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Abstract—We analyze the achievable sum rate of the Gaussian computed one at a time. A similar decomposition for Multiple
MIMO broadcast channel. We first consider Multiple-Input  |nput Single-Output (MISO) systems into scalar subchannel
Single-Output (MISO) channels and derive the large systemimit has been proposed in [4], and the greedy allocation stems

of the sum capacity as the number of users and transmit anteras
go to infinity with a fixed ratio. We then consider Multiple- from [7]. These methods have been observed to be very

Input Multiple-Output (MIMO) broadcast channels and fix the  €fficient in terms of reducing numerical complexity with wnl
number of users and let the number of transmit and receive marginal performance degradation.

antennas tend to infinity with fixed ratio. As in this case an  Qur goal in this paper is to derive an analytical expression
asymptotic expression for sum capacity is hard to obtain, we ot accyrately estimates the average sum capacity of the

evaluate the large system sum rate corresponding to success . . " -
zero-forcing beamforming with Dirty-Paper Coding. The andysis MIMO Gaussian broadcast fading channel witd. Rayleigh

gives a lower bound on the large system sum capacity, which is fading. This is quite challenging for finite-size systems.(i
numerically observed to be quite close. In addition, large ystem  finite number of users and antennas), hence we instead con-

analysis is applied to estimate the relatively small perfamance sider large system performance limits in which the number
losses with respect to sum capacity of successive zero-ig . \,sers and/or antennas tend to infinity. Evaluating a large
beamforming with and without Dirty-Paper Coding in finite . . . - .
MISO systems. system limit of this sum capacity, which accurately estsat
the sum capacity of a finite system, still appears to be quite
' challenging. Thus, we first consider the special case of non-
cooperating receive antennas i.e., a MISO system, andrgrese
an exact analytical expression for the sum capacity in thé li
|. INTRODUCTION as the number of transmit antennas and users each tend to
To achieve the sum capacity of the Multiple-Input Multiplenfinity with fixed ratio. This expression only serves as a kvea
Output (MIMO) broadcast channel, numerically complex-itefower capacity bound for MIMO channels (in which case some
ative methods are needed to determine the optimum transrei¢eivers cooperate). We therefore proceed to derive tive su
covariance matrices [1], [2], [3]. This has motivated a wideapacity of SESAM (with MIMO channels) in the large system
variety of algorithms that aim to approximate the sum cagacilimit in which the number of users is fixed, and the number of
closely with reduced computational complexity. For exaepltransmit and receive antennas each tend to infinity with fixed
one approach is to decompose the MIMO broadcast chanffio. This serves as a tight lower bound for the asymptotic
into a system of scalar interference free subchannels,hwhigum capacity of the MIMO broadcast channel.
are allocated across users [4]. Interference can be sigmares We also apply the preceding results to the MISO broadcast
through a combination of spatial zero-forcing and/or Dirtghannel, and quantify the loss in sum capacity incurred when
Paper Coding (DPC) [5]. beams are assigned successively, as proposed in [7] and [8],
In addition to simplifying the computation of optimal co-relative to the optimal beams. Our results show that this
variance matrices, approximate algorithms can also fatdli performance loss is relatively minor. Finally, numericzgults
performance analysis. Here we analyze the performancesof ghow that the asymptotic results for both the MIMO and MISO
Successive Encoding Successive Allocation Method (SESAByccessive assignment schemes give accurate estimates of t
proposed in [6]. This method assigns beams sequentigigrformance of finite-size systems.
according to a greedy criterion, and eliminates interfeeen Other suboptimal methods in which zero-forcing beamform-
through both zero-forcing and DPC. A key feature is that it i9g is used alone to avoid the high complexity associatetd wit
non-iterative meaning that the spatial beams are successivé§’C are proposed in [8], [9].The performance of those
algorithms has been demonstrated primarily by simulation
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many users, but show substantial performance degradationthe asymptotic sum capacity with receive antenna coop-
compared to the optimum, when the number of users is finigration is presented. Sum capacity can be computed via the
Related work in which large system analysis is used ttuality between broadcast channel and the dual multiplesscc
estimate the performance of different system models isngivehannel [19]. Denoting the transmit covariance matrix afrus
in [11] and [12]. There the ergodic performance of MIMCk in the dual multiple access channel B§, € CVr*Nr| the
systems is evaluated in the limit of infinitely many transmium capacityRsum capresults from the following optimization
and receive antennas given statistical channel knowletlgepeoblem
the transmitter. In [13] and in [14] MISO systems with A x4
infinitely many transmit antennas and users are analyzed, Rsum cap= max log, ‘INT +H WH|,

and asymptotically optimum parameters are applied to finite st tr(W)< Pry, W =0, W blockdiag (1)
systems, giving near-optimum performance results. Layge s

tem analysis is applied to multi-cell MISO systems in [15where HY = |(H}, ... HIl| ¢ CN*ENe agnd W =
[16], [17], and [18], where the number of antennas at the basg,ckdiag (W7, ..., Wi ). When the number of transmit and
stations and the number of users tend towards infinity.  receive antennas both go to infinity, it has to be proven that

In the next section we explain the system model and sum ., .., converges to an asymptotic limit independent of the
capacity objective. The large system limit of sum capaciphannel realizations. This can be done by showing that
for the MISO broadcast channel is derived in Section llithe empirical eigenvalue distributiof; i3, 5 (7), whereW
and the asymptotic sum capacity of SESAM for the MIMQenotes the optimum with respect to (1), becomes indepénden
broadcast channel is presented in Section IV. The analysisgdthe actual channel realizatiod$;, in the large system limit.
successive beam assignment for MISO channels is carried e empirical eigenvalue distribution states the fractadn
in Section V. Numerical results are shown in SectionVI, angigenvalues of the matriETEW H smaller or equal tar,
the paper concludes with Section VII. ie.

