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Abstract— Imitation learning, also known as Programming
by Demonstration, allows a non-expert user to teach complex
skills to a robot. While so far researchers focused on abstracting
kinematic relations, only little attention has been paid to force
information. In this work we study imitation learning of human
grasping skills from motion and force data. For this purpose a
teleoperation system is realized that allows a human to control
a simulated robotic hand and to grasp objects in a virtual
environment. Haptic rendering algorithms are implemented
to calculate interaction forces that occur when touching the
virtual object. While learning of fingertip interaction forces
is shown to result in physical inconsistency compared to the
demonstrations, we show that learning of internal tensions leads
to stable reproductions of the demonstrated grasping skill.
Obtained results further indicate an enlarged generalisation
capability of grasping skills learnt on the basis of motion and
force data compared to grasping skills that encode kinematic
relations only.

I. INTRODUCTION

While today’s industrial robots are capable of solving

specific tasks in well known environments, robots that share

their working space with humans are confronted with un-

known and timely varying environments. To increase capabil-

ities of such robots, the possibility of teaching them complex

tasks is of paramount importance.

Programming by Demonstration (PbD), also known as

Imitation Learning [1], is an often adopted approach in

this context. Recorded data is used in an abstraction step

to extract most general information (encoding) which is

then utilized in a reproduction step (decoding) to synthesize

the learned task. The approach can be adopted on a high

level with complex task knowledge or on a low level with

elementary skills. As encoding models Neural Networks

[2], [3], Hidden Markov Models (HMMs) [4] or Gaussian

Mixture Models (GMMs) [5] are commonly applied.

Grasping represents a very complex and frequently used

task, which requires simultaneous coordination of motion

and force. In Ekvall and Kragić HMMs were applied for

human grasp recognition [6]. After mapping recognised

grasps to a robot manipulator they executed different grasp

types with the help of hand shape primitives. Hsiao and

Lozano-Pérez used a teleoperation system to learn whole-

body grasps from demonstrations on a simulated humanoid

robot [7]. The demonstrations are sequences of keyframes in

which representative interaction points are recorded. Gräve et

al. built a system which learnt parametric motion primitives

from human demonstrations and improved them by rein-

forcement learning [8]. Bohg and Kragić also investigated

grasping points, but with a non-linear classification algorithm

[9]. Rao et al. used a supervised localisation method to

identify graspable segments [10].

The mentioned approaches have in common that kinematic

relations of a grasping skill are learnt, while neglecting force

information. However, force information is an important

component for the succesful execution of a grasping task.

Therefore we explicitly study imitation learning of human

grasping skills from motion and force data with multiple in-

teraction points in this paper. In contrary to recent approaches

which used force information for single point interactions

[11], [12], the additional complexity of multiple interaction

points in the grasping task leads to new challenges. While

direct learning of fingertip interaction forces will be shown

to result into inconsistent physical behavior compared to the

demonstrations, we will demonstrate that learning of internal

tensions leads to stable reproductions of the demonstrated

grasping skill. We will further demonstrate an enlarged

generalisation capability of grasping skills learnt on the basis

of motion and force data compared to grasping skills that

encode kinematic relations only.

The paper is structured as follows. Section II provides a

general overview of our approach, while section III details

the implemented imitation learning algorithms. Section IV

discusses the necessary physical consistency of forces when

grasping skills are learnt from motion and force data. De-

tails of the experimental implementation are provided in

section V. Finally, section VI reports on experimental results

that demonstrate the benefit of including force information

when learning human grasping skills.

tracker

Fig. 1. Teleoperation system used for demonstration. Using the data
glove and motion tracker attached to the users hand (right) the simulated
Elumotion Hand is controlled (left).
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Fig. 2. (1) During demonstrations force and motion data is recorded. (2)
This information is abstracted by a learning algorithm. (3) Regression is
performed to extract generalised time-series of data, which are used for
reproduction of the task.

