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Abstract—We analyze the achievable sum rate of the Gaussian
MIMO broadcast channel. We first consider Multiple-Input
Single-Output (MISO) channels and derive the large system limit
of the sum capacity as the number of users and transmit antennas
go to infinity with a fixed ratio. We then consider Multiple-
Input Multiple-Output (MIMO) broadcast channels and fix the
number of users and let the number of transmit and receive
antennas tend to infinity with fixed ratio. As in this case an
asymptotic expression for sum capacity is hard to obtain, we
evaluate the large system sum rate corresponding to successive
zero-forcing beamforming with Dirty-Paper Coding. The analysis
gives a lower bound on the large system sum capacity, which is
numerically observed to be quite close. In addition, large system
analysis is applied to estimate the relatively small performance
losses with respect to sum capacity of successive zero-forcing
beamforming with and without Dirty-Paper Coding in finite
MISO systems.

Index Terms—Broadcast Channels, Large system analysis,
Multiple-Input Multiple-Output (MIMO) systems.

I. I NTRODUCTION

To achieve the sum capacity of the Multiple-Input Multiple
Output (MIMO) broadcast channel, numerically complex iter-
ative methods are needed to determine the optimum transmit
covariance matrices [1], [2], [3]. This has motivated a wide
variety of algorithms that aim to approximate the sum capacity
closely with reduced computational complexity. For example,
one approach is to decompose the MIMO broadcast channel
into a system of scalar interference free subchannels, which
are allocated across users [4]. Interference can be suppressed
through a combination of spatial zero-forcing and/or Dirty
Paper Coding (DPC) [5].

In addition to simplifying the computation of optimal co-
variance matrices, approximate algorithms can also facilitate
performance analysis. Here we analyze the performance of the
Successive Encoding Successive Allocation Method (SESAM)
proposed in [6]. This method assigns beams sequentially
according to a greedy criterion, and eliminates interference
through both zero-forcing and DPC. A key feature is that it is
non-iterative, meaning that the spatial beams are successively
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computed one at a time. A similar decomposition for Multiple-
Input Single-Output (MISO) systems into scalar subchannels
has been proposed in [4], and the greedy allocation stems
from [7]. These methods have been observed to be very
efficient in terms of reducing numerical complexity with only
marginal performance degradation.

Our goal in this paper is to derive an analytical expression
that accurately estimates the average sum capacity of the
MIMO Gaussian broadcast fading channel withi.i.d. Rayleigh
fading. This is quite challenging for finite-size systems (i.e.,
finite number of users and antennas), hence we instead con-
sider large system performance limits in which the number
of users and/or antennas tend to infinity. Evaluating a large
system limit of this sum capacity, which accurately estimates
the sum capacity of a finite system, still appears to be quite
challenging. Thus, we first consider the special case of non-
cooperating receive antennas i.e., a MISO system, and present
an exact analytical expression for the sum capacity in the limit
as the number of transmit antennas and users each tend to
infinity with fixed ratio. This expression only serves as a weak
lower capacity bound for MIMO channels (in which case some
receivers cooperate). We therefore proceed to derive the sum
capacity of SESAM (with MIMO channels) in the large system
limit in which the number of users is fixed, and the number of
transmit and receive antennas each tend to infinity with fixed
ratio. This serves as a tight lower bound for the asymptotic
sum capacity of the MIMO broadcast channel.

We also apply the preceding results to the MISO broadcast
channel, and quantify the loss in sum capacity incurred when
beams are assigned successively, as proposed in [7] and [8],
relative to the optimal beams. Our results show that this
performance loss is relatively minor. Finally, numerical results
show that the asymptotic results for both the MIMO and MISO
successive assignment schemes give accurate estimates of the
performance of finite-size systems.

Other suboptimal methods in which zero-forcing beamform-
ing is used alone to avoid the high complexity associated with
DPC are proposed in [8], [9].1 The performance of those
algorithms has been demonstrated primarily by simulation
results. Asymptotic results as the number of users becomes
infinite are also presented in [7], [8] and [9]. However, those
results cannot be used to estimate the performance of a finite-
size system. This is especially true for the algorithms without
DPC in [8] and [9], which are optimum in the limit of infinitely

1Those algorithms have been developed for MISO systems and can be
extended to MIMO systems by considering each eigenmode of the channel
matrices as a “virtual” MISO user. A more advanced approach including the
receive filters in the successive optimization can be found in [10].
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many users, but show substantial performance degradation
compared to the optimum, when the number of users is finite.

Related work in which large system analysis is used to
estimate the performance of different system models is given
in [11] and [12]. There the ergodic performance of MIMO
systems is evaluated in the limit of infinitely many transmit
and receive antennas given statistical channel knowledge at
the transmitter. In [13] and in [14] MISO systems with
infinitely many transmit antennas and users are analyzed,
and asymptotically optimum parameters are applied to finite
systems, giving near-optimum performance results. Large sys-
tem analysis is applied to multi-cell MISO systems in [15],
[16], [17], and [18], where the number of antennas at the base
stations and the number of users tend towards infinity.

In the next section we explain the system model and sum
capacity objective. The large system limit of sum capacity
for the MISO broadcast channel is derived in Section III,
and the asymptotic sum capacity of SESAM for the MIMO
broadcast channel is presented in Section IV. The analysis of
successive beam assignment for MISO channels is carried out
in Section V. Numerical results are shown in SectionVI, and
the paper concludes with Section VII.

Notation: Bold lower and uppercase letters denote vec-
tors and matrices, respectively.(•)T and (•)H describe the
transpose and the Hermitian of a matrix, respectively.ρi(A),
tr(A), and |A| are the ith eigenvalue, the trace, and the
determinant of the matrixA, respectively, andA � 0 implies
thatA is positive semi-definite.null{A} andspan{A} denote
the null-space and the range of the matrixA, respectively.
diag(a1, . . . , ai) denotes a diagonal matrix with the elements
a1, . . . , ai on its diagonal andblockdiag(A1, . . . ,Ai) is a
block-diagonal matrix.Ii and0i arei× i identity matrix and
i × i zero matrix,respectively.ej denotes thej-th canonical
unit vector andδ(x) is the Dirac function.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiuser MIMO system with a base station
having NT antennas andK users, each equipped withNR

antennas. Gaussian codebooks are used at the transmitter,
the channel matrix between the base station and userk is
denoted asĤk ∈ CNR×NT and Rayleigh fading is considered.
This implies that all entries in the channel matriceŝHk

follow a circularly symmetric Gaussian distribution with zero
mean. The variance is set to one for all users and it is
furthermore assumed that all entries in the channel matrices
are independent. The transmit power at the base station must
not exceed the limitPTx, perfect Channel State Information
(CSI) is assumed at the transmitter, and the additive white
Gaussian noise has zero mean and variance one.
In this paper we consider the large system limit of number of
transmit and receive antennas simultaneously going to infinity
at a finite fixed ratioα, i.e., NT → ∞, NR → ∞, α = NT

NR
.