Notation: Bold lower and uppercase letters denote vec-
tors and matrices, respectivele)” and (s)" describe the  F . (2) = 1 le (HHWIEI) i=1,..., Nt
transpose and the Hermitian of a matrix, respectivelyA), Nt
tr(A), and |A| are theith eigenvalue, the trace, and the pi (fIEWka) < x}‘ )
determinant of the matri, respectively, andA > 0 implies .
that A is positive semi-definiteaull{ A} andspan{A} denote [N case it can be shown thaty.y;, () converges to an
the null-space and the range of the matdx respectively. asymptotic limit FI(&O;)Wﬁ(x’O‘) independent of the chan-
diag(ay, ..., a;) denotes a diagonal matrix with the elementgel realizations and only dependent en the sum ca-
ai,...,a; on its diagonal andlockdiag(A;, ..., A;) is a pacity also converges to an asymptotic limit. It can be
block-diagonal matrixI; and0, arei x i identity matrix and obtained via the asymptotic eigenvalue distribution (h)e.

i x i zero matrix,respectivelye; denotes thej-th canonical I(ﬁIOfI)WH(x,oz) of the matrix "W H, which is the derivative

unit vector andj(x) is the Dirac function. . OFLY) (@)
of( F)gjﬁwﬁ(x,a), e, f) . (x,0) = AT of
> (z,«), according to
[I. SYSTEM MODEL AND PROBLEM FORMULATION HHWH( ) g
We consider a multiuser MIMO system with a base station R, cap ra (

i i i lo (1—|—x)fAOO)A (z,a)dx =
having Nt antennas and{ users, each equipped witNg N NTKLQC 82 oW E D
antennas. Gaussian codebooks are used at the transmitter, NT=eNR oo
the channel matrix between the base station and ksksr Vauw (1), ()

denoted as;, € CN=*N1 and Rayleigh fading is considered. _ N

This implies that all entries in the channel matric&g, Yemw g (7) is the Shannon transform of the mat#k™ W H
follow a circularly symmetric Gaussian distribution witerp @S defined in [20, Definition 2.12]. However, closed form
mean. The variance is set to one for all users and it §9!utions for (3) exist in cas#’ is independent ofd [20,
furthermore assumed that all entries in the channel matricgh€orem 2.39] o'Wz contains i.i.d. entries [20, The-
are independent. The transmit power at the base station nRf&m 2-39], but not for the problem at hand, whé#é is

not exceed the limitPr,, perfect Channel State Information@ function of the channel matriceld), via the optimization
(CSI) is assumed at the transmitter, and the additive whife (1), That is why an asymptotic expression for the sum
Gaussian noise has zero mean and variance one. capacity in MIMO systems is difficult to obtain. Thus, we will

In this paper we consider the large system limit of number §Pnsider the special case of non-cooperative receive aasen
transmit and receive antennas simultaneously going toitfinin e next section and provide a lower bound for the large
at a finite fixed ration, i.e., Ny — 0o, Ng — 0o, o — Nz, System sum capacity in the succeeding section.

All other parameters such as transmit powgy and number

of users K remain finite. We first try to analyze the sum Il. L ARGE SYSTEM SUM CAPACITY WITH

capacity in this limit and explain, why this task is not save NON-COOPERATIVERECEIVE ANTENNAS

in this paper, but the special case of non-cooperatingvecei When the antennas at the receivers cannot cooperate, i.e.,
antennas is considered instead and additionally a lowendowvhen the signals from different receive antennas at the same



user cannot be combined constructively to increase receigegiven by [20, Theorem 2.39]

SNR, the transmit covariance matric#g; from Problem (1) K

in the dual uplink channel are constrained to be diagonal.Vgug (v) = — logs (1 + yngug (7)) —logs (e (7)) +

The following theorem is therefore especially useful in @IS @

systems with an infinite number df’ = K Ni users. + (nrmp(7) — 1) logy(e), (6)
Theorem 1:The large system sum capaciBlfon coopin the ~wheree is Euler's numbem gu g (7) is then-transform of the

MIMO broadcast channel with non-cooperative receivers igatrix H" H as defined in [20, Definition 2.11] and stems

given by from the implicit equation [20, Theorem 2.39]

=0 L) SR
— 7= ) =1 —nunu()
Rnoncoop [E tog (1+ % Prmy ) — a L+ e (7) e
Nt M Lo K As by definition, they- transform takes only values betwe@n
—logy (m1) 4+ (my — 1) logy(e)], (4) and1, ngw g () results from the positive solution of (7) and
is given by
wheree is Euler's number and
¢ 1 K 1 1 K 1\]1> 1
() =5 (1-= -2 ) /|5 (1= -5 +=
1 K K 2 a v 2 a v Y
m=5\"0) et (8)
L Introducing the variablen; = ngug (Pre2), and insert-
N 1 ) K K \? N K ing (8) with v = Pry into (6), leads to the desired result
5 B E B 2P—rxa PTXOC' in (4) u
IV. LOWERBOUND FOR THELARGE SYSTEM SUM
Proof: Considering the constraint of non-cooperative re-  CAPACITY IN THE MIMO B ROADCAST CHANNEL
ceivers, Problem (1) reads as Theorem 1 can also be used as a lower bound in case the
. . antennas at the receivers can cooperate. However, thisdboun
Rron coop= mvgxlogz ’INT +HHWH’, is not very tight especially in case of a large number of

: cooperating receive antennas. For this reason we willdinice
st.tr(W)<P W =0, W diagonal 5 . . . . } :
(W) < Pre - 9 ©) a signaling scheme in Section IV-A, which can be numerically

In order to derive the large system sum capacity with noa_nalyzed in the large system limit and leads to a lower bound

. . . . or the sum capacity that turns out to be tight by numerical
cooperative receivers, the following lemma will be needed. . L . .
L _ __simulations. The large system analysis is then carried rout i

Lemma 1:For an infinite number of transmit and receiv

Section IV-B.
antennas, the sum capacity in the MIMO broadcast channe I

without receive antenna cooperation is achieved by eq%l Spatial Zero-Forcing with Dirty Paper Coding
power distribution, i.e. W — Ingx 22  —  Ongpg, With _ S, : :

R N Neoreo, In order to avoid the numerical difficulties associated with
W denoting the solution achieving the optimum in (5). the solution of (1), one can decompose the MIMO broadcast

