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Abstract

We present a joint copula-based model for insurance claims and sizes. It

uses bivariate copulae to accommodate for the dependence between these

quantities. We derive the general distribution of the policy loss without the

restrictive assumption of independence. We illustrate that this distribution

tends to be skewed and multi-modal, and that an independence assumption

can lead to substantial bias in the estimation of the policy loss. Further, we

extend our framework to regression models by combining marginal general-

ized linear models with a copula. We show that this approach leads to a

flexible class of models, and that the parameters can be estimated efficiently

using maximum-likelihood. We propose a test procedure for the selection of

the optimal copula family. The usefulness of our approach is illustrated in a

simulation study and in an analysis of car insurance policies.
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1. Introduction

Estimating the total loss of an insurance portfolio is crucial for many

actuarial decisions, e.g. for pricing of insurance contracts and for the cal-

culation of premiums. A very common approach, based on the compound

model by Lundberg (1903), models the average claim size and the number

of claims independently, and then defines the loss as the product of these

two quantities. However, the assumption of independence can be too restric-

tive and lead to a systematic over- or under-estimation of the policy loss.

Evidently, this effects the accuracy of the estimation of the portfolio loss.

We therefore propose a joint model that explicitly allows a dependency

between average claim sizes and number of claims. This is achieved by com-

bining marginal distributions for claim frequency and severity with families

of bivariate copulae. A main contribution of this paper is the derivation of

the distribution of the loss of an insurance policy. We illustrate that the

distribution is often very skewed, and that – depending on the model pa-

rameters – the distribution is multi-modal. Based on this distribution, we

can estimate the expected policy loss and its quantiles. We show that the

distribution, and in particular its mean, depends strongly on the degree of

dependence. This underpins the usefulness of our copula-based model.

Dependence modeling using copulae has become very popular the last

years (see the standard reference books by Joe (1997) and Nelsen (2006))

and was introduced to actuarial mathematics by Frees and Valdez (1998).

Since then, copulae have been used, e.g., for the modeling of bivariate loss

distributions by Klugman and Parsa (1999) and of dependencies between
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loss triangles by De Jong (2009), as well as for risk management (see McNeil

et al. (2005)).

It is common practice to model average claim sizes and number of claims

in terms of a set of covariates as e.g. gender or age (see, e.g., Haberman and

Renshaw (1996) for an overview). Typically, claim frequency and severity are

however modeled separately under the independence assumption of Lundberg

(1903). Gschlößl and Czado (2007) therefore included the number of claims

as a covariate into the model for average claim size. To allow for more

flexibility and generality in the type of dependence, we extend our copula-

based model to regression models by combining generalized linear models for

the two marginal regression models with copula families. This is an extension

of a recent approach by Czado et al. (2012) and De Leon and Wu (2011) who

only consider a Gauss copula based on work by Song (2000, 2007) and Song

et al. (2009).

In our general copula-based regression approach, the model parameters

can be estimated efficiently using maximum-likelihood techniques. Further,

we provide asymptotic confidence intervals that allow us to quantify the

uncertainty of our estimates. For the selection of the copula family, we

propose the likelihood-ratio test by Vuong (1989).

In an extensive simulation study, we show that the incorporation of a

copula allows a more precise estimation of the individual policy losses, which

in turn leads to a more reliable estimation of the total loss. These results

are confirmed in a case study on car insurance policies. All statistical meth-

ods presented here are implemented in the R package ’CopulaRegression’

(Krämer and Silvestrini, 2012).
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2. Bivariate copulae for continuous-discrete data

2.1. Background: bivariate copulae

A bivariate copula C : [0, 1] × [0, 1] → [0, 1] is a bivariate cumulative

distribution function on [0, 1] × [0, 1] with uniformly distributed margins.

The importance of copulae is underpinned by Sklar’s Theorem (1959). In

the bivariate case, it states that for every joint distribution function FX,Y

of a bivariate random variable (X, Y ) with univariate marginal distribution

functions FX and FY , there exists a bivariate copula C such that

FX,Y (x, y) = C(FX(x), FY (y)). (1)

If X and Y are continuous random variables, the copula C is unique. Con-

versely, if C is a copula, Equation (1) defines a bivariate distribution with

marginal distribution functions FX and FY . This allows us to model the

marginal distributions and the joint dependence separately, as we can define

the copula C independently of the marginal distributions.

Copulae are invariant under monotone transformations of the marginal

distributions. Therefore, instead of the correlation coefficient – which mea-

sures linear associations – monotone association measures are used. A very

common choice is Kendall’s τ ,

τ := 4

∫
[0,1]2

C(u, v)dC(u, v)− 1 ∈ [−1, 1] .

In this paper, we study copula-based models for a pair of continuous-discrete

random variables. We denote the continuous random variable by X, and the

discrete random variable by Y . We assume that Y takes values in 1, 2, . . ..
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Their joint distribution is defined by a parametric copula C(·, ·|θ) that de-

pends on a parameter θ, i.e. the joint distribution is given by

FX,Y |θ(x, y) = C (FX(x), FY (y)|θ) .

