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Switching Control for a Networked
Vision-based Control System
Eine schaltende Regelung für ein vernetztes bildbasiertes Regelungssystem

Chih-Chung Chen, Haiyan Wu, Kolja Kühnlenz, Sandra Hirche, Technische Universität München

Summary Advances in communication and computation
technology facilitate closed loop control via communica-
tion networks. Such networked control systems may include
distributed sensors and actuators as well as distributed com-
putational resources. In the field of vision-based control,
the possibility of distributed computation is of particular
interest due to the large amounts of visual data to be
processed. Time-delay caused by data transfer through the
network and by processing algorithms impair stability and
performance of the controlled closed-loop system. In this
article, a novel switching control scheme for networked
vision-based control systems is proposed accounting for vary-
ing time-delay in order to improve control performance.
The closed-loop system is modeled as a continuous system
with varying time-delay considering processing and transfer
time-delays as well as sampling intervals. Mean exponen-
tial stability is proven based on occurrence probabilities of
delays. The article concludes with comparative experiments
showing a significant improvement of control performance of
the proposed approach with respect to a non-switching ref-
erence controller. ��� Zusammenfassung Fortschritte
in Kommunikations- und Rechentechnik ermöglichen rege-
lungstechnische Anwendungen über Kommunikationsnetze.

Derartige vernetzte Regelungssysteme können sowohl verteilte
Sensoren und Aktoren als auch verteilte Rechenressourcen
beinhalten. Insbesondere im Bereich der bildbasierten Regelun-
gen ist die Möglichkeit verteilter Rechenressourcen aufgrund
der hohen anfallenden Datenmengen interessant. Durch den
Datenaustausch über das Kommunikationsnetz und Verar-
beitungsalgorithmen entstehende Zeitverzögerungen beein-
trächtigen jedoch Stabilität und Regelgüte. Dieser Artikel schägt
ein neuartiges schaltendes Regelungskonzept für vernetzte
bildbasierte Regelungssysteme vor, das variable Zeitverzögerun-
gen berücksichtigt, um die Regelgüte zu verbessern. Die
Modellierung des Gesamtsystems unter Berücksichtigung der
Rechen- und Übertragungszeitverzögerungen sowie der Ab-
tastintervalle erfolgt über ein kontinuierliches System mit
stochastischen Zeitverzögerungen. Die exponentielle Stabilität
der Mittelwerte wird basierend auf der Auftrittswahrschein-
lichkeit der Zeitverzögerungen sichergestellt. Abschliessende
Experimente mit einem bildbasierten Regelungssystem in Form
eines kamerageführten Linearaktors validieren den vorgeschla-
genen Ansatz. Die experimentellen Ergebnisse zeigen eine sig-
nifikante Verbesserung der Performanz durch den vorgeschla-
genen Ansatz gegenüber einem Referenzsystem mit nicht-
schaltendem Regler.

Keywords Stochastic stability, random time-delay, sampled-data systems, networked control systems, visual servoing ���
Schlagwörter Stochastische Stabilität, stochastische Zeitverzögerung, Abtastsysteme, digital vernetzte dynamische Systeme,
bildbasierte Regelung

1 Introduction
Due to their affordability and well-developed infra-
structure, communication networks are widely used for
the signal transmission in control systems. Replacing
conventional point-to-point connections with a digital
communication network gives a system flexible reconfig-

uration capability. Furthermore, distributed sensors and
actuators can be easily added to this networked control
system (NCS) without additional wiring effort. However,
with an increasing number of sensors and therefore in-
creasing amount of data, e. g. multiple image streams,
requirements for computational resources for estimat-
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ing relevant variables increase. It might be useful to use
distributed networked computational units for perform-
ing such information processing tasks [1]. As a result
the computation time as well as communication qual-
ity between sensors, computational units, and actuators
may affect the closed loop behavior of the system see
Fig. 1 for a visualization. Distributed computation can
efficiently integrate multimedia sensor data of NCSs to
increase their control accuracy and flexibility of de-
ployment. Examples are vision-based manipulation [2],
coverage control [3], environmental monitoring, and
surveillance [4].

