13)
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Furthermore, by definition, P(X™(T") < pg) = P(N(0,1) < z,) = «. Hence, for the shortfall we
obtain

EXT(T)I(X™(T) < po(z, 7, T)))
P(X™(T) < po(z,m,T))

_ azmT) / * explallol| VT p(w)da,

p1(z, 7, T)

(67

where I(A) is the indicator function of the set A. We calculate the integral by change of variables

and obtain:

a(x,m,T
o) = “OTT) ol T/2)0 2 — oV T).

For the semi-standard deviation we obtain

po(z,m, T) = \/E((XW(T)VI(XW(T)Spo(:t,ﬂ',T)))

P(X™(T) < po(z,m,T))

_ \/M / " exp{2e]7o|VT Yo(z)da

a

2 T
= \/ % exp{2||70|2T}®(z0 — 2|'o|VT)

*3%

= a(z,mT) - exp{||7'o||*T}
O
Corollary 2.4 pi(z,7,T) < pa(z, 7, T) < po(z,m,T).
Proof
p2(z,m, T = E(X™(T))*|X™(T) < po(z,m,T)) < polz,m,T)?,
which implies po(z, 7, T) < po(z, 7, T), since po(z,w,T) > 0 and po(z,w,T) > 0.
po(x,m,T)? — p1(z, m,T)>

= E((X™(T)’|X™(T) < polz,m,T)) — (B(XX™(T)|X™(T) < po(z,m,T)))*

— B((XT(T) — BXT(D)X(T) < pole,m, T))2|X(T) < pola m, T)

> 0,
which implies po(z, 7, T) > p1(z,w,T), since p1(z,n,T) > 0 and py(z, 7, T) > 0. O



Now we want to analyse the behaviour of p; depending on the strategy w. Therefore it will

be convenient to introduce the function
f(m) =a'(b—r1)T + In(®(2q — |7'o|VT) /), (2.14)
ie. pi(z,m,T) = ze' (1 — ef(™). Notice that
lim f(m) = —o0,
|7 a||—o0
hence the use of extremely risky strategies can lead to a risk which is close to the total capital.

The same is true for the measure py as was shown in [5].

We shall frequently use the following estimate for the standard normal distribution; see
e.g. [3].
Lemma 2.5 Let x > 0. Then

(z7' —273)(2n) V2 exp{—2?/2} <1 — ®(z) <z *(2r) "2 exp{—2?/2}

and

o()
Proposition 2.6 Set § = ||o~1(b—rl)|,e = |7'o| and o* = ®(zo — eVT).
(a) If b; = 7 for all i = 1,...,d, then f(w) attains its unique mazimum for 7* =0, i.e. ¢ =0

and p1(z,0,T) = 0. Moreover, for arbitrary € > 0 and all © with
7’0l =€ (2.15)
we have
f(7) = In(®(24 — eVT)/a) = In(a* /) (2.16)

and

0 < pi(z,m,T) =z (1 —a*/a) < zeT .

(b) If b; # r for some i € {1,...,d} and if VT < %, then f(m) attains its unique mazimum

only for * =0, i.e. ¢ =0 and p1(z,0,T) = 0.

¢) If b; # r for some i € {1,...,d} and if VT > eGa) gnd o < 0.15, i.e. zo < —1.1, then f(m
al

attains its unique mazximum for a strategy

*

e (oa")71(b—rl)
o= (b—rl)l
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such that
) +
(§9+ZQ/VT> <e<O+2y/VT. (2.17)

Denote by a V b = max{a,b} and by a A b= min{a,b}. Then

((§0+aﬁvﬁ?+9T+Jn(@p%HVTAz@Va)>v((9+&qu?9T+4n(@FﬂVTDﬂ0)

IN

f(7)
< (04 24/VT)OT +1n (@(—geﬁ A za)ﬁ)/a>

Let w7 = argmax (;cg.|j'ol=e} f ()

Ife =0, then f(m§) = 0 and hence p1(z,0,T) = 0.

