
Noncanonical Links in Generalized Linear Models - Whenis the E�ort Justi�ed?Claudia Czado and Axel Munk � AbstractGeneralized linear models (GLMs) allow for a wide range of statistical models for regressiondata. In particular, the logistic model is usually applied for binomial observations. Canonical linksfor GLM's such as the logit link in the binomial case, are often used because in this case minimalsu�cient statistics for the regression parameter exist which allow for simple interpretation of theresults. However, in some applications, the overall �t as measured by the p-values of goodness of �tstatistics (as the residual deviance) can be improved signi�cantly by the use of a noncanonical link. Inthis case, the interpretation of the inuence of the covariables is more complicated compared to GLM'swith canonical link functions. It will be illustrated through simulation that the p-value associatedwith the common goodness of link tests is not appropriate to quantify the changes to mean responseestimates and other quantities of interest when switching to a noncanonical link. In particular, therate of misspeci�cations becomes considerably large, when the inverse information value associatedwith the underlying parametric link model increases. This shows that the classical tests are often toosensitive, in particular, when the number of observations is large. The consideration of a generalizedp-value function is proposed instead, which allows the exact quanti�cation of a suitable distance tothe canonical model at a controlled error rate. Corresponding tests for validating or discriminatingthe canonical model can easily performed by means of this function. Finally, it is indicated how thismethod can be applied to the problem of overdispersion.Key Words: generalized linear models, goodness of link tests, logistic regression, link function, para-metric links, model validation and discrimination, p-value curve, overdispersion.AMS Subject Classi�cation: 62F03, 62F04, 62J12
1 IntroductionGeneralized linear models (GLMs) allow for the treatment of regression problems in which the responsedistribution can be chosen as a one parametric exponential family. This includes normal, binomial,Poisson, gamma and inverse Gaussian responses (see McCullagh & Nelder (1989)) among many others.For this a link function connecting the mean response with the linear predictor has to be chosen.GLM's with canonical links (for de�nition see McCullagh & Nelder (1989)), such as the logit linkin binomial regression, guarantee maximum information and simple interpretation of the regressionparameters, because in this case we obtain a linear model for the natural parameter of the underlyingexponential family. For example, the logit link allows for a simple representation of the odds, which aidsthe interpretation of the results. The concavity of the log likelihood guarantees uniqueness of the MLE.Canonical links, however, do not always provide the best �t available to a given data set. In this case,the link could be misspeci�ed, which can lead to substantial bias in the regression parameter and the�C. Czado is Associate Professor for Statistics at Technische Universit�at M�unchen, Germany, and A. Munk is AssistantProfessor at the Ruhr-Universit�at Bochum, Universit�atsstr. 150, 44780 Bochum, Germany. Parts of this paper were writtenwhile C. Czado was visiting the Sonderforschungsbereich 386 'Statistische Analyse diskreter Strukturen' at the Ludwig-Maximilians-Universit�at M�unchen, Germany. The authors would like to thank L. Fahrmeir and the LMU M�unchen for itshospitality. C. Czado was supported by research grant OGP0089858 of the Natural Sciences and Engineering ResearchCouncil of Canada. The work of A. Munk was partially supported by the Deutsche Forschungsgemeinschaft.1



mean response estimates (see Czado and Santner (1992) for binomial responses). The most commonapproach to guard against such a misspeci�cation, is to embed the canonical link into a wide parametricclass of links F = fF (�;  );  2 	g, which includes the canonical link as a special case when  =  �,say. Many such parametric link classes for binary regression data have been proposed in the literature.Van Montford and Otten (1976), Copenhaver and Mielke (1977), Aranda-Ordaz (1981), Guerrero andJohnson (1982), Morgan (1983) and Whittmore (1983) proposed one-parameter families, while Pren-tice (1976), Pregibon (1980), Stukel (1988) and Czado (1992) considered two-parameter families. Linkfunctions for the non binary case were studied by Pregibon (1980) and Czado (1992, 97). Section 2introduces in detail generalized linear models with a parametric link.In the following, it is assumed that the true underlying link is a member of such a class F . To protectagainst link misspeci�cation large sample tests such as the likelihood ratio and the score test are recom-mended (Pregibon (1980, 1982) and McCullagh and Nelder (1989), Chapter 11) to assess, if a di�erentlink will lead to a signi�cant improvement in �t. Hence guarding against link misspeci�cation is treatedas the testing problemH :  =  � versus K :  6=  �: (1)If H cannot be rejected, the additional consideration of the p-value of the pivot statistic is acceptedas a su�cient measure for evidence to keep the canonical model. If H is rejected, maximum likelihoodestimation (MLE) is required to estimate jointly the link parameter  and the regression parameters.However, practitioner prefer using a canonical model since they allow easier interpretation of the modelparameters. For example, the logistic model allows interpretation in terms of the odds ratio. Further,the joint estimation increases signi�cantly the computational e�ort to analyze the data, because anoncanonical link model F cannot be performed in standard software packages and special softwaresuch as macros have to be written. In addition to the special software requirement, the estimation ofthe link also inates the variance of the regression parameters, since the link parameter  cannot bechosen orthogonal in the sense of Cox and Reid (1987) to the regression parameters (see Taylor (1988)and Czado (1997)). Further, checks for isolated departures from the model (for a general review seeDavison and Tsai (1992)) have been developed so far only for �xed link models (see Pregibon (1981)for logistic regression, Lee (1987, 1988) and Williams (1987) for GLM's).Therefore, the goal is to provide a statistical tool for answering the following two questions:Q1 When is the e�ort justi�ed to switch from a canonical link to a noncanonical link in a GLM ?(Model Discrimination)Q2 How large is the evidence for the canonical model indicated by a large p-value associated with agoodness of link test for (1)? (Model Validation)First of all, we would like to point out that both questions cannot be su�ciently answered by theconsideration of the p-value associated to one of the above mentioned tests for (1). This will be illustratedin a simulation study (Appendix A). We mention, that even after diagnostic tools are used in order toprotect against outliers or other isolated deviations from the model, this approach cannot be justi�ed.Roughly speaking, this study indicates two systematic errors. On the one hand, when the data arerather noisy the classical tests will not reject H :  =  � with large probability although the true meanresponse (or other parameters of interest) is far apart from the mean response under the canonical linkassumption. On the other hand, when the variation of the estimated link is small or the sample size istoo large, we �nd that these tests lead with high probability to a decision in favor of the noncanonicalmodel - although the e�ort is not justi�ed, i.e. over a wide range of the mean space these links will be2