Proof: see Appendix A - channe_l into a system of scallar, |.nterfe.rence free suthHz_an _
where interference suppression is achieved by a combmatio
Lemma 1 suggests that the power allocated to each re- ! .
. . of DPC and zero-forcing. Once an encoding order for DPC
ceive antenna (or user in MISO systems) tends to zero . ; .
S . . as been determined, interference from previously encoded
for an infinite number of receive antennas. This effect |

however compensated by the fact that the elements in %ta streams is perfectly cancelled by DPC and interference

. . uppression from data streams encoded afterwards is dssure
channel matrices are assumed to have variance one, so gngg . .
BleTHE e | — N- ie. the ch | gain at h . by beamforming. These concepts have been applied to MISO
[ei €| = 'r. 1.€., the channel gain at eac rece"ngstems in [7] and to MIMO systems in [6] and simulation re-

antenna goes to infinity in this limit. When the channel matri s in these references show close to optimum performance

ces H are normalized so that they consist of Gaussian i.i.¢ne sum ratezr ppc achievable with successive zero-forcing
entries with zero mean and vanang}g and the normalized 4,4 ppc computes according to

channel matricesH := ﬁH are used, the asymptotic min(Nr.K Nr)
sum rate reads afnon coop = logy ‘INT + ]Q%HHH‘ = Rzr ppc = Z logy (1 + pi,zF pPcAi,zF pPC) s (9)
log, |In; + Pre HH| and power allocation and channel i=1

attenuation compensate to a finite value. Similarly to (8 twhere \; zr ppc is the effective channel gain of the data

sum rateRnon coopCaN be computed in the large system limistream encoded in thé&h step, which considers the effect

via the Shannon transforiigu g (v) of the matrix HYH  of channel attenuation, transmit and receive beamforming.

according to’*ﬁ%}em —  Vpmp (Prc2) . As the matrix Proceeding according to the algorithm in [6], the subchinne
il ag gains\; zr ppc COMpute according to

H contains independently and identically Gaussian disteitbu

entries with variancey-, the Shannon transforfigm g () Ai,zF DPC = p1 (ﬁw(i)ﬂﬁf@)) (10)



where (i) is the user which théth subchannel is allocatedgains become independent of the current channel realizatio
to. _ in the large system limit, water-filling can be performed ove

P I — Zt 4 (11) these asymptotic gains. I.n. the f_oIIqwing, it will therefdoe

‘ Ny nem first shown that the empirical distribution of the subchdnne

- gains \; zr, ppc from (10) converges to an asymptotic limit.
projects intonull{t{,... {1, } and¢, denotes the transmit Apalogously to (2), the empirical distribution of subchahn
beamformlng vector for theith data stream, which is glven ga|ns denotes the fraction of subchannel ga}‘ngz DPC that
by the unit-norm elgenvector corresponding to the prifcipg smaller or equal ta: and an asymptotic limit exists, i
eigenvalue of the matrid, H ', \ H. ()P, [6]. The power case this distribution becomes independent of the channel
pizr opc allocated to theith data stream results from dis-matrices H;, for an infinite number of transmit and receive
tributing the power budgebry to the scalar interference-freeantennas. For notational convenience we will use the nermal

subchannels via water-filling, so that ized subchannel gaing:z2< — L, (H, , PHY
Ngr NRpl 7"(1) 7T(Z
1 .
Pi.zF DPC = max <0,77 -5 ) ’ (12) M (H,r(i)P Hﬂ( )), where the channel matrice&l;, :=
i,ZF DPC

FI have been normalized so that its entries are Gaussian

where the water-leveh) is given by the implicit equation i d with zero mean and vananqé In case the asymptotic

min(N7,K NR)
>im1 Pi,zF opc = Prx. The algorithm therefore works g irica) distribution of normalized subchannel gains #ad
sequentially. First the transmit beamformeysand the user derivative, which will be denoted aép ) () in the follow-

allocation (i) are determined, from which the channel gamr?ﬁg, becomes independent of the current channel realimatio

Aize opc result and then the power allocation is done vig,“ihe large system limit, water-filling can be applied and th

water-filling.
sum rateR can be computed according to
To find the optimum user allocation it would be required to #F bPe P 9

perform an exhaustive search over all possible user aitotst

S o R 1 « R
which is complex. In [6] it is therefore proposed to allocate SZRDPC_ E log, (max[1, M\ zr, ppd)
the data streams in a successive manner, i.e., to allocate " miz
in each step a data stream to that user which leads to the > . (c0)
. : . . ) — 1 d 13
strongest increase in sum rate. That is equivalent to segect m—oo [\ 082 (17) fz¢ ppcl(z) dz,  (13)

7(i) = argmax, p1 (HkPZH,ﬁI) . However likewise to the
problem of finding the asymptotic sum capacity, this all@sat
leads to a dependency of the matridérg(i) on the matrices
P;, which makes an asymptotic analysis of the channel gains NrPry + Z ,\1 ZF DPC
in (10) involved. Instead, we therefore consider a simplerus 7=

where the scaled water-levgl= Nrn computes as

allocation, whereym with m = min(N7, K Ngr) successively m P (OO)

elncoded data strgams are aII.oc_ated to the same user with in( ;X i) j Jze ppcl) d @

— < 0 < 1 being an a priori chosen _constant, where N Amin . (19)

% € N. Furthermore these groups (_)f successwely encod_ed data mereo f fZF boc(z)dx

streams are allocated to the users in a round robin fashlaa. T Amin

{EE:‘E SZ t:h?njfl é?t?zzgleg?;:e é’ and’ gglai:jesili%zarl:ﬁ%rﬁl Water-filling is done by replaci_ng infinite sums over fqncrtbo
data streams = Kom+1,..., (K +1)dm are given to uset Of \i z¢ ppc by the corresponding integrals ang is either
again. Thusy(i) — mod (UsmlJ 7K) ‘1. This way, the user gl(\(/)g)n by the inverse water-level, i.ej, = 1/Amin, in case

allocation and consequently the matricBs are independent /ZF DPC(( ))7& 0 fgr < Amin, OF by.the ml.nlmum value, for
of H, . The reason for allocation groups of successivelyhich fz¢ ppc () is not zero. ThUS it remains to show that the
encoded subchannels to the same user, i.e., chodsifg:, distribution of subchannel gamﬁZF DF,C( x) indeed converges
will be explained in the next section. to an asymptotic limit and how it can be actually computed.
According to the allocation scheme described in the pressiou