If e > 0, then
>0 T< %
ﬁl(xaﬂ-:aT) (220)
1 *
<0 T> %

Proof (a) If b; =r for alli = 1,...,d, then
f(7) = Ind®((zq — eVT) /)

with e = ||7'o|| > 0. Then the maximum over all non-negative ¢ is attained for € = 0. Due to
the regularity of o this is equivalent to 7w equalling zero.
(b)(c) Consider the problem of maximizing f(7) over all 7 which satisfy the requirement (2.15)

for a fixed positive €. Over the (boundary of the) ellipsoid defined by (2.15) f(w) equals
f(m) =7'(b—r1)T + In(®(24 — eVT) /)

Thus the problem is just to maximise a linear function (in m) over the boundary of an ellipsoid.
This problem has the explicit solution

. (00) e =rD)
e -] 220

with
f(7?) = €8T 4 In(®(z, — eVT) /) .
As every m € R satisfies relation (2.15) with a suitable value of £ (due to the fact that o is

regular), we obtain the minimum strategy 7* by maximising f(#}) over all non-negative ¢. Since

F2) _ oy yp#lza— V)

de (2o — eVT)

(2.18)

(2.19)



dfa(l:*) (0) 80((1205)_ Furthermore, using Lemma 2.5 we obtain
Ef(nz) _ 72— eVT)p(2a — eVT)(eVT = 20)(—VT) — p(2a — eVT)p(2a — eVT)(=VT)
de? (@(20 — eVT))?
_ P(za — 5\/_) — 2 ) — oz, —
- T(@(za — V) (D(20 — eVT)(eVT — 25) — (20 — eVT))
< T(g((;::;g))z (0(2q — eVT) — (24 — eVT)) = 0. (2.22)
This implies that dfc(iﬂ:) decreases in ¢ on (0,00). Then the optimal ¢ is positive if and only if

€
VT > %. Thus, VT < % implies assertion (b).

d * d2 *
Now take T > %- Then %(0) > 0 and Z;ﬁ_gs) < 0 implies the uniqueness of an

optimal €. We shall derive bounds for this optimal . Notice that

f increases in ¢ <

V) _ gy gl VD)
e (Za_s\/_)
& Hﬁé(za—eﬁ)—w(za—ax/_)_

Set e1 = 20 + 2,/VT, then
OVTD(z0 — e1V/T) — 20 — e1V/T) = eﬁcﬁ(—;eﬁ) - w(—goﬁ) .

Now define

3

SyB(y) — o) = SyB() ~ ), ¥>0,

P(y) =
where we used the symmetry of the standard normal distribution. Taking the first derivative and
using the fact that ¢'(y) = —yp(y) we find that P(y) is increasing if and only if yo(y) /@ (y) < 3.
Since the hazard rate ¢(y)/®(y) of the standardnormal distribution is increasing (see e.g. [2]),
yo(y)/®(y) is increasing in y > 0. Thus P(y) is increasing till its unique maximum (where
3 = yp(y)/®(y)) and then always decreasing. Furthermore, by 1’'Hopital, P(y) converges to 0
for y — oo. Therefore, if P(yy) > 0 for some yo > 0, then P(y) > 0 for all y > yo. But P(y) =0

for y = 1,04. This implies that
2 2 2
P(gex/f) = 0\/:F<I>(—§0\/:F) - <p(—§9\/:F) >0 for 6OVT>15-1,04=156.

But 0v/T > 1.56 is fullfilled by condition /T > ( o) for a < 0.15, i.e. zo < —1.1. This gives
@

a lower bound 51 for the optimal €.

If a > 0.15, i.e. zo > —1.1, then P(3 20\/T) < 0 for O+/T > "% ( a) . Thus in this case the optimal



€ is smaller than &;.