almost indistinguishable. We mention, that these problems are not caused by the particular choice ofthe goodness of link test for the testing problem (1), rather this is intrinsically related to the misleadinghypothesis H in (1). Whenever the null hypothesis is rejected, no information about the amount ofdiscrepancy to the noncanonical model is involved { whereas acceptance of H (or even a large p-value) does not provide any evidence in favor of the canonical model. Although many authors (seee.g. MacKinnon (1992) or Dette & Munk (1998a,b), Munk & Dette (1999), Munk & Czado (1998),Czado & Munk (1998) for the assesment of distributional assumptions and Hauck & Anderson (1997)for more general models) have criticized to treat the problem of model selection as a testing problem ofa point null hypothesis H such as in (1), this way of proceeding is still common practice among appliedstatisticians since alternative procedures are usually not developed.Therefore, the main concern of this paper is to suggest the consideration of p-value surfaces and associ-ated tests for precise hypotheses as alternatives. We will show that this gives more accurate informationabout the deviation from the canonical model.To �x ideas, we restrict for the moment our consideration to the large class of generalized logistic linksintroduced by Czado (1992), even though any other parametric class mentioned above could have beenused. However, for the analysis of the following two examples this class of Box-Cox transformationsof the linear predictor is preferred because it allows separate modi�cation of the right and left tail ofthe link function and its parametrization is locally orthogonal (Czado (1997)). In particular, the familyallowing for a right tail modi�cation FR = fF (�;  );  2 <g is given by:F (�;  ) = exp(h(�;  ))1 + exp(h(�;  )) ; where h(�;  ) = ( (�+1) �1 if � > 0� otherwise : (2)A family allowing for a left tail modi�cation can be de�ned similarly. Note, that for this family  = � = 1 always corresponds to the canonical logistic link. For  < 1 ( > 1) the right tail is heavier(lighter) than the logistic distribution ( = 1). These links have low variance ination (Taylor (1988))due to the fact that the parametrization is orthogonal in a neighborhood around � = 0. In addition,they are location and scale invariant (cf. Czado (1997)).Example 1: (Age of Menarche in Warsaw Girls) Milicer and Szczotka (1966) analyzed the oc-currence of menarche as a function of age (see Table 3 of Stukel (1988) for data). The standard logisticanalysis with age as covariate reveals lack of �t in the left tail. Table 1.1 gives parameter estimates andtheir estimated standard errors in parentheses in the �rst column. Residual deviances, their degrees offreedom and the p-value of corresponding goodness of �t test in parentheses are given in the secondcolumn. The likelihood ratio (LR) statistic for testing logistic link by (1), their degree of freedom andthe corresponding p-value in parentheses is provided in the third column. Therefore, following the usualway of proceeding we would decide for a noncanonical model with left tail modi�cation.Model Estimated Link  Residual Deviance Likelihood Ratiologistic 26.70 (23, .27)right tail .88 (.083) 25.09 (22, .29) 1.61 (1, .204)left tail 1.39 (.138) 17.62 (22, .73) 9.08 (1, .003)Table 1.1: Link Estimates, Residual Deviance and LR Statistics for the Age of Menarche DataExample 2: ( Bottle Deposit Data) Neter, Wasserman & Kutner, p. 617 (1989) gave data on thenumber of bottles returned for 6 di�erent levels of deposits. The results of a generalized logistic analysisare contained in Table 1.2. 3



Model Estimated Link  Residual Deviance Likelihood Ratiologistic 12.18 (4, .02)right tail 1.56 (.231) 5.28 (3, .15) 6.90 (1, .009)left tail .63 (.197) 10.03 (3, .02) 2.15 (1, .143)Table 1.2: Link Estimates, Residual Deviance and LR Statistics for the Bottle Deposit DataHere we are left in a somewhat di�cult situation. Although the LR-test supports a right tail modi�cationwith high evidence (p-value = .009) the residual deviance only indicates a slight gain in �t (p-value =.15). The LR-test could be too sensitive (detecting small departures from the canonical model whichare scienti�cally irrelevant) or the residual deviance test could be not powerful enough.In order to overcome those ambiguous situations arising from testing H in (1), we suggest in a �rst stepto determine a measure of discrepancy � between the canonical and link in terms of quantities which arescienti�cally relevant for the experimenter. For example, the cost of a noncanonical link (as describedabove) need not to be justi�ed, if the e�ects of using this link instead of the more "�tting" noncanonicallink are small on the mean response estimates or other quantities of particular interest. We will seein Section 4, that the e�ects on the mean response estimates are about the same for both data sets,although the e�ects are very di�erent on the estimated odds. More speci�cally, the odds are changedup to a factor of 50 for the menarche data set, while they are changed only up to a factor of 1.5 for thedeposit data. Therefore, if the odds is the parameter of interest, a noncanonical link is truly needed forthe menarche data, while it is not necessary for the deposit data. One could also be interested in otherquantities as the odds which a�ects the above conclusions. The choice of such alternative measures ofdiscrepancy between the canonical and noncanonical model will be discussed carefully in Section 3.In a second step we suggest to consider generalized p-value curves associated to one sided tests for �. Fora broad class of discrepancy measures � it is shown, that this is tantamount to test precise hypothesesof the formH :  =2 [ � �  l;  � +  u] versus K :  2 [ � �  l;  � +  u] (3)for speci�ed 0 <  l;  u. If H is rejected at some level �, the canonical link is validated with controllederror probability � within a ( � �  l;  � +  u)-neighborhood. In Section 3, we show how these boundscan be derived from �. In particular, the evidence of H and K can simply be graphically illustrated bythese p-value curves. Simple quantities of these curves, such as steepness, allow to visualize rapidly thegoodness of �t { for both, validation and discrimination. We indicate in Section 5 how these curves canhave a valid Bayesian interpretation as measures of evidence for H and K.Our approach is based on the asymptotic distribution of the joint maximum likelihood estimator of linkand regression parameters. For this we extend in Section 2 results by Fahrmeir and Kaufmann (1985) andapply these to the construction of tests and p-value curves for the problem (3). The simulation results inAppendix A of this test for validating and discriminating a logistic link show that the asymptotic law isa quite good approximation in small samples, which allow the proposed tests to be used for the analysisof a link in GLM at controlled error rate. In Section 4, we return to the examples presented above andillustrate generalized p-value curves in action. Finally, it should be noted, that a link misspeci�cationrepresents only a special systematic departure from the model, while misspeci�cation of the variancefunction or scales of the covariates are other possible departures. In this paper we focus mainly on linkmisspeci�cations, however, in Section 5 it is indicated for the negative binomial regression model foroverdispersion (cf. Lawless, 1987) how the proposed methodology can be transferred to the assessmentof other departures from the model. 4