All other parameters such as transmit powerPTx and number
of usersK remain finite. We first try to analyze the sum
capacity in this limit and explain, why this task is not solved
in this paper, but the special case of non-cooperating receive
antennas is considered instead and additionally a lower bound

for the asymptotic sum capacity with receive antenna coop-
eration is presented. Sum capacity can be computed via the
duality between broadcast channel and the dual multiple access
channel [19]. Denoting the transmit covariance matrix of user
k in the dual multiple access channel asWk ∈ CNR×NR, the
sum capacityRsum capresults from the following optimization
problem

Rsum cap= max
W

log2

∣

∣

∣
INT + Ĥ

H
WĤ

∣

∣

∣
,

s.t. tr (W ) ≤ PTx, W � 0, W blockdiag, (1)

where ĤH =
[

ĤH
1 , . . . , Ĥ

H
K

]

∈ CNT×KNR and W =

blockdiag (W1, . . . ,WK). When the number of transmit and
receive antennas both go to infinity, it has to be proven that
Rsum cap converges to an asymptotic limit independent of the
channel realizationsH . This can be done by showing that
the empirical eigenvalue distributionF

ĤHŴ Ĥ
(x), whereŴ

denotes the optimum with respect to (1), becomes independent
of the actual channel realizationŝHk in the large system limit.
The empirical eigenvalue distribution states the fractionof
eigenvalues of the matrixĤHŴ Ĥ smaller or equal tox,
i.e.,

F
ĤHŴĤ

(x) =
1

NT

∣

∣

∣

{

ρi

(

Ĥ
H
Ŵ Ĥ

)

, i = 1, . . . , NT |

ρi

(

Ĥ
H
k ŴkĤk

)

≤ x
}∣

∣

∣
. (2)

In case it can be shown thatF
ĤHŴ Ĥ

(x) converges to an
asymptotic limit F (∞)

ĤHŴ Ĥ
(x, α) independent of the chan-

nel realizations and only dependent onα, the sum ca-
pacity also converges to an asymptotic limit. It can be
obtained via the asymptotic eigenvalue distribution (a.e.d.)
f
(∞)

ĤHŴĤ
(x, α) of the matrixĤHŴ Ĥ, which is the derivative

of F
(∞)

ĤHŴ Ĥ
(x, α), i.e., f (∞)

ĤHŴ Ĥ
(x, α) =

∂F
(∞)

ĤHŴĤ
(x,α)

∂x
of

F
(∞)

ĤHŴĤ
(x, α), according to

Rsum cap

NT
−→

NT,NR→∞

NT=αNR

∞
∫

−∞

log2 (1 + x) f
(∞)

ĤHŴĤ
(x, α) d x =

V
ĤHŴĤ

(1). (3)

V
ĤHŴ Ĥ

(γ) is the Shannon transform of the matrix̂HHŴ Ĥ

as defined in [20, Definition 2.12]. However, closed form
solutions for (3) exist in casêW is independent ofĤ [20,
Theorem 2.39] orĤH

Ŵ
1
2 contains i.i.d. entries [20, The-

orem 2.39], but not for the problem at hand, wherêW is
a function of the channel matricesHk via the optimization
in (1), That is why an asymptotic expression for the sum
capacity in MIMO systems is difficult to obtain. Thus, we will
consider the special case of non-cooperative receive antennas
in the next section and provide a lower bound for the large
system sum capacity in the succeeding section.

III. L ARGE SYSTEM SUM CAPACITY WITH

NON-COOPERATIVERECEIVE ANTENNAS

When the antennas at the receivers cannot cooperate, i.e.,
when the signals from different receive antennas at the same
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user cannot be combined constructively to increase receive
SNR, the transmit covariance matricesWk from Problem (1)
in the dual uplink channel are constrained to be diagonal.
The following theorem is therefore especially useful in MISO
systems with an infinite number ofK ′ = KNR users.

Theorem 1:The large system sum capacityRnon coop in the
MIMO broadcast channel with non-cooperative receivers is
given by

Rnon coop

NT
−→

NT,NR→∞,

NT=NRα

[

K

α
log2

(

1 +
α

K
PTxm1

)

−

− log2 (m1) + (m1 − 1) log2(e)] , (4)

wheree is Euler’s number and

m1 =
1

2

(

1− K

α

)

− K

2PTxα
+

+

√

(

1

2

(

1− K

α

)

− K

2PTxα

)2

+
K

PTxα
.

Proof: Considering the constraint of non-cooperative re-
ceivers, Problem (1) reads as

Rnon coop= max
W

log2

∣

∣

∣
INT + Ĥ

H
WĤ

∣

∣

∣
,

s.t. tr (W ) ≤ PTx, W � 0, W diagonal. (5)

In order to derive the large system sum capacity with non-
cooperative receivers, the following lemma will be needed.

Lemma 1:For an infinite number of transmit and receive
antennas, the sum capacity in the MIMO broadcast channel
without receive antenna cooperation is achieved by equal
power distribution, i.e.,Ŵ−INRK

PTx
NRK

−→
NT,NR→∞,

NT=NRα

0NRK , with

Ŵ denoting the solution achieving the optimum in (5).
Proof: see Appendix A

Lemma 1 suggests that the power allocated to each re-
ceive antenna (or user in MISO systems) tends to zero
for an infinite number of receive antennas. This effect is
however compensated by the fact that the elements in the
channel matrices are assumed to have variance one, so that
E
[

eTj ĤĤHej

]

= NT, i.e., the channel gain at each receive
antenna goes to infinity in this limit. When the channel matri-
cesĤ are normalized so that they consist of Gaussian i.i.d.
entries with zero mean and variance1

NT
and the normalized

channel matricesH := 1√
NT

Ĥ are used, the asymptotic

sum rate reads asRnon coop = log2

∣

∣

∣
INT +

PTx
NRK

ĤHĤ

∣

∣

∣
=

log2
∣

∣INT + PTx
α
K
HHH

∣

∣ and power allocation and channel
attenuation compensate to a finite value. Similarly to (3), the
sum rateRnon coop can be computed in the large system limit
via the Shannon transformVHHH(γ) of the matrixHH

H

according toRsum, equal

NT
−→

NT,NR→∞

NT=NRα

VHHH

(

PTx
α
K

)

. As the matrix

H contains independently and identically Gaussian distributed
entries with variance1

NT
, the Shannon transformVHHH (γ)

is given by [20, Theorem 2.39]

VHHH (γ) =
K

α
log2 (1 + γηHHH(γ))−log2 (ηHHH(γ))+

+ (ηHHH(γ)− 1) log2(e), (6)

wheree is Euler’s number.ηHHH(γ) is theη-transform of the
matrix HHH as defined in [20, Definition 2.11] and stems
from the implicit equation [20, Theorem 2.39]

K

α

(

1− 1

1 + γηHHH(γ)

)

= 1− ηHHH(γ), (7)

As by definition, theη- transform takes only values between0
and1, ηHHH(γ) results from the positive solution of (7) and
is given by

ηHHH(γ) =
1

2

(

1− K

α
− 1

γ

)

+

√

[

1

2

(

1− K

α
− 1

γ

)]2

+
1

γ
.

