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Abstract—1In this paper, we present a new method to au-
tomatically transfer touch stimulation into controllable, reflex
reactions for articulated robots — such as a humanoid robot.
Our work has been motivated by the necessity to automate
the reaction setup for an increasing number of our multi-
modal artificial sensor skin units (HEX-O-SKIN). Our method
therefore evaluates the effect of isolated, sinusoidal degree
of freedom (DoF) movements, around a current pose of the
robot, towards the motion of each sensor unit. We do this
by exploiting data from a 3-axis accelerometer — one of the
multiple modalities located on every of our sensor units (SU).
Direction and amplitude from all three axes enable us to
generate signed weights, one per DoF and SU, leading to the
partial construction of a sensory-motor map. In this paper,
we focus on reactions towards lateral sensory modalities —
such as a distance sensor. A higher acceleration along the
surface normal thus leads to a higher lateral weight, while
unwanted sideway movements decrease it. We then define a
reaction controller at the level of each sensor unit. The sensory-
motor map is used to map these local reactions, from units
distributed all over the robot, into the robot’s motor space.
Through activation, inhibition or inversion it is possible to
adapt these low-level controller instances to a given context.
Here, we show experiments with a KUKA lightweight robotic
arm reacting evasively or aggressively towards contact with a
lateral distance sensor, emulating the sensation of light touch. In
comparison to other related works, our method does not suffer
from occlusion, complex touch situations or long calibration
time.

I. INTRODUCTION

A. Motivation

Human skin provides numerous inspirations for robots,
deploying high resolution, multi-modal sensitivity over the
whole surface. In comparison to a robot purely relying on
joint information (position and/or force), a robot equipped
with skin has a much richer information set. Human, with
a set of roughly 5 million skin receptors, is not only able
to classify different touch events, e.g. temperature changes
or impacts, but can also accurately localize the origin of the
sensation in a multi-touch situation and act meaningfully. In
order to do so, integrative control algorithms need sensory-
motor knowledge. Manually providing this information is not
feasible, due to the possible high number of sensor units and
degrees of freedom. To overcome this, automated calibration
routines can be realized on robots equipped with artificial
skins — the robot uses its own sensors to learn about itself.
This is especially interesting when an artificial sensor skin
is not designed for a single robot, but applicable across
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Fig. 1. Problem set - How could a robot directly actuate its degrees of
freedom (DoF) in order to evade a touch with this skin senor unit (SU)?
Potential DoF candidates to shift the sensor position along its surface normal
are highlighted in green (V), others in red (X). In this paper, we will show
an automated approach to resolve this issue in an effective manner; for
lateral sensor modalities on a network of SUs, distributed on an articulated
robot with multiple rotatory DoFs.

multiple robotic systems. An autonomous, fast re-calibration
mechanism is also useful to accommodate hardware failure.

Different methods of self-exploratory learning have been
reported in simulations, as well as in practical implementa-
tions. One approach in simulation is spatio-temporal corre-
lation, learning topographic sensor structures from more or
less random input [1]. Other simulated systems purposively
seek contact with known external objects [2] or known body
parts [3] to probe the sensor locations. In [4] topographic
structures are used to classify interactive scenarios, like
hugging or hand-shaking of human with a real robot, but
the system gains no information about its motor-space. In
[5], a cross-modal map is learned among joint, vision, and
tactile sensory spaces, associating different pairs of sensor
values when they are activated simultaneously. When no
visual input is available, e.g. occlusion, this learning method
can not interpret the given situation. Visual input can also



be used to learn the forward and inverse kinematic model
of a robotic manipulator. Such as with the work of Lopes
et al [6]. What they refer to as sensory-motor map is a
function approximation in between a marker position in
camera coordinates, an additional null space motion and the
motor commands for a redundant robot.

The very nature of skin is to gather large amounts of multi-
modal sensations from all over the body. Although, it is not
necessary to take all these sensations into account on the
highest level, it is still desirable to evaluate and react on every
touch event. Human object manipulation is a good example
for this — while we focus on manipulating a difficult object,
we can at the same time maintain a steady contact with our
environment and react on unexpected tactile input without
loosing our major focus. This implies that multiple regulation
mechanisms are in place to accomplish such complex tasks —
the lowest level taking into account every sensation, whereas
higher levels focus on specific preprocessed sensations.

