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Abstract— The design of large-scale networked control sys- of event-triggered schemes in contention-based networked
tems urges an efficient usage of available resources, suchcontrol systems. Depending on the communication model
as communication, energy and computation. Recent results \,nqer consideration, different conclusions are derivesing

indicate substantial benefits of event-based control comped . o . o
to conventional designs, when these resources are sparse.CDMA schemes with priority or randomized arbitration as

This paper considers multiple entities of heterogeneous atrol ~ Proposed in [2], [7], event-triggered scheduling schemes
systems that are coupled through a common communication for data transmission outperform significantly time digisi
medium. Each control system may decide upon its available muyltiple access (TDMA) schemes. Unlike [2], it has been
information, whether a state update shall be transmitted to  gp5wn in 18], [9] that time-triggered scheduling outperfsr

the controller over a contention-based medium. The objectie .
is to design an optimal decentralized control and transmissn event-triggered schemes for slotted and unslotted ALOHA

scheme that minimizes the aggregate quadratic cost functio ~ transmission schemes. Under the assumption that coliision
A state aggregation technique is used to derive a decentrakd between transmissions can be modelled by a Bernoulli pro-
event-triggering scheme, which is asymptotically optimaks the  cess, a condition has been derived in [10], where event-

number of control units increases. Numerical simulations ye triggered scheduling yields better performance than ritei
a comparison of the optimal centralized, time-triggered an triggered counterpart

event-triggered schemes and corroborate the efficiency ohe

proposed design method. These results majorly consider scalar integrator dynamics
that are modelled by a controlled Brownian motion process.
. INTRODUCTION The control law is predefined by an impulse controller and

2 event-trigger is given by a level-triggering policy, vl

Technological advances in embedded systems and dlgl{Ee event threshold is the design parameter which is to be

communications have led to an increased interest in tﬁ 2 ¢ aporopriatel
design of networked control systems. A networked controi®- 2PProp y:

system can be regarded as an aggregation of sensors, Ct% n C(:.n tralst totthhe _des;:rlbe(’J[I V\Ilork,dthlshpf(ijp?r |n\|/est|ga\t/tves
trollers, and actuators that form a network of self-corgdin € optimal synthesis of conlrof and scheduling faws. We

entities exchanging information over a digital commurniaat consider N subsystems whose feedback loops are closed

. . - ver a contention-based network. The communication model
medium. In such complex and highly distributed systemso% adopted to the framework in [2], [7] and assumes the

ful control ign nds highly on the choi . e .
a successful control design depends highly on the ¢ O& esence of a randomized arbitration scheme, which can

of the communication scheme. There are many exampl £

showing that common paradigms in the design of comm e implemented in the CAN-bus protocol. The subsystems

may be heterogeneous and are modelled as stochastic linear

nication schemes do not apply. A prominent example iaiscrete time systems with arbitrary state dimension
given by the fact that time-triggered information acquisi- The contribu%ion of this paper ig to develop a méthod-

tion schemes, which are commonly used for digital control gy for the joint design of decentralized schedulers and

design, are outperformed by event-triggered exchange 8 T
information [1][6] in the presence of resource consteain controllers that share a common communication network.

in networked control systems. Such observations have be He design objective is to minimize the aggregate linear

made in a diversity of problem settings, such as Comrcﬂtuatldratlcrcosttio:]?rl]l rSnUbSrﬁiteI?fH Infp|$d by t?e Cﬁnceptn?f
over communications [1]-[3], multi-agent systems [4],—disS ate aggregatio €an fie eory, Tne approach assumes

tributed optimization algorithms [5] and control design inz Iar?je n?mbir IOf antr?l Ioopz cltosed ovelr a content|0rk1-
embedded real-time systems [6]. ased network. In oder to conduct our analysis, we make

While the majority of these results deal with singleuse of recent results for single-loop control systems with

. o . communication constraints given by [11]-[15]. Under mild
feedback loop systems with communication constraints, the . e iy e
o : : assumptions on the admissible policies, it is shown that

control and communication design for multiple loops shar; : .
. . : S ) the complex behavior of the shared communication system
ing a medium is still widely unexplored. Exceptions can . L
. reduces asymptotically to a deterministic system, when the

be found in [2], [7]-[10] that analyze the performance S ; .
number of loops approaches infinity. This observation alow
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ulation results show that our approach is close to optimalit
even for a moderate number of control loops.