B. Analytical Expression for a Lower Bound of the sursection, dm successively encoded subchannels are allocated
Capacity to the same user. With the way the projection matriesire

To obtai | bound f i | ; computed according to (11) and due to the fact that the vector
0 obtain a lower bound for sum capacily, a 1arge systej g.e he eigenvectors correspondlng to the prlnC|paI eigen-

expression for the sum rate aphievable_with _the signa_lln lues of the matrice&l o P HE 1 LH, P, HY
scheme presented in the previous section will be deriv m(n) — Nr m(n)

e normalized subchannel gains from sftgp- 1)ém + 1 to
in this section. As pointed out there, this algorithm Workgtepjém are given by the%% strongest tegigen\)/alues of the

sequentially, i.e., first transmit beamformers are deteechi matrix H., )ijH_ “where we defindf’j = Pl 1yma)
to obtain the scalar subchannel gains and then water-fillin . 70 .
(7)) = ©((j — 1)6m + 1). In order to determine the

is performed. One can therefore first consider the asynqoto%

limit of the subchannel gains, and in case it turns out thedeh asymptotic dlstr|but|oanF DPC( z) it_is therefore necessary
to show the existence of and derive the a.e.d.s of the ma-

2The corresponding optimum receive filters are given by neatdtiters [6].  trices H; (j)P H fOI’ j=12..., %. The §m strongest



HH

(

eigenvalues of the matric%lﬁ(j)f?j
strongest eigenvalugsf the matrix
G, =V HE) Hiy V; € GV Dimx it

(15)
where V; ¢ CN<IN=(—1)ém] is an orthonormal basis of
Span{pj} so thatP; = V;VH. Assume the a.e.d. of this
matrix exists and is given bﬁg_o)(a:). Then, thedm strongest
out of [Nt—(j—1)dm)]
in the interval [\;; oo[, where )\; stems from the implicit
equation

| i@
Aj

;) are also theym

B om B o0&
S NG -Dem 1 (5 - 1)
(16

where¢ = - = min (1, £). In case an a.e.d. can be found

for all matricesC}, j =1,..., % the asymptotic distribution
fz(ﬁogpc(x) can be obtained by taking the sum of the tails
the a.e.d.s of th&”; in the corresponding intervals\;; cof,
ie.,

Fiedec) = 3 1% (@) (17)
j=1

fi(x) = {

The pre-factor% is necessary, as quz(ﬁ"[),PC(:c) each
matrix C; contributesym out of m subchannel gains, i.e., the
integralsfo"O f;“’)(x)dx must be all equal ta@.

In the remainder it will be shown that the a.e.gfg)(x)
indeed exist and how they can be computed numerically.
j=1,C1 = H?O)Hﬁ(l) and asH;(1) contains Gaussian

with 1—-(j—1)8¢ ¢(o0) 3
LU0 00 ), 0> 5,

0, else

i.i.d. entries,f(COf)(a:) exists and is given by the tail of the
Marcenko-Pastur distribution, i.ef(c(’l")(x) = fup(z, &) with

17" [z —a]" [b—a]"
fup(z, ) = [1 — —} o(x) + ,
« 2o
wherea = (1 - y/a&)” andb = (1 + a)”.
For j = 2,..., K, the matricesV; are independent of the

channel matricesH ;(;), as the projection matricef’j are

determined independently of the latter matrices. The wesri
Hﬁ(j)% therefore result from multiplying a matrix with
Gaussian i.i.d. entries such &, with an independent
orthonormal matrix likeV;, which leads again to matrices

. J . . .
eigenvalues of this matrix are contained

For j > K, fg’;’)(a:) can however not be stated explicitly
anymore, instead it can be derived from Proposition 1.

Proposition 1: The Stieltjes-transformnc; (z) of the ma-
trix C; is given by the implicit equation

[ e, 1o
0 1= 3+ (x —2z)mg,;(2) 1—(j—K-1)6¢’
(19)

w

heref; = [1—(j —1)6¢] /[1 = (j — K)d¢] .
Proof: see Appendix B

Unfortunately, there is no explicit solution neither faic, ()

nor for f(ci_")(x) from (19). For this reasorf(ci_")(x) has to
be sampled as described in the following. First Equatior) (19
is solved formc,(z) with z = ;\j,K. The imaginary part
me, () divided by 7 is then equal tof$” (\;_x)
[e.g. [20, Eg. (2.45)]]. Due to the projection]s from step

O(fj — K)dém+ 1 to step(j — 1)dm, the principal eigenvalue of

the matrixC; will certainly not be larger than;_ ., which is
the channel gain in stefg — K)dm [c.f. (16)], the last step the
same user has received a subchannel. Tﬁijj@) (x) =0 for

x> \j_x and)\;_x can be used as a starting point for the
sampling process. Aftef(ci_")(f\j_K) has been computed,is
reduced by a constant sampling distaatend Equation (19)
is solved formc,(z) with z = \j_x — A. This sampling

is continued untilz = 0. The integrals Withfg’;’)(x) required

in (16) and (19) can then be evaluated numerically for exampl
with the trapezoidal method (e.g. [21]), Whefé?_o)(a:) is
interpolated linearly between two neighboring sajmples.
Note that the choice of influences the tightness of the lower

ppund and the numerical accuracy. With large valuesdfor

the number of summands required to compﬁﬁﬁgpc in (17)
becomes low. Thus, the implicit Equation (19) has to be sblve
less often so that the numerical complexity is reduced. On
the other hand, it can be shown by numerically evaluating
the asymptotic sum rates and comparing the results with the
average sum capacity, that for large values,ahe bound for
sum capacity becomes less tight. In case one is interesthd in
best lower bound, one would therefore dego to zero, which
would lead to the asymptotic sum rate of the allocation séhem
described in the previous section with= % However, this
scenario becomes numerically intractable due to the sum ove
infinite a.e.d.s in (17).