Despite of many potential advantages, the networked
solution for distributed sensing and computation in con-
trol systems introduces several issues that need to be
addressed. i) Exchanging sensor data over a communi-
cation network results in non-ideal signal transmission.
Random packet dropouts and delays may affect the
data transmission and thereby the closed loop behavior.
ii) There is a computation delay, which can be mod-
eled random due to the existence of conditional branches
and resource sharing in distributed computation [5].
iii) Sensor data are sampled not equidistantly in time.
This results in aperiodic sampling intervals for the closed
loop control system. Time-delay might be a source of
instability and deteriorate the control performance [6].
In the past NCS research, mainly network-induced de-
lays have been considered, see e. g. [7; 8]. In this article,
the focus is on networked control systems with random
computation and communication delay as well as non-
equidistant sampling intervals.

Various control approaches for NCS have been pro-
posed in the literature that approximate a random
time-delay by its upper bound, i. e. consider the worst
case. Potentially available stochastic models in terms of
probability distributions of the delay are discarded. Typ-
ically, this results in conservative controller design for
systems with random delay.

Less conservative controller design approaches based
on stochastic analysis and random delays are proposed

Figure 1 Scheme of networked control systems with distributed sensors
and distributed computation.

in [9–14] and [15] for a general overview. In [9], the
random delay is considered as an i. i. d. binary random
process. The associated stability conditions and controller
design algorithms are derived using the statistical prop-
erties of delays. A Markov process is used to model the
random delays as stochastic process in [10–14]. The re-
sulting closed-loop systems are Markovian jump systems
(MJSs) with stability conditions and controller design
algorithms being determined either by the infinitesimal
generator of the delays in continuous-time modeling or
by the transition matrix of the delays in discrete-time
modeling. However, these works do not address aperi-
odic sampling intervals.

For communication time-delay i. i. d. processes or
Markov processes are popular models in the communica-
tion community [16]. The choice largely depends on the
communication protocol and concurrent traffic charac-
teristics. Stochastic models for computation delay are less
considered in the literature. In a first approach we will
consider the computational delay to be an i. i. d. process.
According to [17], the addition of two i. i. d. processes is
again an i. i. d. process, whereas the addition of an i. i. d.
and a Markov process results in a hidden Markov pro-
cess. Hence, the sum of transmission and computation
delays is either an i. i. d. or a hidden Markov process. In
our specific setting we will consider a sensor which is read
whenever the processing of the previously sampled data is
finished. Such settings are common for example in image
sensors. In consequence, the sampling interval is equal
to the computational delay and has the same stochastic
properties. In this work we consider i. i. d. transmission
and computation delay.

Using the representation of aperiodic sampling inter-
vals by a time-varying delay, the compound delay for
the closed-loop system comprises transmission and com-
putation delays as well as the delay induced through
aperiodic sampling. The random compound delay is
categorized into n intervals, whose probabilistic occur-
rence is described by a set of indicator functions. For
good control performance, a delay-dependent switch-
ing controller is proposed. The resulting closed-loop
system becomes a randomly switched time delay sys-
tem. A delay-dependent stability condition is derived
by a Lyapunov-Krasovskii functional and the associated
delay-dependent switching controller design algorithm is
presented in terms of LMI. Both, stability condition and
controller design algorithm are determined by the occur-
rence probabilities of delays. The proposed approach is
experimentally validated in a networked visual servoing
system. The experimental results demonstrate significant
performance improvements by the proposed approach
over the standard non-switching control method.

The remainder of the paper is organized as fol-
lows: The problem statement of an NCS with aperiodic
sampling intervals as well as random transmission and
computation delays is given in Sect. 2. In Sect. 3, a ran-
domly switched time delay system is introduced by using
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the input-delay approach. An exponential mean-square
stability condition is derived in Sect. 4 and an LMI con-
troller design algorithm is established in Sect. 5. In Sect. 6,
the experimental validation and performance comparison
are discussed.

Notation. In this paper λmax(M) and λmin(M) denote
the maximal and the minimal eigenvalues of a matrix
M, whereas MT and ||M|| denote the transpose opera-
tor and induced Euclidean norm of matrix (or vector)
M, respectively. The symbol ∗ denotes the transpose of
the blocks outside the main diagonal block in symmetric
matrices. E stands for mathematical expectation and Pr
for probability. Rn denotes the subset of n-dimensional
real vectors and N is the subset of natural numbers.

2 Problem Formulation
In this section we will derive the model of a closed loop
system with random time-delays and aperiodic sampling
intervals. Consider a linear continuous-time plant

ẋ(t)= Ax(t) + Bu(t) , (1)

where x(t) ∈Rn is the state vector and u(t) ∈ Rq is the
control input; A, B are constant matrices of appropriate
dimensions and (A, B) is controllable.