2 Generalized Linear Models with Parametric LinkAsymptotic Theory. Ordinary GLM's have been extended to allow for data selected link functionsfrom a class of parametric functions. For binomial responses, this is evidenced by the many parametriclink families considered in the literature. In the context of other GLM's, this extension was �rst consid-ered by Pregibon (1980) and investigated in more detail by Czado (1992, 1997). The following modelfor regression data with response Yi and explanatory variables XXi = (xi1; � � � xip) for i = 1; � � � ; n will beused:1. Random Component: fYi; 1 � i � ng are independent and have density of the formfyi(yi; �i; �) = exp[yi�i � b(�i)a(�) + c(yi; �)] (4)for some speci�ed functions a(�); b(�) and c(�). The scale parameter � is allowed to be known orunknown.2. Systematic Component: The linear predictors �i(��) = �0 + �1xi1 + � � � + �pxip for 1 � i � ninuence the response Yi. Here �� = (�0; � � � ; �p) are unknown regression parameters.3. Parametric Link Component: The linear predictors �i(��) are related to the mean �i of Yi by�i = F (�i(��);  ) for some F (�;  ) in = = fF (�;  ) :  2 	g .Attention is restricted to link families = which contain only strictly monotone continuous functionsF (�;  ) indexed by a scalar link parameter  . Note that in conventional GLM terminology the link g isequal to the inverse of F . An unknown scale parameter � in (4) is estimated by an appropriate momentestimator involving the Pearson �2 Statistic. In GLM's with parametric link ( see 4), the regressionparameter �� and the link parameter  are jointly estimated by maximum likelihood. If the true link Fis a member of the link family =, the joint MLE �̂� = (�̂�;  ̂) of �� = (��;  ) will be shown to be stronglyconsistent and e�cient under regularity conditions. This asymptotic normal distribution of the jointMLE �̂� = (�̂�;  ̂) of �� = (��;  ) can then be used to construct a validation test for H versus K in (3).As for ordinary GLM's, one has the relationship �i = dd� b(�)j�=�i = b0(�i). The log likelihood l(��) derivedfrom model (4) can be written as:l(��) = nXi=1[yi�i � b(�i)a(�) + c(yi; �)] where �i = b0(�i) and �i = F (�i(��);  ):To derive the corresponding scores, note that �i = F (�i(��);  ) holds, which implies@�i@ = Fi2 ; @�i@�j = xijFi1 for 0 � j � p; 1 � i � n; (5)where Fi1 = @@�F (�;  )j�=�i ; Fi2 = @@ F (�;  )j�=�i and xi0 = 1 for 1 � i � n. Let di = d�id�i and use (5)to express the scores as follows:sj(��) = @@�j l(��) = nXi=1 d�id�i @�i@�j [yi � �ia(�) ] = a(�)�1 nXi=1 dixijFi1(yi � �i); (6)sp+1(��) = @@ l(��) = nXi=1 d�id�i @�i@ [yi � �ia(�) ] = a(�)�1 nXi=1 diFi2(yi � �i):5



To compute the joint MLE �̂�, solve simultaneously the equations obtained by equating the scores (6) tozero. Finally, the expected Fisher information In(�) for model (4) can be expressed as follows:In(��) = a(�)�1 " I�;� I 0�; I�; I ; # ; (7)where I�;� is a (p+1)x(p+1) matrix, I�; is a (p+1) vector and I ; is a real number given by(I�;�)rs = nXi=1 xisxirF 2i1di; (I�; )r = nXi=1 xirFi1Fi2di 0 � r; s � p and I ; = nXi=1 F 2i2di:It is easy to see, that the score vector sn(��) = (s1(��); � � � ; sp+1(��)) has covariance matrix In(��). LetHn(��) denote the corresponding observed information matrix with (s,t)th element given byHn(��)st = @2l(��)@�s�t for s; t = 1; � � � ; p+ 1:The minimal (maximal) eigenvalue of a square matrix A will be written as �min(A)(�max(A)). Let�0 = (��0;  0) denote the true parameter values. For brevity, we will write In and sn for In(��0) andsn(��0), respectively. The following regularity conditions are needed:R1 �min(In)!1 as n!1:R2 There is a neighborhood N � B of ��0 such that a.s�min(Hn(��)) � c[�maxIn] 12+"; �� 2 N;n � n1with some constants c; " > 0 and a random number n1.R3 Assume fxn; n � 1g � K compact and F (xtn��;  ) twice di�erentiable with respect to �� and  andbounded for fxn; n � 1g � K for �xed �� and  ,R4 n�min(In) is uniformly bounded 8n � 1.The following results are modi�cations of results for ordinary links previously obtained by Fahrmeir &Kaufmann (1985). Observe, that additional estimation of the link requires slightly stronger assumptionson the link function F (�;  ). Here F (�;  ) has to be twice di�erentiable with regard to  .Theorem 2.1 Under (R1) and (R2) with " > 0, there is a sequence �̂�n of random variables and a randomnumber n1 with(i) P (sn(�̂�n) = 00 for all n � n1) = 1 (asymptotic existence),(ii) �̂�n ! ��0 a.s. (strong consistency)We are now in the position to give the asymptotic result:Theorem 2.2 Under (R1), (R3) and (R4), there is a sequence �̂�n such that P (sn(�̂�n) = 00) ! 1 asn!1 andI 12n (�̂�n � ��0) D�! Np+1(00; I) as n!1;where Nm(�;�) denotes an m-dimensional normal distribution with mean vector � and variance-covariance matrix �. 6



Sketches of the proofs of these theorems are contained in Appendix B.Asymptotic Link Validation Tests in Generalized Linear Models. Using the above results, weare now able to construct an asymptotic link validation test for GLM's.Theorem 2.3 Under the assumptions of Theorem 2.2 for the validation problem H versus K in (3) aconsistent asymptotic level � test is given by the rejection regionC = ( ̂n : ������  ̂n �  � �  u�̂n( ; �) ! � � �( ̂n �  �)�  l�̂n( ; �) !����� � �) (8)where �̂2n denotes any consistent estimate of �2n( ; ��) which is the (p+1; p+1)-th element of the inverseof the Fisher information matrix In(��). The critical region of a test at level 1�� for the discriminationproblem K versus H is given by the complement Cc.Proof.Fix �̂2. We �rst symmetrize the problem. For this de�ne� =  �  � �  u �  l2 and �1 =  u +  l2 :Therefore H in (3) is equivalent to H : � 2 [��1; �1]. Since �̂n =  ̂n �  � �  u� l2 has an approxi-mate normal distribution, we construct as in Lehmann (1986), Th.6, p.101 an equivalence test for thesymmetrized problem. The critical region of this test is given byC := n�̂n : �̂n 2 [�C;C]o ; where C > 0 is uniquely determined byP̂ (C; �̂n;  l;  u) := ��C � �1�̂n � � ���(C + �1)�̂n � = �: (9)Note further, that condition (25) of Lehmann (1986, p.102) reduces to (9) out of symmetry. Since��� � �1�̂n � � ���(� + �1)�̂n �is monotone increasing in � and zero for � = 0, condition (9) is equivalent toC = (�̂n : ������ �̂n � �1�̂n ! � � �(�̂n � �1)�̂n !����� � �) :This last statement can be rewritten as (8). From Theorem 2.2 we conclude thatLn( ̂n �  )��1n (�;  )o �! N (0; 1) as n!1:Applying Slutzky's Theorem proves that the test is asymptotic size �. Consistency is similar.To apply the last theorem we have to estimate �2n( ; �) by �̂2n := �2n( ̂; �̂), where ( ̂; �̂) is the jointMLE of ( ; �).