V. ASYMPTOTIC PERFORMANCELOSSES OFSUBOPTIMAL
ALGORITHMS IN MISO SYSTEMS

with Gaussian i.i.d. entries having the same mean and \@ian

as in the original Gaussian matrices but different dimemsio
This way, H;;)V; are Ng x [Nt — (j — 1)0m] matrices
with Gaussian i.i.d. entries with zero mean and variaﬁee

As numerically complex iterative algorithms need to be
implemented in order to achieve the sum capacity in the
broadcast channel, more efficient methods that are onlytable

Consequently, the eigenvalues of their Grammian pr%duagproximate the optimum solution are of high practical inte

C; = %HHHU)H%(J-)V,- also converge to an asymptotic limit

sy

and the corresponding a.e.d.s are given by
(@) = fup(z, 01— (j —1)8€)), j=1,....K. (18)

"BiH})) = os (BHE He) Py ) =

forall j =1,..., min(Ng, [NT — (j — 1)dm])

3This is because; (Hﬂj

pi (VIHE Ha )V )

est. In this section we will quantify those losses analytiidar

two algorithms in the large system limit with non-cooperati
receive antennas, i.e., in MISO systems. Numerical simula-
tions can be avoided this way, as the results obtained also
serve as a good estimation of the average sum capacity in
systems with finite parameters. The large system sum cgpacit
is given by Theorem 1 and in this section we will derive



analytical lower bounds for the two signaling schemes fr@jn [ zero-forcing has been extended to scenarios, where DPQ is no
and [8]. Both are based on spatial zero-forcing and suceessapplied. In this case, interference between the data stréam
resource allocation, where the method from [7] requires DR®@ompletely suppressed by linear beamforming. The sum rate
and the scheme in [8] solely relies on interference supnessis then given by

through linear beamforming. In [8], the sum rates achievabl Neon

with the proposed method is analyzed in limit of |nf|n|te_ly Ryp = Zlog2 (14 pizehize) (23)
many users. The results do however not allow any conclusions
to the performance in finite systems.

1=1

where p; zr is the power allocated to théth subchannel

) _ ) ) ) and results from water-filling ag;ppc iN (12). Nsop <

A. Spatial Zero-Forcing with Dirty Paper Coding min (N7, K Nr) denotes the number of active subchannels.
The concept of spatial zero-forcing with DPC has alreadyhe gains); z= of these subchannels can be computed ac-

been introduced in Section IV-A with cooperating receiveording to (e.g [8])

antennas. In case the receive antennas cannot coopegte, th . - H o\l

channel gains in (10) can no longer be achieved but instead i,ZF = €i (HcompHcomp) €i,

compute according to where Heomp € CNsox N1 — H[FI{{,...,ISIE]H is the
\i.zF DPC = eI(i)HE(i)R»H,,(Z—)eT(Z—), (20) composite channel matrix anll € CNsoxKN= js a selec-

. . A H rH H
where P; given by (11) and-(i) denotes the receive antennd©" Matrix that selects those rows oH{',.... Hj'] " that

correspond to users and receive antennas that are selected
for transmission. As in the DPC case, the optimum choice
;R/r IT would require an exhaustive search over all possible
selection matrices, which is infeasible in practice. Inif8k
therefore proposed to allocate the users and receive aagémn
t; = _ ! _ Rﬁﬁ(i)e7‘(i)7 (21) @ successive manner, i.e., to selgct in eac.h allocationtls'lxep_
\/eI(i)HE(i)-PiHﬂ(i)er(i) user that Iea_ds to the strongest increase in sum rate prbvide
that the previously selected users and receive antennassare
in order to fulfill the zero-forcing constraints that cani® served. The allocation is stopped, in case no increase in sum
assured by DPC. The sum rate is then computed with thge can be observed. Such an allocation scheme is however
channel gains\; zr ppc as in (9). The optimum user selectioryifficult to analyze in the large system limit, as shown in
7(i) and antenna selection(i) would require an exhaustive Appendix E, which is why we consider a random selection
search over all possible allocations, which is infeasile pf ysers and receive antennas in the following. This leads to
practice. For this reason in [7] it is proposed to choose th&wver bhound for the sum rate in the large system limit, which
user and antenna in each step so that the sum rate beco@@sen by Proposition 3.
maximum. Here, we consider a further sub-optimum selegtion proposition 3: The sum rate asymptotically achievable with
where in each step user and antenna are selected randog¥4tial zero-forcing can be lower bounded as
This leads to a lower bound for the performance of the

selected in step, so that the data stream encodedthtstep
at the transmitter is intended for usefi) and received at its
r(i)th antenna. The transmit vectors are chosen in a succes
manner according to

Ib
signaling scheme in the large system limit, which is given hze —»  max~log, 1+ Pry 1 1
by Proposition 2. Nt Ko v ’ v 7
Proposition 2: ) K
sty<min|(1,— |, (24)
«

R%)F DPC 1
- Ny NNT-;?RJ,V?;O Olog, | 5 [P« —In(1-0)] ) —

which is a concave optimization problem and can therefore be
p solved for example by bisection [22, Chapter 8.2].
—(1-0)logy (1 -0)— —. (22) Proof: see Appendix E [ |
In2 Despite a sub-optimal user allocation, the expression 4) (2
¢ stems from water-filling and is determined as follows. Firsfg sti|| optimized over the fraction of active data streams:
the implicit equationPry — In(1 — 0) = 1%; has to be solved Nsw Ag 5 consequence, in case the optimigg,, is equal to

for 0. If the result is smaller thamin(1, %), the solution for [J(V}VR, i.e., IT = Ik n,, the bound becomes exact, because the

6 has been found, otherwigeis given by6 = min(1, £). optimum user allocation matrix is then equal to our a priori
Proof: see Appendix D. B  chosen matrix.