The remaining part of this paper is structured as follows. G Si
In section Il, we describe the system model and introduce
the problem statement. Section Il derives the asymptot-
ically optimal decentralized event-triggered controlberd
section 1V illustrates the efficiency of the proposed apphoa
by numerical simulations.

Notation. In this paper, the operatof:)” denotes the
transpose operator. The Euclidean norm and its induced
matrix norm is denoted by ||o. The variableP denotes the ; | T |
probability measure on the abstract sample space denoted Py P
by Q. The expressiorF, P —a.s. denotes that the eveht
occurs almost surely w.r.t. probability measite The ex- Fig. 1.  System model of the networked control system wihcon-
pectation operator is denoted iB{-] and the conditional trol systems closed over a shared communication network \pito-
expectation is denoted big[-|-]. The relationz ~ A(0, ) cessesPy, ..., PN, sensorsSy, ..., Sy and controllerCy,...,Cn.

denotes a Gaussian random variable with zero-mean and ) ) ] )
unity covariance. The operatdr;.; denotes the indicator The random arbitrator is described by the binary random

function. variableg; defined as
Il. PROBLEM STATEMENT gi = J L allowto transmit
. . : 0 block transmission
In this paper, we considée¥ independent control systems
whose feedback loops are connected through a shared conre conditional probability distribution df;, . . ., ¢Y] con-
munication network. A control subsysteinconsists of a ditioned on the scheduling variablés, i € {1,..., N} is
processP;, a controllerC; that is implemented at the actuatortime-invariant and satisfies
and a sensolS;. The complete networked control system 1 N osicn
is depicted in Fig. 1. The proceds; is described by the plgi — 1|57 ie {1,...,N}]={ 4, iz ko = A¥slot
following time-invariant difference equation v otherwise
. , - 2
Thi1 = Ay + Biuj, + wy, (1) for subsystems with . = 1 and

where 4; € R%*"i B; € R"*4i The variables:t andu, G +---+¢ = Ngo, P-a.s.

denote the state and the control input and are taking values N ) )

in R™ and R%, respectively. The system noise. takes if 6% 4.4+, > Nsor. We consider an instantaneous ac-

values inR™ at eachk and is i.i.d. withwi ~ A/(0 ]}) The knowledgement channel that informs the scheduler, whether
d.d. ¢ .

initial statesr{, i € {1,..., N} take an arbitrary distribution, a :]ragslmlss![on Waosg sEccessftL;]I or blo%k,e‘j' Th.ert)(alfore, the
but symmetric distribution with finite second moment. scheduler at sensc§; knows the preceding variableg,

Remark 1: It is straightforward to extend all results to at ime & for m < k. Let 7 denote the received data at

arbitrary noise covariance matrices. The chosen resinicti controIIeIECi. atrtlmgk. ibed arbitrati h be i
facilitates the illustration of results without loosingrgeal- Remar 2'_ The described ar '”a“of‘ schéme can be im-
ity. plemented in a CAN-bus protocol with time-varying, ran-

We assume that the statistics of a subsystem are knO\ﬁ mly.ass:glned prltc))rltldes. ived by th iously defined
to its corresponding sensor and controller. At each timene signalz; can ie escribed by t e-previ|ousy efine
step k, the scheduler at the sensor statiSnmay decide, scheduling variablé;, and arbitration variablgj,

whether a state update should be sent to the contr6ller i§i—1AG =1

. i _ )Pk O = q, = 3
over the contention-based network. We assume that there zE = . 3)

- . 0, otherwise
are Ngot transmission slots per time step. If the number of
sensors that have decided to transmit information at ime  Each subsystem € {1,..., N} has a cost function;
exceedsNso, then an arbitrator chooses randomNsot  given by the linear quadratic average-cost criterion
sensors that are allowed to transmit. The remaining sensors
are blocked and may try to send information at the next , = ; T
time instance. The random arbitration mechanism uses no /i = lim —E Z‘Ek Qivg +ug Siug| - (4)
k=0

prioritization of sensors and chooses its sensors acaptdin
a uniform distribution. We define the scheduling variafjle The weighting matrixQ; is positive definite and; is positive
as follows. semi-definite for each € {1,...,N}. We assume that
i {1 updatez; is sent the pair (4;, B;) is stabilizable and the paift4;,Q?) is

k= 0 otherwise detectable with); = (Q7?)TQ?.