Traditionally, a sampled-data system with zero-order
hold (ZOH) and discrete-time controller has the control
input expressed by

u(t)= Kx(tk) , t ∈ [tk, tk+1) , ∀k ∈ N (2)

where tk denotes the sampling instant. Under the control
law (2), the closed-loop system is derived as

ẋ(t)= Ax(t) + BKx(tk) . (3)

For feedback systems with periodic sampling and ideal
data transmission channels, the closed-loop system in (3)
is equidistantly updated by

h= tk+1 – tk .

In this case, the lifting technique [18] is applied to derive
stability certificates and appropriate control algorithms.

For NCSs with aperiodic sampling intervals, random
computation and transmission delays, the sampled data
x(tk) arrives at the controller in a non-deterministic pat-
tern. Throughout the article, we assume that packets do
not overtake each other, i. e. packets arrive at the receiver
according to their sending order. The timing diagram of
the sampled measurement is shown in Fig. 2. The sam-
pling of x(tk) is triggered when the processing of x(tk–1)
is finished. For further analysis we assume that the com-
putation delays and the sampling intervals take values in
a finite set. This is a reasonable assumption as compu-
tational units are typically clocked in fixed time slices.
Therefore, the sampling interval at the sensor side is

tk+1 – tk = τ c
k , τ c

k ∈ Tc = {Tc1, Tc2, ..., Tcp} , p ∈N

Figure 2 Timing diagram of NCSs with random computation delay τ c
k ,

transmission delay τx
k and aperiodic sampling. hk is the holding delay

between two consecutive updates at the controller.

where τ c
k ≥ 0 represents the computation delay for the

k-th sample, and Tci with i= 1, . . , p represent the possible
realizations of the computation delay. The computation
delay is assumed to be i. i. d. which turns out to be a valid
approximation as confirmed in experiments. As shown in
Fig. 3, x(tk) arrives at the controller with the delay

τ c+x
k = τ c

k + τx
k , τx

k ∈ Tx = {Tx1, Tx2, ..., Txq} , q ∈N
where τx

k ≥ 0 represents the transmission delay for the
k-th sample, and Txi with i = 1, ..., q are the possible
values of the transmission delay. Also the transmission
delay is assumed to be a random i. i. d. process. As a re-
sult, the closed-loop system in (3) becomes

ẋ(t)= Ax(t) + BKx(tk) , t ∈ [tk + τ c+x
k , tk+1 + τ c+x

k+1

)
. (4)

The closed-loop system in (4) is updated in non-
deterministic patterns

hk = tk+1 – tk + τ c+x
k+1 – τ c+x

k

= τ c+x
k+1 – τx

k (5)

depending on delays τ c+x
k+1, τx

k . Due to the randomness of
τ c+x

k+1 and τx
k , the lifting technique is no longer straightfor-

wardly applicable.

Figure 3 Illustration of NCS with distributed computation. Sampling
of the sensor data is triggered when the processing of the previously
sampled data is finished.
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The challenge to be addressed in this article is to
develop a control algorithm such that the closed-loop
system in (4) is mean exponentially stable (MES) accord-
ing to the following definition.

Definition 1. A diffusion process x(t) is said to be MES if

E
{||x(t)||2 | x(t0)

} ≤ b||x(t0)||2e–ρ(t–t0) , (6)

where b > 0, ρ > 0 are real numbers and x(t0) is the initial
condition.

3 System Reformulation
In this section, the NCS with aperiodic sampling intervals,
random computation and transmission delays is reformu-
lated into a time-varying delay system by means of the
input-delay approach. A switching control mechanism is
proposed which switches depending on the value of the
overall time delay.

3.1 Input-Delay Transformation
Reconsider the sampling instant tk as

tk = t – (t – tk)

= t – τ(t), t ∈ [tk + τ c+x
k , tk+1 + τ c+x

k+1

)
.

The time-varying delay τ(t) is bounded by τ ≤ τ(t) ≤ τ̄ ,
where

τ̄ =max
k∈N

{τ c+x
k + hk}=max

k∈N
{τ c+x

k+1 + τ c
k} ,

τ =min
k∈N

{τ c+x
k } . (7)

Due to the assumption of no out-of-order arrivals, the
derivative of τ(t) between two consecutive updates is
in consequence τ̇(t)= 1. Substituting x(tk)= x(t – τ(t))
into the closed-loop system in (4), it results in
a continuous-time system with time-varying delay

ẋ(t)= Ax(t) + BKx(t – τ(t)) ,

t ∈ [tk + τ c+x
k , tk+1 + τ c+x

k+1

)
, (8)

with initial condition x0 = x(θ), θ ∈ [– τ̄ , 0].