Note that the lower bound (22) is valuable for analysis

purposes anyway, as it can be used to state an upper bound VI. NUMERICAL RESULTS

for the loss compared to the optimum. Figure 1 exhibits the sum rates normalized to the num-

) . ) . ) ber of transmit antennas and averaged oM#0 circularly
B. Spatial Zero-Forcing without Dirty Paper Coding symmetric Gaussian channel matrices. The ratif transmit
So far, it is still necessary to apply DPC at the transmitteaintennas to receive antennas is setto= % K =1 and
which requires significant computational resources intizakc the SNR is equal td0dB. The large system sum rates of the
implementations. For that reason the concept of successivgresponding algorithms are compared to the average sum



of transmit antennas and averaged oM#0 Gaussian channel

e A T A e e realizations are plotted versus the number of transmitreate
at an SNR of10 dB. The ratioa of transmit antennas to
&
~ sl 4r
5
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Fig. 1. Comparison of normalized average sum rates comparddrge Number of transmit antennas

system sum rates in MISO system& (= 1) with o = % K =1, SNR=
10dB. Fig. 3. Comparison of ergodic sum rates with large system mtmin a
system withK = 5 users,a = 2, SNR= 10dB, § = 0.05 and A = 0.001.

—¥— Sum capacity receive antennas is set o= 2. The average sum rate of the
wl 5 Sum capaciy large system successive resource allocation and spatial zero-forchgrae
T ZF With DPC suce alloc (“ZF with DPC succ alloc”) is plotted. The large system sum
—B— ZF with DPC large system . ) )
A —O- ZF wio DPC succ alloc rate obtained as described above witk 0.05 is plotted as a

=7 ZF wio DPC large system line with circles, where a sampling distancesf= 0.001 has

been used to solve (19). The large system sum rate obtained
this way serves as a relatively tight lower bound for the sum
capacity and as a very good approximation for the ergodic
sum rate achievable with spatial zero-forcing and DPC using
a successive user allocation also for finite system paramete
which becomes exact for systems with > 16. In Figure 4

1 ‘ ‘ ‘ ‘ : ‘ the ergodic and large system sum rates are plotted versus the

o the ratioa, whereNt = 15 has been used for the computation

N
o
T

Normalized sum rate (bpcu)

-
@
T

Fig. 2. Comparison of normalized average sum rates comparddrge

system sum rates in MISO systems with SNROdB, Nt = 15. 4.5

—¥—Sum Capacity
—»—ZF with DPC succ alloc
—&—ZF with DPC large system

rates obtained by simulations. For the sum capacity theslarg
system sum rate serves as very good approximation for the
average sum rates even with only a few number of transmit
antennas and users. Similar observations can be made, whe
spatial zero-forcing with and without DPC are considered
with a random user allocation (“rand alloc”). Compared to
the successive user allocation (“succ alloc”) from [7] fbet
DPC and from [8] for the linear case, a gap can be observed.
When « increases, i.e., there are more degrees of freedom
at the transmitter compared to the number Vg data 1 15 2 2.5 3
streams, this gap diminishes, as shown in Figure 2, where
the ergOd_IC anc_i large system Sum_rates are plotted Versu%ig. 4. Comparison of ergodic sum rates with large system matmin a
For the simulations an SNR dfdB is used and the numbersystem withi’ = 5 users, Ny = 15, SNR= 10dB, § = 0.05 and A = 0.001.
of transmit antennas for computing the ergodic rates is lequa
to Nt = 15. Note that fora < 1 the large system sum rates ofof the ergodic rates and the remaining parameters have been
the suboptimal schemes are independent;,0és in (22) the unchanged compared to Figure 3. Finally, in Figure 5 the
constraint or and in (24) the constraint opare independent asymptotic lower bound is plotted versu&. With increasing
of a then. 1/6 the bound becomes more tight, until frain= 1/20 up-

In Figure 3 the ergodic sum rates normalized to the numbe&ards only slight improvements can be observed, a useftl fac
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w
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conditions read as

w
©
T

K Nr -1
hil (INT +NT Y hmhgme hpw, = pw,,

g m=1
% % Yn=1,...,KNg,
3.6 : K Nr
£
3 I an—PTx =0, pu=>0,
834 : n=1
g wy, > 0,Vn=1,..., KNRg, (25)
o
=32 —*—Sum Capacity where ;1 is the Lagrangian multiplier andd®"WH =

—&— Sum capacity lower bound K

Nt 3 hyhBw, with diag(wy,...,wxny) = W, and
% 10 20 30 20 m=1
1 ‘rH H H
13 [h1,...,hxNg] = \/—N_TH . Thus, the entries in the vectors

h,, are i.i.d. Gaussian with zero mean and varialjcéee With
Fig. 5. Accuracy of large system lower bound for sum capatitythe !

. . _ Pr . . .
MIMO broadcast channel versu§ in a system withK = 5 users,a = 2, a uniform F’QWGF allocatlomn - K]\;R’ Fhe ('n)equaht'es n
SNR= 10dB, A = 0.001. the last two lines of (25) are clearly fulfilled apart frgm> 0

and the remaining KKTs read as

K -1
Z hmh§‘|> h, = Hy

=1

Nt Pry
NrK

for practical choices ob. Note that to obtain the asymptotic hy (INT +

expression atl/§ = 4 the implicit equation (19) needs not

to be solved at all, as all required distributiofé?_o) can be Now the matrix inversion lemma is applied to these condgion

obtained from (18). ’ so that the inverse matrices are independent of the végfor
and

Prya Rl - a
hi! <INT + == hmh§> hy = —p—> (26)
VII. CONCLUSIONS K 1+ F=ay

m=1

where a, = hi(Iy + PTlgaBn)flhn, and B, =

h,, kY. With the matrixI v, + £ B,, independent ok,

In this paper we have presented expressions for large sys
sum rates achievable by algorithms relying on perfect cebnn;=,

state information in the MIMO broadcast channel, when theiqp  containing i.i.d. entries, Corollary 1 from [23] can be
number of transmit and receive antennas both go to infinity éﬁplied so that,, converges foNt — oo according to% —
a finite fixed ratio. For non-cooperating receive antennas, i Precr ~1 1 Prect Ny