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3 Methodology: Determining the Tolerance Bound and Computingp-value curvesTolerance Bounds. Crucial for the speci�cation of the hypotheses H andK in (3) are the values of thetolerance constants  l > 0 and  u > 0. We will now discuss several choices depending on the quantitiesone is interested in estimating and the assumed GLM model. In order to illustrate a general strategylet �̂( ) denote the MLE of �, when a �xed link parameter  of an arbitrary parametric link familyF = fF (�;  );  2 	g is used and �i(�̂( )) denotes the corresponding i-th linear predictor.Step 1. Determine a measure of discrepancy �(�) from the canonical model.This can be realized e.g. for all GLM's by the maximal change in the mean response estimates whenswitching from the canonical link  � to the link  , i.e. �(�) = �m, where�m( ) = maxi=1;���;n jF (�i(�( ));  ) � F (�i(�( �));  �)j: (10)Here �( ) denotes the true (unknown) regression parameter in the model F (�;  ). Since �( ) are un-known, we will use �̂( ) the MLE of � for �xed  as an estimate for �( ). As noted by a referree, thediscrepancy between two members F (�;  1) and F (�;  2) can also be considered. It is straight forward toextend the dicrepancy measure from the canonical model to study the last question.Step 2: Determine the corresponding tolerance bound �0.For this bound �0 the canonical model is assumed as su�ciently approximated by the noncanonicalmodel. Testing ~H : �m( ) > �0 (or ~K : �m( ) � �0) is now tantamount to the testing problem (3)and its converse, where the bounds  � �  l;  � +  u have to be determined numerically as ��1m (�0).Observe, that this leads always to two unique values  � �  0l <  � +  0u, such that  � �  0l <  < � +  0u because the criterion �m( ) is strictly unimodal with unique minimum at  �.  l;  u can nowbe expressed in terms of �m in accordance with the particular model and the speci�c question theexperimenter has in mind.This proceeding applies, of course, to other measures of discrepancy. For example, often not only absolutechanges in the mean responses are of interest, but also relative changes�r( ) = maxi=1;���;n8<: F (�i(�( )); )F (�i(�( �)); �) if F (�i(�( ));  ) < F (�i(�( �));  �)F (�i(�( �)); �)F (�i(�( )); ) otherwise : (11)In order to guarantee that assessment of the model with respect to such a criterion �(�) can be treatedby two sided hypotheses as in (3) it is su�cient that �(�)( ) is a strictly unimodal function with uniqueminimum at  �. Note, that this property holds for the above criteria as well as for the following ones.We discuss now some criteria which are more speci�cally adapted to particular GLM's.Binomial Responses. For binomial responses covariate e�ects are often interpreted using odds ratio's.Therefore we consider the maximal change in the odds which can be estimated by:�o( ) = maxi=1;���;n( oi( ) if F (�i(�( ));  ) > F (�i(�( �));  �)1oi( ) otherwise ; (12)whereoi( ) = � F (�i(�( ));  )1� F (�i(�( ));  ) � = � F (�i(�( �));  �)1� F (�i(�( �));  �)� :8



Note that deviations from the logistic model odds are measured from both directions in (12). This alsoallows to weigh di�erences for tail success probabilities heavier than success probabilities around .5.As a lower bound for (10) we can compare the maximal absolute di�erence between all possible successprobabilities under a logistic model and a model with link parameter  , given by�p( ) = sup�2RjF (�;  ) � F (�;  �)j: (13)Since F (�;  ) is bounded the supremum in (13) is �nite. In order to illustrate this measure Figure 3.1gives the absolute di�erence in probability between the logistic and the generalized logistic distributionas a function of � and  . It can be seen that for  > 1 (lighter right tail) this di�erence is signi�cantlylarge in a much smaller range of � values compared to the case of  < 1 (heavier right tail). This allowsus to classify four areas of varying degree of information about  . In the case of a heavier right tail( < 1) compared to the logistic link ( = 1) and a large range for the linear predictors �i it will beeasy to discriminate against the logistic link, while the opposite will be true in the case when there issmall range for the linear predictors. For the lighter right tail case ( > 1), the degree of informationfor discriminating against the logistic link will be medium in both cases of a large or small range for thelinear predictors �i. The maximal distance �p( ) between the generalized logistic link and the logisticlink as a function of  is given in Figure 3.2. Table 3.1 gives for some special �0 values the correspondinginterval [ � �  l;  � +  u] to insure that �p( ) < �0 for all  2 [ � �  l;  � +  u].�p( ) = �0.01 .025 .05 .075 .1 .15 .20 � �  l .93 .82 .65 .49 .35 .02 -.28 � +  u 1.07 1.19 1.39 1.60 1.84 2.40 3.10Table 3.1: Choice of lower and upper bounds for  to achieve a maximal absolute di�erenceof �0 between the generalized logistic cdf and logistic cdfPoisson Responses. In this case one might be interested in determining the change in probabilities ofno event occurring given by�n( ) = maxi=1;���;n jexp(�F (�i(�( ));  )) � exp(�F (�i(�( �));  �))j (14)with lower bound�np( ) = sup�2Rj exp(�F (�;  )) � exp(�F (�;  �))j: (15)Note, that this leads to a similar surface as in Figure 3.1. As for binomial responses the changes in theodds of the probabilities of no event can also be considered�no( ) = maxi=1;���;n( oni ( ) if F (�i(�( ));  ) < F (�i(�( �));  �)1oni ( ) otherwise ; (16)whereoni ( ) = � exp(�F (�i(�( ));  ))1� exp(�F (�i(�( ));  )) � = � exp(�F (�i(�( �));  �))1� exp(�F (�i(�( �));  �))� :p-value Curves and Surfaces. In addition to a pure test decision for a �xed bound �0 we suggestconsideration of the function P̂ in (9). We will now show how this function can be utilized for the9



