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Abstract—This paper presents a generalized approach to the
design of independent local Kalman filters (KFs) without commu-
nication to be used for state estimation in distributed generation-
based power systems. The design procedure is based on an
improved model of the virtual disturbance concept proposed in a
previous work. The local KFs are then synthesized based only on
local models of the power network and on the characteristics of the
associated virtual disturbance. The proposed solution is applied
to an interconnected power network. By choosing appropriate
models for the virtual disturbance, the local KFs can be suited for
both dc and ac distribution systems. It is shown for both cases that
the local KF can infer the local states of the network, including the
aggregated branch currents coming from the other buses. Simu-
lation results show improved results with respect to the previous
proposed modeling approach even when the subsystems present
widely different dynamics. The herein presented approach is well
suited for the agent-based decentralized control of microgrids.

Index Terms—Decentralized state estimation, distributed power
generation, Kalman filters (KFs), noise shaping, power systems,
smart grids.

I. INTRODUCTION

A RELIABLE monitoring and control process is a critical
issue for a safe and efficient power system operation.

For such purpose, it is necessary to know system states that
are, however, typically not directly available or not easily
measurable. In such process, state estimation serves as the key
tool to provide the system status to support decision making for
control actions [1], [2].

In modern power grids with wide dispersion of distributed
power generation units and power electronic converters, the
overall system presents increasing complexity. Traditional state
estimation, as part of a centralized control system and based
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on static or quasi-static system models, becomes inadequate to
manage such large-scale complex systems.

The Kalman filter (KF) is widely used to estimate and track
the states of a system based on the process model and the
process measurements. Dynamic state estimation for power
systems based on a centralized KF is discussed in [1] and [4].
A KF in the presence of unknown disturbance or inputs has
been proposed for centralized control schemes with disturbance
rejection in [5], [6], and [16].

Recently, the distributed and decentralized KF (DKF) has
attracted a lot of attention due to its distribution of compu-
tational loads and operational robustness. Prominent recent
applications for DKFs are in the area of data fusion in sensor
networks [6], [8], [9] and state estimation for electric power
systems [11], [12].

The synthesis procedure for the proposed independent lo-
cal KFs consists of first building the full system model and
then decomposing it into local subsystems. The approaches
proposed in the preceding papers still need communication to
accomplish the state estimation process. However, this commu-
nication requires synchronization between the local estimators,
which increases the complexity of the system. In addition,
the network-induced parasitic effects, such as time delay and
packet loss, reduce the estimator performance. Thus, avoiding
communication channels as much as possible is desirable for
performing the state estimation.

In [14], we proposed the independent local KF approach
without communication synthesized using local models of the
power network associated with a virtual disturbance model.
This virtual disturbance model is used to represent the intercon-
nections of the local systems: in this case, the unknown branch
current injections to bus that also represent the dynamics of
the rest of the power network. By choosing appropriate models
for the virtual disturbance, the local KFs are designed for both
dc and ac cases. It is shown for both cases that the local KFs
can estimate the local states and the aggregated branch current
injections independently without any information exchange
between them. The independent local KF implementation as an
estimation of local dynamics and aggregated states of the rest
of the network can be used for control purposes, such as shown
in [13].

In this paper, we follow the same principle as in [14] and
extend it to the formalization, giving guidelines for a systematic
design of the proposed independent local KFs with the modified
virtual disturbance model. We consider now the virtual random
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Fig. 1. Partitioned power system.

disturbance that is modeled as a nonwhite noise inserted into
each subsystem. This nonwhite noise is generated by shaping a
white noise signal by a linear filter. Thus, the dynamic model
of the virtual disturbance is determined by the state model of
the linear filter driven by the white noise. The linear filter and
thus the dynamic model of the virtual disturbance are designed
based on the characteristics of the assumed random behavior of
the virtual disturbance. By choosing appropriate parameters for
the virtual disturbance model, improvements in the estimation
performance are shown in the simulation. On the other hand,
while in [14] all the subsystems are assumed to have nearly the
same dynamics, we also investigate the interconnected system
with fast and slow dynamics of the subsystems. The simulation
results also show good performance of the estimators in this
case.