Next we derive an upper bound. We know that
f decreases ine < OVT®(z4 — eVT) — p(20 — eVT) < 0. (2.23)

Since by Lemma, 2.5

ONVT® (2 — eVT) — p(26 — eVT) < 9(20 — eVT) (ﬂ — 1)
eVT — 24
and ¢(z, —eVT) > 0, f decreases in ¢ if

T,
VT - 74

Thus f decreases for € > g9 := 0 + z—a. Then

JT
F(me) V fmey) < f(7°) < €207 + In(®(2q — e1VT) [a)

since

max e0T = 20T and  max In(®(zq — eVT)/a) = In(®(zo — 1VT) /).

[51752] [51752]
The estimate (2.20) for the CaR follows from the fact that f(7}) < 0 or f(7) > 0 according as
T > In(a/a*)/(e0) or T < In(a/a*)/(€0). O

Now we look at the problem
max E(X™(T)) subject to p1 < C. (2.24)
meR4

Proposition 2.7 Assume that C satisfies

0 < C <zexp{rT}.

If b; # r for some i € {1,...,d} then problem (2.24) will be solved by

x % (UU,)_I(b — Tl)
R ORI (229)

with €* between

(2.26)



and

Za Za 1
0+ JT + \/(9 + ﬁﬁ — T(zg + 2c + 2In(6v2nTa)), (2.27)

where 6 = ||o~(b—rl1)| and c = In(1 — Le~T).

The corresponding mazimal expected terminal wealth under the p1 constraint (2.24) equals
E(X™(T)) = zexp{(r + "[lo™" (b — r) )T} (2.28)
Proof Every admissible 7w for problem (2.24) with ||7’c|| = ¢ satisfies the relation
pr(z,m,T) =z (1-efM)y < C (2.29)
which is equivalent to

f(m) = c

with ¢ =In (1 — %exp (=rT)). On the set of portfolios given by ||7’c|| = € the linear function
(b —rl)'7T is maximised by

(oa’)~1(b—rl)
lo=t(b—r1)|| -

(2.30)

Te =€

Hence, if there is an admissible 7 for problem (2.24) with ||7’c|| = e then 7. must also be
admissible. Further, due to the explicit form (2.6) of the expected terminal wealth, 7. also
maximizes the expected terminal wealth over the ellipsoid. Consequently, to obtain an optimal
7 for problem (2.24) it is enough to consider all vectors of the form 7, for all positive £ such
that requirement (2.29) is satisfied. Inserting (2.30) into the left-hand side of inequality (2.29)

results in
(b—rl)'n.T=¢llo *(b—rl)|T (2.31)

which is an increasing linear function in &€ equalling zero in € = 0. Therefore, we obtain the
solution of problem (2.24) by determining the biggest positive € such that (2.29) is still valid.
We shall derive bounds for this optimal ¢.

Notice that for 7 = 7. by (2.31)

(2.29) & f(nl) = €T + In (@(za — 6\/?)/04) >c.

Since ¢ < m>a,xf(7r;‘), by (2.17) we have
9 +
€ > argmax,.f(7}) > (59 + za/\/T> )

10



By (2.17) f(n}) > c is fulfilled, when
9 +
<§9+za/ﬁ) 0T + In (‘b(za—eﬁ)/a) >c.

But this is equivalent to

R o A ) e

Thus f(7¥) > ¢ holds for all ¢ with

argmax,of(m}) <e < (za — ¢! (aexp (c - (za/\/T—I- §Q)+9T>>) JVT.

In (2.22) we have shown that f(m.) is increasing till its unique maximum and then decreasing.
Hence we have to determine an € > (2o — ®~!(aexp(c — (2o/VT + 20)70T)))/VT as small as
possible such that f(7}) < ¢ to find an upper bound for the optimal e.

Since €T + In (q)(za —eVT)/ a) is decreasing for all € greater than the optimal ¢, we know
that

(2 — eVT) < (20 — eVT)/(OVT)

by (2.23). Notice that
f(@) <ce Td(z, —eVT)/a < €.

Since this implies that
ET® (20 — eVT) /o < T p(24 — eVT)/(0VT ),
we need to determine an € with
exp(e0T — %(za — eVT)?)/(0v2rTa) < €.
But this is equivalent to
—2T/2 + e(0T + 2,VT) — 22 /2 — ¢ — In(6V27Ta) < 0

This inequality is fulfilled for all

£> 0+ 2o/ VT + \/(0 + 20 /VT)? — (22 + 2¢ + 21n(0v27Ta))/T.