assessment of a logistic model. We denote P̂ as (asymptotic) generalized p-value surface associated tothe validation and discrimination problem (H versus K and converse) in (3). Observe, that given a �xedsample of observations P̂ ( ̂n; �̂n;  l;  u) is a two { dimensional surface, where the level sets � = P̂ givethe asymptotic minimal bounds  � �  l and  � +  u for which H can be rejected at level � as well asthe maximal bounds for which K can be rejected by the discrimination test at level 1��. In particular,when  � � l =  u =  � + �, 1-P̂ denotes the `classical' p-value of the maximum likelihood test for Kagainst H. We suggest to consider P̂ and its complement as an (asymptotically) precise measure of theevidence of neighborhoods ( � �  l;  � +  u) in contrast to the classical 'two-sided' p-value associatedto (1). For an illustration of P̂ we defer to the examples discussed in Section 4.As we will see in Section 5 it is crucial for a valid interpretation of the proposed p-value approach,that these two-dimensional surfaces P̂ reduces to one-dimensional curves with respect to the particulardiscrepancy measure �(�). Once decided for a criterion as �m( );�o( ) or �p( ), this surface onlydepends on �(�) by the relation P̂ (�; �;�(�)) := P̂ (�; �;  l;  u). For illustration in the case of generalizedlogistic regression for the criterion �p confer Table 3.1 again.4 ExamplesBinomial ResponsesAge of Menarche in Warsaw Girls (Revisited). For this data set, changes to the estimated successprobabilities (see (13)) as well as to the estimated odds (see (12)) have been investigated. First, for arange of �0 values the corresponding  �� l and  �+ u values have been determined for both criteria.The corresponding generalized p-value functions (as de�ned in Section 2.2) are given in Figure 4.1.These functions were calculated as functions of the particular criterion �(�).They show, that using a left tail link modi�cation will result in a maximal absolute di�erence of 3%in estimated success probabilities at � = :1 compared to a logistic analysis. A logistic analysis can bevalidated at � = :1, if one is willing to tolerate a change of 7% in estimated probabilities. Since thisdata set contains extreme observed probabilities, it will be expected that the e�ects on the estimatedmaximal odds will be large, which is supported by Figure 4.1. In particular, a maximal change ofthe estimated odds by 5 can be detected, but the logistic link can only be validated when acceptingmaximal change by 50. Given these results, it seems to be reasonable that a noncanonical link model isnecessary if interest is focused on the odds. This is in accordance to the analysis made by the standardtests in the introduction. However, if we are only interested in the maximal probability di�erence, amodi�cation of the model seems to be unnecessary, because a maximal probability di�erence under aleft tail modi�cation of � 0:07 and � 0:03 using a right tail modi�cation can be validated at :1. Note,that consideration of the p-value for a test of (1) does not allow such a conclusion.Bottle Deposit Data (Revisited) Remember, that the standard LR test gives strong indication fora noncanonical link model. As for the menarche data changes to the estimated mean responses as wellas to the estimated odds are considered and the results are plotted in Figure 4.2. It shows, that a righttail modi�cation will result in a maximal di�erence of 3% in estimated success probabilities comparedto a logistic link analysis. This analysis can be validated at � = :1, if one tolerates a change of 10% inprobabilities. The maximal change on estimated odds is much less compared to the menarche data set.Here the logistic link can be validated in the neighborhood of a maximal change on the estimated odds of1.48 at � = :1. If the emphasis is on estimating odds, this change is certainly tolerable. Therefore, if theparameter of interest is the odds, it is certainly justi�ed to maintain a logistic link despite the observedsigni�cant improvement in �t by the classical goodness of �t statistics, when a right tail modi�cation10



is used. This example illustrates the over sensitivity of the classical tests, when the sample size is largeand the estimated variability in the link is small.Poisson ResponsesMining Fracture Data. Myers (1990, p. 336) reports on the number of injuries or fractures thatoccur in the upper seam of mines in the coal �elds of the Appalachian region in western Virginia.Four potential covariates were collected. Myers suggests that a Poisson regression with canonical (log)link utilizing three covariates (inner burden thickness, the percentage of extraction of lower previouslymined seam and the time in years that the mine has been in operation) provides a reasonable model.Since the observed counts are positive it is more important to validate the canonical link against aright tail modi�cation than a left tail one. For this data set, the residual deviance for the canonical link( = 1) is 38.03 (df=40), while for a right tail modi�cation with estimated link parameter  ̂ = �:64(:13)the residual deviance is 28.21 (df=39), indicating that a link modi�cation might be necessary. This iscon�rmed by Figure 4.5.This shows that using a right tail link modi�cation will result in a maximal absolute di�erence of 1.05 inestimated mean responses at � = :1 compared to a canonical link analysis. This change is very large sincethe median number of injuries reported is 2. The maximal possible change in no event probabilities is.115 and the maximal change for estimated odds of probabilities of no injuries is 280 at � = :1. Thereforethe canonical link cannot be validated and a right tail modi�cation is truely needed.5 Discussion and further remarksp-value Curves as a Measure of Evidence. That p-values for simple null hypotheses as well as forprecise hypotheses cannot be considered as a measure of evidence (in the sense of Bayesian posteriorprobabilities) has been forcefully shown by many authors (see e.g. Berger & Delampady (1987), Delam-pady, (1989)). This is supported for the particular problem of choosing a link function in the simulationstudy in Appendix A. Certainly, testing precise hypotheses as in (3) does not solve the problem of theassessment of the correct model in the above sense. However, these hypotheses allow at least for a muchmore exible possibility to guard against misspeci�cations towards a direction which is considered asthe more serious error (against the canonical model or in favor of the canonical model). Moreover, thisdirection can be expressed and quanti�ed in terms of entities (such as the odds) which are of primaryinterest