This paper is organized as follows: In Section II, the overall
approach is illustrated, whereas in Section III, the guidelines
for the design of linear filter and thus the virtual disturbance
model are provided. The system model with its state space
representation is introduced in Section IV. Next, the local KF
with a virtual disturbance model is proposed and analyzed
in Section V. Finally, the proposed approach is evaluated in
Section IV. The same topology of [14] is proposed but now
we analyze how the local filters behave when the different
subsystems have different dynamics.

II. APPROACH OF INDEPENDENT LOCAL KF WITH

VIRTUAL DISTURBANCE

In general, considering a power system such as shown in
Fig. 1, different subsystems with local state variables xi can
be identified, and they are dynamically and nonhomogenously
interconnected. In the conventional way, the state estimator is
designed based on the complete knowledge about the system,
and state estimation of the individual local state variables has
to take into account the dynamic interactions with the others.

Without considering any particular topology of the different
subsystems and their interconnections, we assume that, from
the view point of each subsystem, the rest of the network
is represented by an equivalent virtual source with unknown
dynamics, as illustrated in Fig. 2. It could also be interpreted
as that the interconnections between one subsystem and all
the others are lumped into the virtual source. Following this

Fig. 2. Subsystem and virtual disturbance source.

concept, the local state estimation of each sub system only
depends on its local state variable and the virtual source. In
addition, we consider the virtual source as a disturbance with
unknown dynamic inserted into the subsystem that can also
randomly change and denote it as virtual disturbance source for
the rest of this paper.

Since we consider the equivalent virtual source as an un-
known disturbance for the subsystem, a proper augmented local
KF can be implemented, where the state vector is composed of
the real local state variable of the subsystem and by the states
that represent the dynamics of the virtual disturbance, i.e.,

xi,ext =
[

xi

xdi

]

where xi is the local state of the subsystem, and xdi is the state
of the virtual disturbance model.

Accordingly, the local KF is to be designed based on the aug-
mented state space representation and measurement equation of
the subsystem that are shown in generic form as

d

dt
xi,ext =Ai,extxi,ext + Bi,extui (1)

yi =Ci,extxi,ext + Di,extui + vi. (2)

The matrices Ai,ext, Bi,ext, Ci,ext, and Di,ext consists of the
local state matrices of the subsystem and the virtual disturbance
model. The derivation of the augmented state space model is
explained more in detail with an example power network in
Sections IV and V.

The local augmented KF is thus given by

d

dt
x̂i,ext =Ai,extx̂i,ext + Bi,extui + Ki,ext(yi − Ci,extx̂i,ext)

(3)

where x̂i,ext is the estimation of xi,ext, and Ki,ext is the
Kalman gain computed using the standard algebraic Riccati
equation [15].

In contrast to the synthesis procedure for the conventional
decentralized state estimation, in which the full system model
is first built and then decomposed, the proposed local KFs
associated with each generation unit only needs local infor-
mation about the network and are independent of each other.
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Fig. 3. Virtual disturbance generation as nonwhite noise using shaping filter.

It should be underlined that the state estimation based on the
proposed algorithm has the advantage that each observer is
completely independent from the other observers of the system.
It also means that no communication and no synchronization
are needed.

III. DESIGN GUIDELINES

A. Virtual Disturbance as Nonwhite Noise

As introduced in the preceding section, the virtual distur-
bance is considered as an unknown input to the subsystem.
To include the virtual disturbance into the augmented state
estimation, a dynamic model for the virtual disturbance is
needed.

Generally, in control and estimation theory, an unknown
input is usually treated as a stochastic process with wide-sense
representation [10]. In this sense, the virtual disturbance could
be considered as a nonwhite noise input to each subsystem. On
the other hand, as discussed in [16], any reasonable nonwhite
noise process can be generated as the output of a linear filter,
so-called shaping filter, driven by white noise input with a
unit spectral density. The response of the original system to
the nonwhite noise, in our case the virtual disturbance, is
then equivalent to the response of the series combination of
the original system and the shaping filter to the white noise
input [16]. This concept is illustrated in Fig. 3, where wi(t)
is the white noise input, and udi(t) is the generated virtual
disturbance.

Therefore, the linear shaping filter determines the dynamic
model of the generated virtual disturbance. In general, a state
model for the linear filter can be formulated as [16]

d

dt
xdi =Adixdi + Bdiwi

udi =Cdixdi. (4)

The transfer function of the linear filter is therefore

G(s) =
Udi(s)
Wi(s)

= Cdi(sI − Adi)−1Bdi (5)

where Udi(s) and Wi(s) are the spectral representations of the
virtual disturbance and the white noise, respectively.