Remark 1. The reformulation of a sampled-data system
into a continuous-time system with time-varying delay
is called input-delay approach. This approach is first
introduced in [19; 20] where systems with periodic sam-
pling are considered. A similar approach for systems
with aperiodic sampling is addressed in [21], but without
considering time-delay. In this article we combine those
approaches and consider aperiodic sampling intervals and
random time-delays conjointly.

Hence, the sampled-data system is reformulated into
a continuous-time system with time-varying delay with
input-delay approach.

3.2 Time-Delay Model
In order to improve the control performance, a delay-
dependent switching controller, which switches its
feedback gain according to the current delay value, is
introduced. The control law is defined by

u(t)= Ki(τ(t))x(t – τ(t)) , i= 1, ..., n , (9)

where Ki(τ(t)) represent the state feedback controllers that
switch depending on the size of the time delay τ(t).
Therefore the time varying delay τ(t) is categorized into
n finite intervals

τ1 = {τ|s0 ≤ τ < s1} ,

τ2 = {τ|s1 ≤ τ < s2} ,

...

τn = {τ|sn–1 ≤ τ < sn} , (10)

where si > 0 satisfying si < si+1, for i = 1, ..., n – 1, and
s0 = τ , sn = τ̄ . The closed-loop system in (8) can be
rewritten as

ẋ(t)= Ax(t) +
n∑

i=1

βiBKix(t – τ(t)) , (11)

where βi is the indicator function

βi =

{
1, si–1 ≤ τ < si , i= 1, ..., n

0, otherwise,
(12)

and the dependence of the index i of τ(t) is omitted
for simplicity of notation. For the ease of later stability
analysis, the worst-case of each delay interval τi is consid-
ered [13], i. e. si, which results in the closed-loop system

ẋ(t)= Ax(t) +
n∑

i=1

βiBKix(t – si) , (13)

for stability analysis.
In consequence, the statistical properties of the cate-

gory bounds si become important. In the following we
will show that the i. i. d. property of the computation de-
lay τ c

k and the transmission delay τx
k is inherited through

a special choice of the category bounds si, i ∈ [1, n – 1].
Observe that τ(t) is composed of the random computa-
tion delay τ c

k , the transmission delay τx
k and the holding

delay τh(t) ∈ [0, hk) caused by non-deterministic updates
hk at the controller

τ(t)= τ c
k + τx

k + τh(t) , t ∈ [tk + τ c+x
k , tk+1 + τ c+x

k+1

)
.

Further observe, that τ(t) forms a sawtooth function
with slope τ̇(t)= 1 between two consecutive updates, see
Fig. 4.

Remember that random delays τ c
k , τx

k are modeled by
i. i. d. random processes and define

τh
k =max{τh(t)}= hk ,

τh
k ∈ Th = {Th1, Th2, ..., Thl} , l ∈N
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Figure 4 The evolution of time-varying delay τ(t).

The appearance of τh
k is i. i. d., see (5) and [17]. Ac-

cording to the convolution law of independent random
variable [22], select si in (10) as any subset S

si ∈ S ⊂ {Tc + Tx + Th} .

Then, si is also i. i. d., see also Fig. 4. This implies that the
indicator function βi is a binary i. i. d. process, i. e. has
a Bernoulli distribution. As a result,

Pr{βi = 1}= pi ,
n∑

i=1

pi = 1 . (14)

Furthermore, its expected value and variation are given
by

E{βi}= pi , E{(βi – pi)
2}= pi(1 – pi) .

In order to derive the occurrence probability pi from
the occurrence probabilities of the delay components, we
categorize τ c

k , τx
k and τh

k into U ≥ 1, V ≥ 1 and W ≥ 1
intervals with sc

u, sx
v and sh

w satisfying

sc
u–1 < sc

u , sc
u > 0 , u= 1, ..., U – 1 ,

sx
v–1 < sx

v , sx
v > 0 , v = 1, ..., V – 1 ,

sh
w–1 < sh

w , sh
w > 0 , w= 1, ..., W – 1 ,

with sc
u, sx

v , sh
w taking values in the sets Tc, Tx, Th respec-

tively. Further assume that the occurrence probabilities
of the delay intervals are

Pr{sc
u–1 ≤ τ c

k < sc
u}= pc

u ,
U∑

u=1

pc
u = 1 ,

Pr{sx
v–1 ≤ τx

k < sx
v}= px

v ,
V∑

v=1

px
v = 1 ,

Pr{sh
w–1 ≤ τh

k < sh
w}= ph

w ,
W∑

w=1

ph
w = 1 .