We want to minimize the aggregate cost functibh ratio between available transmission sldig: per time step
normed by the number of subsystems. It consists of the suamd the number of subsystemg i.e.

of individual costsJ; of each subsystem divided by, i.e. Nejot
SIOi
L R=-5
V=— J;. (5) . . o . .
N ; v While letting N approach infinity, the ratioR is

kept constant, i.e.Ngo grows uniformly with N. On
The control lawy* = {73,%‘,,_,} is described by ad- the other hand, the subsystems with same system pa-
missible policiesy], for each timek. These are defined as rameter are replicated with increasiny. We define
Borel-measurable functions of their past available data  the 4-tuple K; = (4;, B;, Q;, S;) to describe a subsystem.
_ ) Then, if we doubleN, the number of subsystems wit§;
ufp = 7k(ZF), is doubled for each € {1,..., N}. Based on such approx-
imative system description, we derive decentralized abntr

where the information available at the controller is givgn band scheduling laws in the following subsections.

Ci __ PR ) i i
Ik - {ZOaUOa---vzk—lvuk—l}' B. Assumptions
The informationI,fi available at the sensor statidy to We first focus on homogeneous systems, i.e. systems
decide whether to transmit a state update for the decentralith identical subsystems. The obtained results will then
ized scheduler is given by be applied to systems with heterogeneous subsystems in
S S . , , , section IlI-F. In a homogeneous system setup, a subsyistem
I =H20,00, 40 1+ Xhe1s Ot Qo1 T ) - ; ; _ _
k 0790740, %1 k=1 %k—1>9k—1> Lk is described as thd-tuple = (4, B,Q,S), where we

d. assume thatd; = A, B;=B, Q; =Q and S; =S for

Unlike the control policiesy?, the policy of the sche ) Sub | q h b
uler may be randomized and is described by a Sée_veryze{l,...,N}. ubsequently, we drop the sub- or

uencer’ — {xi, 7%, ...}, which is given by the stochastic superscripti f_or notational conve_nience, Whe_never it is not
y =TT J y needed. We introduce the following assumptions for the ad-

kernels 7 (-|Z57) on the set{0,1} conditioned on the "€€¢ . : )
Wsk“ e (0.1} missible control and scheduling polices given a subsygfem

history 7,>¢. Th i " bl implified desi h
Apart from this class of schedulers, we will consider two ese assumptions will enable a simpliied design approach.

other classes in section IV. These are on the one hafd) The scheduling policy and control policy are identical
centralized scheduling schemes that globally decide which ~for every subsystem.

subsystems may transmit information and on the other hdfg) The control law~ stabilizes the subsyster in a
TDMA schemes, where transmission timings are fixed before  bounded moment sense for all dropout probabilities

runtime for each subsystem. Plg. = 0] < 1 — R, when assuming), = 1 for all
k >0 andg, being i.i.d..
I11. MAIN RESULT (A3) The scheduling policy and control policy are statignar
The resulting closed-loop system with =1, k > 1 is

This section develops an algorithm to find approximatively
optimal scheduling policies and control policies that min-
imize the aggregate co$t given by equation (5). Although lim P[0, =1]=R, P-as.
the coupling between subsystems in the optimization prob- ko0
lem occurs only in the shared communication network, the  and future scheduler outputs,, m > k are independent
underlying problem is difficult to solve. The reason for tisat of Z¢ in case of;, = 1.

secondarily given by the fact that the number of subsystemsAssumption (A2) will guarantee that the closed-loop pro-
might be large, but is rather grounded in the distributedess converges to a stationary process for every fiNite
information pattern. It is shown in [16] that solutions forand ensures that the obtained solution leads to bounded mo-
optimization problems with a distributed information @t  ment stability. It should be remarked that assumptions (A2)
are rather hard to obtain. This fact motivates us to seanch fgng (A3) do not need to take into account the complex
a suitable approximation of the problem setting, where Wgehavior between subsystems due to the shared commu-
can apply known results that lead to efficient algorithmse Thyjcation network. Instead, the network is modelled as an
idea is to let the number of subsystems grow to infinity andj 4. Bernoulli distributed packet dropout process for as
scale the system accordingly, so that the optimal soluﬁmnfsumption (A2), which has been studied extensively [17].
system with infinite subsystems will be a good approximatiogyith respect to assumption (A3), subsystems can be viewed
for the original system with a finite number of subsystemsgs jsolated entities having their own dedicated feedback
channel.