We focus on four families of parametric bivariate copulae, namely the Clay-

ton, Gumbel, Frank and Gauss copulae. Each family depends on a copula

parameter θ. These parameters can be expressed in terms of Kendall’s τ .

The definitions of the copula families and their relationship to Kendall’s τ

are provided in Appendix A. We note that the Clayton copula is only de-

fined for positive values of Kendall’s τ , and that the Gumbel copula is only

defined for non-negative values of Kendall’s τ . Via a rotation, it is however

possible to extend these copula families to negative values of τ . An overview

on bivariate copula families and their properties, in particular their different

tail behavior, can be found e.g. in Brechmann and Schepsmeier (2012).

For sampling, estimation and prediction, we need the joint density/probability

mass function of X and Y that is defined as

fX,Y (x, y) :=
∂

∂x
P (X ≤ x, Y = y) . (2)

In the remainder of this paper, we will refer to f as the joint density function

of X and Y .

We now derive formulas for the joint density of X and Y in terms of the

copula C(·, ·|θ). We denote by

D1(u, v|θ) :=
∂

∂u
C(u, v|θ) (3)

for u, v ∈]0, 1[ the partial derivative of the copula with respect to the first

variable. Note that this is the conditional density of the random variable
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V := FY (Y ) given U := FX(X) (Joe, 1997). Table A.6 in Appendix A

shows the partial derivative (3) of the Clayton, Gumbel, Frank and Gauss

copula (see e.g. Aas et al. (2009) or Schepsmeiner and Stöber (2013) for

more details).

Proposition 1 (Density function). The joint density function fX,Y of a

continuous random variable X and a discrete random variable Y is given by

fX,Y (x, y|θ) = fX(x) (D1(FX(x), FY (y)|θ)−D1(FX(x), FY (y − 1)|θ)) .(4)

Proof. By definition

∂

∂x
P (X ≤ x, Y = y) =

∂

∂x
P (X ≤ x, Y ≤ y)− ∂

∂x
P (X ≤ x, Y ≤ y − 1)

=
∂

∂x
C(FX(x), FY (y)|θ)− ∂

∂x
C(FX(x), FY (y − 1)|θ)

= fX(x) (D1(FX(x), FY (y), θ)−D1(FX(x), FY (y − 1)|θ)) ,

which proves the statement.

2.2. Marginal distributions

The framework presented in the preceding subsection holds for general

pairs of continuous-discrete random variables. In this paper, we focus on

joint models for a positive average claim size X and a positive number of

claims Y . We model the average claim size X via a Gamma distribution

fX(x|µ, δ) =
1

xΓ
(

1
δ

) ( x

µδ

) 1
δ

exp

(
− x

µδ

)
for x > 0 , (5)

with mean parameter µ > 0 and dispersion parameter δ > 0. The number

of claims Y is a positive count variable, and is modeled as a zero-truncated

Poisson (ZTP) distributed variable with parameter λ > 0,

fY (y|λ) = λy

y!(1−exp(−λ))
exp(−λ) for y = 1, 2, . . . .
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The generality of our approach easily allows to use other appropriate dis-

tributions such as the log-normal for claim severity or the (zero-truncated)

Negative Binomial for claim frequency. The models and results presented

below can be extended accordingly.

2.3. Joint copula model for average claim sizes and number of claims

Combining the marginal distributions and the copula approach, we obtain

the following general model.

Definition 2 (Joint copula model for average claim sizes and number of

claims). The copula-based Gamma and zero-truncated Poisson model for pos-

itive average claim sizes X and positive number of claims Y is defined by the

joint density function

fX,Y (x, y|µ, δ, λ, θ)

= fX(x|µ, δ) (D1(FX(x|µ, δ), FY (y|λ)|θ)−D1(FX(x|µ, δ), FY (y − 1|λ)|θ)) ,

(6)

for x > 0 and y = 1, 2, . . ..

We remark that for discrete marginal distributions, the copula is not

unique. However, it is always unique on the range of the marginal distribu-

tions. Further, as we consider zero-truncated Poisson variables, the range is

large, and the use of copulas does not impose any restrictions.

The model depends on four parameters: the parameters µ, δ (Gamma)

and λ (ZTP) for the marginal distributions, and the copula parameter θ. Ta-

ble 1 displays the parameters and their relationships to the joint distribution.

We now illustrate the influence of the copula parameters and families on

the conditional distribution of Y . Therefore, we use the following result.
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average

claim size X number of claims Y copula family

distribution Gamma zero-truncated Poisson Gauss, Clayton

Gumbel, Frank

parameter(s) µ > 0, δ > 0 λ > 0 θ ∈ Θ

expectation E(X) = µ E(Y ) = λ
1−e−λ —

variance V ar(X) = µ2δ V ar(Y ) = λ(1−e−λ(λ+1))
(1−e−λ)2

—

Table 1: Model parameters of the joint distribution for average claim sizes X and number

of claims Y . The definition of the copula families is provided in Appendix A.