In the following, we introduce two different dynamic models
of the virtual disturbance for state estimation in dc and ac power
networks.

B. Disturbance for DC Power Network

In a dc power network, the currents flowing in the branches,
which also represent the interactions between the subsystems in
Fig. 1, are constant signals in steady state. Therefore, the virtual
disturbance source, in which all the dynamic interactions are

lumped in, is modeled as a randomly stepwise changing source
that can be considered a nonwhite noise.

A randomly stepwise changing signal, in our case the virtual
disturbance udi, can be modeled driven by white noise wi with
zero mean and unit spectral density according to

d

dt
udi = −adiudi + bdiwi. (6)

This model is the first-order form of the linear shaping filter
model in (4) for nonwhite noise generation with xdi = udi and
Cdi = 1. The transfer function of the shaping filter is thus
obtained by

G(s) =
Udi(s)
Wi(s)

=
bdi

s + adi
. (7)

As shown in [16], the shaping filter output udi has the
variance σ2

di and the correlation time τdi given by

σ2
di =

b2
di

2adi
; τdi =

1
adi

(8)

and thus the filter is specified by the parameters adi and bdi

obtained by

adi =
1

τdi
bdi =

√
2σ2

diadi. (9)

C. Disturbance Model for AC Power Network

Since in ac power networks the dynamic interactions be-
tween the subsystems have a sinusoidal waveform, the distur-
bance model for the dc case in (6) is no longer appropriate.
In addition, we assume here that the changes in the intercon-
nections are only related to the amplitude and phase of the
sinusoidal wave.

For a sinusoidal disturbance with known frequency f but
unknown amplitude and phase, the modified model similar to
that in [6] is considered, i.e.,

d

dt

[
xd1

xd2

]
=

[
0 1

−(2πf)2 0

] [
xd1

xd2

]
+

[
bdi

0

]
wi;

udi = [ 1 0 ] ·
[

xd1

xd2

]
. (10)

The term wi is again the white noise with zero mean and
unit spectral density. In this case, the model of the virtual
disturbance corresponds to a shaping filter of the second-order
filter with the transfer function given by

G(s) =
Udi(s)
Wi(s)

=
bdi

s2 + (2πf)2
. (11)

It is noted that, for dc network, the virtual disturbance
model is designed by the two parameters adi and bdi, whereas
according to the model for the ac network, the design parameter
is only bdi.
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Fig. 4. Generic power network bus model.

Fig. 5. DG model.

IV. SYSTEM MODEL AND CASE STUDY

In the following, we investigate the approach introduced in
the last two sections with an example power network and show
the design process in detail. We start considering a generic
power network bus i connected to a distributed generator,
a load, and network branches k . . . m with branch currents
Iik . . . Iim, as illustrated in Fig. 4. For the sake of simplicity,
we consider a constant resistance RLi as the load in this paper.
In the case of time-varying loads, the value of the loads could be
obtained by historical data combined with a separate estimation
step.

In general, renewable distributed generation (DG) units can-
not directly be connected to the power system due to the
irregularity of the generated power. It is widely recognized
in the literature the important role of using power electronics
to interface the DG units to the power network, as discussed
in [17]. Without loss of generality, we represent distributed
generation units as power converters interfaced to the power
network with an LCL filter, as shown in Fig. 5.

Considering the output voltage Vconv,i of the power converter
as input to the model, the state space representation of the DG
model i connected to bus i is given by

d

dt
xi = Aixi + BiVconv,i + Fi

m∑
j=k,j �=i

Iij (12)

with

xi =


 Iconv,i

VCf,i

Isi


 Ai =



−Rfi

Lfi
− 1

Lfi
0

1
Cfi

0 1
Cfi

0 1
Lsi

Rsi+RLi

Lsi




Bi =
[ 1

Lfi
0 0

]T Fi = [ 0 0 − RLi

Lsi
]T . (13)

The state vector xi is comprised of the output current of the
power converter Iconv,i, the voltage VCfi over the capacitor
Cfi, and the output current Isi of the DG model injected
into the bus i. The parameters Rfi, Lfi, Cfi, Rsi, and Lsi

are the components of the LCL filter shown in Fig. 5. The

Fig. 6. Power network for case study.