. . . tI‘(IN + =32 Bn) — O.—tI‘(IN + =2 Bn)
MISO systems, we have derived an asymptotic expression f&r T K Nrooo N7 T K
sum capacity. Furthermore the performance of two sub-@tinasymptotically converges tgg, (P };“), the n-transform of
schemes, which rely on spatial zero-forcing beamformitag, hthe matrixB,, [20, Def. 2.11]. Following [20, Theorem 2.39],
been quantified in the large system limit and shown to esémahis transform and consequently, stems from the implicit

the losses in sum rate compared to sum capacity quite weljuation

an

As for MIMO systems with cooperating receive antennas, the K-1 ~ Nt 27)
asymptotic sum capacity turned out to be hard to determine, a 11— ﬁ'
+an —5

K

we have derived an expression for the sum rate achievalie wit
spatial zero-forcing and DPC in the large system limit, wahicObviously, the implicit equation (27) leads to the same toiu
serves as a lower bound for sum capacity. For the problemfgf all n =1,..., K'Ng, which is why together with (26) the
weighted sum rate maximization, the same method and to8{§Ts in the first line of (25) are fulfilled by an equal power
as in this paper can be used to derive asymptotic weighta#pcation in the large system limit. Furthermore (27) kad
sum rates. As the expressions get more involved in this cale@ Positive solution for,, and consequently fog, so that

we have restricted to sum rate maximization here. the inequality, > 0 is also fulfilled. As (25) belong to a
concave optimization problem, i.e., sum rate maximization

the MISO dual uplink channel, the KKT point is necessary
and sufficient.

APPENDIXA

PROOF OFLEMMA 1 APPENDIXB

PROOF OFPROPOSITION1
As the rank ofP; = V; V! is given by Nt — (j — 1)dm
In order to proof Lemma 1, it will be shown that an equahnd therefore reduced hyn with each subchannel
power allocation satisfies the Karush-Kuhn-Tucker condii . R . '
of Problem (5) in the specified large system limit. Those SPaH{Pj} :Span{vj} C Span{Pn}7 Vn <j. (28)



Of special interest is the case= ¢; := j — K. From (28) it has been shown that in this case also the eigenvalues of the

follows thatV» = PgV- and consequently matrices C; asymptotically converge, it can be proven by
R induction that the a.e.d.s also exits for the matriggs. with
C; = VI H ) Hay) Vi = VP HEG He ) P Vi 5 9.
A reduced eigenvalue decomposition of the maml;lowever those a.e.d.s cannot be derived explicitly angmor
P, HY | H, +(;)Pu, can be stated as Instead Example 2.51 from [20] is used to state an implicit

equation for then- transform of the matnxVV e, ac-
Py H G Hiy Py = Vi, S0 Vi, + Ve, T, Vi, cording to

(29) _
where X ,, € C*™*9™ s a diagonal matrix containing the 7, Lvon(Y) =12, <7 +7L> . (31)
dm strongest eigenvalues of the mati, H' (7)H7T(J)sz R ’ WivA s, ()

that are the subchannel gains from st@g — 1)dm +1 where

. Ntxdm H i
tq stepljom. Vi, € CVTX .cqnta_lns tne corrgsppndmg O Ng—(-Ddm 1—(j— 1)
elgenvectors Due to the multiplication with projection-ma Bj = Ne—om | 1-f0¢
trices, Pg HE () H (7)P¢ contains at least{; — 1)dm zero T
eigenvalles. Omitting these zero eigenvalues, the rengainFollowing Lemma 2.28 from [20] the transform (and there-
Nt — £;6m eigenvalues besides then strongest ones arefore the a.e.d) of the matriK’; exists and is related to the
subsumed in the matri®, ,, € CINT=4omIx[Nr=t;0m] gng  n-transform of V,VIx, accordlng to
Vi, € CNxINt=4oml contains the corresponding eigenvec- 11
tors. ne; (v) =1- 7t g vves,, ()- (33)
As Vi ., contains the transmit vectors for thé — 1)dm -+ 1th 7o
to the ¢;0mth data streams and’; is a basis of the null-
space of all transmit vectors from the previously allocateld-
channels, i.e., also of the transmit vectors of the subaoslann - ~vBinc, (7) 34
(£j —1)om+1to £;om, Vi, lies innull {VJ} and therefore Bime; (v) = B + 1 =ns,, Binc,(v) —B;+1)° (34)

(32)

By inserting (33) into (31), the-transformsc, () is given
implicitly by

O HD H 5 Yr _ xrH H  H The diagonal elements of the matr¥; ,. are given by the
Ci = Vi P Hij Hay Py Vi = VitV Zee Vi, Vi eigenval%es of the matriC;, except the Iarggesdim o)nes,
Furthermore the span df; ,, is composed as which correspond to the subchannel gains from stgp—
. A 1)om + 1 to stepl;om [c.f. (29)]. The asymptotic eigenvalue
span { Vi ;, } = span {Pej Vi, Vf,{ej} = span {Pejﬂi distribution of the matrix=; ;, is therefore given by the a.e.d.
(30) ofthe matrixCy, truncated al}\g ,where/\g is defined in (16),
so thatVi,, is a basis of P, ;1. By using (28) we KNnow and normalized byN—T (EE Mfm Thus, they-transform of the
that span{V-} C span{w +1} and therefore the ma- matrix X, can be written as

trix V; can be stated ad; = ‘/},gj‘/}, where V; € (OO)

clvr—- ~yom]x(Ne~(G—1)m representsV; in the basisV; . Nt (¢ — 1)6m f (@ )d 35

Hence,C; can be decomposed & = V3, V;. To show Nz, (7) = Nt — (;0m I Nr D (35)
0

the asymptotic convergence of the eigenvalue€’pfwe will
first analyze the matr|>V VHZ‘r ¢; in the large system limit Inserting (35) into (34) and using the relationship betwten
and then derive the a.e.d. fa7, from this matrix. For this n- and the Stieltjes transform [20, Eq. (2.48)] leads to
purpose first the following Lemma will be required. 5,
Lemma 2: The matrixV; is uniformly distributed over the /J f(oo)( ) Nt — ;6m
1-5;+

manifold of [Nt —£;6m] x [Nt — (j — 1)dm] complex matrices de = 1z ,
- | — (6 - 1)
with VAV, = In: " (i 1)m @ z)me; (2) T— (0 —1)om