Thus the optimal € < 0 + 2z, /VT + \/(9 + 20 /VT)? — (22 + 2¢ + 21In(6v/27Ta)) /T. O
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1000 1500

500

Figure 1: p1(1000,1,T) of the pure stock portfolio for different stock appreciation rates for
0 < T < 20. The parameters are d = 1, 7 = 0.05, 0 = 0.2, = 0.05.

Example 2.8 Figure 1 describes the dependence of p1(z, 7, T') on time as illustrated by p1(1000, 1,T)
for b= 0.1 and b = 0.15. Note that for b = 0.15 the CaR first increases and then decreases with
time, while for b = 0.1 the CaR increases with time for 7' < 20 and decreases only for very
large T'. The following figures illustrate the behaviour of the optimal strategy and the maximal
expected terminal wealth for varying planning horizon 7'. In Figures 3 and 4 we have plotted the
expected terminal wealth corresponding to the different strategies as functions of the planning
horizon T. For a planning horizon 7' < 5 the expected terminal wealth of the optimal portfolio
even exceeds the pure stock investment. The reason for this becomes clear if we look at the
corresponding portfolios. The optimal portfolio always contains a short position in the bond as
long as this is tolerated by the CaR constraint (see Figure 2). After 5 years the optimal portfolio
contains a long position in both bond and stock for b = 0.10. For b = 0.15 the optimal portfolio
contains a short position in the bond for all planning horizons. This is due to the behaviour of
p1 of the stock price. For b = 0.10 p; is always much larger than for b = 0.15 (see Figure 1). This
leads to a smaller strategy for b = 0.10. Figure 5 shows the mean-CaR efficient frontier for the
above parameters with fixed tim 7' = 5. As expected it has a similar form as a mean-variance

efficient frontier.

We will now compare the behaviour of the optimal portfolios for the mean-p; problem with

solutions of a corresponding mean-variance problem and with solutions of a corresponding mean-

12
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Figure 2: Optimal portfolios and pure stock portfolio for different stock appreciation rates. As

upper bound of the CaR g1 (z, 7, T) we took £1(1000,1,5,b = 0.1), the CaR of the pure stock

strategy with time horizon T=5. All other parameters are chosen as in Figure 1.

o

S |

— optimal

------------- stock

o

oS |

<t

—

o

o |

o

—

Figure 3: Expected terminal wealth of the optimal portfolio for b = 0.1 in comparison to the

wealth of a pure bond and a pure stock portfolio depending on the time horizon T, 0 < T < 5.

All other parameters are chosen as in Figure 2.
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Figure 4: Expected terminal wealth of the optimal portfolio for b = 0.1 in comparison to the
wealth of a pure bond and a pure stock portfolio depending on the time horizon T, 0 < T < 20.

All other parameters are chosen as in Figure 2.

600 1000

0 200

1300 1350 1400 1450 1500

Figure 5: Mean-p; efficient frontier. The parameters are the same as in Figure 3.
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Figure 6: &, €* and €** as functions of the time horizon for 0 < T < 20 and C = 107100, C** =

300 and C* = 384.

po problem. These two corresponding problems are discussed in the paper by Kliippelberg and
Korn [5].

Example 2.9 Figure 6 compares the behaviour of &, ¢** and ¢* as functions of the time horizon,
where ¢ is the optimal € for the mean-variance problem, ¢** for the mean-pg problem and &* for
the mean-p; problem. We have used the same data as in the foregoing example. To make the
solutions of the three problems comparable we have chosen C in such a way that £, €** and &*
coincide for T=5, i.e. for the variance C' = 107100, for the CaR of the quantile C' = 384 and for
the CaR of the expected shortfall C' = 300.