II. OVERVIEW

In order to study imitation learning of human grasping

skills we adopt the setup shown in Fig. 1. Demonstrations

of grasping skills are realized by means of a teleoperation

system. On operator site human finger motions are measured

using a dataglove and mapped to a robotic hand, which

is simulated by means of a dynamical simulation. Haptic

rendering is used to simulate interaction forces between the

robotic hand and the object. Force information is fed back

to the human operator and displayed by means of an ex-

oskeleton. Fig. 2 provides the overview of our implemented

learning approach.

III. IMITATION LEARNING

The abstraction and regression processes represent the

core of an imitation learning framework. While Gaussian

Mixture Regression (GMR) [13] was found to have the

better regression quality, HMMs have the advantage of

containing time as an implicit variable, which results into

an enhanced recognition quality. Thus, herein an HMM is

used for abstraction, while GMR for regression. For a general

explanation of HMMs please refer to Rabiner [14].

A. Abstraction to HMM

An HMM is defined by the initial state probability, the

probability transition matrix, the covariance matrix Σik and

the center µik of Gaussian k in state i:

Σik =

[

ttΣik
ts
Σik

st
Σik

ss
Σik

]

µik =

[

tµik
sµik

]

Temporal values are marked with an index t and spatial

values with an index s. The e-th demonstration is referred

to with oe(t).
At the current implementation, the topology of the HMM

(i.e., the number of states) are determined heuristically (cf.

subsection III-C). So far, existing methods (e.g., Bayesian

Information Criterion [15]) for topology estimation are of-

ten based on trade-off between the classification perfor-

mance and model complexity. However, reproductions qual-

ity, which is crucial for grasping tasks, is not taken into

account. In the future, it will be interesting to investigate on

topology selection for dynamical tasks.

After topology determination the HMM parameters are es-

timated by a following two step procedure. First, parameters

of the HMM are initialised. Due to the high-dimensional

and non-linear problem, an arbitrary initialisation may result

into poor local maxima and thus, the k-means algorithm

is typically adopted in this context. Second, the estimation

is done based on the EM-algorithm. The resulting HMM

parameters do not contain explicit time information which is

necessary for GMR. Thus, the probability that an observation

belongs to each state and each Gaussian is calculated after the

convergence of the EM-algorithm. Given this probability, the

means and covariances of temporal data can be determined.

An improvement of these values can be achieved by taking

into account that parts of different demonstrations have

been executed with differing time ranges. Therefore the

correlation of the temporal information in the demonstrations

is enhanced as detailed in the following paragraphs.

1) Transformations of demonstrations:

a) Time-scaling: All demonstrations are scaled in time to

the mean time T which is calculated over all demonstrations.

This results into demonstrations of an equal time length.

b) Dynamic Time Warping (DTW) [15]: Classical DTW

de-skews temporally warped one-dimensional value se-

quences by building a warping path which results from

the smallest cumulative error. However, in PbD multiple

N -dimensional value sequences are given. We propose an

approach addressing the following two points: (i) a reference

demonstration is chosen, (ii) one or multiple 1D warping

paths are built for a demonstration consisting of N spatial

dimensions.

To solve the first problem, we selected the reference

by considering the information content of a demonstration.

In general a varying trajectory contains more information

than a static one. Thus, we choose the trajectory with the

maximum difference between maximum and minimum value

as reference.

The second problem is solved by projecting the N dimen-

sions to one representative dimension. The main issue is to

maintain the type-dependent influence of the dimensions (e.g.

joint angles or endeffector positions). Therefore, the method

described in (1) is chosen

z(ti) =
∑

g





kg

Ng

∑

j

|oe
g,j(ti)|





k−1

g = max(oe
g,j(t1), o

e
g,j(t2), ...o

e
g,j(T )) ∀j (1)

ze = [z(t1), z(t2), ...z(T )]

where a weighted sum is built depending on the type g by

normalisation with kg and the dimensionality Ng . j denotes

the different dimensions of a type. In ze the representative

one dimensional value sequence for a demonstration is

contained. From this procedure follows that every weighted

summand equals at maximum 1. Consequently, significant

values have a high influence, while non-significant values

have little influence on ze. Raw demonstrations and the
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Fig. 3. Preprocessing of observations. Top: Raw demonstrations. Below:
Results after adaptation and DTW

obtained results after time-scaling and DTW are shown in

Fig. 3.