(8)
Introducing the variablem1 = ηHHH

(

PTx
K
α

)

, and insert-
ing (8) with γ = PTx

α
K

into (6), leads to the desired result
in (4).

IV. L OWER BOUND FOR THELARGE SYSTEM SUM

CAPACITY IN THE MIMO B ROADCAST CHANNEL

Theorem 1 can also be used as a lower bound in case the
antennas at the receivers can cooperate. However, this bound
is not very tight especially in case of a large number of
cooperating receive antennas. For this reason we will introduce
a signaling scheme in Section IV-A, which can be numerically
analyzed in the large system limit and leads to a lower bound
for the sum capacity that turns out to be tight by numerical
simulations. The large system analysis is then carried out in
Section IV-B.

A. Spatial Zero-Forcing with Dirty Paper Coding

In order to avoid the numerical difficulties associated with
the solution of (1), one can decompose the MIMO broadcast
channel into a system of scalar, interference-free subchannels,
where interference suppression is achieved by a combination
of DPC and zero-forcing. Once an encoding order for DPC
has been determined, interference from previously encoded
data streams is perfectly cancelled by DPC and interference
suppression from data streams encoded afterwards is assured
by beamforming. These concepts have been applied to MISO
systems in [7] and to MIMO systems in [6] and simulation re-
sults in these references show close to optimum performance.
The sum rateRZF DPC achievable with successive zero-forcing
and DPC computes according to

RZF DPC=

min(NT,KNR)
∑

i=1

log2 (1 + pi,ZF DPCλi,ZF DPC) , (9)

where λi,ZF DPC is the effective channel gain of the data
stream encoded in theith step, which considers the effect
of channel attenuation, transmit and receive beamforming.
Proceeding according to the algorithm in [6], the subchannel
gainsλi,ZF DPC compute according to

λi,ZF DPC = ρ1

(

Ĥπ(i)PiĤ
H
π(i)

)

(10)
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whereπ(i) is the user which theith subchannel is allocated
to.

Pi = INT −
i−1
∑

n=1

tnt
H
n (11)

projects intonull{tH1 , . . . , tHi−1} and tn denotes the transmit
beamforming vector for thenth data stream, which is given
by the unit-norm eigenvector corresponding to the principal
eigenvalue of the matrixPnH

H
π(n)Hπ(n)Pn [6]. The power

pi,ZF DPC allocated to theith data stream results from dis-
tributing the power budgetPTx to the scalar interference-free
subchannels via water-filling, so that

pi,ZF DPC = max

(

0, η − 1

λi,ZF DPC

)

, (12)

where the water-levelη is given by the implicit equation
∑min(NT,KNR)

i=1 pi,ZF DPC= PTx. The algorithm therefore works
sequentially. First the transmit beamformerstn and the user
allocationπ(i) are determined, from which the channel gains
λi,ZF DPC result2 and then the power allocation is done via
water-filling.
To find the optimum user allocation it would be required to
perform an exhaustive search over all possible user allocations,
which is complex. In [6] it is therefore proposed to allocate
the data streams in a successive manner, i.e., to allocate
in each step a data stream to that user which leads to the
strongest increase in sum rate. That is equivalent to selecting
π(i) = argmaxk ρ1

(

ĤkPiĤ
H
k

)

. However likewise to the
problem of finding the asymptotic sum capacity, this allocation
leads to a dependency of the matricesĤπ(i) on the matrices
Pi, which makes an asymptotic analysis of the channel gains
in (10) involved. Instead, we therefore consider a simple user
allocation, whereδm with m = min(NT,KNR) successively
encoded data streams are allocated to the same user with
1
m

< δ ≤ 1 being an a priori chosen constant, where
1
δ
∈ N. Furthermore these groups of successively encoded data

streams are allocated to the users in a round robin fashion. This
implies that the data streamsi = 1, . . . , δm are allocated to
user1, i = δm+1 . . . , 2δm to user2 and so and so fourth until
data streamsi = Kδm+1, . . . , (K+1)δm are given to user1
again. Thus,π(i) = mod

(⌊

i−1
δm

⌋

,K
)

+ 1. This way, the user
allocation and consequently the matricesPi are independent
of Hπ(i). The reason for allocation groups of successively
encoded subchannels to the same user, i.e., choosingδ 6= 1

m
,

will be explained in the next section.

B. Analytical Expression for a Lower Bound of the Sum
Capacity

To obtain a lower bound for sum capacity, a large system
expression for the sum rate achievable with the signaling
scheme presented in the previous section will be derived
in this section. As pointed out there, this algorithm works
sequentially, i.e., first transmit beamformers are determined
to obtain the scalar subchannel gains and then water-filling
is performed. One can therefore first consider the asymptotic
limit of the subchannel gains, and in case it turns out that these

2The corresponding optimum receive filters are given by matched filters [6].

gains become independent of the current channel realization
in the large system limit, water-filling can be performed over
these asymptotic gains. In the following, it will thereforebe
first shown that the empirical distribution of the subchannel
gainsλi,ZF, DPC from (10) converges to an asymptotic limit.
Analogously to (2), the empirical distribution of subchannel
gains denotes the fraction of subchannel gainsλi,ZF, DPC that
is smaller or equal tox and an asymptotic limit exists, in
case this distribution becomes independent of the channel
matricesĤk for an infinite number of transmit and receive
antennas. For notational convenience we will use the normal-
ized subchannel gainsλi,ZF DPC

NR
= 1

NR
ρ1

(

Ĥπ(i)PiĤ
H
π(i)

)

=

ρ1

(

Hπ(i)PiH
H
π(i)

)

, where the channel matricesHk :=
1√
NR

Ĥk have been normalized so that its entries are Gaussian
i.i.d. with zero mean and variance1

NR
. In case the asymptotic

empirical distribution of normalized subchannel gains andits
derivative, which will be denoted asf (∞)

ZF DPC(x) in the follow-
ing, becomes independent of the current channel realizations
in the large system limit, water-filling can be applied and the
sum rateRZF, DPC can be computed according to

RZF, DPC

m
=

1

m

m
∑

i=1

log2 (max[1, η̂λi,ZF, DPC])

−→
m→∞

∫ ∞

λmin

log2 (η̂x) f
(∞)
ZF DPC(x) d x, (13)

where the scaled water-levelη̂ = NRη computes as

η̂ =

NRPTx +
m
∑

i=1

1
λi,ZF DPC

m

−→
m→∞

PTx
min(α,K) +

∞
∫

λmin

1
x
f
(∞)
ZF DPC(x) d x

∞
∫

λmin

f
(∞)
ZF DPC(x) dx

. (14)