Fig. 7. Model for the local KF.

term Fi

∑m
j=k,j �=i Iij represents the sum of the branch currents

flowing from other neighbor buses k, . . . ,m into bus i and also
represents the interconnection between the different actors in
the power network.

The bus voltage Vi over the load is related to the injected
current Isi from the DG model and the injected currents
Iik, . . . , Iim from the branches connected to the bus. The
voltage Vi is thus defined as

Vi = Cixi + RLi

m∑
j=k,j �=i

Iij (14)

with

Ci = [0 0 RLi]. (15)

For the case study, we consider an interconnected power
network in Fig. 6 with three subsystems consisting of the model
in Figs. 4 and 5. Due to limited space, the network model is not
derived in this paper. In this case study, the parameter m in (12)
and (14) is equal to 3.

V. PROPOSED LOCAL KF

A. Local Model for the Local KF

We assume that the local KF associated with each generation
unit has only local information about the network. This led to
a local model for the KF, as illustrated in Fig. 7. Compared
with the model in Fig. 5, the branches connected to the bus
are neglected. Instead, a current source Id,i is added as a
virtual disturbance model. This assumes that there is an inherent
modeling error of the local model in comparison to the true DG
model. Moreover, we assume that the measurement of the bus
voltage in the local model denoted by V ∗

i is available to the
local KF.
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Therefore, the state space model for the local KF according
to Fig. 7 turns out to be

d

dt
xi = Aixi + BiVconv,i + NiId,i (16)

with Ai, Bi defined in (13) and

Ni =
[
0 0

RLi

Lsi

]T

. (17)

The local measurement that is available to the local KF is
given by

yi = V ∗
i + vi = Cixi − RLiIdi + vi (18)

where vi is a white Gaussian measurement noise with zero
mean and variance σ2

vi. The matrix Ci is defined in (14).
Comparing (16) and (18) with (12) and (14), one can see that

the terms Fi

∑m
j=k,j �=i Iij and RLi

∑m
j=k,j �=i Iij correspond-

ing to the branch current flows are represented by terms de-
pendent on the virtual disturbance Id,i. Consequently, the local
KF does not depend on the network topology and parameters
anymore and can operate in an independent way.

As discussed before, we consider the virtual disturbance Id,i

as an additional state to estimate. In the following, we apply
the two dynamic models of the virtual disturbance introduced
in Section III for state estimation in dc and ac power networks.

B. DC Power Network

Applying the virtual disturbance for the dc network in (6),
we extend the state estimation of the local system in (16) and
(18) by considering Id,i as an additional state to estimate and
obtain

d

dt
xdc

i,ext =Adc
i,extx

dc
i,ext + Bdc

i,extVconv,i + Ndc
i,extwi

yi =Cdc
i,extx

dc
i,ext + vi (19)

with

xdc
i,ext =

[
xi

Id,i

]
; Adc

i,ext =
[
Ai Ni

0 −adi

]
; Bdc

i,ext =
[
Bi

0

]
;

Ndc
i,ext = [0 bdi ]T ; Cdc

i,ext = [Ci −RLi ]. (20)

The local KF with augmented state estimate x̂DC
i,ext is then

given by

d

dt
xdc

i,ext=Adc
i,extx̂

dc
i,ext+Bdc

i,extVconv,i+Kdc
i

(
yi−Cdc

i,extx̂
dc
i,ext

)
(21)

which assumes the observability of the augmented local system.
Since we consider the system in steady state, the Kalman
gain KDC

i can be determined by the standard algebraic Riccati
equation [15].

C. AC Power Network

Equivalently, for the ac network, we apply the model in
(10) for the virtual disturbance Id,i, which is also a sinusoidal
wave. The augmented model for the local KF in this case turns
out to be

d

dt
xac

i,ext =Aac
i,extx

ac
i,ext + Bac

i,extVconv,i + Nac
i,extwi

yi =Cac
i,extx

ac
i,ext + vi (22)

with

xac
i,ext =


 xi

xd1

xd2


 ; Aac

i,ext =


Ai Ni 0

0 0 1
0 −(2πf)2 0


 ;

Bac
i,ext =


Bi

0
0


 ;

Nac
i,ext = [0 bdi 0 ]T ; Cac

i,ext = [Ci −RLi 0 ]. (23)

Assuming the observability of the augmented local model in
(22), the local KF for the ac power network and the Kalman
gain KAC

i can be obtained as in the previous section.
It should also be noted that the white noise wi in both dc and

ac disturbance models can be interpreted as the process noise
of the augmented local system in (19) and (22).