In [4], tactile sensor data has been used to classify types
of interaction, while in [7] tactile sensation helps the coach
to provide direct corrections to the learning robot. Contact
control makes it easier for robots to lift large objects [8], to
center the load on carrying objects [9] or to detect slip during
manipulation [10]. Instantaneous movements in response to a
sensory stimulus must not only be limited to touch triggered
reflexes for safer robots like, as in [11] and [12]. This
type of behavior has also been used for interactive real-time
guidance [13] and reflective grasping [14]. In [15], Nakamura
et al. demonstrate the effectiveness of coaching the mapping
in between preprocessed sensor information and predefined
behavior primitives on grasping different objects.

Here we were motivated by our artificial skin sensor units
(HEX-O-SKIN) reacting to multi-modal tactile stimuli [16].
In our previous work, we already issued a controller at the
level of the sensor units, but resourced to manually providing
the system with the appropriate reaction for every single
sensor unit. As appropriate reaction, we fed a constant trans-
lational velocity vector to the inverse kinematic algorithm
of the segment the sensor was mounted on. Here we were
motivated to find a way to automatically map reactions from
sensor to actuator space, as well as to provide a high level
interface to adapt the low level controller from a higher level
context.

B. New Approach

Our aim is to automatically map multi-modal touch stimuli
with an artificial sensor skin, into controllable, reflex like
reactions with the degrees of freedom (DoF) of an articulated
robot — such as a humanoid robot. Therefore, we define
instantaneous, low-level motion reactions towards multi-
modal tactile stimulation on the level of a single sensor unit
(SU). We then instantiate this behavior as many times as
there are SUs distributed on the robot. In order to support
future context driven high level controller, every controller
instance features a standard interface to activate, inhibit or
inverse reactions of a certain modality. The overall reaction
of a SU is then mapped into DoF space using weights

from a construct we refer to as a sensory-motor map. The
sensory-motor map is organized in tiles, which are directly
linked to poses of the robot (DoF positions). Tiles can be
generated during an initial phase, to supply a set of key
poses, or on demand, switching from reaction to exploration
state. When there is no tile available for the current pose,
our algorithm automatically selects the tile with minimal
euclidean distance to the actual pose. Every tile contains a
set of signed weights for every SU to directly transfer a SU
reaction into DoF motions. In order to acquire the weights
of a tile, for a pose, our algorithm applies motion pattern to
all DoFs, one after the other. The algorithm then evaluates
the effects each DoF had on the motion of every sensor unit.
It does this by utilizing data from a 3-axis accelerometer,
one of the multiple modalities available on every of our
SUs. The direction and amplitude of the three axis responses
enable us to generate signed weights, one per DoF and
SU. In this paper, we focus on lateral sensor modalities
only — such as a distance sensor, emulating the sensation
of light touch. Thus, we generate only a single translational
weight in the direction of the surface normal, which we
continue to call lateral weight. A high acceleration along the
surface normal increases this lateral weight, while unwanted
sideway movements decrease it. Switching the direction from
evaluation to reaction, only DoFs with a high contribution
to a lateral motion of the SU will be actuated, when the
connected controller instance launches a reflective action.
This theory can easily be enhanced to also support other
translational directions — e.g. x/y shearing. The advantage
of our approach is that we require only minimal a-priori
knowledge on how to control the degrees of freedom and
read from the sensor units. Only few constraints have to be
taken into account during the acquisition of the map — a fixed
robot base/torso and a sufficient, unconstrained DoF motion
range around every pose to be explored. We use an internal
observer and are thus not limited by occlusion or any external
components. Due to the touch-less approach, our method is
able to acquire the information in a very short time, which
is especially useful for ongoing re-calibration.

II. SYSTEM DESCRIPTION

In this section, we first introduce the theory of operation
of our approach. We then describe how we assemble a
sensory-motor map based on the accelerometer readings
and show how we use this map to transfer reactions from
other modalities like the distance sensor into motor space.
Finally we give an overview of the hardware we used in our
experiments.

A. Theory of Operation

1) Working Principles: Our new approach (refer to I-
B) is based on three theorems: 1) Every sensor modality on
our sensor unit has a preferred direction in which motion
increases or decreases the sensor excitation; 2) The robot
has an explicit central point in the kinematic tree towards
which it is acting on reflex like, immediate reactions; 3)



Reactions from different sensor modalities and locations can
be meaningfully super posed.