Water-filling is done by replacing infinite sums over functions
of λi,ZF DPC by the corresponding integrals andλmin is either
given by the inverse water-level, i.e.,̂η = 1/λmin, in case
f
(∞)
ZF DPC(x) 6= 0 for x ≤ λmin, or by the minimum value, for

whichf (∞)
ZF DPC(x) is not zero. Thus, it remains to show that the

distribution of subchannel gainsf (∞)
ZF DPC(x) indeed converges

to an asymptotic limit and how it can be actually computed.
According to the allocation scheme described in the previous
section,δm successively encoded subchannels are allocated
to the same user. With the way the projection matricesPi are
computed according to (11) and due to the fact that the vectors
tn are the eigenvectors corresponding to the principal eigen-
values of the matriceŝHπ(n)PnĤ

H
π(n) =

1
NR

Hπ(n)PnH
H
π(n),

the normalized subchannel gains from step(j − 1)δm+ 1 to
step jδm are given by theδm strongest eigenvalues of the
matrix Hπ̂(j)P̂jH

H
π̂(j), where we defineP̂j := P((j−1)δm+1)

and π̂(j) = π((j − 1)δm + 1). In order to determine the
asymptotic distributionf (∞)

ZF DPC(x) it is therefore necessary
to show the existence of and derive the a.e.d.s of the ma-
trices Hπ̂(j)P̂jH

H
π̂(j) for j = 1, 2, . . . , 1

δ
. The δm strongest
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eigenvalues of the matricesHπ̂(j)P̂jH
H
π̂(j) are also theδm

strongest eigenvalues3 of the matrix

Cj := V̂
H
j H

H
π̂(j)Hπ̂(j)V̂j ∈ C

[NT−(j−1)δm]×[NT−(j−1)δm],
(15)

where V̂j ∈ CNT×[NT−(j−1)δm] is an orthonormal basis of

span
{

P̂j

}

so thatP̂j = V̂jV̂
H
j . Assume the a.e.d. of this

matrix exists and is given byf (∞)
Cj

(x). Then, theδm strongest
out of [NT−(j−1)δm] eigenvalues of this matrix are contained
in the interval [λ̂j ;∞[, where λ̂j stems from the implicit
equation
∫ ∞

λ̂j

f
(∞)
Cj

(x) d x =
δm

NT − (j − 1)δm
=

δξ

1− (j − 1)δξ
,

(16)
whereξ = m

NT
= min

(

1, K
α

)

. In case an a.e.d. can be found
for all matricesCj , j = 1, . . . , 1

δ
, the asymptotic distribution

f
(∞)
ZF DPC(x) can be obtained by taking the sum of the tails of

the a.e.d.s of theCj in the corresponding intervals[λ̂j ;∞[,
i.e.,

f
(∞)
ZF DPC(x) =

1
δ
∑

j=1

f
(∞)
j (x) (17)

with

fj(x) =

{

1−(j−1)δξ
ξ

f
(∞)
Cj

(x), x ≥ λ̂j

0, else
.

The pre-factor1−(j−1)δξ
ξ

is necessary, as forf (∞)
ZF DPC(x) each

matrixCj contributesδm out ofm subchannel gains, i.e., the
integrals

∫∞
0

f
(∞)
j (x) d x must be all equal toδ.

In the remainder it will be shown that the a.e.d.sf
(∞)
Cj

(x)
indeed exist and how they can be computed numerically. For
j = 1, C1 = H

H
π̂(1)Hπ̂(1) and asHπ̂(1) contains Gaussian

i.i.d. entries,f (∞)
C1

(x) exists and is given by the tail of the

Marčenko-Pastur distribution, i.e.,f (∞)
C1

(x) = fMP(x, α) with

fMP(x, α) =

[

1− 1

α

]+

δ(x) +

√

[x− a]+ [b− x]+

2παx
,

wherea = (1−√
α)

2 andb = (1 +
√
α)

2.
For j = 2, . . . ,K, the matricesV̂j are independent of the
channel matricesHπ̂(j), as the projection matriceŝPj are
determined independently of the latter matrices. The matrices
Hπ̂(j)V̂j therefore result from multiplying a matrix with
Gaussian i.i.d. entries such asHπ̂(j) with an independent
orthonormal matrix likeV̂j , which leads again to matrices
with Gaussian i.i.d. entries having the same mean and variance
as in the original Gaussian matrices but different dimensions.
This way, Hπ̂(j)V̂j are NR × [NT − (j − 1)δm] matrices
with Gaussian i.i.d. entries with zero mean and variance1

NR
.

Consequently, the eigenvalues of their Grammian products
Cj = V̂ H

j HH
π̂(j)Hπ̂(j)V̂j also converge to an asymptotic limit

and the corresponding a.e.d.s are given by

f
(∞)
Cj

(x) = fMP(x, α(1 − (j − 1)δξ)), j = 1, . . . ,K. (18)

3This is becauseρj
(

Hπ̂(j)P̂jH
H
π̂(j)

)

= ρj

(

P̂jH
H
π̂(j)

Hπ̂(j)P̂j

)

=

ρj

(

V̂ H
j HH

π̂(j)
Hπ̂(j)V̂j

)

for all j = 1, . . . ,min(NR, [NT − (j − 1)δm])

For j > K, f
(∞)
Cj

(x) can however not be stated explicitly
anymore, instead it can be derived from Proposition 1.

Proposition 1: The Stieltjes-transformmCj
(z) of the ma-

trix Cj is given by the implicit equation
∫ λ̂j−K

0

fCj−K
(x)

1− βj + (x− z)mCj
(z)

dx =
1− (j −K)δξ

1− (j −K − 1)δξ
,

(19)
whereβj = [1− (j − 1)δξ] / [1− (j −K)δξ] .

Proof: see Appendix B
Unfortunately, there is no explicit solution neither formCj

(z)

nor for f (∞)
Cj

(x) from (19). For this reasonf (∞)
Cj

(x) has to
be sampled as described in the following. First Equation (19)
is solved formCj

(z) with z = λ̂j−K . The imaginary part

of mCj
(λ̂j−K) divided by π is then equal tof (∞)

Cj
(λ̂j−K )

[e.g. [20, Eq. (2.45)]]. Due to the projections from step
(j−K)δm+1 to step(j− 1)δm, the principal eigenvalue of
the matrixCj will certainly not be larger than̂λj−K , which is
the channel gain in step(j−K)δm [c.f. (16)], the last step the
same user has received a subchannel. Thus,f

(∞)
Cj

(x) = 0 for

x > λ̂j−K and λ̂j−K can be used as a starting point for the
sampling process. Afterf (∞)

Cj
(λ̂j−K ) has been computed,z is

reduced by a constant sampling distance∆ and Equation (19)
is solved formCj

(z) with z = λ̂j−K − ∆. This sampling

is continued untilz = 0. The integrals withf (∞)
Cj

(x) required
in (16) and (19) can then be evaluated numerically for example
with the trapezoidal method (e.g. [21]), wheref (∞)

Cj
(x) is

interpolated linearly between two neighboring samples.
Note that the choice ofδ influences the tightness of the lower
bound and the numerical accuracy. With large values forδ,
the number of summands required to computef

(∞)
ZF DPC in (17)

becomes low. Thus, the implicit Equation (19) has to be solved
less often so that the numerical complexity is reduced. On
the other hand, it can be shown by numerically evaluating
the asymptotic sum rates and comparing the results with the
average sum capacity, that for large values ofδ, the bound for
sum capacity becomes less tight. In case one is interested inthe
best lower bound, one would therefore letδ go to zero, which
would lead to the asymptotic sum rate of the allocation scheme
described in the previous section withδ = 1

m
. However, this

scenario becomes numerically intractable due to the sum over
infinite a.e.d.s in (17).