Proposition 3. The conditional distribution Y |X = x of the number of

claims given an average claim size of x under the copula-based model of

Definition 2 is given by

P (Y = y|X = x, µ, δ, λ, θ) = D1(FX(x|µ, δ), FY (y|λ)|θ)

−D1(FX(x|µ, δ), FY (y − 1|λ)|θ) .
(7)

Proof. This result follows from Proposition 1, as by definition for two random

variables X and Y

P (Y = y|X = x) =
fX,Y (x, y)

fX(x)
.

Example 4. We consider a group of policy holders with an expected number

of claims of λ = 2.5. The average claim size is set to µ = 1000 Euro, and

we assume that the standard deviation of the average claim size equals 300

Euro, which leads to a dispersion parameter of

δ =
3002

10002
= 0.09 .
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Figure 1: Conditional probability mass function of the number of claims Y . Marginal

distributions: expected average claimsize µ = 1000 Euro with dispersion parameter δ =

0.09, expected number of claims λ = 2.5. We condition on an average claim size of

x = 1200 Euro. Left: Gauss copula with τ = 0; 0.1; 0.3; 0.5 . Right: Gauss, Clayton,

Gumbel and Frank copula with τ = 1/3.

We condition on an average claim size of x = 1200 Euro.

The left panel in Figure 1 displays the conditional probability mass func-

tion (7) of Y |X = x for a Gauss copula with four different values of τ =

0; 0.1; 0.3; 0.5 . We observe that the four probability mass functions are dif-

ferent, and that for higher values of τ , more mass is assigned to larger values

of y. This is due to the dependence of X and Y and the fact that the condi-

tioning value x = 1200 Euro is much higher than the expected average claim

size of µ = 1000 Euro. The right panel displays the conditional probability

mass function for τ = 1/3 and the four different copula families. The choice
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of the copula family clearly influences the conditional distribution, although

the differences are less pronounced than in the case of varying τ . In sum-

mary, this leads to a flexible class of dependence models between a discrete

and a continuous variable.

3. Policy loss estimation

Next, we focus on the distribution of the policy loss.

Definition 5 (Policy loss). For a policy with average claim size X and num-

ber of claims Y , the policy loss is defined as the product of the two quantities,

L := X · Y .

The policy loss is a positive, continuous random variable, and it depends

on the four model parameters displayed in Table 1. A main contribution of

this paper is the following result.

Theorem 6. The distribution of the policy loss L is given by the density

function

fL(l|µ, δ, λ, θ) =
∞∑
y=1

[
D1

(
FX

(
l
y
|µ, δ

)
, FY (y|λ) |θ

)
−D1

(
FX

(
l
y
|µ, δ

)
, FY (y − 1|λ) |θ

)]
· 1

y
fX

(
l
y
|µ, δ

)
for l > 0.

Proof. For simplicity of notation, we omit the model parameters from the

formulas. We consider the two-dimensional random variable

(L, Y )> ∈ R+ × {1, 2, . . .}
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and derive its joint density mass function. By definition (see Equation (2))),

fL,Y (l, y) =
∂

∂l
P (L ≤ l, Y = y)

=
∂

∂l
P
(
X ≤ l

y
, Y = y

)
as X = L/Y . Substituting x = l/y, we obtain

fL,Y (l, y) =
∂

∂x
P (X ≤ x, Y = y) · ∂x

∂l

= fX,Y

(
l
y
, y
)
· 1

y
.

The result then follows by marginalizing over the discrete random variable

Y .

This implies that we can evaluate the density of the policy loss for all

of our four copula models, given a fixed set of parameters. Further, we can

evaluate its mean, variance and quantiles based on the density function.

In a first step, we visualize the densities for a given set of parameters

in order to investigate the differences between the four copula types and the

degree of dependence between the average claim size and the average number

of claims. In the simulation study (Section 6) and the case study (Section

7), we show that in the context of regression, the copula-based model leads

to a more precise estimation of the policy loss compared to the independence

assumption.

We continue Example 4 and use the same parameter settings for the

marginal distributions. Figure 2 displays the density of the policy loss for all

four copula families and for three different values of Kendall’s τ equal to 0.1,

0.3 and 0.5. First, we observe that the distribution is in general left skewed.

Further, we observe that the theoretical densities tend to be multimodal, and
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Figure 2: Densities of the policy loss for the four copula families and three different values

of Kendall’s τ . We use the parameters settings of Example 4.

the multiple modes become more distinct for increasing values of Kendall’s

τ . The skewness and multi-modality can be readily explained by Theorem

6. Setting

ω(y, l|µ, δ, λ, θ) :=
1

y
P

(
Y = y

∣∣∣∣X =
l

y
, µ, δ, λ, θ

)
,

the density of the policy loss can be written as an infinite mixture of Gamma

distributions

fL(l|µ, δ, λ, θ) =
∞∑
y=1

ω(y, l|µ, δ, λ, θ) · fX
(
l

y
|µ, δ

)
.