The following paragraph is concerned with the question,

In the subsequent paragraph, we introduce the approximaew restrictive the taken assumptions are with respect to
tive system. A crucial parameter in describing the commuptimality. Assumption (Al) can be reasoned by results in
nication network is the variabl& which is defined as the subsection IlI-F on heterogeneous subsystems that show the

ergodic with

A. Approximative system



underlying global optimization problem is a resource alloWhen substitutingy“ into .J; defined by (4), the objective
cation problem with concave utility functions. The fairees is to find the optimal scheduling law* that minimizes
property of this optimization problem implies that idewatic

T—-1
subsystems attain the same solution. Assumption (A2) may ;S _ i,y — E Z(l —5i)elTer| ,st.r <R, (8)
introduce some conservatism, as it poses additional #yabil T—oo T' o N

conditions. On the other hand, the assumption leads to a

7T T
robust design with respect to other subsystem that do ngperel’ = L (R + B°SB)L. It can be observed that the

comply to the global design procedure. Assumption (Azs)ptimization problem (8) guarantees that assumption (A3) i

ensures that all subsystems remain stable, even for Sptisfied. Rather than solving (8) directly, we first detereni

. \ g
arbitrary number of subsystems transmitting persistentljﬁe Pareto frontier of feasible paif$®,s] and then choose

Assumption (A3) states that the average transmission re{e Pair with minimal./ satisfyingr < R. The calcula-
of a subsystem i®, when considered as an isolated controf©" ©f the Pareto frontier is performed by a scalarization
system with perfect communication. The reasoning behirgPProach described in the next subsection.

this heuristic assumption is thdt is the unique rate that p. Asymptotic optimality property

fully utilizes the communication network while avoiding
collisions in the limitk — oo for the approximated system
with N — co. The assumption that the scheduler does n
take into account the informatiofgf in case ofd, = 1 for
its future decisions is motivated by the fact that the data
the scheduler and controller are synchronizedfox 1 and
therefore the informatio@? is outdated.

Based on the assumptions (A1l)-(A3), this subsection
shows that the proposed design approach is optimal for
%e approximative system, i.e. it is asymptotically optima
(;Pr N — oo for constantR. First, we make the following
Observation by considering the ratio of subsystems that
decide to transmit information. The ratio is given by the
term + S N | 6i. Assume that the initial state distribution of
each subsystem is given by the stationary distributionltresu
ing from an isolated subsystem fulfilling assumption (A3).

This subsection proposes a control and scheduling desigrhen, the ratiol: Zf;l 5t is R for the approximative system
whose optimality and stability properties are derived ia thfor N — oo for every time stepk. As % Zi\il 5 is a
subsequent subsections 1lI-D and IlI-E. The control law isandom variable with a zero-one law fof — oo, this result

C. Design approach for identical subsystems

given by a certainty equivalence controller holdsP-almost surely. It also implies that no collisions occur
at any time step, i.e.q;, =1 for 6 = 1, P-almost surely.
CE(+C c . .
up = vy (Zy) = —L E[ax|Zy], (6)  Assumption (A2) ensures that the aggregate system with

the shared communication network converges to a stationary

where L is the control gain of the linear quadratic prOb'distribution for finite V. Further, it is conjectured that the

lem, i.e. stationary distribution resulting from the isolated sutisyns
L=(B"PB+S) 'BTPA, is :_allso a.ttgllned.fo_r th_e approximative system from any
T T T arbitrary initial distribution. As a consequence of thetfac
P=A(P—-PBB PB+5)" B P)A+Q. that the limiting transmission rate &, P-almost surely and

under assumptions (A1)-(A3), we are able to reduce the
initial optimization problem for the approximative system
with N — oo to the following local optimization problem

The least-squares estimatgry |Z¢] can be computed by a
Kalman-like estimator given by