D. Analysis of the Augmented State Estimation

According to the definition of the local measurement in
(18), the local KF considers the local measured voltage V ∗

i

nominally only dependent on the single current injected by
the local DG perturbed by the virtual disturbance source Id,i.
However, the true measured voltage Vi defined in (14) depends
on all the current injections from the power source and the
branches into the bus. As mentioned before, the terms related
to the branch current flows in the true DG model are replaced
by terms dependent on the virtual disturbance Id,i in the local
model. Therefore, the virtual disturbance obtained by the local
augmented state estimation is related to the branch current
flows.

For each local KF, the local measurement of the bus voltage
in (18) should be equal to the true bus voltage in (14) despite
the measurement noise vi with zero mean according to

Vi = E[yi] = V ∗
i (24)

where E[•] is the expected value.
Inserting (14) and (18) into (24) and solving with respect to

Id,i, the locally estimated virtual disturbance is obtained as

Îd,i = −
m∑

j=k,j �=i

Iij . (25)

Thus, the locally estimated virtual disturbance in (25) is
equal to the negative sum of the current flows injected into the
bus. This indicates that the local KF is able to implicitly learn
the unknown branch current flows of the power network in an
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TABLE I
SYSTEM PARAMETERS

Fig. 8. Sequence of random changes in the voltage amplitude of DG1.

aggregated way. The negative sign is due to the chosen current
flow direction of the virtual disturbance model.

VI. SIMULATION RESULTS

The parameters of the three DGs are chosen as given in
Table I. The chosen parameters imply that the dynamics of
the subsystem 1 and 3 are much faster than the dynamic of
subsystem 2.

The transmission lines of the power network are modeled by
simple serial RL components. The value for Ri and Li are also
chosen arbitrarily, with all three branches having Ri = 0.5 Ω
and Li = 0.1 mH. All the three loads RLi are chosen equal
to 5 Ω. The nominal amplitudes of the output voltages Vconv,i

of the three power converters are chosen equal to 402, 403,
and 398 V, respectively. We assume the uncertainty of the
measurement devices with uniform distribution, and the devices
have an accuracy of 0.25%. The white Gaussian measurement
noise thus has a variance of σ2

vi = 0.3V 2 for all local KFs.
In the simulation, the changes in branch current flows that

also imply the changes in the virtual disturbance is stimulated
by random step changes of the output voltage amplitude of the
DG1 in Fig. 6 with a correlation time of τdi = 100 ms for both
dc and ac cases. The sequence of changes normalized on the
initial output voltage starting at t = 0.5 s is shown in Fig. 8. It is
noted that these changes also cause the changes of all the system
states. We also assume that for t < 0.5 s, all the local KFs are
settled according to the initial steady state of the system.

For the resulted random changes in branch current flows, we
assume a variance of σ2

di = 103A2 for all three subsystems in
both dc and ac cases, which also represents the variance of the
plant noise. It is noticed that in this paper the variance of the
model is heuristically chosen by observing the simulation re-
sults. In practice, the variance of the model can be determined,
e.g., based on historical values of the load changes. Therefore,

Fig. 9. State estimation error of DG1 with the filter parameters in the previous
work for dc power network.

the parameters for the shaping filter and thus the dynamic
model of the virtual disturbance for the three subsystems turns
out to be

adi =
1

τdi
=

1
100 ms

= 10s−1;

bdi =
√

2σ2
diadi =

√
2 · 100 A. (26)

In addition, we define a percentage estimation error as

e(x̂i) =
|xi − x̂i|

x̄i
· 100% (27)

where xi is the instantaneous absolute value of the true state,
x̂i is the instantaneous state estimate, and xi is the amplitude
of the steady state.

A. DC Power Network

For comparison purpose, we first set the parameter of the
virtual disturbance model to adi = 0 and bdi = 1, as chosen in
the previous work [14]. The state estimation errors of the DG1
following the sequential changes are shown as an example in
Fig. 9.