As the individual Gamma densities are skewed, the density of the mixture

tends to be skewed, too. Moreover, a mixture of unimodal Gamma densities

can be multi-modal as well. The parameter settings of the model influence

the number of the modes and how pronounced they are.

Figure 3 displays the expectation µL, the 25%-quantile q0.25;L and 75%-

quantile q0.75;L of the policy loss as a function of Kendall’s τ . All three quan-

tities are evaluated using numerical integration and numerical root solvers.

We use the parameter settings of Example 4 for the marginal distributions.
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The solid and dotted lines indicate the mean and the quantiles if we as-

sume that average claim sizes and number of claims are independent. We

observe that the independence assumption leads to an overestimation of the

policy loss if average claim sizes and number of claims have a negative mono-

tone association (i.e. τ < 0), and it leads to an underestimation if τ > 0.

As an example, we compare the expected policy loss under independence

(which equals 2723 Euro) to the expected policy loss for τ = 0.2. We obtain

2860 (+5%) Euro (Gauss), 2837 (+4%) Euro (Clayton), 2880 (+6%) Euro

(Gumbel) and 2850 (+5%) Euro (Frank).

Based on Figures 2 and 3, we observe a strong dependence of the dis-

tribution of the policy loss on the size of Kendall’s τ . However, we do not

observe a strong dependence on the choice of the copula family.
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Figure 3: Expected policy loss (blue diamonds) and upper and lower quartiles for the

four copula families, seen as a function of Kendall’s τ . For negative values of Kendall’s τ

the Clayton and the Gumbel copula have been rotated. The parameter settings for the

marginal distributions are taken from Example 4. The grey solid and dotted lines indicate

the expected policy loss and upper/lower quartiles if we assume independence.
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4. Copula regression model for average claim sizes and number of

claims

In the two previous sections, we modeled average claim sizes and number

of claims independently of possible covariates. In order to incorporate covari-

ates, we use the approach by Czado et al. (2012). We extend the joint model

(6) for average claim sizesX and number of claims Y by allowing the marginal

distributions of X and Y to depend on a set of covariates. More precisely,

we apply generalized linear models for the marginal regression problems and

combine these with bivariate copula families.

4.1. Model formulation

Let Xi ∈ R+, i = 1, 2, . . . , n, be independent continuous random variables

and let Yi ∈ N>0, i = 1, 2, . . . , n, be independent discrete random variables.

We model Xi in terms of a covariate vector ri ∈ Rp and Yi in terms of a

covariate vector si ∈ Rq. The marginal regression models are specified via

Xi ∼ Gamma(µi, δ) with ln(µi) = ri
>α,

Yi ∼ ZTP(λi) with ln(λi) = ln(ei) + si
>β.

Here ei denotes the exposure time. We remark that the covariate vectors ri

and si can be distinct.

4.2. Parameter estimation

We need to estimate the unknown parameter vector

υ := (α>,β>, θ, δ)> ∈ Rp+q+2 (8)
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based on n observation pairs (xi, yi). Here, we use maximum-likelihood esti-

mation techniques. By definition, the loglikelihood of the model parameters

(8) is

` (υ|x,y) =
n∑
i=1

ln (fX,Y (xi, yi|υ)) (9)

with

x = (x1, . . . , xn)> ∈ Rn and y = (y1, . . . , yn)> ∈ Rn .

The maximum likelihood estimates are given by

υ̂ = arg max
υ

` (υ|x,y) .

In general, there is no closed-form solution. Therefore, we have to maximize

the loglikelihood numerically. In this paper, we apply the BFGS optimization

algorithm (a quasi Newton method) to maximize the loglikelihood (9). As

the copula parameter θ ∈ Θ is in general restricted (see Appendix A), we

transform θ via a function g : Θ → R such that g(θ) is unrestricted. As an

example, for the Gauss copula, the copula parameter θ lies in ] − 1, 1[, and

the transformation is defined as

g(θ) =
1

2
ln

(
1 + θ

1− θ

)
.

We then optimize the logliklihood with respect to (α>,β>, g(θ), δ)>.

Alternatively, we can estimate the model parameters by applying the

inference-for-margins (IFM) principle (Joe and Xu, 1996). Here, we proceed

in two steps. First, we estimate the marginal regression models for aver-

age claim sizes and number of claims via maximum-likelihood. We obtain
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estimates

µ̂ = exp (Rα̂) ∈ Rn

λ̂ = exp
(
Sβ̂
)
� e ∈ Rn

for each observation and an estimate δ̂ ∈ R for the dispersion parameter.