2) Initialisation: For initialisation the following two-step

procedure is adopted:

a) Scaling: The time range is scaled to be one order of

magnitude larger than the magnitude range. This enhances

the quality of the k-means algorithm [5].

b) k-means algorithm: The algorithm returns centers which

can be distributed among the Gaussians after a rescaling

to fit the original data as well as the indices of the points

belonging to these centers. Thus, the covariance matrices can

be initialised as follows:

Σik =

∑

(oik − µik)(oik − µik)T

N

3) EM algorithm: After the initialisation steps, the Baum-

Welch algorithm is executed for parameter estimation [16].

Beside the probability transition matrix and the initial state

probability the algorithm only returns the spatial centers and

covariance matrices. However, the auxiliary variables γe
ik(t)

describing the probabilities that an observation belongs to a

certain Gaussian k and state i is also estimated. Thus, these

probabilities are used to calculate tµik, ttΣik and ts
Σik.

Interested readers please refer to [4] for details.

B. Regression

Regression is performed in two steps. First, linear func-

tions are expressed by the parameters of the Gaussians

xik = sµik + st
Σik( ttΣik)−1(t − tµik).

Second, smoothing between these linear functions is done by

a weighted sum. The weight hik is based on the probability

that a Gaussian is responsible for a given time point

hik =
N (t; tµik, ǫttΣik)

K
∑

k=1

I
∑

i=1

N (t; tµik, ǫttΣik)

where N (t;t µik, ǫ ttΣik) is an univariate Gaussian distri-

bution with the time as input variable and a smoothing

factor ǫ. The denominator is summed over all I states and

K Gaussians. This factor is an extension to the common

regression and used as a tuning parameter to keep the

maximum velocities in a certain range (see subsection III-C

for details). The final regression formula is given by

x =

K
∑

k=1

I
∑

i=1

hikxik.

C. Smoothing factor

For the evaluation of the smoothing factor three artificial

demonstrations gi of similar nature are given that span over

a time range of t ∈ [0; 4]s:

g1 = cos(ωt)

g2 = 1.01 cos(1.05ω(t + 0.05)) + 0.05 (2)

g3 = 0.97 cos(0.97ω(t − 0.03)) − 0.03

where ω = 0.6 · 2π s−1 is the angular frequency.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

t[s]
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Gaussians
demonstrations
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ǫ = 3

Fig. 4. Generalised trajectories for different smoothing factors ǫ.

From these three demonstrations an HMM is estimated

assuming a left-right topology, one Gaussian per state and

a total number of 11 states. This number follows from the

fact that every Gaussian should describe a certain extremum

or linear function contained in the observations. Then, the

generalised trajectories are retrieved with different smoothing

factors. Some specific values are calculated and shown in

Table I. The result of the regression is shown in Fig. 4.

Increasing the smoothing factor leads to a larger deviation

from the demonstrations (see RMS error) but also to de-

creasing amplitudes of the derivatives. This characteristic can

be used to restrict the generalised trajectories to realizable

velocities and accelerations. Thus, the smoothing factor can

be used to define a trade-off between kinematic constraints

of the manipulator and task constraints which are given by

the desired precision of the execution.

TABLE I

CHARACTERISTICS OF GENERALISED TRAJECTORIES FOR DIFFERENT

VALUES OF THE SMOOTHING FACTOR

smoothing factor RMS error max(|ẋ|) max(|ẍ|)

0.5 0.50 6.32 128.43
1.0 0.50 3.73 44.78
2.0 0.56 2.67 19.91
3.0 0.62 2.28 15.52

IV. LEARNING OF GRASPING SKILLS FROM

MOTION AND FORCE DATA

If a grasping skill is learnt based on motion data only,

kinematic task constraints can be extracted from a series

of demonstrations that allow its reproduction on similar
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objects. However, when applying the learnt skill to objects

of a different size or stiffness, high interaction forces might

result and this can damage the robotic hand or object.