for the experimenter. In contrast, the classical null (1) forces us, to consider the rejection of thecanonical model although being true, as the more serious error. In many cases the type II error seems,however, to be the more serious one, because acceptance of the canonical model will heavily a�ect thesubsequent data analysis (for example the MLE will be di�erent). Here, at least for frequentists, theformulation (3) is more appropriate.From our own experience we know that in many applications it is not obvious what the type I and typeII error should be { therefore, an explorative data analysis may become more attractive. In some sense,p-value curves, as suggested in Section 3, may be regarded as a sort of standardized EDA analysis.Nevertheless, practitioners often like to attach the meaning 'the probability that the null H is true' top-values (Casella & Berger (1987)). Indeed, the following argument shows that for the criteria suggestedin Section 3 the associated p-value curves provide additional knowledge about the evidence of thecanonical model. For this observe, that the choice of one of the measure of discrepancy �(�) in Section 3always implies that the two-sided test problem (3) (or its converse) reduces to a one-sided test problemconcerning the parameter �(�)( ). Hence, we are (at least approximately) in the situation of a one sidedtest problem for the unknown location parameter �(�) in a normal model. Now, p-value curves P̂ (�(�))11



have an (approximate) interpretation as posterior probabilities (see Pratt (1965) or Casella & Berger(1987)) for the probability that the canonical model is true given some prior �(�(�)). Schervish (1996)showed further that in the normal case, p-value curves can be interpreted as penalizing hypotheses thatcontain additional parameters (in the sense of Schervish's De�nition 1) that are far away from the data.Hence, p-value curves for �(�) represent a useful guide for the task of practitioners to interpret theoutcome of a pivot statistics as a measure of evidence.E�ects of Isolated Departures from the Model. Data on the e�ects of insecticides on our beetlespresented in Collett (1991, p. 142) provide an example that care has to be taken in the presence ofisolated departures from the canonical model. Fitting parallel lines for the insecticide e�ects, the resultsof a right and left tail modi�cation of the logistic link for the complete data and the data with the outlierremoved are presented in Table 5.1. While there is no evidence for link misspeci�cation, it shows thatthe residual deviance is inated when the outlier is present. Here, the residual deviance is oversensitiveto isolated departures, while the LR statistic is not.p-value curves for the probabilities (Figure 5.1) and odds (not shown) show that the logistic link can bevalidated in a neighborhood of 6 % (10.5%) maximal change to the success probabilities for the completedata (data with outlier removed). This relatively large neighborhood is the result of the medium size ofni. While the LR statistic gives the impression of a perfect �t to the logistic link, the asymptotic linkvalidation test shows some uncertainty due to sparse information about the link.Complete Data Outlier removedModel Link Residual Likelihood Estimate Residual LikelihoodEstimate Deviance Ratio Estimate Deviance Ratiologistic 21.28 (14, .08) 14.84 (13, .32)right tail 1.20 (.25) 21.45 (13, .06) .68 (1, .41) 1.12 (.23) 14.55 (12, .27) .29 (1, .59)left tail 1.43 (.37) 21.05 (13, .07) 1.1 (1, .30) 1.14 (.30) 14.65 (12, .26) .19 (1, .66)Table 5.1: Link Estimates, Residual Deviances and LR Statistics for the Flour Beetle DataThis shows that isolated departures do certainly inuence the performance of the link validation test.It is to be expected that missing covariates and overdispersion in the data also inuence the validationtest. Therefore the link validation test should only be applied after diagnostic tools for the detection ofa mean misspeci�cation such as developed by Landwehr, Pregibon and Shoemaker (1984), Pregibon(1981), Williams (1987) and O'Hara, Hines and Carter (1993) have been used. In the presence ofoverdispersion, score point hypothesis tests developed by Dean (1992) and Smith and Heitjan (1993) canbe applied. Appropriate interval hypothesis tests, however, would be preferable over these score testsby the same reasons as for testing the goodness of link. This we will briey sketched in the following.Overdispersion. We develop a validation test along the lines in Section 2 and 3 for the overdispersionparameter a > 0 in the special model of a negative binomial (NB) Poisson regression (cf. Lawless 1987).Let �̂(a) denote the MLE of the regression parameter � with �xed overdispersion parameter a, then theasymptotic covariance matrix for �̂(a) is given by (XtD(�(�(a)); a)X)�1, a diagonal matrix with ithelement given byDi(�(�(a)); a) = �i(�(a))1 + a�i(�(a)) ; where �i(�(a)) = Tiexp(xTi �(a)):Here, a � 0 where a = 0 corresponds to no overdispersion. We will se in the following that it is reasonableto measure the e�ects of overdispersion by means of the asymptotic covariance matrix of �̂(a), which12



leads to the following discrepancy measure:�over(a) = inf�2<n jj(XtD(�; a)X)jjjj(XtD(�; 0)X)jj ;where jjAjj denotes the determinant of a square matrix A and D(�; a) is a diagonal matrix with ithentry given by �i1+a�i .Lemma 5.1 �over is a strictly decreasing function with maximum �over(0) = 1 and minimumlima!1�over(a) = 0(For a proof see Appendix B.)Note that because of �over(a) � jj(XtD(�(�(a); a)X)jjjj(XtD(�(�(0); 0)X)jj�over(a) is a lower bound for the ratio of the asymptotic volume of the con�dence ellipsoids for �̂(�)under the presence of overdispersion a and no overdispersion and hence testing H : �over(a) � �0 versusK : �over(a) > �0 for some speci�ed 0 < �0 < 1 will provide signi�cant evidence for the closeness tothe GLM without overdispersion. By means of Lemma 5.1 the corresponding asymptotic test and itsp-value curve can be developed by constructing an asymptotic test for H : a > a0 = ��1over(�0) versusK : a � a0. Such a test, however, is given analogously to Theorem 2.3 using the asymptotic distributionof â, the MLE of a, given in Lawless (1987, p. 211).