The delay intervals in (10) and associated occurrence
probabilities of indicator functions in (14) become

si =

U∑
u=1

V∑
v=1

W∑
w=1

sc
u + sx

v + sh
w ,

pi =

U∑
u=1

V∑
v=1

W∑
w=1

pc
u px

v ph
w .

Remark 2. Random delays are often modeled by a binary
i. i.d random process [9; 23] or a finite-state Markov pro-
cess [11; 13]. The non-binary i. i. d. assumption on the
transmission and computation delays has the advantage
of less conservatism in the control design. However, an
i. i. d. process is unable to represent the often observed
mutual dependency of consecutive delays. As a future
work, this limitation can be improved by introducing
the piecewise-deterministic Markov process [24] into the
delay modeling.

Remark 3. Note that the performance improves as the
number of delay intervals si and also the number of state
feedback controllers Ki are increased. However, a large
number of delay intervals will result in higher computa-
tional complexity. In particular, the dimension of LMIs
increases proportionally with the number of delay in-
tervals as shown later. The determination of an optimal
number of delay intervals belongs to the future work.

The switching control mechanism discussed above aims
at improving the control performance of NCSs with
varying feedback delays. Based on the analysis of delay
intervals si and the associated occurrence probability pi

in this section, the stability analysis and a controller de-
sign approach are introduced in the following sections.

4 Stability Analysis
The objective of this section is to derive a mean ex-
ponential stability condition for the system in (11).
A Lyapunov-Krasovskii approach is selected to analyze
the stability of system (11) as it is stochastic and contains
time delays. Generally, the stability conditions derived by
a Lyapunov-Krasovskii approach can be categorized into
two types; delay-independent and a typically less conser-
vative delay-dependent conditions.

In order to derive a delay-dependent condition, the
following Newton-Leibnitz formula is considered

t∫
t–si

ẋ(s) ds= x(t) – x(t – si) .

Substituting the Newton-Leibnitz formula into (13) and
defining zT(t)= [xT(t) ẋT (t)] results in the closed-loop
system

Eż(t)= Ā z(t) –
n∑

i=1

Āi

t∫
t–si

z(s) ds , (15)
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where E=

[
I 0
0 0

]
,

Ā =

⎡
⎢⎣

0 I

A +
n∑

i=1

βiBKi – I

⎤
⎥⎦ , Āi =

[
0 0
0 βiBKi

]
.

The system (15) is used for stability analysis and con-
troller synthesis. The stability condition is represented by
an easily computable LMI condition as given in detail in
the following theorem.

Theorem 1. The closed-loop system (11) is mean expo-
nentially stable, if there exist symmetric matrices, Qi > 0,
i= 1, ..., n, P1 > 0 and real matrices P2 and P3 with

P =

[
P1 0
P2 P3

]
,

such that the following LMI is satisfied⎡
⎢⎢⎢⎢⎣

Ψ s1PT · · · snPT

∗ – s1Q1 0
...

... 0
. . . ∗

∗ · · · ∗ – snQn

⎤
⎥⎥⎥⎥⎦ < 0 , (16)

where

Ψ=

[
Ξ1 Ξ2

P1 – P2 – P3

]
+

[
Ξ1 Ξ2

P1 – P2 – P3

]T

+
n∑

i=1

si

[
0 0
0 piBKi

]T

Qi

[
0 0
0 piBKi

]
,

Ξ1 = ATP2 +
n∑

i=1

pi(BKi)
TP2 ,

Ξ2 = ATP3 +
n∑

i=1

pi(BKi)
TP3 .

Proof. See Appendix A.1.

The LMI stability condition in Theorem 1 can be effi-
ciently solved by computational toolbox for Matlab, e. g.
Yalmip [25].

Remark 4. The main difference of stability results derived
in [11; 13] and Theorem 1 is that Theorem 1 is con-
ditioned by occurrence probabilities of random delays,
while the others are determined by transition generator
of Markovian delays.