V. A SYMPTOTIC PERFORMANCELOSSES OFSUBOPTIMAL

ALGORITHMS IN MISO SYSTEMS

As numerically complex iterative algorithms need to be
implemented in order to achieve the sum capacity in the
broadcast channel, more efficient methods that are only ableto
approximate the optimum solution are of high practical inter-
est. In this section we will quantify those losses analytically for
two algorithms in the large system limit with non-cooperative
receive antennas, i.e., in MISO systems. Numerical simula-
tions can be avoided this way, as the results obtained also
serve as a good estimation of the average sum capacity in
systems with finite parameters. The large system sum capacity
is given by Theorem 1 and in this section we will derive
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analytical lower bounds for the two signaling schemes from [7]
and [8]. Both are based on spatial zero-forcing and successive
resource allocation, where the method from [7] requires DPC
and the scheme in [8] solely relies on interference suppression
through linear beamforming. In [8], the sum rates achievable
with the proposed method is analyzed in limit of infinitely
many users. The results do however not allow any conclusions
to the performance in finite systems.

A. Spatial Zero-Forcing with Dirty Paper Coding

The concept of spatial zero-forcing with DPC has already
been introduced in Section IV-A with cooperating receive
antennas. In case the receive antennas cannot cooperate, the
channel gains in (10) can no longer be achieved but instead
compute according to

λ̂i,ZF DPC= e
T

r(i)Ĥ
H
π(i)PiĤπ(i)er(i), (20)

wherePi given by (11) andr(i) denotes the receive antenna
selected in stepi, so that the data stream encoded atith step
at the transmitter is intended for userπ(i) and received at its
r(i)th antenna. The transmit vectors are chosen in a successive
manner according to

ti =
1

√

eT
r(i)Ĥ

H
π(i)PiĤπ(i)er(i)

PiĤπ(i)er(i), (21)

in order to fulfill the zero-forcing constraints that cannotbe
assured by DPC. The sum rate is then computed with the
channel gainŝλi,ZF DPC as in (9). The optimum user selection
π(i) and antenna selectionr(i) would require an exhaustive
search over all possible allocations, which is infeasible in
practice. For this reason in [7] it is proposed to choose the
user and antenna in each step so that the sum rate becomes
maximum. Here, we consider a further sub-optimum selection,
where in each step user and antenna are selected randomly.
This leads to a lower bound for the performance of the
signaling scheme in the large system limit, which is given
by Proposition 2.

Proposition 2:

Rlb
ZF DPC

NT
−→

NT,NR→∞

NT=NRα

θ log2

(

1

θ
[PTx − ln (1− θ)]

)

−

− (1− θ) log2 (1− θ)− θ

ln 2
. (22)

θ stems from water-filling and is determined as follows. First,
the implicit equationPTx − ln(1− θ) = θ

1−θ
has to be solved

for θ. If the result is smaller thanmin(1, K
α
), the solution for

θ has been found, otherwiseθ is given byθ = min(1, K
α
).

Proof: see Appendix D.
Note that the lower bound (22) is valuable for analysis
purposes anyway, as it can be used to state an upper bound
for the loss compared to the optimum.

B. Spatial Zero-Forcing without Dirty Paper Coding

So far, it is still necessary to apply DPC at the transmitter,
which requires significant computational resources in practical
implementations. For that reason the concept of successive

zero-forcing has been extended to scenarios, where DPC is not
applied. In this case, interference between the data streams is
completely suppressed by linear beamforming. The sum rate
is then given by

RZF =

Nstop
∑

i=1

log2 (1 + pi,ZFλi,ZF) , (23)

where pi,ZF is the power allocated to theith subchannel
and results from water-filling aspi,DPC in (12). Nstop ≤
min (NT,KNR) denotes the number of active subchannels.
The gainsλi,ZF of these subchannels can be computed ac-
cording to (e.g [8])

λ−1
i,ZF = e

T

i

(

HcompH
H
comp

)−1
ei,

where Hcomp ∈ CNstop×NT = Π
[

ĤH
1 , . . . , Ĥ

H
k

]H
is the

composite channel matrix andΠ ∈ CNstop×KNR is a selec-
tion matrix that selects those rows of

[

ĤH
1 , . . . , Ĥ

H
k

]H
that

correspond to users and receive antennas that are selected
for transmission. As in the DPC case, the optimum choice
for Π would require an exhaustive search over all possible
selection matrices, which is infeasible in practice. In [8]it is
therefore proposed to allocate the users and receive antennas in
a successive manner, i.e., to select in each allocation stepthis
user that leads to the strongest increase in sum rate provided
that the previously selected users and receive antennas arealso
served. The allocation is stopped, in case no increase in sum
rate can be observed. Such an allocation scheme is however
difficult to analyze in the large system limit, as shown in
Appendix E, which is why we consider a random selection
of users and receive antennas in the following. This leads toa
lower bound for the sum rate in the large system limit, which
is given by Proposition 3.

Proposition 3: The sum rate asymptotically achievable with
spatial zero-forcing can be lower bounded as

Rlb
ZF

NT
−→

K,NT→∞

NT=NRα

max
γ

γ log2

(

1 + PTx

(

1

γ
− 1

))

,

s.t. γ ≤ min

(

1,
K

α

)

, (24)

which is a concave optimization problem and can therefore be
solved for example by bisection [22, Chapter 8.2].

Proof: see Appendix E
Despite a sub-optimal user allocation, the expression in (24)
is still optimized over the fraction of active data streamsγ =
Nstop

NT
. As a consequence, in case the optimumNstop is equal to

KNR, i.e.,Π = IKNR, the bound becomes exact, because the
optimum user allocation matrix is then equal to our a priori
chosen matrix.