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(2). Data from the following generalized logistic model with single covariate was generated:Yi ' binomial(n; pi) for i = 1; � � � ; 11 with pi = F (�0 + �1xi;  );where F (�;  ) is given by (2) and �0 = 1. Two choices for xx = (x1; � � � ; x11) were considered, xx equallyspaced between -5 and 5 and xx a standard normal random sample of size 11 and �1 was set to .5,1, or 2.This allows models with nearly symmetric true probabilities around .5 (�1 = 1), extreme probabilities(�1 = 2) and more central probabilities (�1 = :5). Note that the equally (unequally) spaced covariatecase will induce a large (small) range for the linear predictors. Therefore, we classify the cases  < 1 andequally spaced covariates ( < 1 and unequally spaced covariates) as areas with high (low) power todiscriminate against the logistic link. The other areas ( > 1 and both cases of covariate con�guration)have medium discrimination power. This will be supported by the following simulation results. Finally,we investigated two binomial sample sizes of n = 20 and n = 40.To demonstrate the inappropriateness of using a large p-value of the ordinary goodness of �t statisticsas an indicator of a good �tting model, we simultaneously calculated the p-values of the LR test oftesting  = 1 as well as the residual deviance test assuming a logistic model based on 500 replications.Values for  were chosen between .02 and 2.4 to allow up to 15% percent of absolute di�erence inthe probabilities between the logistic and generalized logistic model. We recorded the percentage ofcases, where the p-value of the LR test statistic was larger than .2 (see Figure A.1) and .5 (not shown),respectively and the percentage where the p-value of the residual deviance statistic was larger than .5(see Figure A.2) and .75 (not shown), respectively based on 500 replications. Di�erent p-value boundsfor the LR statistic and the residual deviance were chosen, since the LR test is primarily used as a testto detect deviation from the canonical link, while the residual deviance test is used as a goodness of �ttest where it is common practice to assume a higher p-value as indication of a good �tting model.Considering (as it is common practice) a p-value larger than .2 for the LR test as indication of a good�tting model, the test will be unable to detect the large maximal di�erence of 15% (10%) in probabilityup to 12.0% (6.4%) in the area of high, up to 28.2% (27.7%) in the area of medium and up to 46.7%(44.8%) in the area of low discrimination power when n = 20 (n = 40). The percentages are roughlyhalved when LR test statistics with a p-value greater than .5 are considered.If one relies only on a residual deviance goodness of �t statistic as measure of goodness assuming ap-value of larger than .5, say, as an indication of a good �tting model, one can see that this test isespecially unable to detect link misspeci�cation when  > 1, i.e. in the area of medium discriminationpower. In particular, we observe that up to 8.4% (7.8%) in the area of high, up to 64.9% (44.7%) inthe area of medium and 31.4% (36.2%) in the area of low information of the residual deviance test areunable to detect a maximal absolute di�erence of 15% (10%) in probabilities when n = 20 (n = 40)assuming a p-value of .5 as indication of a good �tting model. Again, these percentages are roughlyhalved when a p-value of .75 is assumed as su�cient evidence for the canonical model.In a second step, we determined the sensitivity of these two tests, i.e we are interested in the number oftimes the test would reject the canonical model, when in reality there is at most a negligible deviationfrom the canonical model. For this, we assumed a maximal absolute di�erence of 5% in probabilitiesas a negligible deviation from the logistic model. It turns out, that the residual deviance test has lesssensitivity against small deviations from the canonical model than the LR test. Both tests, however,are too sensitive in areas of high discrimination power and when the sample size is large (n = 40). Inparticular for the LR test, we observe that for n = 20 (n = 40) up to 20.8% (34%) in the area of high,up to 15% (23.2%) in the area of medium and up to 9.2% (13%) in the area of low discrimination powerto reject the logistic model at � = :05 when the true underlying model only deviates by at most 5%in the probabilities from the logistic model. For the residual deviance test, the same percentages are16



11.4% (28.2%) in the area of high, 4.8% (7%) in the area of medium and 8.6% (8.2%) in the area of lowdiscrimination power when n = 20 (n = 40).To summarize, these results clearly demonstrate, that on the one hand there is no guide on how largea p-value has to be, before it gives su�cient indication for a good �tting model. In any case, theyhave to be much larger than signi�cance levels for rejecting the point null hypothesis. In particular, theresidual deviance test turns out to be very poor in detecting a large deviation from the canonical model.In addition, prediction for some covariate values within the range of observed covariate values will becompletely unreliable. Therefore, ordinary goodness of �t tests such as the residual deviance test oreven the LR test for testing logistic link within the class of generalized logistic links should only be usedvery carefully to validate the logistic regression model. Large p-values turn out to be misleading. Onthe other hand, for certain (unknown) parameter con�gurations which provide high information aboutthe link, both tests are too sensitive to the occurrence of deviations from the logistic model, which aretoo small to be of importance to the data analyst.The Pearson �2 statistic assuming a logistic model has been also investigated. We obtained similarresults for other GLM's which are not displayed by the ease of brevity.Small Sample Properties of the Validation Test when Verifying the Logistic Model. Thesame simulation setup has been used to investigate the small sample behavior of the proposed validationtest. We consider maximal absolute di�erences of 15% in probabilities from the logistic model as largedeviation, while a maximal absolute di�erence of 5-10% are tolerable deviations from the link. Therefore,we investigated H : �p( ) > �0 versus K : �p( ) � �0 for �0 = :1 and .05. We expect the power ofthe asymptotic link validation test to be larger for the equally spaced covariate case compared to theunequally spaced case and when the true link has a heavier right tail ( < 1) compared to a lighter righttail ( > 1). Again sample sizes of n=20 (solid line) and n=40 (dotted line) were studied. Cases wherethe maximization routine failed to converge were deleted. The observed power based on 500 binomialdata sets for �0 = :1 is presented in Figure A.3.In all cases considered, the validation test allowing for 10% maximum absolute di�erence in probabil-ities maintains its signi�cance level � of .1, with being more conservative on the left hand side of thealternative K ( = :35) and more liberal on the right hand side ( = 1:84). A possible explanation forthis is the smaller area of large di�erence between the link parameters for  > 1 compared to  < 1.For the same reason, the power of the test is higher by about 50% for the equally spaced covariate case.The power of the test increases by about 50% as sample size changes from n = 20 to n = 40.The reduction in power is large especially for n = 20 and unequally spaced covariates. Even for n = 40 themaximal power is .3, indicating that larger sample sizes than 40 are required. However, the test maintainsequally well its signi�cance level of � = :1 at both end points of the alternative ( = :65 and  = 1:39).In summary, the validation test maintains its signi�cance level. The power of the test depends on whetherdata is collected in areas of large di�erence between the logistic link and the generalized logistic link.For a validation neighborhood of 10% in probabilities a sample size of n = 20 is su�cient for a maximalpower of .5 in the case when the data can determine the areas of the large di�erence while a samplesize of n = 40 is needed for data which is sparse in areas of large di�erence. For the smaller validationneighborhood of 5% in probabilities, sample sizes larger than n = 40 are required. Hence, the proposedclassi�cation of regions of the parameter space into di�erent zones of discrimination power is an excellentindicator for the actual power of the validation and discrimination test.