3 Capital-at-Risk portfolios and more general price processes

In this section we consider again the mean-CaR problem (2.24), but drop the assumption of
log-normality of the stock price process. The self-financing condition, however, will still manifest

itself in the form of the wealth equation

dX™(t) _ o qydR() - .. 952 T0) =z
Xy 0 (t—)+; By 70 O

where the P; model the dynamic of the stock price i. Of course, the explicit form of the P; is

F

crucial for the computability of the expected terminal wealth X7 (T"). To concentrate on these
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tasks we simplify the model in assuming d = 1 and assume for the bond Py(t) = €™, t > 0, as

before and for the dynamic of the risky asset

%(f)):bdwdx/(t), £>0, P0)=p, (3.1)

where b € R and Y is a semimartingale with Y (0) = 0. Under these assumptions the choice of
the portfolio 7 leads to the following explicit formula of the wealth process
X™(t) = zexp{(r+n(b—r))t}E(rY (t)) (32)
= zexp{(r+m(b—r))thexp {rY(t) — 5 (Y°), [Tocscs(l + TAY (s))} , t >0,
where Y¢ denotes the continuous part and AY the jump part of the process Y (more precisely,
AY (t) is the height of a (possible) jump at time t). This means that the wealth process is
simply a multiple of the stochastic exponential £(7Y") of 7Y (see Protter (1990)). Analogously

to Definitions 2.1 and 2.2 we define the CaR in this more general context.

Definition 3.1 Consider the market given by a riskless bond with price Py(t) = €™, t > 0, for
r € R and one stock with price process P satisfying (3.1) for b € R and a semimartingale Y
with Y (0) = 0. Assume that the dynamic of the wealth process is given by (3.2).

Let x be the initial capital and T a given time horizon. For some portfolio m € R and the

corresponding terminal wealth X™(T) the a-quantile of X™(T) is given by
po(z, 7, T) =zexp{(n(b—7)+7)T + za},
where Z, is the a-quantile of Y (T) = oY (T). Then we call
CaR(z,n,T) = zexp{rT} — E(X™(T)|X™(T) < po(z,m,T)) (3.3)

the Capital-at-Risk of the portfolio = (with initial capital x and time horizon T ). O

One of our aims of this section is to explore the behaviour of the solutions to the mean-CaR
problem (2.24) if we model the returns of the price process by processes having heavier tails

than the Brownian motion. We present some specific examples in the following subsections.

3.1 The Black-Scholes model with jumps

We consider a stock price process P, where the random fluctuations are generated by both a

Brownian motion and a compound jump process, i.e. we consider the model (3.1) with

dY (t) = odW (t) + 2”: (BidN;(t) — Bihidt) , t>0, Y(0)=0, (3.4)

16



where n € N, and for ¢ = 1,...,n the process IV; is a homogeneous Poisson process with intensity
Ai- It counts the number of jumps of height 5; of Y. In order to avoid negative stock prices we

assume
—“1<pfi < - <P <.

An application of It6’s formula results in the explicit form

P(t) = pexp{(b—30? = X0, Bid)t+oW () + X0, 10 (1 +5) }

= pexp{(b— 307~ Sy B}t + oW () + Sy (Na(t) In(1 + )}, > 0.

(3.5)

In order to avoid the possibility of negative wealth after an “unpleasant” jump we restrict the

portfolio 7 as follows

'[—i—i) iG>0 B,

/Bn’ /61
e ! (—oo,—i] if B, <0, (3.6)
B

\ [—é,oo) if B >0.

Under these preliminary conditions we obtain explicit representations of the expected terminal

wealth and the CaR corresponding to a portfolio 7 similar to the equations (2.6) and (2.7).