Here, e ∈ Rn is the vector of exposure times, and � denotes an element-wise

multiplication of two vectors. These estimates are used to transform the

observations x and y to

ui := FX

(
xi|µ̂i, δ̂

)
∈ [0, 1]

vi := FY

(
yi|λ̂i

)
∈ [0, 1]

wi := FY

(
yi − 1|λ̂i

)
∈ [0, 1].

Here, FX and FY are the distribution functions of a Gamma and zero-

truncated Poisson variable respectively. In the second step, we optimize

the copula parameter θ by maximizing the loglikelihood

˜̀(θ|u,v) :=
n∑
i=1

ln (D1(ui, vi|θ)−D1(ui, wi|θ)) .

The function ˜̀ can be maximized numerically. In general, the run-time for

the IFM approach is much smaller compared to the maximization of the

loglikelihood (9). In initial simulations, the performance of the two methods

was very similar. This confirms earlier findings by De Leon and Wu (2011).

Therefore, in the simulations study below, we only report the results of the

maximum likelihood solution, since it is asymptotically more efficient.

Finally, we note that Czado et al. (2012) recently proposed an extension

of the maximization by parts algorithm (Song et al., 2005) to estimate the
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regression parameters. These methods could be easily adapted to our model.

In this paper, we do not pursue this approach and estimate the parameters

via maximum-likelihood.

4.3. Asymptotic distribution of the regression parameters

For the construction of approximate confidence intervals, we use the

Fisher information matrix that is defined as

I (υ) := E

[
∂`(υ|x,y)

∂υ
·
(
∂`(υ|x,y)

∂υ

)> ]
∈ R(p+q+2)×(p+q+2) .

Under regularity conditions (see, e.g., Serfling (1980)) one can show that

√
n (υ − υ̂)

D−→ Np+q+2

(
0, I−1 (υ)

)
.

Here, Nk denotes a k-dimensional multivariate normal distribution. For the

estimation of the Fisher information, we use the fact that (Lehmann and

Casella, 1998)

I (υ) = −E
[
∂2`(υ|x,y)

∂2υ

]
,

and use the observed Fisher information matrix

Î (υ) := −∂
2`(υ|x,y)

∂2υ
.

This is the Hessian matrix of the loglikelihood function. In our case, it

is feasible to compute the second partial derivatives explicitly. Moreover,

the BFGS optimization algorithm returns an approximation of the Hessian

matrix that is obtained via numerical derivatives. In this paper, we use this

approximation to estimate standard errors for the regression coefficients.
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4.4. Selection of the copula family

Up to now, the copula class is assumed to be fixed. For the comparison

of two copula families, we propose the likelihood-ratio test for non-nested

hypotheses by Vuong (1989). This test is appropriate as our models are non-

nested, i.e. the regression model for one copula family cannot be obtained

via a restriction of the regression model for the other copula family. Let us

denote by `(1), `(2) ∈ Rn the vectors of pointwise loglikelihoods for a model

with copula family 1 and 2 respectively. Here, we assume that both models

have the same degrees of freedom, i.e. the same number of parameters. We

now compute the differences of the pointwise loglikelihood as

mi := `
(1)
i − `

(2)
i , i = 1, . . . , n .

Denote by

m =
1

n

n∑
i=1

mi

the mean of the differences. The test statistic

TV :=

√
n ·m√∑n

i=1 (mi −m)2
, (10)

is asymptotically normally distributed with zero mean and unit variance.

Hence, we prefer copula family 1 to copula family 2 at level α if

TV > Φ−1
(

1− α

2

)
,

where Φ denotes the standard normal distribution function. If

TV < Φ−1
(α

2

)
,
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we prefer copula family 2. Otherwise, no decision among the two copula

families is possible. We note that it is possible to adjust the test if the two

models have different degrees of freedom.

5. Estimation of the total loss

Recall that we model the policy loss Li = Xi · Yi for each policy holder

via our joint regression model. Its distribution is determined by Theorem 6.

In a next step, we are interested in the distribution of the total loss over all

policy holders.

Definition 7 (Total loss). For n policies with average claim sizes Xi and

number of claims Yi (for i = 1, . . . , n), the total loss is defined as the sum of

the n policy losses

T :=
n∑
i=1

Li =
n∑
i=1

Xi · Yi .

Just as the individual policy losses, the total loss is a positive, continuous

random variable. An application of the central limit theorem leads to the

following result.

Proposition 8 (Asymptotic distribution of the total loss). For n indepen-

dent policy losses L1, . . . , Ln with mean µLi and variance σ2
Li

, the asymptotic

distribution of the total loss T is normal. For

σ2
n :=

n∑
i=1

σ2
Li

we have √
n

σn

(
T −

n∑
i=1

µLi

)
D−→ N (0, 1) .
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For the estimation of the total loss, we need to estimate the means µLi

and variances σ2
Li

of the individual policy losses. This is done by replacing

the distribution parameters µi, δ, θ, λi of Li by their estimates obtained from

our joint regression model. Then, the mean and variance can be estimated

numerically.