Such damages can be avoided by considering also force

information in the learning process.

Including force information, however, requires special

considerations to be taken into account. Due to the closed

kinematic chains formed between fingers and object, forces

applied to the object have to balance each other in steady

state. Simple reproduction of forces applied during multiple

demonstrations at the single interaction points, however, can

lead to physically inconsistent forces and consequently un-

stable grasping behaviors. Given for example demonstrations

of a two-finger precision grasp which is abstracted and

reproduced with the interaction forces that have been applied

at the two contact points. When learning and reproducing

these interaction forces, they do not necessarily balance each

other. As a consequence, the object will deviate from its

desired path and in the worst case, the grasp will become

unstable.

In order to overcome these problems when reproducing

grasping skills from motion and force data, we split forces

acting on the object into external and internal forces (cf.

Fig. 5). For rigid bodies they are defined as follows: External

forces mean resulting forces from contact interactions with

the environment which are acting in sum on the center of

mass of the object. The static part compensates volumetric

forces like gravitation or magnetism. The dynamic part leads

to an acceleration or deceleration of the object. Internal

forces are forces that act on the cross section area of the

object and lead to tension in the object. The static part means

forces that squeeze or stretch the object, while the dynamic

part describes forces that act on the object in consequence

of the inertia of the object.

Static internal forces as defined above, correlate with

internal tensions. The latter have the advantage that they are

decoupled of the actual kinematic constellation of the hand

and the location of the contact points, however, they contain

the same information as the static internal forces. Thus,

learning internal tensions instead of the interaction forces

guarantees physically consistent behavior and consequently

the reproduction of stable grasps. For two interaction points

between manipulator and object, the external fext, the static

internal forces f int,i for each finger i and the internal tension

σ can be calculated based on the scheme of Yoshikawa and

Nagai [17] that models a virtual linkage between the two

interaction points:

fext =
∑

i

f i

σ = min(||fT
1
e12||, ||f

T
2
e12||)

f int,i = ±σe12

where f i denotes the interaction forces at finger i and e12

the unit vector from interaction point 1 to 2. If more than

two interaction points exist, internal forces and tensions σ =
[σ1, σ2, ..., σL]T corresponding to the L virtual linkages can

Contact Interaction 
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External Internal

StaticDynamic StaticDynamic

on center of 

mass

f

g   =0
f

  ≠0
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  ≠0

on crosssection area

compensating non compen-

satin
g

compensating

f f

  =0

 ≠0
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g

σσ

ẍẍẍ ẍ

Fig. 5. Decoupling of interaction forces into internal and external force
components: In the boxes examples are given with f forces, ẍ acceleration,
g gravitation and σ internal tensions

be calculated with the grasp description matrix E and its

pseudoinverse E† [18].

σ = E†[f1, f2, ..., fn]T

f int,i = Eσ

V. EXPERIMENTAL SETUP

In this paper we analyse a two finger precision grasp that

consists of the following four phases: reaching, grasping,

lifting and holding of the object. A 13-dimensional vector

containing the joint angles ϕ, the tension σ as well as the

position and orientation of the robot palm were recorded

during multiple demonstrations. Subsequently a left-right

HMM is trained with these demonstrations. Every state

contains one Gaussian and reproduction is done using GMR.

The following subsections provide details about the used

hardware setup as well as the implemented controllers and

haptic rendering.

A. Hardware setup

The experimental setup consists of the following components

(cf. Fig. 1).