The first theorem implies that we can make use of the
motion sensor on every of our sensor units, in order to
evaluate appropriate reactions and transfer these to other
modalities. To do so, it is necessary to know the alignment
in between the new sensor modality and the motion sensor,
which we precisely do with our sensor units (SU). The
second makes it possible to reuse once explored sensory-
motor weights for the same or sufficiently close poses. Since
we use a motion sensor to evaluate reactions, it is necessary
that the central point is nearly static during pose explorations.
Only then, it is possible to extract the motion generated by
a DoF from the sensor data, without any prior knowledge
of the robot kinematics and the location/orientation of the
sensor units. With a robotic arm, this central point is given
by the part the robot is mounted to the environment. For a
humanoid robot, we would have to artificially provide the
point during pose explorations. This could for example be
achieved by fixing the torso or hip in a calibration stand. The
third theorem, makes it possible to sum all reactions of the
different sensor modalities on a single unit before mapping
this combined reaction to DoF actions. The resulting DoF
commands of multiple SUs can then also be summed up.
This statement is difficult, since with instantaneous reactions
coming from more than one modality and/or sensor unit
at a time, the DoF commands automatically interfere with
each other in a positive or negative way. On evading a heat
source one could for example impact with a wall, which itself
triggers proximity and vibration reactions. These negatively
seen chain reactions are normally not wanted. In a positive
setting, a local slip detection could trigger a tighter contact
of which the absolute strength is limited by force pain or
task constrained, adapted limits. The appropriate quality and
quantity of low level-reactions thus largely depends on the
context. Here, we only propose a standard interface per
sensor unit for a higher level controller.
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Fig. 2. Acceleration reading SUi(ii,d of an artificial sensor skin unit
(SU) i due to the change FFFa, and value BEFG, of velocity of a
rotatory degree of freedom (DoF) d and additional gravity EF g The
position vector REFFi,d is in between the DoF axis d and the accelerometer
center i. SUi RRE F describes the current relative orientation of the SU

accelerometer coordinate system i towards the reference (REF).

2) Physical Formulation: In Fig. 2 we show a simplified
model of a single sensor unit (SU) mounted on an intermedi-
ate segment of a robotic arm with multiple derees of freedom
(DoF) and a fixed base. As described in section I-B and II-
A.1l, we utilize the motion sensor on every sensor unit in
order to find appropriate DoF velocity commands for other
modalities on the same unit — e.g. contact with a distance
sensor. We therefore evaluate the influence every DoF d has
got on the direction and amplitude of motion of a unit i.
Here, we provide a description of the effects every motion
sensor is exposed to during exploration, given our constraint
of a static central point is fulfilled (refer to II-A.1).

Neglecting skin deformations, and given rigid or quasi-

rigid segments, every SU follows the acceleration of its
mounting point. With a static reference segment like in
Fig. 2, the acceleration of all mounting points can be directly
controlled by actuating the related DoFs. Here, we only focus
on ideal revolute DoFs with a velocity control interface.
Although prismatic DoFs are easier to cope with our method,
they directly produce motions that fit the accelerometer,
revolute DoFs are more common with humanoid robots. A
change in velocity & #FF&,(t) = REFa,(t) of a revolute
DoF d has a direct influence on the acceleration of SU ¢,
which composes from three different effects:
(1) The tangential acceleration *¥%'G,,,,. ,, which is depen-
dent on the rotatory acceleration of the DoF #£F & and the
vector BEFF, ; in between the DoF axis d and the mounting
point of SU 1:

REF = REF -
Atan; 4 = g X

REER (1)
(2) The centripetal acceleration #EF

dent on the angular velocity %
REF,F‘
(2

dcp, ,» Which is depen-
wy as well as the vector
,d-

REF »

REF » . (REF, » . REF -
Pia = wy % (" Wy X 73,d) 2)