Lemma 3.2 With a stock price given by equation (3.5) let (X" (t))¢>0 be the wealth process
corresponding to the portfolio w satisfying (3.6). Let po(x,m,T) be the a-quantile of X™(T'). Set

n

B("I", , T) = exp{(w(b - 7‘) - Z Wﬁz)‘Z)T}

=1
Then we have for some finite time horizon T:
E(X™(T)) =exp{(r+=n(b—r))T} (3.7)
and
CaR (z,7,T) = gzl — E(X™(T)|X™(T) < po(z,n,T))
= e |1~ w m,-in:o exp {gln(l + 7fBi)n; — )\iT}
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Here, Z, is the a-quantile of

moW (T +Zln1+7rﬂz) i(T),

=1
i.e. the real number Z, satisfying

a = P<7TUW +Zln1+7rﬁz) ())S%)

i=1

> (@ (ﬁ (za—Z(ln(Hwﬁ,-)m))) T H )‘T) ) (3.9)

Tlyeny =0 i=1 i=1 !

Proof To obtain the expected value simply note that the two processes
1 n Ni(t)
(exp{—502t+aW(t)}> and | exp Zﬂ’/\ t—l—z Z In(1 + 5;)
120 =1 j=1 >0
are both martingales with unit expectation and they are independent. For the CaR recall (2.12).

Hence for the shortfall we obtain

E(X™(T)|X™(T) < po(z,,T))

E(X™(T)I(X™(T) < po(z,w,T)))
P(X™(T) < po(z,,T))
B(z

T 1
#exp{—ﬁw U2T+TT}

E (exp {7TO'W E T)In(1+ 71',3,))} I (WUW + Z T)In(1 +75;)) < ))
— wexp{—%ﬂ'onT—{—’r‘T} Z H exp{Zni]n(l—l—ﬂ'ﬁi) —AiT} X

ni,.. 7nn—0Z 1 =1

(B ni In(147;)
/ exp{\/T|7TU|$}(P($)d‘T

— o0

- B(wﬁT)exp{’rT} Z HAT XP{Z”iln(1+Wﬂi)_/\iT}x

N1,5.Nn=01=1 =1

(I)<|7TU|1\/_ anln +wﬂz))—lwolﬁ)

- Wexp{rﬂ i eXP{Zniln(lJrWﬂi)—)\iT} X

i=1

U St s mm ) - ol ) TT XD
@(WW(Q > (niIn(1 + @))) | \ﬁ)H

i=1 =1

71 yeenyTip, =0
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Figure 7: Optimal portfolios for Brownian motion with and without jumps depending on the
time horizon T, 0 < T < 5 for different jump parameters § = —0.1 and A = 0.3 and A = 2. The

basic parameters are the same as in Figure 3.

Unfortunately, z, cannot be represented in such an explicit form as in the case without jumps.
However, due to the explicit form of E(X™(T')), it is obvious that the corresponding mean-CaR
problem will be solved by the largest 7 that satisfies both the CaR constraint and requirement
(3.6). Thus for an explicit example we obtain the optimal mean-CaR portfolio by a simple
numerical iteration procedure. Comparisons of the solutions for the Brownian motion with and

without jumps are given in Figure 7 and Figure 8.

Example 3.3 We have used the same parameters as in the examples of Section 2, but have
included the possibility of a jump of height § = —0.1, occuring with intensity A = 0.3, i.e.
one would expect a jump approximately every three years, and with intensity A = 2, i.e. one
would expect a jump twice a year. An optimal portfolio for stock prices following a geometric
Brownian motion with jumps is always below the optimal portfolio of the geometric Brownian
motion (solid line) and the higher the intensity A the lower is the portfolio. The reason for this

is that the threat of a downwards jump of 10% leads an investor to a less risky behaviour.
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Figure 8: Optimal portfolios for Brownian motion with and without jumps depending on the
time horizon T, 0 < T < 20 for different jump parameters § = —0.1 and A = 0.3 and A = 2.

The basic parameters are the same as in Figure 3.
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Figure 9: Expected terminal wealth corresponding to the optimal portfolios for Brownian motion
with and without jumps depending on the time horizon T, 0 < T < 5. The parameters are the

same as in Figure 7.
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Figure 10: Expected terminal wealth corresponding to the optimal portfolios for Brownian mo-

tion with and without jumps depending on the time horizon T, 0 < 7' < 20. The parameters

are the same as in Figure 7.
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