Elnu €] — {$k Se=T1Aq =1 considering only one subsystem.
F (A— BL)E[z—1|Z¢_,] otherwise
minJ, s.t.r <R. 9)
with E[zo|Z§] = 0 for 6o = 0 or 6o = 1 and ¢y = 0. By 7
defining the estimation error Above statements for reducing the optimization problem
are also valid for an average transmission rate smaller
er = Tp — E[:ck|I,f,1, 5, = 0], than R. Therefore, we have replaced the equality constraint

) ) o ) by an inequality constraint in (9). Based on the ergodicity
the optimal scheduling policy is the solution of a constedin assumption in (A3), we can repla@s, = 1] by r.
Markov decision process [18] with statg that evolves by Several works [11]-[14] have already addressed opti-
mization problems that are related to (9). Similarly as
in [13], [14], it can be shown that the optimal control
law is given by~CE defined in (6). This is mainly due
to the stationarity assumption of the policies in (A3) and
the nestedness property of the information pattern. The
1 T information pattern is nested, since the information axd
r= lim — E[Z Ok at the controller is a subset of the information available at

T—oo T
k=0 the scheduler.

Ck+1 = g(ek,ék,wk) = (1 — 6k)A€k + wg (7)

with initial condition eq = xo — E[x¢]. Besides, we define
the average transmission rate as



Taking the obtained results into account, the remaininguarantee that
task is to find the optimal event-triggering law* that 1
minimizes (8). In order to solve above optimization problem R>1- W, (11)
we first consider the corresponding vector-valued optimiza o )
tion problem, where we drop the inequality constraint anien the overall system with/' identical subsystems sharing
consider the average transmission rateas our second & common network is bounded moment stable.
objective besides/S. In order to calculate feasible points Proof: We use drift criteria to show bounded mo-
in the cost regioriJS, 7] € R? that are Pareto-optimal with Ment st_ablllty [19]. It |s_str§|ght forwgrd to prove fchat the
a corresponding scheduling policy, we use a scalarizatidtpderlying Markov chain isy-irreducible, aperiodic and
approach. The scalarization approach takes the followirfge drift of quadratic functions ot, inside the compact

form set M = {ex||lex|]2 < M} is bounded. Thus, it suffices to
consider the set of stateg outside of this compact set [19].
mgn JS 4 Ar, (10) The drift operator is defined as
where ) is a non-negative weighting term penalizing trans- Ah(ex) = E[h(eg+1)lex] — hler), er €R™

missions. The unconstrained Markov decision process giv%rek € R™\ M, we have the following difference equation
by (10) has been studied in [11]. In the following, we adOPBue to assumpt,ion (Ad)

the following assumption made in [11].
(A4) The scheduling policy isti (6 = 1lex) = 1 for ert1 = (1 = gqr)Aey, + wy,

|ex|l2 > M for some arbitrary)/. whereg, is distributed as in (2) and depends on the remain-

Remark 3: This assumption does not put severe restrigng subsystems. In order to have bounded moment stability,
tions on the design, a&/ may be chosen arbitrarily large. we need to ensure that
When T" is not positive definite, but only non-negative "
definite, optimal solutions of (10) generally violate aspsdm Ahlex) < —ellexll3, ex € RO, (12)
tion (A4) for any M as is shown in [14]. But a3/ can be where ¢ > 0 and ® D> M is compact. Let us
arbitrarily large, there always exists aroptimal scheduling take h(ex) = |lex||2. Due to statistical independence of,
law taking assumption (A4) into account. qr andey, for e, € R™\O and the fact thaty, is zero-mean
Based on assumption (A4), it is shown in [11] that thewith unit variance, the drift term can be written as
optimal scheduling policy is deterministic, stationarydan ) )
takes the form of a threshold policy. Due to continuity of Ahler) = E[1 — qu][Aer[lz +1 — [lex]>-

the Pareto pointdJ/®,r] in A, optimization problem (8) The termE[1 — ¢;] is the average packet drop probability,

and (10) correspond to each other for an appropriatefhich is upper bounded by — R. On the other hand, we
chosen). Besides, this result implies that the Pareto frontlepf]a\,e||AekH2 < ||All2|lex||. Therefore, the drift is bounded

is described by a convex and non-increasing functid(r).
Summarizing this subsection, we have shown that the design ) )
approach in previous subsection is optimal for the approxi- Ah(er) < (1 = R)[|All5 — Dlexll3 + 1.