Thus, NCSs with varying feedback delays and
switching controller reformulated in Sect. 3 is mean expo-
nentially stable if the LMI (16) in Theorem 1 is satisfied.

5 Controller Design
Solving for the feedback gains Ki, i= 1, ..., n in Theo-
rem 1 involves nonlinear terms, e. g. PT

2 BKi and PT
3 BKi in

(16). These nonlinear terms render the inequality in (16)
into a bilinear matrix inequality (BMI) problem, whose

solutions are difficult to find as it is non-convex and NP-
hard.

However, the nonlinear terms can be eliminated by
choosing a special matrix X = P –1 such that an LMI for-
mulation is recovered. The controller design algorithm is
given in the following theorem.

Theorem 2. Given positive scalars r1 and r2, if there exist
symmetric matrices Ri > 0, i= 1, ..., n, and X1 > 0 satisfy-
ing

X =

[
X1 0

– r1X1 r2X1

]
,

such that⎡
⎢⎢⎢⎢⎣

Ψ̂ Ψ̂
T
1 · · · Ψ̂

T
n

∗ – s1R1 0
...

... 0
. . . ∗

∗ · · · ∗ – snRn

⎤
⎥⎥⎥⎥⎦ < 0 , (17)

where

Ψ̂=

[
– r1X1 r2X1

Ξ3 – r2X1

]
+

[
– r1X1 r2X1

Ξ3 – r2X1

]T

+
n∑

i=1

siRi ,

Ξ3 = AX1 +
n∑

i=1

piBYi + r1X1 ,

Ψ̂1 = s1Ā1X = s1

[
0 0

– p1r1BY1 p1r2BY1

]
,

...

Ψ̂n = snĀnX = sn

[
0 0

– pnr1BYn pnr2BYn

]
,

holds, then the NCS is MES with the feedback gain

Ki = YiX
–1
1 , i= 1, ..., n . (18)

Proof. See Appendix A.2.

Remark 5. The structure of matrix X is chosen based on
the requirement P –1 = X, where EP = PTE. Therefore, X
is determined as follows

X =

[
X1 0
X2 X3

]
, X1 = XT

1 > 0 . (19)

However, by expanding Ψ̂i, i= 1, ..., n in (17) it results in
terms, e. g. BKiXj, i= 1, ..., n and j= 1, 2, 3, which makes
the derivation of an LMI formulation not possible. In
order to obtain an LMI formulation, one possibility is to
set X2 and X3 in (19) as – n1X1 and n2X1, where n1 and
n2 are positive real numbers.

Although the LMI algorithm can be efficiently solved by
the LMI toolbox, the restriction on matrix X introduces
conservatism in the controller design. The design algo-
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rithm (17) in Theorem 2 might not provide a feasible
solution, even if there exists one.

A less conservative approach is to set X back to (19)
and solve the BMI (bilinear matrix inequality) directly.
However, solving an BMI has the drawback that the
feasible feedback gains can only be found strongly de-
pending on the initial conditions. A numerical search
regarding any possible initial conditions in unavoidable,
e. g. using V-K iteration [10] or cone complementary
linearization [26]. The solution of the LMI algorithm in
Theorem 2 can be used as an initial condition for solving
the BMI. In this case, less conservative feedback gains can
be derived.

The proposed analysis and design approaches in Theo-
rem 1 and Theorem 2 are applicable for systems with
aperiodic or periodic sampling intervals. In order to ex-
plore aperiodic control systems, an event-based grabbing
camera is considered in the following experiment.

6 Networked Visual Servoing Experiment
In order to validate the proposed control approach, a net-
worked visual servoing experiment is performed. In the
experiment, the tracking of a moving object by a linear
motor module is considered using a camera together with
a popular pose estimation algorithm as a position meas-
uring sensor. The experimental testbed consists of linear
motor module with an object and a controlled linear mo-
tor module equipped with a camera, see also Fig. 5 for
a visualization. The position measurement is derived by
a pose estimation algorithm implemented on a standalone
PC and fed back through the communication network.
The resulting NCS contains aperiodic sampling intervals,
random transmission and computation delays. The two
linear motor modules are connected to a host PC running
on real-time Linux via a Sensoray S626 I/O card. The
control functions are implemented in Matlab/Simulink
blocksets. Standalone real-time code is generated directly
from Simulink models.