(3) And the gravity vector #FF g,

In order to generate weights for the tiles of a sensory-
motor map we maximize motion control in the desired
direction, while minimizing motion in the others. Only the
tangential acceleration #¥¥d,,,,. , can be used, since this
acceleration is directly controllable through changing the
DoF velocity #EFG,(t). We thus optimize the following
weight generation (see II-B) towards the tangential accel-
eration. Even when the sensor could exclusively sense the
tangential acceleration, the accelerometer would still sense
a version SV dtam, . dependent on the relative orientation
SUiRppr (see Fig. 2). This orientation is, like the vector
REFg ;. dependent on the configuration and current pose of
the robot, as well as the mounting (location/orientation) of
the sensor unit. This is why we must explore every pose we
wish to induce reactions in, when there is no prior knowledge
about the sequential kinematic model. But, since SUi R REF
and BEFF, ; are smoothly dependent on the current DoF
positions, a tile of a comparably close pose will still behave
well.
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Fig. 3. Data from exploration of pose I, shown in Fig. 8 — The first graph
shows the velocity pattern the robot performs on every degree of freedom
(DoF), one after the other. The highlighted area shows high compliant
coupling of DoFs due to the dynamics of the distributed mass. The second
graph shows the angular DoF positions during exploration of pose I. The
pattern amplitude is low and every DoF returns to its initial position. The
last graph shows unfiltered accelerometer data from sensor unit (SU) with
ID 8. The highlighted accelerometer readings explain the generation of a
high lateral weight for DoF with ID 3, but a low one for DoF with ID
1. The readings show high z and low x/y activity for DoF with ID 3 and
lower z and high x/y activity for DoF with ID 1. The surface normal of
every sensor unit is aligned with the z axis of the accelerometer.

B. Generation of Sensory-Motor Map

1) DoF Pattern Generation: In order to automatically
acquire the influence of a degree of freedom (DoF) d on
the motion of a sensor unit (SU) ¢ for a given pose, it is
necessary for the robot to apply isolated motion pattern to
all of its DoF, one after the other. It is important to only move
one DoF at a time in order to be able to directly separate the
information. We utilize an accelerometer in order to evaluate
the influence of a DoF motion towards the motion of a sensor
unit (see I-B). Consequently the robot has to generate motion
pattern which the sensor is able to measure. In section II-
A.2, we explained why we want to maximize the influence
of the tangential acceleration *UiG;,,,, ,, while minimizing
side effects like the centripetal acceleration SU: Gcp; , and
the rotation of the gravity vector “Ui§. The centripetal
acceleration can be minimized by keeping the angular DoF
velocity wy low. The influenced of the rotated gravity vector
is constant and thus subtract-able when the DoF motion only
covers a small angular range Ayy. In order to maximize
the tangential acceleration, the angular acceleration a4 has
to be high. With compliant robots and in order to avoid
oscillations, it is advisable to smooth the commanded angular
velocity wg(t) as well as the induced acceleration ay(t) and

jerk %ad(t). At the same time we need to return to the same
DoF position ¢4(0) = ¢4(T) once the exploration pattern
with length T stops on the current DoF and is shifted to the
next DoF. One possible velocity pattern wg(t) that fulfills all
these requirement is a sine wave:

wq(t) = Asin(27 ft) (3)

Of which the deviated acceleration pattern aq(t) is:

aq(t) = 2m f Acos (2 ft) 4)
One integral of the velocity pattern is the position ¢g4(t):
A
pa(t) = ﬁ(l — cos(2m ft)) &)

All together these equations give us a guideline how to
dimension the DoF exploration pattern. The selection of A is
limited by the maximum DoF velocity oft the robot and the
tolerable influence of the centripetal acceleration. 27 f A has
to be lower than the maximum DoF acceleration and below a
value that shows excessive coupling between the DoFs due to
the distributed mass. % has to be small enough to be able
to neglect the influence of the rotating gravity vector. Still
aq4(t), and such 27 fA, has to be sufficiently large so that
the effect of a DoF pattern towards the measurement of the
accelerometer SV d;,q stands out from the sensor noise. Since
endless sinusoidal DoF pattern would not allow to switch
the pattern between DoFs we additionally need a windowing
function F'(t) so that wy(t) = Asin(2wft) - F(t) and its
derivatives still meet the constraints.