6. Simulation study

We consider a regression problem with n = 500 policy groups and the

following covariates: age, gender and type of car (A, B or C). We assume

that all policy groups contain the same number of persons, which leads to a

constant offset. The first column of the design matrices

S := R := (r1, . . . , rn)> ∈ R500×5

consists of 1’s. This corresponds to marginal regression models with an

intercept. The second column corresponds to the covariate age, and is drawn

uniformly in the range of 18 and 65. The third column is the dummy variable

corresponding to female. Here, the probability of a female policy group is set

to 1/2. The last two columns are the two dummy variables corresponding

to car type B and car type C. Car type A is represented by the intercept.

The probability of a certain car type is set to 1/3. The vector of regression

coefficients are defined in Table 2. As an example, in this simulation scenario,

a female driver has a negative effect on the average claim size, and a positive

effect on the number of claims. We set the constant dispersion parameter δ

of the Gamma distribution to δ = 0.25, which implies that the coefficient of
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intercept age female car type B car type C

average claim size X −0.50 −0.05 −1.00 +2.00 −0.50

number of claims Y −1.00 +0.04 +0.30 +0.30 +0.20

Table 2: Regression coefficients for the simulation study.

variation (CV) fulfills

CV =

√
V ar(Xi)

E(Xi)
=
√
δ =

1

2
.

We consider the four copula families and three different values of Kendall’s

τ ,

τ = 0.1; 0.3; 0.5 .

For each parameter setting, we sample n = 500 observations from the true

copula regression model, and then fit the regression coefficients and Kendall’s

τ via maximum likelihood. We consider estimation methods: (1) the inde-

pendent model: we fit the two marginal regression models and set τ = 0.

(2) the joint, copula-based model. We also compute the estimated loss for

each of the n policies. We repeat this procedure R = 50 times. To evaluate

the performance of the two approaches, we consider the following measures

for the estimated regression coefficients and the expected policy loss. For a

parameter vector γ ∈ Rk with estimate γ̂, we are interested in the relative

mean squared error which is defined as

MSErel := E

(
1

k

k∑
i=1

(
γi − γ̂i
γi

)2
)
. (11)
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In the rth iteration step, we obtain an estimate of (11) via

M̂SE
(r)

rel :=
1

k

k∑
i=1

(
γi − γ̂(r)

i

γi

)2

.

Here, γ̂(r) is the estimate of γ obtained in the rth step. In the simulation

study, we compare the mean relative mean squared error

MSErel =
1

R

R∑
r=1

M̂SE
(r)

rel

computed over all R simulation runs. Note that its variance can be estimated

via

S2
MSErel

=
1

R
· 1

R− 1

R∑
r=1

(
M̂SE

(r)

rel −MSErel

)2

.

Further, we investigate the size of the estimated τ , the estimated total

loss, and the value of the Akaike information criterion

AIC := −2` (υ̂|x,y) + 2DoF ,

where the Degrees of Freedom (DoF) are the number of estimated parameters

in the model. Note that we have p+ q + 2 = 12 Degrees of Freedom for the

joint model and p + q + 1 = 11 Degrees of Freedom for the independence

model. We prefer the model with the lower AIC score.

Figure 4 displays the results for the Clayton copula. For each quantity

that we compute in each of the R simulation runs, we display the mean over

all R runs. The means are indicated by a square. The width of each error

bar equals twice the standard deviation of the quantity, divided by
√
R.

The upper row in Figure 4 displays the relative mean-squared error of

α̂, β̂, and the estimated expected policy loss. Overall, we observe that the
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Figure 4: Results of the simulation study for the Clayton copula. Top row: relative mean

squared error (11) for the average claim size (left), the number of claims (center) and

then policy loss (right). Bottom row: estimated Kendall’s τ (left), AIC score (center) and

estimated total loss (right). We display the mean over R runs. The width of the whiskers

is twice the estimated standard deviation of the mean. Whiskers that are not displayed

are too narrow to be visualized.

23



relative mean squared error for the regression parameters (left and center

panel) are not significantly different . For the policy loss however (right

panel), the relative mean squared error is lower for the joint, copula-based

model, and this improvement becomes more pronounced for higher values of

τ .

The first column of the second row displays the estimated value of Kendall’s

τ . Here, the dashed line indicates the true value of Kendall’s τ . We observe

that the estimation of τ is very good. Moreover, the AIC score (center panel

in the second row) of the joint model is lower than the one of the marginal

models . This shows that if joint model is the true model, then we have to use

the joint estimation approach, i.e. the dependence cannot be ignored. The

right lower panel displays the estimated total loss. The dashed horizontal

lines are the true values of the total loss for the respective value of Kendall’s

τ . We observe that the independence model systematically underestimates

the total loss. This confirms the conclusions drawn from Figure 3.

The results for the three other copula families confirm all the findings

made for the Clayton copula. We display the results in Appendix B.