The position of the controlled module x(t) is meas-
ured by using a high-speed camera with a resolution of
640 ×480 pixels. As an approximation to an event-based
system, a high image framerate of 400 fps is used. In com-
parison with an ideal event-based approach, this results
in a jitter of 2.5 ms with respect to the sampling rate of
1 kHz of the robot controller. Compared to the time-

Figure 5 Experimental setup of networked visual servo control.

delays of data transmission and image processing, it can
be neglected and the system may thus be approximatively
considered as an event-based system. The pose estimation
algorithm is implemented on a second PC (x86-64 AMD
Phenom II ×4 810 processor). At sampling instant tk,
image processing of the current captured image starts.
Sift features [27] are firstly extracted from the image and
then matched with the features in the desired image. The
matched feature pairs are fed to the pose estimation al-
gorithm [28]. Thus, the position data is determined. The
position data is packetized and sent back to the controlled
module through the communication network.

It has to be mentioned that the number of matched
feature pairs has an impact on the time required for pose
estimation. Moreover, image features vary from frame to
frame due to different view angles, illumination condi-
tions and noise. Therefore, the position data obtained
from the pose estimation are randomly delayed due to
varying image features. In addition, a new image is cap-
tured as soon as the image processing is finished. This
kind of serial image processing mechanism results in
aperiodic sampling intervals. As a result, the sampling
interval is related to the image processing delay.

The whole computation delay τ c
k ranges from 33 ms to

45 ms in the experiment. The relationship between image
features and image processing delay is shown in Fig. 6,
which indicates more image features require longer image
processing time. The image feature number has mean
value 35.47 and standard deviation 6.27. The position
data is fed back to the host PC via a network, which is
simulated by Network emulator (Netem) having i. i. d.
transmission delay τx

k ranging from 5 ms to 10 ms. The
estimated position x(tk) arrives at the host PC with ran-
dom computation delay τ c

k and transmission delay τx
k .

As soon as the computation is finished, a new image
is required to be processed. Hence, a random sampling
interval is resulted. According to (7), the overall feedback
delay τ(t) ranges thus from 38 ms to 100 ms as shown in
the Fig. 7a.

Considering n= 2 for system in (11), the closed-loop
system of the controlled module yields

d

dt

[
x(t)
ẋ(t)

]
=

[
0 1

– 0.959 – 1169.9

][
x(t)
ẋ(t)

]

+ β1(t)

[
0 0

K1 0

][
x(t – s1)
ẋ(t – s1)

]

+ β2(t)

[
0 0

K2 0

][
x(t – τ̄)
ẋ(t – τ̄)

]
. (20)

The reference module moves along sinusoidal trajectory
with the amplitude of 15 cm and frequency of 0.25 Hz.
The delay interval s1 = 65 ms is heuristically selected. Pa-
rameters p1 = 0.53 and p2 = 0.47 are determined from
the experiment. Solving Theorem 2, the feedback gains
are

K1 = 817, K2 = 174 .
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Figure 6 Image processing delay (a) and extracted image features (b).

The experiment is run 20 times from the same initial
condition of both modules. The non-switching controller
design, i. e. controller design by τ̄ = 100 ms and K = 174,
and proposed delay-dependent switching controller de-
sign approach are compared. The control error is defined
by

ē(t)= xr(t) – xc(t) ,

where xr(t) denotes the position of the reference module,
and xc(t) denotes the position of the controlled module.
The evolution of mean control error are shown in Fig. 7b.
The proposed delay-dependent switching controller has
maximal tracking error ēmax = 2.89 cm and variance of
tracking error ēvar = 224 cm2, while the maximal tracking
error of non-switching design controller is ēmax = 9.38 cm
and the variance ēvar = 620 cm2.

The experimental results show that controller design
algorithm in Theorem 2 enables a good control perform-
ance compared to the conventional non-switching design.

Figure 7 The delay histogram of feedback signals (a); and mean control
error evolution of delay-dependent controller (solid line) non-switching
design controller (dash line) (b).

7 Conclusion
This article presents a novel analysis and design ap-
proach for networked control systems (NCSs) with
aperiodic sampling intervals as well as random trans-
mission and computation delays using delay-dependent
switching controllers. By applying an input-delay ap-
proach to the NCS, the transmission delay, computation
delay and the aperiodic updates at the receiver are refor-
mulated into a random compound delay. The compound
delay is divided into n intervals. The statistical properties
of n delay intervals determine the stability certificate in
terms of mean exponential stability. Also, the switching
delay-dependent controllers are determined by the occur-
rence probabilities of the n delay intervals. The proposed
approach is validated in a networked visual servoing ex-
periment. Experimental results demonstrate the superior
performance of the proposed design approach over the
conventional non-switching counterpart.