2) Weight Extraction: As described in II-A, we need
to extract lateral weights w7, , from the raw accelerometer
records *Yi@; 4 ,[n] of sensor unit with ID i on the generation
of a sinusoidal pattern with DoF with ID d in the current pose
with ID p. First, we subtract the mean value from every of
the three axes in order to eliminate constant sensor offsets
and the rotated gravity vector “Ui § which is nearly constant
for a well defined pattern (see II-B.1). We then apply a
digital low pass filter with a bandwidth B larger than 10
times the pattern frequency f to eliminate noise and high
frequency vibrations from the robot. This two stage approach
is superior to a common bandpass due to the lower order and
shorter sample set. On finding the maximum and minimum
for every axis we can calculate the amplitude Ei7d7p. In this
paper, we place our focus only on reactions in the lateral
direction. Thus, we only need the sign of the z-axis s7 ; |
component, aligned with the surface normal. The sign is
positive when the sampled wave form on the z-axis is out
of phase with the excitation pattern and positive when it
is in phase. In our experiments, we assumed the sign to be
positive when half of the maximum is reached later than half
of the minimum. Since we start every exploration pattern
with a positive velocity on the DoF (see II-B.1) this leads
to an evasive motion in the reaction phase. Finally, we can
calculate the lateral weight from all components as follows:

z
z -1 i,d,p
Wid,p = Siydp AT LAY 4 Az (©)
i,d,p i,d,p i,d,p
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Fig. 4. Weight extraction from accelerometer data — The plots show

unfiltered and filtered data from sensor unit with ID 8 on a pattern generated
by degree of freedom with ID 2 in pose I (see Fig. 8). Ay, Ay and A,
constitute ideally of the maximal amplitude of the tangential acceleration
Qtan (see Fig. 2). The first occurrence of the half of the minimum
Timin,zy /o and the half of the maximum Nmaz,z) /9 is a measure of the
sign s (out of phase/in phase) in between motion generation and sensation.

Thus, a high lateral effect of a DoF pattern in the accelerom-
eter readings increases the lateral weight, while effects in the
other two shearing directions decrease it. This calculation is
valid as long as the z-axis of the accelerometer is aligned
with the surface normal (see II-A.1).

3) Tile and Map Assembly: Fig. 8 shows two assembled
tiles for two different robot poses. A tile of the sensory motor
map is in fact a table of weights per degree of freedom
(DoF) and sensor unit (SU) with the dimension of number
of SUs times the number of DoFs times the number of
weights. With the current scope of our work, we focused
only on one weight, the lateral weight w7 ; . Our approach
can easily be extended to generate welghts for all three
translational directions. Additional to the weight matrix, it
is also necessary to record the robot pose the weights have
been sampled in. In essence, the sensory motor map is a
stack of tiles as shown in Fig. 5 for multiple robot poses
of which the robot can select one at a time in order to map
reactions (see II-C).

C. Mapping of Multi-Modal Tactile Stimuli

1) Multi-Modal Sensor Unit Reaction: In order to react
on tactile stimulations it is necessary to set up effective
controller. As described in I-B, we can define and organize
these controller on the level of the sensor units. In this paper,
we focused on a single lateral sensor modality m and a lateral
reaction p7 ,, — evading or seeking contact based on an active
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Fig. 5. Control loop of the reaction control system — Tactile stimulations
are sensed by the multi-modal sensor units. A low-level controller instance
evaluates the sensor input and provides an interface for a higher level
controller. All reactions for a single sensor unit are super posed and then
mapped by the according row of the sensory-motor map. A multiplexer
automatically selects the part of the sensory motor map with the minimal
euclidean distance to the current pose. Finally, all generated degree of
freedom commands are super posed and sent to the robot.

infrared short-distance sensor. In [16] we demonstrated that
we can perform at least three kind of reactions: 1) impact
vibrations; 2) contact proximity; and 3) temperature chill
effects. Thus, the original problem is a many to few mapping.
Here we decided to super pose all modality reactions on a
single SU, while introducing weights to provide an interface
for the next level controller. With a controllable weight ¥7,
per modality m, on a sensor unit ¢, it is already possible to
activate, inhibit or inverse a SU modality reaction:

= Vi Pim (7)

2) Sensory-Motor Reaction Mapping: Fig. 5 shows an
overview of the control loop of our method. In reaction
mode, our algorithm searches every 100ms for the best
current tile in memory, in order to map sensor unit reactions
with. The best fitting tile is currently selected by minimizing
the euclidean distance in between the current position J(t)
of the DoFs and the vectors of DoF positions, which was
memorized during the exploration of every tile. With an
update rate of 1ms our algorithm then multiplies every



sensor unit weight vector @7 , in the tile with the according
super posed sensor unit reaction p7. As there are normally
more SUs then DoFs and every SU generates its own full
desired velocity command vector &(¢) it is again a many to
few mapping. Here, we decided to super pose every DoF
reaction with an equal weight:

B(t) = . p; (8)

D. Hardware

In this subsection we provide an overview of the hardware
we used for our implementation.