• Cyberglove: a strain-gauge-based finger angle measure-

ment unit; human finger motions are mapped to robot

motions using a deterministic mapping algorithm

• Cybergrasp: a hand exoskeleton to apply forces to the

fingertips and to provide a realistic grasping sensation

• Flock of Birds: a magnetic tracking system to measure

palm position and orientation which is mapped to the

robot hand

• Elumotion Hand: simulation of an anthropomorphic

hand with nine actuated degrees of freedom and 20

joints

B. Dynamic simulation of robotic hand

For the simulation of the Elumotion Hand the human palm

position and orientation in space is directly mapped to the

robot palm. Each robot finger is simulated by means of a

dynamical equation

τ = B(q)q̈ + g(q) + JT f (3)

that models inertial, gravitational and interaction forces act-

ing on the fingertip and by taking into account kinematic

constraints resulting from couplings between the joints.
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C. Robot hand controller

In order to realise grasping skills on the robotic hand,

two kinds of controllers are implemented. A PD position

controller with diagonal gain matrices Kp and Kd

τ ∗
p = Kp(ϕd − ϕa) + Kd(ϕ̇d − ϕ̇a) (4)

and a PI force controller

τ ∗
f = JT

[

σde12,a−f int,a + kp

∫

σde12,a−f int,adt

]

(5)

where J denotes the Jacobian. The variable σd denotes the

desired internal tension which results from the regression and

f int,a the actual static internal force applied at the interaction

points, while e12,a denotes the actual unit vector from one

finger to the other. The integral part of the force controller is

activated when the first finger touches the object. Equations

(4) and (5) define 20 joint torques. Since only 9 of them

are actuated, the motor torques τ f = [τf,1, ..., τf,9]
T and

τ p = [τp,1, ..., τp,9]
T are calculated by summing up related

torques of τ ∗
f and τ ∗

p. The final commanded torque is given

by

u = τ p + τ f . (6)

Note that during the demonstration phase only position

control (4) is applied, while both position and force control

is used during execution of the learned grasping skill.

D. Haptic rendering

Haptic rendering for realistic grasping of a virtual sphere

is implemented. We modelled a single point contact between

the sphere and the ground by means of a spring-damper sys-

tem that simulates the compliance of the sphere and allows to

calculate interaction forces due to contact with the floor, see

Fig. 6. For the finger-sphere interaction a god-object/proxy

based approach was chosen that assumes a spring to be

positioned between fingertip and respective proxy position

[19]. This approach is extended according to [20] to include

static and sliding friction. For damping the relative finger-

sphere movement, a damper is included between a fingertip

and the sphere and not between a fingertip and its proxy to

prevent oscillations originating from numerical integration. A

schematic of the implemented approach is shown in Fig. 6.

VI. EXPERIMENTAL RESULTS

A. Learning of interaction forces versus internal tensions

For the experimental evaluation four demonstrations of the

two finger precision grasp were recorded. After the abstrac-

tion step the generalised trajectories were reproduced using

three states/Gaussians. In order to study the influence of the

learnt force on reproduction, learning of finger interaction

forces was compared to learning of the internal tensions. As

can be seen in Fig. 7, learning of interaction forces led to an

unstable grasp. This is the case, because the demonstrated

and learnt forces are not physically consistent anymore, i.e.

demonstrated compensating forces do not compensate each

other in steady state. The index finger has a higher desired

internal force than the thumb. Thus, the index finger pushes

ppr,i

pf,i

cf

df
ps

ds cs

g

Fig. 6. Sphere-finger and sphere-ground contacts simulated by spring-
damper systems. Sliding and static friction is added to make grasping of the
object possible. ppr,i, pf,i and ps are the positions of the finger proxies,
the fingertips and the center of the sphere. cf and cs denote the spring
constants and df and ds denote the damping constants. g indicates the
direction of gravity.

and tries to increase the force while the thumb is retreating

and trying to reduce the force. This leads to the observed un-

stable grasp. In contrary learning and reproduction of internal

tensions avoids these drawbacks and leads to a reproduction

of the grasp, which is close to human demonstrations.
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Fig. 7. Grasp attempts after having learnt interaction forces fi of each
finger i or internal tension σ. The former attempt fails. Zero time is indicated
by the filled circles.