A Appendix
Before the proof is shown, the following definition and
lemma have to be given.

Definition 2. [29] Let L be the infinitesimal generator of
a function V(z(t)). Then, the operator L acting on V(z(t))
is defined as

LV(z(t))= lim
Δ→0

1

Δ

{
E{V(z(t + Δ)|z(t))} – V(z(t))

}
.

Lemma 1. [30] Let X and Y be real constant matrices with
appropriate dimensions. Then

XT Y + YTX ≤ εXTX +
1

ε
YT Y

holds for any ε > 0.

A.1 Proof of Theorem 1
Consider a Lyapunov-Krasovskii functional candidate

V(z(t))= V0(z(t)) +
n∑

i=1

Vi(z(t)) ,

where

V0(z(t))= zT(t)EPz(t) ,

Vi(z(t))=

0∫
–si

t∫
t+θ

zT(s)Ā
T
i QiĀiz(s) ds dθ .

According to Definition 1, it has

LV0(z(t))= żT (t)EPz(t) + zT(t)PTEż(t)

= zT (t)[Ā
T

P + PTĀ]z(t)

– 2
n∑

i=1

zT(t)PTĀi

t∫
t–si

z(s) ds .
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According to Lemma 1, LV0(zt) becomes

LV0(z(t)) ≤ zT(t)[Ā
T

P + PTĀ]z(t)

+
n∑

i=1

siz
T(t)PTQ–1

i Pz(t)

+
n∑

i=1

t∫
t–si

zT(s)Ā
T
i QiĀiz(s) ds . (A.1)

Likewise, it has
n∑

i=1

LVi(z(t))=
n∑

i=1

siz
T(t)Ā

T
i QiĀiz(t)

–
n∑

i=1

t∫
t–si

zT(s)Ā
T
i QiĀiz(s) ds . (A.2)

Combine (A.1) and (A.2), it yields

LV(z(t)) ≤ zT(t)[Ā
T

P + PTĀ +
n∑

i=1

siĀ
T
i QiĀi

+
n∑

i=1

siP
TQ–1

i P]z(t)

= zT(t)Θz(t) . (A.3)

Apply Schur complement to (A.3), it results in (16).
Note that maxθ∈[–τ ,0]{||z(t + θ)||} ≤ φ||z(t)|| for some

ϕ > 0 [31], the following inequality can be established

V(z(t)) ≤
[
λmax(EP) + φ

n∑
i=1

s2
i

2
λmax(Ā

T
i QiĀi)

]
||z(t)||2

≤ Λmax||z(t)||2 . (A.4)

Combining (A.3) and (A.4) yields

LV(z(t))

V(z(t))
≤–

λmin(– Θ)

Λmax
� – ρ0

and

E{LV(z(t))} ≤ – ρ0E{V(z(t))} . (A.5)

By applying Dynkin’s formula into (A.5) it becomes

E{V(z(t))} – E{V(z(0))}= E
⎧⎨
⎩

t∫
0

LV(z(s))ds

⎫⎬
⎭

≤ – ρ0

t∫
0

E{V(z(s))} ds . (A.6)

Using the Gronwall-Bellman lemma, (A.6) results in

E{V(z(t))} ≤ e–ρ0t
E{V(z(0))} .

Since

V(z(t)) ≥
[
λmin(EP) +

n∑
i=1

s2
i

2
λmin(Qi)

]
||z(t)||2

=Λmin||z(t)||2 ,

it is established that

E{||z(t)||2} ≤ e–ρ0t E{V(z(0))}
Λmin

. (A.7)

Equation (A.7) provides the proof for mean exponential
stability. �

A.2 Proof of Theorem 2
Define

X = P –1 =

[
X1 0

– r1X1 r2X1

]
.

Pre- and post-multiply Θ in (A.3) by XT and X, it be-
comes

ĀX + XT Ā
T

+
n∑

i=1

siQ
–1
i +

n∑
i=1

siX
TĀ

T
i QiĀiX < 0 (A.8)

Let Ri = Q–1
i and Yi = KiX1, i= 1, ..., n. Applying Schur

complement to (A.8) results in (17). �
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