GP2s60
PCs 1130210
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Fig. 6. HEX-O-SKIN sensor unit - The local controller and four combined
data/power ports are visible on the back side. The front side features multiple
sensor modalities — currently temperature, proximity and acceleration.

1) HEX-O-SKIN: What we refer to as HEX-O-SKIN
sensor unit, is a rigid hexagonal PCB with multiple sensors
on the front side and a local controller on the back. Each
modality emulates parts of the human touch cues — e.g.
temperature, vibration, light touch (see [16] for further
details). Every sensor unit features 4 ports to directly connect
it to its neighbors. Data is routed actively, power passively
through a system of connected sensor units. The sensor units
are placed next to each other in an elastomer mold, so that
they are able to conform to the surface they are mounted on.
We call such an organization entity skin patch of which at
least one boundary port has to be connected to our custom
PC interface, a Tactile Section Unit (TSU).

In this paper, we decided to make use of the 3-axis
accelerometer available on every sensor unit, a BMA150
from BOSCH, as well as the proximity sensor, a GP2S60
from SHARP (see Fig. 6). The z-axis of the accelerometer
is exactly aligned with surface normal of our sensor unit,
which makes it perfect to sense motion in the direction of
lateral sensors like the proximity sensor.

2) Robot and Controller: We evaluated our approach on
a KUKA light weight robotic arm. This robot has 7 compliant
joints with one degree of freedom per joint. The robot can be
operated in a joint velocity command mode, which we used.
All physical constraints, e.g. self-collision, are met within
the robot controller.

I1I. EXPERIMENTS

In this section, experimental validation of our approach is
presented.

A. Experimental Setup

Degree of Freedom IDs
1 2 3 4 5 6 7

Fig. 7. Experimental setup - Distribution of sensor units (blue) and degrees
of freedom (green) along the serial robotic chain. Not all sensor units are
visible at a time — e.g. sensor unit with ID 10 is located on the opposite
side of the four closely connected sensor units with ID 11-14, which directly
face the reader.

In order to validate our approach we distributed 15 of
our sensor units on a KUKA light weight robotic arm in a
shoulder like configuration. Fig. 7 illustrates the distribution
of sensor units and degrees of freedom along the serial
robotic chain. Every degree of freedom and sensor unit is
automatically allocated a unique identification number (ID),
ranging from 1 to the maximum number of its type.

The generator for the sinusoidal DoF velocity pattern was
set to an amplitude of A = 0.4rad/s with a frequency of
f = 2Hz and a length of a single wave of 500ms, cut
by a rectangular window function F'(t). The acceleration
recording of every SUs was started 500ms before the DoF
pattern was released and stopped 500ms after the pattern
was stopped.

We then detected touch by applying a threshold of 350
ticks on the infrared sensor raw data. This equals a human
hand being closer than roughly 2mm. The exited modality
reaction strength p? was set to 1, with a default control
weight ¢7,, of 0.4. Consequently the excitation of every DoF
by the controller instance is 0.4rad/s times the according
lateral weight out of the currently selected tile.

B. Results

Fig. 8 shows two out of many poses we tested. Analyzing
the weights for the sensor units with ID 11 to 14, one can
easily recognizes the similarity of direction and amplitude of
the generated lateral weights, although all weights in the map
are generated independently. This must be as all four units
are located closely and mounted with the same orientation
on an even surface. All accelerometer coordinate systems of
these units are thus aligned and, neglecting small deviations,



Degrees of Freedom

DoF ID
4 5]6][7
1 [-0.02[0.01]0.01[-0.02[0.01[-0.01[0.01
2 |-0.03]-0.02[-0.01/0.01[-0.01[0.01{0.01
3 0.04|-0.02/0.01[0.030.01[-0.01[0.01
4_|-0.04/0.21-0.04]-0.02]0.02[-0.02[0.02
5 0.04]-0.09[0.04|-0.06]-0.03]-0.03[0.02
6

