Chair of Structural Analysis

EMPIRE: A N-Code Coupling Tool for Multiphysic Co-Simulations
EMPIRE (Enhanced MultiPhysics Interface Research Engine)

Author: S. Sicklinger, T. Wang

Introduction: What is N-Code Coupling? Interface to OpenFOAM®

Most technical products are an assembly of different sys-
tems. In product design, simulation is a well established
tool in order to accelerate the development-to-market
time. For a lot of physical phenomena sophisticated sim-
ulation tools exist, e.g. for fluids Computational Fluid
Dynamics (CFD) or for structures Computational Solid
Mechanics (CSM). A product usually consists of systems
which may be modeled in different dimensions i.e. the
coupling of ordinary differential equations (ODEs) and

The EMPIRE API is very easy to use. It is simple to incorporate the API to OpenFOAM®. One may start with a standard
OpenFOAM® solver like pimpleDyMFoam and add the following calls to the solver:

#include "EMPIRE_API.h"
int main(int argc, char sxargv) {

EMPIRE_API Connect(argv[1l]);

EMPIRE_API_sendMesh(BNumNodes, BNumElems , BNodesPerElem, BNodeCoors, BNodeIDs, BElemTable);

for (int i = 1; i <= numTimeSteps; i++) f{
do {

EMPIRE_API_recvVectorField (BNumNodes * 3, dofsRecv);

partial differential equations (PDEs) is required. For in- dunmyUpdatePDE () ;
. . ; EMPIRE_API_sendVectorField (BNumNodes % 3, dofsSend);
stance the simulation of a car requires a CSM solver to } while (EMPIRE_API_recvConvergenceSignal() == 0);

reproduce the structural behavior. Moreover, the simu- éMPIRE_API_Disconnect 0
lation of the flow around the car necessitates the use of a Figure 1: TUM example CSM - OpenFOAM coupling return (0);
CFD solver. The CSM and CFD solver need to resolve all }

four dimensions, i.e. three spatial and time dimensions to accurately model the physics. Other components like sensor

or actors (e.g. hydraulic system of the brakes) may be modeled with two dimensions, i.e. one spatial and one time. Thus

the CSM and CFD solver need to be coupled to the solvers which represent the sensors and actors.

A concept for this kind of Co-Simulation is presented where in contrast to Fluid-Structure Interaction the number of

simulation tools is larger than two. Furthermore, the presented concept accounts for the coupling of PDE and ODE

systems. The motivation for Co-Simulation (also called partitioned coupling) is the high flexibility and reusability of

existing simulation tools. The presented framework is based on a client-server approach where MPI-2 functionality

is used to implement socket-like communication between the client and the server. The dataflow handling inside the

server program is done dynamically, hence the dataflow is determined at runtime. The presented approach can also

handle non-matching discretizations and is suited for very large simulations involving a large number of unknowns. The

software concept is illustrated by interfacing OpenFOAM® with the in-house coupling tool called EMPIRE (Enhanced

MultiPhysics Interface Research Engine) to various other simulation tools. By this OpenFOAM® capabilities can be

extended to very complex simulation scenarios involving a large number of different physical phenomena e.g. nonlinear

CSM with control.

e ::,—-;“\“\

Basic Concept and Communication Hub Co-Simulation for N Codes

One major challenge is the design of Co-Simulation algorithms for a large number of different simulation tools. The main

EMPIRE is based on a client server
focus of our research is to develop robust, efficient and accurate Co-Simulation methods.

approach. This gives very high
flexibility within the context of Co-
Simulation. Thus EMPIRE consists
of two parts. One is the server
called EMPEROR the other is the
EMPIRE API which interacts with

Coupling Algorithms for N Codes

the client code. The setup of the
coupling algorithm is entirely de-
fined via a xml file which EM-
PEROR reads at the beginning of
a Co-Simulation. The clients can
be connected to EMPEROR at any-
time during the simulation.

pling schemes may suffer from stability and accuracy is-
sues. EMPIRE has a new approach for tackling these prob-

The coupling algorithm for a large number of clients Ral 4al
should have no flow dependency in order to avoid a com- CFD)
putational load imbalance of the Co-Simulation. There-
fore Jacobi like communication patterns are well suited [La] 2 Bal BY Bal Bbl
for these kind of simulations. However these loose cou-
M | pY | 4b] |)
| ! |

lems while preserving flexibility and reusability of client
codes.

tn tn_l_]_ tn—|—2

Figure 5: Communication pattern for loose Jacobi scheme

Demonstration Example - Multiphysics Segway

The Multiphysics Segway is a model problem
to test the coupling algorithms which we de-
veloped. The idea is to build an inverted pen-
dulum like problem which is evolutionary. The
tirst evolution should be the classical inverted
pendulum (segway). In a second stage the
rigid truss should be replaced by a very flexi-

EMPIRE API - Client API
e Input based on XML

EMPEROR - Server
e Input based on XML

e Clients connect via Socket-like MPI-2 communication e Asynchronous listening (OpenMP)

e Clients connect via Socket-like MPI-2 communica-
tion

e Written in C++

e Wrapped in C for better interoperability (Tested with

C++, C, FOTRAN and JAVA) e Meta-database data structure ble beam which adds the need of a structural

: . nonlinear solver. The last stage should acti-

o Han;:lles all the MPI calls internally (not visible to the e Very open data structure vate the surrounding fluid by attaching a sail
user

like structure to the top of the flexible beam

e Very efficient and accurate mapping algorithms

Spatial Mapping

EMPEROR handles non-matching
grid problems. The user can
choose between conservative and
consistent mapping methods. Highly
efficient mapping methods based
on dual mortar are also available.
The consistent condition of map-
ping the data field u(x,y,z) from
surface mesh A to surface mesh B

which adds the necessity for a fluid solver to
the Co-Simulation scenario. The model should
be built in hardware in order to compare sim-
ulations to reality. For the last stage the fol-
lowing codes need to participate in the Co-
Simulation.

e Controller

e Rigid Body Dynamics
e Sensor Dynamics

e Actor Dynamics

e Structural Dynamics

e Computational Fluid Dynamics

Figure 6: CAD model of the Multiphysics Segway

is:
u(x,y,z)p = u(x,¥,z)a
The mortar method can be derived

for mapping by incorporating a
weighted residual method for the interface. From discretization we have s

u(x,y,z)a = Nj -ty

u(x,y,z)p = Ng - Up

where N represents the shape function vector. *

The weighted residual method may be written as

/BNBNg'quB:/BNBNZ;'uAdB O O O

: o : : Figure 7: Stages of Multiphysics S
Note that the integration is carried out over boundary B on both sides. BHTE £ e OF THHPYSIcs Segway

Written in matrix form

Cpp-up =Cpa-Ua

Since the matrix Cgp is a sparse matrix, solving the equation system is more efficient than a full matrix.

Supervisor: K.-U. Bletzinger
Aduvisor: R. Wiichner