According to (25), the local KF based on the augmented
local model should be able to learn the negative sum of the
branch currents flowing into the bus through the estimated
virtual disturbance, in addition to the local state estimation.
This effect is shown in Fig. 10, where the negative values of
the individually estimated virtual disturbance Îdi of all three
local KFs are compared with the sum of the respective branch
current.

It is obvious in Figs. 9 and 10 that the local KFs do not
provide satisfied performance to track the sequential changes
in the system states and the virtual disturbances that are aggre-
gated to the branch currents. On the other hand, it can easily
be observed in Fig. 10 that the changes of the current flows
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Fig. 10. Learning of the aggregated branch currents via the virtual disturbance
estimation with the filter parameters in the previous work for dc power network.

Fig. 11. State estimation error of DG1 with systematic design of the virtual
disturbance for dc power network.

injected into buses 1 and 3 (the upper and lower subplots) are
fast, whereas the changes of the current injection into bus 2
(the middle subplot) are slow. This is caused by the different
dynamics of each subsystem according to the chosen system
parameters, as previously shown.

Then, we apply the systematically determined filter parame-
ters in (26) to the virtual disturbance model, and the simulation
results are shown Figs. 11 and 12. It is shown that with the new
designed parameters the local KFs show very good performance
in tracking the states and the current flow changes.

B. AC Power Network

The same investigations as in the previous section are carried
out for the ac case with the local KF defined in Section V-C.
The system inputs, i.e., output voltages of the three power

Fig. 12. Learning of the aggregated branch currents via the virtual disturbance
estimation at systematic design of the virtual disturbance for dc power network.

Fig. 13. State estimation error of DG1 with the filter parameters in the
previous work for ac power network.

converters Vconv,i, are chosen as sinusoids with a frequency of
50 Hz. Please note that only the parameter bdi is needed for
the ac power network. Since the same disturbance and the same
plant variance are assumed for both dc and ac cases, the same
value of bdi in (26) is also applied to the ac case.

First, we set again the parameter bdi = 1 as in the previous
work [14]. The same effect as in the dc case is observed that
the local KFs cannot track the fast changes of the states and the
branch current flows (Figs. 13 and 14).

It should be noted that the decaying sinusoidal oscillation in
the estimation errors in Fig. 13 is caused by the estimation error
of amplitude and phase during the settling time of the local KF.

Then, we use the filter parameters bdi in (26) for the virtual
disturbance model in the ac case. The simulation results in
Figs. 15 and 16 show again that with the designed parameters
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Fig. 14. Learning of the aggregated branch currents via the virtual disturbance
estimation with the filter parameters in the previous work for ac power network.

Fig. 15. State estimation error of DG1 with systematic design of the virtual
disturbance for ac power network.

the local KFs provide very good performance in tracking the
states and the aggregated branch current flows.

VII. CONCLUSION

In this paper, we have proposed independent local KFs based
on local models with a virtual disturbance source. The model
of the virtual disturbance is designed in a systematic way based
on the principle of nonwhite noise generation using a shaping
filter. The state estimation with the proposed KF is carried out
in an independent way without communication. The local KFs
based on the systematic designed disturbance model show very
good performance in tracking the fast changes of the system
states compared to the previous work. The presented estimation
approach forms the basis for the decentralized grid control, as
shown in [13]. As shown in the simulation results, the local

Fig. 16. Learning of the aggregated branch currents via the virtual disturbance
estimation at systematic design of the virtual disturbance for ac power network.

KF can track the system states caused the random changes of
maximal about 20% of the voltage amplitude of the DG, and the
proposed method is not limited in small variations of operating
conditions.

It is noted that the stationarity hypothesis of the stochastic
process of the virtual disturbance model is assumed in terms
of a constant variance over time in this paper. In practice,
the change of the variance of the virtual disturbance model
can be taken into account by updating the parameters of the
shaping filter and then also its bandwidth according to current
knowledge about the changes of system, such load changes. The
update of the filter parameters also leads to an update of the
Kalman gain.

As future work, it is interesting to include the estimation
of harmonics in the power network. This would be possible
by applying an appropriate model of the sinusoidal wave with
given frequencies for the virtual disturbance.
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