7. Case study: car insurance data

We consider data provided by a German insurance company. It contains

car insurance data for 7663 German insurance policy groups from the year

2000. It contains seven covariates and information on the exposure time. All

seven covariates are categorical. The data was previously analyzed by Czado

et al. (2012). Details on the covariates are given in Table 3.
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name description number of categories

gen driver’s gender 2

rcl regional class 8

bonus no-claims bonus 7

ded type of deductible 5

dist distance driven 5

age driver’s age 6

const construction year of the car 7

Table 3: Covariates in the German car insurance data set.

7.1. Marginal models

We first analyze the marginal models. We fit a Gamma regression model

for the average claim size, and a zero-truncated Poisson regression model for

the number of claims. Next, we investigate the significance of the estimated

regression parameters α̂ and β̂. We are interested in those coefficients that

are significantly different from 0. Recall (see Section 4.3) that asymptoti-

cally, these estimates are normally distributed, and that we can construct

approximate confidence intervals using the observed Fisher information. In

addition, we adjust the tests for multiple comparisons and the dependence of

the estimators (Hothorn et al., 2008). For the number of claims, the covari-

ates age and construction year do not have any significant coefficients on a

level of α = 0.05. Wit re-fit the marginal models, leaving out the respective

non-significant covariates. Figure 5 displays the joint 95% confidence inter-

vals of the coefficients, showing that the remaining covariates are significant

on the 5%-level.
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Figure 5: Marginal regression models. Joint 95% confidence intervals for the regression

coefficients. Left: Average claim size. Right: number of claims.

7.2. Joint model

We use the covariates selected in Section 7.1 and fit the joint regression

model for each copula family. For each pair of copula families, we perform

a corresponding Vuong test. Table 4 displays the results. For each pair, we

display the copula family that is selected on a α = 0.05-level. In parentheses,

we display the value of the Vuong test statistic (10). Note that a value > 2

indicates that we select model 1, and that a value < −2 indicates that we

select model 2. We conclude that the Clayton copula is preferred to each of

the three other copula families. Therefore, for the remainder of this section,

we continue our analysis with the Copula family. The AIC score for the

26



Clayton model and independence model are

AICclayton = 46 682.35

AICindependence = 46 921.67 .

In terms of model comparison, this implies that the copula-based model is

more appropriate than the independence model. The estimated value of

Kendall’s τ ± its estimated standard deviation equals

τ̂clayton = 0.268± 0.098 ,

which corresponds to a moderate, positive dependence between average claim

sizes and number of claims. As a comparison, we note that the estimated

value of Kendall’s τ for the Gauss copula equals 0.157, which implies that

the selection of the copula family has a considerable effect on the estima-

tion of the dependence parameter. Finally, we investigate the impact of this

dependence on the estimation of the total loss. For the copula and indepen-

dence model respectively, we obtain an estimated total loss ± its estimated

model 2

Gauss Clayton Gumbel Frank

m
o
d

el
1

Gauss - Clayton (-10.37) Gauss (+6.11) Frank (-5.34)

Clayton Clayton (+10.37) - Clayton (+9.23) Clayton (+9.54)

Gumbel Gauss (-6.11) Clayton (-9.23) - Frank (-6.54)

Frank Frank (+5.34) Clayton (-9.54) Frank (+6.54) -

Table 4: Pairwise Vuong tests. We display the copula family that is selected on a α = 0.05-

level. In parentheses, we display the value of the Vuong test statistic (10). A value > 2

indicates that we select model 1, and that a value < −2 indicates that we select model 2.
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standard deviation of

ÊClayton (T) = 81 751.07± 1239.766

Êindependence (T) = 76 324.45± 1103.301 .

In contrast, the true observed value of the total loss equals 82 256.00. As

already illustrated in the simulation study, the negligence of the dependency

structure leads to considerably lower estimates of the total loss. In our case,

this corresponds to a ratio of

Êindependence (T)

ÊClayton (T)
= 0.934 ,

which indicates a possibly severe underestimation of the independence model

in presence of frequency-severity dependence. The more conservative esti-

mate by the copula-based model takes this dependence into account and will

thus result in a more appropriate premium rating protecting the insurance

company from huge losses in the portfolio.

8. Summary and discussion

In this paper, we model average claim sizes and number of claims if both

quantities are dependent. We provide exact distributions of individual pol-

icy losses, which tend to be left-skew, and – depending on the parameters of

the model – can be multi-modal. Further, we propose a regression approach

that models average claim sizes and number of claims in terms of a set of

covariates. We showed theoretically and empirically that the explicit incor-

poration of the dependency in terms of copulae has a profound impact on

the estimation of the individual policy loss and the total loss.
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Our model explicitly incorporates the discrete structure of the number of

claims and allows a flexible class of copula families. This extends previous

work that only consider the Gauss copula (Czado et al., 2012; De Leon and

Wu, 2011). In our case study, we demonstrated that other copula families

are more appropriate.