Pioof: see Appendix C B Using/; = j — K leads to the desired result in (19).
Lemma 2 implies thaiV VH is unitarily invariant. As addi-
tionally the diagonal matanJ,g is independent oWV VH APPENDIXC
both matrices are asymptotlcally free [20, Def|n|t|on 2 ,19] PROOFE OELEMMA 2

which can be shown with the proof of the theorem in [24].
From Theorem 2.68 and Example 2.51 in [20] it can bSn
concluded that the a.e.d. of the matM,V X, exists,

as long as the eigenvalues &k asymptoucally converge.
For ¢; = 1,...,K this has been shown in Section IV-B,
as Xy, contalns theém strongest eigenvalues of the ma-
trices C;, = Vé z Ha, )w and their a.e.d.s are glVenequal tOSpan{Pg +1} [c.f. (30)]. This statement is in turn

by (18). Therefore the eigenvalues of the mamv?yHEr true, when with each step a group 6fn subchannels is
asymptotically converge foj = K + 1,...,2K. Once it allocated to one user, the subspapan{Pj} is uniformly

In the following it will be shown that the matri¥; is
iformly distributed over the manifold ¢t —£;dm] x [Nt —
(j — 1)om] complex matrices WlthV Vi = Inr—(j—1)sm-
This is the case, if the subspace spanned/pys uniformly
distributed within the subspace spanned WBy,,, which is
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distributed within span{ﬁj,l}, for j = 1,...,%. Con- with the modified water-level 7 = nNt =
Tmax

- Pry + Z ) imax IS chosen according to water-

NT

cerningj = 2, the basis ofspan{ P, } is composed by
the eigenvectors corresponding to thér — ém smallest
eigenvalues of the matriﬂ}j(l)H,,(l As the matrixH ;)
contains Gaussian i.i.d. entries and its Gramnﬂﬁﬁl)Hﬂ(l)

'Lm

1

filling so that first the implicit equation) = —=
Nt

T .
is solved. In case this equation leads to a solution

. N . . o ) imax < min (N7, KNR), imax IS given this way, otherwise by
is therefore unitarily invariant, the matrix of its eigenters is ims — min (N7, K Ng). Note that due to the zero-forcing

Haar distributed [20, Lemma 2.6]. This is whpan {PQ} is constraints in case < K, i.e., K Nr > N+, not all users are

uniformly distributed withinspan{P;} = C™'. The eigen- served, whereas with the optimum algorithm all users receiv
vectors corresponding to the non-zero eigenvalues of then-zero power (see Lemma 1). Replacing the infinite sums
matrix P, H! (2)H (2 )Pg can be decomposed % U>, where in (36) and the water-level by integrals and mtroducmg the
U‘2 € CINT=dm]x[N1=dm] gra the eigenvectors of the matrixfinite variablef = Zmax , the asymptotic lower bOUﬂRZF DPC

Cy = Vi Hﬁ—(Q)Hﬂ'(Q)‘/?' As span {Pz} and therefore its 1S given by
6 1 AN
o L=p

0
— Blog, (9)+/ logy (1 —p')dp".
0

basis V, is uniformly distributed withinspan{P;}, C, is Rlb
also unitarily invariant and the eigenspace correspontting —24-2PC — Olog, | Prx +

NT NT—00,NR— 0o

its Nt — 0m smallest eigenvalues is uniformly distributed in Ny=aNg
CNr=9m As this eigenspace defines a basissiein {153} in

span{ﬁg}, the former span is uniformly distributed within

span{P,}. Continuing this way forj = 3, ... L concludes Evaluating the integrals leads to the system of equatioB}s (2
the proof.
APPENDIXE
APPENDIXD PROOF OFPROPOSITION3
PROOF OFPROPOSITION2 The derivation of (24) is based on the fact that the gains of
~ —1 -
In this section, the channel gains\;zrppc = the scalar subchannels zr = (ef (HeompHE 10) ei)
H PH,T ()er() = NThw(z) r(z)Ph % from all converge to the same asymptotic limit

(28 are analyzed for an infinite number o transmlt and
receive antennas. For the purpose of large system analyﬂﬁ—
the vectorsh, ;) () Vl_THﬁ(l)eT(l have been introduced ~ P Netop= N1, Ny~ Ng
so that they contain Gaussian i.i.d. entries with zero meah a Neop K (37)

< min (1, £) denotes the normalized number

variance y-. With the assumption of?; being independent wherey = =
Of hur(iy.r(sy, Which follows from the random user selection®f subchanneéls that receive nonzero powers. The largersyste

Corollary 1 from [23] can be applied and the channel galrk'émt in (37) can be obtained as described after Equatiof¥ (1
Mizropc RH Ph in the large svstem limit & nd (11) in [15]. As all channel gains are asymptoticallyaqu
Ny = Ca(i)r() 1) (D) ge sy and deterministic, the optimum asymptotic power alloqat®

converge accordmg to given byp; zr = P” . By finally finding the optimumVsip =
~N7 leading to the ‘maximum sum rate, the asymptotic bound

— -1 1
(e (HoompHEmp) " e:) Ny N (Tl)

1
hﬁ(’L) T‘(’L)Ph (1)77«(1') — —tr (R) — 0

Nt Nr—o0 in (24) can be found. The assumption Bfcomp CoNtaining
L . i.i.d. entries is only valid for an arbitrary, i.e., not apized
77 tr (P;) computes according to selection of active users. That is because an optimum user
selection implies that the active users are chosen so tkat th
1—1 . . .
(P, — 1 o (I iy | g (i—1) rows in Heomp are as orthogonal to each other as possible
Nt r(B) = Nt r(Ine) = Z C R VA and therefore not independent. Thus, Equation (24) states a

=1 lower bound for the achievable sum rate in the large system

where the last equality follows from the fact that the vestofimit. In case it is asymptotically optimum to serve all user

t; are orthonormal [c.f. (21)]. The large system channél the system or a random user selection is applied instead of
gains therefore converge to an asymptotic deterministiit li @ greedy one, this assumption is valid, which is why in these
independent of the current channel realization. Thus, a@isein cases the bound becomes tight.

MIMO case in Section IV-B, water-filling can be applied over

these asymptotic gains and the large system limit of a lower REEERENCES
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