mative s_ystem. The Pareto frontier for o_btaining the O_pltimftondition (12) ensures that we can find appropricaed©,
scheduling lawr™ can be calculated efficiently by using agch that the drift criteria given by (12) is satisfied. This
scalarization approach. completes our proof. -

E. Stability Remark 4: In case of heterogeneous subsystems, condi-

tion (11) has to be checked for each system matjx
In this subsection we address the question whether the

original system with finiteN and the shared network to- F- Design approach for heterogeneous subsystems
gether with the optimal solution of (9) is stable. Every For identical subsystems, the optimization problem was
closed-loop subsystem can be described by the augmenteduced into a local optimization problem that finds the op-
state [E[z)|Z{], ex]. This system has a triangular structuretimal control and scheduling law in a decentralized way. For
due to (7), i.e. the evolution of the estimation error isolving the optimization problem, the transmission r&te
independent of theE[x|Z%] given the current estimation which is equal to the ratide, is assigned apriori to each
errore. The evolution o[z, |Z¢] can be viewed as a stable subsystem. We can proceed in the same way for every
system disturbed by the estimation erwgr. Therefore, it subsystem within the heterogeneous system for a particular
suffices to analyze the stability properties of the estiomati transmission rate. However, the optimal transmissionsrate
error e, to show stability of the closed-loop system offor each subsystem are not given in advance. Fortunately,
a subsystem. The following proposition gives a stabilityve have seen in section 1lI-B that the Pareto curve of the
condition for the overall system taking into account theost J and average transmission rateis convex in the
shared network. cost region. Therefore, the determination of the optimal
Proposition 1: Let Assumption (A4) hold and the con- transmission rates; for subsystems € {1,...,N} is a
troller and scheduler be given by (6) and (8). If we camesource allocation problem with utility functionJ;(r;).



optimal centralized scheduling shows the cost per subsyste
5 for various numbers of identical subsysteMsvith R = 0.2.
§ § The resulting costs folV € {5, 25,100, 250,500} is deter-
mined through Monte Carlo simulations with a time horizon
of T = 10000. The optimal control law for both the
optimal TDMA scheme and the optimal centralized scheme
are given byuy, = —L E[z4|Z{] with L = 1. In the optimal
TDMA scheme, time slots for transmission are assigned
successively. Subsystems transmit information peridigica
with transmission perior%, where we assume th& is a
multiple of 5. In the case of identical subsystems, the optimal
centralized scheduler selects at each time gtethe RN
o ) o 0% 03 " subsystems with maximum magnitutie | whose feedback
average transmission rate r; loop are then closed. It should be noted that this scheduler
can be regarded as a lower bound on the performance that
Fig. 2.~ Pareto frontier of a subsystem and system paramean he achieved over the communication networks, but which
tersK = (1,1,1,0). The vertical line indicates the rate constraint. is not realizable as it needs another communication network
. ) ) .. . gathering the estimation errors of every subsystem.
This is a W_e"'StUd'eq pro?'em n network: optimization\ye gpserve in Fig. 3 that the cost of the optimal decen-
and a‘?'m'ts interpretations I|I§e fairness [20]. The reseurqyy)i;eq scheduling algorithm approximates this lowertmbu
allocation problem can be written as very closely and outperforms the optimal TDMA scheme

1 & 1 & significantly. On the other hand, it can be seen that the costs
min ~ Z Ji(ri), s.t. ~ ZTi <R. (13) converge to the asymptotic costs fof — oo very rapidly.
{rornd NV i=1 Already for N = 100, the performance gap is less that.

Assumption (A3) is modified by replacing the total transmis-
sion rate by the individual rate; for each subsystem

The design approach for heterogeneous subsystems pro 4
ceeds splits up into two different optimization stages.rigve
subsystem solves a local optimization problem by calaudgati
its Pareto frontier of feasible poinid;, r;]. This is obtained
by solving (10) for differentA € [0,00). The resulting
function J;(r;) is used in the global optimization problem al-
locating transmission rates to each subsystem given by (13)

IV. NUMERICAL VALIDATION

The purpose of this section is twofold. First, the efficacy : , - B-TDMA
of the proposed design algorithm is evaluated. This is ac- f bound f —&—central
complished by comparing it with optimal TDMA scheduling : : -8~ decentral
schemes and the optimal centralized scheme. Second, wi 0 T
illustrate the design approach for the decentralized event number of subsystems N
triggered design for a homogeneous and heterogeneous
system setup. For sake of illustration, we consider scal&ig- 3. Numerical validation of the networked control systeith homo-

. . geneous subsystems and system paraméfers(1,1,1,0) and R = 0.2.
subsystems in the following.