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5.1 Poisson ResponsesFor Poisson responses we use the following link family (Czado 1992)F (�;  ) = exp(h(�;  )); (17)where h(�;  ) was previously de�ned by (2).  = 1 corresponds to the canonical link. We will denotethese links as generalized Poisson links. We investigate now in detail the behavior of the link validationtest based on the maximal change in the no event probabilities �np( ) de�ned in (15). A surface plot(not shown) of the absolute di�erence in the no event probabilities for the generalized Poisson linkmodel and the ordinary Poisson regression model reveals the same features as shown in Figure 3.1 forthe binomial responses. Therefore, we again can classify four areas of varying degree of informationabout the link parameter  , namely area of high discrimination power when  < 1 and a large range oflinear predictors �i, area of low discrimination power when  ; 1 and a small range of �i's and mediumdiscrimination power when  > 1. Table A.1 gives for some special �0 values the corresponding interval[ � �  l;  � +  u] to insure �np( ) < �0 for all  2 [ � �  l;  � +  u]:�np( ) = �0.01 .025 .05 .075 .1 .15 .20 � �  l .65 .32 -.001 -.32 -1.00 -1.80 � +  u 1.37 1.79 2.26 2.80 4.22 6.49Table A.1: Choice of the link parameter  to achieve a maximal absolute di�erence�np( ) = �0 between the generalized Poisson model and canonical Poisson modelData from the following generalized Poisson model with a single covariate was generatedYi � Poisson(�i)i = 1; � � � ; k with �i = F (�0 + �1xi;  )where F (�;  ) is given by (17) and �0 = �1. We present only an equally spaced covariate case, wherex = (x1; � � � ;xn) is equally spaced between .5 and 2.5. Three values for the regression slope �1 werechosen: �1 = 1:5; 2; 2:5. This allows for a maximal value of �i of 2.75,4,5.25, respectively, i.e. for  < 1 weexpect lowest (highest) power of the link validation test for �1 = 1:5(�1 = 2:5). Finally, we investigatedn = 25 and n = 50. Asymptotic validation tests of H : �np( ) > :05 versus K : �np( ) � :05 wereperformed at level � = :1 using 500 Poisson regression data sets and the observed power is given inFigure A.4. Cases where the maximization routine failed to converge were deleted.As for binomial responses, the validation test allowing for 5% maximum absolute di�erence in no eventprobabilities maintains its signi�cance level � of .1 with being more conservative on the left hand side ofthe alternative K( = :32) and more liberal on the right hand side ( = 1:79). A similar explanation forthis as in the binomial case can be given. As expected the power increases as the range of �i increases.Further, there is no substantial increase in power when we increase n from 25 to 50.In summary, the asymptotic link validation test performs very well for Poisson responses; it maintainsits signi�cance level and the power depends on whether data is collected in areas of large di�erencebetween the canonical link and the generalized Poisson link. A sample size of n = 25 is su�cient.Appendix B (Proofs)Fahrmeir and Kaufmann (1985) proved the asymptotic results for ordinary GLM's, i.e for GLM's with�xed link. Their results are now extended to the case of an estimated link parameter  .18



Sketch of proof for Theorem 2.1. The proof of Theorem 2 (p. 349) of Fahrmeir and Kaufmann(1985) for noncanonical links (see Section 4.1) can be followed using a Taylor expansion of the loglikelihood l(��) around ��0.Sketch of proof for Theorem 2.2. First, an analogue of Lemma 2 (Fahrmeir and Kaufmann (1985),p. 361) will be derived:Lemma B1 Under (R1) and (R3), Insn D! Np+1(00; I) as n!1.Proof of Lemma B1. As in Fahrmeir and Kaufmann (1985), the proof uses the central limit theorem fortriangular arrays and establishes the validity of the Lindeberg condition. For this, de�ne the triangulararray Zni = �tI� 12n ss(yi; xi; ��0)where ss(yi; xi; ��0) is the vector of individual score contributions, i.e. given by:ss(yi; xi; ��0) = a(�)�1(dixi1Fi1(yi � �i); � � � ; dixipFi1(yi � �i); diFi2(yi � �i))De�ne �ni = �tI� 12n L(xti��0;  0), whereL(xti��0;  0) = a(�)�1(dixi1Fi1; � � � ; dixipFi1; diFi2):Note that this vector above is bounded when fxn; n � 1g by condition (R3), since di is a continuousfunction of F (xti��0;  0). We can now express Zni asZni = �ni(Yi � F (xti��0;  0)):Under (R1) and (R3), we have with the Cauchy-Schwarz inequalitymaxi�n�2ni � jjL(xti��0;  0)jj2�minI�1n � k�minI�1n ! 0 as n!1:Then we argue as in Fahrmeir and Kaufmann (1985,p363) for compact regressors that the Lindebergcondition is satis�ed.Sketch of proof for Theorem 2.1. Using Lemma 3.1 and the following conditionR5 For every " > 0max�2Nn(")jjVn(��) � Ijj ! 0 in probabilitywhere Vn(��) = I� 12n Hn(��)I� t2n and Nn(") is de�ned as Nn(") = f�� : jjI t2n (�� � ��0)jj � "g,we proceed as for the proof of Theorem 3 in Fahrmeir and Kaufmann (1985). Finally, it remains toshow that (R1),(R3) and (R4) are su�cient for (R5). For this, we argue as in the proof of Theorem 4(Fahrmeir and Kaufmann, p.364) considering the same partition of matrices as for In(��) to adjust forthe additional estimation of the link parameter  .Proof of Lemma 5.1. It is su�cient to show that jjXtD(�; a)Xjj is strictly decreasing. To this end let0 � a1 < a2 and rewrite D(�; a1) = A(�) +D(�; a2) whereA(�) = diag( (a1 � a2)�2i(1 + a1�i)(1 + a2�i))Now apply the spectral decomposition theorem and the fact that the set of positive de�nite matrices isclosed under multiplication and forming inverses. This shows that jjA(�)D�1(�; a2) + Ijj < 1, where Idenotes the unity matrix. 19
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Figure A.3: Observed power of the link validation test for binomial responses of H : �p( ) > :1 versusK : �p( ) � :1 at signi�cance level � = :1
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Figure A.4: Observed power of the link validation test for Poisson responses of H : �np( ) > :05 versusK : �np( ) � :1 at signi�cance level � = :05 (n=25(50) solid (dotted) line)
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