B. Benefits of learnt force information for generalisation

Additionally, we studied the generalisation capability for

similar objects and compared learning of the grasping skill

from motion data only with learning from motion and force

data. A series of reproduction attempts with a varying mass

ms and radius r of the object were carried out and the

maximum and mean of the applied internal tensions (σ

denotes the mean internal tension which acts in steady-state)

were recorded. As can be seen from Table II, learning of

internal tensions and control of these tensions prevents the

object and the robot hand to be damaged, i.e. there are no

excessive or too small forces. Another positive effect of force

control is that contact with the sphere is established with

less time delay compared to approaches based on position

control. The time difference ∆T observed between the two

fingertips coming into contact with the sphere is used as

measure for the synchronisation capability. This capability is

important, since forces applied by one finger only, result into

motion of the object, which can prevent successful grasps

(compare e.g. lowest entry in Table II for varying radii).

Force control also assures that contact with the object is
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established in case of too small objects, which otherwise

would result into unsuccessful grasping attempts (compare

e.g. first entry in Table II for varying radii). Summarising,

we found that learning of force in addition to motion data

leads to an enlarged generalisation capability of the learnt

grasping skill compared to learning based on motion data

only. Excessive forces are omitted when grasping larger

objects or objects with greater stiffness. Grasping of smaller

objects or more compliant objects becomes possible and

fingertip synchrony is enhanced which all increases the

success rate of grasping attempts.

TABLE II

INTERNAL TENSIONS AND SYNCHRONIZATION CAPABILITY FOR

REPRODUCTION ATTEMPTS WITH AND WITHOUT FORCE CONTROL FOR

VARYING OBJECT MASS AND RADII - THE HIGHLIGHTED PARAMETERS

ARE USED FOR LEARNING

Varying object mass

ms[kg] max(σ)[N] σ[N] ∆T [ms]

0.24 3.43 5.34 3.20 4.36 1 163
0.32 3.21 5.44 3.20 4.47 11 200
0.40 3.21 5.41 3.20 5.10 11 209

0.48 3.21 5.35 3.20 5.06 11 212
0.56 3.21 5.30 3.20 5.01 11 215

Force control ON OFF ON OFF ON OFF

Varying object radii

r[cm] max(σ)[N] σ[N] ∆T [ms]

3.6 3.21 -∗ 3.20 -∗ 28 -∗

4.0 3.21 5.41 3.20 5.10 11 209

4.8 3.21 7.12 3.20 7.04 39 371
5.6 3.21 12.92 3.20 12.84 88 531
6.0 3.21 -∗ 3.20 -∗ 106 -∗

Force control ON OFF ON OFF ON OFF
∗ unsuccessful grasping attempt

VII. SUMMARY AND CONCLUSION

In this work an approach for learning grasping skills

in an imitation learning framework is presented. While in

the state of the art grasping skills are mainly learnt based

on motion data only, force information is considered to

enhance the quality of the reproduction attempt. While

learning of fingertip interaction forces is shown to result

in physical inconsistency compared to the demonstrations,

learning of internal tensions leads to stable reproductions of

the demonstrated grasping skill. We also found an enlarged

generalisation capability of a grasping skill learnt on the

basis of motion and force information compared to skills

learnt on the basis of motion data only. Excessive forces were

avoided when grasping larger objects or objects with greater

stiffness while grasping of smaller objects or more compliant

objects became possible. Additionally fingertip synchrony

was enhanced. As a consequence this led to an increased

success rate of the performed grasping attempts and moderate

force levels compared to reproduction attempts that neglected

force information.

Future research will be twofolded. First, experiments will

be done with a real manipulator to underline the theoretic

results. Second, an analysis of learning power grasps will be

carried out. In contrast to precision grasps where only a few

interaction points are considered, a power grasp requires to

handle a big amount of interaction points or even areas. This

leads to new theoretic and numerical challenges.
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