VI. N UMERICAL RESULTS

Figure 1 exhibits the sum rates normalized to the num-
ber of transmit antennas and averaged over1000 circularly
symmetric Gaussian channel matrices. The ratioα of transmit
antennas to receive antennas is set toα = 1

2 , K = 1 and
the SNR is equal to10dB. The large system sum rates of the
corresponding algorithms are compared to the average sum
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Fig. 1. Comparison of normalized average sum rates comparedto large
system sum rates in MISO systems (K = 1) with α = 1

2
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Fig. 2. Comparison of normalized average sum rates comparedto large
system sum rates in MISO systems with SNR= 10dB, NT = 15.

rates obtained by simulations. For the sum capacity the large
system sum rate serves as very good approximation for the
average sum rates even with only a few number of transmit
antennas and users. Similar observations can be made, when
spatial zero-forcing with and without DPC are considered
with a random user allocation (“rand alloc”). Compared to
the successive user allocation (“succ alloc”) from [7] for the
DPC and from [8] for the linear case, a gap can be observed.
When α increases, i.e., there are more degrees of freedom
at the transmitter compared to the number ofKNR data
streams, this gap diminishes, as shown in Figure 2, where
the ergodic and large system sum rates are plotted versusα.
For the simulations an SNR of10dB is used and the number
of transmit antennas for computing the ergodic rates is equal
to NT = 15. Note that forα ≤ 1 the large system sum rates of
the suboptimal schemes are independent ofα, as in (22) the
constraint onθ and in (24) the constraint onγ are independent
of α then.

In Figure 3 the ergodic sum rates normalized to the number

of transmit antennas and averaged over1000 Gaussian channel
realizations are plotted versus the number of transmit antennas
at an SNR of10 dB. The ratioα of transmit antennas to
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Fig. 3. Comparison of ergodic sum rates with large system sumrate in a
system withK = 5 users,α = 2, SNR= 10dB, δ = 0.05 and∆ = 0.001.

receive antennas is set toα = 2. The average sum rate of the
successive resource allocation and spatial zero-forcing scheme
(“ZF with DPC succ alloc”) is plotted. The large system sum
rate obtained as described above withδ = 0.05 is plotted as a
line with circles, where a sampling distance of∆ = 0.001 has
been used to solve (19). The large system sum rate obtained
this way serves as a relatively tight lower bound for the sum
capacity and as a very good approximation for the ergodic
sum rate achievable with spatial zero-forcing and DPC using
a successive user allocation also for finite system parameters,
which becomes exact for systems withNT ≥ 16. In Figure 4
the ergodic and large system sum rates are plotted versus the
the ratioα, whereNT = 15 has been used for the computation
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Fig. 4. Comparison of ergodic sum rates with large system sumrate in a
system withK = 5 users,NT = 15, SNR= 10dB, δ = 0.05 and∆ = 0.001.

of the ergodic rates and the remaining parameters have been
unchanged compared to Figure 3. Finally, in Figure 5 the
asymptotic lower bound is plotted versus1/δ. With increasing
1/δ the bound becomes more tight, until fromδ = 1/20 up-
wards only slight improvements can be observed, a useful fact
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Fig. 5. Accuracy of large system lower bound for sum capacityin the
MIMO broadcast channel versus1

δ
in a system withK = 5 users,α = 2,

SNR= 10dB, ∆ = 0.001.

for practical choices ofδ. Note that to obtain the asymptotic
expression at1/δ = 4 the implicit equation (19) needs not
to be solved at all, as all required distributionsf (∞)

Cj
can be

obtained from (18).

VII. C ONCLUSIONS

In this paper we have presented expressions for large system
sum rates achievable by algorithms relying on perfect channel
state information in the MIMO broadcast channel, when the
number of transmit and receive antennas both go to infinity at
a finite fixed ratio. For non-cooperating receive antennas, i.e.,
MISO systems, we have derived an asymptotic expression for
sum capacity. Furthermore the performance of two sub-optimal
schemes, which rely on spatial zero-forcing beamforming, has
been quantified in the large system limit and shown to estimate
the losses in sum rate compared to sum capacity quite well.
As for MIMO systems with cooperating receive antennas, the
asymptotic sum capacity turned out to be hard to determine,
we have derived an expression for the sum rate achievable with
spatial zero-forcing and DPC in the large system limit, which
serves as a lower bound for sum capacity. For the problem of
weighted sum rate maximization, the same method and tools
as in this paper can be used to derive asymptotic weighted
sum rates. As the expressions get more involved in this case,
we have restricted to sum rate maximization here.

APPENDIX A
PROOF OFLEMMA 1

In order to proof Lemma 1, it will be shown that an equal
power allocation satisfies the Karush-Kuhn-Tucker conditions
of Problem (5) in the specified large system limit. Those

conditions read as

h
H
n

(

INT +NT

[

KNR
∑

m=1

hmh
H
mwm

])−1

hnwn = µwn,

∀n = 1, . . . ,KNR,

µ

(

KNR
∑

n=1

wn − PTx

)

= 0, µ ≥ 0,

wn ≥ 0, ∀n = 1, . . . ,KNR, (25)

where µ is the Lagrangian multiplier andĤHWĤ =

NT

K
∑

m=1
hmhH

mwm with diag (w1, . . . , wKNR) = W , and

[h1, . . . ,hKNR] =
1√
NT

ĤH. Thus, the entries in the vectors

hn are i.i.d. Gaussian with zero mean and variance1
NT

. With
a uniform power allocationwn = PTx

KNR
, the (in)equalities in

the last two lines of (25) are clearly fulfilled apart fromµ ≥ 0
and the remaining KKTs read as

h
H
n

(

INT +
NTPTx

NRK

[

K
∑

m=1

hmh
H
m

])−1

hn = µ,

Now the matrix inversion lemma is applied to these conditions
so that the inverse matrices are independent of the vectorhn

and

h
H
n

(

INT +
PTxα

K

KNR
∑

m=1

hmh
H
m

)−1

hn =
an

1 + PTxα
K

an
, (26)

where an = hH
n

(

INT +
PTxα
K

Bn

)−1
hn, and Bn =

KNR
∑

m=1
m 6=n

hmhH
m. With the matrixINT+

PTxα
K

Bn independent ofhn

andhn containing i.i.d. entries, Corollary 1 from [23] can be
applied, so thatan converges forNT → ∞ according toan

NT
−

1
NT

tr
(

INT +
PTxα
K

Bn

)−1 −→
NT→∞

0. 1
NT

tr
(

INT +
PTxα
K

Bn

)−1

asymptotically converges toηBn

(

PTxα
K

)

, the η-transform of
the matrixBn [20, Def. 2.11]. Following [20, Theorem 2.39],
this transform and consequentlyan stems from the implicit
equation

K − 1

α
=

1− an

NT

1− 1

1+an
PTxα
K

. (27)

Obviously, the implicit equation (27) leads to the same solution
for all n = 1, . . . ,KNR, which is why together with (26) the
KKTs in the first line of (25) are fulfilled by an equal power
allocation in the large system limit. Furthermore (27) leads
to a positive solution foran and consequently forµ, so that
the inequalityµ ≥ 0 is also fulfilled. As (25) belong to a
concave optimization problem, i.e., sum rate maximizationin
the MISO dual uplink channel, the KKT point is necessary
and sufficient.