First, suppose we have identical subsystems with param-Finally, we consider a heterogeneous system, where we
etersK = (1,1,1,0). The communication network allows have two different kinds of subsystems occurring at the
a transmission rateR = 0.2. The Pareto optimal cost same amount. The system parameters@re- (1.25,1,1,0)
region[J;, r;] for a subsystem with parametefsincluding andK. = (0.75,1,1,0) and the communication network has
the rate constraint is drawn in Fig. 2. We observe thals a transmission rate ok = 0.5. We note that the stability
a decreasing and convex function with respect;to condition (11) is satisfied for the underlying subsystems.

The optimal cost point is attained at}, R] = [1.54,0.2] Having obtained the Pareto curves for both subsystems
by an event-triggered scheduling poliey* that is given sketched in Fig. 4, the resource allocation problem given
by 6x = 1jc,|>1.73- The optimal control law gaitl is given by (13) determines the optimal rate pair. The dashed line in
by 1. It should be remarked that the Pareto curve can Weg. 4 depicts the mean cost per subsysléras a function
obtained individually for every subsystem before runtimef r; for N = 2 without collisions. It can be seen that the
without considering the underlying communication systemtotal costV is convex with respect te, and it is minimized

Fig. 3 compares the cost of the decentralized eventt the rate paifry, r2] = [0.6, 0.4] taking a value ofl.07.
triggered scheme with the optimal TDMA scheme and th&he optimal control gain is given by.,; = A; for both

cost per subsystem, V/

500



—— Pareto frontier, A;=1.25

: . | =@ Pareto frontier,A2=0.75
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V. CONCLUSIONS

This paper shows that decentralized event-triggered
scheduling seems to be very promising to achieve a com-
promise between complexity and performance. The design
approach offers a tractable methodology that circumvents
the need to take into account the complex behavior of
the contention-based network, but guarantees overalil-stab
ity. The decentralized event-triggered scheme outpeorm
TDMA scheduling and approaches the optimal centralized
scheduling scheme very closely.

Prospective research investigates the online estimation
of the network parameters and an adaptation mechanism
that adjusts the scheduling law at runtime, as well as the

average transmission rate r;

Fig. 4. Solid lines: Pareto frontiers of two different sustgms with system
parametersC; = (1.25,1,1,0) andXC2 = (0.75,1,1,0). Dashed line: To-
tal costV(r1) = 5(J1(r1) + J2(r2)) and constrain% (r1 +72) <0.5.
The optimal rate pair is given &y, r2] = [0.6, 0.4] with total cost
V = 1.07 for the two subsystems without collisions.

(1]
(2]

subsystems and the scheduling laws are threshold policieg)
whered; = 1., 505} for K1 andd? = Lyjc, >0.05) for Ks. ’
Concerning the performance in the presence of the share[d]
network, we consider the mean costs per subsystem dé5l
picted in Fig. 5 forN € {2,10,50,100,250,500}. The
optimal TDMA scheme involves a brute-force search overg
all possible combinations of transmission times. To keep
this combinatorial problem numerically tractable, we re- 7l
stricted the admissible transmission scheme to be perioc}—
ical for subsystemdC,. The optimal periodical transmis-
sion scheme is then given Wyt, 61, 61,...]=[1,1,0,..] [
and [62,0%,03,...] =[0,0,1,...] with period 3. A lower
bound is given byV 1 assuming no communication [€]
constraints on the feedback channels. As can be regarded
from Fig. 5, this lower bound is approached with a gap ofig
less than10% for increasingN and the TDMA scheme is
outperformed for every number of subsystems.

[12]
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Fig. 5. Numerical validation of the networked control systevith

[20]
heterogeneous subsystems of two clagsgesand Ko.

extension to other communication models.
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