We stress that our approach does not depend on the particular choice of

the marginal distribution or copula family, and it can be extended to other

parametric distributions and families (see e.g. Yee and Wild (1996) and Yee

(2010) for an overview on appropriate marginal distributions). Moreover, in

the case of higher-dimensional mixtures of discrete and continuous random

variables, pair-copula constructions (Aas et al., 2009) can be used (see e.g.

Panagiotelis et al. (2012) and Stöber et al. (2012)).

In our simulation study, we showed that a model that assumes indepen-

dence of average claim sizes and number of claims consistently underestimates

the total loss of the insurance portfolio implying a severe mispricing of poli-

cies. Knowing the true distribution of the policy loss and total loss allows

us to correctly assess some risk. This is underpinned in our case study on

German car insurance policies. Here, we select relevant covariates for the

marginal models and choose the appropriate copula family for the depen-

dence structure using a Vuong test. The data shows a moderate positive

dependence. We illustrate that this leads to a more conservative estimation

of the total loss, which avoids huge losses in the insurance portfolio and thus

possibly filing for bankruptcy. Respecting actuarial prudence therefore re-

quires to take into account possible dependencies between average claim sizes

and numbers of claims.
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Stöber, J., Czado, C., Hong, H.G., Ghosh, P., 2012. Modeling multiple

chronic diseases in the elderly: Longitudinal patterns identified by copula

design for mixed responses. Preprint .

Vuong, Q., 1989. Ratio tests for model selection and non-nested hypotheses.

Econometrica 57, 307–333.

Yee, T.W., 2010. The VGAM package for categorical data analysis. Journal

of Statistical Software 32, 1–34.

Yee, T.W., Wild, C.J., 1996. Vector generalized additive models. Journal of

the Royal Statistical Society, Series B 58, 481–493.

32



Appendix A. Copulae

Table A.5 provides the definition of the four bivariate copula families,

their relationship to Kendall’s τ and their first partial derivative. Here Φ2

is the cumulative distribution function of the bivariate standard normal dis-

tribution, and Φ is the cumulative distribution function of the univariate

standard normal distribution. Further,

Dk(x) =
k

xk

x∫
0

tk

et − 1
dt .

denotes the Debye function which is defined for k ∈ N.

family copula C(u, v, θ) range of θ relationship to Kendall’s τ

Gauss Φ2

(
Φ−1(u),Φ−1(v)|θ

)
]− 1, 1[ τ = 2

π
arcsin(θ) ∈ R

Clayton
(
u−θ + v−θ − 1

)−1/θ
]0,∞[ τ = θ

θ+2
∈]0,∞[

Gumbel exp

(
−
(

(− log u)θ + (− log v)θ
)1/θ)

[1,∞[ τ = θ−1
θ
∈ [0,∞[

Frank − 1
θ

log

(
1 +

(
e−θu−1

)(
e−θv−1

)
e−θ−1

)
R\{0} τ = 1− 4

θ
[1−D1(θ)] ∈ R \ {0}

Table A.5: Characteristics of selected copula families.

family first partial derivative D1(u, v|θ)

Gauss Φ

(
Φ−1(v)−θΦ−1(u)√

(1−θ2)

)
Clayton

(
u−θ + v−θ − 1

)−1/θ−1
u−θ−1

Gumbel u−1 exp

(
−
(

(− log u)θ + (− log v)θ
)1/θ

)
Frank

eθ(eθv−1)
eθ(u+1)+eθ(v+1)−eθ−eθ(u+v)

Table A.6: First partial derivative of selected copula families.
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Appendix B. Results of the simulation study

We display the results for the Gauss copula (Figure B.6), the Gumbel

copula (Figure B.7) and the Frank copula (Figure B.8).
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Figure B.6: Results of the simulation study for the Gauss copula. Top row: relative mean

squared error (11) for the average claim size (left), the number of claims (center) and

then policy loss (right). Bottom row: estimated Kendall’s τ (left), AIC score (center) and

estimated total loss (right). We display the mean over R runs. The width of the whiskers

is twice the estimated standard deviation of the mean. Whiskers that are not displayed

are too narrow to be visualized.
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Figure B.7: Results of the simulation study for the Gumbel copula. Top row: relative

mean squared error (11) for the average claim size (left), the number of claims (center)

and then policy loss (right). Bottom row: estimated Kendall’s τ (left), AIC score (center)

and estimated total loss (right). We display the mean over R runs. The width of the

whiskers is twice the estimated standard deviation of the mean. Whiskers that are not

displayed are too narrow to be visualized.
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Figure B.8: Results of the simulation study for the Frank copula.Top row: relative mean

squared error (11) for the average claim size (left), the number of claims (center) and

then policy loss (right). Bottom row: estimated Kendall’s τ (left), AIC score (center) and

estimated total loss (right). We display the mean over R runs. The width of the whiskers

is twice the estimated standard deviation of the mean. Whiskers that are not displayed

are too narrow to be visualized.
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