7

8

1 2 3

0.03|-0.18)-0.08{0.02|-0.02|-0.02| 0.02
0.02-0.24)0.06{0.03]0.01]0.02|0.04
-0.02/-0.23|-0.19|-0.08)-0.04/ 0.03 | 0.03
9 |-0.01]0.22/0.20/0.080.03|-0.02|-0.03|
10 |-0.17|-0.03{-0.05/0.31|-0.01|-0.14|-0.04
11 [0.16]0.04|0.06{-0.29/-0.01/0.07 |-0.01
12 ]0.17[0.03|0.07{-0.29/-0.01/0.10|-0.01
13 ]0.20/0.04/0.08{-0.30{0.01]0.12-0.01
14 ]0.18/0.05/0.08{-0.28/0.01|0.09 |-0.01
15 [0.01-0.11/0.04]0.04{0.02|-0.02/0.02

Pose I | Pose

0.52[1.05[1.75[1.57[-0.52-0.56[-1.43

Degrees of Freedom

I DoF ID
[1T213[4][5][6]7
0.01-0.02-0.01[-0.02]-0.01[0.01[0.01
-0.02[0.03[-0.02[-0.02[0.02[0.01[-0.01
0.01[0.03]0.02]-0.08[0.01[-0.02[0.01
-0.04[0.19[-0.03]-0.04[ 0.02]-0.02[0.03
0.06 [-0.34[0.04]-0.10]-0.03]-0.03]-0.02]
0.04]-0.36[0.05]0.040.02[0.02[0.01
0.03-0.28[0.04]0.080.02[-0.02]-0.01
-0.01]-0.09/0.06[-0.09-0.02[0.02-0.03
9 [0.02[0.08[0.08[0.13]-0.02[-0.02[0.02
10 |-0.18]-0.550.06 [0.85]-0.05/-0.120.04
11 [0.13[0.52]-0.04]-0.32-0.05/0.07|-0.03]
12 [0.14]0.54]-0.04-0.34-0.05/0.08[-0.0
13 [0.14[0.56-0.05-0.35[0.06[0.12[-0.03|
14_[0.14]0.56-0.04/-0.33]-0.07]0.09-0.05|
15 [0.04]-0.34[0.05[0.06]-0.03]0.02[-0.02)

Pose ll ——————{"Pose

o~N|ofaf s w|n| -

0.88]0.21[1.15[0.53]-0.68[-0.17]-1.34

Fig. 8. Resulting sensory-motor map — Two parts of the sensory motor
map related to the displayed poses of the robot. Sensor units (SU) with ID
11-14, highlighted in blue, are located close to each other on the upper side
of the box like framework of the gripper. Degree of freedom (DoF) with ID
4 is highlighted in green. DoF IDs are here counted up linearly from the
base to the end effector of the KUKA robotic arm.

are subject to the same motion trajectory on a DoF pattern.
Sensor unit with ID 10 always shows similar amplitudes
compared to SUs with ID 11 to 14, but with an opposite sign.
This is correct as the unit has been mounted on the opposite
side of the box like framework of the robot’s gripper,
shifting the accelerometer coordinate system by 180 degrees.
Touching the robot at sensor unit with ID 11-14 makes the
robot evade the touch along the surface normal, the more SUs
are simultaneously touched, the stronger is the reaction. This
is due to the super posing behavior of the reaction controller
(see II-C.2). Touching two opposite modules, e.g. sensor unit
with ID 10 and 11, the behavior should ideally compensate
each other. Practically there is minor DoF motion left due
to inherent sensor noise, sensor offsets, small alignment
mismatches and the already explained compliant coupling
between multiple DoFs during pose exploration (see Fig. 3).
Changing from pose I to pose II the weights for sensor units
with ID 10 to 14 which are related to degree of freedom
with ID 4 remain nearly the same, while in the second pose
the weight of DoF with ID 2 gains a significant influence.
For these sensor unit IDs a touch reaction in pose II is

also stronger than in pose I due to the higher absolute of
the lateral weight vector. This shows the influence posture
changes have in the sensory motor map. We know that it is
very easy to find appropriate inverse kinematic solutions on
long, highly actuated kinematic chains but difficult on short,
under-actuated ones. How good does our approach thus work
for a short, under-actuated sensor unit location? One example
is sensor unit with ID 4 located on the 4th segment with only
3 DoFs in between the mounting position and the robot base.
Our algorithm found a high weight for DoF ID 2, which we
could verify by touching the sensor unit. We then activated
a “follow me” or “evade touch” scenario. On-line switching
in between these two states is possible through our higher
level interface. We showed this behavior to multiple human
test candidates, with a human interacting with the robot. The
overall reaction of a human seeing the robot reaction was
positive and the motion considered appropriate.
Please also see our submitted video.