APPENDIX B
PROOF OFPROPOSITION1

As the rank ofP̂j = V̂j V̂
H
j is given byNT − (j − 1)δm

and therefore reduced byδm with each subchannel

span
{

P̂j

}

= span
{

V̂j

}

⊂ span
{

P̂n

}

, ∀n < j. (28)
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Of special interest is the casen = ℓj := j −K. From (28) it
follows that V̂j = P̂ℓj V̂j and consequently

Cj = V̂
H
j H

H
π̂(j)Hπ̂(j)V̂j = V̂

H
j P̂ℓjH

H
π̂(j)Hπ̂(j)P̂ℓj V̂j .

A reduced eigenvalue decomposition of the matrix
P̂ℓjH

H
π̂(j)Hπ̂(j)P̂ℓj can be stated as

P̂ℓjH
H
π̂(j)Hπ̂(j)P̂ℓj = V1,ℓjΣ1,ℓjV

H
1,ℓj + Vr,ℓjΣr,ℓjV

H
r,ℓj ,

(29)
whereΣ1,ℓj ∈ Cδm×δm is a diagonal matrix containing the
δm strongest eigenvalues of the matrix̂PℓjH

H
π̂(j)Hπ̂(j)P̂ℓj

that are the subchannel gains from step(ℓj − 1)δm + 1
to step ℓjδm. V1,ℓj ∈ CNT×δm contains the corresponding
eigenvectors. Due to the multiplication with projection ma-
trices, P̂ℓjH

H
π̂(j)Hπ̂(j)P̂ℓj contains at least(ℓj − 1)δm zero

eigenvalues. Omitting these zero eigenvalues, the remaining
NT − ℓjδm eigenvalues besides theδm strongest ones are
subsumed in the matrixΣr,ℓj ∈ C[NT−ℓjδm]×[NT−ℓjδm] and
Vr,ℓj ∈ C

NT×[NT−ℓjδm] contains the corresponding eigenvec-
tors.
As V1,ℓj contains the transmit vectors for the(ℓj−1)δm+1th
to the ℓjδmth data streams and̂Vj is a basis of the null-
space of all transmit vectors from the previously allocatedsub-
channels, i.e., also of the transmit vectors of the subchannels
(ℓj −1)δm+1 to ℓjδm, V1,ℓj lies in null

{

V̂j

}

and therefore

Cj = V̂
H
j P̂ℓjH

H
π̂(j)Hπ̂(j)P̂ℓj V̂j = V̂

H
j Vr,ℓjΣr,ℓjV

H
r,ℓj V̂

H
j .

Furthermore the span ofVr,ℓj is composed as

span
{

Vr,ℓj

}

= span
{

P̂ℓj − V1,ℓjV
H
1,ℓj

}

= span
{

P̂ℓj+1

}

.

(30)
so thatVr,ℓj is a basis ofP̂ℓj+1. By using (28) we know

that span
{

V̂j

}

⊂ span
{

V̂ℓj+1

}

and therefore the ma-

trix V̂j can be stated aŝVj = Vr,ℓj Ṽj , where Ṽj ∈
C[NT−ℓjδm]×[NT−(j−1)δm] representsV̂j in the basisVr,ℓj .
Hence,Cj can be decomposed asCj = Ṽ H

j Σr,ℓj Ṽj . To show
the asymptotic convergence of the eigenvalues ofCj , we will
first analyze the matrix̃VjṼ

H
j Σr,ℓj in the large system limit

and then derive the a.e.d. forCj from this matrix. For this
purpose first the following Lemma will be required.

Lemma 2:The matrixṼj is uniformly distributed over the
manifold of [NT−ℓjδm]× [NT−(j−1)δm] complex matrices
with Ṽ

H
j Ṽj = INT−(j−1)δm

Proof: see Appendix C
Lemma 2 implies that̃VjṼ

H
j is unitarily invariant. As addi-

tionally the diagonal matrixΣr,ℓj is independent of̃Vj Ṽ
H
j ,

both matrices are asymptotically free [20, Definition 2.19],
which can be shown with the proof of the theorem in [24].
From Theorem 2.68 and Example 2.51 in [20] it can be
concluded that the a.e.d. of the matrix̃VjṼ

H
j Σr,ℓj exists,

as long as the eigenvalues ofΣr,ℓj asymptotically converge.
For ℓj = 1, . . . ,K this has been shown in Section IV-B,
as Σr,ℓj contains theδm strongest eigenvalues of the ma-
tricesCℓj = V̂ℓjH

H
π̂(ℓj)

Hπ̂(ℓj)V̂ℓj and their a.e.d.s are given

by (18). Therefore the eigenvalues of the matricesṼjṼ
H
j Σr,ℓj

asymptotically converge forj = K + 1, . . . , 2K. Once it

has been shown that in this case also the eigenvalues of the
matricesCj asymptotically converge, it can be proven by
induction that the a.e.d.s also exits for the matricesΣr,ℓj with
ℓj > 2K.
However, those a.e.d.s cannot be derived explicitly anymore.
Instead Example 2.51 from [20] is used to state an implicit
equation for theη- transform of the matrixṼjṼ

H
j Σr,ℓj ac-

cording to

η
Σr,ℓj ṼjṼ

H
j
(γ) = ηΣr,ℓj

(

γ + γ
βj

η
ṼjṼ

H
j Σr,ℓj

(γ)

)

, (31)

where

βj =
NT − (j − 1)δm

NT − ℓjδm
=

1− (j − 1)δξ

1− ℓjδξ
. (32)

Following Lemma 2.28 from [20] theη transform (and there-
fore the a.e.d) of the matrixCj exists and is related to the
η-transform ofṼjṼ

H
j Σr,ℓj according to

ηCj
(γ) = 1− 1

βj

+
1

βj

η
Ṽj Ṽ

H
j Σr,ℓj

(γ). (33)

By inserting (33) into (31), theη-transformηCj
(γ) is given

implicitly by

βjηCj
(γ)− βj + 1 = ηΣr,ℓj

(

γβjηCj
(γ)

βjηCj
(γ)− βj + 1

)

. (34)

The diagonal elements of the matrixΣr,ℓj are given by the
eigenvalues of the matrixCℓj except the largestδm ones,
which correspond to the subchannel gains from step(ℓj −
1)δm+1 to stepℓjδm [c.f. (29)]. The asymptotic eigenvalue
distribution of the matrixΣr,ℓj is therefore given by the a.e.d.
of the matrixCℓj truncated at̂λℓj , whereλ̂ℓj is defined in (16),
and normalized byNT−(ℓj−1)δm

NT−ℓjδm
. Thus, theη-transform of the

matrix Σr,ℓj can be written as

ηΣr,ℓj
(γ) =

NT − (ℓj − 1)δm

NT − ℓjδm

λ̂ℓj
∫

0

f
(∞)
Cℓj

(x)

1 + γx
dx, (35)

Inserting (35) into (34) and using the relationship betweenthe
η- and the Stieltjes transform [20, Eq. (2.48)] leads to

λ̂ℓj
∫

0

f
(∞)
Cℓj

(x)

1− βj + (x− z)mCj
(z)

dx =
NT − ℓjδm

NT − (ℓj − 1)δm
.