C. Discussion

Having a look at the generated weights in Fig. 8§, it
is quickly noticeable that there are small weights also for
completely unrelated DoFs. This is partially due to coupling
effects shown in Fig. 3. Another impact has the usage of a
rectangular window function to generate time limited DoF
pattern during exploration. Similar to the long exploration
time per pose, roughly 12 seconds, we have not optimized
our system yet. Another issue we expected but did not
suppress yet is the miss-balance of reactions of SUs. This
appears when one SU has a lot of high weights for most of
the DoFs, while another has only few, small ones. An option
could be to normalize the weight vector for every SU. Due to
sensor noise and imperfections, it is then necessary to apply
limits to the implicit amplification of small weights. Looking
through the tables in Fig. 8 there are sensor units with only
very small lateral weights for all degrees of freedom. In this
case only an additional motion of the base could actuate
the sensor unit appropriately. In contrast to our presented
approach actuating the base, e.g. the torso of a humanoid
robot requires sophisticated kinematic and environmental
knowledge.

Another topic we would like to discuss here is the scala-
bility of our solution with an increasing number of degrees
of freedom and sensor units. Currently every sensor unit
generates new data packages, containing all sensor data, at a
fixed internal rate of 1k H z, regardless if this data is used to
evaluate or react. The computer has to be able to cope with
the incoming amount of minimal size UDP packages and
decode the data in real time. During a pose evaluation we
sample a maximum of 2000 three dimensional acceleration
values per sensor unit and DoF exploration pattern. Since
we directly compute the weights after each DoF pattern the
memory requirement scales linearly with the number of sen-
sor units. The computational load for the weight calculation
is minor (see II-B.2). A major scalability issue is the possible
amount of DoF poses. Given a very rough discretization
of the workspace of every DoF into four set points, it



would be necessary to evaluate the enormous number of
47 = 16384 possible poses for the 7 DoF KUKA robotic
arm. This shows the importance to: 1) Minimize the search
space to interesting, task related poses only; 2) Enhance the
approach with structural knowledge for complicated robots,
e.g. a humanoid. With a humanoid robot we already proposed
to center the touch reactions at the torso. Knowledge about
the kinematic tree could help to decouple the search space
of serial chains connected by the torso — e.g. left and right
arm. Another scalability issue is the complexity of reaction
controller. Here we decided to instantiate the same controller
for every sensor unit. In order to keep the computational
load and latency low, we only utilize simple proportional or
switching mode controller.

IV. CONCLUSION

A. Summary

In this paper, we presented a self-contained method for
articulated robots to automatically set up low-level reactions
on lateral stimulation of our multi-modal artificial skin sensor
unit. We experimentally demonstrated that we can make use
of one of the sensor modalities on our sensor units — an
accelerometer — to find appropriate actuator movements to
react on tactile stimulation from other lateral modalities on
the same unit. Through a sensory-motor map, combining
exploration results for multiple robotic poses, we were able
to transfer behaviors defined for a single sensor unit to all
sensor units distributed on the robot. We then introduced our
multi-modal tactile sensor units — HEX-O-SKIN — which was
utilized in an experimental setup on a KUKA light weight
robotic arm. With this experimental setup we presented
results that support our method to automatically setup low
level sensor-motor touch reactions.

B. Contribution

Our contribution is towards the facilitation of using large
numbers of distributed sensor units on articulated robots —
especially, artificial sensor skins. Our method provides parts
of the body schema information within a very short time
and applies only few controllable constraints. Starting from
minimal a-priori information our system explores appropriate
reactions on lateral tactile stimuli. Working at a hardware
near level, our controller can directly react on new inputs,
reducing the processing load at higher levels. The presented
method works as an internal observer and thus does not suffer
from occlusion like vision based systems or is in need of
external components. We do not aim to substitute traditional
learning algorithms but wish to facilitate and speed up the
initial or re-calibration process for complex sensor actuator
systems — like humanoid robots.
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