Using ℓj = j −K leads to the desired result in (19).

APPENDIX C
PROOF OFLEMMA 2

In the following it will be shown that the matrix̃Vj is
uniformly distributed over the manifold of[NT−ℓjδm]×[NT−
(j − 1)δm] complex matrices withṼ H

j Ṽj = INT−(j−1)δm.
This is the case, if the subspace spanned byV̂j is uniformly
distributed within the subspace spanned byVr,ℓj , which is

equal tospan
{

P̂ℓj+1

}

[c.f. (30)]. This statement is in turn
true, when with each step a group ofδm subchannels is
allocated to one user, the subspacespan

{

P̂j

}

is uniformly
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distributed within span
{

P̂j−1

}

, for j = 1, . . . , 1
δ
. Con-

cerning j = 2, the basis ofspan
{

P̂2

}

is composed by
the eigenvectors corresponding to theNT − δm smallest
eigenvalues of the matrixHH

π̂(1)Hπ̂(1). As the matrixHπ̂(1)

contains Gaussian i.i.d. entries and its GrammianHH
π̂(1)Hπ̂(1)

is therefore unitarily invariant, the matrix of its eigenvectors is
Haar distributed [20, Lemma 2.6]. This is whyspan

{

P̂2

}

is

uniformly distributed withinspan{P̂1} = CNT . The eigen-
vectors corresponding to the non-zero eigenvalues of the
matrix P̂2H

H
π̂(2)Hπ̂(2)P̂2 can be decomposed aŝV2Û2, where

Û2 ∈ C
[NT−δm]×[NT−δm] are the eigenvectors of the matrix

C2 = V̂ H
2 HH

π̂(2)Hπ̂(2)V̂2. As span
{

P̂2

}

and therefore its

basis V̂2 is uniformly distributed withinspan{P̂1}, C2 is
also unitarily invariant and the eigenspace correspondingto
its NT − δm smallest eigenvalues is uniformly distributed in
C

NT−δm. As this eigenspace defines a basis forspan
{

P̂3

}

in

span
{

P̂2

}

, the former span is uniformly distributed within

span{P̂2}. Continuing this way forj = 3, . . . , 1
K

concludes
the proof.

APPENDIX D
PROOF OFPROPOSITION2

In this section, the channel gainŝλi,ZF DPC =
eT
r(i)Ĥ

H
π(i)PiĤπ(i)er(i) := NTh

H
π(i),r(i)Pih

H
π(i),r(i) from

(20) are analyzed for an infinite number of transmit and
receive antennas. For the purpose of large system analysis,
the vectorshπ(i),r(i) :=

1√
NT

Ĥπ(i)er(i) have been introduced
so that they contain Gaussian i.i.d. entries with zero mean and
variance 1

NT
. With the assumption ofPi being independent

of hπ(i),r(i), which follows from the random user selection,
Corollary 1 from [23] can be applied and the channel gains
λ̂i,ZF DPC

NT
= hH

π(i),r(i)Pihπ(i),r(i) in the large system limit
converge according to

h
H
π(i),r(i)Pihπ(i),r(i) −

1

NT
tr (Pi) −→

NT→∞
0.

1
NT

tr (Pi) computes according to

1

NT
tr (Pi) =

1

NT



tr (INT)−
i−1
∑

j=1

t
H
j tj



 = 1− (i− 1)

NT
,

where the last equality follows from the fact that the vectors
tj are orthonormal [c.f. (21)]. The large system channel
gains therefore converge to an asymptotic deterministic limit
independent of the current channel realization. Thus, as inthe
MIMO case in Section IV-B, water-filling can be applied over
these asymptotic gains and the large system limit of a lower
bound for sum rate achievable with spatial zero-forcing and
DPC can therefore be computed according to

Rlb
ZF DPC

NT
− 1

NT

imax
∑

i=1

log2

(

η̂

(

1− i

NT

))

−→
NT→∞,NR→∞

0

(36)

with the modified water-level η̂ = ηNT =

NT
imax

(

PTx +
imax
∑

i=1

1
1− i

NT

)

. imax is chosen according to water-

filling so that first the implicit equationη̂ = 1
1− imax

NT
is solved. In case this equation leads to a solution
imax ≤ min (NT,KNR), imax is given this way, otherwise by
imax = min (NT,KNR). Note that due to the zero-forcing
constraints in caseα < K, i.e.,KNR > NT, not all users are
served, whereas with the optimum algorithm all users receive
non-zero power (see Lemma 1). Replacing the infinite sums
in (36) and the water-level by integrals and introducing the
finite variableθ = imax

NT
, the asymptotic lower boundRlb

ZF DPC
is given by

Rlb
ZF DPC

NT
−→

NT→∞,NR→∞

NT=αNR

θ log2

(

PTx +

∫ θ

0

1

1− ρ′
d ρ′

)

−

− θ log2 (θ) +

∫ θ

0

log2 (1− ρ′) d ρ′.

Evaluating the integrals leads to the system of equations (22).

APPENDIX E
PROOF OFPROPOSITION3

The derivation of (24) is based on the fact that the gains of

the scalar subchannelsλi,ZF =
(

eTi

(

HcompH
H
comp

)−1
ei

)−1

all converge to the same asymptotic limit

1

Nstop

(

e
T
i

(

HcompH
H
comp

)−1
ei

)−1

−→
NT,NR→∞

Nstop=γNT,NT=αNR

(

1

γ
− 1

)

(37)
whereγ =

Nstop

NT
≤ min

(

1, K
α

)

denotes the normalized number
of subchannels that receive nonzero powers. The large system
limit in (37) can be obtained as described after Equations (10)
and (11) in [15]. As all channel gains are asymptotically equal
and deterministic, the optimum asymptotic power allocation is
given bypi,ZF = PTx

Nstop
. By finally finding the optimumNstop=

γNT leading to the maximum sum rate, the asymptotic bound
in (24) can be found. The assumption ofHcomp containing
i.i.d. entries is only valid for an arbitrary, i.e., not optimized
selection of active users. That is because an optimum user
selection implies that the active users are chosen so that the
rows in Hcomp are as orthogonal to each other as possible
and therefore not independent. Thus, Equation (24) states a
lower bound for the achievable sum rate in the large system
limit. In case it is asymptotically optimum to serve all users
in the system or a random user selection is applied instead of
a greedy one, this assumption is valid, which is why in these
cases the bound becomes tight.
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